Reviewer #2 (Public review):
Summary
This study provides a detailed analysis and dissociation between two effects of activation of lateral inhibitory circuits in the olfactory bulb on ongoing single mitral/tufted cell (MTC) spiking activity, namely enhanced synchronization in the gamma frequency range or lateral inhibition of firing rate.
The authors use a clever combination of single cell recordings, optogenetics with variable spatial stimulation of MTCs and sensory stimulation in vivo, and established mathematical methods, to describe changes in autocorrelation/synchronization of a single MTC's spiking activity upon activation of other, lateral glomerular MTC ensembles. This assay is rounded off by a gain of function experiment in which the authors enhance granule cell (GC) excitation to establish a causal relation between GC activation and enhanced synchronization of a single MTC's spiking to the gamma rhythm. They had used the same optogenetic manipulation in their previous paper Dalal & Haddad 2022, but use a smaller illumination spot here for spatially restricted activation.
Strengths
This study is of high interest for olfactory processing since it shows directly that interactions between only two selected active receptor channels are sufficient to enhance synchronization of single neurons to gamma in one receptor channel and thus by inference most likely in both. Such synchronization across co-active receptor channels in turn would enable upstream neurons in olfactory cortices to read out odour identity.
The authors find that these interactions are distance-independent over many 100s of µms and thus can allow for non-topographical inhibitory action across the bulb, in contrast to the center-surround lateral inhibition known from other sensory modalities. In my view, analogies between vision and olfaction might have been overemphasized so far, since the combinatorial encoding of olfactory stimuli across the glomerular map might require different mechanisms of lateral interaction versus vision. This result is indicative of such a major difference.
Such enhanced local synchronization to gamma in one channel was observed in a subset of activated channel pairs; in addition, the authors report another type of lateral interaction that does involve reduction of firing rates, drops off with distance and most likely is caused by a different circuit mediated by PV+ neurons (PVN). The evidence for the latter is more circumstantial since no manipulations of PVNs were performed.
Weaknesses/Room for improvement
This study is an impressive proof of concept that however does not yet allow for broad generalization. Thus the framing of results should be slightly more careful IMHO. While the claims in the initial version of this preprint have been toned down quite substantially, the authors do not provide direct hard evidence for synchronization across channels. Admittedly, this would be hard to achieve since it would require paired recordings from MTCs in different locations in vivo. Therefore, the term „lateral synchronization" as it is used in the abstract is still problematic, as well as the title which should rather say „can enable" instead of „enables". That being said, this study definitely provides important evidence regarding the concept of "lateral synchronization".
The other comments and recommendations have been well taken care of in the new version.