12,635 Matching Annotations
  1. May 2023
    1. Reviewer #1 (Public Review):

      The paper is based around one very nice new marine reptile fossil from South China, but the authors make an excellent case in their Introduction that this can shed light on a wide range of fundamental phylogenetic problems around a whole array of Early and Middle Triassic marine reptiles. The description of the fossil is detailed and thorough and makes constant reference to comparative material of other taxa of saurosphargids. The phylogenetic analysis smartly adds some Triassic turtles and some other Early Triassic marine reptiles to a published cladistic data matrix and then can provide some really significant phylogenetic conclusions around Sauropterygia origins and Archelosauria.

    2. Reviewer #2 (Public Review):

      The study describes and names a new marine reptile taxon on the basis of an incomplete postcranial skeleton from the early Triassic of China. The morphologial description and comparison is well concucted/informative and very detailed. The paper and results (phylo. analyseis and hypothesis on ancestral body shape) of Wang et al. 2022 should be discussed in more detail.

    1. Reviewer #1 (Public Review):

      This manuscript focuses on a set of neurons from the border between the central and medial amygdala (AMGc/m-PAG ) that project to neurons in the periaqueductal gray (PAG) that gate ultrasonic vocalizations (USVs). These neurons suppress vocal production and are active in contexts where vocalizations would be inappropriate (e.g. in the presence of predator cues, or aggressive encounters with conspecifics). They then further characterized these neurons, demonstrating that like in males, these neurons are GABAergic in females and in both sexes, half of these neurons express estrogen receptor alpha (Esr1). To examine the inputs into these neurons, the authors performed monosynaptically-restricted transsynaptic rabies tracing and identified numerous cortical and subcortical projections. Of particular interest, neurons from the preoptic area of the hypothalamus (POA) in addition to terminating on PAG-USV neurons also project to AMGc/m-PAG neurons. Imaging the terminals of these neurons revealed elevated activity during vocalization-promoting contexts and optogenetically stimulating them resulted in evoking USVs. Together, these experiments further identify and quantify a circuit incorporating external factors (e.g. predatory factors, social interactions) in the drive to produce vocalizations.

      The authors are commended for use of male and female mice, demonstrating that even though they produce USVs in different social contexts, AMGc/m-PAG neurons share a function in suppressing USV production in both sexes. They do this convincingly with a variety of methodologies while incorporating appropriate controls (e.g. light-only and GFP-control in optogenetic experiments). The experiments are performed in a logical order and the data generated is elaborate.

    2. Reviewer #2 (Public Review):

      The existence of PAG-USV-producing neurons has been recently established, alongside two independent pathways, POA->PAG, and AMG->PAG, that promote and inhibit the production of ultrasound vocalizations in female and male mice, respectively. Because vocalizations can be modulated in a variety of contexts, such as in the presence of a predator, the authors first show that the AMG->PAG pathway is activated in situations where mice stop vocalizing, such as in the presence of a predator or aggressive conspecifics, and can inhibit natural vocalizations in contexts where females vocalize (extending to their previous findings in male mice). Interestingly, AMG->PAG neurons also receive input from POA neurons that are known to promote vocalizations via their connection to PAG interneurons that inhibit PAG-USV-producing neurons. This POA->AMG and PAG pathway is inhibitory and therefore its capacity to promote vocalizations via these two parallel pathways might be achieved by its inhibition of AMG and PAG neurons that inhibit the PAG-USV producing neurons. While these results hint at possible mechanisms that could underlie the hierarchical control of vocalization, and how different external signals impinge on existing pathways to produce behavior flexibility, the study is missing important elements to draw such conclusions. Overall, the study is also missing important information on how experiments were performed.

    1. Reviewer #1 (Public Review):

      This study presents a valuable finding for the incidence of bone avascular necrosis (AVN) in patients with Gaucher's Disease (GD) for twenty years. Furthermore, the evidence supporting the claims of the authors is solid.

      The study's significant limitations relate to small numbers of patients, with only 155 GD patients analyzed. While the study period is excellent for incidence detection at 20 years, the overall number limits the strength of the analysis for cofactors. For example, there is an analysis for linkage to the type of therapy, the GBA1 genotype, spleen status, biomarkers, and other disease indicators. However, substantial numbers that would dictate changes to a preferential enzyme are not convincing. Moreover, the authors described 16 episodes of AVN in 14 patients, again making generalization difficult. Finally, there was a focus on Serum GlcSph levels, and the authors attempted to correlate levels according to probabilities for AVN occurrence while on treatment.

      Overall, however, this is one of the best longitudinal studies for the incidence of AVN in GD patients, and the work will be of interest to medical biologists and professionals treating GD patients.

    2. Reviewer #2 (Public Review):

      Gaucher disease is a rare genetic disorder that is commonly treated by either administration of a functional enzyme or reduction of the substrate. Some patients receiving enzyme replacement therapy develop avascular osteonecrosis (AVN), but the risk factors were not known. In this study, a cohort of 155 patients was followed longitudinally for two decades, and their risk of developing AVN was analyzed. The data convincingly shows that patients with heterozygous N409S mutation, a past history of AVN, receiving velaglucerase therapy, or with higher serum glucosylsphingosine levels have a higher risk of AVN. These findings will provide a means to identify Gaucher disease patients at higher risk of AVN and to provide them with an optimal treatment. In addition, the study establishes that it is prudent to achieve a low glucoylspingosine level as a therapeutic goal in Gaucher patients with risk of AVN.

