15,518 Matching Annotations
  1. Jan 2024
    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors measured the oxygen stable isotope ratios in six orangutan teeth using a state of the art micro-sampling technique (SHRIMP SI) to gather substantial multi-year isotopic data for six modern and five fossil orangutan individuals from Borneo and Sumatra. This fine-scale sampling technique allowed to address the fundamental question if breastfeeding affects the oxygen isotope ratios in teeth forming in the first one to two years of life, during which orangutans can be assumed to largely depend on breastmilk. The authors provide compelling evidence that the consumption of milk does not appear to affect the overall isotopic profile in early forming teeth. They conclude that this allows us to use these teeth as terrestrial/arboreal isotopic proxies in paleoenvironmental research, which would provide an invaluable addition to otherwise largely marine climate records in this regions.

      Strengths:<br /> The overall large sample size of orangutan dental isotope records as well as the rigorous dating of the fossil specimens provide a strong dataset for addressing the outlined questions. The direct comparison of modern and fossil orangutan specimens provides a valuable evaluation of the use of these modern and past environmental proxies, with some discussion of the implications for the environmental conditions during the expansion of early modern humans into this region of the world.

      Weakness:<br /> The authors illustrate that all orangutan individuals sampled, modern and fossil, show a considerable amount of isotopic variation between and within their teeth. Some of this variation is clearly associated with isotopic shifts in precipitation, but some will also be linked to the variation in oxygen isotopes within the forest itself and the many plant foods it produces for the orangutan. In the future, the systematic measurement of oxygen isotopes across orangutan food items, forest canopies and precipitation could help differentiate how much of the observed isotopic variation in teeth is indeed related to climatic shifts alone.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This manuscript provides microprobe serial oxygen isotope data from thin-sectioned modern and fossil orangutan teeth in an effort to reconstruct seasonality of rainfall in Borneo and Sumatra. The authors also explore the hypothesis that nursing could affect early tooth (first molar) isotope values. They find that all molars yield similar oxygen isotope values and therefore conclude that future research need not exclude use of first molars. With regard to seasonality, the modern orangutans yield similar results from both islands. The authors suggest differences between modern and fossil orangutan teeth.

      Strengths:<br /> The study employs a sampling method that captures serial isotope values within thin sections of teeth using a microprobe that provides much higher resolution than traditional hand-held drilling.

      Weaknesses:<br /> The study only examines six modern and six fossil orangutan individuals. Of those, only four modern individuals were samples across multiple molars.

    1. Reviewer #1 (Public Review):

      The article offers a comparative study between various methodologies to evaluate the abundance, richness, and diversity of insects from data obtained in a large-scale field experiment. The experiment is impressive in view of the number of locations, its spatial coverage, the number of instruments or methods used, and the data collected appears rich and worthy of multiple publications. The paper focuses on the validation of a novel approach based on optical sensors. These sensors collect the backscattered light from flying insects in their field of view and can retrieve the wingbeat frequency and the body-to-wing backscattering ratios.<br /> Unfortunately, the paper is poorly written and hard to read, with a lack of clear sections, and an overall confusing structure. The methods, metrics, and data analysis are not properly and thoroughly described, making it sometimes difficult to evaluate the validity of the approach.<br /> Most importantly, the methodology to retrieve the richness and diversity from optical sensors seems flawed. While the scope and scale of the experiment is valuable, I do not believe that this article supports the authors' claim. The main criticisms are described in more detail below.

      1) The Material and Method section is poorly structured. The article focuses on a series of metrics to evaluate biodiversity from three independent methods: optical sensors, malaise traps, and net sweeping. The authors need to provide a clear and thorough description of what the metrics to be studied are, and how those metrics are evaluated for each method. While it is the main focus of the paper, the term "biodiversity metrics" is never properly defined, it is used in the singular form in both the title and abstract, then in its plural form in the rest of the paper, making the reader further doubt what exactly it means. It is then discussed using the correlation value retrieved when studying richness, so is the biodiversity metric the same as richness? Studying biodiversity remains a complex and sometimes contentious subject and this term, especially when measured by three different methods, is far from obvious. The term "community metrics" is defined as abundance, richness, and diversity; is that the same as biodiversity metrics? In any case, the method section should thoroughly describe how each of those metrics is calculated from the raw data collected by each method. This information is somewhat there, but in a very unorganized way, making it difficult to read. I would recommend organizing this section with multiple and clear sections: 1) describing the metrics that are meant to be studied, 2) the location, dates and time, type of crops, and other general information about the experiment, 3) description and methods around optical sensors, 4) description and methods around malaise traps, 5) description and methods around the sweeping. The last 3 sections should describe how it retrieves the previously defined metrics, potentially using equations.

      2) Regarding the calculation of the body-to-wing ratio, sigma is described as a "signal" line 195, then is described as intensity counts in Figure 2; isn't it really the backscattering optical cross-section? It changes significantly over time during the signal, so how is one value of sigma calculated? Is it the average of the whole insect event? The maximum?

      3) The "ecosystem services" paragraph is really confusing and needs to be rewritten.

      4) Like for the method section, the result section should be structured around the comparison of each metric, abundance, richness, and diversity, or any other properly defined metrics described in the method, so that the result section is consistent with the method section.

      5) The abundance is not correlated; interestingly, malaise traps and sweeping are even less correlated which further supports the claims by the authors that new and improved methods are needed. This part of the results could be further developed. A linear fit could be added to Figure 4.

      6) Richness and diversity are the most problematic. Again, the method is poorly described, with pieces of explanation spread out throughout the paper, but my understanding is the following: the optical sensor retrieves two features from each insect signal, wbf, and BWR. Clustering is made using DBSCAN which has 2 parameters: minimum number of signals, and merge distance. It is important to note that these two parameters will greatly influence the number of clusters found by DBSCAN. The richness obtained by optical sensors is defined as the number of clusters and the diversity is evaluated from it as well. Hence, both diversity and richness are greatly dependent on the chosen parameters. The DBSCAN parameters are chosen by maximizing the Spearman correlation between richness obtained by the optical sensors and richness by the capture methods. I see a major problem here: if you optimize the parameters, that directly impact the retrieved diversity and richness by optical sensors, to have the best correlation with either the richness or diversity of the other methods, you will automatically create a correlation between the richness and diversity retrieved by the optical sensors and alternative methods. The p-value in Figure 6 does not represent the probability of the correlation hypothesis being false anymore, since the whole process is based on artificially forcing the correlation from the start.

      7) In addition, the clustering method provides values higher than 80, which is quite unrealistic with just 2 features, wbf and BWR. It is clear from many studies using optical sensors that the features from optical sensors are subject to variability. Wbf has naturally some variances within the same species, not to mention temperature dependency. Backscattering cross sections will also heavily function on the insect's orientation (facing or sideways) while crossing the cone of light, and, even though it is a ratio, the collection efficiency of the instrument telescope and scattering efficiency of the target will be impacted by the position of the insects within the cone of light, which will also impact the variability on the BWR. While those features can still be used, obtaining 80 clusters from two variables with such statistical fluctuations is simply not credible. Additional features could help, such as the two wavelengths mentioned in the description of the optical sensor but are never mentioned again.

      The conclusion then states that the study serves as the first field validation. I disagree; the abundance doesn't correlate, and the richness and diversity evaluations are flawed. While I do think there is great value in the work done by the authors through this impressive field experiment, and in general in their work toward the development of entomological optical sensors, I believe the data analysis and communication of the results do not support the conclusions drawn.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Rydhmer et al. proposes a new technology to survey insects. They deployed optical sensors in agricultural landscapes and contrast their results to those in classical malaise and sweep nets survey methodologies. They found the results of optical sensors to be comparable with classical survey methodologies. The authors discuss the pros and cons of their near-infrared sensor.

      Strengths:<br /> Contrasting the results of optical sensors with those obtained with classical malaise and sweep nets was a clever idea.

      Weaknesses:<br /> Maybe the first most important shortcoming is the lack of a larger question the new technology can help to answer. If the authors could frame their aims not only as a new tool to sample insects but maybe along the lines of a hypothesis to test in their (agricultural) field of research, this could be a more meaningful article.

      The second more important shortcoming is the lack of more complex analyses. The authors seem to be so fixed on counts of abundance and species that they miss the opportunity to look for more complex patterns in their data. The addition of a simple analysis like an NMDS (to test composition changes) could improve the manuscript significantly.

      The ecosystem process (granivory) assay is currently poorly contextualized and explained across the text; I was surprised to find this part in M&M without previous warning. It seems to me that adding this part could be a nice addition to the manuscript (see my comment above). But this needs to be explained better in all sections of the manuscript.

      As I think that addressing my previous points will reshape the manuscript in important ways, I refrain from giving more specific details at this point. But there are some! Maybe only to mention that Figures 4 and 6 would benefit from individual regressions by crop and Figure 5 from adding results from optical sensors.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The evolution of transporter specificity is currently unclear. Did solute carrier systems evolve independently in response to a cellular need to transport a specific metabolite in combination with a specific ion or counter metabolite, or did they evolve specificity from an ancestral protein that could transport and counter-transport most metabolites? The present study addresses this question by applying selective pressure to Saccharomyces cerevisiae and studying the mutational landscape of two well-characterised amino acid transporters. The data suggest that AA transporters likely evolved from an ancestral transporter and then specific sub-families evolved specificity depending on specific evolutionary pressure.

      Strengths:<br /> The work is based on sound logic and the experimental methodology is well thought through. The data appear accurate, and where ambiguity is observed (as in the case of citruline uptake by AGP1), in vitro transport assays are carried out to verify transport function.

      Weaknesses:<br /> Although the data and findings are well described, the study lacked additional contextual information that would support a clear take-home message.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This paper describes evolution experiments performed on yeast amino acid transporters aiming at the enlargement of the substrate range of these proteins. Yeast cells lacking 10 endogenous amino acid transporters and thus being strongly impaired to feed on amino acids were again complemented with amino acid transporters from yeast and grown on media with amino acids as the sole nitrogen source.

      In the first set of experiments, complementation was done with seven different yeast amino acid transporters, followed by measuring growth rates. Despite most of them have been described before in other experimental contexts, the authors could show that many of them have a broader substrate range than initially thought.

      Moving to the evolution experiments, the authors used the OrthoRep system to perform random mutagenesis of the transporter gene while it is actively expressed in yeast. The evolution experiments were conducted such that the medium would allow for poor/slow growth of cells expressing the wt transporters, but much better/faster growth if the amino acid transporter would mutate to efficiently take up a poorly transported (as in the case of citrulline and AGP1) or non-transported (as in case of Asp/Glu and PUT4) amino acid.

      This way and using Sanger sequencing of plasmids isolated from faster-growing clones, the authors identified a number of mutations that were repeatedly present in biological replicates. When these mutations were re-introduced into the transporter using site-directed mutagenesis, faster growth on the said amino acids was confirmed. Growth phenotype data were attempted to be confirmed by uptake experiments using radioactive amino acids; however, the radioactive uptake data and growth-dependent analyses do not fully match, hinting at the existence of further parameters than only amino acid uptake alone to impact the growth rates.

      When mapped to Alphafold prediction models on the transporters, the mutations mapped to the substrate permeation site, which suggests that the changes allow for more favourable molecular interactions with the newly transported amino acids.

      Finally, the authors compared the growth rates of the evolved transporter variants with those of the wt transporter and found that some variants exhibit a somewhat diminished capacity to transport its original range of amino acids, while other variants were as fit as the wt transporter in terms of uptake of its original range of amino acids.

      Based on these findings, the authors conclude that transporters can evolve novel substrates through generalist intermediates, either by increasing a weak activity or by establishing a new one.

      Strengths:<br /> The study provides evidence in favour of an evolutionary model, wherein a transporter can "learn" to translocate novel substrates without "forgetting" what it used to transport before. This evolutionary concept has been proposed for enzymes before, and this study shows that it also can be applied to transporters. The concept behind the study is easy to understand, i.e. improving growth by uptake of more amino acids as nitrogen source. In addition, the study contains a large and extensive characterization of the transporter variants, including growth assays and radioactive uptake measurements.

      Weaknesses:<br /> The authors took a genetic gain-of-function approach based on random mutagenesis of the transporter. While this has worked out for two transporters/substrate combinations, I wonder how comprehensive and general the insights are. In such approaches, it is difficult to know which mutation space is finally covered/tested. And information that can be gained from loss-of-function analyses is missed. The entire conclusions are grounded on a handful of variants analyzed. Accordingly, the outcome is somewhat anecdotal; in some cases, the fitness of the variants was changed and in others not. Highlighting the amino acid changes in the context of the structural models is interesting, but does not fully explain why the variants exhibit changed substrate ranges. Two important technical elements have not been studied in detail by the authors, but may well play a certain role in the interpretation of the results. Firstly, the authors did not quantify the amount of transporter being present on the cell surface; altered surface expression can impact uptake rates and thus growth rates. Secondly, the authors have not assessed whether overexpressing wt versus variant transporters has an impact on the growth rate per se. Overexpressing transporters from plasmids is quite a burden for the cells and often impacts growth rates. Variants may be more or less of a burden, an effect that may (or may also not) go hand in hand with increased/decreased surface production levels.

      And finally, I was somewhat missing an evolutionary analysis of these transporters to gain insights into whether the identified substitutions also occurred during natural evolution under real-life conditions.

    3. Reviewer #3 (Public Review):

      The goal of the current manuscript is to investigate how changes in transporter substrate specificity emerge through experimental evolution. The authors investigate the APC family of amino acid transporters, a large family with many related transporters that together cover the spectrum of amino acid uptake in yeast.

      The authors use a clever approach for their experimental evolutions. By deleting 10 amino acid uptake transporters in yeast, they develop a strain that relies on amino acid import by introducing APC transporters under nitrogen-limiting conditions. They can thus evolve transporters towards the transport of new substrates if no other nitrogen source is available. The main takeaway from the paper is that it is relatively easy for the spectrum of substrates in a particular transporter of this family to shift, as a number of single mutants are identified that modulate substrate specificity. In general, transporters evolved towards gain-of-function mutations (better or new activities) and also confer transport promiscuity, expanding the range of amino acids transported.

      The data in the paper support the conclusions, in general, and the outcomes (evolution towards promiscuity) agree with the literature available for soluble enzymes. However, it is also a possibility that the design of these experiments selects for promiscuity among amino acids. The selections were designed such that yeast had access to amino acids that were already transported, with a greater abundance of the amino acid that was the target of selection. Under these conditions, it seems probable that the fittest variants will provide the yeast access to all amino acid substrates in the media, and unlikely that a specificity swap would occur, limiting the yeast to only the new amino acid.

      The authors also examine the fitness costs of mutants, but only in the narrow context of growth on a single (original) amino acid under conditions of nitrogen limitation. Amino acid uptake is typically tightly controlled because some amino acids (or their carbon degradation products) are toxic in excess. This paper does not address or discuss whether there might be a fitness cost to promiscuous mutants in conditions where nitrogen is not limiting.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This manuscript presents a method to infer causality between two genes (and potentially proteins or other molecules) based on the non-genetic fluctuations among cells using a version of the dual-reporter assay as a causal control, where one half of the dual-reporter pair is causally decoupled, as it is inactive. The authors propose a statistical invariant identity to formalize this idea.

      Strengths:<br /> The paper outlines a theoretical formalism, which, if experimentally used, can be useful in causal network inference, which is a great need in the study of biological systems.

      Weaknesses:<br /> The practical utility of this method may not be straightforward and potentially be quite difficult to execute. Additionally, further investigations are needed to provide evidence of the broad applicability of the method to naturally occurring systems and its scalability beyond the simple circuit in which it is experimentally demonstrated.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This paper describes a new approach to detecting directed causal interactions between two genes without directly perturbing either gene. To check whether gene X influences gene Z, a reporter gene (Y) is engineered into the cell in such a way that (1) Y is under the same transcriptional control as X, and (2) Y does not influence Z. Then, under the null hypothesis that X does not affect Z, the authors derive an equation that describes the relationship between the covariance of X and Z and the covariance of Y and Z. Violation of this relationship can then be used to detect causality.

      The authors benchmark their approach experimentally in several synthetic circuits. In four positive control circuits, X is a TetR-YFP fusion protein that represses Z, which is an RFP reporter. The proposed approach detected the repression interaction in two or three of the positive control circuits. The authors constructed sixteen negative control circuit designs in which X was again TetR-YFP, but where Z was either a constitutively expressed reporter or simply the cellular growth rate. The proposed method detected a causal effect in two of the sixteen negative controls, which the authors argue is not a false positive, but due to an unexpected causal effect. Overall, these pilot studies, albeit in simplified scenarios, provide encouraging results.

      Strengths:<br /> The idea of a "no-causality control" in the context of detected directed gene interactions is a valuable conceptual advance that could potentially see play in a variety of settings where perturbation-based causality detection experiments are made difficult by practical considerations.

      By proving their mathematical result in the context of a continuous-time Markov chain, the authors use a more realistic model of the cell than, for instance, a set of deterministic ordinary differential equations.

      Caveats:<br /> The term "causally" is used in the main-text statement of the central theorem (Eq 2) without a definition of this term. This makes it difficult to fully understand the statement of the paper's central theorem without diving into the supplement.

      The basic argument of theorem 1 appears to rely on establishing that x(t) and y(t) are independent of their initial conditions. Yet, there appear to be some scenarios where this property breaks down:

      (1) Theorem 1 does not seem to hold in the edge case where R=beta=W=0, meaning that the components of interest do not vary with time, or perhaps vary in time only due to measurement noise. In this case x(t), y(t), and z(t) depend on x(0), y(0), and z(0). Since the distributions of x(0), y(0), and z(0) are unspecified, a counterexample to the theorem may be readily constructed by manipulating the covariance matrix of x(0), y(0), and z(0).

      (2) A similar problem may occur when transition probabilities decay with time. For example, suppose that again R=0 and X are degraded by a protease (B), but this protease is subject to its own first-order degradation. The deterministic version of this situation can be written, for example, dx/dt=-bx and db/dt=-b. In this system, x(t) approaches x(0)exp(-b(0)) for large t. Thus, as above, x(t) depends on x(0). If similar dynamics apply to the Y and Z genes, we can make all genes depend on their initial conditions, thus producing a pathology analogous to the above example.

      The reviewer does not know when such examples may occur in (bio)physical systems. Nevertheless, since one of the advantages of mathematics is the ability to correctly identify the domain of validity for a claim, the present work would be strengthened by "building a fence" around these edge cases, either by identifying the comprehensive set of such edge cases and explicitly prohibiting them in a stated assumption set, or by pointing out how the existing assumptions already exclude them.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Bomba-Warczak describes a comprehensive evaluation of long-lived proteins in the ovary using transgenerational radioactive labelled 15N pulse-chase in mice. The transgenerational labeling of proteins (and nucleic acids) with 15N allowed the authors to identify regions enriched in long-lived macromolecules at the 6 and 10-month chase time points. The authors also identify the retained proteins in the ovary and oocyte using MS. Key findings include the relative enrichment in long-lived macromolecules in oocytes, pregranulosa cells, CL, stroma, and surprisingly OSE. Gene ontology analysis of these proteins revealed enrichment for nucleosome, myosin complex, mitochondria, and other matrix-type protein functions. Interestingly, compared to other post-mitotic tissues where such analyses have been previously performed such as the brain and heart, they find a higher fractional abundance of labeled proteins related to the mitochondria and myosin respectively.

      Strengths:

      A major strength of the study is the combined spatial analyses of LLPs using histological sections with MS analysis to identify retained proteins.

      Another major strength is the use of two chase time points allowing assessment of temporal changes in LLPs associated with aging.

      The major claims such as an enrichment of LLPs in pregranulosa cells, GCs of primary follicles, CL, stroma, and OSE are soundly supported by the analyses, and the caveat that nucleic acids might differentially contribute to this signal is well presented.

      The claims that nucleosomes, myosin complex, and mitochondrial proteins are enriched for LLPs are well supported by GO enrichment analysis and well described within the known body of evidence that these proteins are generally long-lived in other tissues.

      Weaknesses:

      One small potential weakness is the lack of a mechanistic explanation of if/why turnover may be accelerating at the 6-10 month interval compared to 1-6.

      A mild weakness is the open-ended explanation of OSE label retention. This is a very interesting finding, and the claims in the paper are nuanced and perfectly reflect the current understanding of OSE repair. However, if the sections are available and one could look at the spatial distribution of OSE signal across the ovarian surface it would interesting to note if label retention varied by regions such as the CLs or hilum where more/less OSE division may be expected.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Bomba-Warczak et al. applied multi-isotope imaging mass spectrometry (MIMS) analysis to identify the long-lived proteins in mouse ovaries during reproductive aging, and found some proteins related to cytoskeletal and mitochondrial dynamics persisting for 10 months.

      Strengths:

      The manuscript provides a useful dataset about protein turnover during ovarian aging in mice.

      Weaknesses:

      The study is pretty descriptive and short of further new findings based on the dataset. In addition, some results such as the numbers of follicles and ovulated oocytes in aged mice are not consistent with the published literature, and the method for follicle counting is not accurate. The conclusions are not fully supported by the presented evidence.

    3. Reviewer #3 (Public Review):

      Summary:

      In this study, Bomba-Warczak et al focused on reproductive aging, and they presented a map for long-lived proteins that were stable during reproductive lifespan. The authors used MIMS to examine and show distinct molecules in different cell types in the ovary and tissue regions in a 6 month mice group, and they also used proteomic analysis to present different LLPs in ovaries between these two timepoints in 6-month and 10-month mice. The authors also examined the LLPs in oocytes in the 6-months mice group and indicated that these were nuclear, cytoskeleton, and mitochondria proteins.

      Strengths:

      Overall, this study provided basic information or a 'map' of the pattern of long-lived proteins during aging, which will contribute to the understanding of the defects caused by reproductive aging.

      Weaknesses:

      The 6-month mice were used as an aged model; no validation experiments were performed with proteomics analysis only.

    1. Reviewer #1 (Public Review):

      Summary: This study addressed an alternative hypothesis to temporal binding phenomena. In temporal binding, two events that are separated in time are "pulled" towards one another, such that they appear more coincidental. Previous research has shown evidence of temporal binding events in the context of actions and multisensory events. In this context, the author revisits the well-known Libet clock paradigm, in which subjects view a moving clock face, press a button at a time of their choosing to stop the clock, a tone is played (after some delay), and then subjects move the clock dial to the point where the one occurred (or when the action occurred). Classically, the reported clock time is a combination of the action and sound times. The author here suggests that attention can explain this by a mechanism in which the clock dial leads to a roving window of spatiotemporal attention (that is, it extends in both space and time around the dial). To test this, the author conducted a number of experiments where subjects performed the Libet clock experiment, but with a variety of different stimulus combinations. Crucially, a visual detection task was introduced by flashing a disc at different positions along the clock face. The results showed that detection performance was also "pulled" towards the action event or sensory event, depending on the condition. A model of roving spatiotemporal attention replicated these effects, providing further evidence of the attentional window.

      The study provides a novel explanation for temporal binding phenomena, with clear and cleverly designed experiments. The results provide a nice fit to the proposed model, and the model itself is able to recapitulate the observed effects.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Temporal binding, generally considered a timing illusion, results from actions triggering outcomes after a brief delay, distorting perceived timing. The present study investigates the relationship between attention and the perception of timing by employing a series of tasks involving auditory and visual stimuli. The results highlight the role of attention in event timing and the functional relevance of attention in outcome binding.

      Strengths:<br /> - Experimental Design: The manuscript details a well-structured sequence of experiments investigating the attention effect in outcome binding. Thoughtful variations in manipulation conditions and stimuli contribute to a thorough and meaningful investigation of the phenomenon.<br /> - Statistical Analysis: The manuscript employs a diverse set of statistical tests, demonstrating careful selection and execution. This statistical approach enhances the reliability of the reported findings.<br /> - Narrative Clarity: Both in-text descriptions and figures provide clear insights into the experiments and their results, facilitating readers in following the logic of the study.

      Weaknesses:<br /> - Conceptual Clarity: The manuscript aims to integrate key concepts in human cognitive functions, including attention, timing perception, and sensorimotor processes. However, before introducing experiments, there's a need for clearer definitions and explanations of these concepts and their known and unknown interrelationships. Given the complexity of attention, a more detailed discussion, including specific types and properties, would enhance reader comprehension.<br /> - Computational Modeling: The manuscript lacks clarity in explaining the model architecture and setup, and it's unclear if control comparisons were conducted. These details are critical for readers to properly interpret attention-related findings in the modeling section. Providing a clearer overview of these aspects will improve the overall understanding of the computational models used.

    1. Reviewer #1 (Public Review):

      Summary:

      The current study reports a cryo-EM structure of MFS transporter MelB trapped in an inward-facing state by a conformationally selective nanobody. The authors compare this structure to previously-resolved crystal structures of outward-facing MelB. Additionally, the authors report H/D exchange/ mass spec experiments that identify accessible residues in the protein.

      Strengths:

      The authors overcame very significant technical challenges to solve the first inward-facing structure of the small, model MFS transporter MelB by cryo-EM. The use of conformation-trapping nanobodies (which had been reported previously by this group) is particularly nice.

      Weaknesses:

      The authors highlight the use of HDX experiments as a measurement of protein conformational dynamics. However, the experiment instead measures the accessibility of different residues. An ideal experiment would trap the transporter in inward- and outward states, but only the inward conformation is trapped here. The outward-facing conformation is instead an ensemble of outward and occluded conformations. It seems obvious that this will be more dynamic than the nanobody-trapped inward state.

    2. Reviewer #3 (Public Review):

      Summary:

      The manuscript authored by Lan Guan and colleagues reveals the structure of the cytosol-facing conformation of the MelB sodium/Li coupled permease using the nab-Fab approach and cryoEM for structure determination. The study reveals the conformational transitions in the melB transport cycle and allows understanding of the role of sugar and ion specificities within this transporter.

      Strengths:

      The study employs a very exciting strategy of transferring the CDRS of a conformation specific nano body to the nab-fab system to determine the inward-open structure of MelB. The resolution of the structure is reasonable enough to support the major conclusions of the study. This is a well-executed study.

    3. Reviewer #1 (Public Review):

      Summary: The current study reports a cryo-EM structure of MFS transporter MelB trapped in an inward-facing state by a conformationally selective nanobody. The authors compare this structure to previously-resolved crystal structures of outward-facing MelB. Additionally, the authors report H/D exchange/ mass spec experiments that identify accessible residues in the protein.

      Strengths:

      The authors overcame very significant technical challenges to solve the first inward-facing structure of the small, model MFS transporter MelB by cryo-EM. The use of conformation-trapping nanobodies (which had been reported previously by this group) is particularly nice.

      Weaknesses:

      Maps and coordinates were not provided by the authors, which presents a gap in this assessment.

      The authors highlight the use of HDX experiments as a measurement of protein conformational dynamics. However, this experiment does not measure the conformational dynamics of the transporter, since in these experiments exchange is not initiated by ligand addition or another trigger. The experiment instead measures the accessibility of different residues, and of course, a freely-exchanging sodium bound transporter would have more exchangeable positions than when a conformation-trapping nanobody is bound. It is not clear what new mechanistic information this provides, since this property of the nanobody has already been established.

      Based on the evidence presented, it is somewhat speculative that the structure represents the EIIa-bound regulatory state.

    4. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Hariharan and colleagues present an elegant study regarding the mechanistic basis of sugar transport by the prototypical Na+-coupled transporter MelB. The authors identified a nanobody (Nb 725) that reduces melibiose binding but not Na+ binding. In vitro (ITC) experiments suggest that the conformation targeted by this nanobody is different from the published outward-open structures. They go on to solve the structure of this other conformational by cryo-EM using the Nanobody grafted with a fiducial marker and enhancer and, as predicted, capture a new conformation of MelB, namely the inward-open conformation. Through MD simulations and ITC measurements, they demonstrate that such state has a reduced affinity for sugar but that Na+ binding is mostly unaffected. A detailed observation and comparison between previously published structures in the outward-open conformation and this new conformational intermediate allows to strengthen and develop the mobile barrier hypothesis underpinning sugar transport. The conformational transition to the inward-facing state leads to the formation of a barrier on the extracellular side that directly affects the amino acid arrangement of the sugar binding site, leading to a decreased affinity that drives the direction of transport. In contrast, the Na+ binding remains the same. This structural data is complemented with dynamic insights from HDX-MS experiments conducted in the presence and absence of the Nb. These measurements highlight the overall protective effect of nanobody binding, consistent with the stabilization of one conformational intermediate.

      Strengths:

      The experimental strategy to isolate this elusive conformational intermediate is smart and well-executed. The biochemical and biophysical data were obtained in a lipid system (nanodiscs), which allows dismissing questions about detergent induced artefacts. The new conformation observed is of great interest and allows to have a better mechanistic understanding of ion-coupled sugar transport. The comparison between the two structures and the mobile barrier mechanism hypothesis is convincingly depicted and tested.

      Weaknesses:

      This is excellent experimental work. My recommendations stem mostly from concerns regarding the interpretation of the observed results. In particular, I am somewhat puzzled by the important role the authors give to the regulatory protein EIIa with little structural or biophysical data to back up their claims. The hypothesis that the conformation captured by the Nb is physiologically and functionally equivalent to that caused by EIIa binding is definitely a worthy hypothesis, but it is not an experimental result.

      Evidence in support could include a structure with EIIa bound. Since it does not bind at the same location as the Nb, it seems feasible. Or, the authors could have performed HDX-MS in the presence of EIIa to determine if the effect is similar to that of Nb_725 binding. In the absence of these experiments, discussion about EIIa should be limited. Along the same lines, I find it misleading to put in the abstract a sentence such as "It is the first structure of a major facilitator superfamily (MFS) transporter with experimentally determined cation binding, and also a structure mimicking the physiological regulatory state of MelB under the global regulator EIIAGlc of the glucose-specific phosphoenolpyruvate:phosphotransferase system." None of this is supported by the experimental work presented in this article: the Na+ is modelled (with great confidence, but still) and whether this structure mimics the physiological state of MelB bound to EIIa is not known. The results of the paper are strong and interesting enough per se, and there is no need to inflate them with hypothesis that belongs to the discussion section.

      I also note that the HDX-MS experiments do not distinguish between two conformational states, but rather an ensemble of states vs one state.

    5. Reviewer #3 (Public Review):

      Summary:

      The manuscript authored by Lan Guan and colleagues reveals the structure of the cytosol-facing conformation of the MelB sodium/Li coupled permease using the nab-Fab approach and cryoEM for structure determination. The study reveals the conformational transitions in the melB transport cycle and allows understanding the role of sugar and ion specificities within this transporter.

      Strengths:

      The study employs a very exciting strategy of transferring the CDRS of a conformation specific nano body to the nab-fab system to determine the inward-open structure of MelB. The resolution of the structure is reasonable enough to support the major conclusions of the study. This is overall a well-executed study.

      Weaknesses:

      The authors seem to have mixed up the exothermic and endothermic aspects of ITC binding in their description. Positive heats correspond to endothermic heat changes in ITC and negative heat changes correspond to exothermic heats. The authors seem to suggest the opposite. This is consistently observed throughout the manuscript.

    1. Reviewer #2 (Public Review):

      Yanagihara and colleagues investigated the immune cell composition of bronchoalveolar lavage fluid (BALF) samples in a cohort of patients with malignancy undergoing chemotherapy and with with lung adverse reactions including Pneumocystis jirovecii pneumonia (PCP) and immune-checkpoint inhibitors (ICIs) or cytotoxic drug induced interstitial lung diseases (ILDs). Using mass cytometry, their aim was to characterize the cellular and molecular changes in BAL to improve our understanding of their pathogenesis and identify potential biomarkers and therapeutic targets. In this regard, the authors identify a correlation between CD16 expression in T cells and the severity of PCP and an increased infiltration of CD57+ CD8+ T cells expressing immune checkpoints and FCLR5+ B cells in ICI-ILD patients.

      The conclusions of this paper are mostly well supported by data, but some aspects of the data analysis need to be clarified and extended.

      1) The authors should elaborate on why different set of markers were selected for each analysis step. E.g., Different set of markers were used for UMAP, CITRUS and viSNE in the T cell and myeloid analysis.

      2) The authors should state if a normality test for the distribution of the data was performed. If not, non-parametric tests should be used.

      3) The authors should explore the correlation between CD16 intensity and the CTCAE grade in T cell subsets such as EMRA CD8 T cells, effector memory CD4, etc as identified in Figure 1B.

      4) The authors could use CITRUS to better assess the B cell compartment.

    2. Reviewer #3 (Public Review):

      The authors collected BALF samples from lung cancer patients newly diagnosed with PCP, DI-ILD or ICI-ILD. CyTOF was performed on these samples, using two different panels (T-cell and B-cell/myeloid cell panels). Results were collected, cleaned-up, manually gated and pre-processed prior to visualisation with manifold learning approaches t-SNE (in the form of viSNE) or UMAP, and analysed by CITRUS (hierarchical clustering followed by feature selection and regression) for population identification - all using Cytobank implementation - in an attempt to identify possible biomarkers for these disease states. By comparing cell abundances from CITRUS results and qualitative inspection of a small number of marker expressions, the authors claimed to have identified an expansion of CD16+ T-cell population in PCP cases and an increase in CD57+ CD8+ T-cells, FCRL5+ B-cells and CCR2+ CCR5+ CD14+ monocytes in ICI-ILD cases.

      By the authors' own admission, there is an absence of healthy donor samples and, perhaps as a result of retrospective experimental design and practical clinical reasons, also an absence of pre-treatment samples. The entire analysis effectively compares three yet-established disease states with no common baseline - what really constitutes a "biomarker" in such cases? These are very limited comparisons among three, and only these three, states.

      By including a new scRNA-Seq analysis using publicly available dataset, the authors addressed this fundamental problem. Though more thorough and numerical analysis would be appreciated for a deeper and more impactful analysis, this is adequate for the intended objectives of the study.

    1. Reviewer #1 (Public Review):

      The authors Wang et al. present a study of a mouse model K74R that they claim can extend the life span of mice, and also has some anti-cancer properties in some standrad models of melanoma and hepatocellular carcinoma. Importantly, this mechanism seems to be mediated by the hematopoietic system, and protective effects can be transferred with bone marrow transplantation.

      The authors have now adapted their manuscript reflecting the novelties of these studies. Overall, the study is a continuation and also corroboration of previous work, without clinical data yet. The authors have now expanded their work to a second mouse model, which strengthens their data.

    2. Reviewer #2 (Public Review):

      The manuscript by Wang et al., follows up on the group's previous publication on KLF1 (EKLF) K47R mice and reduced susceptibility to tumorigenesis and increased life span (Shyu et al., Adv Sci (Weinh). Sep 2022;9(25):e2201409. doi:10.1002/advs.202201409). In the current manuscript, the authors have described these phenotypes in the context of age, gender, genetic background, and hematopoietic transplantation of bone marrow mononuclear cells. Despite the revisions, significant conceptual concerns still remain in the study that make the inferences in the manuscript less convincing. Major concerns are listed below.

      Major concerns:

      1. The authors mention more than once in the manuscript that KLF1 is expressed in range of blood cells including hematopoietic stem cells, megakaryocytes, T cells and NK cells. In the case of megakaryocytes, studies from multiple labs have shown that while EKLF is expressed megakaryocyte-erythroid progenitors, EKLF is important for the bipotential lineage decision of these progenitors, and its high expression promotes erythropoiesis, while its expression is antagonized during megakaryopoiesis. In the case of HSCs, the authors reference to their previous publication for KLF1's expression in these cells- however, in this study nor in the current study, there is no western blot documented to convincingly show that KLF1 protein is expressed at detectable levels in these cells. For T cells, the authors have referenced a study which is based on ectopic expression of KLF1. For NK cells, the authors reference bioGPS: however, upon inspection, this is also questionable. As part of the revision, the authors have provided western blots in supplemental figure S4. However, these blots are difficult to interpret, since the EKLF bands for NK cells, and T cells are very faint and since the positive control EKLF band from MEL erythroid cell lysates is oversaturated, to interpret the data clearly. Therefore, although a quantification is shown, the representative blot included for EKLF protein levels is not convincing.

      2. The current study rests on the premise that KLF1 is expressed in HSCs, NK cells and leukocytes, and the references cited are not sufficient to make this assumption, for the reasons mentioned in the first point. Therefore, the authors were asked to show both KLF1 mRNA and protein levels in these cells, and also compare them to the expression levels seen in KLF1 wild type erythroid cells along with knockout erythroid cells as controls, for context and specificity. The authors have now included western blots and mRNA levels and have compared it to MEL erythroid cells. This data raises additional questions. Overall, the mRNA levels in CD3+ T cells and B220+ B cells are approximately 3000 fold lower than MEL erythroid cells. Based on the information provided, although unclear, the assumption is that the MEL cell extracts are from undifferentiated cells. Therefore, this raises questions on the inference that the healthy aging phenotype is a result of cell intrinsic effects, since EKLF expression in these cells of interest is extremely low. This also allows for the consideration for potential systemic/indirect effects.

      3. In the discussion, the authors make broad inferences that go beyond the data shown in the manuscript. For example, they mention that the tumorigenesis resistance and long lifespan is most likely due to changes in transcription regulatory properties and changes in global gene expression profile of the mutant protein relative to WT leukocytes. And based on reduced mRNA levels of Pd-1 Pd-l1 genes in the CD3+ T cells and B220+ B cells from mutant mice, they "assert" that EKLF is an upstream regulator of these genes and regulates the transcriptomes of a diverse range of hematopoietic cells. The authors were asked to perform a ChIP assay to show whether WT EKLF binds on these genes in these cells, and whether this binding is reduced or abolished in the mutant cells, to substantiate the above statements. The authors have now included a ChIP assay in Figure S5. The data on WT EKLF and K74R EKLF on Pd-1 promoter shows that both forms of EKLF bind at similar levels. Therefore, the mechanism remains unclear, and there is insufficient discussion on how their data support cell intrinsic differences in transcriptional regulation between WT and mutant EKLF.

    3. Reviewer #3 (Public Review):

      Hung et al provide a well-written manuscript focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo.

      The authors were responsive to the reviewers comments in some aspects. However, the manuscript continues to suffer from significantly overstated claims that are not mitigated in the revision. While additional data has been added, it is unclear how this new data provides clarity to the overall premise of this observational study. Importantly, the authors have added a second model of hepatocellular carcinoma with findings that are consistent with the melanoma model previously reported. In addition, they make more clear that the previously published manuscript on this subject was use of older donors for BMT while now they use younger donors. This is at best incremental. It remains unclear whether Eklf exerts its effect on resistance to malignant progression / metastasis by modulating Pd1 or Pdl1 vs. increasing NK cells as the authors provide evidence of both and do not resolve which mechanism is primarily involved. Finally, there is no evidence that Eklf mutation confers "an anti-disease and anti-aging" effect as at best the data provides evidence of resistance to malignant progression / metastasis in melanoma and hepatoma models.

      The work is impactful as it provides evidence of anticancer effect of a specific hematological mutation but the mechanism by which this occurs is not completely elucidated by this work.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors attempt to fully characterise the immunoglobulin (Ig) heavy (H) chain repertoire of tumor-infiltrating B cells from three different cancer types by identifying the IgH repertoire overlap between these, their corresponding draining lymph nodes (DLNs), and peripheral B cells. The authors claim that B cells from tumors and DLNs have a closer IgH profile than those in peripheral blood and that DLNs are differentially involved with tumor B cells. The claim that tumor-resident B cells are more immature and less specific is made based on the characteristics of the CDR-H3 they express.

      Strengths:

      The authors show great expertise in developing in-house bioinformatics pipelines, as well as using tools developed by others, to explore the IgH repertoire expressed by B cells as a means of better characterising tumour-associated B cells for the future generation of tumour-reactive antibodies as a therapy.

      Weaknesses:

      This paper needs major editing, both of the text and the figures, because as it stands it is convoluted and extremely difficult to follow. The conclusions reached are often not obvious from the figures themselves. Sufficient a priori details describing the framework for their analyses are not provided, making the outcome of their results questionable and leaving the reader wondering whether the findings are on solid ground. The authors are encouraged to explain in more detail the premises used in their algorithms, as well as the criteria they follow to define clonotypes, clonal groups, and clonal lineages, which are currently poorly defined and are crucial elements that may influence their results and conclusions. Having excluded the IGHD gene segment from some of their analyses (at least those related to clonal lineage inference and phylogenetic trees), it is not well explained which region of CDR-H3 is responsible for the charge, interaction strength, and Kidera factors, since in some cases the authors mention that the central part of CDR-H3 consists of five amino acids and in others of seven amino acids. How can the authors justify that the threshold for CDR-H3 identity varies according to individual patient data?

      Throughout the analyses, the reasons for choosing one type of cancer over another sometimes seem subjective and are not well justified in the text.

      Overall, the narrative is fragmented. There is a lack of well-defined conclusions at the end of the results subheadings. The exact same paragraph is repeated twice in the results section. The authors have also failed to synchronise the actual number of main figures with the text, and some panels are included in the main figures that are neither described nor mentioned in the text (Venn diagram Fig. 2A and phylogenetic tree Fig. 5D). Overall, the manuscript appears to have been rushed and not thoroughly read before submission.

      Reviewers are forced to wade through, unravel, and validate poorly explained algorithms in order to understand the authors' often bold conclusions.

    2. Reviewer #2 (Public Review):

      Summary:

      The authors sampled the B cell receptor repertoires of Cancers, their draining lymph nodes, and blood. They characterized the clonal makeup of all B cells sampled and then analyzed these clones to identify clonal overlap between tissues and clonal activation as expressed by their mutation level and CDR3 amino acid characteristics and length. They conclude that B cell clones from the Tumor interact more with their draining lymph node than with the blood and that there is less mutation/expansion/activation of B cell clones in Tumors. These conclusions are interesting but hard to verify due to the under-sampling and short sequencing reads as well as confusion as to when analysis is across all individuals or of select individuals.

      Strengths:

      The main strength of their analysis is that they take into account multiple characteristics of clonal expansion and activation and their different modes of visualization, especially of clonal expansion and overlap. The triangle plots once one gets used to them are very nice.

      Weaknesses:

      The data used appears inadequate for the conclusions reached. The authors' sample size of B cells is small and they do not address how it could be sufficient. at such low sampling rates, compounded by the palsmablast bias they mention, it is unclear if the overlap trends they observe show real trends. Analyzing only top clones by size does not solve this issue. As it could be that the top 100 clones of one tissue are much bigger than those of another and that all overlap trends are simply because the clones are bigger in one tissue or the other. i.e there is equal overlap of clones with blood but blood is not sufficiently sampled given its greater diversity and smaller clones. Similarly, the read length (150bp X2) is too short missing FWR1 and CDR1 and often parts of FWR2 if CDR3 is long. As the authors themselves note (and as was shown in (Zhang 2015 - PMC4811607) this makes mutation analysis difficult. It also makes the identification of V genes and thus clonal identification ambiguous. This issue becomes especially egregious when clones are mutated. Finally, it is not completely clear when the analysis is of single individuals or across all individuals. If it is the former the authors did not explain how they chose the individuals analyzed and if the latter then it is not clear from the figures which measurements belong to which individual (i.e they are mixing measurements from different people). For all these reasons while the authors make many interesting suggestions about the potential relationships of B cell repertoires in cancer tissues and their draining lymph nodes and how to characterize and visualize them, it is hard to assess any of their conclusions and specific results.

    3. Reviewer #3 (Public Review):

      In multiple cancers, the key roles of B cells are emerging in the tumor microenvironment (TME). The authors of this study appropriately introduce that B cells are relatively under-characterised in the TME and argue correctly that it is not known how the B cell receptor (BCR) repertoires across tumors, lymph nodes, and peripheral blood relate. The authors therefore supply a potentially useful study evaluating the tumor, lymph node, and peripheral blood BCR repertoires and site-to-site as well as intra-site relationships. The authors employ sophisticated analysis techniques, although the description of the methods is incomplete. Among other interesting observations, the authors argue that the tumor BCR repertoire is more closely related to that of draining lymph node (dLN) than the peripheral blood in terms of clonal and isotype composition. Furthermore, the author's findings suggest that tumor-infiltrating B cells (TIL-B) exhibit a less mature and less specific BCR repertoire compared with circulating B cells. Overall, this is a potentially useful work that would be of interest to both medical and computational biologists working across cancer. However, there are aspects of the work that would have benefitted from further analysis and areas of the manuscript that could be written more clearly and proofread in further detail.

      Major Strengths:

      1. The authors provide a unique analysis of BCR repertoires across tumor, dLN, and peripheral blood. The work provides useful insights into inter- and intra-site BCR repertoire heterogeneity. While patient-to-patient variation is expected, the findings with regard to intra-tumor and intra-dLN heterogeneity with the use of fragments from the same tissue are of importance, contribute to the understanding of the TME, and will inform future study design.

      2. A particular strength of the study is the detailed CDR3 physicochemical properties analysis which leads the authors to observations that suggest a less-specific BCR repertoire of TIL-B compared to circulating B cells.

      Major Weaknesses:

      1. The study would have benefitted from a deeper biological interpretation of the data. While given the low number of patients one can plausibly understand a reluctance to speculate about clinical details, there is limited discussion about what may contribute to observed heterogeneity. For example, for the analysis of three lymph nodes taken per patient which were examined for inter-LN heterogeneity, there is a lack of information regarding these lymph nodes. 'LN3' is deemed as exhibiting the most repertoire overlap with the tumor but there is no discussion as to why this may be the case.

      2. At times the manuscript is difficult to follow. In particular, the 'Intra-LN heterogeneity' section follows the 'LN-LN heterogeneity in colorectal cancer' section and compares the overlap of LN fragments (LN11, LN21, LN31) with the tumor in two separate patients (Fig 6A). In the previous section (LN-LN), LN11, LN21, LN31 are names given to separate lymph nodes from the same patient. The fragments are referred to as 'LN2' and the nodes in the previous section are referred to similarly. This conflation of naming for nodes and fragments is confusing.

      3. There is a duplicated paragraph in 'Short vs long trees' and the following section 'Productive involvement in hypermutation lineages depends on CDR3 characteristics.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This work explored intra and interspecific niche partitioning along spatial, temporal, and dietary niche partitioning between apex carnivores and mesocarnivores in the Qilian Mountain National Park of China, using camera trapping data and DNA metabarcoding sequencing data. They conclude that spatial niche partitioning plays a key role in facilitating the coexistence of apex carnivore species, spatial and temporal niche partitioning facilitate the coexistence of mesocarnivore species, and spatial and dietary niche partitioning facilitate the coexistence between apex and mesocarnivore species. The information presented in this study is important for wildlife conservation and will contribute substantially to the current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.

      Strengths:<br /> Extensive fieldwork is evident in the study. Aiming to cover a large percentage of the Qilian Mountain National Park, the study area was subdivided into squares, as a geographical reference to distribute the sampling points where the camera traps were placed and the excreta samples were collected.

      They were able to obtain many records in their camera traps and collected many samples of excreta. This diversity of data allowed them to conduct robust analyses. The data analyses carried out were adequate to obtain clear and meaningful results that enabled them to answer the research questions posed. The conclusions of this paper are mostly well supported by data.

      The study has demonstrated the coexistence of carnivore species in the landscapes of the Qilian Mountains National Park, complementing the findings of previous studies. The information presented in this study is important for wildlife conservation and will contribute substantially to the current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.

      Weaknesses:<br /> It is necessary to better explain the methodology because it is not clear what is the total sampling effort. In methodology, they only claim to have used 280 camera traps, and in the results, they mention that there are 319 sampling sites. However, the total sampling effort (e.g. total time of active camera traps) carried out in the study and at each site is not specified.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The study entitled "Different coexistence patterns between apex carnivores and mesocarnivores based on temporal, spatial, and dietary niche partitioning analysis in Qilian Mountain National Park, China" by Cong et al. addresses the compelling topic of carnivores' coexistence in a biodiversity hotspot in China. The study is interesting given it considers all three components affecting sympatric carnivores' distribution and co-occurrence, namely the temporal, the spatial, and the dietary partition within the carnivore guild. The authors have found that spatial co-occurrence is generally low, which represents the major strategy for coexistence, while there is temporal and dietary overlap. I also appreciated the huge sampling effort carried out for this study by the authors: they were able to deploy 280 camera trapping sites (which became 322 in the result section?) and collect a total of 480 scat samples. However, I have some concerns about the study on the non-consideration of the human dimension and potential anthropogenic disturbance that could affect the spatial and temporal distribution of carnivores, the choice of the statistical model to test co-occurrence, and the lack of clearly stated ecological hypotheses.

      Strengths:<br /> The strengths of the study are the investigation of all three major strategies that can mitigate carnivores' coexistence, therefore, the use of multiple monitoring techniques (both camera trapping and DNA metabarcoding) and the big dataset produced that consists of a very large sampled area with a noteworthy number of camera tap stations and many scat samples for each species.

      Weaknesses:<br /> I think that some parts of the manuscript should be written better and more clearly. A clear statement of the ecological hypotheses that could affect the partitioning among the carnivore guild is lacking. I think that the human component (thus anthropogenic disturbance) should have been considered more in the spatial analyses given it can influence the use of the environment by some carnivores. Additionally, a multi-species co-occurrence model would have been a more robust approach to test for spatial co-occurrence given it also considers imperfect detection.

      Temporal and dietary results are solid and this latter in particular highlights a big predation pressure on some prey species such as the pika. This implies important conservation and management implications for this species, and therefore for the trophic chain, given that i) the pika population should be conserved and ii) a potential poisoning campaign against small mammals could be incredibly dangerous also for mesocarnivores feeding on them due to secondary poisoning.

    1. Reviewer #1 (Public Review):

      Summary: This papers performs fine-mapping of the silkworm mutants bd and its fertile allelic version, bdf, narrowing down the causal intervals to a small interval of a handful of genes. In this region, the gene orthologous to mamo is impaired by a large indel, and its function is later confirmed using expression profiling, RNAi, and CRISPR KO. All these experiments are convincingly showing that mamo is necessary for the suppression of melanic pigmentation in the silkworm larval integument.

      The authors also use in silico and in vitro assays to probe the potential effector genes that mamo may regulate.

      Strengths: The genotype-to-phenotype workflow, combining forward (mapping) and reverse genetics (RNAi and CRISPR loss-of-function assays) linking mamo to pigmentation are extremely convincing.

      This revision is a much improved manuscript and I command the authors for many of their edits.

      I find the last part of the discussion, starting at "It is generally believed that changes in gene expression patterns are the result of the evolution of CREs", to be confusing.<br /> In this section, I believe the authors sequentially:<br /> - emphasize the role of CRE in morphological evolution (I agree)<br /> - emphasize that TF, and in particular their own CRE, are themselves important mutational targets of evolution (I agree, but the phrasing need to insist the authors are here talking about the CRE found at the TF locus, not the CRE bound by the TF).<br /> - use the stickleback Pel enhancer as an example, which I think is a good case study, but the authors also then make an argument about DNA fragility sites, which is hard to connect with the present study.<br /> - then continue on "DNA fragility" using the peppered moth and butterfly cortex locus. There is no evidence of DNA fragility at these loci, so the connection does not work. "The cortex gene locus is frequently mutated in Lepidoptera", the authors say. But a more accurate picture would be that the cortex locus is repeatedly involved in the generation of color pattern variants. Unlike for Pel fragile enhancer, we don't know if the causal mutations at this locus are repeatedly the same, and the haplotypes that have been described could be collateral rather than causal. Overall, it is important to clarify the idea that mutation bias is a possible factor explaining "genetic hotspots of evolution" (or genetic parallelism sensu 10.1038/nrg3483), but it is also possible that many genetic hotspots are repeated mutational targets because of their "optimal pleiotropy" (e.g. hub position in GRNs, such as mamo might be), or because of particularly modular CRE region that allow fine-tuning. Thus, I find the "fragility" argument misleading here. In fact the finding that "bd" and "bdf" alleles are different in nature is against the idea of a fragility bias (unless the authors can show increased mutation rates at this locus in a wild silkmoth species?). These alleles are also artificially-selected ie. they increased in frequency by breeding rather than natural selection in the wild, so while interesting for our understand of the genotype-phenotype map, they are not necessarily representative of the mutations that may underlie evolution in the wild.<br /> - Curiously, the last paragraph ("Some research suggests that common fragile sites...") elaborate on the idea that some sites of the genome are prone to mutation. The connection with mamo and the current article are extremely thin. There is here an attempt to connect meiotic and mitotic breaks to Bm-mamo, but this is confusing : it seems to propose Bm-mamo as a recruiter of epigenetic modulators that may drive higher mutation rates elsewhere. Not only I am not convinced by this argument without actual data, but this would not explain how the mutations at the Bm-mamo itself evolved.

      On a more positive note, I find it fascinating that the authors identified a TF that clearly articulates or orchestrate larval pattern development, and that when it is deleted, can generate healthy individuals. In other words, while it is a TF with many targets, it is not too pleiotropic. This idea, that the genetically causal modulators of developmental evolution are regulatory genes, has been described elsewhere (e.g. Fig 4c in 10.1038/s41576-020-0234-z, and associated refs). To me, the beautiful findings about Bm-mamo make sense in the general, existing framework that developmental processes and regulatory networks "shape" the evolutionary potential and trajectories of organisms. There is a degree of "programmability" in the genomes, because some loci are particularly prone to modulate a given type of trait. Here, Bm-mamo, as a potentially regulator of both CPs and melanin pathway genes, appear to be a potent modulator of epithelial traits. Claiming that there are inherent mutational biases behind this is unwarranted.

    1. Reviewer #1 (Public Review):

      In 2019, Wilkinson and colleagues (PMID: 31142833) managed to break the veil on a 20-year open question on how to properly culture and expand Hematopoietic Stem Cells (HSCs). Although this study is revolutionizing the HSC biology field, several questions regarding the mechanisms of expansion remain open. Leveraging on this gap, Zhang et al.; embarked on a much-needed investigation regarding HSC self-renewal in this particular culturing setting.

      The authors firstly tacked the known caveat that some HSC membrane markers are altered during in vitro cultures by functionally establishing EPCR (CD201) as a reliable and stable HSC marker (Figure 1), demonstrating that this compartment is also responsible for long-term hematopoietic reconstitution (Figure 3). Next in Figure 2, the authors performed single-cell omics to shed light into the potential mechanisms involved into HSC maintenance, and interestingly it was shown that several hematopoietic populations like monocytes and neutrophils are also present in this culture conditions, which has not been reported. The study goes on to functionally characterize these cultured HSCs (cHSC). The authors elegantly demonstrate using state-of-the-art barcoding strategies that these culturing conditions provoke heterogeneity in the expanding HSC pool (Figure 4). In the last experiment (Figure 5), it was demonstrated that cHSC not only retain their high EPCR expression levels but upon transplantation these cells remain more quiescent than freshly-isolated controls.

      Taken together, this study independently validates that the proposed culturing system works and provide new insights into the mechanisms whereby HSC expansion takes place.

      Following a first round of comments, the authors provided a comprehensive point-by-point response to the different points raised by reviewers, which significantly helps on better understanding some of the decisions taken by the authors. However, it is surprising that the current manuscript is practically unchanged compared to the previous version. Effectively, all major comments raised by reviewers are address in the response letter rather than incorporated into a truly updated version, which would be of great benefit for readers.

      Further comments:<br /> 1. It is highly appreciated that the authors provide a comprehensive and cohesive explanations on i) the rationale for employing SAILERX for single-cell RNA and ATAC-seq, ii) data on HSC signature projected on independent scRNA-seq datasets and iii) further context on the Fgd5 expression limitations. These are important snippets of information which do not only further validate this manuscript's data but also provide context within the HSC biology field.<br /> However, I do not fully agree with the author statement "our primary objective in this study was to highlight the relatively low content of HSCs in cultures" (page 1, response to Reviewers) justifying why single-cell genome-wise approaches were used. As the authors are aware HSCs are defined by functional characterization rather than transcriptional/chromatin accessibility profiles, so it seems odd that this was the rationale to perform omics for this purpose. More importantly, the authors had gone through the lengths of already performing this costly and time-consuming experiment, but miss out on the opportunity to take a deeper dive into the molecular characteristics that could explain divergent behavior between freshly-isolated and cultured HSCs. It would be extremely relevant to the HSC biology community to understand, for example, if these two HSC populations have differences in enhancer accessibility (if the data quality allows), which could provide an upstream explanation for differences in transcription (is also not explored in this manuscript version).

      2. It intriguing that the authors acknowledge that there are already more recent versions of this expansion protocol (page 2, response to Reviewers) and provided a convoluted explanation on why these were not included in the original manuscript. Both papers (PMID: 36809781 and PMID: 37385251) have now been published in respected peer-reviewed journals and provide insights which are pertinent for this work. Yet, the authors decided not to discuss these findings. It is understandable that repeating experiments with these updated conditions is outside of the scope of this manuscript, but it would be relevant to discuss how these recent advances in the protocol impact the work presented in this manuscript.

      3. Regarding the previous comment on how cultured HSC are related to HSC aging, I highly appreciate both data on serial transplantation and also on scRNA-seq.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this study, Zhang and colleagues characterise the behaviour of mouse hematopoietic stem cells when cultured in PVA conditions, a recently published method for HSC expansion (Wilkinson et al., Nature, 2019), using multiome analysis (scRNA-seq and scATACseq in the same single cell) and extensive transplantation experiments. The latter are performed in several settings including barcoding and avoiding recipient conditioning. Collectively the authors identify several interesting properties of these cultures namely: 1) only very few cells within these cultures have long-term repopulation capacity, many others however have progenitor properties which can rescue mice from lethal myeloablation; 2) single cell characterisation by combined scRNAseq and scATACseq is not sufficient to identify cells with repopulation capacity; 3) expanded HSCs can be engrafted in unconditioned host and return to quiescence.

      The authors also confirm previous studies that EPCRhigh HSCs have better reconstitution capability than EPCRlow HSCs when transplanted.

      Strengths:<br /> The major strength of this manuscript is that it describes how functional HSCs are expanded in PVA cultures to a deeper extent that what has been done in the original publication. The authors are also mindful of considering the complexities of interpreting transplantation data. As these PVA cultures become more widely used by the HSC community, this manuscript is valuable as it provides a better understanding of the model and its limitations.

      Novelty aspects include:<br /> • The authors determined that small numbers of expanded HSCs enable transplantation into non-conditioned syngeneic recipients.<br /> • This is to my knowledge the first report characterising output of PVA cultures by multiome. This could be a very useful resource to the field.<br /> • They are also the first to my knowledge to use barcoding to quantify HSC repopulation capacity at the clonal level after PVA culture.<br /> • It is also useful to report that HSCs isolated from fetal livers do expand less than their adult counterparts in these PVA cultures.

      Weaknesses:<br /> • The analysis of the multiome experiment is limited. The authors do not discuss what cell types, other than functional or phenotypic HSCs are present in these cultures (are they mostly progenitors or bona fide mature cells?) and no quantifications are provided. It seems nonetheless that most cells in these cultures do not acquire differentiation markers. In addition, the functional experiments demosntrate very few retain transplantation capacity. Future works will have to investigate the nature of the bulk of the other cells in these cultures.<br /> • Barcoding experiments are technically elegant but do not bring particularly novel insights.<br /> • Number of mice analysed in certain experiments is fairly low (Figure 1 and 5).<br /> • The manuscript remains largely descriptive. While the data can be used to make useful recommendations to future users working with PVA cultures and in general with HSCs, those recommendations could be more clearly spelled out in the discussion.<br /> • The authors could have provided discussion of the other publications/preprints which have used these methods to date. This would have been useful for researchers who have not used this technique.

      Overall, the authors succeeded in providing a useful set of experiments to better interpret what type of HSCs are expanded in PVA cultures. More in depth mining of their bioinformatic data (by the authors or other groups) is likely to highlight other interesting/relevant aspects of HSC biology in relation to this expansion methodology.

    1. Reviewer #1 (Public Review):

      Summary:<br /> TRAP transporters are an unusual class of secondary active transporters that utilize periplasmic binding proteins to deliver their substrates. This paper contributes a new 3 Å structure of the Haemophilus influenzae TRAP transporter. The structure joins two other recent cryo-EM structures of TRAP transporters, including a lower resolution structure of the same H. influenzae protein (overall 4.7 Å), and a ~3 Å structure of a homologue from P. profundum. In addition to reporting a higher resolution cryo-EM structure, the authors also recapitulate protein activity in a reconstituted system, investigate protein oligomerization using analytic ultracentrifugation, and evaluate interactions and function in "mix and match" configurations with periplasmic subunits from other homologues.

      Strengths:<br /> The strength of the paper is that the better resolution cryo-EM data permits sidechain assignment, the identification of bound lipids, and the identification of sodium ions. It is important to get this structure out there, since the resolution passes an important threshold for model building accuracy. The current structure nicely explains a lot of prior mutagenesis data on the H. influenzae TRAP. This is also the first structure of a TRAP protein to be solved without a fiducial, although the overall structure is not very different than those solved with fiducials.

      Weaknesses:<br /> The experiments examining the monomer/dimer equilibrium appear somewhat preliminary. The biological or mechanistic importance of oligomerization is not established, so these experiments are inherently of limited scope. Moreover, cryo-EM datasets exhibit both parallel and antiparallel dimers, the latter of which are clearly not biologically relevant. It is probably impossible to distinguish these in the AUC experiments, which makes interpretation of these experiments more difficult.

      Similarly, the importance of the lipid binding sites observed in cryo-EM aren't experimentally established (for example by mutating the binding site) and it is thus unknown whether they are important for function (as the authors acknowledge).

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the membrane component of the sialic acid-specific TRAP transporter, SiaQM (HiSiaQM), from H. influenzae, is structurally characterized. TRAP transporters are substrate binding protein (SBP)-dependent secondary-active transporters, and HiSiaQM is the most comprehensively studied member of this family. While all previous work on fused TRAP transporter membrane proteins suggests that they are monomeric (including the previous structural characterization of HiSiaQM by a different group), a surprising finding from this work is the observation that HiSiaQM can form higher oligomers, consistent with it being a dimer. These higher oligomeric states were initially observed after extraction of the protein with LMNG detergent, but were also observed in DDM detergent, amphipol and nanodiscs using analytical ultracentrifugation (AUC). Structural characterization of dimeric HiSiaQM revealed 2 arrangements, a parallel and antiparallel arrangements, the latter of which is unlikely to be physiologically relevant.

      The higher resolution of this new structure of HiSiaQM (2.2-2.7 Å compared to 4.7 Å for the previous structure) facilitated the assignment of bound lipids at the dimer interface and a lipid molecule embedded in each of the protomers; allowed for a clearer refinement of the Na+ and putative substrate binding sites, which differ slightly from the previous structure; and produced better modelled side chains for the residues involved in the SBP:HiSiaQM interaction. The authors developed a useful AUC-based assay to determine the affinity for this interaction revealing an affinity of 65 µM. Finally, the authors make the very interesting observation that a sialic acid specific SBP from a different TRAP transporter can utilize HiSiaQM for transport, contrary to previous observations, revealing for the first time that TRAP membrane components can recognize multiple SBPs.

      Overall, this is a well written and presented manuscript detailing some interesting new observations about this interesting protein family. One of the main findings, that the protein can form a dimer, is supported by data, but the physiological relevance of this is questionable, and the possibility that this is artefactual has not been ruled out. Conclusions regarding the mechanistic importance of the lipid bindings sites is not currently supported by the data.

      Strengths:<br /> The main strength of this work is the increased resolution of HiSiaQM, which allows for much more precise assignment of side chains and their orientation. This will be of importance for subsequent mechanistic studies on the contributions of these residues to Na+ and sialic acid binding and conformational changes.<br /> The observation of the lipids, especially the lipid embedded near the fusion helix, is an intriguing observation, which lays the groundwork for future work to understand the lipid-dependence of these transporters.<br /> The development of the AUC-based approach to measure SBP affinity for the membrane component will likely prove be useful to future studies.

      Weaknesses:<br /> One of the main results from this work is the observation that HiSiaQM can form a dimer. Two arrangements were observed, parallel and antiparallel, the latter of which is almost certainly physiologically irrelevant as it would preclude essential interactions with the extracytoplasmic substrate binding protein. As acknowledged by the author, this non-physiological arrangement is likely a consequence of protein preparation (overexpression, extraction, purification, etc.). However, if one dismisses the antiparallel arrangement as non-relevant and an artefact of protein preparation, it is difficult for the parallel arrangement to maintain its credibility, as it was also processed in the same way. This is especially true when one considers that there is only 100 Å2 buried surface area in the parallel arrangement that does not involve any sidechains; it is difficult to envisage this as a specific interaction, e.g. compared to related proteins that have ~2000 Å2 buried surface area. Unless this dimerization is observed in a bacterial membrane at physiological protein concentrations, it is difficult to rule out the possibility that the observed dimerization is merely an artefact caused by the expression, purification and concentration of the protein.

      The manuscript contains some excellent structural analysis of this protein, whose higher resolution reveals some new and interesting insight. However, a weakness of the current work is a lack of validation of these observations using other approaches. For example, lipid interactions are observed in the structure that the authors claim is mechanistically important. However, without disrupting these interactions to look at the effect on transport, this conclusion is not supported. Similarly, the authors use their structure to predict residues that are important for the SBP:membrane protein interaction, and they develop an AUC-based binding assay to study this interaction, but they do not test their predictions using this approach.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The manuscript reports new molecular characterization of the Haemophilus influenza tripartite ATP-independent periplasmic (TRAP) transporter of N-acetylneuraminate (Neu5Ac). This membrane transporter is important for the virulence of the pathogen. H. influenza lacks Neu5Ac biosynthetic pathway, and utilizes the TRAP transporter to import it. Neu5Ac is used as a nutrient source but also as a protection from human immune response. The transporter is composed of two fused membrane subunits, HiSiaQM, and one soluble, periplasmic subunit HiSiaP. HiSiaP, by binding to the substrate Neu5Ac, changes its conformation, allowing its binding to HiSiaQM, followed by Neu5Ac and Na+ transport to the cytoplasm. The combination of structural, biophysical and biochemical approaches provides a solid basis for describing the functioning of the Haemophilus influenza Neu5Ac TRAP transporter, which is essential for the pathogen virulence.

      Strengths:<br /> The paper describes the electron microscopy structure of HiSiaQM, thanks to its solubilization in L-MNG followed by exchange to amphipol or nanodisc. In these conditions, HiSiaQM consists in a mixture of monomers and dimers, as characterized by analytical ultracentrifugation. The cryo-EM analysis shows two types of dimers: one in an antiparallel configuration, which is artifactual, and a parallel one, which may be physiologically relevant. Cryo-EM on the dimers allows high resolution (≈ 3 Å) structure determination. The structure is the first one of a fused SiaQM, and is the first obtained without megabody. The work highlights structural elements (fusion helix, lipids) that could modulate transport. The authors checked the functionality of the purified HiSiaQM, which, after reconstitution in liposome, displays a significantly larger Neu5Ac transport activity compared to the non-fused PpSiaQM homolog. The work identifies Na+ binding sites, and the putative Neu5Ac binding site. From analytical ultracentrifugation using fluorescently labelled HiSiaP, the authors show that HiSiaP is able to interact with HiSiaQM monomer and dimer, with a low but physiologically relevant affinity. HiSiaP interaction with HiSiaQM was modelled using AlphaFold2, and discussed in view of published activity on mutants, and new transport activity assays using SiaQM and SiaP from different organisms. In conclusion, the combination of structural, biophysical and biochemical approaches provides a solid basis for describing the functioning of this TRAP fused transporter.

      Weakness: This work evidences in vitro a HiSiaQM dimer, whose in vivo relevance is not ascertained. However, the authors are very careful, they do not to over-interpret their data, and their conclusions regarding the transporter structure and function are valid irrespective of its state of association.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Xia et al. investigated the mechanisms underlying Glucocorticoid-induced osteonecrosis of the femoral head (GONFH). The authors observed that abnormal osteogenesis and adipogenesis is associated with decreased β-catenin in the necrotic femoral head of GONFH patients and inhibition of β-catenin signaling leads to abnormal osteogenesis and adipogenesis in GONFH rats. Of interest, deletion of β-catenin in Col2-expressing cells rather than in osx-expressing cells leads to a GONFH-like phenotype in femoral head of mice.

      Strengths:

      A strength of the study is that it sets up a Col2-expressing cell-specific β-catenin knockout mouse model that mimics full spectrum of osteonecrosis phenotype of GONFH. This is interesting and provides new insights into the understanding of GONFH. Overall, the data are solid and support their conclusions.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors reported a study to uncover that β-catenin inhibition disrupting the homeostasis of osteogenic/adipogenic differentiation contributes to the development of Glucocorticoid-induced osteonecrosis of the femoral head (GONFH). In this study, they first observed abnormal osteogenesis and adipogenesis associated with decreased β-catenin in the necrotic femoral head of GONFH patients, but the exact pathological mechanisms of GONFH remain unknown. They then performed in vivo and in vitro studies to further revealed that glucocorticoid exposure disrupted osteogenic/adipogenic differentiation bone marrow stromal cells (BMSCs) by inhibiting β-catenin signaling in glucocorticoid-induced GONFH rats, and specific deletion of β-catenin in Col2+ cells shifted BMSCs commitment from osteoblasts to adipocytes, leading to a full spectrum of disease phenotype of GONFH in adult mice.

      Strengths:

      This innovative study provides strong evidence supporting that β-catenin inhibition disrupts the homeostasis of osteogenic/adipogenic differentiation that contributes to the development of GONFH. This study also identifies an ideal genetic modified mouse model of GONFH. Overall, the experiment is logically designed, the figures are clear, and the data generated from humans and animals is abundant supporting their conclusions.

      Weaknesses:

      Lack of the discussion to explain how the Wnt agonist 1 works. There are several types of Wnt ligands. It is not clear if this agonist only targets Wnt1 or other Wnts as well? Also, why Wnt agonist 1 couldn't rescue the GONFH-like phenotype in β-cateninCol2ER mice needs to be discussed.

    3. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors are trying to delineate the mechanism underlying the osteonecrosis of the femoral head.

      Strengths:

      The authors provided compelling in vivo and in vitro data to demonstrate Col2+ cells and Osx+ cells were differentially expressed in the<br /> the femoral head. Moreover, inducible knockout of β-catenin in Col2+ cells but not<br /> Osx+ cells lead to a GONFH-like phenotype including fat accumulation, subchondral<br /> bone destruction and femoral head collapse, indicating that imbalance of osteogenic/adipogenic differentiation of Col2+ cells play an important role in GONFH pathogenesis. Therefore, this manuscript provided the mechanistic insights of osteonecrosis as well as potential therapeutic target for disease treatment.

      Weaknesses: Additional in depth discussion regarding the phenotype observed in mice is highly encouraged.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This paper investigates the neural mechanisms underlying the change in perception when viewing ambiguous figures. Each possible percept is related to an attractor-like brain state and a perceptual switch corresponds to a transition between these states. The hypothesis is that these switches are promoted by bursts of noradrenaline that change the gain of neural circuits. The authors present several lines of evidence consistent with this view: pupil diameter changes during the time point of the perceptual change; a gain change in neural network models promotes a state transition; and large-scale fMRI dynamics in a different experiment suggests a lower barrier between brain states at the change point. However, some assumptions of the computational model seem not well justified and the theoretical analysis is incomplete. The paper would also benefit from a more in-depth analysis of the experimental data.

      Strengths:<br /> The main strength of the paper is that it attempts to combine experimental measurements - from psychophysics, pupil measurements, and fMRI dynamics - and computational modeling to provide an emerging picture of how a perceptual switch emerges. This integrative approach is highly useful because the model has the potential to make the underlying mechanisms explicit and to make concrete predictions.

      Weaknesses:<br /> A general weakness is that the link between the three parts of the paper is not very strong. Pupil and fMRI measurements come from different experiments and additional analysis showing that the two experiments are comparable should be included. Crucially, the assumptions underlying the RNN modeling are unclear and the conclusions drawn from the simulation may depend on those assumptions.

      Main points:<br /> Perceptual tasks in pupil and fMRI experiments: how comparable are these two tasks? It seems that the timing is very different, with long stimulus presentations and breaks in the fMRI task and a rapid sequence in the pupil task. Detailed information about the task timing in the pupil task is missing. What evidence is there that the same mechanisms underlie perceptual switches at these different timescales? Quantification of the distributions of switching times/switching points in both tasks is missing. Do the subjects in the fMRI task show the same overall behavior as in the pupil task? More information is needed to clarify these points.

      Computational model:<br /> 1. Modeling noradrenalin effects in the RNN: The pupil data suggests phasic bursts of NA would promote perceptual switches. But as I understand, in the RNN neuromodulation is modeled as different levels of gain throughout the trial. Making the neural gain time-dependent would allow investigation of whether a phasic gain change can explain the experimentally observed distribution of switching times.

      2. Modeling perceptual switches: in the results, it is described that the networks were trained to output a categorical response, but the firing rates in Fig 2B do not seem categorical but rather seem to follow the input stimulus. The output signals of the network are not shown. If I understand correctly, a trivial network that would just represent the two input signals without any internal computation and relay them to the output would do the task correctly (because "the network's choice at each time point was the maximum of the two-dimensional output", p. 22). This seems like cheating: the very operation that the model should perform is to signal the change, in a categorical manner, not to represent the gradually changing input signals.

      3. The mechanism of how increased gain leads to faster switches remains unclear to me. My first intuition was that increasing the gain of excitatory populations (the situation shown in Fig. 2E) in discrete attractor models would lead to deeper attractor wells and this would make it more difficult to switch. That is, a higher gain should lead to slower decisions in this case. However, here the switching time remains constant for a gain between 1 and 1.5. Lowering the gain, on the other hand, leads to slower switching. It is, of course, possible that the RNN behaves differently than classical point attractor models or that my intuition is incorrect (though I believe it is consistent with previous literature, e.g. Niyogi & Wong-Lin 2013 (doi:10.1371/journal.pcbi.1003099) who show higher firing rates - more stable attractors - for increased excitatory gain).

      4. From the RNN model it is not clear how changes in excitatory and inhibitory gain lead to slower/faster switching. In order to better understand the role of inhibitory and excitatory gain on switching, I would suggest studying a simple discrete attractor model (a rate model, for example as in Wong and Wang 2006 or Roxin and Ledberg, Plos Comp. Bio 2008) which will allow to study these effects in terms of a very few model parameters. The Roxin paper also shows how to map rate models onto simplified one-dimensional systems such as the one in Fig S3. Setting up the model using this framework would allow for making much stronger, principled statements about how gain changes affect the energy landscape, and under which conditions increased inhibitory gain leads to faster switching.

      One possibility is that increasing the excitatory gain in the RNN leads to saturated firing rates. If this is the reason for the different effects of excitatory and inhibitory gain changes, it should be properly explained. Moreover, the biological relevance of this effect should be discussed (assuming that saturation is indeed the explanation).

      Alternative mechanisms:<br /> It is mentioned in the introduction that changes in attention could drive perceptual switches. A priori, attention signals originating in the frontal cortex may be plausible mechanisms for perceptual switches, as an alternative to LC-controlled gain modulation. Does the observed fMRI dynamics allow us to distinguish these two hypotheses? In any case, I would suggest including alternative scenarios that may be compatible with the observed findings in the discussion.

    2. Reviewer #2 (Public Review):

      Strengths<br /> - the study combines different methods (pupillometry, RNNs, fMRI).<br /> - the study combines different viewpoints and fields of the scientific literature, including neuroscience, psychology, physics, dynamical systems.<br /> - This combination of methods and viewpoints is rarely done, it is thus very useful.<br /> - Overall well-written.

      Weaknesses<br /> - The study relies on a report paradigm: participants report when they identify a switch in the item category. The sequence corresponds to the drawing of an object being gradually morphed into another object. Perceptual switches are therefore behaviorally relevant, and it is not clear whether the effect reported correspond to the perceptual switch per se, or the detection of an event that should change behavior (participant press a button indicating the perceived category, and thus switch buttons when they identify a perceptual change). The text mentions that motor actions are controlled for, but this fact only indicates that a motor action is performed on each trial (not only on the switch trial); there is still a motor change confounded with the switch. As a result, it is not clear whether the effect reported in pupil size, brain dynamics, and brain states is related to a perceptual change, or a decision process (to report this change).

      - The study presents events that co-occur (perceptual switch, change in pupil size, energy landscape of brain dynamics) but we cannot identify the causes and consequences. Yet, the paper makes several claims about causality (e.g. in the abstract "neuromodulatory tone ... causally mediates perceptual switches", in the results "the system flattening the energy landscape ... facilitated an updating of the content of perception").

      - Some effects may reflect the expectation of a perceptual switch, rather than the perceptual switch per se. Given the structure of the task, participants know that there will be a perceptual switch occurring once during a sequence of morphed drawings. This change is expected to occur roughly in the middle of the sequence, making early switches more surprising, and later switches less surprising. Differences in pupil response to early, medium, and late switches could reflect this expectation. The authors interpret this effect very differently ("the speed of a perceptual switch should be dependent on LC activity").

      - The RNN is far more complex than needed for the task. It has two input units that indicate the level of evidence for the two categories being morphed, and it is trained to output the dominant category. A (non-recurrent) network with only these two units and an output unit whose activity is a sigmoid transform of the difference in the inputs can solve the task perfectly. The RNN activity is almost 1-dimensional probably for this reason. In addition, the difficult part of the computation done by the human brain in this task is already solved in the input that is provided to the network (the brain is not provided with the evidence level for each category, and in fact, it does not know in advance what the second category will be).

      - Basic fMRI results are missing and would be useful, before using elaborate analyses. For instance, what are the regions that are more active when a switch is detected?

      - The use of methods from physics may obscure some simple facts and simpler explanations. For instance, does the flatter energy landscape in the higher gain condition reflect a smaller number of states visited in the state space of the RNN because the activity of each unit gets in the saturation range? If correct, then it may be a more straightforward way of explaining the results.

      - Some results are not as expected as the authors claim, at least in the current form of the paper. For instance, they show that, when trained to identify which of two inputs u1 and u2 is the largest (with u2=1-u1, starting with u1=1 and gradually decreasing u1), a higher gain results in the RNN reporting a switch in dominance before the true switch (e.g. when u1=0.6 and u2=0.4), and vice et versa with a lower gain. In other words, it seems to correspond to a change in criterion or bias in the RNN's decision. The authors should discuss more specifically how this result is related to previous studies and models on gain modulation. An alternative finding could have been that the network output is a more (or less) deterministic function of its inputs, but this aspect is not reported.

    1. Reviewer #1 (Public Review):

      In this manuscript, the authors explore the effects of DNA methylation on the strength of regulatory activity using massively parallel reporter assays in cell lines on a genome-wide level. This is a follow-up of their first paper from 2018 that describes this method for the first time. In addition to adding more in depth information on sequences that are explored by many researchers using two main methods, reduced bisulfite sequencing and sites represented on the Illumina EPIC array, they now show also that DNA methylation can influence changes in regulatory activity following a specific stimulation, even in absence of baseline effects of DNA methylation on activity. In this manuscript, the authors explore the effects of DNA methylation on the response to Interferon alpha (INFA) and a glucocorticoid receptor agonist (dexamethasone). The author validate their baseline findings using additional datasets, including RNAseq data and show convergences across two cell lines. The authors then map the methylation x environmental challenge (IFNA and dex) sequences identified in vitro to explore whether their methylation status is also predictive of regulatory activity in vivo. This is very convincingly shown for INFA response sequences, where baseline methylation is predictive of the transcriptional response to flu infection in human macrophages, an infection that triggers the INF pathways. The extension of the functional validity of the dex-response altering sequences is less convincing. Sequences altering the response to glucocorticoids, however, were not enriched in DNA methylation sites associated with exposure to early adversity which the authors interpret that "they are not links on the causal pathway between early life disadvantage and later life health outcomes, but rather passive biomarkers. However, this approach does not seem an optimal model to explore this relationship in vivo. This is because exposure to early adversity and its consequences is not directly correlated with glucocorticoid release and changes in DNA methylation levels following early adversity could be related to many physiological mechanisms, and overall, large datasets and meta-analyses do not show robust associations of exposure to early adversity and DNA methylation changes. Here other datasets, such as from Cushing patients maybe of more interest.<br /> ***<br /> After revision, the authors have now discussed this issue carefully, so that this point is addressed.<br /> ***<br /> Overall, the authors provide a great resource of DNA methylation sensitive enhancers that can now be used for functional interpretation of large scale datasets (that are widely generated in the research community), given the focus on sites included in RBSS and the Illumina EPIC array. In addition, their data lends support that difference in DNA methylation can alter responses to environmental stimuli and thus of the possibility that environmental exposures that alter DNS methylation can also alter subsequent response to this exposure, in line with the theory of epigenetic embedding of prior stimuli/experiences. The conclusions related to the early adversity data should be reconsidered in light of the comments above.

    2. Reviewer #2 (Public Review):

      This work presents a remarkably extensive set of experiments, assaying the interaction between methylation and expression across most CpG positions in the genome in two cell types. To this end, the authors use mSTARR-seq, a high-throughput method, which they have previously developed, where sequences are tested for their regulatory activity in two conditions (methylated and unmethylated) using a reporter gene. The authors use these data to study two aspects of DNA methylation: 1. Its effect on expression, and 2. Its interaction with the environment. Overall, they identify a small number of 600 bp windows that show regulatory potential, and a relatively large fraction of these show an effect of methylation on expression. In addition, the authors find regions exhibiting methylation-dependent response to two environmental stimuli (interferon alpha and glucocorticoid dexamethasone).

      The questions the authors address represent some of the most central in functional genomics, and the method utilized is currently the best method to do so. The scope of this study is very impressive and I am certain that these data will become an important resource for the community. The authors are also able to report several important findings, including that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Alonso-Calleja and colleagues explore the role of TGR5 in adult hematopoiesis at both steady state and post-transplantation. The authors utilize two different mouse models including a TGR5-GFP reporter mouse to analyze the expression of TGR5 in various hematopoietic cell subsets. Using germline Tgr5-/- mice it's reported that loss of Tgr5 has no significant impact on steady-state hematopoiesis, with a small decrease in trabecular bone fraction, associated with a reduction in proximal tibia adipose tissue, and an increase in marrow phenotypic adipocytic precursors. The authors further explored the role of stroma TGR5 expression in the hematopoietic recovery upon bone marrow transplantation of wild-type cells, although the studies supporting this claim are weak. Overall, while most of the hematopoietic phenotypes have negative results or small effects, the role of TGR5 in adipose tissue regulation is interesting to the field.

      Strengths:<br /> • This is the first time the role of TGR5 has been examined in the bone marrow.<br /> • This paper supports further exploration of the role of bile acids in bone marrow transplantation and possible therapeutic strategies.

      Weaknesses:<br /> • The authors fail to describe whether niche stroma cells or adipocyte progenitor cells (APCs) express TGR5.<br /> • Although the authors note a significant reduction in bone marrow adipose tissue in Tgr5-/- mice, they do not address whether this is white or brown adipose tissue especially since BA-TGR5 signaling has been shown to play a role in beiging.<br /> • In Figure 1, the authors explore different progenitor subsets but stop short of describing whether TGR5 is expressed in hematopoietic stem cells (HSCs).<br /> • Are there more CD45+ cells in the BM because hematopoietic cells are proliferating more due to a direct effect of the loss of Tgr5 or is it because there is just more space due to less trabecular bone?<br /> • In Figure 4 no absolute cell counts are provided to support the increase in immunophenotypic APCs (CD45-Ter119-CD31-Sca1+CD24-) in the stroma of Tgr5-/- mice. Accordingly, the absolute number of total stromal cells and other stroma niche cells such as MSCs, ECs are missing.<br /> • There are issues with the reciprocal transplantation design in Fig 4. Why did the authors choose such a low dose (250 000) of BM cells to transplant? If the effect is true and relevant, the early recovery would be observed independently of the setup and a more robust engraftment dataset would be observed without having lethality post-transplant. On the same note, it's surprising that the authors report ~70% lethality post-transplant from wild-type control mice (Fig 4E), according to the literature 200 000 BM cells should ensure the survival of the recipient post-TBI. Overall, the results even in such a stringent setup still show minimal differences and the study lacks further in-depth analyses to support the main claim.<br /> • Mechanistically, how does the loss of Tgr5 impact hematopoietic regeneration following sublethal irradiation?<br /> • Only male mice were used throughout this study. It would be beneficial to know whether female mice show similar results.

    2. Reviewer #2 (Public Review):

      Summary: In this manuscript, the authors examined the role of the bile acid receptor TGR5 in the bone marrow under steady-state and stress hematopoiesis. They initially showed the expression of TGR5 in hematopoietic compartments and that loss of TGR5 doesn't impair steady-state hematopoiesis. They further demonstrated that TGR5 knockout significantly decreases BMAT, increases the APC population, and accelerates the recovery upon bone marrow transplantation.

      Strengths: The manuscript is well-structured and well-written.

      Weaknesses: The mechanism is not clear, and additional studies need to be performed to support the authors' conclusion.

    1. Reviewer #1 (Public Review):

      Here, Muronova et al., demonstrate the physiological importance of a centriole and microtubule-associated protein, CCDC146, in sperm flagellar formation and male reproduction. This study identifies novel causal variants to cause male infertility and resolves the pathogenicity by the mutation with characterizing mouse models. Furthermore, the authors' claims are well supported by the biochemical and imaging approaches used in this study.

    2. Reviewer #3 (Public Review):

      Male infertility is an important health problem. Among pathologies with multiple morphological abnormalities of the flagellum (MMAF), only 50% of the patients have no identified genetic causes. It is thus primordial to find novel genes that cause the MMAF syndrome. In the current work, the authors follow up the identification of two patients with MMAF carrying a mutation in the CCDC146 gene. To understand how mutations in CCDC146 lead to male infertility, the authors generated two mouse models: a CCDC146-knockout mouse, and a knockin mouse in which the CCDC146 locus is tagged with an HA tag. Male CCDC146-knockout mice are infertile, which proves the causative role of this gene in the observed MMAF cases. Strikingly, animals develop no other obvious pathologies, thus underpinning the specific role of CCDC146 in male fertility. The authors have carefully characterised the subcellular roles of CCDC146 by using a combination of expansion and electron microscopy. They demonstrate that all microtubule-based organelles, such as the sperm manchette, the centrioles, as well as the sperm axonemes are defective when CCDC146 is absent. Their data show that CCDC146 is a microtubule-associated protein, and indicate, but do not prove beyond any doubt, that it could be a microtubule-inner protein (MIP).

      This is a solid work that defines CCDC146 as a novel cause of male infertility. The authors have performed comprehensive phenotypic analysis to define the defects in CCDC146 knockout mice. The manuscript text is well written and easy to follow also for non-specialists. The introduction and discussion chapters contain important background information that allow to put the current work into the greater context of fertility research. Overall, this manuscript provides convincing evidence for CCDC146 being essential for male fertility and illustrates this with a large panel of phenotypic observations. Together, the work provides important first insights into the role of a so-far unexplored proteins, CCDC146, in spermatogenesis, thereby broadening the spectrum of genes involved in male infertility.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The study by He et al. investigates the relationship of an increased susceptibility of diabetes patients to COVID-19. The paper raises the possibility that hyperglycemia-induced cathepsin L maturation could be one of the driving forces in this pathology, suggesting that an increased activity of CTSL leads to accelerated virus infection rates due to an elevated processing of the SARS-CoV-2 spike protein.

      In a clinical case-control study, the team found that the severity of corona infections was higher in diabetic patients, and their CTSL levels correlated well with the progression of the disease. They further showed an increase in CTSL activity in the long term as well as acute hyperglycemia. SARS-CoV-2 increasingly infected cells that were cultured in serum from diabetic patients, the same was observed using high glucose medium. No effect was observed in the medium with increased concentrations of insulin. CTSL knockout abolished the glucose-dependent increase in infection.

      Increased glucose levels did not correlate with an increase in CTSL transcription. Rather He et al. could show that high glucose levels led to CTSL translocation from the ER into the lysosome. It was the glucose-dependent processing of the protease to its active form which promoted infection.

      Strengths:<br /> It is a complete study starting from a clinical observation and ending on the molecular mechanism. A strength is certainly the wide selection of experiments. The clinical study to investigate the effect of glucose on CTSL concentrations in healthy individuals sets the stage for experiments in cell culture, animal models, and human tissue. The effect of CTSL knockout cell lines on glucose-induced SARS-CoV2 infection rates is convincing. Finally, the team used a combination of Western blots and confocal microscopy to identify the underlying molecular mechanisms. The authors manage to keep the diabetic condition at the center of their study and therefore extend on previous knowledge of glucose-induced CTSL activation and their consequences for COVID-19 infections. By doing so, they create a novel connection between CTSL involvement in SARS-CoV2 infections and diabetes.

      Weaknesses:<br /> The authors suggest that hyperglycemia as a symptom of diabetes leads to an increased infection rate in those patients. Throughout their study, the team focuses on two select symptoms of a diabetic condition, hyperglycemia and hyperinsulinemia. The team acknowledges in the discussion that there could be various other reasons. Hyperglycemia can lead to metabolic acidosis and a shift in blood pH. As CTSL activity is highly dependent on pH, it would have been crucial to include this parameter in the study.

      The study rarely differentiates between cellular and extracellular CTSL activity. A more detailed explanation for the connection between the intracellular CTSL and serum CTSL in diabetic individuals, presumably via lysosomal exocytosis, could be helpful with regard to the final model to give a more complete picture.

      In the early result section, an effect of hyperglycemia on total CTSL concentrations is described, but the data is not very convincing. Over the course of the manuscript, the hypothesis shifts increasingly towards an increase in protease trans-localization and processing to the active form rather than a change in total protease amounts. The overall importance of CTSL concentrations remains questionable.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this study, the authors hypothesized that individuals with diabetes have elevated blood CTSL levels, which facilitates SARS-CoV-2 infection. The authors conducted in vitro experiments, revealing that elevated glucose levels promote SARS-CoV-2 infection in wild-type cells. In contrast, CTSL knockout cells show reduced susceptibility to high glucose-promoted effects. Additionally, the authors utilized lung tissue samples obtained from both diabetic and non-diabetic patients, along with db/db diabetic and control mice. Their findings indicate that diabetic conditions lead to an elevation in CTSL activity in both humans and mice.

      Strengths:<br /> The authors have effectively met their research objectives, and their conclusions are supported by the data presented. Their findings suggest that high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum to the lysosome, potentially contributing to diabetic comorbidities and complications.

      Weaknesses:<br /> 1. In Figure 1e, the authors measured plasma levels of COVID-19 related proteins, including ACE2, CTSL, and CTSB, in both diabetic and non-diabetic COVID-19 patients. Notably, only CTSL levels exhibited a significant increase in diabetic patients compared to non-diabetic patients, and these levels varied throughout the course of COVID-19. Given that the diabetes groups encompass both male and female patients, it is essential to ascertain whether the authors considered the potential impact of gender on CTSL levels. The diabetes groups comprised a higher percentage of male patients (61.3%) compared to the non-diabetes group, where males constituted only 38.7%.

      2. Lines 145-149: "The results showed that WT Huh7 cell cultured in high glucose medium exhibited a much higher infective rate than those in low glucose medium. However, CTSL KO Huh7 cells maintained a low infective rate of SARS-CoV-2 regardless of glucose or insulin levels (Fig. 3f-h). Therefore, hyperglycemia enhanced SARS-CoV-2 infection dependent on CTSL." However, this evidence may be insufficient to support the claim that hyperglycemia enhances SARS-CoV-2 infection dependent on CTSL. The human hepatoma cell line Huh7 might not be an ideal model to validate the authors' hypothesis regarding high blood glucose promoting SARS-CoV-2 infection through CTSL.

      3. The Abstract and Introduction sections lack effective organization.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This important study provides a comprehensive evaluation of skeletal muscle mitochondrial function and remodeling in a genetically engineered mouse model of pancreatic cancer cachexia. The study builds upon and extends previous findings that implicate mitochondrial defects in the pathophysiology of cancer cachexia. The authors demonstrate that while the total quantity of mitochondria from skeletal muscles of mice with pancreatic cancer cachexia is similar to controls, mitochondria were elongated with disorganized cristae, and had reduced oxidative capacity. The mitochondrial dysfunction was not associated with exercise-induced metabolic stress (insufficient ATP production), suggesting compensation by glycolysis or other metabolic pathways. However, mitochondrial dysfunction can lead to increased production of ROS/oxidative stress and would be expected to interfere with carbohydrate and lipid metabolism, events that are linked to cancer-induced muscle loss. The data are convincing and were collected and analyzed using state-of-the-art techniques, with unbiased proteomics and transcriptomics analyses supporting most of their conclusions.

      Additional Strengths:<br /> The authors utilize a genetically engineered mouse model of pancreatic cancer which recapitulates key aspects of human PDAC including the development of cachexia, making the model highly appropriate and translational.

      The authors perform transcriptomic and proteomics analyses on the same tissue, providing a comprehensive analysis of the transcriptional networks and protein networks changed in the context of PDAC cachexia.

      Weaknesses:<br /> The authors refer to skeletal muscle wasting induced by PDAC as sarcopenia. However, the term sarcopenia is typically reserved for the loss of skeletal muscle mass associated with aging.

      In Figure 2, the MuRF1 IHC staining appears localized to the extracellular space surrounding blood vessels and myofibers-which causes concern as to the specificity of the antibody staining. MuRF1, as a muscle-specific E3 ubiquitin ligase that degrades myofibrillar proteins, would be expected to be expressed in the cytosol of muscle fibers.

      Disruptions to skeletal muscle metabolism in PDAC mice are predicted based on mitochondrial dysfunction and the transcriptomic and proteomics data. The manuscript could therefore be strengthened by additional measures looking at skeletal muscle metabolites, or linking the findings to previous work that has looked at the skeletal muscle metabolome in related models of PDAC cachexia (Neyroud et al., 2023).

    2. Reviewer #2 (Public Review):

      The present work analyzed the mitochondrial function and bioenergetics in the context of cancer cachexia induced by pancreatic cancer (PDAC). The authors used the KIC transgenic mice that spontaneously develop PDAC within 9-11 weeks of age. They deeply characterize bioenergetics in living mice by magnetic resonance (MR) and mitochondrial function/morphology mainly by oxygraphy and imaging on ex vivo muscles. By MR they found that phosphocreatine resynthesis and maximal oxidative capacity were reduced in the gastrocnemius muscle of tumor-bearing mice during the recovery phase after 6 minutes of 1 Hz electrical stimulation while pH was reduced in muscle during the stimulation time. By oxygraphy, the authors showed a decrease in basal respiration, proton leak, and maximal respiration in tumor-bearing mice that was associated with the decrease of complex I, II, and IV activity, a reduction of OXPHOS proteins, mitochondrial mass, mtDNA, and to several morphological alterations of mitochondrial shape. The authors performed transcriptomic and proteomic analyses to get insights into mitochondrial defects in the muscles of PDAC mice. By IPA analyses on transcriptomics, they found an increase in the signature of protein degradation, atrophy, and glycolysis and a downregulation of muscle function. Focusing on mitochondria they showed a downregulation mainly in OXPHOS, TCA cycle, and mitochondrial dynamics genes and upregulation of glycolysis, ROS defense, mitophagy, and amino acid metabolism. IPA analysis on proteomics revealed major changes in muscle contraction and metabolic pathways related to lipids, protein, nucleotide, and DNA metabolism. Focusing on mitochondria, the protein changes mainly were related to OXPHOS, TCA cycle, translation, and amino acid metabolism.

      The major strength of the paper is the bioenergetics and mitochondrial characterization associated with the transcriptomic and proteomic analyses in PDAC mice that confirmed some published data of mitochondrial dysfunction but underlined some novel metabolic insights such as nucleotide metabolism.

      There are minor weaknesses related to some analyses on mitochondrial proteins and to the fact that proteomic and transcriptomic comparison may be problematic in catabolic conditions because some gene expression is required to maintain or re-establish enzymes/proteins that are destroyed by the proteolytic systems (including the autophagy proteins and ubiquitin ligases). The authors should consider the following points.

      Point1. The authors used the name sarcopenia as synonymous with muscle atrophy. However, sarcopenia clearly defines the disease state (disease code: ICD-10-CM (M62.84)) of excessive muscle loss and force drop during ageing (Ref: Anker SD et al. J Cachexia Sarcopenia Muscle 2016 Dec;7(5):512-514.). Therefore, the word sarcopenia must be used only when pathological age-related muscle loss is the subject of study. Sarcopenia can be present in cancer patients who also experience cachexia, however since the age of tumor-bearing mice in this study is 7-9 weeks old, the authors should refrain from using sarcopenia and instead replace it with the words muscle atrophy/ muscle wasting/muscle loss.

      Point2. Most of the analyses of mitochondrial function are appropriate. However, the methodological approach to determining mitochondrial fusion and fission machinery shown in Fig. 5F is wrong. The correct way is to normalize the OPA1, MFn1/2 on mitochondrial proteins such as VDAC/porin. In fact, by loading the same amount of total protein (see actin in panel 5F) the difference between a normal and a muscle with enhanced protein breakdown is lost. In fact, we should expect a decrease in actin level in tumor-bearing mice with muscle atrophy while the blots clearly show the same level due to the normalization of protein content. Moreover, by loading the same amount of proteins in the gel, the atrophying muscle lysates become enriched in the proteins/organelles that are less affected by the proteolysis resulting in an artefactual increase. The correct way should be to lyse the whole muscle of control and tumor-bearing mice in an identical volume and to load in western blot the same volume between control cachectic muscles. Alternatively, the relative abundance of mitochondrial shaping proteins related to mitochondrial transmembrane or matrix proteins (mito mass) should compensate for the loading normalization. Because the authors showed elongated mitochondria despite mitophagy genes being up, fragmentation may be altered. Moreover, DNM1l gene is suppressed and therefore DRP1 protein must be analyzed. Finally, OPA 1 protein has different isoforms due to the action of proteases like OMA1, and YME1L that elicit different functions being the long one pro-fusion while the short ones do not. The authors must quantify the long and short isoforms of OPA1.

      Point3. The comparison of proteomic and transcriptomic profiles to identify concordance or not is problematic when atrophy programs are induced. In fact, most of the transcriptional-dependent upregulation is to preserve/maintain/reestablish enzymes that are consumed during enhanced protein breakdown. For instance, the ubiquitin ligases when activated undergo autoubiquitination and proteasome degradation. The same happens for several autophagy-related genes belonging to the conjugation system (LC3, Gabarap), the cargo recognition pathways (e.g. Ubiquitin, p62/SQSTM1) and the selective autophagy system (e.g. BNIP3, PINK/PARKIN) and metabolic enzymes (e.g. GAPDH, lipin). Finally, in case identical amounts of proteins have been loaded in mass spec the issues rise in point 2 of selective enrichment should be considered. Therefore, when comparing proteomic and transcriptomic these issues should be considered in discussion.

    1. Reviewer #1 (Public Review):

      The study is highly interesting and the applied methods are target-oriented. The biophysical characterization of viable N-protein species and several representative N-protein mutants is supported by the data, including polarity, hydrophobicity, thermodynamic stability, CD spectra, particle size, and especially protein self-association. The physicochemical parameters for viable N-protein and related coronavirus are described for comparison in detail. However, the conclusion becomes less convincing that the interaction of peptides or motifs was judged by different biophysical results, with no more direct data about peptide interaction. Additionally, the manuscript could benefit from more results involving peptide interaction to support the author's opinions or make expression more accurate when concerning the interaction of motifs. Although the authors put a lot of effort into the study, there are still some questions to answer.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This work focuses on the biochemical features of the SARS-CoV-2 Nucleocapsid (N) protein, which condenses the large viral RNA genome inside the virus and also plays other roles in the infected cell. The N protein of SARS-CoV-2 and other coronaviruses is known to contain two globular RNA-binding domains, the NTD and CTD, flanked by disordered regions. The central disordered linker is particularly well understood: it contains a long SR-rich region that is extensively phosphorylated in infected cells, followed by a leucine-rich helical segment that was shown previously by these authors to promote N protein oligomerization.

      In the current work, the authors analyze 5 million viral sequence variants to assess the conservation of specific amino acids and general sequence features in the major regions of the N protein. This analysis shows that disordered regions are particularly variable but that the general hydrophobic and charge character of these regions are conserved, particularly in the SR and leucine-rich regions of the central linker. The authors then construct a series of N proteins bearing the most prevalent mutations seen in the Delta and Omicron variants, and they subject these mutant proteins to a comprehensive array of biophysical analyses (temperature sensitivity, circular dichroism, oligomerization, RNA binding, and phase separation).

      Strengths:<br /> The results include a number of novel findings that are worthy of further exploration. Most notable are the analyses of the previously unstudied P31L mutation of the Omicron variant. The authors use ColabFold and sedimentation analysis to suggest that this mutation promotes the self-association of the disordered N-terminal region and stimulates the formation of N protein condensates. Although the affinity of this interaction is low, it seems likely that this mutation enhances viral fitness by promoting N-terminal interactions. The work also addresses the impact of another unstudied mutation, D63G, that is located on the surface of the globular NTD and has no significant effect on the properties analyzed here, raising interesting questions about how this mutation enhances viral fitness. Finally, the paper ends with studies showing that another common mutant, R203K/G204R, disrupts phase separation and might thereby alter N protein function in a way that enhances viral fitness.

      Weaknesses:<br /> In general, the results in the paper confirm previous ideas about the role of N protein regions. The key novelty of the paper lies in the identification of point mutations, notably P13L, that suggest previously unsuspected functions of the N-terminal disordered region in protein oligomerization. The paper would benefit from further exploration of these possibilities.

    3. Reviewer #3 (Public Review):

      Nguyen, Zhao, et al. used bioinformatic analysis of mutational variants of SARS-CoV-2 Nucleocapsid (N) protein from the large genomic database of SARS-CoV-2 sequences to identify domains and regions of N where mutations are more highly represented and computationally determined the effects of these mutations on the physicochemical properties of the protein. They found that the intrinsically disordered regions (IDRs) of N protein are more highly mutated than structured regions and that these mutations can lead to higher variability in the physical properties of these domains. These computational predictions are compared to in vitro biophysical experiments to assess the effects of identified mutations on the thermodynamic stability, oligomeric state, particle formation, and liquid-liquid phase separation of a few exemplary mutants.

      The paper is well-written and easy to follow, and the conclusions drawn are supported by the evidence presented. The analyses and conclusions are interesting and will be of value to virologists, cell biologists, and biophysicists studying SARS-CoV-2 function and assembly. It would be nice if some further extrapolation or comments could be made regarding the effects of the observed mutations on the in vivo behavior and properties of the virus, but I appreciate that this is much higher-order than could be addressed with the approaches employed here.

    1. Reviewer #1 (Public Review):

      This study offers valuable insights into host-virus interactions, emphasizing the adaptability of the immune system. Readers should recognize the significance of MDA5 in potentially replacing RIG-I and the adversarial strategy employed by 5'ppp-RNA SCRV in degrading MDA5 mediated by m6A modification in different species, further indicating that m6A is a conservational process in the antiviral immune response.

      However, caution is warranted in extrapolating these findings universally, given the dynamic nature of host-virus dynamics. The study provides a snapshot into the complexity of these interactions, but further research is needed to validate and extend these insights, considering potential variations across viral species and environmental contexts.

    2. Reviewer #2 (Public Review):

      This manuscript by Geng et al. aims to demonstrate that MDA5 compensates for the loss of RIG-I in certain species, such as teleofish miiuy croacker. The authors use siniperca cheats rhabdovirus (SCRV) and poly(I:C) to demonstrate that these RNA ligands induce an IFN response in an MDA5-dependent manner in m.miiuy derived cells. Furthermore, they show that MDA5 requires its RD domain to directly bind to SCRV RNA and to induce an IFN response. They use in vitro synthesized RNA with a 5'triphosphate (or lacking a 5'triphosphate as a control) to demonstrate that MDA5 can directly bind to 5'-triphosphorylated RNA. The second part of the paper is devoted to m6A modification of MDA5 transcripts by SCRV as an immune evasion strategy. The authors demonstrate that the modification of MDA5 with m6A is increased upon infection and that this causes increased decay of MDA5 and consequently a decreased IFN response.

      The key message of this paper, i.e. MDA5 can sense 5'-triphosphorylated RNA and thereby compensate for the loss of RIG-I, is novel and interesting, yet there is insufficient evidence provided to prove this hypothesis. Most importantly, it is crucial to test the capacity of in vitro synthesized 5'-triphosphorylated RNA to induce an IFN response in MDA5-sufficient and -deficient cells. In addition, a number of important controls are missing, as detailed below. The authors describe an interaction between MDA5 and STING which, if true, is very interesting. However, the functional implications of this interaction are not further investigated in the manuscript. Is STING required to relay signalling downstream of MDA5? The second part of the paper is quite distinct from the first part. The fact that MDA5 is an interferon-stimulated gene is not mentioned and complicates the analyses (i.e. is there truly more m6A modification of MDA5 on a per molecule basis, or is there simply more total MDA5 and therefore more total m6A modification of MDA5).

      Finally, it should be pointed out that several figures require additional labels, markings, or information in the figure itself or in the accompanying legend to increase the overall clarity of the manuscript. There are frequently details missing from figures that make them difficult to interpret and not self-explanatory. These details are sometimes not even found in the legend, only in the materials and methods section. The manuscript also requires extensive language editing by the editorial team or the authors.

    3. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, the authors investigated the interaction between the pattern recognition receptor MDA5 and 5'ppp-RNA in a teleost fish called Miiuy croaker. They claimed that MDA5 can replace RIG-I in sensing 5'ppp-RNA of Siniperca cheats rhabdovirus (SCRV) in the absence of RIG-I in Miiuy croaker. The recognition of MDA5 to 5'ppp-RNA was also observed in the chicken (Gallus gallus), a bird species that lacks RIG-I. Additionally, they reported that the function of MDA5 can be impaired through m6A-mediated methylation and degradation of MDA5 mRNA by the METTL3/14-YTHDF2/3 regulatory network in Miiuy croaker under SCRV infection. This impairment weakens the innate antiviral immunity of fish and promotes the immune evasion of SCRV.

      Strengths:<br /> These findings provide insights into the adaptation and functional diversity of innate antiviral activity in vertebrates.

      Weaknesses:<br /> However, there are some major and minor concerns that need to be further addressed. Addressing these concerns will help the authors improve the quality of their manuscript.

      One significant issue with the manuscript is that the authors claim to be investigating the role of MDA5 as a substitute for RIG-I in recognizing 5'ppp-RNA, but their study extends beyond this specific scenario. Based on my understanding, it appears that sections 2.2, 2.3, 2.5, 2.6, and 2.7 do not strictly adhere to this particular scenario. Instead, these sections tend to investigate the functional involvement of Miiuy croaker MDA5 in the innate immune response to viral infection. Furthermore, the majority of the data is focused on Miiuy croaker MDA5, with only a limited and insufficient study on chicken MDA5. Consequently, the authors cannot make broad claims that their research represents events in all RIG-I deficient species, considering the limited scope of the species studied.

      The current title of the article does not align well with its actual content. It is recommended that the focus of the research be redirected to the recognition function and molecular mechanism of MDA5 in the absence of RIG-I concerning 5'ppp-RNA. This can be achieved through bolstering experimental analysis in the fields of biochemistry and molecular biology, as well as enhancing theoretical research on the molecular evolution of MDA5. It is advisable to decrease or eliminate content related to m6A modification.

      Additionally, the main body of the writing contains several aspects that lack rigor and tend to exaggerate, necessitating significant improvement.

    1. Joint Public Review

      The present study focuses on the structure and function of human PURA, a regulator of gene transcription and mRNA transport and translation whose mutation causes the neurodevelopmental PURA syndrome, characterized by developmental delay, intellectual disability, hypotonia, epileptic seizures, a.o. deficits. The authors combined structural biology, molecular dynamics simulation, and various cell biological assays to study the effects of disease-causing PURA mutations on protein structure and function. The corresponding data reveal a highly dynamic PURA structure and show that disease-related mutations in PURA cause complex defects in folding, DNA-unwinding activity, RNA binding, dimerization, and partitioning into processing bodies. These findings provide first insights into how very diverse PURA mutations can cause penetrant molecular, cellular, and clinical defects. This will be of substantial interest to cell biologists, neurogeneticists, and neurologists alike.

      A particular strength of the present study is the structural characterization of human PURA, which is a challenging target for structural biology approaches. The molecular dynamics simulations are state-of-the-art, allowing a statistically meaningful assessment of the differences between wild-type and mutant proteins. The functional consequences of PURA mutations at the cellular level are fascinating, particularly the differential compartmentalization of wild-type and mutant PURA variants into certain subcellular condensates.

      Weaknesses that warrant rectification relate to (i) the interpretation of statistically non-significant effects seen in the molecular dynamics simulations, (ii) the statistical analysis of the differential compartmentalization of PURA variants into processing bodies vs. stress granules, and (iii) the documentation of protein expression levels and knock-down efficiencies.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Tian et al. describe how TIPE regulates melanoma progression, stemness, and glycolysis. The authors link high TIPE expression to increased melanoma cell proliferation and tumor growth. TIPE causes dimerization of PKM2, as well as translocation of PKM2 to the nucleus, thereby activating HIF-1alpha. TIPE promotes the phosphorylation of S37 on PKM2 in an ERK-dependent manner. TIPE is shown to increase stem-like phenotype markers. The expression of TIPE is positively correlated with the levels of PKM2 Ser37 phosphorylation in murine and clinical tissue samples. Taken together, the authors demonstrate how TIPE impacts melanoma progression, stemness, and glycolysis through dimeric PKM2 and HIF-1alpha crosstalk.

      Strengths:<br /> The authors manipulated TIPE expression using both shRNA and overexpression approaches throughout the manuscript. Using these models, they provide strong evidence of the involvement of TIPE in mediating PKM2 Ser37 phosphorylation and dimerization. The authors also used mutants of PKM2 at S37A to block its interaction with TIPE and HIF-1alpha. In addition, an ERK inhibitor (U0126) was used to block the phosphorylation of Ser37 on PKM2. The authors show how dimerization of PKM2 by TIPE causes nuclear import of PKM2 and activation of HIF-1alpha and target genes. Pyridoxine was used to induce PKM2 dimer formation, while TEPP-46 was used to suppress PKM2 dimer formation. TIPE maintains stem cell phenotypes by increasing the expression of stem-like markers. Furthermore, the relationship between TIPE and Ser37 PKM2 was demonstrated in murine and clinical tissue samples.

      Weaknesses:<br /> The evaluation of how TIPE causes metabolic reprogramming can be better assessed using isotope tracing experiments and improved bioenergetic analysis.

    2. Reviewer #2 (Public Review):

      In this article, Tian et al present a convincing analysis of the molecular mechanisms underpinning TIPE-mediated regulation of glycolysis and tumor growth in melanoma. The authors begin by confirming TIPE expression in melanoma cell lines and identify "high" and "low" expressing models for functional analysis. They show that TIPE depletion slows tumour growth in vivo, and using both knockdown and over-expression approaches, show that this is associated with changes in glycolysis in vitro. Compelling data using multiple independent approaches is presented to support an interaction between TIPE and the glycolysis regulator PKM2, and the over-expression of TIPE-promoted nuclear translocation of PKM2 dimers. Mechanistically, the authors also demonstrate that PKM2 is required for TIPE-mediated activation of HIF1a transcriptional activity, as assessed using an HRE-promoter reporter assay, and that TIPE-mediated PKM2 dimerization is p-ERK dependent. Finally, the dependence of TIPE activity on PKM2 dimerization was demonstrated on tumor growth in vivo and in the regulation of glycolysis in vitro, and ectopic expression of HIF1a could rescue the inhibition of PKM2 dimerization in TIPE overexpressing cells and reduced induction of general cancer stem cell markers, showing a clear role for HIF1a in this pathway. The main conclusions of this paper are well supported by data, but some aspects of the experiments need clarification and some data panels are difficult to read and interpret as currently presented.

      The detailed mechanistic analysis of TIPE-mediated regulation of PKM2 to control aerobic glycolysis and tumor growth is a major strength of the study and provides new insights into the molecular mechanisms that underpin the Warburg effect in cancer cells. However, despite these strengths, some weaknesses were noted, which if addressed will further strengthen the study.

      1. The analysis of patient samples should be expanded to more directly measure the relationship between TIPE levels and melanoma patient outcome and progression (primary vs metastasis), to build on the association between TIPE levels and proliferation (Ki67) and hypoxia gene sets that are currently shown.

      2. The duration of the in vivo experiments was not clearly defined in the figures, however, it was clear from the tumor volume measurements that they ended well before standard ethical endpoints in some of the experiments. A rationale for this should be provided because longer-duration experiments might significantly change the interpretation of the data. For example, does TIPE depletion transiently reduce or lead to sustained reductions in tumor growth?

      3. The analysis of general cancer stem cell markers is solid and interesting, however inclusion of neural crest stem cell markers that are more relevant to melanoma biology would greatly strengthen this aspect of the study.

      4. The authors should take care that all data panels are clearly readable in the figures to facilitate appropriate interpretation by the reader.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The manuscript ``Self-inhibiting percolation and viral spreading in epithelial tissue' describes a model based on 5-state cellular automata of development of an infection. The model is motivated and qualitatively justified by time-resolved measurements of expression levels of viral, interferon-producing, and antiviral genes. The model is set up in such a way that the crucial difference in outcomes (infection spreading vs. confinement) depends on the initial fraction of special virus-sensing cells. Those cells (denoted as 'type a') cannot be infected and do not support the propagation of infection, but rather inhibit it in a somewhat autocatalytic way. Presumably, such feedback makes the transition between two outcomes very sharp: a minor variation in concentration of ``a' cells results in qualitative change from one outcome to another. As in any percolation-like system, the transition between propagation and inhibition of infection goes through a critical state with all its attributes. A power-law distribution of the cluster size (corresponding to the fraction of infected cells) with a fairly universal exponent and a cutoff at the upper limit of this distribution.

      Strengths:<br /> The proposed model suggests an explanation for the apparent diversity of outcomes of viral infections such as COVID.

      Weaknesses:<br /> Those are not real points of weakness, though I think addressing them would substantially improve the manuscript.

      The key point in the manuscript is the reduction of actual biochemical processes to the NOVAa rules. I think more could be said about it, be it referring to a set of well-known connections between expression states of cells and their reaction to infection or justifying it as an educated guess.

      Another aspect where the manuscript could be improved would be to look a little beyond the strange and 'not-so-relevant for a biomedical audience' focus on the percolation critical state. While the presented calculation of the precise percolation threshold and the critical exponent confirm the numerical skills of the authors, the probability that an actual infected tissue is right at the threshold is negligible. So in addition to the critical properties, it would be interesting to learn about the system not exactly at the threshold: For example, how the speed of propagation of infection depends on subcritical p_a and what is the cluster size distribution for supercritical p_a.

    2. Reviewer #2 (Public Review):

      Xu et al. introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection. In this study, the author first analyzes the single-cell RNA sequencing data from experiments and identifies four clusters of cells at 48 hours post-viral infection, including susceptible cells (O), infected cells (V), IFN-secreting cells (N), and antiviral cells (A). Next, a cellular automaton model (NOVAa model) is introduced by assuming the existence of a transient pre-antiviral state (a). The model consists of an LxL lattice; each site represents one cell. The cells change their state following the rules depending on the interaction of neighboring cells. The model introduces a key parameter, p_a, representing the fraction of pre-antiviral state cells. Cell apoptosis is omitted in the model. Model simulations show a threshold-like behavior of the final attack rate of the virus when p_a changes continuously. There is a critical value p_c, so that when p_a < p_c, infections typically spread to the entire system, while at a higher p_a > p_c, the propagation of the infected state is inhibited. Moreover, the radius R that quantifies the diffusion range of N cells may affect the critical value p_c; a larger R yields a smaller value of the critical value p_c. The structure of clusters is different for different values of R; greater R leads to a different microscopic structure with fewer A and N cells in the final state. Compared with the single-cell RNA seq data, which implies a low fraction of IFN-positive cells - around 1.7% - the model simulation suggests R=5. The authors also explored a simplified version of the model, the OVA model, with only three states. The OVA model also has an outbreak size. The OVA model shows dynamics similar to the NOVAa model. However, the change in microstructure as a function of the IFN range R observed in the NOVAa model is not observed in the OVA model.

      Data and model simulation mainly support the conclusions of this paper, but some weaknesses should be considered or clarified.

      1) In the automaton model, the authors introduce a parameter p_a, representing the fraction of pre-antiviral state cells. The authors wrote: ``The parameter p_a can also be understood as the probability that an O cell will switch to the N or A state when exposed to the virus of IFNs, respectively.' Nevertheless, biologically, the fraction of pre-antiviral state cells does not mean the same value as the probability that an O cell switches to the N or A state. Moreover, in the numerical scheme, the cell state changes according to the deterministic role N(O)=a and N(a)=A. Hence, the probability p_a did not apply to the model simulation. It may need to clarify the exact meaning of the parameter p_a.

      2) The current model is deterministic. However, biologically, considering the probabilistic model may be more realistic. Are the results valid when the probability update strategy is considered? By the probability model, the cells change their state randomly to the state of the neighbor cells. The probability of cell state changes may be relevant for the threshold of p_a. It is interesting to know how the random response of cells may affect the main results and the critical value of p_a.

      3) Figure 2 shows a critical value p_c = 27.8% following a simulation on a lattice with dimension L = 1000. However, it is unclear if dimension changes may affect the critical value.

    3. Reviewer #3 (Public Review):

      Summary:<br /> This study considers how to model distinct host cell states that correspond to different stages of a viral infection: from naïve and susceptible cells to infected cells and a minority of important interferon-secreting cells that are the first line of defense against viral spread. The study first considers the distinct host cell states by analyzing previously published single-cell RNAseq data. Then an agent-based model on a square lattice is used to probe the dependence of the system on various parameters. Finally, a simplified version of the model is explored, and shown to have some similarity with the more complex model, yet lacks the dependence on the interferon range. By exploring these models one gains an intuitive understanding of the system, and the model may be used to generate hypotheses that could be tested experimentally, telling us "when to be surprised" if the biological system deviates from the model predictions.

      Strengths:<br /> - Clear presentation of the experimental findings and a clear logical progression from these experimental findings to the modeling.<br /> - The modeling results are easy to understand, revealing interesting behavior and percolation-like features.<br /> - The scaling results presented span several decades and are therefore compelling.<br /> - The results presented suggest several interesting directions for theoretical follow-up work, as well as possible experiments to probe the system (e.g. by stimulating or blocking IFN secretion).

      Weaknesses:<br /> - Since the "range" of IFN is an important parameter, it makes sense to consider lattice geometries other than the square lattice, which is somewhat pathological. Perhaps a hexagonal lattice would generalize better.

      - Tissues are typically three-dimensional, not two-dimensional. (Epithelium is an exception). It would be interesting to see how the modeling translates to the three-dimensional case. Percolation transitions are known to be very sensitive to the dimensionality of the system.

      - The fixed time-step of the agent-based modeling may introduce biases. I would consider simulating the system with Gillespie dynamics where the reaction rates depend on the ambient system parameters.

      - Single-cell RNAseq data typically involves data imputation due to the high sparsity of the measured gene expression. More information could be provided on this crucial data processing step since it may significantly alter the experimental findings.

      Justification of claims and conclusions:<br /> The claims and conclusions are well justified.

    1. Reviewer #1 (Public Review):

      This manuscript from Zaman et al., investigates the role of cKit and Kit ligand in inhibitory synapse function at molecular layer interneuron (MLI) synapses onto cerebellar Purkinje cells (PC). cKit is a receptor tyrosine kinase expressed in multiple tissues, including select populations of neurons in the CNS. cKIt is activated by Kit ligand, a transmembrane protein typically expressed at the membrane of connected cells. A strength of this paper is the use of cell-specific knockouts of cKit and Kit ligand, in MLIs and PCs, respectively. In both cases, the frequency of spontaneous or miniature (in the presence of TTX) IPSCs was reduced. This suggests either a reduction in the number of functional inhibitory release sites or reduced release probability. IPSCs evoked by electrical stimulation in the molecular layer showed no change in paired-pulse ratio, indicating release probability is not changed in the cKit KO, and favoring a reduction in the number of release sites. Changes in IPSC amplitude were more subtle, with some analyses showing a decrease and others not. These data suggest that disruption of the cKit-Kit ligand complex reduces the number of functional synapses with only minor changes in synapse strength.

    2. Reviewer #2 (Public Review):

      In their study, Zaman et al. demonstrate that deletion of either the receptor tyrosine kinase Kit from cerebellar interneurons or the kit ligand (KL) from Purkinje cells reduces the inhibition of Purkinje cells. They delete Kit or KL at different developmental time points, illustrating that Kit-KL interactions are not only required for developmental synapse formation but also for synapse maintenance in adult animals. The study is interesting as it highlights a molecular mechanism for the formation of inhibitory synapses onto Purkinje cells.

      The tools generated, such as the floxed Kit mouse line and the virus for Kit overexpression, may have broader applications in neuroscience and beyond.

      One general weakness is that Kit expression is not limited to molecular layer interneurons but also extends to the Purkinje layer and Golgi interneurons. But this expression does not conflict with the principal conclusions, as Purkinje layer interneurons form few or no synapses onto Purkinje cells.

      In summary, the data support the hypothesis that the interaction between Kit and KL between cerebellar Molecular Layer Interneurons and Purkinje Cells plays a crucial role in promoting the formation and maintenance of inhibitory synapses onto PCs. This study provides valuable insights that could inform future investigations on how this mechanism contributes to the dynamic regulation of Purkinje cell inhibition across development and its impact on mouse behavior.

    3. Reviewer #3 (Public Review):

      Summary: Bidirectional transsynaptic signaling via cell adhesion molecules and cell surface receptors contributes to the remarkable specificity of synaptic connectivity in the brain. Zaman et al., investigates how the receptor tyrosine kinase Kit and its trans-cellular kit ligand regulate molecular layer interneuron (MLI)- Purkinje cell (PC) connectivity in the cerebellum. Presynaptic Kit is specific for MLIs, and forms a trans-synaptic complex with Kit ligand in postsynaptic PC cells. The authors begin by generating Kit cKOs via an EUCOMM allele to enable cell-type specific Kit deletion. They cross this Kit cKO to the MLI-specific driver Pax2-Cre and conduct validation via Kit IHC and immunoblotting. Using this system to examine the functional consequences of presynaptic MLI Kit deletion onto postsynaptic PC cells, they record spontaneous and miniature synaptic currents from PC cells and find a selective reduction in IPSC frequency. Deletion of Kit ligand from postsynaptic PC cells also results in reduced IPSC frequency, together supporting that this trans-synaptic complex regulates GABAergic synaptic formation or maturation. The authors then show that sparse Kit ligand overexpression in PCs decreases neighboring uninfected control sIPSCs in a potential competitive manner.

      Strengths: Overall, the study addresses an important open question, the data largely supports the authors conclusions, the experiments appear well-performed, and the manuscript is well-written. I just have a few suggestions to help shore up the author's interpretations and improve the study.

      Weaknesses:

      The strong decrease in sIPSC frequency and amplitude in control uninfected cells in Figure 4 is surprising and puzzling. The competition model proposed is one possibility, and I think the authors need to do additional experiments to help support or refute this model. The authors can conduct similar synaptic staining experiments as in Fig S4 but in their sparse infection paradigm, comparing synapses on infected and uninfected cells. Additional electrophysiological parameters in the sparse injection paradigm, such as mIPSCs or evoked IPSCs, would also help support their conclusions.

      The authors should validate KL overexpression and increased cell surface levels using their virus to support their overexpression conclusions.

    1. Reviewer #1 (Public Review):

      Summary:

      The main goal of the authors was to study the testis-specific role of the protein FBXO24 in the formation and function of the ribonucleoprotein granules (membraneless electron-dense structures rich in RNAs and proteins).

      Strengths:

      The wide variety of methods used to support their conclusions (including transgenic models)

      Weaknesses:

      The lack of specific antibodies against FBXO24. Some of the experiments showing a specific phenotype are descriptive and lack of logical explanation about the possible mechanism (i.e. AR or the tail structure).

      Questions:

      The paper is excellent and employs a wide variety of methods to substantiate the conclusions. I have very few questions to ask:

      1) KO mice cannot undergo acrosome reaction (AR) even spontaneously. How do you account for this, given that no visible defects were observed in the acrosome?

      2) KO sperm are unable to migrate in the female tract, and, more intriguingly, they do not pass through the utero-tubal junction (UTJ). The levels of ADAM3 are normal, suggesting that the phenotype is influenced by other factors. The authors should investigate the levels of Ly6K since mice also exhibit the same phenotype but with normal levels of ADAM3.

      3) In Figure 4A, the authors assert that "RBGS Tg mice revealed that mitochondria were abnormally segmented in Fbxo24 KO spermatozoa." I am unable to discern this from the picture shown in that panel. Could you please provide a more detailed explanation or display the information more explicitly?

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Kaneda et al "FBXO24 ensures male fertility by preventing abnormal accumulation 2 of membraneless granules in sperm flagella" is a significant paper on the role of FBXO24 in murine male germ cell development and sperm ultrastructure and function. The body of experimental evidence that the authors present is extraordinarily strong in both breadth and depth. The authors investigate the protein's functions in male germ cells and sperm using a wide variety of approaches but focusing predominantly on their novel mouse model featuring deletion of the Fbxo24 gene and its product. Using this mouse, and a cross of it with another model that expresses reporters in the head and midpiece, they logically build from one experiment to the next. Together, their data show that this protein is involved in the regulation of membraneless electron-dense structures; loss of FBXO24 led to an accumulation of these materials and defects in the sperm flagellum and fertilizing ability. Interestingly, the authors found that several of the best-known components of electron-dense ribonucleoprotein granules that are found in the intermitochondrial cement and chromatoid body were not disrupted in the Fbxo24 knockout, suggesting that the electron-dense material and these structures are not all the same, and the biology is more complicated than some might have thought. They found evidence for the most changes in IPO5 and KPNB1, and biochemical evidence that FBXO24 and IPO5 could interact.

      Strengths:

      The authors are to be commended for the thoroughness of their experimental approaches and the extent to which they investigated impacts on sperm function and potential biochemical mechanisms. Very briefly, they start by showing that the Fbxo24 message is present in spermatids and that the protein can interact with SKP1, in a way that is dependent on its F-box domain. This points toward a potential function in protein degradation. To test this, they next made the knockout mouse, validated it, and found the males to be sterile, although capable of plugging a female. Looking at the sperm, they identified a number of ultrastructural and morphological abnormalities, which they looked at in high resolution using TEM. They also cross their model with RBGS mice so that they have reporters in both the acrosome and mitochondria. The authors test a variety of sperm functions, including motility parameters, ability to fertilize by IVF, cumulus-free IVF, zona-free-IVF, and ICSI. They found that ICSI could rescue the knockout but not other assisted reproductive technologies. Defects in male fertility likely resulted from motility disruption and failure to get through the utero-tubal junction but defects in acrosome exocytosis also were noted. The authors performed thorough investigations including both targeted and unbiased approaches such as mass spectrometry. These enabled them to show that although the loss of the FBXO24 protein led to more RNA and elevated levels of some proteins, it did not change others that were previously identified in the electron-dense RNP material.

      The manuscript will be highly significant in the field because the exact functions of the electron-dense RNP materials have remained somewhat elusive for decades. Much progress has been made in the past 15 years but this work shows that the situation is more complex than previously recognized. The results show critical impacts of protein degradation in the differentiation process that enables sperm to change from non-descript round cells into highly polarized and compartmentalized mature sperm, with an equally highly compartmentalized flagellum. This manuscript also sets a high bar for the field in terms of how thorough it is, which reveals wide-ranging impacts on processes such as mitochondrial compaction and arrangement in the midpiece, the correct building of the major cytoskeletal elements in the flagellum, etc.

      Weaknesses:

      There are no real weaknesses in the manuscript that result from anything in the control of the authors. They attempted to rescue the knockout by expressing a FLAG-tagged Fbxo24 transgene, but that did not rescue the phenotype, either because of inappropriate levels/timing/location of expression, or because of interference by the tag. They also could not make anti-FBXO24 that worked for co-immunoprecipitation experiments, so relied on the FLAG epitope, an approach that successfully showed co-IP with IPO5 and SKP1.

    3. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors found that FBXO24, a testis-enriched F-box protein, is indispensable for male fertility. Fbxo24 KO mice exhibited malformed sperm flagellar and compromised sperm motility.

      Strengths:

      The phenotype of Fbxo24 KO spermatozoa was well analyzed.

      Weaknesses:

      The authors observed numerous membraneless electron-dense granules in the Fbxo24 KO spermatozoa. They also showed abnormal accumulation of two importins, IPO5 and KPNB1, in the Fbxo24 KO spermatozoa. However, the data presented in the manuscript do not support the conclusion that FBXO24 ensures male fertility by preventing the abnormal accumulation of membraneless granules in sperm flagella, as indicated in the manuscript title.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study used a unique acute HIV-1 infection cohort, RV217, to study the evolution of transmitted founder viral Envelope sequences under nascent immune pressure. The striking feature of the RV217 cohort is the ability to detect viremia in the first week of infection, which can be followed at discrete Fiebig stages over long time intervals. This study evaluated Env sequences at 1 week, 4 weeks, and 24 weeks to provide a picture of viral and immunological co-evolution from Fiebig Stage I (1 week), Fiebig Stages IV (4 weeks), and Fiebig Stage VI (>24 weeks). This study design enabled lineage tracing of viral variants from a single transmitted founder (T/F) over the Fiebig Stages I, IV, and VI under nascent immune pressure generated in response to the T/F virus and its subsequent mutants.

      Strengths:<br /> As expected, there were temporal differences in the appearance of virus quasispecies among the individuals, which were located predominantly in solvent-exposed residues of Env, which is consistent with prior literature. Interestingly, two waves of antibody reactivity were observed for variants with mutations in the V2 region that harbors V2i and V2p epitopes correlated with protection in the RV144 clinical trial. Two waves of antibody response, detected by SPR, were observed, with the first wave being predominated by antibodies specific for the T/F07 V2 epitope associated with H173 located on the C β-strand in the V2 region. The second wave was dominated by antibodies specific for an H to Y mutation at 173 that emerged due to antibody-mediated pressure to the original H173 virus. This is a remarkable finding in three ways.

      First, the mutation is in the C β-strand, an unlikely paratope contact residue, as this region of the V2 loop is shielded by glycans in Env trimer structures with full glycan representation (see PDB:5t3x). The structure used for modeling in the current study was an earlier structure, PDB:4TVP, that had many truncated glycans. This does not detract from the finding that the H173Y mutation likely causes a conformational shift from a more rigid helical/coil conformation to a more dynamic conformation with a β-stranded and β-sheet core preference as indicated by the literature and by the MD simulations carried out by the authors. This observation suggests that using V2 scaffolds with both the H173 and H173Y variants will increase the breadth of potentially protective antibody responses to HIV-1, as indicated in reference 42, cited by the authors. Interestingly, the H173Y mutation abrogates reactivity to mAb CH58 and attenuates reactivity to mAb CH59 isolated from RV144 volunteers. These mAbs recognize conformationally distinct V2 epitopes, adding further credence to the conclusion that the H173Y mutation results in a conformational switch of the V2 region.

      Second, the H173Y mutation affects the conformation of V2 epitopes recognized by mAbs that do not neutralize T/F HIV-1 while mediating potent ADCC. The ADCC data in the manuscript provides strong support for this hypothesis and augers for further exploration of the V2 epitopes as HIV-1 vaccine targets.<br /> Third, it is striking that immunogens based on the H173Y mutation successfully recapitulated the observed human antibody responses in wild-type Balb/c mice. The investigators used their extensive knowledge of V2 structures and scaffold-immunogens to create the library of constructs used for this study. In this case, the ΔDSV mutation increased the breadth and magnitude of the murine antibody responses.

      Weaknesses:<br /> 1. V2 epitopes exhibit properties of CD4i epitopes in that they are largely absent from the native Env surface, probably by glycan-occlusion, but become more exposed upon CD4 binding. Although the V2-scaffolds were produced in GnTi- cells to produce high-mannose proteins, it appears that no systematic analysis of glycan content or structure was carried out save for enzymatic deglycosylation of the constructs to sharpen bands on SDS-PAGE gels. It would be helpful if the authors could comment on how the lack of this information might impact their conclusions.

      2. Similarly, the MD simulations appear to be performed without taking glycan structure/occupancy.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this study, researchers aimed to understand how a transmitted/founder (T/F) HIV virus escapes host immune pressure during early infection. They focused on the V1V2 domain of the HIV-1 envelope protein, a key determinant of virus escape. The study involved four participants from the RV217 Early Capture HIV Cohort (ECHO) project, which allowed tracking HIV infection from just days after infection.

      The study identified a significant H173Y escape mutation in the V2 domain of a T/F virus from one participant. This mutation, located in the relatively conserved "C" β-strand, was linked to viral escape against host immune pressure. The study further investigated the epitope specificity of antibodies in the participant's plasma, revealing that the H173Y mutation played a crucial role in epitope switching during virus escape. Monoclonal antibodies from the RV144 vaccine trial, CH58, and CH59, showed reduced binding to the V1V2-Y173 escape variant. Additionally, the study examined antibody-dependent cellular cytotoxicity (ADCC) responses and found resistance to killing in the Y173 mutants. The H173Y mutation was identified as the key variant selected against the host's immune pressure directed at the V2 domain.

      The researchers hypothesized that the H173Y mutation caused a structural/conformational change in the C β-strand epitope, leading to viral escape. This was supported by molecular dynamics simulations and structural modeling analyses. They then designed combinatorial V2 immunogen libraries based on natural HIV-1 sequence diversity, aiming to broaden antibody responses. Mouse immunizations with these libraries demonstrated enhanced recognition of diverse Env antigens, suggesting a potential strategy for developing a more effective HIV vaccine.

      In summary, the study provides insights into the early evolution of HIV-1 during infection, highlighting the importance of the V1V2 domain and identifying key escape mutations. The findings suggest a novel approach for designing HIV vaccine candidates that consider the diversity of escape mutations to induce broader and more effective immune responses.

      Strengths:<br /> The article presents several strengths:

      1. The experimental design is well-structured, involving multiple stages from phylogenetic analyses to mouse model testing, providing a comprehensive approach to studying virus escape mutations.

      2. The study utilizes a unique dataset from the RV217 Early Capture HIV Cohort (ECHO) project, allowing for the tracking of HIV infection from the very early stages in the absence of antiretroviral therapy. This provides valuable insights into the evolution of the virus.

      3. The use of advanced techniques such as phylogenetic analyses, nanoscaffold technology, controlled mutagenesis, and monoclonal antibody evaluations demonstrates the application of cutting-edge methodologies in the study.

      4. The research goes beyond genetic analysis and provides an in-depth characterization of the escape mutation's impact, including structural analyses through Molecular Dynamics simulations, antibody responses, and functional implications for virus survival.

      5. The study provides insights into the immune responses triggered by the escape mutation, including the specificity of antibodies and their ability to recognize diverse HIV-1 Env antigens.

      7. The exploration of combinatorial immunogen libraries is a strength, as it offers a novel approach to broaden antibody responses, providing a potential avenue for future vaccine design.

      8. The research is highly relevant to vaccine development, as it sheds light on the dynamics of HIV escape mutations and their interaction with the host immune system. This information is crucial for designing effective vaccines that can preemptively interfere with viral acquisition.

      9. The study integrates findings from virology, immunology, structural biology, and bioinformatics, showcasing an interdisciplinary approach that enhances the depth and breadth of the research.

      10. The article is well-written, with a clear presentation of methods, results, and implications, making it accessible to both specialists and a broader scientific audience.

      Weaknesses:<br /> While the article presents several strengths, it's important to consider potential weaknesses as well:

      1. While the exploration of combinatorial immunogen libraries is innovative, the complexity of this approach may pose challenges in terms of practical implementation, scalability, and cost-effectiveness in large-scale vaccine development.

      2. The article will benefit from a more explicit discussion of the limitations and potential drawbacks of the methodologies employed. For example, structural analyses, such as Molecular Dynamics simulations, involve complex computational models. The accuracy and reliability of these simulations may vary, and uncertainties in the interpretation of structural data should be acknowledged.

    1. Reviewer #1 (Public Review):

      Mignerot et al. performed a Herculean effort to measure and describe natural variation in C. elegans egg-laying behavior and egg retention. The paper is well written and organized. The authors show wild strains vary in egg retention with some extremes that appear phenotypically similar to species with viviparity (or live birth / internal hatching of offspring). They previously published a rare variant in the gene kcnl-1 that plays a role in egg retention but identify common variants in this study. They classify wild strains based on egg-retention to separate out the extremely different isolates. Egg laying has been extensively studied in the laboratory strain N2, but rarely addressed in natural strains. The authors investigate egg-laying behaviors using standard assays and find that their classified egg-laying groups have differences in sub-behaviors suggesting diverse roles in the ultimate egg-laying output. Then, they turn to the egg-laying circuit using both exogenous serotonin (5-HT), 5-HT modulatory drugs (e.g. SSRIs), and even genome editing to test epistasis with the mod-5 5-HT reuptake. The effects of 5-HT modulation and mutants are not predictive based on the basal behaviors and egg-retention phenotypes with the most extreme egg-retention strains differing in their responses. Interestingly, strains with more egg retention have decreased fitness (in their laboratory) measures but also provide a protective environment for offspring when exposed to common "natural" stressors. Their final conclusion that egg retention could be a trade-off between antagonistic effects of maternal vs. offspring fitness is supported well and sets the stage for future mechanistic studies across Caenorhabditis.

    2. Reviewer #2 (Public Review):

      Mignerot et al. study variations in egg retention in a large set of wild C. elegans strains use detailed analysis of a subset of these strains to those that these variations in egg retention appear to arise from variations in egg-laying behavior. The authors then take advantage of the advanced genetic technology available in C. elegans, and the fact that the cellular and molecular mechanisms that drive egg-laying behavior in the N2 laboratory strain of C. elegans have been studied intensely for decades. Thus, they demonstrate that variations multiple genetic loci appear to drive variations in egg laying across species, although they are unable to identify the specific genes that vary other than a potassium channel already identified in a previous study from some of these same authors (Vigne et al., 2021). Mignerot et al. also present evidence that variations in response of the egg-laying system to the neuromodulator serotonin appear to underlie variations in egg-laying behavior across species. Finally, the authors present a series of studies examining how the retention of eggs in utero affects the fertility and survival of mothers versus the survival of their progeny in a variety of adverse conditions, including limiting food, and the presence of acute environmental insults such as alcohol or acid. The results suggest that variations in egg-laying behavior evolved as a response to adverse environmental conditions that impose a trade-off between survival of the mothers versus their progeny.

      Strengths:

      The analysis of variations in egg laying by a large set of wild species significantly extends the previous work of Vigne et al. (2021), who focused on just one wild variant strain. Mignerot find that variations in egg laying are widespread across C. elegans strains and result from changes in multiple genetic loci.

      To determine why various strains vary in their egg-laying behavior, the authors take advantage the genetic tractability of C. elegans and the huge body of previous studies on the cellular and molecular basis of egg-laying behavior in the laboratory N2 strain. Since serotonin is one signal that induces egg laying, the authors subject various strains to serotonin and to drugs thought to alter serotonin signaling, and they also use CRISPR induced gene editing to mutate a serotonin reuptake transporter in some strains. The results are largely consistent with the idea that variations across strains alter how the egg-laying system responds to serotonin.

      The final figures in the paper presents a far more detailed analysis than did Vigne et al. (2021) of how variations in egg retention across species can affect fitness under various environmental stresses. Thus, Mignerot et al. look at competition under conditions of limiting food, and response to acute environmental insults, and compare the ability of adults, in utero eggs, and ex vivo eggs to survive. The results lead to an interesting discussion of how variations in behavior result in a trade-off in survival of mothers versus their progeny. The authors in their Discussion do a good job describing the challenges in interpreting the relevance of these laboratory results to the poorly-understood environmental conditions that C. elegans may experience in the wild. The Discussion also had an excellent section about how the ability of a single species to strongly regulate egg-laying behavior in response to its environment, and how this ability could be adaptive. Overall, these were the strongest and most interesting aspects of Mignerot et al.

      Weaknesses<br /> The specific potassium channel variation studied by Vigne et al. (2021) has by far the strongest effect on egg laying seen in the Mignerot et al. study and remains the only genetic variation that has been molecularly identified. So, Mignerot et al. were not able to identify any additional specific genes that vary across species to cause changes in egg laying, and this limited their ability to generate new insights into the specific cellular and molecular mechanisms that have changed across species to result in changes in egg laying behavior.

      The authors' use of drug treatments and CRISPR to alter serotonin signaling yielded some insights into mechanistic variations in how the egg-laying system functions across strains, but these experiments only allow very indirect inferences into what is going on. The analysis in Figures 4 and 5 generates a complex set of results that are not easy to interpret. The clearest result seems to be that strains carrying the KCNL-1 point mutation lay eggs poorly and exogenous serotonin inhibits rather than stimulates egg laying in these strains. This basic result was to a large extent reported previously in Vigne et al. 2021.

      The analysis of how differences between strains mechanistically result in changes in egg-laying behavior and egg retention, while excellent in concept, is only modestly successful. The analysis of the temporal pattern egg-laying behavior in Figure 3B-3F is relatively weak. Whereas the state of the art in analyzing this behavior is to take videos of animals and track exactly when they lay eggs, analyzing 40 or more hours of behavior per strain, the authors used a lower-tech method of just examining how many eggs were laid within 5-minute intervals over a period of just three hours per strain. While this analysis was sufficient to demonstrate some statistically significant differences in the pattern of egg laying in some strains, it is unclear to what extent these differences could be sufficient to explain the differences in accumulation of unlaid eggs between these strains. In contrast, the variations in age of the onset of egg-laying behavior in Fig 3G and 3H between strains were very strong and may be more likely to reflect mechanistic differences in how egg laying is controlled that could result in the differences in retention of unlaid eggs seen among the strains tested. In the Discussion, the authors extensively write about the work of the Collins lab showing that retained eggs stretch the uterus to produce a signal that activates egg-laying muscles. Could it be that really this mechanism is the main one that varies between strains, leading to the observed variations in time to laying the first egg as well as variations in the number of retained eggs throughout adulthood?

    1. Reviewer #1 (Public Review):

      Koumoundourou et al., identify a pathway downstream of Bcl11b that controls synapse morphology and plasticity of hippocampal mossy fiber synapses. Using an elegant combination of in vivo, ex vivo, and in vitro approaches, the authors build on their previous work that indicated C1ql2 as a functional target of Bcl11b (De Bruyckere et al., 2018). Here, they examine the functional implications of C1ql2 at MF synapses in Bcl11b cKO mice and following C1ql2 shRNA. The authors find that Bcl11b KO and shRNA against C1ql2 significantly reduces the recruitment of synaptic vesicles and impairs LTP at MF synapses. Importantly, the authors test a role for the previously identified C1ql2 binding partner, exon 25b-containing Nrxn3 (Matsuda et al., 2016), as relevant at MF synapses to maintain synaptic vesicle recruitment. To test this, the authors developed a K262E C1ql2 mutant that disrupts binding to Nrxn3. Curiously, while Bcl11b KO and C1ql2 KD largely phenocopy (reduced vesicle recruitment and impaired LTP), only vesicle recruitment is dependent on C1ql2-Nrxn3 interactions. These findings provide new insight into the functional role of C1ql2 at MF synapses. The authors utilize a multidisciplinary approach to convincingly demonstrate a role for C1ql2-Nrxn3(25b+) interactions for vesicle recruitment and a Nrxn3(25b+)-independent role for C1ql2 in LTP, The authors establish an important signaling pathway that offers insight into how disruptions of Bcl11b contribute to synapse dysfunction and provide a much needed advance toward understanding the functional consequences of neurexin alternative splicing.

    2. Reviewer #2 (Public Review):

      This manuscript describes experiments that further investigate the actions of the transcription factor Bcl11b in regulating mossy fiber (MF) synapses in the hippocampus. Prior work from the same group had demonstrated that loss of Bcl11b results in loss of MF synapses as well as a decrease in LTP. Here the authors focus on a target of Bcl11b a secreted synaptic organizer C1ql2 which is almost completed lost in Bcl11b KO. Viral reintroduction of C1ql2 rescues the synaptic phenotypes, whereas direct KD of C1ql2 recapitulates the Bcl1 phenotype. C1ql2 itself interacts directly with Nrxn3 and replacement with a binding deficient mutant C1q was not able to rescue the Bcl11b KO phenotype. Overall there are some interesting observations in the study, however there are also some concerns about the measures and interpretation of data.

      The authors state they used a differential transcriptomic analysis to screen for candidate targets of Bcl11b, yet they do not present any details of this screen. This should be included and at the very least a table of all DE genes included. It is likely that many other genes are also regulated by Bcl11b so it would be important to the reader to see the rationale for focusing attention on C1ql2 in this study.

      All viral mediated expression uses AAVs which are known to ablate neurogenesis in the DG (Johnston DOI: 10.7554/eLife.59291) through the ITR regions and leads to hyperexcitability of the dentate. While it is not clear how this would impact the measurements the authors make in MF-CA3 synapses, this should be acknowledged as a potential caveat in this study.

      The authors claim that the viral re-introduction "restored C1ql2 protein expression to control levels. This is misleading given that the mean of the data is 2.5x the control (Figure 1d and also see Figure 6c). The low n and large variance are a problem for these data. Moreover, they are marked ns but the authors should report p values for these. At the least this likely large overexpression and variability should be acknowledged. In addition, the use of clipped bands on Western blots should be avoided. Please show the complete protein gel in primary figures of supplemental information.

      Measurement of EM micrographs: As prior work suggested that MF synapse structure is disrupted the authors should report active zone length as this may itself affect "synapse score" defined by the number of vesicles docked. More concerning is that the example KO micrographs seem to have lost all the densely clustered synaptic vesicles that are away from the AZ in normal MF synapses e.g. compare control and KO terminals in Fig 2a or 6f or 7f. These terminals look aberrant and suggest that the important measure is not what is docked but what is present in the terminal cytoplasm that normally makes up the reserve pool. This needs to be addressed with further analysis and modifications to the manuscript.

      The study also presents correlated changes in MF LTP in Bcl11b KO which are rescued by C1ql2 expression. It is not clear whether the structural and functional deficits are causally linked and this should be made clearer in the manuscript. It is also not apparent why this functional measure was chosen as it is unlikely that C1ql2 plays a direct role in presynaptic plasticity mechanisms that are through a cAMP/ PKA pathway and likely disrupted LTP is due to dysfunctional synapses rather than a specific LTP effect. The authors should consider measures that might support the role of Bcl11b targets in SV recruitment during depletion of synapses or measurements of the readily releasable pool size that would complement their finding in structural studies.

      Bcl11b KO reduces the number of synapses, yet the I-O curve reported in Supp Fig 2 is not changed. How is that possible? This should be explained.

      Matsuda et al DOI: 10.1016/j.neuron.2016.04.001 previously reported that C1ql2 organizes MF synapses by aligning postsynaptic kainate receptors with presynaptic elements. As this may have consequences for the functional properties of MF synapses including their plasticity, the authors should report whether they see deficient postsynaptic glutamate receptor signaling in the Bcl11b KO and rescue in the C1ql2 re-expression.

      These are all addressed in the revised version.

    3. Reviewer #3 (Public Review):

      Overall, this is a strong manuscript that uses multiple current techniques to provide specific mechanistic insight into prior discoveries of the contributions of the Bcl11b transcription factor to mossy fiber synapses of dentate gyrus granule cells. The authors employ an adult deletion of Bcl11b via Tamoxifen-inducible Cre and use immunohistochemical, electron microscopy, and electrophysiological studies of synaptic plasticity, together with viral rescue of C1ql2, a direct transcriptional target of Bcl11b or Nrxn3, to construct a molecular cascade downstream of Bcl11b for DG mossy fiber synapse development. They find that C1ql2 re-expression in Bcl11b cKOs can rescue the synaptic vesicle docking phenotype and the impairments in MF-LTP of these mutants. They also show that C1ql2 knockdown in DG neurons can phenocopy the vesicle docking and plasticity phenotypes of the Bcl11b cKO. They also use artificial synapse formation assays to suggest that C1ql2 functions together with a specific Nrxn3 splice isoform in mediating MF axon development, extending these data with a C1ql2-K262E mutant that purports to specifically disrupt interactions with Nrxn3. All of the molecules involved in this cascade are disease-associated and this study provides an excellent blueprint for uncovering downstream mediators of transcription factor disruption. Together this makes this work of great interest to the field. Strengths are the sophisticated use of viral replacement and multi-level phenotypic analysis while weaknesses include the linkage of C1ql2 with a specific Nrxn3 splice variant in mediating these effects.

      Here is an appraisal of the main claims and conclusions:

      1. C1ql2 is a downstream target of Bcl11b which mediates the synaptic vesicle recruitment and synaptic plasticity phenotypes seen in these cKOs. This is supported by the clear rescue phenotypes of synapse anatomy (Fig.2) and MF synaptic plasticity (Fig.3). One weakness here is the absence of a control assessing over-expression phenotypes of C1ql2. It's clear from Fig.1D that viral rescue is often greater than WT expression (totally expected). In the case where you are trying to suppress a LoF phenotype, it is important to make sure that enhanced expression of C1ql2 in a WT background does not cause your rescue phenotype. A strong overexpression phenotype in WT would weaken the claim that C1ql2 is the main mediator of the Bcl11b phenotype for MF synapse phenotypes.

      2. Knockdown of C1ql2 via 4 shRNAs is sufficient to produce the synaptic vesicle recruitment and MF-LTP phenotypes. This is supported by clear effects in the shRNA-C1ql2 groups as compared to nonsense-EGFP controls. One concern (particularly given the use of 4 distinct shRNAs) is the potential for off-target effects, which is best controlled for by a rescue experiment with RNA-insensitive C1ql2 cDNA as opposed to nonsense sequences, which may not elicit the same off-target effects.

      3. C1ql2 interacts with Nrxn3(25b+) to facilitate MF terminal SV clustering. This claim is theoretically supported by the HEK cell artificial synapse formation assay (Fig.5), the inability of the K262-C1ql2 mutation to rescue the Bcl11b phenotype (Fig.6) and the altered localization of C1ql2 in the Nrxn1-3 deletion mice (Fig.7). Each of these lines of experimental evidence has caveats that should be acknowledged and addressed. Given the hypothesis that C1ql2 and Nrxn3b(25b) are expressed in DG neurons and work together, the heterologous co-culture experiment seems weird. Up till now, the authors are looking at pre-synaptic function of C1ql2 since they are re-expressing it in DGNs. The phenotypes they are seeing are also pre-synaptic and/or consistent with pre-synaptic dysfunction. In Fig.5, they are testing whether C1ql2 can induce pre-synaptic differentiation in trans, i.e. theoretically being released from the 293 cells "post-synaptically". But the post-synaptic ligands (Nlgn1 and and GluKs) are not present in the 293 cells, so a heterologous synapse assay doesn't really make sense here. The effect that the authors are seeing likely reflects the fact that C1ql2 and Nrxn3 do bind to each other, so C1ql2 is acting as an artificial post-synaptic ligand, in that it can cluster Nrxn3 which in turn clusters synaptic vesicles. But this does not test the model that the authors propose (i.e. C1ql2 and Nrxn3 are both expressed in MF terminals). Perhaps a heterologous assay where GluK2 is put into HEK cells and the C1ql2 and Nrxn3 are simultaneously or individually manipulated in DG neurons?

      4. K262-C1ql2 mutation blocks the normal rescue through a Nrxn3(25b) mechanism (Fig.6). The strength of this experiment rests upon the specificity of this mutation for disrupting Nrxn3b binding (presynaptic) as opposed to any of the known postsynaptic C1ql2 ligands such as GluK2. While this is not relevant for interpreting the heterologous assay (Fig.5), it is relevant for the in vivo phenotypes in Fig.6. Similar approaches as employed in this paper can test whether binding to other known postsynaptic targets is altered by this point mutation.

      5. Altered localization of C1ql2 in Nrxn1-3 cKOs. These data are presented to suggest that Nrx3(25b) is important for localizing C1ql2 to the SL of CA3. Weaknesses of this data include both the lack of Nrxn specificity in the triple a/b KOs as well as the profound effects of Nrxn LoF on the total levels of C1ql2 protein. Some measure that isn't biased by this large difference in C1ql2 levels should be attempted (something like in Fig.1F).

    1. Reviewer #1 (Public Review):

      Summary:<br /> This is an important work showing that loss of LRRK function causes late-onset dopaminergic neurodegeneration in a cell-autonomous manner. One of the LRRK members, LRRK2, is of significant translational importance as mutations in LRRK2 cause late-onset autosomal dominant Parkinson's disease (PD). While many in the field assume that LRRK2 mutant causes PD via increased LRRK2 activity (i.e., kinase activity), it is not a settled issue as not all disease-causing mutant LRRK2 exhibits increased activity. Further, while LRRK2 inhibitors are under clinical trials for PD, the consequence of chronic, long-term LRRK2 inhibition is unknown. Thus, studies evaluating the long-term impact of LRRK deficit have important translational implications. Moreover, because LRRK proteins, particularly LRRK2, are known to modulate immune response and intracellular membrane trafficking, the study's results and the reagents will be valuable for others interested in LRRK function.

      Strengths:<br /> This report describes a mouse model where LRRK1 and LRRK2 genes are conditionally deleted in dopaminergic neurons. Previously, this group showed that while loss of LRRK2 expression does not cause brain phenotype, loss of both LRRK1 and LRRK2 causes a later onset, progressive degeneration of catecholaminergic neurons, Dopaminergic (DAergic) neurons in substantia niga (SN) and Noradrenergic neurons in Locus Coeruleus (LC). However, because LRRK genes are widely expressed with some peripheral phenotypes, it was unknown if the neurodegeneration in LRRK double Knock Out (DKO) was cell autonomous. To rigorously test this question, the authors have generated a double conditional KO allele where both LRRK1 and LRRK2 genes were targeted to contain loxP sites. In my view, this was beyond what is normally required as most investigators might just combine one KO allele with another floxed allele. The authors provide a rigorous validation showing that the Driver (DAT-Cre) is expressed in the majority of DAergic neurons in SN and that LRRK levels are decreased selectively in the ventral midbrain. Using these mice, the authors show that the number of DA neurons is average at 15 but significantly decreased at 20 months of age. Moreover, the authors show that the number of apoptotic neurons is increased by ~2X in aged SN, demonstrating increased ongoing cell death, as well as an increase in activated microglia. The degeneration is limited to DA neurons as LC neurons are not lost as this population does not express DAT. Overall, the mouse genetics and experimental analysis were performed in a rigorous manner and the results were statistically sound and compelling.

      Weakness: I only have a few minor comments. First, in PD and other degenerative conditions, axons and terminals loss occurs prior to cell bodies. It might be beneficial to show the status of DAergic markers in the striatum. Second, previous studies indicate that very little, if any, LRRK1 is expressed in SN DAergic neurons. This also seems to be the case with the Allen Brain Atlas profile. Thus, it is preferable that authors discuss the discrepancy as authors seem to imply significant LRRK1 expression in DA neurons.

      Revision: I appreciate the authors revising the manuscript with additional data that have clarified my prior comments. They now show that TH levels in the striatum decrease with SNpc neurons. Further, while there is some disagreement regarding the expression LRRK1 in SNpc, the authors provide a convincing case that LRRK1 function is important in SNpc DA neurons.

    2. Reviewer #2 (Public Review):

      Summary: In this manuscript, Shen and collaborators described the generation of conditional double knockout (cDKO) mice lacking LRRK1 and LRRK2 selectively in DAT positive dopaminergic neurons. The Authors asked whether selective deletion of both LRRK isoforms could lead to a Parkinsonian phenotype, as previously reported by the same group in germline double LRRK1 and LRRK2 knockout mice (PMID: 29056298). Indeed, cDKO mice developed a late reduction of TH+ neurons in SNpc that partially correlated with the reduction of NeuN+ cells. This was associated with increased apoptotic cell and microglial cell numbers in SNpc. Unlike the constitutive DKO mice described earlier, however, cDKO mice did not replicate the dramatic increase in the number of autophagic vacuoles. The study supports the authors' hypothesis that loss of function rather than gain of function of LRRK2 leads to Parkinson's Disease.

      Strengths: The study described for the first time a model where both the Parkinson's disease-associated gene LRRK2 and its homolog LRRK1 are deleted selectively in dopaminergic neurons, offering a new tool to understand the physiopathological role of LRRK2 and the compensating role of LRRK1 in modulating dopaminergic cell function.

      Weaknesses: The model has no construct validity since loss of function mutations of LRRK2 are well tolerated in humans and do not lead to Parkinson's disease. The evidence of a Parkinsonian phenotype in these conditional knockout mice is limited and should be considered preliminary.

    3. Reviewer #3 (Public Review):

      Kang, Huang, and colleagues have provided new data to address concerns regarding confirmation of LRRK1 and LRRK2 deletion in their mouse model and the functional impact of the modest loss of TH+ neurons observed in the substantia nigra of their double KO mice. In the revised manuscript, the new data around the characterization of the germline-deleted LRRK1 and LRRK2 mice add confidence that LRRK1 and LRRK2 can be deleted using the genetic approach. They have also added new text to the discussion to try and address some of the comments and questions raised regarding how LRRK1/2 loss may impact cell survival and the implications of this work for PD-linked variants in LRRK2 and therapeutic approaches targeting LRRK2.

      The new data provides additional support for the author's claims. I have provided below some suggestions for clarification/additions to the text that can be addressed without additional experiments.

      1) The authors added additional text highlighting that more studies are warranted in mice where LRRK1/2 are deleted in other CNS cell types (microglia/astrocytes) to understand cell extrinsic drivers of the autophagy deficits observed in their previous work. It still remains unclear how loss of LRRK1/2 leads to increased apoptosis and gliosis in dopaminergic neurons in a cell-intrinsic manner, and, as suggested in the original review, it would be helpful to add some text to the discussion speculating on potential mechanisms by which this might occur.

      2) Revisions have been made to the discussion to clarify their rationale around how variants in LRRK2 associated with PD may be loss-of-function to support the relevance of this mouse model to phenotypes observed in PD. However, as written, the argument that PD-linked variants are loss-of-function is based on the fact that the double KO mice have a mild loss of TH+ neurons while the transgenic mice overexpressing PD-linked LRRK2 variants often do not and that early characterization of kinase activity was done in vitro are relatively weak. Given that the majority of evidence generated by many labs in the field supports a gain-of-function mechanism, the discussion should be further tempered to better highlight the uncertainty around this (rather than strongly arguing for a loss-of-function effect). This could include the mention of increased Rab phosphorylation observed in cellular and animal models and opposing consequences on lysosomal function observed in cellular studies in KO and pathogenic variant expressing cells. Further, a reference to the Whiffen et al. 2020 paper mentioned by another reviewer should be included in the discussion for completeness.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors present a comprehensive technical overview of the challenging acquisition of large-scale cortical activity, including surgical procedures and custom 3D-printed headbar designs to obtain neural activity from large parts of the dorsal or lateral neocortex. They then describe technical adjustments for stable head fixation, light shielding, and noise insulation in a 2-photon mesoscope and provide a workflow for multisensory mapping and alignment of the obtained large-scale neural data sets in the Allen CCF framework. Lastly, they show different analytical approaches to relate single-cell activity from various cortical areas to spontaneous activity by using visualization and clustering tools, such as Rastermap, PCA-based cell sorting, and B-SOID behavioral motif detection.

      The study contains a lot of useful technical information that should be of interest to the field. It tackles a timely problem that an increasing number of labs will be facing as recent technical advances allow the activity measurement of an increasing number of neurons across multiple areas in awake mice. Since the acquisition of cortical data with a large field of view in awake animals poses unique experimental challenges, the provided information could be very helpful to promote standard workflows for data acquisition and analysis and push the field forward.

      Strengths:<br /> The proposed methodology is technically sound and the authors provide convincing data to suggest that they successfully solved various problems, such as motion artifacts or high-frequency noise emissions, during 2-photon imaging. Overall, the authors achieved their goal of demonstrating a comprehensive approach for the imaging of neural data across many cortical areas and providing several examples that demonstrate the validity of their methods and recapitulate and further extend some recent findings in the field.

      Weaknesses:<br /> Most of the descriptions are quite focused on a specific acquisition system, the Thorlabs Mesoscope, and the manuscript is in part highly technical making it harder to understand the motivation and reasoning behind some of the proposed implementations. A revised version would benefit from a more general description of common problems and the thought process behind the proposed solutions to broaden the impact of the work and make it more accessible for labs that do not have access to a Thorlabs mesoscope. A better introduction of some of the specific issues would also promote the development of other solutions in labs that are just starting to use similar tools.

    2. Reviewer #1 (Public Review):

      Summary:<br /> The authors introduce two preparations for observing large-scale cortical activity in mice during behavior. Alongside this, they present intriguing preliminary findings utilizing these methods. This paper is poised to be an invaluable resource for researchers engaged in extensive cortical recording in behaving mice.

      Strengths:<br /> -Comprehensive methodological detailing:<br /> The paper excels in providing an exceptionally detailed description of the methods used. This meticulous documentation includes a step-by-step workflow, complemented by thorough workflow, protocols, and a list of materials in the supplementary materials.

      -Minimal movement artifacts:<br /> A notable strength of this study is the remarkably low movement artifacts. To further underscore this achievement, a more robust quantification across all subjects, coupled with benchmarking against established tools (such as those from suite2p), would be beneficial.

      Insightful preliminary data and analysis:<br /> The preliminary data unveiled in the study reveal interesting heterogeneity in the relationships between neural activity and detailed behavioral features, particularly notable in the lateral cortex. This aspect of the findings is intriguing and suggests avenues for further exploration.

      Weaknesses:<br /> -Clarification about the extent of the method in the title and text:<br /> The title of the paper, using the term "pan-cortical," along with certain phrases in the text, may inadvertently suggest that both the top and lateral view preparations are utilized in the same set of mice. To avoid confusion, it should be explicitly stated that the authors employ either the dorsal view (which offers limited access to the lateral ventral regions) or the lateral view (which restricts access to the opposite side of the cortex). For instance, in line 545, the phrase "lateral cortex with our dorsal and side mount preparations" should be revised to "lateral cortex with our dorsal or side mount preparations" for greater clarity.

      -Comparison with existing methods:<br /> A more detailed contrast between this method and other published techniques would add value to the paper. Specifically, the lateral view appears somewhat narrower than that described in Esmaeili et al., 2021; a discussion of this comparison would be useful. Furthermore, the number of neurons analyzed seems modest compared to recent papers (50k) - elaborating on this aspect could provide important context for the readers.

      -Discussion of methodological limitations:<br /> The limitations inherent to the method, such as the potential behavioral effects of tilting the mouse's head, are not thoroughly examined. A more comprehensive discussion of these limitations would enhance the paper's balance and depth.

      -Preliminary nature of results:<br /> The results are at a preliminary stage; for example, the B-soid analysis is based on a single mouse, and the validation data are derived from the training data set. The discrepancy between the maps in Figures 5e and 6e might indicate that a significant portion of the map represents noise. An analysis of variability across mice and a method to assign significance to these maps would be beneficial.

      -Analysis details:<br /> More comprehensive details on the analysis would be beneficial for replicability and deeper understanding. For instance, the statement "Rigid and non-rigid motion correction were performed in Suite2p" could be expanded with a brief explanation of the underlying principles, such as phase correlation, to provide readers with a better grasp of the methodologies employed.

    3. Reviewer #3 (Public Review):

      Summary<br /> In their manuscript, Vickers and McCormick have demonstrated the potential of leveraging mesoscale two-photon calcium imaging data to unravel complex behavioural motifs in mice. Particularly commendable is their dedication to providing detailed surgical preparations and corresponding design files, a contribution that will greatly benefit the broader neuroscience community as a whole. The quality of the data is high, but it is not clear whether this is available to the community, some datasets should be deposited. More importantly, the authors have acquired activity-clustered neural ensembles at an unprecedented spatial scale to further correlate with high-level behaviour motifs identified by B-SOiD. Such an advancement marks a significant contribution to the field. While the manuscript is comprehensive and the analytical strategy proposed is promising, some technical aspects warrant further clarification. Overall, the authors have presented an invaluable and innovative approach, effectively laying a solid foundation for future research in correlating large-scale neural ensembles with behavioural. The implementation of a custom sound insulator for the scanner is a great idea and should be something implemented by others.

      This is a methods paper, but there is no large diagram that shows how all the parts are connected, communicating, and triggering each other. This is described in the methods, but a visual representation would greatly benefit the readers looking to implement something similar. The authors should cite sources for the claims stated in lines 449-453 and cite the claim of the mouse's hearing threshold mentioned in lines 463. No stats for the results shown in Figure 6e, it would be useful to know which of these neural densities for all areas show a clear statistical significance across all the behaviors. While I understand that this is a methods paper, it seems like the authors are aware of the literature surrounding large neuronal recordings during mouse behavior. Indeed, in lines 178-179, the authors mention how a significant portion of the variance in neural activity can be attributed to changes in "arousal or self-directed movement even during spontaneous behavior.". Why then did the authors not make an attempt at a simple linear model that tries to predict the activity of their many thousands of neurons by employing the multitude of regressors at their disposal (pupil, saccades, stimuli, movements, facial changes, etc). These models are straightforward to implement, and indeed it would benefit this work if the model extracts information on par with what is known from the literature.

      Specific strengths and weaknesses with areas to improve:

      The paper should include an overall cartoon diagram that indicates how the various modules are linked together for the sampling of both behaviour and mesoscale GCAMP. This is a methods paper, but there is no large diagram that shows how all the parts are connected, communicating, and triggering each other.

      The paper contains many important results regarding correlations between behaviour and activity motifs on both the cellular and regional scales. There is a lot of data and it is difficult to draw out new concepts. It might be useful for readers to have an overall figure discussing various results and how they are linked to pupil movement and brain activity. A simple linear model that tries to predict the activity of their many thousands of neurons by employing the multitude of regressors at their disposal (pupil, saccades, stimuli, movements, facial changes, etc) may help in this regard.

      Previously, widefield imaging methods have been employed to describe regional activity motifs that correlate with known intracortical projections. Within the authors' data it would be interesting to perhaps describe how these two different methods are interrelated, they do collect both datasets. Surprisingly, such macroscale patterns are not immediately obvious from the authors' data. Some of this may be related to the scaling of correlation patterns or other factors. Perhaps there still isn't enough data to readily see these and it is too sparse.

      In lines 71-71, the authors described some disadvantages of one-photon widefield imaging including the inability to achieve single-cell resolution. However, this is not true. In recent years, the combination of better surgical preparations, camera sensors, and genetically encoded calcium indicators has enabled the acquisition of single-cell data even using one-photon widefield imaging methods. These methods include miniscopes (Cai et al., 2016), multi-camera arrays (Hope et al., 2023), and spinning disks (Xie et al., 2023).

      Cai, Denise J., et al. "A shared neural ensemble links distinct contextual memories encoded close in time." Nature 534.7605 (2016): 115-118.<br /> Hope, James, et al. "Brain-wide neural recordings in mice navigating physical spaces enabled by a cranial exoskeleton." bioRxiv (2023).<br /> Xie, Hao, et al. "Multifocal fluorescence video-rate imaging of centimetre-wide arbitrarily shaped brain surfaces at micrometric resolution." Nature Biomedical Engineering (2023): 1-14.

      The authors' claim of achieving optical clarity for up to 150 days post-surgery with their modified crystal skull approach is significantly longer than the 8 weeks (approximately 56 days) reported in the original study by Kim et al. (2016). Since surgical preparations are an integral part of the manuscript, it may be helpful to provide more details to address the feasibility and reliability of the preparation in chronic studies. A series of images documenting the progression optical quality of the window would offer valuable insight.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This manuscript by Liu et al explores the role of the UPR and immune regulators in the evaluation of nutritional quality in C. elegans. They identify neuronal UPR activation and the MAPK PMK-1 as key responders to low food quality. In particular, the data suggest that these pathways are activated by low levels of vitamin C synthesis that result from the low sugar levels present in heat-killed E. coli.

      Strengths:<br /> The results are intriguing and expand our understanding both of physiological food evaluation systems, and of the known roles of stress response pathways in organismal physiology. The authors use a range of techniques, encompassing imaging, metabolomic analysis, gene expression analysis, and behavioural assays, to support their claims.

      Weaknesses:<br /> There is limited mechanistic analysis in the study. In particular, how does low vitamin C trigger UPR activation? This is an intriguing finding that, if followed up, could potentially reveal a novel mechanism of UPR activation. In addition, how is the activation of the PMK-1 pathway driven by/coordinated with UPR activation? The data in some figures is not as convincing as it could be: the magnitude of the effect size is small in the supplementation experiments, and the statistical tests used are not always appropriate to enable multiple comparisons.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this work, the authors aim to better understand how C. elegans detects and responds to heat-killed (HK) E. coli, a low-quality food. They find that HK food activates two canonical stress pathways, ER-UPR, and innate immunity, in the nervous system to promote food aversion. Through the creative use of E. coli genetics and metabolomics, the authors provide evidence that the altered carbohydrate content of HK food is the trigger for the activation of these stress responses and that supplementation of HK food with sugars (or their biosynthetic product, vitamin C), reduces stress pathway induction and food avoidance. This work makes a valuable addition to the literature on metabolite detection as a mechanism for the evaluation of nutritional value; it also provides some new insight into the physiologically relevant roles of well-known stress pathways in modulating behavior.

      Strengths:<br /> -The work addresses an important question by focusing on understanding how the nervous system evaluates food quality and couples this with behavioral change.<br /> -The work takes full advantage of the tools available in this powerful system and builds on extensive previous studies on feeding behavior and stress responses in C. elegans.<br /> -Creative use of E. coli genetics and metabolite profiling enabled the identification of carbohydrate metabolism as a candidate source of food-quality signals.<br /> -For the most part, the studies are rigorous and logically designed, providing good support for the authors' model.

      Weaknesses:<br /> -It is not clear how the mechanism identified here is connected to previously described, related processes. In particular, it is not clear whether this mechanism has a role in the detection of other low-quality foods. Further, the specificity of the ability of sugar/vitamin C to suppress stress pathway induction is unclear (i.e., does sugar/vitamin C have any effect on the activation of these pathways through other means?). Additionally, the relationship of this pathway to the vitamin B2-sensing mechanism previously described by the senior author is unclear. These issues do not weaken confidence in the authors' conclusions, but they do reduce the potential significance of the work.

      -The authors claim that the induction of the innate immune pathway reporter irg-5::GFP is "abolished" in pmk-1(RNAi) animals, but Figure S2K seems to show a clear GFP signal when these animals are fed HK-OP50. Similarly, the claim that feeding WT animals HK-OP50 enriches phospho-PMK-1 levels (Fig 2E) is unconvincing - only one western blot is shown, with no quantification, and there is a smear in the critical first lane.

      -The rationales for some of the paper's hypotheses could be improved. For example, the rationale for screening the E. coli mutant library is that some mutants, when heat-killed, may be missing a metabolite that induces the ER-UPR. A more straightforward hypothesis might be that some mutant E. coli strains aberrantly induce the ER-UPR when *not* heat-killed, because they are missing a metabolite that prevents stress pathway induction. This is not in itself a major concern, but it would be useful for the authors to provide a rationale for their hypothesis.

      -The authors do not provide any explanation for some unexpected results from the E. coli screen. Earlier in the paper, the authors found that innate immune signaling is downstream of ER-UPR activation. However, of the 20 E. coli mutants that, when heat-killed, "did not induce... the UPR-ER reporter," 9 of them still activate the innate immune response. This seems at odds with the authors' simple model since it suggests that low-quality food can induce innate immune signaling independently of the ER-UPR. Further, only one of the 9 has an effect on behavior, even though failure to activate the innate immune pathway might be expected to lead to a behavioral defect in all of these.

      -In a number of places, the writing style can make the authors' arguments difficult to follow.

      -Some of the effect sizes observed by the authors are exceedingly small (e.g, the suppression of hsp-4::gfp induction by sugar supplementation in Figs 3C-E), raising some concern about the biological significance of the effect.

      -In some cases, there is a discrepancy between the fluorescence images and their quantitation (e.g., Figure 3E, where the effect of glucose on GFP fluorescence seems much stronger in the image than in the graph).

    3. Reviewer #3 (Public Review):

      Summary:<br /> Animals can evaluate food quality in many ways. In contrast to the rapid sensory evaluation with smell and taste, the mechanism of slow nutrient sensation and its impact on food choice is unexplored. The authors utilize C. elegans larvae and their bacterial food as an elegant model to tackle this question and reveal the detailed molecular mechanism to avoid nutrient-poor foods.

      Strengths:<br /> The strength of this study is that they identified the molecular identities of the critical players in bacterial food and C. elegans using unbiased approaches, namely metabolome analysis, E. coli mutant screening, and RNA sequencing. Furthermore, they strengthen their findings by thorough experiments combining multiple methods such as genetics, fluorescent reporter analysis, and Western blot.

      Weaknesses:<br /> The major caveat of this study is the reporter genes. The transcriptional reporters were used to monitor the UPRER and immune responses in the intestine of C. elegans. However, their tissue-specific rescue experiments suggest that the genes in the UPRER and immune response function in the neurons. Thus, we should carefully interpret the results of the reporter genes.

      Overall, this work provides convincing data to support their model. In the C. elegans field, the behaviors of larvae are not well studied compared to adults. This work will pose an interesting question about the difference between larvae and adults in nutrition sensing in C. elegans and provide a framework and candidate molecules to be studied in other organisms.

    1. Reviewer #1 (Public Review):

      Granados-Aparici et al., investigate somatic-germline interactions in female mice. Mammalian oocytes are nurtured in multi-cellular ovarian follicles and communication with surrounding somatic cells is critical for oocyte development. This study focused on transzonal projections (TZP) extending from granulosa cells to the surface of oocytes and documented the importance of SMAD4, a TGF- β mediator, in regulating the TZPs. They propose a model in which individual TZPs contact the surface of the oocyte and stably attach if there is sufficient N-cadherin. In SMAD4-depleted cells, there is insufficient N-cadherin to stabilize the attachment. The TZP continues to elongate but eventually retracts. Their model is well supported by their experimental evidence and the manuscript is both well-formulated and written.

    2. Reviewer #2 (Public Review):

      Summary:

      This study proposed a new mechanism by which the TGF-beta signaling pathway promotes contacts between oocytes and the surrounding somatic cells in mice, by regulating the numbers of transzonal projections (TZPs).

      Strengths:

      The conditional Smad4 knockout and three-dimensional observation of transzonal projections are solid and sufficiently support the major conclusions.

      Weaknesses:

      The physiological significance of SMAD4-dependent formation of transzonal projection networks is not assessed in this study.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The manuscript describes the crystal structures of Streptococcus pneumoniae NOXs. Crystals were obtained for the wild-type and mutant dehydrogenase domain, as well as for the full-length protein comprising the membrane domain. The manuscript further carefully studies the enzyme's kinetics and substrate-specificity properties. Streptococcus pneumoniae NOX is a non-regulated enzyme, and therefore, its structure should provide a view of the NOX active conformation. The structural and biochemical data are discussed on this ground.

      Strengths:<br /> This is very solid work. The protein chemistry and biochemical analysis are well executed and carefully described. Similarly, the crystallography must be appreciated given the difficulty of obtaining good enzyme preparations and the flexibility of the protein. Even if solved at medium resolution, the crystal structure of the full-length protein conveys relevant information. The manuscript nicely shows that the domain rotations are unlikely to be the main mechanistic element of NOX regulation. It rather appears that the NADPH-binding conformation is pivotal to enzyme activation. The paper extensively refers to the previous literature and analyses the structures comprehensively with a comparison to previously reported structures of eukaryotic and prokaryotic NOXs.

      Weaknesses:<br /> The manuscript is not always very clear with regard to the analysis of NADPH binding. The last section describes a "crevice" featured by the NADPH-binding sites in NOXs. It remains unclear whether this element corresponds to the different conformations of the protein C-terminal residues or more extensive structural differences. This point must be clarified.<br /> A second less convincing point concerns the nature of the electron acceptor. The manuscript states that this NOX might not physiologically act as a ROS producer. A question then immediately arises: Is this protein an iron reductase? Can the authors better discuss or provide more data about this point?

    2. Reviewer #2 (Public Review):

      The authors describe the structure of the S. pneumoniae Nox protein (SpNOX). This is a first. The relevance of it to the structure and function of eukaryotic Noxes is discussed in depth.

      Strengths and Weaknesses<br /> One of the strengths of this work is the effort put into preparing a pure and functionally active SpNOX preparation. The protein was expressed in E. coli and the purification and optimization of its thermostability and activity are described in detail, involving salt concentration, glycerol concentration, and pH.

      This reviewer was surprised by the fact that the purification protocol in THIS paper differs from those in the mBio and Biophys. J. papers by the absence of the detergent lauryl maltose neopentyl glycol (LMNG). LMNG is only present in the activity assay at a low concentration (0.003%; molar data should be given; by my calculation, this corresponds to 30 μM).

      In light of the presence of lipids in cryo-EM-solved structures of DUOX and NOX2, it is surprising that the authors did not use reconstitution of the purified SpNOX in phospholipid (nanodisk?). The issue is made more complicated by the statement on p. 18 of "structures solved in detergent like ours" when no use of detergent in the solubilization and purification of SpNOX is mentioned in the Methods section (p. 21-22).

      Can the authors provide information on whether E. coli BL21 is sufficiently equipped for the heme synthesis required for the expression of the TM domain of SpN NOX. Was supplementation with δ-aminolevulinic acid used?

      The 3 papers on SpNOX present more than convincing evidence that SpNOX is a legitimate Nox that can serve as a legitimate model for eukaryotic Noxes (cyanide resistance, inhibition by DPI, absolute FAD dependence, and NADPH/NADH as the donor or electrons to FAD). It is also understood that the physiological role of SpNOX in S. pneumoniae is unknown and that the fact that it can reduce molecular oxygen may be an experimental situation that does not occur in vivo.

      I am, however, linguistically confused by the statement that "SpNOX requires "supplemental" FAD". Noxes have FAD bound non-covalently and this is the reason that, starting from the key finding of Babior on NOX2 back in 1977 to the present, FAD has to be added to in vitro systems to compensate for the loss of FAD in the course of the purification of the enzyme from natural sources or expression in a bacterial host. I wonder whether this makes FAD more of a co-substrate than a prosthetic group unless what the authors intend to state is that SpNOX is not a genuine flavoprotein.

      I am also puzzled by the statement that SpNOX "does not require the addition of Cyt c to sustain superoxide production". Researchers with a Cartesian background should differentiate between cause and effect. Cyt c serves merely as an electron acceptor from superoxide made by SpNOX but superoxide production and NADPH oxidation occur independently of the presence of added Cyt c.

      The ability of the DH domain of SpNOX (SpNOXDH) to produce superoxide is surprising to this reviewer. The result is based on the inhibition of Cyt c reduction by added superoxide dismutase (SOD) by 40%. In all eukaryotic Noxes superoxide is produced by the one-electron reduction of molecular oxygen by electrons originating from the distal heme, having passed from reduced FAD via two hemes. The proposal that superoxide is generated by direct transfer of electrons from FAD to oxygen deserves a more in-depth discussion and relies too heavily on the inhibitory effect of SOD. A control experiment with inactivated SOD should have been done (SOD is notoriously heat resistant and inactivation might require autoclaving).

      An unasked and unanswered question is that, since under aerobic conditions, both direct Cyt c reduction (60%) and superoxide production (40%) occur, what are the electron paths responsible for the two phenomena occurring simultaneously?

      This reviewer had difficulty in following the argument that the fact that the kcat of SpNOX and SpNOXDH are similar supports the thesis that the rate of enzyme activation is dependent on hydride transfer from nicotinamide to FAD.

      The section dealing with mutating F397 is a key part of the paper. There is a proper reference to the work of the Karplus group on plant FNRs (Deng et al). However, later work, addressing comparison with NOX2, should be cited (Kean et al., FEBS J., 284, 3302-3319, 2017). Also, work from the Dinauer group on the minimal effect of mutating or deleting the C-terminal F570 in NOX2 on superoxide production should be cited (Zhen et al., J. Biol. Chem. 273, 6575-6581, 1998).

      It is not clear why mutating F397 to W (both residues having aromatic side chains) would stabilize FAD binding. Also, what is meant by "locking the two subdomains of the DH domain"? What subdomains are meant?

      Methodological details on crystallization (p. 11) should be delegated to the Methodology section. How many readers are aware that SAD means "Single Wavelength Anomalous Diffraction" or know what is the role of sodium bromide?

      The data on the structure of SpNOX are supportive of a model of Nox activation that is "dissident" relative to the models offered for DUOX and NOX2 activation. These latter models suggested that the movement of the DH domain versus the TM domain was related to conversion from the resting to the activated state. The findings reported in this paper show that, unexpectedly, the domain orientation in SpNOX (constitutively active!) is much closer to that of resting NOX2. One of the criteria associated with the activated state in Noxes was the reduction of the distance between FAD and the proximal heme. The authors report that, paradoxically, this distance is larger in the constitutively active SpNOX (9.2 Å)<br /> than that in resting state NOX2 (7.6 Å) and the distance in Ca2+-activated DUOX is even larger (10.2 Å).

      A point made by the authors is the questioning of the paradigm that activation of Noxes requires DH domain motion. Instead, the authors introduce the term "tensing", within the DH domain, from a "relaxed" to a more rigid conformation. I believe that this proposal requires a somewhat clearer elaboration.

      The statement on p. 18, in connection to the phospholipid environment of Noxes, that the structure of SpNOX was "solved in detergent" is puzzling since the method of SpNOX preparation and purification does not mention the use of a detergent. As mentioned before, this absence of detergent in the present report was surprising because LMNG was used in the methods described in the mBio and Biophys. J. papers. The only mention of LMNG in the present paper was as an addition at a concentration of 0.003% in the activity assay buffers.

      The Conclusions section contains a proposal for the mechanism of conversion of NOX2 from the resting to the activated state. The inclusion of this discussion is welcome but the structural information on the constitutively active SpNOX can, unfortunately, contribute little to solving this important problem. The work of the Lambeth group, back in 1999 (cited as Nisimoto et al.), on the role of p67-phox in regulating hydride transfer from NADPH to FAD in NOX2 may indeed turn out to have been prophetic. However, only solving the structure of the assembled NOX2 complex will provide the much-awaited answer. The heterodimerization of NOX2 with p22-phox, the regulation of NOX2 by four cytosolic components, and the still present uncertainty about whether p67-phox is indeed the final distal component that converts NOX2 to the activated state make this a formidable task.<br /> The work of the Fieschi group on SpNOX is important and relevant but the absence of external regulation, the absence of p22-phox, and the uncertainty about the target molecule make it a rather questionable model for eukaryotic Noxes. The information on the role of the C-terminal Phe is of special value although its extension to the mechanism of eukaryotic Nox activation proved, so far, to be elusive.

    1. Reviewer #1 (Public Review):

      This paper performed a functional analysis of the poorly characterized pseudo-phosphatase Styxl2, one of the targets of the Jak/Stat pathway in muscle cells. The authors propose that Styxl2 is essential for de novo sarcomere assembly by regulating autophagic degradation of non-muscle myosin IIs (NM IIs). Although a previous study by Fero et al. (2014) has already reported that Styxl2 is essential for the integrity of sarcomeres, this study provides new mechanistic insights into the phenomenon. In vivo studies in this manuscript are compelling; however, I feel the contribution of autophagy in the degradation of NM IIs is still unclear.

    2. Reviewer #2 (Public Review):

      The authors investigated the role of the Jak1-Stat1 signaling pathway in myogenic differentiation by screening the transcriptional targets of Jak1-Stat1 and identified Styxl2, a pseudophosphatase, as one of them. Styxl2 expression was induced in differentiating muscles. The authors used a zebrafish knockdown model and conditional knockout mouse models to show that Styxl2 is required for de novo sarcomere assembly but is dispensable for the maintenance of existing sarcomeres. Styxl2 interacts with the non-muscle myosin IIs, Myh9 and Myh10, and promotes the replacement of these non-muscle myosin IIs by muscle myosin IIs through inducing autophagic degradation of Myh9 and Myh10. This function is independent of its phosphatase domain.

      A previous study using zebrafish found that Styxl2 (previously known as DUSP27) is expressed during embryonic muscle development and is crucial for sarcomere assembly, but its mechanism remains unknown. This paper provides important information on how Styxl2 mediates the replacement of non-muscle myosin with muscle myosin during differentiation. This study may also explain why autophagy deficiency in muscles and the heart causes sarcomere assembly defects in previous mouse models.

    3. Reviewer #3 (Public Review):

      Wu and colleagues are characterising the function of Styxl2 during muscle development, a pseudo-phosphatase that was already described to have some function in sarcomere morphogenesis or maintenance (Fero et al. 2014). The authors verify a role for Styxl2 in sarcomere assembly/maintenance using zebrafish embryonic muscles by morpholino knock-down and by a conditional Styxl2 allele in mice (knocked-out in satellite cells with Pax7 Cre).

      Experiments using a tamoxifen inducible Cre suggest that Styxl2 is dispensable for sarcomere maintenance and only needed for sarcomere assembly.

      BioID experiments with Styxl2 in C2C 12 myoblasts suggest binding of nonmuscle myosins (NMs) to Styxl2. Interestingly, both NMs are downregulated when muscles differentiate after birth or during regeneration in mice. This down-regulation is reduced in the Styxl2 mutant mice, demonstrating that Styxl2 is required for the degradation of these NMs.

      Impressively, reducing one NM (zMyh10) by double morpholino injection in a Styxl2 morphant zebrafish, does improve zebrafish mobility and sarcomere structure. Degradation of Mhy9 is also stimulated in cell culture if Styxl2 is co-expressed. Surprisingly, the phosphatase domain is not needed for these degradation and sarcomere structure rescue effects. Inhibitor experiments suggest that Styxl2 does promote the degradation of NMs by promoting the selective autophagy pathway.

      Strengths:<br /> A major strength of the paper is the combination of various systems, mouse and fish muscles in vivo to test Styxl2 function, and cell culture including a C2C12 muscle cell line to assay protein binding or protein degradation as well as inhibitor studies that can suggest biochemical pathways.<br /> A second strength is that this manuscript sheds new light on the still ill-characterised mechanism of sarcomere assembly in skeletal muscles.

      Weakness:<br /> The weaknesses of this manuscript have been largely eliminated during revision.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This paper presents evidence that a relatively common genetic variant tied to several disease phenotypes affects the interaction between the mRNA of CCL2 and the RNA binding protein HuR. CCL2 is an immune cell chemoattractant protein.

      Strengths:<br /> The study is well conducted with relevant controls. The techniques are appropriate, and several approaches provided concordant results that were generally supportive of the conclusions reached. The impact of this work, identifying a genetic variant that works by altering the binding of an RNA-regulatory protein, has important implications given that the HuR protein could be a drug target to improve its function and override this genetic change. This could have important implications for a number of diseases where this genetic variant contributes to disease risk.

      Weaknesses:<br /> The authors need to do a better job of citing prior work. Certain details of the experimental protocols need to be further elaborated or clarified to contextualize the significance of the findings, Some of the findings need to be better described.

    2. Reviewer #2 (Public Review):

      This study focuses on the differential binding of the RNA-binding protein HuR to CCL2 transcript (genetic variants rs13900 T or C). The study explores how this interaction influences the stability and translation of CCL2 mRNA. Employing a combination of bioinformatics, reporter assays, binding assays, and modulation of HuR expression, the study proposes that the rs13900T allele confers increased binding to HuR, leading to greater mRNA stability and higher translational efficiency. These findings indicate that rs13900T allele might contribute to heightened disease susceptibility due to enhanced CCL2 expression mediated by HuR. The study is interesting but needs appropriate experimental design and further strengthening. In its current form, the study suffers from several critical issues, including inadequate experimental design and the absence of control groups in key experiments.

    1. Reviewer #1 (Public Review):

      The authors examine the fascinating question of how T lymphocytes regulate proteome expression during the dramatic cell state change that accompanies the transition from the resting quiescent state to the activated, dividing state. Orthogonal, complementary assays for translation (RPM/RTA, metabolic labeling) are combined with polyribosome profiling and quantitative, biochemical determinations of protein and ribosome content to explore this question, primarily in the OT-I T lymphocyte model system. The authors conclude that the ratio of protein levels to ribosomes/protein synthesis capacity is insufficient to support activation-coupled T cell division and cell size expansion. The authors hint at cellular mechanisms to explain this apparent paradox, focusing on protein acquisition strategies, including emperipolesis and entosis, though these remain topic areas for future study.

      The strengths of the paper include the focus on a fundamental biological question - the transcriptional/translational control mechanisms that support the rapid, dramatic cell state change that accompanies lymphocyte activation from the quiescent to activated state, the use of orthogonal approaches to validate the primary findings, and the creative proposal for how this state change is achieved.

      The weakness of the work is that several cellular regulatory processes that could explain the apparent paradox are not explored, though they are accessible to experimental analysis. In the accounting narrative that the authors highlight, a thorough accounting of the cellular process inventory that could support the cell state change should be further explored before committing to the proposal, provocative as it is, that protein acquisition provides a principal mechanism for supporting lymphocyte activation cell state change.

      Appraisal and Discussion:

      1) Relating to the points raised above, two recent review articles explore this topic area and highlight important areas of study in RNA biology and translational control that likely contribute to the paradox noted by the authors: Choi et al. 2022,<br /> doi.org/10.4110/in.2022.22.e39 ("RNA metabolism in T lymphocytes") and Turner 2023, DOI: 10.1002/bies.202200236 ("Regulation and function of poised mRNAs in lymphocytes"). These should be cited, and the broader areas of RNA biology discussed by these authors integrated into the current manuscript.

      2) The authors cite the Wolf et al. study from the Geiger lab (doi.org/10.1038/s41590-020-0714-5, ref. 41) though largely to compare determined values for ribosome number. Many other elements of the Wolf paper seem quite relevant, for example, the very high abundance of glycolytic enzymes (and whose mRNAs are quite abundant as well), where (and as others have reported) there is a dramatic activation of glycolytic flux upon T cell activation that is largely independent of transcription and translation, the evidence for "pre-existing, idle ribosomes", the changes in mRNA copy number and protein synthesis rate Spearman correlation that accompanies activation, and that the efficiencies of mRNA translation are heterogeneous. These data suggest that more accounting needs to be done to establish that there is a paradox.

      As one example, what if glycolytic enzyme protein levels in the resting cell are in substantial excess of what's need to support glycolysis (likely true) and so translational upregulation can be directed to other mRNAs whose products are necessary for function of the activated cell? In this scenario the dilution of glycolytic enzyme concentration that would come with cell division would not necessarily have a functional consequence. And the idle ribosomes could be recruited to key subsets of mRNAs (transcriptionally or post-transcriptionally upregulated) and with that a substantial remodeling of the proteome (authors ref. 44). The study of Ricciardi et al. 2018 (The translational machinery of human CD4+ T cells is poised for activation and controls the switch from quiescence to metabolic remodeling (doi.org/10.1016/j.cmet.2018.08.009) is consistent with this possibility. That study, and the short reviews noted above, are useful in highlighting the contributions of selective translational remodeling and the signaling pathways that contribute to the cell state change of T cell activation. From this perspective an alternative view can be posited, where the quiescent state is biologically poised to support activation, where subsets of proteins and mRNAs are present in far higher levels than that necessary to support basal function of the quiescent lymphocyte. In such a model, the early stages of lymphocyte activation and cell division are supported by this surplus inventory, with transcriptional activation, including ribosomal genes, primarily contributing at later stages of the activation process. An obvious analogy is the developing Drosophila embryo where maternal inheritance supports early-stage development and zygotic transcriptional contributions subsequently assuming primary control (e.g. DOI 10.1002/1873-3468.13183 , DOI: 10.1126/science.abq4835). To pursue that biological logic would require quantifying individual mRNAs and their ribosome loading states, mRNA-specific elongation rates, existing individual protein levels, turnover rates of both mRNAs and proteins, ribosome levels, mean ribosome occupancy state, and how each of these parameters are altered in response to activation. Such accounting could go far to unveil the paradox. This is a considerable undertaking, though, and outside the scope of the current paper.

      Regarding the revised manuscript:

      I am largely satisfied with the authors responses to the review and have but a few remaining thoughts, some mirrored in the comments from the other reviewers and some that came to mind upon reading the revision.

      1) In the Introduction, it would be (have been) helpful if in paragraph two, it was stated that the current study was designed to test that assumption made in prior reports that the fold-increase in protein synthesis in response to mitogen activation was sufficient to endow the daughter cells with "the same protein content as their progenitor".

      2) The primary conclusion, that "...protein synthesis activity or capacity of in vivo activated T cells does not support their doubling times" remains, to my eye, insufficiently supported by the data, though I agree it is a rational interpretation. My concern is that the devil is deeper in the details and without knowing the mRNA transcriptome composition pre- and post-activation, mean CDS length, 5' UTR structural features, perhaps codon optimality, etc., etc., the broader conclusion could be premature. As a first check, it would be useful to determine poly(A) mRNA and ribosome concentrations/cell, pre- and post-activation, and subsequently to compare mRNA transcriptome compositions in greater detail. Do mRNA:ribosome levels and ratios diverge as a consequence of activation? Poly(A) mRNA compositions? Does protein half-life change pre- and post-activation? mRNA half-life? My view is that additional molecular accounting is likely necessary to be confident in the primary conclusion.

      3) I did not provide a clear description of the alternative interpretation I was imagining, which is that in the resting, unstimulated state, mRNA:ribosome and/or protein levels may be much higher than that necessary for lymphocyte viability. As in early development, this could be a mechanism to then provide sufficient protein synthesis capacity and/or proteins to daughter cells following activation of cell division and cell growth. In other words, it's a dynamic range question; the daughter cells exploit "unused" protein synthesis capacity to sustain their growth and division. Quantification and analysis of the additional variables noted in point 2) could reconcile the different interpretations.

    2. Reviewer #2 (Public Review):

      This paper takes a novel look at the protein economy of primary human and mouse T-cells - in both resting and activated state. Their findings in primary human T-cells are that:

      1. A large fraction of ribosomes are stalled in resting cultured primary human lymphocytes. and these stalled ribosomes are likely to be monosomes.<br /> 2. Elongation occurs at similar rates for HeLa cells and lymphocytes, with the active ribosomes in resting lymphocytes translating at a similar rate as fully activated lymphocytes.

      They then turn their attention to mouse OT-1 lymphocytes, looking at translation rates both in vitro and in vivo. Day1 resting T-cells also show stalling - which curiously wasn't seen on freshly purified cells - I didn't understand these differences.

      In vivo they show that it is possible to monitor accurate translation and to measure rates in vivo. Perhaps most interestingly they note a paradoxically high ratio of cellular protein to ribosomes insufficient to support their rapid in vivo division, suggesting that the activated lymphocyte proteome in vivo may be generated in an unusual manner.

      This was an interesting and provocative paper. Lots of interesting techniques and throwing down challenges to the community - it manages to address a number of important issues without necessarily providing answers.

    3. Reviewer #3 (Public Review):

      Perhaps not unexpectedly, the proposed revisions consist of textual revisions only. Yewdell added a touch of levity with his H.G. Wells foundation as a source of $$ for a time machine. The paper does not establish striking new facts, in my opinion, but will stimulate discussion.

      One point to consider: the relevance of the human T cell activation experiments is now downplayed even further, by the authors themselves, no less. I would suggest leaving the actual data out altogether and conclude with a statement: "Similar experiments conducted on activated human T cells showed significantly worse activation and may therefore not allow a head-to-head comparison with the results of our experimentst performed on mouse T cells. Not only might one consider the mode of activation (PMA/ionomycin) non-physiological, the activation status achievedwas less than that seen for the OT-1 model. " or something similar to that effect. In the present weakened form, I do not believe that the human data add anything of substance to the paper and are more of a distraction. The authors would increase the impact and readability of their paper if they omitted the human data.

    1. Reviewer #1 (Public Review):

      The association of vitamin D supplementation in reducing Asthma risk is well studied, although the mechanistic basis for this remains unanswered. In the presented study, Kilic and co-authors aim to dissect the pathway of Vitamin D-mediated amelioration of allergic airway inflammation. They use initial leads from bioinformatic approaches, which they then associate with results from a clinical trial (VDAART) and then validate them using experimental approaches in murine models. The authors identify a role of VDR in inducing the expression of the key regulator Ikzf3, which possibly suppresses the IL-2/STAT5 axis, consequently blunting the Th2 response and mitigating allergic airway inflammation.

      The major strength of the paper lies in its interdisciplinary approach, right from hypothesis generation, and linkage with clinical data, as well as in the use of extensive ex vivo experiments and in vivo approaches using knock-out mice. The study presents some interesting findings including an inducible baseline absence/minimal expression of VDR in lymphocytes, which could have physiological implications and needs to be explored in future studies.<br /> The study presents a potential for further dissection of relevant pathophysiological pathways to explain certain seemingly associative results, and allow for a more effective translation.

      Several results in the study suggest multiple factors and pathways influencing the phenotype seen, which could be explored in the future. The inferences of this study also need to be read in the context of the different sub-phenotypes and endotypes of Asthma, where the Th2 response may not be predominant. While this does not undermine the importance of this elegant study, it is essential to emphasise a holistic picture while interpreting the results.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This study seeks to advance our knowledge of how vitamin D may be protective in allergic airway disease using both adult and neonatal mouse models. The rationale and starting point are important human clinical, genetic/bioinformatic data, with a proposed role for vitamin D regulation of 2 human chromosomal loci (Chr17q12-21.1 and Chr17q21.2) linked to risk of immune-mediated/inflammatory disease. The authors have historically made significant contributions to this work specifically in airway disease/asthma. They now link these data to propose a role for vitamin D in regulating IL-2 in Th2 cells implicating genes associated with these loci in this process.

      Strengths:<br /> Here the authors draw together evidence from multiple interdisciplinary lines of investigation to propose that amongst murine CD4+ T cell populations, Th2 cells express high levels of VDR, and that vitamin D regulates many of the genes on the chromosomal loci identified to be of interest, in these cells. The bottom line is the proposal that vitamin D, via Ikfz3/Aiolos, suppresses IL-2 signalling in Th2 cells. This is a novel concept and whilst the availability of IL-2 and the control of IL-2 signalling is generally thought to play a role in the capacity of vitamin D to modulate both effector and especially regulatory T cell populations, this study provides new insights.

      Weaknesses:<br /> Ultimately the data are associative, nevertheless this study makes an important and innovative contribution to our understanding of the mechanism whereby vitamin D may beneficially control immune/inflammatory disease, specifically Th2 driven allergic airway inflammation. Future work advancing these studies, including in humans, are awaited with interest.

      Wider impact: Maternal 17q21 genotype has an important influence on the protective effects of high dose vitamin D3 supplementation in pregnancy against the development of asthma/recurrent wheeze in her offspring. The current study provides exciting mechanistic data that may underpin this important observation.

    1. Reviewer #1 (Public Review):

      The manuscript investigates the role of membrane contact sites (MCSs) and sphingolipid metabolism in regulating vacuolar morphology in the yeast Saccharomyces cerevisiae. The authors show that tricalbin (1-3) deletion leads to vacuolar fragmentation and the accumulation of the sphingolipid phytosphingosine (PHS). They propose that PHS triggers vacuole division through MCSs and the nuclear-vacuolar junction (NVJ). The study presents some solid data and proposes potential mechanisms underlying vacuolar fragmentation driven by this pathway. Although the manuscript is clear in what the data indicates and what is more hypothetical, the story would benefit from providing more conclusive evidence to support these hypothesis. Overall, the study provides valuable insights into the connection between MCSs, lipid metabolism, and vacuole dynamics.

    2. Reviewer #2 (Public Review):

      This manuscript explores the mechanism underlying the accumulation of phytosphingosine (PHS) and its role in initiating vacuole fission. The study posits the involvement of membrane contact sites (MCSs) in two key stages of this process. Firstly, MCSs tethered by tricalbin between the endoplasmic reticulum (ER) and the plasma membrane (PM) or Golgi regulate the intracellular levels of PHS. Secondly, the amassed PHS triggers vacuole fission, most likely through the nuclear-vacuolar junction (NVJ). The authors propose that MCSs play a regulatory role in vacuole morphology via sphingolipid metabolism.

      While some results in the manuscript are intriguing, certain broad conclusions occasionally surpass the available data. Despite the authors' efforts to enhance the manuscript, certain aspects remain unclear. It is still uncertain whether subtle changes in PHS levels could induce such effects on vacuolar fission. Additionally, it is regrettable that the lipid measurements are not comparable with previous studies by the authors. Future advancements in methods for determining intracellular lipid transport and levels are anticipated to shed light on the remaining uncertainties in this study.

    3. Reviewer #3 (Public Review):

      In this manuscript, the authors investigated the effects of deletion of the ER-plasma membrane/Golgi tethering proteins tricalbins (Tcb1-3) on vacuolar morphology to demonstrate the role of membrane contact sites (MCSs) in regulating vacuolar morphology in Saccharomyces cerevisiae. Their data show that tricalbin deletion causes vacuolar fragmentation possibly in parallel with TORC1 pathway. In addition, their data reveal that levels of various lipids including ceramides, long-chain base (LCB)-1P, and phytosphingosine (PHS) are increased in tricalbin-deleted cells. The authors find that exogenously added PHS can induce vacuole fragmentation and by performing analyses of genes involved in sphingolipid metabolism, they conclude that vacuolar fragmentation in tricalbin-deleted cells is due to the accumulated PHS in these cells. Importantly, exogenous PHS- or tricalbin deletion-induced vacuole fragmentation was suppressed by loss of the nucleus vacuole junction (NVJ), suggesting the possibility that PHS transported from the ER to vacuoles via the NVJ triggers vacuole fission. Of note, the authors find that hyperosmotic shock increases intracellular PHS levels, suggesting a general role of PHS in vacuole fission in response to physiological vacuolar division-inducing stimuli.

      This work provides valuable insights into the relationship between MCS-mediated sphingolipid metabolism and vacuole morphology. The conclusions of this paper are mostly supported by their results, but inclusion of direct evidence indicating increased transport of PHS from the ER to vacuoles via NVJ in response to vacuolar division-inducing stimuli would have strengthened this study.

      There is another weakness in their claim that the transmembrane domain of Tcb3 contributes to the formation of the tricalbin complex which is sufficient for tethering ER to the plasma membrane and the Golgi complex. Their claim is based only on the structural simulation, but not on by biochemical experiments such as co-immunoprecipitation and pull-down.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This paper addresses the mechanisms positioning microtubule asters in Drosophila explants. Taking advantage of a genetic mutant, blocking the cell cycle in early embryos, the authors generate embryos with centrosomes detached from nuclei and then study the positioning mechanisms of such asters in explants. They conclude that asters interact via pushing forces. While this is an artificial system, understanding the mechanics of asters positioning, in particular, whether forces are pushing or pulling is an important one.

      Strengths:<br /> The major strength of this paper is the series of laser cutting experiments supporting that asters position via pushing forces acting both on the boundary (see below for a relevant comment) and between asters. The combination of imaging, data analysis and mathematical modeling is also powerful.

      Weaknesses:<br /> This paper has overlap in the conclusions with a previous paper from the same authors, so its impact is reduced. In Figure 2, the tracking of fluid flows is hard to see and better quantifications/analyses would lead to stronger conclusions. In Figure 4, it is not clear that the acceleration is significant and no statistical test is provided or described, as far as I can tell.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The aster, consisting of microtubules, plays important roles in spindle positioning and the determination of the cleavage site in animals. The mechanics of aster movement and positioning have been extensively studied in several cell types. However, there is no unified biophysical model, as different mechanisms appear to predominate in different model systems. In the present manuscript, the authors studied aster positioning mechanics in the Drosophila syncytial embryo, in which short-ranged aster repulsion generates a separation force. Taking advantage of the ex vivo system developed by the group and the fly gnu mutant, in which the nuclear number can be minimized, the authors performed time-lapse observations of single asters and multiple asters in the explant. The observed aster dynamics were interpreted by building a mathematical model dealing with forces. They found that aster dissociation from the boundary depends on the microtubule pushing force. Additionally, laser ablation targeting two separating asters showed that aster-aster separation is also mediated by the microtubule pushing force. Furthermore, they built a simulation model based on the experimental results, which reproduced aster movement in the explant under various conditions. Notably, the actual aster dynamics were best reproduced in the model by including a short-ranged inhibitory term when asters are close to the boundary or each other.

      Strengths:<br /> This study reveals a unique aster positioning mechanics in the syncytial embryo explant, which leads to an understanding of the mechanism underlying the positioning of multiple asters associated with nuclei in the embryo. The use of explants enabled accurate measurement of aster motility and, therefore, the construction of a quantitative model. This is a notable achievement.

      Weaknesses:<br /> The main conclusion that aster repulsion predominates in this system has already been drawn by the same authors in their recent study (de-Carvalho et al., Development, 2022). Therefore, the conceptual advance in the current study is marginal. The molecular mechanisms underlying aster repulsion remain unexplored since the authors were unable to identify specific factor(s) responsible for aster repulsion in the explant.

      Specific suggestions on the original manuscript:<br /> Microtubules should be visualized more clearly (either in live or fixed samples). This is particularly important in Figure 4E and Video 4 (laser ablation experiment to create asymmetric asters).

      Comments on the revised manuscript:<br /> Despite my suggestion, the authors did not provide evidence confirming the actual ablation of microtubules in the specified target region. The authors argue, "Given our controls and previous experience, we are confident we are ablating the microtubules." Then, at the very least, the authors should describe (in Materials and Methods) the "controls" they employed and provide a citation to the previous study where proper ablation was validated using the same laser settings. Otherwise, readers might not be convinced of the authors' claim.

    1. Reviewer #1 (Public Review):

      In this study, the authors explored how the reduced growth fitness, resulting from genome reduction, can be compensated through evolution. They conducted an evolution experiment with a strain of Escherichia coli that carried a reduced genome, over approximately 1,000 generations. The authors carried out sequencing and found no clear genetic signatures of evolution across replicate populations. They carry out transcriptomics and a series of analyses that lead them to conclude that there are divergent mechanisms at play in individual evolutionary lineages. The authors used gene network reconstruction to identify three gene modules functionally differentiated, correlating with changes in growth fitness, genome mutation, and gene expression, respectively, due to evolutionary changes in the reduced genome.

      I think that this study addresses an interesting question. Many microbial evolution experiments evolve by loss of function mutations, but presumably, a cell that has already lost so much of its genome needs to find other mechanisms to adapt. Experiments like this have the potential to study "constructive" rather than "destructive" evolution.

      At the top of the results, the authors should say what species they're working with and give some background about the nature of the reduced genome. It is important to know what the changes were and especially how much of the genome was deleted. Some insights into the genes that were deleted would also be useful context for understanding the evolution experiment. This could be included in the introduction or results.

    2. Reviewer #2 (Public Review):

      This manuscript describes an adaptive laboratory evolution (ALE) study with a previously constructed genome-reduced E. coli. The growth performance of the end-point lineages evolved in M63 medium was comparable to the full-length wild-type level at lower cell densities. Subsequent mutation profiling and RNA-Seq analysis revealed many changes in the genome and transcriptomes of the evolved lineages. The authors did a great deal of analyzing the patterns of evolutionary changes between independent lineages, such as the chromosomal periodicity of transcriptomes, pathway enrichment analysis, weight gene co-expression analysis, and so on. They observed a striking diversity in the molecular characteristics amongst the evolved lineages, which, as they suggest, reflect divergent evolutionary strategies adopted by the genome-reduced organism.

      As for the overall quality of the manuscript, I am rather torn. The manuscript leans towards elaborating observed findings, rather than explaining their biological significance. For this reason, readers are left with more questions than answers. For example, fitness assay on reconstituted (single and combinatorial) mutants was not performed, nor was any supporting evidence on the proposed contributions of each mutant provided. This leaves the nature of mutations - be they beneficial, neutral, or deleterious, the presence of epistatic interactions, and the magnitude of fitness contribution, largely elusive. Also, it is difficult to tell whether the RNA-Seq analysis in this study managed to draw biologically meaningful conclusions or instill insight into the nature of genome-reduced bacteria. The analysis primarily highlighted the differences in transcriptome profiles among each lineage based on metrics such as 'DEG counts' and the 'GO enrichment'. However, I could not see any specific implications regarding the biology of the evolved minimal genome drawn. In their concluding remark, 'Multiple evolutionary paths for the reduced genome to improve growth fitness were likely all roads leading to Rome,' the authors observed the first half of the sentence, but the distinctive characteristics of 'all roads' or 'evolutionary paths', which I think should have been the key aspect in this investigation, remains elusive.

    3. Reviewer #3 (Public Review):

      Summary:<br /> Studying evolutionary trajectories provides important insight into the genetic architecture of adaptation and provides a potential contribution to evaluating the predictability (or unpredictability) of biological processes involving adaptation. While many papers in the field address adaptation to environmental challenges, the number of studies on how genomic contexts, such as large-scale variation, can impact evolutionary outcomes adaptation is relatively low. This research experimentally evolved a genome-reduced strain for ~1000 generations with 9 replicates and dissected their evolutionary changes. Using the fitness assay of OD measurement, the authors claimed that there is a general trend of increasing growth rate and decreasing carrying capacity, despite a positive correlation among all replicates. The authors also performed genomic and transcriptomic research at the end of experimental evolution, claiming the dissimilarity in the evolution at the molecular level.

      Strengths:<br /> The experimental evolution approach with a high number of replicates provides a good way to reveal the generality/diversity of the evolutionary routes.

      The assay of fitness, genome, and transcriptome all together allows a more thorough understanding of the evolutionary scenarios and genetic mechanisms.

      Weaknesses:<br /> My major concern is the current form of statistical analysis leads to the conclusion that the dissimilarity is not very strong. Adding some more statistical analysis should substantially improve the strength of the manuscript. As mentioned in the Discussion, I understand that there are more available methods to test for generality in experimental evolution but less for diversity. When it is improper to use a canonical statistical test, a test with some simulation and resampling can be useful. For example, I particularly appreciate the analysis done in Figure 2B. An analysis like that should be done more throughout the entire manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Hann et. al examines the role of survival motor neuron protein (SMN) in lateral plate mesoderm-derived cells using the Prrx1Cre to elucidate how changing cell-specific SMN levels coordinate aspects of the spinal muscular atrophy (SMA) pathology. SMN has generally been studied in neuronal cells, and this is one of the first insights into non-neuronal cells that may contribute to SMA disease. The authors generated 3 mouse lines: a Prrx1;Smnf/f conditional null mouse, as well as, single and double copy Prrx1;Smnf/f;SMN2 mice carrying either one or two copies of a human SMN2 transgene. First, the bone development and growth of all three were assessed; the conditional null Smn mutation was lethal shortly after birth, while the SMN2 2-copy mutant did not exhibit bone growth phenotypes. Meanwhile, single-copy SMN2 mutant mice showed reduced size and shorter limbs with shorter proliferative and hypertrophic chondrocyte zones. The authors suggested that this was cell autonomous by assessing the expression of extrinsic factors known to modulate proliferation/differentiation of growth plate chondrocytes. After assessing bone phenotypes, the authors transitioned to the assessments of neuromuscular junction (NMJ) phenotypes, since there are documented neuromuscular impairments in SMA and the Prrx1Cre transgene is expressed in muscle-associated fibro-adipogenic progenitors (FAPs). Neonatal NMJ development was unchanged in mutant mice with two copies of SMN2 , but adult single-copy SMN2 mutant mice had abnormal NMJ morphology, altered presynaptic neurotransmission, and problematic nerve terminal structure. Finally, the authors sought to assess the ability to rescue NMJ phenotypes via FAP cell transplantation and showed wild-type FAPs were able to reduce pre/postsynaptic fragmentation and neurofilament varicosities.

      Strengths:

      The conditional genetic approaches are novel and interestingly demonstrate the potential for chondrocyte and fibro-adipogenic progenitor-specific contributions to the SMA pathology.

      The characterizations of the neuromuscular and NMJ phenotypes are relatively strong.

      The data strongly suggest a non-neuronal contribution to SMA, which indicates a need for further mechanistic (cellular and molecular) studies to better understand SMA.

      Weaknesses:

      The skeletal analyses are not rigorous and likely do not get to the core of how SMN regulates bone development.

      The overall work is descriptive and lacks convincing mechanisms.

      Additional experimentation is likely needed to fully justify the conclusions.

    2. Reviewer #2 (Public Review):

      Summary:

      Sang-Hyeon et al. laid out a compelling rationale to explore the role of the SMN protein in mesenchymal cells, to determine whether SMN deficiency there could be a pathologic mechanism of SMA. They crossed Smnf7/f7 mice with Prrx1Cre mice to produce SmnΔMPC mice where exon 7 was specifically deleted and thus SMN protein was eliminated in limb mesenchymal progenitor cells (MPCs). To demonstrate gene dosage-dependence of phenotypes, SmnΔMPC mice were crossed with transgenic mice expressing human SMN2 to produce SmnΔMPC mice with different copies of SMN2 (0, 1, or 2). The paper provides genetic evidence that SMN in mesenchymal cells regulates the development of bones and neuromuscular junctions. Genetic data were convincing and revealed novel functions of SMN.

      Strengths:

      Overall, the paper provided genetic evidence that SMN deficiency in mesenchymal cells caused abnormalities in bones and NMJs, revealing novel functions of SMN and leading to future experiments. As far as genetics is concerned, the data were convincing (except for the rescue experiment, see below); the conclusions are important.

      Weaknesses:

      The paper seemed to be descriptive in nature and could be improved with more experiments to investigate underlying mechanisms. In addition, some data appeared to be contradicting or difficult to explain. The rescue data were not convincing.

    3. Reviewer #3 (Public Review):

      Summary:

      SMN expression in non-neuronal cells, particularly in limb mesenchymal progenitors is essential for the proper growth of chondrocytes and the formation of adult NMJ junctions.

      Strengths:

      The authors show copy numbers of smndelta7 in MPC influence NMJ structure.

      Weaknesses:

      Functional recovery by FAP transplantation is not complete. Mesenchymal progenitors are heterogeneous, and how heterogeneity influences this study is not clear. Part of the main findings to show the importance of SMN expression in non-neuronal cells is partly published by the same group (Kim et al., JCI Insight 2022). In the study, the authors used Dpp4(+) cells. The difference between the current study and the previous study is not so clear.

    1. Reviewer #1 (Public Review):

      People can perform a wide variety of different tasks, and a long-standing question in cognitive neuroscience is how the properties of different tasks are represented in the brain. The authors develop an interesting task that mixes two different sources of difficulty, and find that the brain appears to represent this mixture on a continuum, in the prefrontal areas involved in resolving task difficulty. While these results are interesting and in several ways compelling, they overlap with previous findings and rely on novel statistical analyses that may require further validation.

      Strengths<br /> 1. The authors present an interesting and novel task for combining the contributions of stimulus-stimulus and stimulus-response conflict. While this mixture has been measured in the multi-source interference task (MSIT), this task provides a more graded mixture between these two sources of difficulty.

      2. The authors do a good job triangulating regions that encoding conflict similarity, looking for the conjunction across several different measures of conflict encoding. These conflict measures use several best-practice approaches towards estimating representational similarity.

      3. The authors quantify several salient alternative hypothesis, and systematically distinguish their core results from these alternatives.

      4. The question that the authors tackle is important to cognitive control, and they make a solid contribution.

      Concerns<br /> 1. The framing of 'infinite possible types of conflict' feels like a strawman. While they might be true across stimuli (which may motivate a feature-based account of control), the authors explore the interpolation between two stimuli. Instead, this work provides confirmatory evidence that task difficulty is represented parametrically (e.g., consistent with literatures like n-back, multiple object tracking, and random dot motion). This parametric encoding is standard in feature-based attention, and it's not clear what the cognitive map framing is contributing.

      2. The representations within DLPFC appear to treat 100% Stoop and (to a lesser extent) 100% Simon differently than mixed trials. Within mixed trials, the RDM within this region don't strongly match the predictions of the conflict similarity model. It appears that there may be a more complex relationship encoded in this region.

      3. To orthogonalized their variables, the authors need to employ a complex linear mixed effects analysis, with a potential influence of implementation details (e.g., high-level interactions and inflated degrees of freedom).

    2. Reviewer #2 (Public Review):

      Summary<br /> This study examines the construct of "cognitive spaces" as they relate to neural coding schemes present in response conflict tasks. The authors use a novel experimental design in which different types of response conflict (spatial Stroop, Simon) are parametrically manipulated. These conflict types are hypothesized to be encoded jointly, within an abstract "cognitive space", in which distances between task conditions depend only on the similarity of conflict types (i.e., where conditions with similar relative proportions of spatial-Stroop versus Simon conflicts are represented with similar activity patterns). Authors contrast such a representational scheme for conflict with several other conceptually distinct schemes, including a domain-general, domain-specific, and two task-specific schemes. The authors conduct a behavioral and fMRI study to test whether prefrontal cortex activity is correlated to one of these coding schemes. Replicating the authors' prior work, this study demonstrates that sequential behavioral adjustments (the congruency sequence effect) are modulated as a function of the similarity between conflict types. In fMRI data, univariate analyses identified activation in left prefrontal and dorsomedial frontal cortex that was modulated by the amount of Stroop or Simon conflict present, and representational similarity analyses that identified coding of conflict similarity, as predicted under the cognitive space model, in right lateral prefrontal cortex.

      Strengths

      This study addresses an important question regarding how conflict or difficulty might be encoded in the brain within a computationally efficient representational format. Relative to the other models reported in the paper, the evidence in support of the cognitive space model is solid. The ideas postulated by the authors are interesting and valuable ones, worthy of follow-up work that provides additional necessary scrutiny of the cognitive-space account.

      Weaknesses

      Future, within-subject experiments will be necessary to disentangle the cognitive space model from confounded task variables. A between-subjects manipulation of stimulus orientation/location renders the results difficult to interpret, as the source and spatial scale of the conflict encoding on cortex may differ from more rigorous (and more typical) within-subject manipulations.

      Results are also difficult to interpret because Stroop and Simon conflict are confounded with each other. For interpretability, these two sources of conflict need to be manipulated orthogonally, so that each source of conflict (as well as their interaction) could be separately estimated and compared in terms of neural encoding. For example, it is therefore not clear whether the RSA results are due to encoding of only one type of conflict (Stroop or Simon), to a combination of both, and/or to interactive effects.

      Finally, the motivation for the use of the term "cognitive space" to describe results is unclear. Evidence for the mere presence of a graded/parametric neural encoding (i.e., the reported conflict RSA effects) would not seem to be sufficient. Indeed, it is discussed in the manuscript that cognitive spaces/maps allow for flexibility through inference and generalization. Future work should therefore focus on linking neural conflict encoding to inference and generalization more directly.

    1. Reviewer #3 (Public Review):

      Summary: In this study, the authors attempt to determine what is the role (and strength) of feedback in a closed-loop (cerebellar) system.

      Strengths:

      1. By combining extensive data fitting of cerebellar experimental observations this study provides deep insights into existing questions and more broadly on the role of feedback and what are the limitations when inferring feedback in (plastic) neural circuits.

      2. Another strength of this study is the gradual build-up of evidence by using models of different complexities to help build the argument that weak feedback is sufficient to explain experimental observations.

      3. The paper is well-written and structured.

      Weaknesses:

      1. In principle feedback can (i) drive dynamics or/and (ii) drive learning directly. Throughout the paper, the authors refer to only the first case (i.e. dynamics). However, the role of feedback in learning is already implicitly assumed by the authors when jointly fitting the model before and after learning. Note that the general conclusion that feedback (in general) is weak may be to the first view (i.e. dynamics), but not the second. Given that a key conclusion of the paper is that no feedback is sufficient to explain the data, this suggests that feedback may instead be used for learning/plasticity.

      2. There are some potential limitations of the conclusions drawn due to the model inference methods used. The methods used (fmincon) can easily get stuck in local minima and more importantly they do not provide an overview of the likelihood of parameters given the data. A few studies have now shown that it is important to apply more powerful inference techniques both to infer plasticity (Bykowska et al. Frontiers 2019) and neural dynamics (Gonçalves et al. eLife 2020). As highlighted by Costa et al. Frontiers 2013 using more standard fitting methods can lead to misleading interpretations. Given the large range of experimental data used to constrain the model, this may not be an issue, but it is not explicitly shown.

      3. There is some lack of clarity on how the feedback pathways as currently presented should be interpreted in the brain.

      4. The functional benefits of having (or not) feedback could be better discussed (related to point 1 above).

      5. Some of the key conclusions of the work are not described in the abstract, namely that feedback is weak in the cerebellar system.

      Claims:

      The argument is well-built throughout the paper, but there are some potential caveats with the general interpretation (see weaknesses).

      Impact:

      This work has the potential to bring important messages on how best to interpret and infer the role of feedback in neural systems. For the field of the cerebellum, it also proposes solutions to long-standing problems.

    2. Reviewer #1 (Public Review):

      Payne et al. have investigated the neural basis of VOR adaptation with the goal of constraining sites and mechanisms of plasticity supporting cerebellar learning. This has been an area of intense debate for decades; previous competing models have argued extensively about the sites of plasticity and the strength of eye velocity feedback/ efference copy signals to Purkinje cells has been central to the debate. This paper nicely explores the consequences of varying the strength of this feedback and in so doing, provides a potential explanation for why Purkinje cell responses during VOR cancellation could exhibit stronger responses following learning, despite net depression of the strength of their vestibular inputs. In that sense it provides some reconciliation of existing models. The work appears to be well done and the paper is well written. The manuscript could be improved and the significance of the work clarified and enhanced by contextualizing the work more appropriately within the existing literature in this area.

    3. Reviewer #2 (Public Review):

      Payne et al. use a computational approach to predict the sites and directions of plasticity within the vestibular cerebellum that explain an unresolved controversy regarding the basis of VOR learning. Specifically, the conclusion by Miles and Lisberger (1981) that vestibular inputs onto Purkinje cells (PCs) must potentiate, rather than depress (as in the Marr/Albus/Ito model), following gain-increase learning because when the VOR is cancelled, PC firing increases rather than decreases. Payne et al. provide a novel model solution that recapitulates the results of Miles and Lisberger but, paradoxically, uses plasticity in the cerebellar cortex that weakens PC output rather than strengthens it. However, the model only succeeds when efference copy feedback to the cerebellar cortex is relatively weak thereby allowing a second feedback pathway to drive PC activity during VOR cancellation to counteract the learned change in gain. Because the model is biologically constrained, the findings are well supported. This work will likely benefit the field by providing a number of potentially experimentally testable conclusions. The findings will be of interest to a wider audience if the results can be extrapolated to other cerebellar-dependent learning behaviors rather then just VOR gain-increase learning. Overall, the manuscript is very well written with clearly delineated results and conclusions.

    1. Reviewer #1 (Public Review):

      Summary:

      Kinase inhibitors represent a highly valuable class of drugs as evidenced by their continued clinical success. The target landscape of kinase targeting small molecules can be leveraged to alter multiple phenotypes with increasing complexity that broadly aligns with increasing target promiscuity. This 'tools and resources' contribution provides a starting point for researchers interested in aligning kinase inhibitor activity with cytokine/chemokine stimulated signal transduction networks.

      Strengths:

      KinCytE is a forward-thinking database that yields hypothesis-generating options for researchers interested in pharmacologically modulating cytokine/chemokine signaling.

      Weaknesses:

      As a 'tools and resources' contribution, the primary (potential) weakness will be the authors' willingness to update and improve the tool. KinCytE will require frequent updating to better inform users in terms of contextual cytokine/chemokine stimulated signaling and the target landscape of those agents that are included as options.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, "KinCytE- a Kinase to Cytokine Explorer to Identify Molecular Regulators and Potential Therapeutic", the authors present a web resource, KinCytE, that lets researchers search for kinase inhibitors that have been shown to affect cytokine and chemokine release and signaling networks. I think it's a valuable resource that has a lot of potential and could be very useful in deciding on statistical analysis that might precede lab experiments.

      Opportunities:

      With the release of the manuscript and the code base in place, I hope the authors continue to build upon the platform, perhaps by increasing the number of cell types that are probed (beyond macrophages). Additionally, when new drug-response data becomes available, perhaps it can be used to further validate the findings. Overall, I see this as a great project that can evolve.

      Strengths:

      The site contains valuable content, and the structure is such that growing that content should be possible.

      Weaknesses:

      Only based on macrophage experiments, would be nice to have other cell types investigated, but I'm sure that will be remedied with some time.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Tuberculous meningitis (TBM) is one of the most severe forms of extrapulmonary TB. TBM is especially prevalent in people who are immunocompromised (e.g. HIV-positive). Delays in diagnosis and treatment could lead to severe disease or mortality. In this study, the authors performed the largest-ever host whole blood transcriptomics analysis on a cohort of 606 Vietnamese participants. The results indicated that TBM mortality is associated with increased neutrophil activation and decreased T and B cell activation pathways. Furthermore, increased angiogenesis was also observed in HIV-positive patients who died from TBM, whereas activated TNF signaling and down-regulated extracellular matrix organisation were seen in the HIV-negative group. Despite similarities in transcriptional profiles between PTB and TBM compared to healthy controls, inflammatory genes were more active in HIV-positive TBM. Finally, 4 hub genes (MCEMP1, NELL2, ZNF354C, and CD4) were identified as strong predictors of death from TBM.

      Strengths:<br /> This is a really impressive piece of work, both in terms of the size of the cohort which took years of effort to recruit, sample, and analyse, and also the meticulous bioinformatics performed. The biggest advantage of obtaining a whole blood signature is that it allows an easier translational development into a test that can be used in the clinical with a minimally invasive sample. Furthermore, the data from this study has also revealed important insights into the mechanisms associated with mortality and the differences in pathogenesis between HIV-positive and HIV-negative patients, which would have diagnostic and therapeutic implications.

      Weaknesses:<br /> The data on blood neutrophil count is really intriguing and seems to provide a very powerful yet easy-to-measure method to differentiate survival vs. death in TBM patients. It would be quite useful in this case to perform predictive analysis to see if neutrophil count alone, or in combination with gene signature, can predict (or better predict) mortality, as it would be far easier for clinical implementation than the RNA-based method. Moreover, genes associated with increased neutrophil activation and decreased T cell activation both have significantly higher enrichment scores in TBM (Figure 9) and in morality (Figure 8). While I understand the basis of selecting hub genes in the significant modules, they often do not represent these biological pathways (at least not directly associated in most cases). If genes were selected based on these biologically relevant pathways, would they have better predictive values?

    2. Reviewer #2 (Public Review):

      Summary:<br /> This manuscript describes the analysis of blood transcriptomic data from patients with TB meningitis, with and without HIV infection, with some comparison to those of patients with pulmonary tuberculosis and healthy volunteers. The objectives were to describe the comparative biological differences represented by the blood transcriptome in TBM associated with HIV co-infection or survival/mortality outcomes and to identify a blood transcriptional signature to predict these outcomes. The authors report an association between mortality and increased levels of acute inflammation and neutrophil activation, but decreased levels of adaptive immunity and T/B cell activation. They propose a 4-gene prognostic signature to predict mortality.

      Strengths:<br /> -Biological evaluations of blood transcriptomes in TB meningitis and their relationship to outcomes have not been extensively reported previously.<br /> -The size of the data set is a major strength and is likely to be used extensively for secondary analyses in this field of research.

      Weaknesses:<br /> The bioinformatic analysis is limited to a descriptive narrative of gene-level functional annotations curated in GO and KEGG databases. This analysis can not be used to make causal inferences. In addition, the functional annotations are limited to 'high-level' terms that fail to define biology very precisely. At best, they require independent validation for a given context. As a result, the conclusions are not adequately substantiated. The identification of a prognostic blood transcriptomic signature uses an unusual discovery approach that leverages weighted gene network analysis that underpins the bioinformatic analyses. However, the main problem is that authors seem to use all the data for discovery and do not undertake any true external validation of their gene signature. As a result, the proposed gene signature is likely to be overfitted to these data and not generalisable. Even this does not achieve significantly better prognostic discrimination than the existing clinical scoring.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The investigators have performed a state-of-the art systematic review and meta-analysis of studies that may help to answer the research question: if administration of multiple antibiotics simultaneously prevents antibiotic resistance development in individuals. The amount of studies eligible for analysis is very low, and within that low number, there is huge variability in bug-drug combinations studied and most studies had a high risk of bias, further limiting the capability of meta-analysis to answer the research question. In addition, based on I2 values there is also huge statistical heterogeneity between outcomes of studies compared, further limiting the predictive value of meta-analysis. In fact, the only 2 studies meeting all eligibility criteria addressed the treatment of mycobacterium tuberculosis, for which the research question is hardly applicable. The authors, therefore, conclude that "our analysis could not identify any benefit or harm of using a higher or a lower number of antibiotics regarding within-patient resistance development." Apart from articulating this knowledge gap, the findings will not have consequences for patient care, but may stimulate the scientific community to better address this research question in future studies.

      Strengths:<br /> The systematic and rigorous approach for the review and meta-analysis.

      Weaknesses:<br /> None identified.

    2. Reviewer #2 (Public Review):

      Summary:<br /> The authors performed a systematic review and meta-analysis to investigate whether the frequency of emergence of resistance is different if combination antibiotic therapy is used compared to fewer antibiotics. The review shows that there is currently insufficient evidence to reach a conclusion due to the limited sample size. High-quality studies evaluating appropriate antimicrobial resistance endpoints are needed.

      Strengths:<br /> The strengths of the manuscript are that the article addresses a relevant research question that is often debated. The article is well-written and the methodology used is valid. The review shows that there is currently insufficient evidence to reach a conclusion due to the limited sample size. High-quality studies evaluating appropriate antimicrobial resistance endpoints are needed. I have several comments and suggestions for the manuscript.

      Weaknesses:<br /> Weaknesses of the manuscript are the large clinical and statistical heterogeneity and the lack of clear definitions of acquisition of resistance. Both these weaknesses complicate the interpretation of the study results.

      Major comments:<br /> My main concern about the manuscript is the extent of both clinical and statistical heterogeneity, which complicates the interpretation of the results. I don't understand some of the antibiotic comparisons that are included in the systematic review. For instance the study by Paul et al (50), where vancomycin (as monotherapy) is compared to co-trimoxazole (as combination therapy). Emergence (or selection) of co-trimoxazole in S. aureus is in itself much more common than vancomycin resistance. It is logical and expected to have more resistance in the co-trimoxazole group compared to the vancomycin group, however, this difference is due to the drug itself and not due to co-trimoxazole being a combination therapy. It is therefore unfair to attribute the difference in resistance to combination therapy. Another example is the study by Walsh (71) where rifampin + novobiocin is compared to rifampin + co-trimoxazole. There is more emergence of resistance in the rifampin + co-trimoxazole group but this could be attributed to novobiocin being a different type of antibiotic than co-trimoxazole instead of the difference being attributed to combination therapy. To improve interpretation and reduce heterogeneity my suggestion would be to limit the primary analyses to regimens where the antibiotics compared are the same but in one group one or more antibiotic(s) are added (i.e. A versus A+B). The other analyses are problematic in their interpretation and should be clearly labeled as secondary and their interpretation discussed.

      Another concern is about the definition of acquisition of resistance, which is unclear to me. If for example meropenem is administered and the follow-up cultures show Enterococcus species (which is intrinsically resistant to meropenem), does this constitute acquisition of resistance? If so, it would be misleading to determine this as an acquisition of resistance, as many people are colonized with Enterococci and selection of Enterococci under therapy is very common. If this is not considered as the acquisition of resistance please include how the acquisition of resistance is defined per included study. Table S1 is not sufficiently clear because it often only contains how susceptibility testing was done but not which antibiotics were tested and how a strain was classified as resistant or susceptible.

      Line 85: "Even though within-patient antibiotic resistance development is rare, it may contribute to the emergence and spread of resistance."<br /> Depending on the bug-drug combination, there is great variation in the propensity to develop within-patient antibiotic resistance. For example: within-patient development of ciprofloxacin resistance in Pseudomonas is fairly common while within-patient development of methicillin resistance in S. aureus is rare. Based on these differences, large clinical heterogeneity is expected and it is questionable where these studies should be pooled.

      Line 114: "The overall pooled OR for acquisition of resistance comparing a lower number of antibiotics versus a higher one was 1.23 (95% CI 0.68 - 2.25), with substantial heterogeneity between studies (I2=77.4%)"<br /> What consequential measures did the authors take after determining this high heterogeneity? Did they explore the source of this large heterogeneity? Considering this large heterogeneity, do the authors consider it appropriate to pool these studies?

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Vuong and colleagues reports a study that pooled data from 3 separate longitudinal studies that collectively spanned an observation period of over 15 years. The authors examined for correlation between viraemia measured at various days from illness onset with thrombocytopaenia and severe dengue, according to the WHO 2009 classification scheme. The motivation for this study is both to support the use of viraemia measurement as a prognostic indicator of dengue and also when an antiviral drug becomes licensed for use, to guide the selection of patients for antiviral therapy. They found that the four DENVs show differences in peak and duration of viraemia and that viraemia levels before day 5 but not those after from illness onset correlated with platelet count and plasma leakage at day 7 onwards. They concluded that the viraemia kinetics call for early measurement of viraemia levels in the early febrile phase of illness.

      Strengths:

      This is a unique study due to the large sample size and longitudinal viraemia measurements in the study subjects. The data addresses a gap in information in the literature, where although it has been widely indicated that viraemia levels are useful when collected early in the course of illness, this is the first time anyone has systematically examined this notion.

      Weaknesses:

      The study only analysed data from dengue patients in Vietnam. Moreover, the majority of these patients had DENV-1 infection; few had DENV-4 infection. The data could thus be skewed by the imbalance in the prevalence of the different types of DENV during the period of observation. The use of patient-reported time of symptom onset as a reference point for viraemia measurement is pragmatic although there is subjectivity and thus noise in the data.

    2. Reviewer #2 (Public Review):

      Summary:

      This manuscript highlights very important findings in the field, especially in designing clinical trials for the evaluation of antivirals.

      Strengths:

      The study shows significant differences between the kinetics of viral loads between serotypes, which is very interesting and should be taken into account when designing trials for antivirals.

      Weaknesses:

      The kinetics of the viral loads based on disease severity throughout the illness are not described, and it would be important if this could be analyzed.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors presented here a novel 3D fibroblast culture and transdifferentiation approach for potential meat production with GelMA hydrogel.

      Strengths:

      1. Reduced serum concentration for 3D chicken fibroblast culture and transdifferentiation is optimized.<br /> 2. Efficient myogenic transdifferentiation and lipogenesis as well as controlled fat deposition are achieved in the 3D GelMA.

      Weaknesses:

      1. While the authors stated the rationale of using fibroblasts instead of myogenic/adipogenic stem cells for meat production, the authors did not comment on the drawbacks/disadvantages of genetic engineering (e.g., forced expression of MyoD) in meat production.<br /> 2. While the authors cited one paper to state the properties and applications of GelMA hydrogel in tissue engineering and food processing, concerns/examples of the food safety with GelMA hydrogel are not discussed thoroughly.<br /> 3. In Fig. 4C, there seems no significant difference in the Vimentin expression between Fibroblast_MyoD and Myofibroblast. The conclusion of "greatly reduced in the myogenic transdifferentiated cells" is overstated.<br /> 4. The presented cell culture platform is only applied to chicken fibroblasts and should be tested in other species such as pigs and fish.

    2. Reviewer #2 (Public Review):

      The manuscript by Ma et al. tries to develop a protocol for cell-based meat production using chicken fibroblasts as three-dimensional (3D) muscle tissues with fat accumulation. The authors used genetically modified fibroblasts which can be forced to differentiate into muscle cells and formulated 3D tissues with these cells and a biphasic material (hydrogel). The degrees of muscle differentiation and lipid deposition in culture were determined by immunohistochemical, biochemical, and molecular biological evaluations. Notably, the protocol successfully achieved the process of myogenic and lipogenic stimulation in the 3D tissues.

      Overall, the study is reasonably designed and performed including adequate analysis. The manuscript is clearly written with well-supported figures. While it presents valuable results in the field of cultivated meat science and skeletal muscle biology, some critical concerns were identified. First, it is unclear whether some technical approaches were really the best choice for cell-based meat production. Next, more careful evaluations and justifications would be required to properly explain biological events in the results. These points include additional evaluations and considerations with regard to myocyte alignment and lipid accumulation in the differentiated 3D tissues. The present data are very suggestive in general, but further clarifications and arguments would properly support the findings and conclusions.

    1. Reviewer #1 (Public Review):

      In this manuscript, Manessero and colleagues argue that the prefrontal cortex (PFC), given its exquisite capability to down-regulate down-stream regions central in driving emotional responses to threat, maybe a promising target to stimulate in order to reduce aberrant fear memory responses. They aim to differ from previous studies that tested the strengthening of extinction learning, by merely focusing on the expression of threat memory without extinction learning. Given that other studies have often focused on the dorsolateral prefrontal cortex as promising target to regulate fear responses, they also ran experiments to directly compare effectiveness of targeting the mPFC and dlPFC in reducing fear memory responses. These aims are all focused on what the authors describe as "implicit memory", but they also test the effects of the interventions on "explicit memory" of the presented cues. However, in the introduction, the authors do not explicitly describe what their aim or theoretical rationale to implement these tests was. Likewise, the authors implemented generalisation stimuli (i.e., cues similar to the original CS) in the implicit memory tests, but the aim of these tests is also not explained.

      In order to test their hypotheses, the authors adopt a single-cue fear conditioning paradigm where participants learned to associate an auditory cue with the occurrence of short electrical stimulation across 15 repetitions of the CS-US pairing (80% reinforcement rate). One week later, for the second session, this cue was again presented 4 times, along with 2 types of generalization stimuli, that were each also presented four times. This test session took place in another environment. Conditioned skin conductance responses were measured as index of defensive responding. In the critical condition, during 10 minutes prior to these cue presentations, repetitive Transcranial Magnetic Stimulation (rTMS) was applied to specifically target the medial PFC. Another independent group of participants completed a two-alternative forced-choice (2AFC) explicit recognition test, to inquire to what extent they could recognize whether a given tone was presented during the conditioning phase (basically a source memory task). Finally, a two-alternative forced-choice (2AFC) perceptual discrimination test was presented, to ascertain that participants could discern the different tones presented. The second session was repeated yet another week later, but without any rTMS and in the original conditioning context again, to test whether any potential fear dampening effects were retained.

      The observations are quite straightforward: compared to sham and an active control group, mPFC stimulation prior to fear memory retrieval resulted in an immediate reduction of conditioned responses, a difference that was consistent across all 4 test trials. Also conditioned responses to the generalization cues were reduced upon mPFC stimulation. These effects seemed to be specific for memories, since responding to novel unconditioned cues (loud female scream) were not affected by prior mPFC stimulation. Likewise, measures of explicit memory were unaffected. In separate experiments, stimulation of the mPFC also outperformed stimulation of the dlPFC. This pattern of results was again observed during the tests a week later.

      The authors conclude that, since these outcomes were observed in the absence of extinction training, the rTMS procedure directly modulated the defensive responses activated by the threat memory trace. The fact that defensive responses to novel unconditioned stimuli were not affected are in line with earlier observations that the mPFC seems critical for the expression of conditioned but not innate fear. Given that dlPFC stimulation seemed less effective, the mPFC may be the most suitable candidate for future therapeutic interventions.

      Major strengths:<br /> - Earlier work delving into the involvement of the prefrontal cortex in fear regulation has not only revealed a central role for the mPFC, but also for the dlPFC. An important strength of this study is that the authors therefore also directly compare groups that are targeted in either one of these regions, thereby revealing that even though stimulating the dlPFC results in some fear reduction, the effect is much stronger for mPFC. Another nice consequence of this extra group is that the earlier observations when targeting the mPFC are being replicated.

      - It is important to test novel avenues to achieve enduring fear dampening effects of interventions. An intervention that only exerts immediate but transient effects does not bring much clinical value. So the fact that this study incorporates a follow-up test and then shows that the acute fear dampening effects are retained in the absence of any TMS stimulation certainly is important.

      - It is only natural to show defensive responses to cues that previously have been paired with something aversive, like a shock. For this reason, generalized fear responses to cues that are similar to fear cues but in fact innocuous is considered maladaptive, and at the core of anxiety disorders. A strength of the paper is that the authors have added generalization tests in addition to (adaptive) fear retention, to ascertain that their intervention in fact also targets maladaptive responding.

      Major weaknesses<br /> - There are two major weaknesses in this paper, that can have a potentially detrimental consequence for the robustness of the results and conclusions. First of all, even though comparing the effect of mPFC stimulation with other groups that have been stimulated in other brain regions is important, another comparison - perhaps an even more essential one - is lacking: is there a significant reduction in conditioned fear responses after targeting the mPFC as compared to that group's own fear acquisition (or at least the final phase of acquisition)? Instead, the authors compare fear responses with responses PRIOR to conditioning, which is not meaningful. The same goes for the long-term follow-up: also here, a comparison with fear responding prior to the intervention is lacking. Such a reduction in conditioned fear responding should be larger than any reduction (e.g., due to habituation or forgetting) in fear responding in the (sham) control groups (i.e., an overall interaction between group and fear responding should be present). Whether this is the case is unfortunately unknown, since the fear acquisition data (neither raw, nor pre-processed) are not to be found in the manuscript, and are therefore also not included in any of the analyses. Since there is also no safe control stimulus, the crucial comparison is made entirely between-subjects, and for such a comparison groups of n~20 are quite modest.

      - Second, against commons practice, the authors commence by square root transforming all SCR data to normalize the data (while this should only be done in the final phase or preprocessing, if the variables entered in the statistical tests require so), only to then again normalize these obtained values by dividing by the unconditioned responses of the participants, that then are used to calculate differences scores with preconditioning. In these descriptions it is unclear which unconditioned stimulus it was (the original one, from conditioning?) and whether it was standardised to the highest response or an average of all the responses. Decisions that are taken in these early pre-processing steps can have a gigantic impact on the outcomes and conclusions, so this is not trivial. One may say that this cannot explain the group effects that have been observed, given the fact that all groups have been pre-processed in the same way. However, the mPFC group of interest seems to display relatively high unconditioned responses - standardising with these measures may result in relatively low conditioned responses in this particular group. This shortcoming is therefore closely related to the point made above: given that conditioning data would be standardised in the same vein, a test that included the within-subject comparison between acquisition and post-intervention is absolutely crucial to ascertain that the effects observed are not merely due to coincidences in pre-processing values and pre-existing group differences.

      - In addition to the above-described main analyses, some other potential weaknesses concern the analysis strategy applied to the generalization tests. Several ANOVAS are being run, one to test for the pattern of generalization responses within-subjects (i.e., the CS, NS1 and NS2), and several ones to compare each of these between the three groups. But such analyses are not warranted in the absence of an overall interaction between the within subject factors and group factor. Such overall omnibus tests however are lacking, and the high number of separate anovas risks false positives (i.e., these comparisons should have been made with planned contrasts). The fact that the included factors and levels are not being described, makes it generally hard to gauge what variables exactly have been entered in every analysis.

      Further remarks:<br /> - There is a possibility that a re-analysis of the data using properly preprocessed SCR data along with analyses that include comparisons with the conditioned responses during acquisition reveal a different pattern of results. Therefore, whether the authors truly achieved their aims and whether the results support their conclusions is as of yet undecided.

      - Even if the pattern of results holds, then the claim that the long-term follow-up reductions of fear were achieved in the absence of any extinction cannot be made with confidence: after all, upon mPFC stimulation during the second session, the CS was presented four times, and so were each of the two generalization stimuli. So perhaps extinction was not complete, but almost certainly some extinction has taken place: it is well-known that the strongest extinction-learning typically takes place in the first trials (e.g., due to higher prediction errors). The authors do not give any alternative theoretical explanation for the enduring reduction of fear reduction, which would be interesting to learn their thoughts on.

      - If the results hold and satisfiable reasons are provided as to why the effects remain visible in the follow-up, this study could be a valuable contribution to the field: it may refocus future studies to the mPFC as major target to not only promote acute fear regulation, but perhaps even more importantly form a clinical perspective, a route for enduring fear reductions.

    2. Reviewer #2 (Public Review):

      Manassaro et al. present an extensive three-session study in which they aimed to change defensive responses (skin conductance; SCR) to an aversively conditioned stimulus by targeting medial prefrontal cortex (their words) using repetitive TMS prior to retrieval. They report that stimulating mPFC using TMS abolishes SCR responses to the conditioned stimulus, and that this effect is specific for the stimulated region and the specific CS-US association, given that SCR responses to a different modality US are not changed.

      I like how the authors have clearly attempted to control for several potential confounds by including multiple stimulation sites, measured SCR responses to several unconditioned stimuli, and applied the experiment in multiple contexts. However, several conceptual and practical issues remain that I think limit the value of potential conclusions drawn from this work.

      The first issue that I have with this study concerns the relationship between the TMS manipulation and the theoretical background the authors present in their rationale. In the introduction the authors sketch that what they call 'mPFC' is involved in regulation of threat responses. They make a convincing case, however, almost all of the evidence they present concerns the ventromedial part of the prefrontal cortex (refs 18-25). The authors then mention that no one has ever studied the effects of 'mPFC'-TMS on threat memories. That is not surprising given that stimulating vmPFC with TMS is very difficult, if not impossible. Simulation of the electrical field that develops as a consequence from the authors manipulation (using the same TMS coil and positioning the authors use) shows that vmPFC (or mPFC for that matter) is not stimulated. The authors then continue in the methods section stating that the region they aimed for was BA10. This region they presumably do stimulate, however, that does not follow logically from their argument. BA10 is anatomically, cytoarchitectonically and functionally a wholly different area than vmPFC and I wonder if their rationale would hold given that they stimulate BA10.

      The second concern I have is that although I think the authors should be praised for including both sham and active control regions, the controls might not be optimally chosen to control for the potential confounds of their condition of interest (mPFC-TMS). Namely, TMS on the forehead can be unpleasant, if not painful, whereas sham-TMS or TMS applied to the back of the head or even over dlPFC is not (or less so at the very least). Given that the SCR results after mPFC TMS show exactly the same temporal pattern as the sham-TMS but with a lower starting point, one could wonder whether a painful stimulation prior to the retrieval might have already caused habituation to painful stimulation observed in SCR in consequent CS presentations. A control region that would have been more obvious to take is the lateral part of BA10, by moving the TMS coil several centimeters to the left or right, circumventing all things potentially called medial but giving similar unpleasant sensations (pain etc).

      My final concern is that the main analyses are performed on single trials of SCR responses, which is a relatively noise measure to use on single trials. This is also done in relatively small groups (n=21). I would have liked to see both the raw or at least averaged timeseries SCR data plotted, and a rationale explaining how the authors decided on the current sample sizes, if that was based on a power analyses one must have expected quite strong effects.

    1. Reviewer #1 (Public Review):

      In this manuscript, the Authors implement a delayed feedback control method and use it for the first time in biological neuronal networks. They extend a well-established computational theory and expand it into the biological realm. With this, they obtain novel evidence, never considered before, that showcases the difference between simulated neuronal networks and biological ones. Furthermore, they optimize the DFC method to achieve optimal results in the control of cell excitability in the content of biological neuronal networks, taking advantage of a closed-loop stimulation setup that, by itself, is not trivial to build and operate and that will certainly have a positive impact the fields of cellular and network electrophysiology.

      Regarding the results, it would be very constructive if the Authors could share the code for the quasi-real-time interface with the Multichannel Systems software (current and older hardware versions), as this represents likely a bottleneck preventing more researchers to implement such an experimental paradigm.

      On the data focusing on the effects of the DFC algorithms on neuronal behavior, the evidence is very compelling, although more care should be devoted to the statistical analyses, since some of the applied statistical tests are not appropriate. In a more biological sense, further discussion and clarification of the experimental details would improve this manuscript, making it more accessible and clearer for researchers across disciplines (i.e., ranging from computational to experimental Neuroscience) and increasing the impact of this research.

      In summary, this work represents a necessary bridge between recent advances in computational neuroscience and the biological implementation of neuronal control mechanisms.

    2. Reviewer #2 (Public Review):

      This study applies a new neuromodulation algorithm, adaptive delayed feedback control (aDFC) to in vitro and in silico neuron populations to demonstrate its effectiveness at desynchronizing synchronous neural population activity. The study compares aDFC to other neuromodulation approaches such as non-adaptive DFC and random stimulation and demonstrates that in a subset of controllable networks, aDFC succeeds in reducing overall synchrony in the neural population. Further, when characterizing population firing bouts as asynchronous versus synchronous, aDFC increased the fraction of time that the neural population was in the asynchronous versus synchronous state (albeit in one network). Overall, this study is an impressive combination of computational and experimental work that details a promising new adaptive neuromodulation algorithm that may be relevant for neurological disorders where excessive synchronous brain activity is currently treated with conventional open-loop DBS.

      Strengths: The authors build on existing work that has suggested DFC may be a viable algorithm for desynchronizing hyper-synchronous neural populations. They demonstrate by performing in vivo experiments that, contrary to the suggestions of previous work, DFC exacerbates oscillatory intensity. As a result, they develop a new adaptive DFC (aDFC) that updates the estimate of the population's periodicity, enabling superior desynchronization of the population. Further, aDFC enables more population spiking activity that is not just a response to the stimulation (Fig. S3), potentially making the approach conducive to reducing excessive synchronization while also being permissive to neural encoding.

      Another innovation of this study is developing a framework for detecting which neural populations are controllable vs. uncontrollable, i.e. consistently responsive to stimulation vs. not consistently responsive. The authors find that populations with intermediate levels of synchrony and firing rate are controllable, whereas populations outside this regime are uncontrollable. These findings are substantiated with a neural network model, where a controllable regime is also detected. The controllable subspace in the in vivo networks and in silico networks also appear to roughly correspond (intermediate synchrony and firing rates) though a direct comparison is not made.

      Finally, not only do the authors find that aDFC reduces synchrony, they further identify extended periods of time when the network is in an asynchronous state and find that aDFC can extend the amount of time that the network spends in this state. While these results are compelling, there is only a single network that is able to demonstrate this effect so it is unclear how general a property this is.

      Overall, the study presents a novel closed loop neuromodulation algorithm and presents compelling data demonstrating that the algorithm reduces synchrony in in vitro and in silico neural populations.

      Weaknesses: The authors point out Parkinson's disease, essential tremor, epilepsy, and dystonia as the neurological disorders that suffer from excessive neural synchronization. In two of these disorders the frequency of the neural synchronization is ~15-30 Hz (Parkinson's disease) and ~5-7 Hz (essential tremor). These frequencies are well above the ~1 Hz synchronization frequency observed in the in vitro population. While this study exhibits a nice proof of principle, how readily it would extend to populations that exhibit higher synchronization frequencies is unclear.

      In addition, the study relies on computing population spiking activity of neurons. Current closed-loop neuromodulation devices are outfitted with large electrodes that can sense local field potentials. The impact of this study would have been higher and more readily translatable if the authors could have detected neural population synchronization using local field potential features.

      Finally, since the authors were seeking to develop a closed-loop neuromodulation solution that exhibited an improvement over existing open-loop solutions, it would have strengthened the findings and relevance of this study to have done comparisons between aDFC and high frequency open-loop stimulation (~100-120 Hz). Without this comparison it is difficult to know how aDFC may differ from existing therapeutics.

    1. Reviewer #1 (Public Review):

      The manuscript by Grove and colleagues analyzes the role of TEAD1 transcription factors in all events regulating PNS myelin formation and maintenance and regeneration. Throughout the manuscript, the authors compare the results obtained to those they previously described in YAP/TAZ double knockout mice. Strengths of the manuscript are combined in vivo analyses by generating mutants constitutively lacking TEAD1 expression in myelinating Schwann cells (P0Cre//TEAD1f/f mice: cKO) and mutants in which TEAD1 expression can be ablated after tamoxifen-mediated recombination is myelinating Schwann cells (PlpCreER//TEAD1f/f mice: iKO). Using this approach the authors were able to assess the role of TEAD1 in all aspects related to PNS myelin: formation as well as maintenance and remyelination after injury. By exploiting these models, they were able to define the role of TEAD1 in regulating Schwann cell proliferation as well as in the cholesterol biosynthetic pathway.

      Collectively, their data indicate that TEAD 1 has a composite role in PNS myelination being required for developmental myelination, but dispensable for myelin maintenance. Further, they also describe a role for TEAD1 in promoting PNS remyelination after an injury event.

      Despite these strengths, there are some weaknesses that should be addressed by the authors:

      1. The manuscript would benefit from better and more detailed analysis of the role of the other TEAD transcription factors, as they are likely redundant in function to TEAD1. For example, since in cKO mice some fibers can escape the sorting defect and eventually myelinate, albeit at a lower level, could they determine whether TEAD2-4 transcription factors might compensate for TEAD1 absence in this setting?

      2. A striking result of the study is the morphological defects observed in the process of axonal sorting and in the Remak fibers formation of TEAD1 cKO mice. To explain the sorting defect, the authors correctly analyze Schwann cell proliferation. However, since axonal sorting is mediated by the interaction between the extracellular matrix and intracellular cytoskeleton rearrangement they should address also these two aspects. As per the Remak bundles and the poly-axonal myelination they observe, it is difficult to reconcile this "abnormal" myelination with the fact that TEAD 1 cKO mice have a very severe myelinating phenotype, which is persistent in adulthood.

      3. In the analyses of the cholesterol biosynthetic pathway, TEAD1 seems to be only partly involved. Again, which is the role of any of the other TEADs?

      4. Why do cKO mice die before P60?

    2. Reviewer #2 (Public Review):

      The manuscript addresses the role of TEAD1 in developmental myelination and nerve regeneration after nerve injury and establishes TEAD1 as a key component for YAP/TAZ-related Schwann cell biology. The authors use genetic and biochemical techniques, as well as immunostainings of tissues to address TEAD1's function in myelin biology. While the constitutive knockout of TEAD1 is convincing, the tamoxifen-induced variation requires some validation. Experimental procedures to study the effect of TEAD1 on myelin development and regeneration were properly performed. TEAD1 is believed to be the major driver of the TEAD family in regulating myelination in Schwann cells. However, the delineation of TEAD1 in myelin biology from the other TEAD family members TEAD2, 3, and 4 needs further verification. In particular, the biochemical techniques assessing the potentially competitive binding of TEAD1 versus TEAD2, 3, and 4 to YAP1 and TAZ (WWTR1) require a thorough functional validation. Overall, the identification of TEAD1 as the major driver of myelin in development and regeneration is a very important finding for Schwann cell biology.

    3. Reviewer #3 (Public Review):

      The Hippo signalling pathway has been implicated in organ growth through the regulation of cell proliferation and apoptosis. The main transcriptional effectors of this pathway, the Yap and Taz proteins, associate with members of the TEAD family of transcription factors to drive diverse transcriptional programs of proliferation, growth, and differentiation. It has previously been shown that YAP/TAZ are essentially required in Schwann cells for developmental myelination, homeostasis, and regenerative myelination in the peripheral nervous system. All four members of the TEAD family are expressed in the Schwann cell lineage, raising the possibility that different aspects of YAP/TAZ role in the Schwann cell lineage are underpinned by differential associations with TEAD transcription factors. In this study, Grove and colleagues provide convincing evidence that TEAD1 is the main transcription factor through which YAP/TAZ affects myelination in development and following nerve injury. A careful comparison between Schwann cell-specific and inducible Yap/Taz and TEAD1 knock out animals reveal unique and redundant roles for TEAD1 in myelination by regulating Schwann cell proliferation, Krox20-dependent myelin gene expression, and cholesterol biosynthesis. Interestingly, their study appears to reveal a YAP/TAZ independent role for TEAD1 in non-myelinating Schwann cell ensheathment of low calibre axons and Remak bundle formation. The conclusions of this study are based on rigorous biochemical, immune-histochemical, electron microscopic, and functional analysis of mutant and wild-type nerves at different stages of postnatal development and following crush nerve injury.

      Perhaps the most surprising finding of this study is that TEAD1 can function independently from YAP/TAZ in one branch of the Schwann cell lineage (the authors had reported earlier that non-myelinating Schwann cells do not express YAP/TAZ).<br /> How TEAD1 transcriptional activity is modulated in these Remak Schwann cells is an interesting avenue of future research.

    1. Reviewer #2 (Public Review):

      In this paper, the authors discover that postsynaptic mitochondria in C. elegans govern glutamate receptor trafficking dynamics. The core results are two-fold. For one, they find that loss or inhibition of mcu-1 - the C. elegans mitochondrial calcium uniporter - increases GLR-1 glutamate receptor accumulation at the postsynaptic dendritic sites and enhances its trafficking dynamics. The authors hypothesize that this effect on glutamate receptors may have something to do with mitochondrial ROS production. This is because ROS is a by-product of normal oxidative phosphorylation, downstream of calcium import. Indeed, the generation of artificially high amounts of mitochondrial ROS has the opposite effect of mcu-1 loss: decreased glutamate receptor subunit accumulation. Collectively, the results support the idea that mitochondrial function can control receptor dynamics at synaptic sites. This is interesting because tight control of synaptic function likely combines several mitochondrial functions: energy production, calcium buffering, and (here) ROS signaling.

      STRENGTHS

      • The C. elegans genetic model is a strength because the authors are able to make refined conclusions by classical loss-of-function mutants (e.g., mcu-1) along with an impressive cytological toolkit to examine GLR-1 dynamics.

      • The use of pharmacology as a second means to test those genetic conclusions is a strength.

      • The authors' careful reagent verification of reporters (Ca2+, ROS, etc.) is a strength.

      • The ability to link fundamental mitochondrial processes to GLR-1 exocytosis will expand how the field thinks about mitochondrial synapse function.

      WEAKNESSES

      For the most part, the data in the paper support the conclusions, and the authors were careful to try experiments in multiple ways. But please see below:

      • (Main Point) The data are good, but they fall short of mechanism (e.g., Line 322). Figure 6 is accurate as drawn. But calcium and ROS are not abstract signals. They are likely exerting affirmative actions on specific targets. The Discussion does acknowledge this in terms of ROS and it speculates on possible targets.

      The general idea seems to be that mitochondria import calcium through MCU-1 (and interacting factors). As a result, oxidative phosphorylation successfully occurs and mitochondrial ROS is a signaling by-product that signals glutamate receptors not to undergo exocytosis. But there are other interpretations of what might happen in between. In fact, if OXPHOS is disrupted, it is known that this can generate a lot more mitochondrial ROS than the normal by-product levels.

      This reviewer wonders if excess ROS would cause an extreme response. Or alternatively, if scavenging ROS via pharmacological scavengers or SOD expression would reverse the effects.

      Small Points

      • 33.3 mHz - just making sure, do the authors mean once every 30 seconds? That would be more straightforward.

      • Figure 2 is confusing. The text says that the mcu-1 mutants have a GLR-1::GFP FRAP rate that is comparable to controls (Lines 165-167). But Figure 2E suggests that it is markedly less, which is the opposite result of the slight increase in rate resulting from Ru360 treatment. And is the explanation why the GLR-1::GFP results differ from the SEP::GLR-1 results a difference between total GFP vs. surface GFP?

      • I could not watch Video 2 (not sure if it is the file or just the copy I downloaded).

      • It is good that the authors tried both optical stimulation and mechanical stimulation (dropping culture plates to stimulate the worms, Figure 3). Why was the mechanical stimulation set aside for further tests in the paper?

      • Does this process affect all kinds of transport, or is it just the glutamate receptors? Was anything else examined?

    2. Reviewer #3 (Public Review):

      Reactive oxygen species (ROS) have been previously shown to regulate glutamate receptor phosphorylation, long-distance transport, and delivery of glutamate receptors to synapses, however, the source of ROS is unclear. In this study, the authors test if mitochondria act as a signaling hub and produce ROS in response to neuronal activity in order to regulate glutamate receptor trafficking. The authors use a variety of optogenetic tools including the calcium reporter mitoGCaMP and the ROS reporter mito-roGFP to monitor changes in calcium and ROS, respectively, in mitochondria after activating neurons with ChRimson in the genetic model organism C. elegans. Repeated stimulation of interneurons called AVA with ChRimson leads to increased calcium uptake into mitochondria in dendrites and increased mitochondrial ROS production. The mitochondrial calcium uniporter mcu-1 is required for these effects because mcu-1 genetic loss of function or treatment with Ru360, a drug that inhibits mcu-1, inhibits the uptake of calcium into mitochondria and ROS production after neuronal activation. Mcu-1 genetic loss of function is correlated with an increase in exocytosis of glutamate receptors but a decrease in glutamate receptor transport and delivery to dendrites. This study suggests that mitochondria monitor neuronal activity by taking up calcium and downregulating glutamate receptor trafficking via ROS, as a means to negatively regulate excitatory synapse function.

      Strengths<br /> -The use of multiple optogenetic tools and approaches to monitor mitochondrial calcium, reactive oxygen species, and glutamate receptor trafficking in live organisms.<br /> -Identifying a novel signaling role for dendritic mitochondria which is to monitor neuronal activity (via calcium uptake into mitochondria) and generate a signal (reactive oxygen species) that regulates glutamate receptors at synapses.

      Weaknesses<br /> -Although the use of KillerRed to generate ROS downstream of mcu-1 is a clever approach, the fact that activation of KillerRed results in reduced GLR-1 exocytosis, delivery, and transport raises the concern that KillerRed is generating a high level or ROS that might be toxic to cellular processes. Experiments showing that other cellular processes are not affected by KillerRed activation and testing if reduced ROS production mimics the effects of blocking mcu-1 would strengthen the conclusions in this study.

    3. Reviewer #4 (Public Review):

      Using optogenetic stimulation, the authors presented compelling evidence that neuronal activity increases mitochondrial calcium levels, facilitated by the mitochondrial uniporter MCU-1. Through ratiometric measurements, they showed that mitochondrial ROS levels also increase due to neuronal activity via MCU-1. Subsequent FRAP studies were employed to investigate the trafficking of the AMPA receptor, GLR-1. By integrating genetic and pharmacological methodologies, the recovery rate of GLR-1 was assessed. The authors concluded that increased mitochondrial ROS due to neuronal activity reduces the trafficking and exocytosis of AMPA receptors. They proposed that mitochondrial ROS serves as a homeostatic mechanism regulating AMPA receptor trafficking and abundance, thus maintaining synaptic strength. This research is crucial as it provides a direct link between mitochondrial signaling and AMPA receptor trafficking.

      However, there are several significant concerns regarding the methodologies and quantifications employed in this manuscript. The authors utilized GLR-SEP to label surface AMPA receptors and relied on the "FRAP rate" as an indicator of the exocytosis rate. The absence of direct visualization of exocytosis using GLR-SEP, and the lack of direct measurements of exocytosis events, casts doubt on the conclusions about ROS's impact on AMPA receptor exocytosis. Furthermore, the "FRAP rate" determined in this study is a combination of recovery rates (incorporating both endosomal trafficking and diffusion) with the mobile fractions of AMPA receptors, potentially weakened interpretations of the findings. A more comprehensive discussion addressing the conflicting effects of MCU-1 and ROS on GLR-GFP FRAP recovery and dendritic trafficking would enable readers to grasp the intricate roles of mitochondrial calcium and ROS in modulating synaptic receptors.

    1. Reviewer #1 (Public Review):

      This interesting study by Miyano combines slice electrophysiology and superresolution microscopy to address the role of RBP2 in Ca2+ channel clustering and neurotransmitter release at hippocampal mossy fiber terminals. While a number of studies demonstrated a critical role for RBPs in clustering Ca2+ channels at other synapses and some provided evidence for a role of the protein in molecular coupling of Ca2+ channels and release sites, the present study targets another key synapse that is an important model for presynaptic studies and offers access to a microdomain controlled synaptic vesicle (SV) release mechanism with low initial release probability.

      Summarizing a large body of high quality work, the authors demonstrate reduced Ca2+ currents and a reduced release probability. They attribute the latter to the reduced Ca2+ influx and can restore release by increasing Ca2+ influx. Moreover they propose an altered fusion competence of the SVs, which is not so strongly supported by the data in my view.

      The effects are relatively small, but I think the careful analysis of the RBP role at the mossy fiber synapse is an important contribution.

    2. Reviewer #2 (Public Review):

      Summary: The proper expression and organization of CaV channels at the presynaptic release sites are subject to coordinative and redundant control of many active zone specific molecules including RIM-BPs. Previous studies have demonstrated that ablation of RIM-BPs in various mammalian synapses causes significant impairment of synaptic transmission, either by reducing CaV expression or decoupling CaV from synaptic vesicles. The mechanisms remain unknown.

      In the manuscript, Sakaba and colleagues aimed to examine the specific role of RIM-BP2 at the hippocampal mossy fiber-CA3 pyramidal cell synapse, which is well-characterized by low initial release probability and strong facilitation during repetitive stimulation. By directly recording Ca2+ currents and capacitance jumps from the MF boutons, which is very challenging but feasible, they showed that depolarization-evoked Ca2+ influx was reduced significantly (~39%) by KO of RIM-BP2, but no impacts on Ca-induced exocytosis and RRP (measured by capacitance change). They used STED microscopy to image the spatial distribution of CaV2.1 cluster but found no change in the cluster number with slight decrease in cluster intensity (~20%). They concluded that RIM-BP2 function in tonic synapses by reducing CaV expression and thus differentially from phasic synpases by decoupling CaV-SV.

      In general, they provide solid data showing that RIM-BP2 KO reduces Ca influx at MF-CA3 synapse, but the phenotype is not new as Moser and colleagues have also used presynaptic recording and capacitance measurement and shown that RIM-BP2 KO reduces Ca2+ influx at hair cell active zone (Krinner et al., 2017), although at different synapse model expressing CaV1.3 instead of CaV2.1. Further, the concept that RIM-BP2 plays diverse functions in transmitter release at different central synapses has also been proposed with solid evidence (Brockmann et al., 2019).

    1. once you dissolve that boundary you can't tell whose memories or who's anymore that's kind of the big thing about um that that kind of memory wiping the the wiping the identity on these 00:06:18 memories is a big part of multicellularity

      for - key insight - multicellularity - memory wiping

      • key insight
        • individuals have information in their memories about survival
        • when they merge and join, they pool their information and you can't tell whose memories came from whom initially
        • this memory wiping is a key aspect of multcellularity

      investigate - salience of memory wiping for multicellularity - This is a very important biological behavior. - Perform a literature review to understand examples of this

      question - biological memory wiping - can it be extrapolated to social superorganism?

    1. Joint Public Review:

      In this manuscript, the authors examined the role of transcription readout and intron retention in increasing transcription of transposable elements during aging in mammals. It is assumed that most transposable elements have lost the regulatory elements necessary for transcription activation. Using available RNA-seq datasets, the authors showed that an increase in intron retention and readthrough transcription during aging contributes to an increase in the number of transcripts containing transposable elements.

      Previously, it was assumed that the activation of transposable elements during aging is a consequence of a gradual imbalance of transcriptional repression and a decrease in the functionality of heterochromatin (de repression of transcription in heterochromatin). Therefore, this is an interesting study with important novel conclusion.

      The authors revised the manuscript in accordance with the comments. Overall, the manuscript is useful because it shows that there is no direct connection between increased levels of transposon RNA and aging, and further demonstrates the disorganization of the transcriptional apparatus during aging.

    1. Reviewer #2 (Public Review):

      This manuscript illustrates the power of "combined" research, incorporating a range of tools, both old and new to answer a question. This thorough approach identifies a novel target in a well-established signalling pathway and characterises a new player in Drosophila CNS development.

      Largely, the experiments are carried out with precision, meeting the aims of the project, and setting new targets for future research in the field. It was particularly refreshing to see the use of multi-omics data integration and Targeted DamID (TaDa) findings to triage scRNA-seq data. Some of the TaDa methodology was unorthodox, however, this does not affect the main finding of the study. The authors (in the revised manuscript) have appropriately justified their TaDa approaches and mentioned the caveats in the main text.

      Their discovery of Spar as a neuropeptide precursor downstream of Alk is novel, as well as its ability to regulate activity and circadian clock function in the fly. Spar was just one of the downstream factors identified from this study, therefore, the potential impact goes beyond this one Alk downstream effector.

    2. Reviewer #3 (Public Review):

      Summary:

      The receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) in humans is nervous system expressed and plays an important role as an oncogene. A number of groups have been studying ALK signalling in flies to gain mechanistic insight into its various roles. In flies, ALK plays a critical role in development, particularly embryonic development and axon targeting. In addition, ALK also was also shown to regulate adult functions including sleep and memory. In this manuscript, Sukumar et al., used a suite of molecular techniques to identify downstream targets of ALK signalling. They first used targeted DamID, a technique that involves a DNA methylase to RNA polymerase II, so that GATC sites in close proximity to PolII binding sites are marked. They performed these experiments in wild type and ALK loss of function mutants (using an Alk dominant negative ALkDN), to identify Alk responsive loci. Comparing these loci with a larval single cell RNAseq dataset identified neuroendocrine cells as an important site of Alk action. They further combined these TaDa hits with data from RNA seq in Alk Loss and Gain of Function manipulations to identify a single novel target of Alk signalling - a neuropeptide precursor they named Sparkly (Spar) for its expression pattern. They generated a mutant allele of Spar, raised an antibody against Spar, and characterised its expression pattern and mutant behavioural phenotypes including defects in sleep and circadian function.

      Strengths:

      The molecular biology experiments using TaDa and RNAseq were elegant and very convincing. The authors identified a novel gene they named Spar. They also generated a mutant allele of Spar (using CrisprCas technology) and raised an antibody against Spar. These experiments are lovely, and the reagents will be useful to the community. The paper is also well written, and the figures are very nicely laid out making the manuscript a pleasure to read.

      Weaknesses:

      The manuscript has improved substantially in the revision. Yet, some concerns remain around the genetics and behavioural analysis which is incomplete and confusing. The authors generated a novel allele of Spar - Spar ΔExon1 and examined sleep and circadian phenotypes of this allele and of RNAi knockdown of Spar. The RNAi knockdown is a welcome addition. However, the authors only show one parental control the GAL4 / +, but leave out the other parental control i.e. the UAS RNAi / + e.g. in Fig. 9. It is important to show both parental controls.

      Further, the sleep and circadian characterisation could be substantially improved. It is unclear how sleep was calculated - what program was used or what the criteria to define a sleep bout was. In the legend for Fig 8c, it says sleep was shown as "percentage of time flies spend sleeping measured every 5min across a 24h time span". Sleep in flies is (usually) defined as at least 5 min of inactivity. With this definition, I'm not sure how one can calculate the % time asleep in a 5 min bin! Typically people use 30min or 60min bins. The sleep numbers for controls also seem off to me e.g. in Fig. 8H and H' average sleep / day is ~100. Is this minutes of sleep? 100 min / day is far too low, is it a typo? The same applies to Figure 8, figure supplement 2. Other places e.g. Fig 8 figure supplement 1, avg sleep is around 1000 min / day. The numbers for sleep bouts are also too low to me e.g. in Fig 9 number of sleep bouts avg around 4, and in Fig. 8 figure supplement 2 they average 1 sleep bout. There are several free software packages to analyse sleep data (e.g. Sleep Mat, PMID 35998317, or SCAMP). I would recommend that the authors reanalyse their data using one of these standard packages that are used routinely in the field. That should help resolve many issues.

      The circadian anticipatory activity analyses could also be improved. The standard in the field is to perform eduction analyses and quantify anticipatory activity e.g. using the method of Harrisingh et al. (PMID: 18003827). This typically computed as the ratio of activity in the 3hrs preceding light transition to activity in the 6hrs preceding light transition. The programs referenced above should help with this.

      Finally, in many cases I'm not sure that the appropriate statistical tests have been used e.g. in Fig 8c, 8e, 8h t-tests have been used when are three groups in the figure. The appropriate test here would an ANOVA, followed by post-hoc comparisons.

    1. Reviewer #1 (Public Review):

      The authors present a study focused on addressing the key challenge in drug discovery, which is the optimization of absorption and affinity properties of small molecules through in silico methods. They propose active learning as a strategy for optimizing these properties and describe the development of two novel active learning batch selection methods. The methods are tested on various public datasets with different optimization goals and sizes, and new affinity datasets are curated to provide up-to-date experimental information. The authors claim that their active learning methods outperform existing batch selection methods, potentially reducing the number of experiments required to achieve the same model performance. They also emphasize the general applicability of their methods, including compatibility with popular packages like DeepChem.

      Strengths:

      Relevance and Importance: The study addresses a significant challenge in the field of drug discovery, highlighting the importance of optimizing absorption and affinity properties of small molecules through in silico methods. This topic is of great interest to researchers and pharmaceutical industries.

      Novelty: The development of two novel active learning batch selection methods is a commendable contribution. The study also adds value by curating new affinity datasets that provide chronological information on state-of-the-art experimental strategies.<br /> Comprehensive Evaluation: Testing the proposed methods on multiple public datasets with varying optimization goals and sizes enhances the credibility and generalizability of the findings. The focus on comparing the performance of the new methods against existing batch selection methods further strengthens the evaluation.

      Weaknesses:

      Lack of Technical Details: The feedback lacks specific technical details regarding the developed active learning batch selection methods. Information such as the underlying algorithms, implementation specifics, and key design choices should be provided to enable readers to understand and evaluate the methods thoroughly.

      Evaluation Metrics: The feedback does not mention the specific evaluation metrics used to assess the performance of the proposed methods. The authors should clarify the criteria employed to compare their methods against existing batch selection methods and demonstrate the statistical significance of the observed improvements.

      Reproducibility: While the authors claim that their methods can be used with any package, including DeepChem, no mention is made of providing the necessary code or resources to reproduce the experiments. Including code repositories or detailed instructions would enhance the reproducibility and practical utility of the study.

      Suggestions for Improvement:

      Elaborate on the Methodology: Provide an in-depth explanation of the two active learning batch selection methods, including algorithmic details, implementation considerations, and any specific assumptions made. This will enable readers to better comprehend and evaluate the proposed techniques.

      Clarify Evaluation Metrics: Clearly specify the evaluation metrics employed in the study to measure the performance of the active learning methods. Additionally, conduct statistical tests to establish the significance of the improvements observed over existing batch selection methods.

      Enhance Reproducibility: To facilitate the reproducibility of the study, consider sharing the code, data, and resources necessary for readers to replicate the experiments. This will allow researchers in the field to validate and build upon your work more effectively.

      Conclusion:<br /> The authors' study on active learning methods for optimizing drug discovery presents an important and relevant contribution to the field. The proposed batch selection methods and curated affinity datasets hold promise for improving the efficiency of drug discovery processes. However, to strengthen the study, it is crucial to provide more technical details, clarify evaluation metrics, and enhance reproducibility by sharing code and resources. Addressing these limitations will further enhance the value and impact of the research.

    2. Reviewer #2 (Public Review):

      The authors presented a well-written manuscript describing the comparison of active-learning methods with state-of-art methods for several datasets of pharmaceutical interest. This is a very important topic since active learning is similar to a cyclic drug design campaign such as testing compounds followed by designing new ones which could be used to further tests and a new design cycle and so on. The experimental design is comprehensive and adequate for proposed comparisons.

      1) Text in figures still very small and difficult to read. Please redraw the figures increasing the font size: 10-12pt is ideal in comparison with the main text. In my opinion, it seems like the authors drew the Figure properly but there is an automatic resizing by inserting it in the document. Please consider ensuring that the font size will remain legible in the final document.

      2) I think this work will benefit from a comparison of obtained models to other models reported in the literature and the interpretability of models (e.g. contribution of molecule groups to the modeled activity) as it is required by OECD guide for QSAR purposes.

    1. Reviewer #2 (Public Review):

      Summary:

      This paper tests the idea that schooling can provide an energetic advantage over solitary swimming. The present study measures oxygen consumption over a wide range of speeds, to determine the differences in aerobic and anaerobic cost of swimming, providing a potentially valuable addition to the literature related to the advantages of group living.

      Strengths:<br /> The strength of this paper is related to providing direct measurements of the energetics (oxygen consumption) of fish while swimming in a group vs solitary. The energetic advantages of schooling has been claimed to be one of the major advantages of schooling and therefore a direct energetic assessment is a useful result.

      Weaknesses:

      1) Regarding the fish to water volume ratio, the arguments raised by the authors are valid. However, the ratio used is still quite high (as high as >2000 in solitary fish), much higher than that recommended by Svendsen et al (2006). Hence this point needs to be discussed in the ms (summarising the points raised in the authors' response)

      2) Wall effects: Fish in a school may have been swimming closer to the wall. The fact that the convex hull volume of the fish school did not change as speed increased is not a demonstration that fish were not closer to the wall, nor is it a demonstration that wall effect were not present. Therefore the issue of potential wall effects is a weakness of this paper.

      3) The authors stated "Because we took high-speed videos simultaneously with the respirometry measurements, we can state unequivocally that individual fish within the school did not swim closer to the walls than solitary fish over the testing period". This is however not quantified.

      4) Statistical analysis. The authors have dealt satisfactorily with most of the comments.<br /> However :<br /> (a) the following comment has not been dealt with directly in the ms "One can see from the graphs that schooling MO2 tends to have a smaller SD than solitary data. This may well be due to the fact that schooling data are based on 5 points (five schools) and each point is the result of the MO2 of five fish, thereby reducing the variability compared to solitary fish."<br /> (b) Different sizes were used for solitary and schooling fishes. The authors justify using larger fish as solitary to provide a better ratio of respirometer volume to fish volume in the tests on individual fish. However, mass scaling for tail beat frequency was not provided. Although (1) this is because of lack of data for this species and (2) using scaling exponent of distant species would introduce errors of unknown magnitude, this is still a weakness of the paper that needs to be acknowledged here and in the ms.

    2. Reviewer #3 (Public Review):

      Zhang and Lauder characterized both aerobic and anaerobic metabolic energy contributions in schools and solitary fishes in the Giant danio (Devario aequipinnatus) over a wide range of water velocities. By using a highly sophisticated respirometer system, the authors measure the aerobic metabolisms by oxygen uptake rate and the non-aerobic oxygen cost as excess post-exercise oxygen consumption (EPOC). With these data, the authors model the bioenergetic cost of schools and solitary fishes. The authors found that fish schools have a J-shaped metabolism-speed curve, with reduced total energy expenditure per tail beat compared to solitary fish. Fish in schools also recovered from exercise faster than solitary fish. Finally, the authors conclude that these energetic savings may underlie the prevalence of coordinated group locomotion in fish.

      The conclusions of this paper are mostly well supported by data.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors describe their work on finding optimal ways of infusing organoids into mice. They describe five delivery methods and compare organoid survival two weeks after delivery. This work is concluded with the use of a vascularized chamber being the most optimal for organoid viability.

      Strengths:<br /> The aim is to have a preclinical, translational model to test methods of organoid infusion. This is important and timely to the field.

      Weaknesses:<br /> - A clear aim seems to be missing, although I can extract this from the manuscript. The approach is described a bit cryptically. The manuscript could use a bit more explanation here and there.<br /> - Although the authors themselves argue in the introduction that the use of mice is not optimal, they show a mouse study in which human-derived iPSC organoids are infused in mice.<br /> - As far as I can extract from the Methods section, only one iPSC line was used. Given the huge donor variance, it is essential to repeat the work with multiple iPSC lines.<br /> - I am missing the right control groups, especially for the surgical groups. And the group size is very variable (3 to 7 mice per group). Three per group is then somewhat small in size.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this study, human induced pluripotent stem cell (hiPSC)-derived liver progenitor cell organoids were transplanted into four different transplantation sites in a mouse model of liver disease, using five organoid delivery methods. Organoids were transplanted into the vascularised chamber device established in the groin, or into the liver, spleen, and subcutaneous fat. Results show that the vascularised chamber had the highest organoid survival, 5.1x higher than the site with the second highest survival (p=0.0002), being the intra-hepatic scaffold approach. Animals with the vascularised chamber also had the highest human albumin levels (0.33 {plus minus} 0.09 ng/mL). No organoid survival was observed when delivered into the liver without a scaffold, or when injected into the spleen. Meager survival occurred in transplantations into subcutaneous fat.

      Strengths:<br /> A systematic study with a clear line of experiments and well-presented results. The manuscript is well-written and easy to follow. The results and conclusions drawn are convincing.

      Weaknesses:<br /> Although the number of organoids and albumin secretion is visibly higher in the vascularised chamber device, the organoids possess relatively higher Sox9+ cells compared to HNFa4a+ cells suggesting higher biliary differentiation than hepatic differentiation. On the other hand, although the intrahepatic scaffold approach, with a relatively smaller number of organoids and less albumin secretion, showed higher hepatic differentiation (although non-significant) suggesting that better scaffolds could be researched further to assess the clinical application of intrahepatic scaffold-based organoid transplantation.

    1. Reviewer #1 (Public Review):

      This is a very well-written and performed study describing a TOPBP1 separation of function mutation, resulting in defective MSCI maintenance but normal sex body formation. The phenotype differs from that of a previous TOPBP1 null allele, in which both MSCI and sex body formation were defective. Additional defects in CHK phosphorylation and SETX localization are also described.

      Strengths:

      The study is very rigorous, with a remarkably large number spectrum of techniques deployed to support the conclusions

      Weaknesses

      The study claims that MSCI is initiated but not maintained in the mutant. I think alternative hypotheses are possible.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This paper described the role of BRCT repeat 5 in TOPBP1, a DNA damage response protein, in the maintenance of meiotic sex chromosome inactivation (MSCI). By analyzing a Topbp1 mutant mouse with amino acid substitutions in BRCT repeat 5, the authors found reduced phosphorylation of a DNA/RNA helicase, Sentaxin, and decreased localization of the protein to the X-Y sex body in pachynema. Moreover, the authors also found decreased repression of several genes on the sex chromosomes in the male mice.

      Strengths:<br /> The works including phospho-proteomics and single-cell RNA sequencing with lots of data have been done with great care and most of the results are convincing.

      Weaknesses:<br /> No weakness.

    3. Reviewer #3 (Public Review):

      The work presented by Ascencao and coworkers aims to deepen into the process of sex chromosome inactivation during meiosis (MSCI) as a critical factor in the regulation of meiosis progression in male mammals. For this purpose, they have generated a transgenic mouse model in which a specific domain of TOPBP1 protein has been mutated, hampering the binding of a number of protein partners and interfering with the regulatory cascade initiated by ATR. Through the use of immunolocalization of an impressive number of markers of MSCI, phosphoproteomics and single cell RNA sequencing (scRNAseq), the authors are able to show that despite a proper morphological formation of the sex body and the incorporation of most canonical MSCI makers, sex chromosome-liked genes are reactivated at some point during pachytene and this triggers meiosis progression breakdown, likely due to a defective phosphorylation of the helicase SETX.<br /> The manuscript presents a clear advance in the understanding of MSCI and meiosis progression with two main strengths. First, the generation of a mouse model with a very uncommon phenotype. Second, the use of a vast methodological approach. The results are well presented and illustrated. Nevertheless, the discussion could be still a bit tuned by the inclusion of some ideas, and perhaps speculations, that have not been considered.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors developed a mathematical model to predict human biological ages using physiological traits. This model provides a way to identify environmental and genetic factors that impact aging and lifespan.

      Strengths:

      1. The topic addressed by the authors - human age predication using physiological traits - is an extremely interesting, important, and challenging question in the aging field. One of the biggest challenges is the lack of well-controlled data from a large number of humans. However, the authors took this challenge and tried their best to extract useful information from available data.

      2. Some of the findings can provide valuable guidelines for future experimental design for human and animal studies. For example, it was found that this mathematical model can best predict age when all different organ and physiological systems are sampled. This finding makes sense in general but can be, and has been, neglected when people use molecular markers to predict age. Most of those studies have used only one molecular trait or different traits from one tissue.

      Weaknesses:

      1. As I mentioned above, the Biobank data used here are not designed for this current study, so there are many limitations for model development using these data, e.g., missing data points and irrelevant measurements for aging. This is a common caveat for human studies and has been discussed by the authors.

      2. There is no validation dataset to verify the proposed model. The authors suggested that human biological age can be predicted with high accuracy using 12 simple physiological measurements. It will be super useful and convincing if another biobank dataset containing those 12 traits can be applied to the current model.

    2. Reviewer #2 (Public Review):

      In this manuscript, Libert et al. develop a model to predict an individual's age using physiological traits from multiple organ systems. The difference between the predicted biological age and the chronological age -- ∆Age, has an effect equivalent to that of a chronological year on Gompertz mortality risk. By conducting GWAS on ∆Age, the authors identify genetic factors that affect aging and distinguish those associated with age-related diseases. The study also uncovers environmental factors and employs dropout analysis to identify potential biomarkers and drivers for ∆Age. This research not only reveals new factors potentially affecting aging but also shows promise for evaluating therapeutics aimed at prolonging a healthy lifespan. This work represents a significant advancement in data-driven understanding of aging and provides new insights into human aging. Addressing the points raised would enhance its scientific validity and broaden its implications.

      Major points:

      1. Enhance the description and clarity of model evaluation.

      The manuscript requires additional details regarding the model's evaluation. The authors have stated "To develop a model that predicts age, we experimented with several algorithms, including simple linear regression, Gradient Boosting Machine (GBM) and Partial Least Squares regression (PLS). The outcomes of these approaches were almost identical". It is currently unclear whether the 'almost identical outcomes' mentioned refer to the similarity in top contribution phenotypes, the accuracy of age prediction, or both. To resolve this ambiguity, it would be beneficial to include specific results and comparisons from each of these models.

      Furthermore, the authors mention "to test for overfitting, a PLS model had been generated on randomly selected 90% of individuals and tested on the remaining 10% with similar results". To comprehensively assess the model's performance, it is crucial to provide detailed results for both the test and validation datasets. This should at least include metrics such as correlation coefficients and mean squared error for both training and test datasets.

      2. External validation and generalization of results

      To enhance the robustness and generalizability of the study's findings, it is crucial to perform external validation using an independent population. Specifically, conducting validation with the participants of the 'All of Us' research program offers a unique opportunity. This diverse and extensive cohort, distinct from the initial study group, will serve as an independent validation set, providing insights into the applicability of the study's conclusions across varied demographics.

    1. Reviewer #1 (Public Review):

      The manuscript by Kadkova et al. describes an electrophysiological analysis of 3 neurodevelopmental disease-causing SNAP-25 mutations in hippocampal neuron autaptic cultures. The work expands on a prior study of these 3 mutations, along with several others in SNAP-25, that was performed in acutely dissociated hippocampal cultures by another group (Alten et al, 2021). Most of the physiology defects found are pretty similar for the 3 mutations the two research groups characterized, with differences largely found in the effects on the size of the readily releasable pool (RRP) of SVs. These differences could be due to technical differences in the approach but are also likely to reflect in part differences in autapses as a model that have been previously described. In addition to the physiological analysis in cultured neurons, the current work extends the analysis beyond the prior study by analyzing the effects of these SNAP-25 mutations in in vitro liposome fusion assays with purified proteins, and some modeling of the effects on energy landscapes during priming and fusion.

      The authors use lentiviral expression of wildtype or one of the 3 mutants in SNAP-25 autaptic neurons and assay neuronal survival and synaptic output. The authors also combine wildtype with each of the 3 mutants as well, given these diseases manifest as spontaneous mutations in only 1 of the SNAP-25 alleles, suggesting a dominant effect. The authors observe that the V48F and D166Y alleles (that are suggested to disrupt the Syt1-SNAP-25/SNARE interface) result in a very large increase in spontaneous release that exceeds the Syt1 null mutant alone, suggesting an effect on spontaneous SV release beyond a lack of Syt1 regulation of SNARE-mediated fusion. In contrast, Syt1 nulls have a much more severe loss of evoked release, through both V48F and D166Y also have modest decreases in release. They find both mutants also cause a decrease in the RRP. Applying some modeling for these results, the authors suggest V48F and D166Y lowers the energy barrier for fusion, creating the enhanced spontaneous release rates and causing a decrease of the RRP. They also find evidence for reduced SV priming. In contrast, a SNAP-25 I167N disease mutation in the SNARE assembly interaction layer causes dramatic decreases in both evoked and spontaneous release, consistent with a disruption to SNARE assembly/stability. In vitro fusion assays with these mutant SNAP-25 alleles was also done and provided supportive evidence for these interpretations for all 3 alleles. The ability to control calcium, Syt1, PIP2 and Complexin levels in the in vitro assays provided additional information on defining the precise steps of the fusion process these mutations disrupt. Together, the study indicates the I167N mutation acts as a dominant-negative allele to block fusion, while the other two alleles have both loss- and gain-of function properties that cause more complex disruptions that decrease evoked release while dramatically enhancing spontaneous fusion.

      Overall, these results build on prior work and shed light on how disruptions to the SNAP-25 t-SNARE alter the process of SV priming and fusion.

    2. Reviewer #2 (Public Review):

      Kádková, Murach, Pedersen, and colleagues studied how three disease-causing missense mutations in SNAP25 affect synaptic vesicle exocytosis. These mutations have previously been studied by Alten et al., 2021. The authors observed similar impairments in spontaneous and evoked release as Alten et al., 2021, but the measurement of readily releasable pool (RRP) size differed between the two studies. The authors found that the V48F and D166Y mutations affect the interaction with the Ca2+ sensor synaptotagmin-1 (Syt1), but do not entirely phenocopy Syt1 loss-of-function because they also exhibit a gain-of-function. Thus, these mutations affect multiple aspects of the energy landscape for vesicle priming and fusion. The I67N mutation specifically increases the fusion energy barrier without affecting upstream vesicle priming.

      The strength of the study includes careful and technically excellent dissection of the synaptic release process and a combination of electrophysiology, biophysics, and modeling approaches. This study gained a deeper mechanistic understanding of these mutations in vesicle exocytosis than the previous study but did not result in a paradigm shift in our understanding of SNAP25-associated encephalopathy because the same spontaneous and evoked release phenotypes were previously identified.

      Comments on revised version:

      The authors fully addressed the two previous technical concerns and improved the introduction of the paper.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Moon et al analyse ECoG data obtained during speech listening and focus on the relationship of two aspects: 1) delays between voltage signals at individual electrodes to other electrodes in the vicinity and 2) the power of those signals in a range of spectral bands. They find that high power in frequencies below 30 Hz is correlated with longer delays. They further look for this pattern of results in an oscillator model.

      Strengths:<br /> The manuscript examines whether a finding made in cats in the late 90s generalises to intracranial recordings from humans. Specifically, the amplitude of low-frequency oscillations should be related to the delay of cross-correlation between areas. The authors find evidence for such a relationship and show this in individual participants. After inspecting this phenomenon from many different angles, they also added an oscillator model and claimed that they found a similar pattern there. As such, the manuscript reports an extensive body of work carried out on high-quality data.

      Weaknesses:<br /> The manuscript's readability and flow could be optimised: terms are used that aren't explained, and the structure seems somewhat convoluted. Showing single-subject results is laudable, however, the authors could consider adding group results that integrate across participants, and perhaps relaying single-participant plots to the supplemental material. The manuscript would benefit if analyses were motivated more clearly. Sometimes, I am unsure why a given analysis was carried out, why it was carried out in a specific way, and what question it was intended to answer.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In the paper "Inter-regional Delays Fluctuate in the Human Cerebral Cortex," the authors aim to investigate how global changes in the power of brain oscillations affect the latency and strength of cortico-cortical couplings. They measured changes in brain oscillations and inter-regional couplings using human intracranial recordings. Additionally, the authors employed oscillator models to elucidate their empirical findings.

      Strengths:<br /> The authors tested their hypotheses using human intracranial data, which provides a direct measurement of brain activity with high spatial and temporal resolution. This offers a unique insight into the interplay between oscillatory power and inter-regional coupling in the human brain.

      Weaknesses:<br /> The authors had access to only a subset of brain regions. Although this limitation is common in many intracranial studies, their discussion of global changes in brain oscillations is impacted by the lack of whole-brain coverage, and thus the global nature of these oscillations should be interpreted with caution.

      The description of the analysis procedure is not always clear.

      Summary of main concerns:<br /> My primary concerns relate to possible circularity in the analysis and the incomplete reporting of statistical results. For instance, correlation values are often provided without associated p-values, making it difficult to assess their significance. Furthermore, in some sections of the text, it is unclear whether specific results are supported by any statistical tests.

      Crucial information is buried in the supplemental materials (e.g., the figure showing results for broad-band high-frequency power). Some details about the specific paradigm are missing in the methods section, making it challenging to determine if additional controls are necessary in the analyses. I encourage the authors to clarify certain aspects of the analysis and results to ensure their conclusions are substantiated by the data. Should the results be robust, I believe the study will be significant for researchers interested in brain oscillations and beyond.

    3. Reviewer #3 (Public Review):

      Summary:<br /> This is my assessment of the manuscript entitled "Inter-regional delays fluctuate in the human cerebral cortex" submitted by Moon et al. to eleventh article deals with an interesting question, namely: how do different areas in the brain synchronize with each other. As the title indicates, the article shows that interregional activity can be more or less out of sync, and that the degree of synchronicity depends on the global power of low and high-frequency oscillations.

      Overall, I found the paper interesting, although, as written, it is sometimes not clear why studying these inter-regional delays is important. For a broader audience, it is necessary to better emphasize the relevance of inter-regional delays, and what we learn from studies like this beyond the mechanistic aspect of how waves spread in the human brain. Also, it is important to explain why the task (listening to audio) was chosen, and what this task offers in comparison to, for example, studying spontaneous activity. I understand that intra-cranial data from humans is precious and difficult to obtain, so I am not asking for more data, just for a clear honest explanation of why this task was chosen.

      Beyond these minor formatting issues, I have two main concerns on the data analysis and interpretation. In a nutshell, they deal with:

      - Cross-correlating alpha power with inter-electrode lags computed from raw signals where alpha itself is included. IMO this could lead to obvious high correlation values simply because low-frequency signals spread passively (with some delays) across electrodes. High-frequency signals spread less and are thus less correlated in neighboring electrodes.

      - Possible influence of the referencing scheme on the data. I could not find any information about where reference and ground electrodes were located but I fear that epochs of zero-lag coherence could be simply due to common referencing. Non-zero lag synchrony could be explained by generators becoming more or less active close to the recording electrodes. This is probably the most parsimonious explanation of the activity observed and explaining it does not require any coupled oscillators.

      Strengths:<br /> The paper relies on a strong dataset from intracranial recordings in humans. Conceptually the paper has strong value as it seeks to explore global and local activity dynamics within the human brain.

      Weaknesses:<br /> There are a number of methodological issues that need to be clarified, which could potentially influence the results obtained and their interpretation (i.e. corr-correlating alpha with itself, the influence of the referencing scheme on inter-electrode lags).

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this important work, the authors propose and test a model for the control of murine ultrasonic vocalizations (USV) in which two independent mechanisms, involving changes in laryngeal opening or airflow, control vocal tone. They present compelling experimental evidence for this dual control model by demonstrating the ability of freely behaving adult mice to generate vocalizations with various intonations by modulating both the breathing pattern and the laryngeal muscles. They also present novel evidence that these mechanisms are encoded in the brainstem vocalization central neural pattern generator, particularly in the component in the medulla called the intermediate reticular oscillator (iRO). The results presented clearly advance understanding of the developmental nature of the iRO, its ability to intrinsically generate and control many of the dynamic features of USV including those related to intonation, and its coordination with/control of expiratory airflow patterns. This work will interest neuroscientists investigating the neural generation and control of vocalization, breathing, and more generally, neuromotor control mechanisms.

      Strengths:<br /> Important features and novelty of this work include:

      1) The study employs an effective combination of anatomical, molecular, and functional/ behavioral approaches to examine the hypothesis and provide novel data indicating that variations in expiratory airflow can change the pitch patterns of adult murine USV.

      2) The results significantly extend the authors' previous work that identified the iRO in neonatal mice by now presenting data that functionally demonstrates the existence of the critical Penk+Vglut2+ iRO neurons in adult mice, indicating that the iRO neurons maintain their function in generating vocalization throughout development.

      3) The results convincingly demonstrate that the iRO neurons encode and can generate vocalizations by modulating both breathing and the laryngeal muscles.

      4) The anatomical mapping and tracing results establish an important set of input and output circuit connections to the iRO, including input from the vocalization-promoting subregions of the midbrain periaqueductal gray (PAG), as well as output axonal projections to laryngeal motoneurons, and to the respiratory rhythm generator in the preBötzinger complex.

      5) These studies advance the important concept that the brainstem vocalization pattern generator integrates with the medullary respiratory pattern generator to control expiratory airflow as a key mechanism to produce various USV types characterized by different pitch patterns.

      Weaknesses:<br /> A limitation is that the cellular and circuit mechanisms by which the vocalization pattern generator integrates with the respiratory pattern generator to control expiratory airflow have not been fully worked out, requiring future studies.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Both human and non-human animals modulate the frequency of their vocalizations to communicate important information about context and internal state. While regulation of the size of the laryngeal opening is a well-established mechanism to regulate vocal pitch, the contribution of expiratory airflow to vocal pitch is less clear. To consider this question, this study first characterizes the relationship between the dominant frequency contours of adult mouse ultrasonic vocalizations (USVs) and expiratory airflow using whole-body plethysmography. Next, the authors build off of their previous work characterizing intermediate reticular oscillator (iRO) neurons in mouse pups to establish the existence of a genetically similar population of neurons in adults and show that artificial activation of iRO neurons elicits USV production in adults. Third, the authors examine the acoustic features of USV elicited by optogenetic activation of iRO and find that a majority of natural USV types (as defined by pitch contour) are elicited by iRO activation.

      Strengths:<br /> Strengths of the study include the novel consideration of expiratory airflow as a mechanism to regulate vocal pitch and the use of intersectional methods to identify and activate the iRO in adult mice. The establishment of iRO neurons as a brainstem population that regulates vocal production across development is an important finding.

      Weaknesses:<br /> The study does not include statistical analyses to compare the observed relationships between expiratory airflow and USV pitch to a null model in which expiratory airflow and USV pitch are unrelated. The findings of the study also do not provide clear evidence to support the authors' model in which distinct brainstem populations (iRO and RAm) independently regulate expiratory airflow and laryngeal adduction. Although this study establishes iRO as an important population that regulates USV production in adult mice, the question of whether and how different brainstem populations contribute differentially to vocal production remains an important open question. Lastly, the addition of statistical analyses would help to strengthen the study's conclusion that iRO activation positively biases the relationship between expiratory airflow and USV pitch across multiple USV types.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This work studies spatiotemporal patterns of structure-function coupling in developing brains, using a large set of imaging data acquired from children and young adults aged 5-22. Magnetic resonance imaging data of brain structure and function were obtained from a publicly available database, from which structural and functional features and measures were derived. The authors examined the spatial patterns of structure-function coupling and how they evolve with brain development. This work further examined correlations between brain structure-function coupling and behaviour, and explored evolutionary, microarchitectural and genetic bases that could potentially account for the observed patterns.

      Strengths:<br /> The strength of this work is the use of currently available state-of-the-art analysis methods, along with a large set of high-quality imaging data, and comprehensive examination of structure-function coupling in developing brains. The results are comprehensive and illuminative.

      Weakness:<br /> As in most other studies, transcriptomic and cellular architectures of structure-function coupling were characterized only on the basis of a common atlas in this work.

      The authors have achieved their aims in this study, and the findings provide mechanistic insights into brain development, which could inspire further basic and clinical studies along this line.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Feng et al. investigated dynamic changes in functional and structural connectivity relationships across a broad age range from childhood to early adulthood (6-22 years) using the large open-source HCP-Development database of multimodal magnetic resonance imaging (MRI). Employing a multilinear model, the study integrates three white-matter structural descriptors derived from diffusion tractography with 'microstructure profile covariance' (MPC) descriptors of relationships between cortical regions in terms of regional T1w/T2w ratio, and evaluates the coupling between these structural connectome (SC) descriptors and functional connectivity (FC) as adjusted coefficients of determination, i.e. how well the structural descriptors correspond to the functional connectivity derived from resting-state functional MRI.

      The findings reveal a global increase in SC-FC coupling over development. At a regional level, coupling exhibited distinct profiles of age-related increases and decreases within and between functional networks. Individual variability captured by the presented measures of SC-FC coupling was implicated as a potential marker for the prediction of general intelligence scores. Additionally, the investigation extended to associating changes in SC-FC coupling with age to regional gene expression profiles (derived from Allen Human Brain Atlas that analysed six neurotypical adult brains), suggesting positive associations with oligodendrocyte-related pathways and negative associations with astrocyte-related genes.

      Strengths:<br /> Overall, the paper offers an interesting and valuable contribution to our understanding of structure-function relationships in the context of brain development. The commendable efforts to assess robustness across various methodologies, including brain parcellation and tractography, and reproducibility analyses on different data subsets enhance the paper's credibility. Combining cortical MPC with more usual white-matter descriptors of structural connectivity is interesting and provides (potentially) complementary information for the study of structure-function relationships with age. Analysing the changes in SC-FC coupling in relation to profiles of evolutionary expansion and functional principal gradients shows a good effort to position the present observations on SC-FC coupling within the previously described work.

      Weaknesses:<br /> Although the paper has many strengths, some aspects of the analysis need to be clarified to further support the proposed conclusions. In particular:

      * The authors propose that combining cortical and white-matter connectivity measures yields a more comprehensive descriptor of SC-FC coupling. While this is likely true, the claim is not directly tested by assessing different descriptors separately and then in combination to compare the benefits of incorporating additional information for the description of SC-FC coupling.

      * The authors report changes in SC-FC coupling with myelin content (reporting a positive association of coupling with regional myelin) and report positive associations between SC-FC correlation with age and expression of oligodendrocyte-related genes. Given that the computation of SC-FC coupling involves the T1w/T2w ratios within cortical regions (recognised as a myelin marker), it's plausible that these findings may be influenced by potential bias introduced by myelin-related measures in the coupling computation process.

      * The authors investigate the predictive power of SC-FC coupling, suggesting non-random (but weak) prediction of individual variability in general intelligence (after age correction). However, again the benefit of using SC-FC coupling measures over using each modality alone is not evaluated. Such comparison might indicate whether the coupling is an informative measure in itself or whether it might be informative only to the extent to which it is a proxy measure of SC and FC (in case the predictive power of each separate modality is much higher).

      * Generally, more information on quality assessment of tractography and parcellations (including potential age effects on processing given the wide age range of the participants), additional details on the distribution of cognitive scores used in the predictive section, and further clarifications regarding the design choices and validation strategy would provide the reader with a more detailed understanding of the cohort and proposed analytical pipeline (these minor comments are included in the private recommendations to authors).

    1. Reviewer #1 (Public Review):

      He et al. investigate the requirement and function of Blimp1 (encoded by Prdm1) in murine NK cells and ILC1. Employing a conditional knockout mouse model (Prdm1flox x Ncr1cre), the authors describe impaired abundance and maturation of Prdm1-deficient NK cells and ILC1 in different tissues. Blimp1-deficient NK cells have reduced expression of cytotoxic molecules (Gzmb, Prf1) and, in some instances, Ifng production, and Prdm1flox x Ncr1cre mice show impaired tumor control in experimental metastasis models. Using single-cell RNA sequencing analysis, the authors propose that Prdm1 regulates JunB expression and NK cell maturation. Based on in silico analyses, the authors suggest manifold intercellular communication between NK/ILC1 and macrophages. Without following up on any of these potentially interesting suggestions, the authors conclude their study reiterating that Prdm1 regulates IFNg-production of tumor-infiltrating NK cells and ILC1.

      Many of the reported functions of Blimp1 in NK cells have previously been identified using a mixed-chimera strategy comparing Prdm1 WT and KO NK cells (Kallies et al., Blood 2011). Here, the authors expand on these findings using a conditional model to delete Prdm1 in NK/ILC1 and single-cell sequencing and provide a more refined analysis of the functions of Blimp1 in these cells. Cell-chat analysis suggests close interactions of Blimp-dependent NK/ILC1 subsets with hepatic macrophages, but these suggestions are not followed up by experiments. Potentially interesting differences in the macrophage compartment of Ncr1-Cre x Prdm1-fl/fl mice are suggested by the scc-RNA-Seq data but are not validated e.g. by FACS. The study falls short in providing new mechanistic insights. Nevertheless, it is an interesting confirmation of "old" suggestions in a more refined setting, and the provided single-cell mRNA-Seq data represents a potentially valuable resource for the community. There are some control analyses that are required to support the conclusions of the authors, and I have a few suggestions that would help to improve the manuscript.

      Major comments:

      - The authors do not control for the potential effects of Cre expression. Expression of Cre from within the Ncr1 locus (using the mouse model established by Narni-Mancinelli et al.) has significant effects on NK cells and especially ILC1s (reducing their frequency and absolute numbers and altering their functionality. The authors should characterize the Ncr1cre mice used here (developed by Shanghai Model Organism Center) in this regard and should use proper controls (Ncr1Cre+ Prdm1wt/wt as control for Ncr1Cre+ Prdm1fl/fl, instead of WT littermates) for all of their key data, e.g. those depicted in Fig 1FG, 2ADFH, 7D, S2,3,4.

      - Several of the phenotypic findings on NK cells have been described before by Kallies et al. in 2011 (Ref 29), although using a different genetic Prdm1-ablation model (Prdm1-GFP/GFP knockin/knockout model). This study reported impaired NK cell maturation, reduced Gzmb expression, impaired in vivo cytotoxicity against subcutaneous RMA-S cells, impaired in vitro proliferation, comparable in vitro killing, increase in BM NK cell numbers. The authors should discuss/mention this more prominently in their manuscript, and highlight where they confirm or refine these previous findings, and where they actually provide new information.

      - What is the reason to refer to the enriched cluster in Blimp1-deficient NK cells as "Junbhi"? There is no follow-up for a function of Junb, and there are many other genes upregulated in these cells. Most critically, these cells seem to represent exactly the c-Kithi cells that Kallies et al. already showed and discussed in their paper. The authors should stain for Kit, and also refer to this. Also, MacKay et al. performed Blimp1-Chip-Seq (in T cells), maybe it would be interesting to check to which of the identified DEGs Blimp1 can bind.

      - cNK cells are considered circulating cells, that transiently pass through the liver. Previous studies have suggested almost identical gene expression patterns in hepatic and splenic NK cells. In functional tests, they often "perform" identically. I am therefore a bit surprised that the authors find a differential dependency of Blimp1 for the IFNg production of splenic (no role of Blimp1) versus hepatic (Blimp1 regulating IFNg production) NK cells (Fig S3). Do the authors have any suggestions on that? The analyses are performed by 12+4h stimulations with IL12/18, which could involve the effects of altered bystander cells (as suggested by Figure 6). Therefore, these analyses should be provided upon standard 4h stimulations with IL12/18 and also with PMA/I under BFA. Note: liver and splenic cNK cells look quite different in the chosen histograms in Figures 7 A, B, C, yet there is massive variability in these analyses - is there any systematic/technical problem?

      - Figure 4 H/I - In contrast to NK cells in Fig 4E, F, the KO and WT ILC1s seem to co-cluster largely. Authors should validate differentially expressed genes. How strong is the effect of Blimp1 in ILC1s? Or is Blimp1 a critical TF driving effector differentiation in NK cells, while it has only subtle effects in ILC1 (these may be regulated by Hobit?)? This seems an interesting finding that should at least be discussed. For these types of small differences in ILC1, FACS confirmation analyses should be performed and findings be reevaluated using Cre-expressing controls (see above).

      The authors describe and discuss some of Figure 1 and 2 data as if Blimp1 would be involved in alternative NK versus ILC1 fates, but there is no evidence for this.

      - There are several recent studies suggesting a role for Hobit, homologue of Blimp1, in NK cells and in ILC1, and in the control of liver metastases. The authors should discuss similar and unique functions of Hobit and Blimp1, also in the regulation of gene expression patterns, and should refer to these studies.

      - Figure 4: The authors should discuss (and cross-validate) their liver gene expression analyses in the context of published datasets of NK and ILC1, such as the ones by Lopez et al, Friedrich et al, Ducimetiere et al and Yomogida et al.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This study offers a significant advancement in understanding liver innate lymphoid cell (ILC) biology by elucidating the role of the transcription factor Prdm1. It shows that Prdm1 is crucial in maintaining the balance between conventional natural killer (cNK) cells and ILC1s in the liver, with knockout models revealing a vital role in cancer defense mechanisms. Despite not affecting direct cytotoxicity, Prdm1 deficiency leads to increased cancer metastasis and reduced secretion of key molecules like IFN-γ, pointing to its importance in immune regulation. The use of single-cell RNA sequencing further underscores Prdm1's role in cellular communication within the liver's immune milieu. This study is a robust contribution to the field, providing insights that could inform new immunotherapy approaches for liver cancer.

      Strengths:<br /> The study's strength lies in its comprehensive approach, combining the specificity of Prdm1 conditional deletion in Ncr1-cre mice with integrative omics analyses and cutting-edge cytometry to delineate Prdm1's role in liver Type 1 ILC biology and its functional implications in tumor immunity. This multifaceted strategy not only clarifies Prdm1's influence on ILC composition and maturation but also conveys potential therapeutic insights for liver cancer immunotherapy.

      Weaknesses:<br /> A notable weakness of the study is the limited scope of in vivo disease models, primarily relying on the B16F10 melanoma model, which may not fully capture the complex behavior of Type 1 ILCs across diverse cancer types. Furthermore, the absence of direct human data, such as the effects of PRDM1 deletion in human NK cells or stem cells during their differentiation into NK and ILC1, leaves a gap in translating these findings to clinical settings.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Functionally important alternative isoforms are gold nuggets found in a swamp of errors produced by the splicing machinery.

      The architecture of eukaryotic genomes, when compared with prokaryotes, is characterised by a preponderance of introns. These elements, which are still present within transcripts, are rapidly removed during the splicing of messenger RNA (mRNA), thus not contributing to the final protein. The extreme rarity of introns in prokaryotes, and the elimination of these introns from mRNAs before translation into protein, raises questions about the function of introns in genomes. One explanation comes from functional biology: introns are thought to be involved in post-transcriptional regulation and in the production of translational variants. The latter function is possible when the positions of the edges of the spliced intron vary. While some light has been shed on specific examples of the functional role of alternative splicing, to what extent are they representative of all introns in metazoans?

      In this study, the hypothesis of a functional role for alternative splicing, and therefore to a certain extent for introns, is evaluated against another explanation coming from evolutionary biology: isoforms are above all errors of imprecision by the molecular machinery at work during splicing. This hypothesis is based on a principle established by Motoo Mikura, which has become central to population genetics, explaining that the evolutionary trajectory of a mutation with a given effect is intimately linked to the effective population size (Ne) where this mutation emerges. Thus, the probability of fixation of a weakly deleterious mutation increases when Ne decreases, and the probability of fixation of a weakly advantageous mutation increases when Ne increases. The genomes of populations with low Ne are therefore expected to accumulate more weakly deleterious mutations and fewer weakly advantageous mutations than populations with high Ne. In this framework, if splicing errors have only small effects on the fitness of individuals, then natural selection cannot increase the precision of the splicing machinery, allowing tolerance for the production of alternative isoforms.

      In the past, the debate opposed one-off observations of effectively functional isoforms on the one hand, to global genomic quantities describing patterns without the possibility of interpreting them in detail. The authors here propose an elegant quantitative approach in line with the expected continuous variation in the effectiveness of selection, both between species and within genomes. The result describing the inter-specific pattern on a large scale confirms what was already known (there is a negative relationship between effective size and average alternative splicing rate). The essential novelty of this study lies in 1) the quantification, for each intron studied, of the relative abundance of each isoform, and 2) the analysis of a relationship between this abundance and the evolutionary constraints acting on these isoforms.

      What is striking is the light shed on the general very low abundance of alternative isoforms. Depending on the species, 60% to 96% of cases of alternatively spliced introns lead to an isoform whose abundance is less than 5% of the total variants for a given intron.

      In addition to the fact that 60%-96% of the total isoforms are more than 20 times less abundant than their majority form, this large proportion of alternative isoforms exhibit coding-phase shift at rates similar to what would be expected by chance, i.e. for a third of them, which reinforces the idea that there is no particular constraint on these isoforms.

      The remaining 4%-40% of isoforms see their coding-phase shift rate decrease as their relative abundance increases. This result represents a major step forward in our understanding of alternative splicing and makes it possible to establish a quantitative model directly linking the relative abundance of an isoform with a putative functional role concerning only those isoforms produced in abundance. Only the (rare) isoforms which are abundantly produced are thought to be involved in a biological function.

      Within the same genome, the authors show that only highly expressed genes, i.e. those that tend to be more constrained on average, are also the genes with the lowest alternative splicing rates on average.

      The comparison between species in this study reveals that the smaller the effective size of a species, the more its genome produces isoforms that are low in abundance and low in constraint. Conversely, species with a large effective size relatively reduce rare isoforms, and increase stress on abundant isoforms.

      To sum up:<br /> • the higher the effective size of a species, the fewer introns are spliced.<br /> • highly expressed genes are spliced less.<br /> • when splicing occurs, it is mainly to produce low-abundance isoforms.<br /> • low-abundance isoforms are also less constrained.

      Taken together, these results reinforce a quantitative view of the evolution of alternative splicing as being mainly the product of imprecision in the splicing machinery, generating a great deal of molecular noise. Then, out of all this noise, a few functional gold nuggets can sometimes emerge. From the point of view of the reviewer, the evolutionary dynamics of genomes are depressing. The small effective population sizes are responsible for the accumulation of multiple slightly deleterious introns. Admittedly, metazoan genomes try to get rid of these introns during RNA maturation, but this mechanism is itself rendered imprecise by population sizes.

      Strengths:<br /> • The authors simultaneously study the effects of effective population size, isoform abundance, and gene expression levels on the evolutionary constraints acting on isoforms. Within this framework, they clearly show that an isoform becomes functionally important only under certain rare conditions.<br /> • The authors rule out an effect putatively linked to variations in expression between different organs which could have biased comparisons between different species.

      Weaknesses:<br /> • While the longevity of organisms as a measure of effective size seems to work overall, it may not be relevant for discriminating within a clade. For example, within Hymenoptera, we might expect them to have the same overall longevity, but that effective size would be influenced more by the degree of sociality: solitary bees/ants/wasps versus eusocial. I am therefore certain that the relationship shown in Figure 4D is currently not significant because the measure of effective size is not relevant for Hymenoptera. The article would have been even more convincing by contrasting the rates of alternative splicing between solitary versus social hymenopterans.<br /> • When functionalist biologists emphasise the role of the complexity of living things, I'm not sure they're thinking of the comparison between "drosophila" and "homo sapiens", but rather of a broader evolutionary scale. Which gives the impression of an exaggeration of the debate in the introduction.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Two hypotheses could explain the observation that genes of more complex organisms tend to undergo more alternative splicing. On one hand, alternative splicing could be adaptive since it provides the functional diversity required for complexity. On the other hand, increased rates of alternative splicing could result through nonadaptive processes since more complex organisms tend to have smaller effective population sizes and are thus more prone to deleterious mutations resulting in more spurious splicing events (drift-barrier hypothesis). To evaluate the latter, B́enitiere et al. analyzed transcriptome sequencing data across 53 metazoan species. They show that proxies for effective population size and alternative splicing rates are negatively correlated. Furthermore, the authors find that rare, nonfunctional (and likely erroneous) isoforms occur more frequently in more complex species. Additionally, they show evidence that the strength of selection on splice sites increases with increasing effective population size and that the abundance of rare splice variants decreases with increased gene expression. All of these findings are consistent with the drift-barrier hypothesis.

      This study conducts a comprehensive set of separate analyses that all converge on the same overall result and the manuscript is well organized. Furthermore, this study is useful in that it provides a modified null hypothesis that can be used for future tests of adaptive explanations for variation in alternative splicing.

      Strengths:<br /> The major strength of this study lies in its complementary approach combining comparative and population genomics. Comparing evolutionary trends across phylogenetic diversity is a powerful way to test hypotheses about the origins of genome complexity. This approach alone reveals several convincing lines of evidence in support of the drift-barrier hypothesis. However, the authors also provide evidence from a population genetics perspective (using resequencing data for humans and fruit flies), making results even more convincing.

      The authors are forward about the study's limitations and explain them in detail. They elaborate on possible confounding factors as well as the issues with data quality (e.g. proxies for Ne, inadequacies of short reads, heterogeneity in RNA-sequencing data).

      Weaknesses:<br /> The authors primarily consider insects and mammals in their study. This only represents a small fraction of metazoan diversity. Sampling from a greater diversity of metazoan lineages would make these results and their relevance to broader metazoans substantially more convincing. Although the authors are careful about their tone, it is challenging to reconcile these results with trends across greater metazoans when the underlying dataset exhibits ascertainment bias and represents samples from only a few phylogenetic groups. Relatedly, some trends (such as Figure 1B-C) seem to be driven primarily by non-insect species, raising the question of whether some results may be primarily explained by specific phylogenetic groups (although the authors do correct for phylogeny in their statistics). How might results look if insects and mammals (or vertebrates) are considered independently?

      Throughout the manuscript, the authors refer to infrequently spliced (mode <5%) introns as "minor introns" and frequently spliced (mode >95%) as "major introns". This is extremely confusing since "minor introns" typically represent introns spliced by the U12 spliceosome, whereas "major introns" are those spliced by the U2 spliceosome. Furthermore, it remains unclear whether the study only considers major introns or both major and minor introns. Minor introns typically have AT-AC splice sites whereas major introns usually have GT/GC-AG splice sites, although in rare cases the U2 can recognize AT-AC (see Wu and Krainer 1997 for example). The authors also note that some introns show noncanonical AT-AC splice sites while these are actually canonical splice sites for minor introns.

    1. Reviewer #1 (Public Review):

      Summary:

      This important work advances our understanding of sperm motility regulation during fertilization by uncovering the midpiece/mitochondria contraction associated with motility cessation and structural changes in the midpiece actin network as its mode of action. The evidence supporting the conclusion is solid, with rigorous live cell imaging using state-of-the-art microscopy, although more functional analysis of the midpiece/mitochondria contraction would have further strengthened the study. The work will be of broad interest to cell biologists working on the cytoskeleton, mitochondria, cell fusion, and fertilization.

      Strengths:

      The authors demonstrate that structural changes in the flagellar midpiece F-actin network are concomitant to midpiece/mitochondrial contraction and motility arrest during sperm-egg fusion by rigorous live cell imaging using state-of-art microscopy.

      Weaknesses:

      Many interesting observations are listed as correlated or in time series but do not necessarily demonstrate the causality and it remains to be further tested whether the sperm undergoing midpiece contraction are those that fertilize or those that are not selected. Further elaboration of the function of the midpiece contraction associated with motility cessation (a major key discovery of the manuscript) would benefit from a more mechanistic study.

    2. Reviewer #2 (Public Review):

      The authors used various microscopy techniques, including super-resolution microscopy, to observe the changes that occur in the midpiece of mouse sperm flagella. Previously, it was shown that actin filaments form a double helix in the midpiece. This study reveals that the structure of these actin filaments changes after the acrosome reaction and before sperm-egg fusion, resulting in a thinner midpiece. Furthermore, by combining midpiece structure observation with calcium imaging, the authors show that changes in intracellular calcium concentrations precede structural changes in the midpiece. The cessation of sperm motility by these changes may be important for fusion with the egg. Elucidation of the structural changes in the midpiece could lead to a better understanding of fertilization and the etiology of male infertility. The conclusions of this manuscript are largely supported by the data, but there are several areas for improvement in data analysis and interpretation. Please see the major points below.

      1. It is unclear whether an increased FM4-64 signal in the midpiece precedes the arrest of sperm motility. This needs to be clarified in order to argue that structural changes in the midpiece cause sperm motility arrest. The authors should analyze changes in both motility and FM4-64 signal over time for individual sperm.

      2. It is possible that sperm stop moving because they die. Figure 1G shows that the FM4-64 signal is increased in the midpiece of immotile sperm, but it is necessary to show that the FM4-64 signal is increased in sperm that are not dead and retain plasma membrane integrity by checking sperm viability with propidium iodide or other means.

      3. It is unclear how the structural change in the midpiece causes the entire sperm flagellum, including the principal piece, to stop moving. It will be easier for readers to understand if the authors discuss possible mechanisms.

      4. The mitochondrial sheath and cell membrane are very close together when observed by transmission electron microscopy. The image in Figure 9A with the large space between the plasma membrane and mitochondria is misleading and should be corrected. The authors state that the distance between the plasma membrane and mitochondria approaches about 100 nm after the acrosome reaction (Line 330 - Line 333), but this is a very long distance and large structural changes may occur in the midpiece. Was there any change in the mitochondria themselves when they were observed with the DsRed2 signal?

      5. In the TG sperm used, the green fluorescence of the acrosome disappears when sperm die. Figure 1C should be analyzed only with live sperm by checking viability with propidium iodide or other means.

    3. Reviewer #3 (Public Review):

      While progressive and also hyperactivated motility are required for sperm to reach the site of fertilization and to penetrate the oocyte's outer vestments, during fusion with the oocyte's plasma membrane it has been observed that sperm motility ceases. Identifying the underlying molecular mechanisms would provide novel insights into a crucial but mostly overlooked physiological change during the sperm's life cycle. In this publication, the authors aim to provide evidence that the helical actin structure surrounding the sperm mitochondria in the midpiece plays a role in regulating sperm motility, specifically the motility arrest during sperm fusion but also during earlier cessation of motility in a subpopulation of sperm post acrosomal exocytosis.

      The main observation the authors make is that in a subpopulation of sperm undergoing acrosomal exocytosis and sperm that fuse with the plasma membrane of the oocyte display a decrease in midpiece parameter due to a 200 nm shift of the plasma membrane towards the actin helix. The authors show the decrease in midpiece diameter via various microscopy techniques all based on membrane dyes, bright-field images and other orthogonal approaches like electron microscopy would confirm those observations if true but are missing. The lack of additional experimental evidence and the fact that the authors simultaneously observe an increase in membrane dye fluorescence suggests that the membrane dyes instead might be internalized and are now staining intracellular membranes, creating a false-positive result. The authors also propose that the midpiece diameter decrease is driven by changes in sperm intracellular Ca2+ and structural changes of the actin helix network. Important controls and additional experiments are needed to prove that the events observed by the authors are causally dependent and not simply a result of sperm cells dying.

    1. Reviewer #1 (Public Review):

      Summary:

      Numerous pathways have been proposed to elucidate the nongenomic actions of progesterone within both male and female reproductive tissues. The authors employed the Xenopus oocyte system to investigate the PLA2 activity of ABHD2 and the downstream lipid mediators in conjunction with mPRb and P4, on their significance in meiosis. The research has been conducted extensively and is presented clearly.

      Strengths:

      While the interaction between membranous PR and ABHD2 is not a novel concept, this present study exhibits several strengths:

      1. mPRbeta, a member of the PAQR family, has been elusive in terms of detailed signal transduction. Through mutation studies involving the Zn binding domain, the authors discovered that the hydrolase activity of mPRbeta is not essential for meiosis and oocyte maturation. Instead, they suggest that ABHD2, acting as a coreceptor of mPRbeta, demonstrates phospholipase activity, indicating that downstream lipid mediators may play a dominant role when stimulated by progesterone.

      2. Extensive exploration of downstream signaling pathways and the identification of several potential meiotic activity-related lipid mediators make this aspect of the study novel and potentially significant.

      Weaknesses:

      However, there are some weaknesses and areas that need further clarification:

      1. The mechanism governing the molecular assembly of mPRbeta and ABHD2 remains unclear. Are they constitutively associated or is their association ligand-dependent? Does P4 bind not only to mPRbeta but also to ABHD2, as indicated in Figure 6J? In the latter case, the reviewer suggests that the authors conduct a binding experiment using labeled P4 with ABHD2 to confirm this interaction and assess any potential positive or negative cooperativity with a partner receptor.

      2. The authors have diligently determined the metabolite profile using numerous egg cells. However, the interpretation of the results appears incomplete, and inconsistencies were noted between Figure 2B and Supplementary Figure 2C. Furthermore, PGE2 and D2 serve distinct roles and have different elution patterns by LC-MS/MS, thus requiring separate measurements. In addition, the extremely short half-life of PGI2 necessitates the measurement of its stable metabolite, 6-keto-PGF1a, instead. The authors also need to clarify why they measured PGF1a but not PGF2a.

      3. Although they propose PGs, LPA, and S1P are important downstream mediators, the exact roles of the identified lipid mediators have not been clearly demonstrated, as receptor expression and activation were not demonstrated. While the authors showed S1PR3 expression and its importance by genetic manipulation, there was no observed change in S1P levels following P4 treatment (Supplementary Figure 2D). It is essential to identify which receptors (subtypes) are expressed and how downstream signaling pathways (PKA, Ca, MAPK, etc.) relate to oocyte phenotypes.

      These clarifications and further experiments would enhance the overall impact and comprehensiveness of the study.

    2. Reviewer #2 (Public Review):

      Summary:

      This interesting paper examines the earliest steps in progesterone-induced frog oocyte maturation, an example of non-genomic steroid hormone signaling that has been studied for decades but is still very incompletely understood. In fish and frog oocytes it seems clear that mPR proteins are involved, but exactly how they relay signals is less clear. In human sperm, the lipid hydrolase ABHD2 has been identified as a receptor for progesterone, and so the authors here examine whether ABHD2 might contribute to progesterone-induced oocyte maturation as well. The main results are:

      1. Knocking down ABHD2 makes oocytes less responsive to progesterone, and ectopically expressing ABHD2.S (but not the shorter ABHD2.L gene product) partially rescues responsiveness. The rescue depends upon the presence of critical residues in the protein's conserved lipid hydrolase domain, but not upon the presence of critical residues in its acyltransferase domain.

      2. Treatment of oocytes with progesterone causes a decrease in sphingolipid and glycerophospholipid content within 5 min. This is accompanied by an increase in LPA content and arachidonic acid metabolites. These species may contribute to signaling through GPCRs. Perhaps surprisingly, there was no detectable increase in sphingosine-1-phosphate, which might have been expected given the apparent substantial hydrolysis of sphingolipids. The authors speculate that S1P is formed and contributes to signaling but diffuses away.

      3. Pharmacological inhibitors of lipid-metabolizing enzymes support, for the most part, the inferences from the lipidomics studies, although there are some puzzling findings. The puzzling findings may be due to uncertainty about whether the inhibitors are working as advertised.

      4. Pharmacological inhibitors of G-protein signaling support a role for G-proteins and GPCRs in this signaling, although again there are some puzzling findings.

      5. Reticulocyte expression supports the idea that mPR and ABHD2 function together to generate a progesterone-regulated PLA2 activity.

      6. Knocking down or inhibiting ABHD2 inhibited progesterone-induced mPRinternalization, and knocking down ABHD2 inhibited SNAP2520-induced maturation.

      Strengths:

      All in all, this could be a very interesting paper and a nice contribution. The data add a lot to our understanding of the process, and, given how ubiquitous mPR and AdipoQ receptor signaling appear to be, something like this may be happening in many other physiological contexts.

      Weaknesses:

      I have several suggestions for how to make the main points more convincing.

      Main criticisms:

      1. The ABHD2 knockdown and rescue, presented in Fig 1, is one of the most important findings. It can and should be presented in more detail to allow the reader to understand the experiments better. E.g.: the antisense oligos hybridize to both ABHD2.S and ABHD2.L, and they knock down both (ectopically expressed) proteins. Do they hybridize to either or both of the rescue constructs? If so, wouldn't you expect that both rescue constructs would rescue the phenotype since they both should sequester the AS oligo? Maybe I'm missing something here.

      In addition, it is critical to know whether the partial rescue (Fig 1E, I, and K) is accomplished by expressing reasonable levels of the ABHD2 protein, or only by greatly overexpressing the protein. The author's antibodies do not appear to be sensitive enough to detect the endogenous levels of ABHD2.S or .L, but they do detect the overexpressed proteins (Fig 1D). The authors could thus start by microinjecting enough of the rescue mRNAs to get detectable protein levels, and then titer down, assessing how low one can go and still get rescue. And/or compare the mRNA levels achieved with the rescue construct to the endogenous mRNAs.

      Finally, please make it clear what is meant by n = 7 or n = 3 for these experiments. Does n = 7 mean 7 independently lysed oocytes from the same frog? Or 7 groups of, say, 10 oocytes from the same frog? Or different frogs on different days? I could not tell from the figure legends, the methods, or the supplementary methods. Ideally one wants to be sure that the knockdown and rescue can be demonstrated in different batches of oocytes, and that the experimental variability is substantially smaller than the effect size.

      2. The lipidomics results should be presented more clearly. First, please drop the heat map presentations (Fig 2A-C) and instead show individual time course results, like those shown in Fig 2E, which make it easy to see the magnitude of the change and the experiment-to-experiment variability. As it stands, the lipidomics data really cannot be critically assessed.

      [Even as heat map data go, panels A-C are hard to understand. The labels are too small, especially on the heat map on the right side of panel B. The 25 rows in panel C are not defined (the legend makes me think the panel is data from 10 individual oocytes, so are the 25 rows 25 metabolites? If so, are the individual oocyte data being collapsed into an average? Doesn't that defeat the purpose of assessing individual oocytes?) And those readers with red-green colorblindness (8% of men) will not be able to tell an increase from a decrease. But please don't bother improving the heat maps; they should just be replaced with more informative bar graphs or scatter plots.]

      3. The reticulocyte lysate co-expression data are quite important and are both intriguing and puzzling. My impression had been that to express functional membrane proteins, one needed to add some membrane source, like microsomes, to the standard kits. Yet it seems like co-expression of mPR and ABHD2 proteins in a standard kit is sufficient to yield progesterone-regulated PLA2 activity. I could be wrong here - I'm not a protein expression expert - but I was surprised by this result, and I think it is critical that the authors make absolutely certain that it is correct. Do you get much greater activities if microsomes are added? Are the specific activities of the putative mPR-ABHD2 complexes reasonable?

    3. Reviewer #3 (Public Review):

      Summary:

      The authors report two P4 receptors, ABHD2 and mPRβ that function as co-receptors to induce PLA2 activity and thus drive meiosis. In their experimental studies, the authors knock down ABHD2 and demonstrated inhibition of oocyte maturation and inactivation of Plk1, MAPK, and MPF, which indicated that ABHD2 is required for P4-induced oocyte maturation. Next, they showed three residues (S207, D345, H376) in the lipase domain that are crucial for ABHD2 P4-mediated oocyte maturation in functional assays. They performed global lipidomics analysis on mPRβ or ABHD2 knockdown oocytes, among which the downregulation of GPL and sphingolipid species were observed, and enrichment in LPA was also detected using their metabolomics method. Furthermore, they investigated pharmacological profiles of enzymes predicted to be important for maturation based on their metabolomic analyses and ascertained the central role of PLA2 in inducing oocyte maturation downstream of P4. They showed the modulation of S1P/S1PR3 pathway on oocyte maturation and the potential role for Gαs signaling and potentially Gβγ downstream of P4.

      Strengths:

      The authors make a very interesting finding that ABHD2 has PLA2 catalytic activity but only in the presence of mPRβ and P4. Finally, they provided supporting data for a relationship between ABHD2/PLA2 activity and mPRβ endocytosis and further downstream signaling. Collectively, this research report defines early steps in nongenomic P4 signaling, which has broad physiological implications.

      Weaknesses:

      There were concerns with the pharmacological studies presented. Many of these inhibitors are used at high (double-digit micromolar) concentrations that could result in non-specific pharmacological effects and the authors have provided very little data in support of target engagement and selectivity under the multiple experimental paradigms. In addition, the use of an available ABHD2 small molecule inhibitor was lacking in these studies.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Yue et al. re-processed publicly available DNA methylation data (published in 2012 and 2017 from the Meissner lab) from pre- and post-implantation mouse embryos. Against the global wave of genome-wide reduction of DNA methylation occurring during pre-implantation development, they detected a slight increase (~1% on average) of DNA methylation at gene promoter regions during the transition from 8-cell to blastocyst stage. They claim that many such promoters are located in the X chromosome. Subsequently, they knocked down Dnmt3b (presumably because of its upregulation during the transition from the 8-cell to blastocyst stage) and detected the aberrant patterning of H3K27me3 in the mutant female embryos. Based on this observation, they claim that imprinted X-chromosome inactivation is impaired in the Dnmt3b-Kd pre-implantation embryos. Finally, they propose a model where such an increase of DNA methylation together with H3K27me3 regulates imprinted X-chromosome inactivation in the pre-implantation embryos. While their observation is of potential interest, the current version of the work fails to provide enough evidence to support their conclusions. Below are suggestions and comments on the manuscript.

      Major issues:

      1. Sex of the embryos of the genome-wide bisulfite-sequencing data<br /> The authors re-analyzed publicly available genome-wide DNA methylation data from the Meissner lab published in 2012 and 2017. The former used reduced representation bisulfite sequencing (RRBS) and the latter used whole-genome bisulfite sequencing (WGBS). Based mainly on the RRBS data, Yue et al. detected de novo DNA methylated promoters during the transition from 8-cell to blastocyst against the global wave of genome-wide DNA demethylation. They claim that such promoter regions are enriched at the "inactive" X chromosome. However, it would be difficult to discuss DNA methylation at inactive X-chromosomes as the RRBS data were derived from a mixture of male and female embryos. It would also be notable that the increase of DNA methylation at these promoter regions is ~1% on average. Such a slight increase in DNA methylation during pre-implantation development could also be due to the developmental variations between the embryos or between the sexes of embryos.

      2. Imprinted X-chromosome inactivation and evaluation of H3K27me3 (related to Figures 2C, D; 3F; Figure2-supplement 2 F, G; Figure3-supplement 3G)<br /> Based on the slight change in the H3K27me3 signals in the Dnmt3b-Kd blastocysts, the authors claim that imprinted X-chromosome inactivation is impaired in the mutant embryo. It would be not easy to reach this conclusion from such a rough analysis of H3K27me3 presented in Figure 2C, D. Rigorous quantification/evaluation of the H3K27me3 signals in the Dnmt3b-Kd embryos should be considered. Additional evidence for the impairment of H3K27me3 in the mutant embryos should also be provided (expression of a subset of X-linked genes by RNA-FISH or RT-PCR etc.). Though technically challenging, high-resolution genome-wide approach such as ChIP-seq of H3K27me3 in the Dnmt3b-kd female embryos (with traceable SNPs between maternal and paternal X chromosome to distinguish inactive and active X-chromosome) could more precisely evaluate regions that lose H3K27me3 in the X-chromosome (de novo DNA methylated promoters from 8-cell to blastocyst, for example).

      3. Analysis of the developmental potential of Dnmt3b-kd embryos<br /> While the authors claim that Dnmt3b-mediated de novo DNA methylation plays an important role in imprinted X-chromosome inactivation, it remains unclear whether the analysis presented in Figure 4 is derived from "female" embryos. This analysis seemed confusing as the authors claim that de novo DNA methylation in the promoter regions during the transition from 8-cell to blastocyst regulates imprinted X-chromosome inactivation, but this should not happen in the male embryos. Was the impairment of embryonic proliferation and differentiation observed in both male and female embryos? Or is this specific to the female embryos? We think that the sex of the embryos would be critical for the analysis presented in Figure 4.

    2. Reviewer #2 (Public Review):

      Summary:

      Here, Yue et al. set out to determine if the low DNMT3B expression that is observed prior to de novo DNA methylation (before the blastocyst stage) has a function. Re-analyzing existing DNA methylation data from Smith et al. (2012) they find a small DNA methylation gain over a subset of promoters and gene bodies, occurring between the 8-cell and blastocyst stages, and refer to this as "minor de novo DNA methylation". They attempt to assess the relevance/functionality of this minor DNA methylation gain, and report reduced H3K27me3 in Dnmt3b knockdown (KD) trophoblast cells that normally undergo imprinted X-chromosome inactivation (iXCI) before the blastocyst stage. In addition, they assess the proliferation, differentiation, metabolic function, implantation rate, and live birth rate of Dnmt3b KD blastocysts.

      Strengths:

      Working with early embryos is technically demanding, making the well-designed experiments from this manuscript useful to the epigenetics community. Particularly, the DNMT3B expression and 5-mC staining at different embryonic stages.

      Weaknesses:

      - Throughout the manuscript, please represent DNA methylation changes as delta DNA methylation instead of fold change.

      - Detailed methods on the re-analysis of the DNA methylation data from Smith et al. 2012 are missing from the materials and methods section. Was a minimum coverage threshold used?

      - Detailed methods on the establishment and validation of Dnmt3b KO blastocysts and 5-aza-dC treated blastocysts are missing (related to Figure 2).

      - Detailed methods on the re-analysis of the ChIPseq data from Liu et al. 2016 are missing from the materials and methods section.

      - Some of the data represented in bar graphs does not look convincing/significant. Maybe this data can be better represented differently, such as in box plots or violin plots, which would better represent the data.

      - The relevance and rationale for experiments using 5-aza-dC treatment is unclear.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript reports experiments designed to dissect the function of N-cadherin during mammalian folliculogenesis, using the mouse as a model system. Prior studies have shown that this is the principal cadherin expressed by the follicular granulosa cells. Two main strategies are used - small-molecule inhibitors that target N-cadherin and a conditional knockout where the gene encoding N-cad is deleted in granulosa cells. The authors also take advantage of the ability to reproduce key events of folliculogenesis, such as oocyte meiotic maturation, in vitro. Four main conclusions are drawn from the studies: (i) cadherin-based cell contact is required to maintain cadherin (N-cad in the granulosa cells; E-cad in the oocyte) at the plasma membrane; (ii) N-cad is required for cumulus layer expansion; (iii) N-cad is required for meiotic maturation of the oocyte; (iv) N-cad is required for ovulation.

      Strengths:

      The experiments are logically conceived, clearly described and presented, and carefully interpreted. A key strength of the paper is that multiple approaches have been used (drugs, knockouts, immunofluorescence, PLA, in vitro and in vivo studies). Taken together, they clearly establish essential roles for N-cadherin during folliculogenesis.

      It is intriguing that, when cadherin activity is impaired, the cadherins are lost from the plasma membrane. This suggests that, in a multicellular context, interactions with other cadherins, either in cis within the same cell or in trans with a neighboring cell, are required to maintain cadherins at the membrane. Hence, beyond their significance for understanding female reproductive biology, these experiments have broader implications for cell biology.

      Weaknesses:

      A few points could be considered or clarified by the authors:

      The YAP experiments were confusing to the reviewer. CRS-066 increased YAP activity, as indicated by increased expression of target genes. Since CRS-066 prevents expansion, this result suggests that YAP antagonizes expansion. Therefore, blocking YAP should favor expansion. Yet, the YAP inhibitor impaired expansion. In the reviewer's eyes, these results seem to be contradictory.

      It is intriguing that the inhibitors were able to efficiently block oocyte maturation. Oocytes from which the cumulus granulosa cells have been removed (denuded) will mature in vitro in the absence of LH or EGF. Since the effect of the inhibitors is to break the contact between the cumulus cells and oocyte, one might have predicted that this would not impair the ability of the oocytes to mature. Perhaps the authors could comment on this.

      Regarding the experiments where the inhibitors were administered intra-peritoneally, the authors might comment on the rationale for choosing the doses that were used. An additional point to consider is that, since N-cadherin is expressed in a variety of tissues, an effect of interfering with N-cadherin at these non-ovarian sites could indirectly influence ovarian function.

    2. Reviewer #2 (Public Review):

      Summary:

      The manuscript entitled "N-cadherin mechanosensing in ovarian follicles controls oocyte maturation and ovulation" aimed to investigate the role of N-cadherin in different ovarian physiological processes, including cumulus oocyte expansion, oocyte maturation, and ovulation. The authors performed several in vitro and in vivo mice experiments, using diverse techniques to reinforce their results.

      First, they identified two compounds (N-cadherin antagonists) that block the adhesion of periovulatory COCs to fibronectin through screening a small molecule library, using the xCELLigenceTM system, performing proper and complementary controls. Second, the authors showed the presence of N-cadherin adherens junctions between granulosa cells and cumulus cells and at the interface of cumulus cell transzonal projections and the oocyte throughout folliculogenesis. And that these adherens complexes between cumulus cells and oocytes were disrupted when inhibited N-cadherin, as observed by nice representative confocal images. Then, the authors assessed COC expansion and oocyte meiotic maturation to determine whether the loss of oocyte membrane β-catenin and E-cadherin upon N-cadherin inhibitor treatment disrupts the bi-directional communication between cumulus cells and the oocyte. Indeed, N-cadherin antagonists disrupted both processes (cumulus expansion and oocyte meiotic). However, the expression of known mediators of COC expansion (E.g., Areg and Ptgs2) were either increased or unaffected. Nevertheless, RNA-Seq showed consistent effects on cell signaling mRNA genes by the antagonist CRS-066.

      In vivo studies using mice were also achieved using stimulated protocols (together with one of the antagonists or vehicle) or granulosa-specific Cdh2 Knockouts to further analyze the role of N-cadherin. N-cadherin antagonist CRS-066 (but not LCRF-0006) significantly reduced mouse ovulation compared to controls. RNA-sequencing data analysis identified distinct gene expression profiles in CRS-066 treated compared to control ovaries. Ovulation in CdhFl/FL; Amhr2Cre mice after stimulation were also significantly reduced; multiple large unruptured follicles were observed in these granulosa-specific Cdh2 mutant ovaries, and the mRNA expression of Areg and Ptgs2 were reduced.

      The authors conclude that their study identified N-cadherin as a mechanosensory regulator important in ovarian granulosa cell differentiation able to respond to hormone stimuli both in vivo and in vitro, demonstrating a critical role for N-cadherin in ovarian follicular development and ovulation. They highlighted the potential to inhibit ovulation by targeting this signaling mechanism.

      Strengths:<br /> This remarkable manuscript is very well designed, performed, and discussed. The authors analyzed different aspects, and their data supports their conclusions.

      Weaknesses:<br /> This study was performed using the mouse as a research model; further studies in larger animals and humans would be interesting and warranted.

      Minor comments:

      Some results are intriguing. While the AREG y PTGS2 mRNA increased within the COC in vitro by the N-cadherin antagonists, in vivo, the treatment induced a significant increase in both genes when analyzing the whole ovary. What are the authors' ideas that could explain these discrepancies in outcomes?

      The authors stated that the ovaries from mice treated in the same manner and collected either before hCG treatment (eCG 44 h) or 11 h after hCG showed equivalent numbers of follicles at each stage of development from primary to antral. However, in Panel l from Figure 5, there is a significant increase in the number of antral follicles in the CRS-066 group (hCG 11 h) compared to the vehicle. Could the author discuss it in the manuscript?

    1. Reviewer #1 (Public Review):

      Weinberger et al. use different fate-mapping models, the FIRE model and PLX-diet to follow and target different macrophage populations and combine them with single-cell data to understand their contribution to heart regeneration after I/R injury. This question has already been addressed by other groups in the field using different models. However, the major strength of this manuscript is the usage of the FIRE mouse model that, for the first time, allows specific targeting of only fetal-derived macrophages.

      The data show that the absence of resident macrophages is not influencing infarct size but instead is altering the immune cell crosstalk in response to injury, which is in line with the current idea in the field that macrophages of different origins have distinct functions in tissues, especially after an injury.

      To fully support the claims of the study, specific targeting of monocyte-derived macrophages or the inhibition of their influx at different stages after injury would be of high interest.

      In summary, the study is well done and important for the field of cardiac injury. But it also provides a novel model (FIRE mice + RANK-Cre fate-mapping) for other tissues to study the function of fetal-derived macrophages while monocyte-derived macrophages remain intact.

    2. Reviewer #2 (Public Review):

      In this study Weinberger et al. investigated cardiac macrophage subsets after ischemia/reperfusion (I/R) injury in mice. The authors studied a ∆FIRE mouse model (deletion of a regulatory element in the Csf1r locus), in which only tissue resident macrophages might be ablated. The authors showed a reduction of resident macrophages in ∆FIRE mice and characterized its macrophages populations via scRNAseq at baseline conditions and after I/R injury. 2 days after I/R protocol ∆FIRE mice showed an enhanced pro inflammatory phenotype in the RNAseq data and differential effects on echocardiographic function 6 and 30 days after I/R injury. Via flow cytometry and histology the authors confirmed existing evidence of increased bone marrow-derived macrophage infiltration to the heart, specifically to the ischemic myocardium. Macrophage population in ∆FIRE mice after I/R injury were only changed in the remote zone. Further RNAseq data on resident or recruited macrophages showed transcriptional differences between both cell types in terms of homeostasis-related genes and inflammation. Depleting all macrophage using a Csf1r inhibitor resulted in a reduced cardiac function and increased fibrosis.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript by Xiong L et al., the authors have uncovered an important link between innate immune signaling and hair regeneration. The authors provide convincing evidence supporting the critical roles of TLR2 in sensing CEP levels in hair follicles, counteracting the action of BMP signaling, and facilitating the activation of HFSCs during the hair cycle and wound repair. Importantly, the authors also propose that decreased CEP production and TLR2 expression might be factors contributing to the decreased hair regeneration associated with aging.

      Strengths:

      The experiments in this manuscript are well-designed and presented. The authors provided extensive evidence supporting the roles of TLR2 signaling in regulating hair follicle stem cell functions. Importantly, the findings from this paper could have sustained impacts on our understanding of the roles of innate immunity in regulating tissue regeneration in the absence of inflammation.

      Weaknesses:

      1. The central conclusion of this study is that the activation of TLR2 can suppress BMP signaling. However, the molecular link between TLR2 and BMP signaling is still missing. Given the importance of this finding, it would be intriguing to further investigate how TLR2 activation suppresses BMP signaling. A better characterization of the molecular-level interaction between TLR2 and BMP signaling can further enhance the impact of this study.

      2. The authors imply that the decreased CEP level in aged mice could lead to deficient TLR2 signaling, which could further cause aging-associated hair regeneration defects. But this has not been demonstrated. What are the BMPs and pSmad1/5 levels in aged skin? Another important experiment to confirm the importance of this link during aging would be to inject CEP into the aged skin and examine whether this could restore hair regeneration in aged mice.

      3. The impacts of CEP/TLR2 on proliferation of keratinocytes is still weak. How much of this effect is a result of NFkB activation, and how much is simply due to inhibiting BMP signaling?

      Updated comments on the revised manuscript:<br /> The authors have addressed my previous questions.

    2. Reviewer #3 (Public Review):

      Summary:

      In the manuscript by Xiong and colleagues, the roles of TLR2 in hair follicle cycle regulation were investigated. By analyzing published dataset and using immunostaining and transgenic TLR2-GFP reporter mice, the authors showed that TLR2 expression is increased in the late telogen compared to the early telogen, implying that it is important for the transition between telogen to anagen hair cycle. They found that the genetic deletion of Tlr2 in hair follicle stem cells delays hair cycle entry in both homeostatic and wound-induced hair follicle regeneration. In addition, they found that CEP is an endogenous TLR2 activating ligand and triggers the progression of hair cycle in a TLR2-dependent manner. Mechanistically, the activation of TLR2 signaling antagonizes BMP signaling which is critical for the maintenance of hair follicle stem cell quiescence. Clinically, they showed that TLR2 expression is decreased in aging and high-fat diet condition, suggesting that the dysfunctional regulation of TLR2 pathway is responsible for age-related and obesity-related hair thinning and hair loss phenotypes.

      Strengths:

      Overall, this study presents the role and mechanism of TLR2 in regulating hair follicle regeneration. The functional interrogation parts using HFSC-specific TLR2 genetic deletion is solid, and an endogenous regulator, CEP, is identified.

      Weaknesses:<br /> 1)<br /> - In SFig1A, the IF staining of TLR2 and Tlr2-GFP expression seem almost 100% co-localized, which is not usual experimentally.<br /> - In Fig 2J, the relative expression levels of Tlr2 in anagen, telogen, catagen HFSCs were tested. But it is just relative comparison and does not mean whether the expression level is meaningful or not. To make this convincing, adding other cell types such as dermal fibroblasts and immunes to the comparison as negative and positive controls would be a good idea.<br /> - In Fig 2K, the expression of Tlr2 is comparable or a bit lesser in epidermal cells and HFSCs, but the expressions of TLR2 (IF) and Tlr2-GFP in epidermal cells have not been presented at all in the manuscript. As the authors used K15-CrePR1 mice to delete Tlr2 in HFSCs specifically, showing TLR2 IF staining in TLR2-HFSC-KO mice would be nice evidence of significant expression of TLR2 in HFSCs. (still TLR2 expression in epidermis, but no TLR2 expression in HFSCs).<br /> - In Fig 1B, it is still unclear whether TLR2 staining is in epithelial cell or in dermal cells. TLR2 staining patterns in Fig 1B, SFig 1A, and rebuttal seem different. In Fig S1B and rebuttal, TLR2 expression in HFSCs, HG, DP cells, but in Fig 1B, most of HG and DP cells are not TLR2+.<br /> - Together, this reviewer still does not think that there is a clear and solid evidence of Tlr2 expression in HFSCs. Searching the Tlr2 expression in published bulk and single cell RNA-seq dataset would be helpful.

      2)<br /> - In SFig 4B, C, the activation of BMP signaling was hindered by TLR2 signaling activation by PAM3CSK4. But it is in vitro data, and cultured HFSCs are different from in vivo HFSCs, and particularly the changes of HFSCs from quiescence to activation can hardly be recapitulated in vitro.<br /> - In Fig 4H, it is curious that in TLR2-HFSC-KO mice, P21 HFSCs showed no pSMAD1/5/9, but it is increased in P24.<br /> - Also, it is wondered that if ID1 and ID2, key target genes, are increased in TLR2-HFCS-KO.<br /> - The author suggested that BMP7 is a key connection between TLR2 signaling and BMP signaling. It is curious whether BMP7 is a direct target of TLR2 pathway? Are there Nfkb (putative) binding sites in cis-regulatory regions of BMP7?

      3)<br /> - In Fig 6C, CEP expression is close to hair follicle in both anagen and telogen. Also, in Telogen, CEP expression is strong and very close to HFSCs. But In rebuttal Fig 2, CEP is localized to sebaceous gland, where MPO, a CEP producing enzyme, is expressed. Which one is correct? Also, if CEP is strongly expressed in Telogen (Fig 6C), how can HFSCs stay in quiescence with decreased BMP signaling?

    1. Reviewer #1 (Public Review):

      Summary:

      In the article titled "Hammerhead-type FXR agonists induce an eRNA FincoR that ameliorates nonalcoholic steatohepatitis in mice," the authors explore the role of the Farnesoid X Receptor (FXR) in treating metabolic disorders like NASH. They identify a new liver-specific long non-coding RNA (lncRNA), FincoR, regulated by FXR, notably induced by agonists such as tropifexor. The study shows that FincoR plays a significant role in enhancing the efficacy of tropifexor in mitigating liver fibrosis and inflammation associated with NASH, suggesting its potential as a novel therapeutic target. The study makes a promising contribution to understanding the role of FincoR in alleviating liver fibrosis in NASH, providing initial insights into the mechanisms involved. While it offers a valuable starting point, there is potential for further exploration into the functional roles of FincoR and their specific actions in human NASH cases. Building upon the current findings to elucidate more detailed mechanistic pathways through which FincoR exerts its therapeutic effects in liver disease would elevate the research's significance and potential impact in the field.

      Strengths:

      This study stands out for its comprehensive and unbiased approach to investigating the role of FincoR, a liver-specific lncRNA, in the treatment of NASH. Key strengths include: 1) The application of advanced sequencing methods like GRO-seq and RNA-seq offered a comprehensive and unbiased view of the transcriptional changes induced by tropifexor, particularly highlighting the role of FincoR. 2) Utilizing a genetic mouse model of FXR KO and a FincoR liver-specific knockdown (FincoR-LKD) mouse model provided a controlled and relevant environment for studying NASH, allowing for precise assessment of tropifexor's therapeutic effects. 3) The inclusion of tropifexor, an FDA-approved FXR agonist, adds significant clinical relevance to the study. It bridges the gap between experimental research and potential therapeutic application, providing a direct pathway for translating these findings into real-world clinical benefits for NASH patients. 4) The study's rigorous experimental design, incorporating both negative and positive controls, ensured that the results were specifically attributable to the action of FincoR and tropifexor.

      Weaknesses:

      The study presents several notable weaknesses that could be addressed to strengthen its findings and conclusions: 1) The authors focus on FincoR, but do not extensively test other lncRNAs identified in Figure 1A. A more comprehensive approach, such as rescue experiments with these lncRNAs, would provide a better understanding of whether similar roles are played by other lncRNAs in mitigating NASH. 2) FincoR was chosen for further study primarily because it is the most upregulated lncRNA induced by GW4064. Including another GW4064-induced lncRNA as a control in functional studies would strengthen the argument for FincoR's unique role in NASH. 3) The study does not conclusively demonstrate whether FincoR is specifically expressed in hepatocytes or other liver cell types. Conducting FincoR RNA-FISH with immunofluorescent experiments or RT-PCR, using markers for different liver cell types, would clarify its expression profile. 4) Understanding the absolute copy number of FincoR is crucial. Determining whether there are sufficient copies of FincoR to function as proposed would lend more credibility to its suggested role. 5) The manuscript, although technically proficient, does not thoroughly address the relevance of these findings to human NASH. Questions like the conservation of FincoR in humans and its potential role in human NASH should be discussed.

    2. Reviewer #2 (Public Review):

      Summary:

      Nonalcoholic fatty liver disease (NASH), recently renamed as metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of liver-related death. Farnesoid X receptor (FXR) is a promising drug target for treating NASH and several drugs targeting FXR are under clinical investigation for their efficacy in treating NASH. The authors intended to address whether FXR mediates its hepatic protective effects through the regulation of lncRNAs, which would provide novel insights into the pharmacological targeting of FXR for NASH treatment. The authors went from an unbiased transcriptomics profiling to identify a novel enhancer-derived lncRNA FincoR enriched in the liver and showed that the knockdown of FincoR in a murine NASH model attenuated part of the effect of tropifexor, an FXR agonist, namely inflammation and fibrosis, but not steatosis. This study provides a framework for how one can investigate the role of noncoding genes in pharmacological intervention targeting known protein-coding genes. Given that many disease-associated genetic variants are located in the non-coding regions, this study, together with others, may provide useful information for improved and individualized treatment for metabolic disorders.

      Strengths:

      The study leverages both transcriptional profile and epigenetic signatures to identify the top candidate eRNA for further study. The subsequent biochemical characterization of FincoR using FXR-KO mice combined with Gro-seq and Luciferase reporter assays convincingly demonstrates this eRNA as a FXR transcriptional target sensitive to FXR agonists. The use of in vitro culture cells and the in vivo mouse model of NASH provide multi-level evaluation of the context-dependent importance of the FincoR downstream of FXR in the regulation of functions related to liver dysfunction.

      Weaknesses:

      As discussed, future work to dissect the mechanisms by which FincoR facilitates the action of FXR and its agonists is warranted. It would be helpful if the authors could base this on the current understanding of eRNA modes of action and the observed biochemical features of FincoR to speculate potential molecular mechanisms explaining the observed functional phenotype. It is unclear if this eRNA is conserved in humans in any way, which will provide relevance to human disease. Additionally, the eRNA knockdown was achieved by deletion of an upstream region of the eRNA transcription. A more direct approach to alter eRNA levels, e.g., overexpression of FincoR in the liver would provide important data to interpret its functional regulation.

    1. Reviewer #1 (Public Review):

      Glaucoma is the leading cause of irreversible blindness worldwide, affecting more than 80 million people. Primary open angle glaucoma (POAG) is the prevalent form of glaucoma, while prevalence of primary angle closure glaucoma (PACG) is highest in Asia compared to over the world. Early detection of glaucoma and severity prediction is mandatory, and therefore the main aim of this study focused on characterizing the metabolite profile associated with PACG, identify potential blood diagnostic markers, assess their specificity for PACG and verify their applicability to predict progression of visual field loss. To this end, Li et al. implemented a 5-phases multicenter prospective study to identify novel candidate biomarkers of PACG. A total of 616 individuals were recruited, identifying 1464 distinct metabolites in the serum by metabolomics and chemiluminescence immunoassays. By applying different machine learning algorithms the metabolite androstenedione showed good discrimination between PACG and control subjects, both the discovery and validation phases. This metabolite also showed alterations in the aqueous humor and higher levels of androstenedione seemed to be associated with faster loss of visual field. Overall, the authors claimed that serum androstenedione levels may provide a new biomarker for early detection and monitoring/predicting PACG severity/progression.

      Strengths:

      • Omics research on glaucoma is constrained by inadequate sample sizes, a dearth of validation sets to corroborate findings and absence of specificity analyses. The 5-phases study designed try overcoming these limitations. The proposed study design is very robust, with well described discovery set (1 and 2), validation phase (1 and 2), supplemental phase and cohort phase. Large and well-characterized patients with adequate control subjects contributed to the robustness of the results.<br /> • Combining untargeted and targeted metabolomics using mass spectrometry instruments (high resolution and low resolution) with an additional chemiluminiscence immunoassay determining androstenedione levels<br /> • Androstenedione achieved better diagnostic accuracy across the discovery and validation sets, with AUC varying between 0.85 and 1.0. Interestingly, baseline androstenedione levels can predict glaucoma progression via visual field loss results.<br /> • Positive correlation was observed between levels of androstenedione in serum and aqueous humor of PACG patients.<br /> • A level higher of 1.66 ng/mL of the metabolite androstenedione seems to imply high risk of visual field loss. Androstenedione may serve as predictor of glaucomatous visual field progression.

      Weaknesses:

      • A single biomarker seems very unlikely to be of much help in the detection of glaucoma due to the etiological heterogeneity of the disease, the existence of different subtypes, and the genetic variability among patients. Rather, a panel of biomarkers may provide more useful information for clinical prediction, including better sensitivity and specificity. The inclusion of additional metabolites already identifying in the study, in combination, may provide more reliable and correct assignment results.<br /> • The number of samples in the supplementary phase is low, larger samples sizes are mandatory to confirm the diagnostic accuracy.<br /> • Cohorts from different populations are needed to verify the applicability of this candidate biomarker.<br /> • Sex hormones seem to be associated also with other types of glaucoma, such as primary open-angle glaucoma (POAG), although the molecular mechanisms are unclear (see doi:10.1167/iovs.17-22708). The inclusion of patients diagnosed with other subtypes of glaucoma, like POAG, may contribute to determine the sensitivity and specificity of the proposed biomarker. Androstenedione levels should be determined in POAG, NTG or PEXG patients.<br /> • In addition, the levels of androstenedione were found significantly altered during other diseases as described by the authors or by conditions like polycystic ovary syndrome, limiting the utility of the proposed biomarker.<br /> • Uncertainty of the androstenedione levels compromises its usefulness in clinical practice.

    2. Reviewer #2 (Public Review):

      Summary:

      The objective of authors using metabolomics analysis of primary angle closure glaucoma (PACG) is to demonstrate that serum androstenedione is a novel biomarker that can be used to diagnose PACG and predict visual field progression.

      Strengths:

      Use of widely targeted and untargeted metabolite detection conditions. Use of liquid chromatography-tandem mass spectrometry and a chemiluminescence method for confirmation of androstenedione.

      The authors have incorporated the relevant changes in their manuscript and improved the presentation.

    1. Reviewer #1 (Public Review):

      The authors of the manuscript "High-resolution kinetics of herbivore-induced plant volatile transfer reveal tightly clocked responses in neighboring plants" assessed the effects of herbivory induced maize volatiles on receiver plants over a period of time in order to assess the dynamics of the responses of receiver plants. Different volatile compound classes were measured over a period of time using PTR-ToF-MS and GC-MS, under both natural light:dark conditions, and continuous light. They also measured gene expression of related genes as well as defense related phytohormones. The effects of a secondary exposure to GLVs on primed receiver plants was also measured.

      The paper addresses some interesting points, however some questions arise regarding some of the methods employed. Firstly, I am wondering why VOCs (as measured by GC-MS) were not quantified. While I understand that quantification is time consuming and requires more work, it allows for comparisons to be made between lines of the same species, as well as across other literature on the subject. Simply relying on the area under the curve and presenting results using arbitrary units is not enough for analyses like these. AU values do not allow for conclusions regarding total quantities, and while I understand that this is not the main focus of this paper, it raises a lot of uncertainty for readers (for example, the references cited show that TMTT has been found to accumulate at similar levels of caryophyllene, however the AU values reported are an order of magnitude higher for TMTT. Again, without actual quantification this is meaningless, but for readers it is confusing).

      With regards to the correlation analyses shown in figure 6, the results presented in many of the correlation plots are not actually informative. While there is a trend, I do not think that this is an appropriate way to show the data, as there are clearly other relationships at play. The comparison between plants under continuous light and normal light:dark conditions is interesting.

      This paper addresses a very interesting idea and I look forward to seeing further work that builds on these ideas.

    2. Reviewer #2 (Public Review):

      The exact dynamics of responses to volatiles from herbivore-attacked neighbouring plants have been little studied so far. Also, we still lack evidence whether herbivore-induced plant volatiles (HIPVs) induce or prime plant defences of neighbours. The authors investigated the volatile emission patterns of receiver plants that respond to the volatile emission of neighbouring sender plants which are fed upon by herbivorous caterpillars. They applied a very elegant approach (more rigorous than the current state-of-the-art) to monitor temporal response patterns of neighbouring plants to HIPVs by measuring volatile emissions of senders and receivers, senders only and receivers only. Different terpenoids were produced within 2 h of such exposure in receiver plants, but not during the dark phase. Once the light turned on again, large amounts of terpenoids were released from the receiver plants. This may indicate a delayed terpene burst, but terpenoids may also be induced by the sudden change in light. As one contrasting control, the authors also studied the time-delay in volatile emission when plants were just kept under continuous light. Here they also found a delayed terpenoid production, but this seemed to be lower compared to the plants exposed to the day-night-cycle. Another helpful control was now performed for the revision in which the herbivory treatment was started in the evening hours and lights were left on. This experiment revealed that the burst of terpenoid emission indeed shifted somewhat. Circadiane and diurnal processes must thus interact.

      Interestingly, internal terpene pools of one of the leaves tested here remained more comparable between night and day, indicating that their pools stay higher in plants exposed to HIPVs. In contrast, terpene synthases were only induced during the light-phase, not in the dark-phase. Moreover, jasmonates were only significantly induced 22 h after onset of the volatile exposure and thus parallel with the burst of terpene release.

      An additional experiment exposing plants to the green leaf volatile (glv) (Z)-3-hexenyl acetate revealed that plants can be primed by this glv, leading to a stronger terpene burst. The results are discussed with nice logic and considering potential ecological consequences. All data are now well discussed.

      Overall, this study provides intriguing insights in the potential interplay between priming and induction, which may co-occur, enhancing (indirect and direct) plant defence. Follow-up studies are suggested that may provide additional evidence.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Overall, this study provides a meticulous comparison of developmental transcriptomes between two sub-species of the annelid Streblospio benedicti. Different lineages of S. benedicti maintain one of two genetically programmed alternative life histories, the ancestral planktotrophic or derived lecithotrophic forms of development. This contrast is also seen at the inter-species level in many marine invertebrate taxa, such as echinoderms and molluscs. The authors report relatively (surprisingly?) modest differences in transcriptomes overall but also find some genes whose expression is essentially morph-specific (which they term "exclusive").

      Strengths:<br /> The study is based on a dense and appropriately replicated sampling of early development. The tight clustering of each stage/morph combination in PCA space suggests the specimens were accurately categorized. The similar overall trajectories of the two morphs were surprising to me for two stages: 1) the earliest stage (16-cell), at which we might expect maternal differences due to the several-fold difference in zygote size, and 2) the latest stage (1-week), where there appears to be the most obvious morphological difference. This is why we need to do experiments!

      The examination of F1 hybrids was another major strength of the study. It also produced one of the most surprising results: though intermediate in phenotype, F1 embryos have the most distinct transcriptomes, and reveal a range of fixed, compensatory differences in the parental lines.

      Weaknesses:<br /> Overall I really enjoyed this paper, but I see a few places where it can be tightened and made more insightful. These relate to better defining the basis for "exclusive" expression (regulation or gene presence/absence?), providing more examples of how specific genes related to trophic mode behave, and placing the study in the context of similar work in other phyla.

    2. Reviewer #2 (Public Review):

      The manuscript by Harry and Zakas determined the extent to which gene expression differences contribute to developmental divergence by using a model that has two distinct developmental morphs within a single species. Although the authors did collect a valuable dataset and trends in differential expression between the two morphs of S. benedicti were presented, we found limitations about the methods, system, and resources that the authors should address.

      We have two major points:

      1. Background information about the biological system needs to be clarified in the introduction of this manuscript. The authors stated that F1 offspring can have intermediate larval traits compared to the parents (Line 81). However, the authors collected F1 offspring at the same time as the mother in the cross. If offspring have intermediate larval traits, their developmental timeline might be different than both parents and necessitate the collection of offspring at different times to obtain the same stages as the parents. Could the authors (1) explain why they collected offspring at the same time as parents given that other literature and Line 81 state these F1 offspring develop at intermediate rates, and (2) add the F1 offspring to Figure 1 to show morphological and timeline differences in development?

      Additionally, the authors state (Lines 83-85) that they detail the full-time course of embryogenesis for both the parents and the F1 crosses. However, we do not see where the authors have reported the full-time course for embryogenesis of the F1 offspring. Providing this information would shape the remaining results of the manuscript.

      2. We have several concerns about the S. benedicti genome and steps regarding the read mapping for RNA-seq:

      The S. benedicti genome used (Zakas et al. 2022) was generated using the PP morph. The largest scaffolds of this assembly correspond to linkage groups, showing the quality of this genome. The authors should point out in the Methods and/or Results sections that the quality of this genome means that PP-specific gene expression can be quantified well. However, the challenges and limitations of mapping LL-specific expression data to the PP genome should be discussed.

      It is possible that the authors did not find exclusive gene expression in the LL morph because they require at least one gene to be turned on in one morph as part of the data-cleaning criteria. Because the authors are comparing all genes to the PP morph, they could be missing true exclusive genes responsible for the biological differences between the two morphs. Did they make the decision to only count genes expressed in one stage of the other morph because the gene models and mapping quality led to too much noise?

      The authors state that the mapping rates between the two morphs are comparable (Supplementary Figure 1). However, there is a lot of variation in mapping the LL individuals (~20% to 43%) compared to the PP individuals. What is the level of differentiation within the two morphs in the species (pi and theta)? The statistical tests for this comparison should be added and the associated p-value should be reported. The statistical test used to compare mapping rates between the two morphs may be inappropriate. The authors used Salmon for their RNA alignment and differential expression analysis, but it is possible that a different method would be more appropriate. For example, Salmon has some limitations as compared to Kallisto as others have noted. The chosen statistical test should be explained, as well as how RNA-seq data are processed and interpreted.

      What about the read mapping rate and details for the F1 LP and PL individuals? How did the offspring map to the P genome? These details should be included in Supplementary Figure 1. Could the authors also provide information about the number of genes expressed at each stage in the F1 LP and PL samples in S Figure 2? How many genes went into the PCA? Many of these details are necessary to evaluate the F1 RNA-seq analyses.

      Generally, the authors need to report the statistics used in data processing more thoroughly. The authors need to report the statistics used to (1) process and evaluate the RNA-seq data and (2) determine the significance between the two morphs (Supplementary Figures 1 and 2).

    1. Reviewer #2 (Public Review):

      Summary:

      Zhou et al report development of a new method, Rec-Seq, that allows rigorous quantitation of the efficiency of 48S ribosomal pre-initiation complex (PIC) formation on messenger RNAs at transcriptome scale in vitro. With a next-generation deep-sequencing approach, Rec-Seq allows precisely targeted dissection of the roles of translation initiation factors in PIC assembly. This level of molecular precision is important to understanding mechanisms of translational control, making Rec-Seq a significant methodological advance. The authors leverage Rec-Seq to investigate the relative roles of two key helicase enzymes, Ded1p and eIF4A. While past work has pointed to differing roles for Ded1p and eIF4A helicase activity in PIC assembly, unambiguous interpretation of prior in-vivo data has been hindered by technical requirements for performing the experiments in cells. Rec-Seq circumvents these challenges, providing robust mechanistic insights. The authors find that Ded1p stimulates PIC formation selectively on mRNAs with long, structured leaders in the Rec-Seq system, while eIF4A provides much more general stimulation across mRNAs. The findings substantiate the past in-vivo results, along with adding new insights. They contrast with evidence that Ded1p promotes translation by suppressing inhibitory upstream initiation through structural remodeling, or through formation of intracellular, phase-separated granules. The conclusions of the study are generally well-supported by the data.

      Strengths:

      The quantitative nature of Rec-Seq, which uses an internal standard to measure absolute recruitment efficiencies, is an important strength.

      The methodology decisively overcomes past experimental limitations, allowing the authors to make clear conclusions with regard to the relative roles of Ded1p and eIF4A in PIC formation. An important and useful addition to the toolbox for studying translation and translational control mechanisms, Rec-Seq substantially expands the throughput and scope of mechanistic analyses for translation initiation.

      One significant finding to emerge is that the in-vitro reconstituted system used here recapitulates effects of in-vivo perturbations of translation initiation. Despite the lack of a cellular environment and its components, PIC formation appears to operate much as it does in the cell. Importantly, this highlights an inherent "modularity" to the system that is especially of interest in the context of how regulatory machinery beyond the PIC may control translation.

      Weaknesses:

      Several findings in this report are quite surprising and may require additional work to fully interpret. Primary among these is the finding that Ded1p stimulates accumulation of PICs at internal site in mRNA coding sequences at an incidence of up to ~50%. The physiological relevance of this is unclear.

      A limitation of the methodology is that, as an endpoint assay, Rec-Seq does not readily decouple effects of Ded1p on PIC-mRNA loading from those on the subsequent scanning step where the PIC locates the start codon. Considering that Ded1p activity may influence each of these initiation steps through distinct mechanisms - i.e., binding to the mRNA cap-recognition factor eIF4F, or direct mRNA interaction outside eIF4F - additional studies may be needed to gain deeper mechanistic insights.

      As the authors note, the achievable Ded1p concentrations in Rec-Seq may mask potential effects of Ded1p-based granule formation on translation initiation. Additional factors present in the cell could potentially also promote this mechanism. Consequently, the results do not fully rule out granule formation as a potential parallel Ded1p-mediated translation-inhibitory mechanism in cells.

    2. Reviewer #3 (Public Review):

      Summary:

      The manuscript of Zhou et al. reports a genome wide study of in vitro translation initiation using a novel version of ribosome profiling. Here they probe the role of the key RNA helicase, Ded1 in yeast translation initiation using a reconstituted biochemical system and all polyA+ mRNAs in the cell. The authors use ribosome profiling to identify mRNAs that assemble a preinitiation complex at the AUG start codon (48S PIC). They confirm that Ded1 is required for efficient initiation in highly structured RNAs, leading to an increase in PIC formation at the start codon, and nicely correlate their results with prior in vivo investigations using mutant Ded1s.

      Strengths:

      Rigorous in vitro biochemistry, careful correlation with in vivo results, genome wide analysis. Novel sequencing-based assay.

      Weaknesses:

      The slow nature of the biochemical experiments could bias results.

    1. Reviewer #2 (Public Review):

      The authors investigate the transcriptional regulation of cysteine dioxygenase (CDO-1) in C. elegans and its role in maintaining cysteine homeostasis. They show that high cysteine levels activate cdo-1 transcription through the hypoxia-inducible transcription factor HIF-1. Using transcriptional and translational reporters for CDO-1, the authors propose that a negative feedback pathway involving RHY-1, CYSL-1, EGL-9 and HIF-1 in regulating cysteine homeostasis.

      Genetics is a notable strength of this study. The forward genetic screen, gene interaction and epistasis analyses are beautifully designed and rigorously conducted, yielding solid and unambiguous conclusions on the genetic pathway regulating CDO-1. The writing is clear and accessible, contributing to the overall high quality of the manuscript.<br /> Addressing the specifics of cysteine supplementation and interpretation regarding the cysteine homeostasis pathway would further clarify the paper and strengthen the study's conclusions.

      First, the authors show that the supplementation of exogenous cysteine activates cdo-1p::GFP. Rather than showing data for one dose, the author may consider presenting dose-dependency results and whether cysteine activation of cdo-1 also requires HIF-1 or CYSL-1, which would be important data given the focus and major novelty of the paper in cysteine homeostasis, not the cdo-1 regulatory gene pathway. While the genetic manipulation of cdo-1 regulators yields much more striking results, the effect size of exogenous cysteine is rather small. Does this reflect a lack of extensive condition optimization or robust buffering of exogenous/dietary cysteine? Would genetic manipulation to alter intracellular cysteine or its precursors yield similar or stronger effect sizes?

      Second, there remain several major questions regarding the interpretation of the cysteine homeostasis pathway. How much specificity is involved for the RHY-1/CYSL-1/EGL-9/HIF-1 pathway to control cysteine homeostasis? Is the pathway able to sense cysteine directly or indirectly through its metabolites or redox status in general? Given the very low and high physiological concentrations of intracellular cysteine and glutathione (GSH, a major reserve for cysteine), respectively, there is a surprising lack of mention and testing of GSH metabolism. In addition, what are the major similarities and differences of cysteine homeostasis pathways between C. elegans and other systems (HIF dependency, transcription vs post-transcriptional control)? These questions could be better discussed and noted with novel findings of the current study that are likely C. elegans specific or broadly conserved.

      All of my comments and questions above have been satisfactorily addressed in the revised manuscript.

    2. Reviewer #3 (Public Review):

      There has been a long-standing link between the biology of sulfur-containing molecules (e.g., hydrogen sulfide gas, the amino acid cysteine, and its close relative cystine, et cetera) and the biology of hypoxia, yet we have a poor understanding of how and why these two biological processes and are co-regulated. Here, the authors use C. elegans to explore the relationship between sulfur metabolism and hypoxia, examining the regulation of cysteine dioxygenase (CDO1 in humans, CDO-1 in C. elegans), which is critical to cysteine catabolism, by the hypoxia inducible factor (HIF1 alpha in humans, HIF-1 in C. elegans), which is the key terminal effector of the hypoxia response pathway that maintains oxygen homeostasis. The authors are trying to demonstrate that (1) the hypoxia response pathway is a key regulator of cysteine homeostasis, specifically through the regulation of cysteine dioxygenase, and (2) that the pathway responds to changes in cysteine homeostasis in a mechanistically distinct way from how it responds to hypoxic stress.

      Briefly summarized here, the authors initiated this study by generating transgenic animals expressing a CDO-1::GFP protein chimera from the cdo-1 promoter so that they could identify regulators of CDO-1 expression through a forward genetic screen. This screen identified mutants with elevated CDO-1::GFP expression in two genes, egl-9 and rhy-1, whose wild-type products are negative regulators of HIF-1, raising the possibility that cdo-1 is a HIF-1 transcriptional target. Indeed, the authors provide data showing that cdo-1 regulation by EGL-9 and RHY-1 is dependent on HIF-1 and that regulation by RHY-1 is dependent on CYSL-1, as expected from other published findings of this pathway. The authors show that exogenous cysteine activates cdo-1 expression, reflective of what is known to occur in other systems. Moreover, they find that exogenous cysteine is toxic to worms lacking CYSL-1 or HIF-1 activity, but not CDO-1 activity, suggesting that HIF-1 mediates a survival response to toxic levels of cysteine and that this response requires more than just the regulation of CDO-1. The authors validate their expression studies using a GFP knockin at the cdo-1 locus, and they demonstrate that a key site of action for CDO-1 is the hypodermis. They present genetic epistasis analysis supporting a role for RHY-1, both as a regulator of HIF-1 and as a transcriptional target of HIF-1, in offsetting toxicity from aberrant sulfur metabolism. The authors use CRISPR/Cas9 editing to mutate a key amino acid in the prolyl hydroxylase domain of EGL-9, arguing that EGL-9 inhibits CDO-1 expression through a mechanism that is largely independent of the prolyl hydroxylase activity.

      Overall, the data seem rigorous, and the conclusions drawn from the data seem appropriate. The experiments test the hypothesis using logical and clever molecular genetic tools and design. The sample size is a bit lower than is typical for C. elegans papers; however, the experiments are clearly not underpowered, so this is not an issue. The paper is likely to drive many in the field (including the authors themselves) into deeper experiments on (1) how the pathway senses hypoxia and sulfur/cysteine/H2S using these distinct mechanisms/modalities, (2) how oxygen and sulfur/cysteine/H2S homeostasis influence one another, and (3) how this single pathway evolved to sense and respond to both of these stress modalities.

      My previous concerns have been addressed. The authors are commended on an excellent body of research.

    3. Reviewer #4 (Public Review):

      Summary:<br /> This is a revised manuscript that describes a role for cdo-1 in regulating cellular cysteine levels. The authors show that expression of cdo-1, predicted to encode a cysteine dioxygenase, is regulated by HIF-1, the conserved hypoxia-induced transcription factor. The expression of cdo-1 is controlled by the RHY-1/CYSL-1/EGL-9/HIF-1 pathway that has been demonstrated to be involved in the response to H2S.

      Strengths:<br /> The new finding of this study is that cdo-1, predicted to encode a cysteine dioxygenase, is expressed in the hypodermis and that hypodermal expression rescues at least one phenotype of the cdo-1(mg622) mutant (ability to survive toxic sulfite accumulation in Moco-deficient conditions). Using sulfite toxicity is an interesting reporter for cellular cysteine abundance.

      Weaknesses:<br /> The authors claim more than once that the H2S/Cys responsive pathway is RHY-1 - CYSL-1 - EGL-9 - HIF-1. Their data don't seem to support this claim, as they show that Pcdo-1::GFP is induced in rhy-1 mutants incubated with cysteine. It is therefore not appropriate to claim that "HIF-1-induced cysteine catabolism requires the activity of rhy-1" that they include in the description of the model in Fig 6. There is simply no evidence at all that RHY-1 has any role in modulating the activity of CDO-1 other than through transcriptional activation via HIF-1.

      I don't find the arguments that this pathway is required for cysteine homeostasis per se (as claimed in the last sentence of the introduction). The authors expose worms to excess cysteine for 48 hours in liquid culture with bacteria. It is well known in these conditions that the bacteria will produce H2S from the cysteine in the culture. All of the cysteine exposure data shown can be explained by the effect of H2S exposure. This would explain why hif-1 and cysl-1 mutants die but cdo-1 mutants do not, for example. The authors don't provide any data to rule out the possibility that bacterial H2S production underlies these results. This explains why the pathway described in this work is the same as has been previously described. Similarly, there is no evidence at all to support their assertion that there are "other pathways" induced by HIF-1 to deal with sulfite produced by cysteine catabolism. However, if the main problem is H2S production (perhaps by bacteria) then cdo-1 would not be relevant and the mutants would be viable as observed.

      In a couple of places, the authors seem to argue that H2S-induced expression is limited to the hypodermis and hypoxia-induced gene expression is mostly in the intestine. This is consistent with the expression of cdo-1 (this work) and nhr-57 (Budde and Roth) but it is not appropriate to generalize this. Previous work from the Ruvkun lab (Ma et al) show that the CYSL-1 regulates expression of HIF-1 targets in neurons. Moreover, HIF-1 protein accumulates in the nucleus of nearly all cells, and there is no reason to believe that there are changes in the expression of other genes in different tissues.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study reports that IT neurons have biased representations toward low spatial frequency (SF) and faster decoding of low SFs than high SFs. High SF-preferred neurons, and low SF-preferred neurons to a lesser degree, perform better category decoding than neurons with other profiles (U and inverted U shaped). SF coding also shows more sparseness than category coding in the earlier phase of the response and less sparseness in the later phase. The results are also contrasted with predictions of various DNN models.

      Strengths:<br /> The study addressed an important issue on the representations of SF information in a high-level visual area. Data are analyzed with LDA which can effectively reduce the dimensionality of neuronal responses and retain category information.

      Weaknesses:<br /> The results are likely compromised by improper stimulus timing and unmatched spatial frequency spectrums of stimuli in different categories.

      The authors used a very brief stimulus duration (35ms), which would degrade the visual system's contrast sensitivity to medium and high SF information disproportionately (see Nachmias, JOSAA, 1967). Therefore, IT neurons in the study could have received more degraded medium and high SF inputs compared to low SF inputs, which may be at least partially responsible for higher firing rates to low Sf R1 stimuli (Figure 1c) and poorer recall performance with median and high SF R3-R5 stimuli in LDA decoding. The issue may also to some degree explain the delayed onset of recall to higher SF stimuli (Figure 2a), preferred low SF with an earlier T1 onset (Figure 2b), lower firing rate to high SF during T1 (Figure 2c), somewhat increased firing rate to high SF during T2 (because weaker high SF inputs would lead to later onset, Figure 2d).

      Figure 3b shows greater face coding than object coding by high SF and to a lesser degree by low SF neurons. Only the inverted-U-shaped neurons displayed slightly better object coding than face coding. Overall the results give an impression that IT neurons are significantly more capable of coding faces than coding objects, which is inconsistent with the general understanding of the functions of IT neurons. The problem may lie with the selection of stimulus images (Figure 1b). To study SF-related category coding, the images in two categories need to have similar SF spectrums in the Fourier domain. Such efforts are not mentioned in the manuscript, and a look at the images in Figure 1b suggests that such efforts are likely not properly made. The ResNet18 decoding results in Figure 6C, in that IT neurons of different profiles show similar face and object coding, might be closer to reality.

    2. Reviewer #2 (Public Review):

      Summary:<br /> This paper aimed to examine the spatial frequency selectivity of macaque inferotemporal (IT) neurons and its relation to category selectivity. The authors suggest in the present study that some IT neurons show a sensitivity for the spatial frequency of scrambled images. Their report suggests a shift in preferred spatial frequency during the response, from low to high spatial frequencies. This agrees with a coarse-to-fine processing strategy, which is in line with multiple studies in the early visual cortex. In addition, they report that the selectivity for faces and objects, relative to scrambled stimuli, depends on the spatial frequency tuning of the neurons.

      Strengths:<br /> Previous studies using human fMRI and psychophysics studied the contribution of different spatial frequency bands to object recognition, but as pointed out by the authors little is known about the spatial frequency selectivity of single IT neurons. This study addresses this gap and they show that at least some IT neurons show a sensitivity for spatial frequency and interestingly show a tendency for coarse-to-fine processing.

      Weaknesses and requested clarifications:<br /> 1. It is unclear whether the effects described in this paper reflect a sensitivity to spatial frequency, i.e. in cycles/ deg (depends on the distance from the observer and changes when rescaling the image), or is a sensitivity to cycles /image, largely independent of image scale. How is it related to the well-documented size tolerance of IT neuron selectivity?

      2. The authors' band-pass filtered phase scrambled images of faces and objects. The original images likely differed in their spatial frequency amplitude spectrum and thus it is unclear whether the differing bands contained the same power for the different scrambled images. If not, this could have contributed to the frequency sensitivity of the neurons.

      3. How strong were the responses to the phase-scrambled images? Phase-scrambled images are expected to be rather ineffective stimuli for IT neurons. How can one extrapolate the effect of the spatial frequency band observed for ineffective stimuli to that for more effective stimuli, like objects or (for some neurons) faces? A distribution should be provided, of the net responses (in spikes/s) to the scrambled stimuli, and this for the early and late windows.

      4. The strength of the spatial frequency selectivity is unclear from the presented data. The authors provide the result of a classification analysis, but this is in normalized units so that the reader does not know the classification score in percent correct. Unnormalized data should be provided. Also, it would be informative to provide a summary plot of the spatial frequency selectivity in spikes/s, e.g. by ranking the spatial frequency bands for each neuron based on half of the trials and then plotting the average responses for the obtained ranks for the other half of the trials. Thus, the reader can appreciate the strength of the spatial frequency selectivity, considering trial-to-trial variability. Also, a plot should be provided of the mean response to the stimuli for the two analysis windows of Figure 2c and 2d in spikes/s so one can appreciate the mean response strengths and effect size (see above).

      5. It is unclear why such brief stimulus durations were employed. Will the results be similar, in particular the preference for low spatial frequencies, for longer stimulus durations that are more similar to those encountered during natural vision?

      6. The authors report that the spatial frequency band classification accuracy for the population of neurons is not much higher than that of the best neuron (line 151). How does this relate to the SNC analysis, which appears to suggest that many neurons contribute to the spatial frequency selectivity of the population in a non-redundant fashion? Also, the outcome of the analyses should be provided (such as SNC and decoding (e.g. Figure 1D)) in the original units instead of undefined arbitrary units.

      7. To me, the results of the analyses of Figure 3c,d, and Figure 4 appear to disagree. The latter figure shows no correlation between category and spatial frequency classification accuracies while Figure 3c,d shows the opposite.

      8. If I understand correctly, the "main" test included scrambled versions of each of the "responsive" images selected based on the preceding test. Each stimulus was presented 15 times (once in each of the 15 blocks). The LDA classifier was trained to predict the 5 spatial frequency band labels and they used 70% of the trials to train the classifier. Were the trained and tested trials stratified with respect to the different scrambled images? Also, LDA assumes a normal distribution. Was this the case, especially because of the mixture of repetitions of the same scrambled stimulus and different scrambled stimuli?

      9. The LDA classifiers for spatial frequency band (5 labels) and category (2 labels) have different chance and performance levels. Was this taken into account when comparing the SNC between these two classifiers? Details and SNC values should be provided in the original (percent difference) instead of arbitrary units in Figure 5a. Without such details, the results are impossible to evaluate.

      10. Recording locations should be described in IT, since the latter is a large region. Did their recordings include the STS? A/P and M/L coordinate ranges of recorded neurons?

      11. The authors should show in Supplementary Figures the main data for each of the two animals, to ensure the reader that both monkeys showed similar trends.

      12. The authors found that the deep nets encoded better the spatial frequency bands than the IT units. However, IT units have trial-to-trial response variability and CNN units do not. Did they consider this when comparing IT and CNN classification performance? Also, the number of features differs between IT and CNN units. To me, comparing IT and CNN classification performances is like comparing apples and oranges.

      13. The authors should define the separability index in their paper. Since it is the main index to show a relationship between category and spatial frequency tuning, it should be described in detail. Also, results should be provided in the original units instead of undefined arbitrary units. The tuning profiles in Figure 3A should be in spikes/s. Also, it was unclear to me whether the classification of the neurons into the different tuning profiles was based on an ANOVA assessing per neuron whether the effect of the spatial frequency band was significant (as should be done).

      14. As mentioned above, the separability analysis is the main one suggesting an association between category and spatial frequency tuning. However, they compute the separability of each category with respect to the scrambled images. Since faces are a rather homogeneous category I expect that IT neurons have on average a higher separability index for faces than for the more heterogeneous category of objects, at least for neurons responsive to faces and/or objects. The higher separability for faces of the two low- and high-pass spatial frequency neurons could reflect stronger overall responses for these two classes of neurons. Was this the case? This is a critical analysis since it is essential to assess whether it is category versus responsiveness that is associated with the spatial frequency tuning. Also, I do not believe that one can make a strong claim about category selectivity when only 6 faces and 3 objects (and 6 other, variable stimuli; 15 stimuli in total) are employed to assess the responses for these categories (see next main comment). This and the above control analysis can affect the main conclusion and title of the paper.

      15. For the category decoding, the authors employed intact, unscrambled stimuli. Were these from the main test? If yes, then I am concerned that this represents a too small number of stimuli to assess category selectivity. Only 9 fixed + 6 variable stimuli = 15 were in the main test. How many faces/ objects on average? Was the number of stimuli per category equated for the classification? When possible use the data of the preceding selectivity test which has many more stimuli to compute the category selectivity.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This manuscript dissects the contribution of the CaBP 1 and 2 on the calcium current in the cochlear inner hair cells. The authors measured the calcium current inactivation from the double knock-out CaBP1 and 2 and showed that both proteins contribute to voltage-dependent and calcium-dependent inactivation. Synaptic release was reduced in the double KO. As a consequence, the authors observed a depressed activity within the auditory nerve. Taken together, this study identifies a new player that regulates the stimulation-secretion coupling in the auditory sensory cells.

      Strengths:<br /> In this study, the authors bring compelling evidence that CaBP 1 and 2 are both involved in the inactivation of the calcium current, from cellular up to system level, and by taking care to probe different experimental conditions such as different holding potentials and by rescuing the phenotype with the re-expression of CaBP2. Indeed, while changing the holding potential worsens the secretion, it completely changes the kinetics of the inactivation recovery. It alerts the reader that probing different experimental conditions that may be closer to physiology is better suited to uncovering any deleterious phenotype. This gave pretty solid results.

      Weaknesses:<br /> Although this study clearly points out that CaBP1 is involved in the calcium current inactivation, it is not clear how CaBP1 and CaBP2 act together (but this is probably beyond the scope of the study). Another point is that the authors re-express CaBP2 to largely rescue the phenotype in the double KO but no data are available to know whether the re-expression of both CaBP1 and CaBP2 would achieve a full recovery and what would be the effect of the sole re-expression of CaBP1 in the double KO.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In the manuscript by Oestreicher et al, the authors use patch-clamp electrophysiology, immunofluorescent imaging of the cochlea, auditory function tests, and single-unit recordings of auditory afferent neurons to probe the unique properties of calcium signaling in cochlear hair cells that allow rapid and sustained neurotransmitter release. The calcium-binding proteins (CaBPs) are thought to modify the inactivation of the Cav1.3 calcium channels in IHCs that initiate vesicle fusion, reducing the calcium-dependent inactivation (CDI) of the channels to allow sustained calcium influx to support neurotransmitter release. The authors use knockout mice of Cabp1 and Cabp2 in a double knockout (Cabp1/2 DKO) to show that these molecules are required for enabling sustained calcium currents by reducing CDI and enabling proper IHC neurotransmitter release. They further support their evidence by re-introducing Cabp2 using an injection of AAV containing the Cabp2 sequence into the cochlea, which restores some of the auditory function and reduces CDI in patch-clamp recordings.

      Strengths:<br /> Overall the data is convincing that Cabp1/2 is required for reducing CDI in cochlear hair cells, allowing their sustained neurotransmitter release and sound encoding. Figures are well-prepared, recordings are careful and stats are appropriate, and the manuscript is well-written. The discussion appropriately considers aspects of the data that are not yet explained and await further experimentation.

      Weaknesses:<br /> There are some sections of the manuscript that pool data from different experiments with slightly different conditions (wt data from a previous paper, different calcium concentrations, different holding voltages, tones vs clicks, etc). This makes the work harder to follow and more complicated to explain. However, the major conclusion, that cabp1 and 2 work together to reduce calcium-dependent inactivation of L-type calcium channels in cochlear inner hair cells, still holds.

      Another weakness is that the authors used injections of AAV-containing sequences for Cabp2, but do not present data from sham surgeries. In most cases, the improvement of hearing function with AAV injection is believable and should be attributed to the cabp2 function. However, in at least one instance (Figure 4B), the results of the AAV injection experiments may be overinterpreted - the authors show that upon AAV injection, the hair cells have a much longer calcium current recovery following a large, long depolarization to inactivate the calcium channels. Without comparison to sham surgery, it is not known if this result could be a subtle result of the surgery or indeed due to the Cabp2 expression.<br /> It would be great to see the auditory nerve recordings in AAV-injected animals that have a recovery of ABRs. However, this is a challenging experiment that requires considerable time and resources, so is not required.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The authors attempted to unravel the role of the Ca2+-binding proteins CaBP1 and CaBP2 for the hitherto enigmatic lack of Ca2+-dependent inactivation of Ca2+ currents in sensory inner hair cells (IHCs). As Ca2+ currents through Cav1.3 channels are crucial for exocytosis, the lack of inactivation of those Ca2+ currents is essential for the indefatigable sound encoding by IHCs. Using a deaf mouse model lacking both CaBP1 and CaBP2, the authors convincingly demonstrate that both CaBP1 and CaBP2 together confer a lack of inactivation, with CaBP2 being far more effective. This is surprising given the mild phenotype of the single knockouts, which has been published by the authors before. Re-admission of CaBP2 through viral gene transfer into the inner ear of double-knockout mice largely restored hearing function, normal Ca2+ current properties, and exocytosis.

      Strengths:<br /> 1. In vitro electrophysiology: perforated patch-clamp recordings of Ca2+/Ba2+ currents of inner hair cells (IHCs) from 3-4 week-old mice - very difficult recordings - necessary to not interfere with intracellular Ca2+ buffers, including CaBP1 and CaBP2.<br /> 2. Capacitance (exocytosis) recordings from IHCs in perforated patch mode.<br /> 3. The insight that a negative holding potential might underestimate the impact of lack of CaBP1/2 on the inactivation of ICa in IHCs. As the physiological holding potential is much more positive than a preferred holding potential in patch clamp experiments it has a strong impact on inactivation in the pauses between depolarization mimicking receptor potentials.<br /> This truly advances our thinking about the stimulation of IHCs and accumulating inactivation of the Cav1.3 channels.<br /> 4. Insight that the voltage sine method with usual voltage excursions (35 mV) to determine the membrane capacitance (for exocytosis measurements) also favors the inactivated state of Cav1.3 channels<br /> 5. Use of double ko mice (for both CaBP1 and CaBP2, DKO) and use of DKO with virally injected CaBP2-eGFP into the inner ear.<br /> 6. Use of DKO animals/IHCs/SGNs after virus-mediated CaBP2 gene transfer shows a great amount of rescue of the normal ICa inactivation phenotype.<br /> 7. In vivo measurements of SGN AP responses to sound, which is highly demanding.<br /> 8. In vivo measurements of hearing thresholds, DPOAE characteristics, and ABR wave I amplitudes/latencies of DKO mice and DKO+injected mice compared to WT mice.

      Very thorough analysis and presentation of the data, excellent statistical analysis.

      The authors achieved their aims. Their results fully support their conclusions. The methods used by the authors are state-of-the-art.

      The impacts on the field are the following:<br /> Regulation of inactivation of Cav1.3 currents is crucial for the persistent functioning of Cav1.3 channels in sensory transduction.<br /> The findings of the authors better explain the phenotype of the human autosomal recessive DFNB93, which is based on the malfunction of CaBP2.<br /> Future work - by the authors or others - should address the molecular mechanisms of the interaction of CaBP1 and 2 in regulating Cav1.3 inactivation.

      Weaknesses:<br /> I do not see weaknesses.<br /> What is not explained (but was not the aim of the authors) is how the CaBPs 1 and 2 interact with the Cav1.3 channels and with each other to reduce CDI. Also, why DFNB93, which is based on mutation of the CaBP2 gene, lead to a severe phenotype in humans in contrast to the phenotype of the CaBP2 ko mouse.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors introduced their previous paper with the concise statement that "the relationships between lineage-specific attributes and genotypic differences of tumors are not understood" (Chen et al., JEM 2019, PMID: 30737256). For example, it is not clear why combined loss of RB1 and TP53 is required for tumorigenesis in SCLC or other aggressive neuroendocrine (NE) cancers, or why the oncogenic mutations in KRAS or EGFR that drive NSCLC tumorigenesis are found so infrequently in SCLC. This is the main question addressed by the previous and current papers.

      One approach to this question is to identify a discrete set of genetic/biochemical manipulations that are sufficient to transform non-malignant human cells into SCLC-like tumors. One group reported the transformation of primary human bronchial epithelial cells into NE tumors through a complex lentiviral cocktail involving the inactivation of pRB and p53 and activation of AKT, cMYC, and BCL2 (PARCB) (Park et al., Science 2018, PMID: 30287662). The cocktail previously reported by Chen and colleagues to transform human pluripotent stem-cell (hPSC)-derived lung progenitors (LPs) into NE xenografts was more concise: DAPT to inactivate NOTCH signaling combined with shRNAs against RB1 and TP53. However, the resulting RP xenografts lacked important characteristics of SCLC. Unlike SCLC, these tumors proliferated slowly and did not metastasize, and although small subpopulations expressed MYC or MYCL, none expressed NEUROD1.

      MYC is frequently amplified or expressed at high levels in SCLC, and here, the authors have tested whether inducible expression of MYC could increase the resemblance of their hPSC-derived NE tumors to SCLC. These RPM cells (or RPM T58A with stabilized cMYC) engrafted more consistently and grew more rapidly than RP cells, and unlike RP cells, formed liver metastases when injected into the renal capsule. Gene expression analyses revealed that RPM tumor subpopulations expressed NEUROD1, ASCL1, and/or YAP1.

      The hPSC-derived RPM model is a major advance over the previous RP model. This may become a powerful tool for understanding SCLC tumorigenesis and progression and for discovering gene dependencies and molecular targets for novel therapies. However, the specific role of cMYC in this model needs to be clarified.

      cMYC can drive proliferation, tumorigenesis, or apoptosis in a variety of lineages depending on concurrent mutations. For example, in the Park et al., study, normal human prostate cells could be reprogrammed to form adenocarcinoma-like tumors by activation of cMYC and AKT alone, without manipulation of TP53 or RB1. In their previous manuscript, the authors carefully showed the role of each molecular manipulation in NE tumorigenesis. DAPT was required for NE differentiation of LPs to PNECs, shRB1 was required for expansion of the PNECs, and shTP53 was required for xenograft formation. cMYC expression could influence each of these steps, and importantly, could render some steps dispensable. For example, shRB1 was previously necessary to expand the DAPT-induced PNECs, as neither shTP53 nor activation of KRAS or EGFR had no effect on this population, but perhaps cMYC overexpression could expand PNECs even in the presence of pRB, or even induce LPs to become PNECs without DAPT. Similarly, both shRB1 and shTP53 were necessary for xenograft formation, but maybe not if cMYC is overexpressed. If a molecular hallmark of SCLC, such as loss of RB1 or TP53, has become dispensable with the addition of cMYC, this information is critically important in interpreting this as a model of SCLC tumorigenesis.

      To interpret the role of cMYC expression in hPSC-derived RPM tumors, we need to know what this manipulation does without manipulation of pRB, p53, or NOTCH, alone or in combination. Seven relevant combinations should be presented in this manuscript: (1) cMYC alone in LPs, (2) cMYC + DAPT, (3) cMYC + shRB1, (4) cMYC + DAPT + shRB1, (5) cMYC + shTP53, (6) cMYC + DAPT + shTP53, and (7) cMYC + shRB1 + shTP53. Wild-type cMYC is sufficient; further exploration with the T58A mutant would not be necessary.

      This reviewer considers that there should be a presentation of the effects of these combinations on LP differentiation to PNECs, expansion of PNECs as well as other lung cells, xenograft formation and histology, and xenograft growth rate and capacity for metastasis. If this could be clarified experimentally, and the results discussed in the context of other similar approaches such as the Park et al., paper, this study would be a major addition to the field.

    2. Reviewer #2 (Public Review):

      Summary:<br /> Chen et al use human embryonic stem cells (ESCs) to determine the impact of wildtype MYC and a point mutant stable form of MYC (MYC-T58A) in the transformation of induced pulmonary neuroendocrine cells (PNEC) in the context of RB1/P53 (RP) loss (tumor suppressors that are nearly universally lost in small cell lung cancer (SCLC)). Upon transplant into immune-deficient mice, they find that RP-MYC and RP-MYC-T58A cells grow more rapidly, and are more likely to be metastatic when transplanted into the kidney capsule, than RP controls. Through single-cell RNA sequencing and immunostaining approaches, they find that these RPM tumors and their metastases express NEUROD1, which is a transcription factor whose expression marks a distinct molecular state of SCLC. While MYC is already known to promote aggressive NEUROD1+ SCLC in other models, these data demonstrate its capacity in a human setting that provides a rationale for further use of the ESC-based model going forward. Overall, these findings provide a minor advance over the previous characterization of this ESC-based model of SCLC published in Chen et al, J Exp Med, 2019.

      The major conclusion of the paper is generally well supported, but some minor conclusions are inadequate and require important controls and more careful analysis.

      Strengths:<br /> 1. Both MYC and MYC-T58A yield similar results when RP-MYC and RP-MYCT58A PNEC ESCs are injected subcutaneously, or into the renal capsule, of immune-deficient mice, leading to the conclusion that MYC promotes faster growth and more metastases than RP controls.

      2. Consistent with numerous prior studies in mice with a neuroendocrine (NE) cell of origin (Mollaoglu et al, Cancer Cell, 2017; Ireland et al, Cancer Cell, 2020; Olsen et al, Genes Dev, 2021), MYC appears sufficient in the context of RB/P53 loss to induce the NEUROD1 state. Prior studies also show that MYC can convert human ASCL1+ neuroendocrine SCLC cell lines to a NEUROD1 state (Patel et al, Sci Advances, 2021); this study for the first time demonstrates that RB/P53/MYC from a human neuroendocrine cell of origin is sufficient to transform a NE state to aggressive NEUROD1+ SCLC. This finding provides a solid rationale for using the human ESC system to better understand the function of human oncogenes and tumor suppressors from a neuroendocrine origin.

      Weaknesses:<br /> 1. There is a major concern about the conclusion that MYC "yields a larger neuroendocrine compartment" related to Figures 4C and 4G, which is inadequately supported and likely inaccurate. There is overwhelming published data that while MYC can promote NEUROD1, it also tends to correlate with reduced ASCL1 and reduced NE fate (Mollaoglu et al, Cancer Cell, 2017; Zhang et al, TLCR, 2018; Ireland et al, Cancer Cell, 2020; Patel et al, Sci Advances, 2021). Most importantly, there is a lack of in vivo RP tumor controls to make the proper comparison to judge MYC's impact on neuroendocrine identity. RPM tumors are largely neuroendocrine compared to in vitro conditions, but since RP control tumors (in vivo) are missing, it is impossible to determine whether MYC promotes more or less neuroendocrine fate than RP controls. It is not appropriate to compare RPM tumors to in vitro RP cells when it comes to cell fate. Upon inspection of the sample identity in S1B, the fibroblast and basal-like cells appear to only grow in vitro and are not well represented in vivo; it is, therefore, unclear whether these are transformed or even lack RB/P53 or express MYC. Indeed, a close inspection of Figure S1B shows that RPM tumor cells have little ASCL1 expression, consistent with lower NE fate than expected in control RP tumors.

      In addition, since MYC appears to require Notch signaling to induce NE fate (Ireland et al), the presence of DAPT in culture could enrich for NE fate despite MYC's presence. It's important to clarify in the legend of Fig 4A which samples are used in the scRNA-seq data and whether they were derived from in vitro or in vivo conditions (as such, Supplementary Figure S1B should be provided in the main figure). Given their conclusion is confusing and challenges robustly supported data in other models, it is critical to resolve this issue properly. I suspect when properly resolved, MYC actually consistently does reduce NE fate compared to RP controls, even though tumors are still relatively NE compared to completely distinct cellular identities such as fibroblasts.

      2. The rigor of the conclusions in Figure 1 would be strengthened by comparing an equivalent number of RP animals in the renal capsule assay, which is n = 6 compared to n = 11-14 in the MYC conditions.

      3. Statistical analysis is not provided for Figures 2A-2B, and while the results are compelling, may be strengthened by additional samples due to the variability observed.

      4a. Related to Figure 3, primary tumors and liver metastases from RPM or RPM-T58A-expressing cells express NEUROD1 by immunohistochemistry (IHC) but the putative negative controls (RP) are not shown, and there is no assessment of variability from tumor to tumor, ie, this is not quantified across multiple animals.

      4b. Relatedly, MYC has been shown to be able to push cells beyond NEUROD1 to a double-negative or YAP1+ state (Mollaoglu et al, Cancer Cell, 2017; Ireland et al, Cancer Cell, 2020), but the authors do not assess subtype markers by IHC. They do show subtype markers by mRNA levels in Fig 4B, and since there is expression of ASCL1, and potentially expression of YAP1 and POU2F3, it would be valuable to examine the protein levels by IHC in control RP vs. RPM samples.

      5. Given that MYC has been shown to function distinctly from MYCL in SCLC models, it would have raised the impact and value of the study if MYC was compared to MYCL or MYCL fusions in this context since generally, SCLC expresses a MYC family member. However, it is quite possible that the control RP cells do express MYCL, and as such, it would be useful to show.

    3. Reviewer #3 (Public Review):

      Summary:<br /> The authors continue their study of the experimental model of small cell lung cancer (SCLC) they created from human embryonic stem cells (hESCs) using a protocol for differentiating the hESCs into pulmonary lineages followed by NOTCH signaling inactivation with DAPT, and then knockdown of TP53 and RB1 (RP models) with DOX inducible shRNAs. To this published model, they now add DOX-controlled activation of expression of a MYC or T58A MYC transgenes (RPM and RPMT58A models) and study the impact of this on xenograft tumor growth and metastases. Their major findings are that the addition of MYC increased dramatically subcutaneous tumor growth and also the growth of tumors implanted into the renal capsule. In addition, they only found liver and occasional lung metastases with renal capsule implantation. Molecular studies including scRNAseq showed that tumor lines with MYC or T58A MYC led surprisingly to more neuroendocrine differentiation, and (not surprisingly) that MYC expression was most highly correlated with NEUROD1 expression. Of interest, many of the hESCs with RPM/RPMT58A expressed ASCL1. Of note, even in the renal capsule RPM/RPMT58A models only 6/12 and 4/9 mice developed metastases (mainly liver with one lung metastasis) and a few mice of each type did not even develop a renal sub capsule tumor. The authors start their Discussion by concluding: " In this report, we show that the addition of an efficiently expressed transgene encoding normal or mutant human cMYC can convert weakly tumorigenic human PNEC cells, derived from a human ESC line and depleted of tumor suppressors RB1 and TP53, into highly malignant, metastatic SCLC-like cancers after implantation into the renal capsule of immunodeficient mice.".

      Strengths:<br /> The in vivo study of a human preclinical model of SCLC demonstrates the important role of c-Myc in the development of a malignant phenotype and metastases. Also the role of c-Myc in selecting for expression of NEUROD1 lineage oncogene expression.

      Weaknesses:<br /> There are no data on results from an orthotopic (pulmonary) implantation on generation of metastases; no comparative study of other myc family members (MYCL, MYCN); no indication of analyses of other common metastatic sites found in SCLC (e.g. brain, adrenal gland, lymph nodes, bone marrow); no studies of response to standard platin-etoposide doublet chemotherapy; no data on the status of NEUROD1 and ASCL1 expression in the individual metastatic lesions they identified.