    1. Reviewer #1 (Public Review):

      The authors worked towards a better understanding of the functional diversification of flavodoxins among diatoms, and this represents a quantum contribution building on the initial findings of Whitney, Lins, Hughes, Wells, Chappelle, and Jenkins (2011), with the inclusion of metatranscriptomic and other data from field collections and on-deck incubation experiments, relatively new genomic and transcriptomic datasets, and the adoption of reverse genetics tools that are not yet widely used in T. pseudonana. They hypothesize that clade I flavodoxins play a role in mitigating oxidative stress, while additional clade II flavodoxins would respond according to canon, in response to low iron availability.

      The authors embarked on several field campaigns across environmental gradients where iron-responsive and oxidative stress-responsive flavodoxins were expected to show differential expression. The use of metatranscriptomics allowed taxa-specific assignment of relative transcript expression levels, and the results of both measurements across the environmental gradient and manipulative incubation experiments show the widespread taxonomic distribution of iron-responsive clade II flavodoxin. The fieldwork was well thought out, and biogeochemical trends comported to expectations. It's worth noting that the concomitant inclusion of geochemical data such as dissolved iron further strengthened the work. The authors also found clade I flavodoxins were not iron-responsive (as expected), but rather exhibited diel patterns in transcript abundance that suggest responses to photo-oxidative stress. Taken together, these field data are stunning.

      Lab experiments with five diatom species grown under varied iron and induced oxidative (H2O2) stress and transcript abundances for flavodoxin genes are reported. One reservation concerns the untoward and unknown effects of inducing outright iron starvation with the strong chelator, DFB (as opposed to achieving steady-state growth rate limitation from low iron by use of weak chelators such as EDTA). With DFB it is also difficult to predict sample timing (when cells have hit that "correct" and reproducible iron-limited space) when independent replicates are collected on different dates. Similarly, the use of DFB also makes it difficult to sample low and high iron cells at the same density or to maintain densities among replicate samples collected on different dates. pH and CO2 availability change with density unless special measures are taken.

      A second set of lab experiments involved the (non-trivial) establishment and use of "knock out" clones of the clade I flavodoxin gene in the model diatom T. pseudonana to test the oxidative stress hypothesis. This is an exciting idea and the data suggest this flavodoxin may confer resistance to oxidative stress. The conclusion would be greatly strengthened if different phenotypes could be observed between WT and KO clones in response to environmentally relevant oxidative stress (such as supra-optimal irradiance), rather than exogenous H2O2 addition. The relationship between the experimental conditions and results in Figure 3C and Supplemental Figure 3H was not clear.

      In the introduction, the authors suggest that Fe-S-containing proteins are particularly sensitive to damage via oxygen and ROS and that reliance on ferredoxin (Fd) for electron shuttling carries an enhanced sensitivity to the ROS generated during photosynthesis. References would be helpful here. Fe-S cluster-containing proteins are not monolithic regarding their behavior or susceptibility towards ROS. My limited understanding is that (i) several 4Fe-4S cluster proteins (such as aconitase, isopropylmalate isomerase) are particularly sensitive but that (ii) this is less so for canonical 2Fe-2S cluster ferredoxins; (iii) in some phototrophs Fd catalyzes the reduction of molecular oxygen to superoxide, as part of a mechanism that keeps the electron transport chain less reduced under extremely high light. Thus, ferredoxins may not necessarily be susceptible to in vivo ROS-mediated damage.

    2. Reviewer #2 (Public Review):

      In their manuscript, Van Creveld et al. set out to demonstrate divergent functions for two clades of flavodoxin in diatoms. To achieve their goals, the authors combined metatranscriptomic results originating from three separate research cruises in the North Pacific Ocean with laboratory experiments with a clade I flavodoxin knock-out mutant in the diatom Thalassiosira pseudonana. Overall, their field study confirmed that Clade II flavodoxin is mostly up-regulated under iron limitation in most diatoms that were represented in their metatranscriptomic data (Figure 5 A-F). Their field study also demonstrated that clade I flavodoxin is expressed at levels that are several orders of magnitude lower than clade II flavodoxin (figure 5H). The lower expression of clade I flavodoxin was also observed in laboratory culture experiments (Figure 2). The laboratory experiments also demonstrated that the clade I flavodoxins were responsive to iron limitation in some of the species studied (Their Figure 2C), such that the assignment of function based solely on the clade I and clade II flavodoxin classification may not always be straight forward, and that exceptions will likely be found as more diatom species are studied.

      In their quest to determine whether Clade I flavodoxin plays a role in adaptation to oxidative stress, the authors created several knock-out mutants where the clade I flavodoxin is not functional. These mutant strains responded to iron limitation in the same way as the WT strains. However, the mutant strains defective in the clade I flavodoxin were more slightly more sensitive to oxidative stress (created by exposure to lethal doses of hydrogen peroxide) than the wild-type strains. The results of the oxidative stress challenges would have been stronger if a broader concentration range of hydrogen peroxide had been used in the experiments leading to a dose-response curve for both the mutant and wild-type strains.

      The supplemental information provided in the main manuscript holds a lot of important information. Take for example Figure S4 showing the placement of reads for Clade I and Clade II in a Maximum-likelihood tree for flavodoxin in the North Pacific Ocean. The results show that clade II flavodoxin is much more commonly found in the transcripts than clade I flavodoxin. Perhaps different results would have been obtained by conducting a similar sampling of metatranscriptome in the Atlantic Ocean that is less subject to iron limitation.

      Overall, the authors have provided results that support a role for Clade I flavodoxin in alleviating oxidative stress in Thalassiosira pseudonana, however, whether or not this role is universal for clade I flavodoxin in other diatom species will require further studies.

    1. Reviewer #1 (Public Review):

      In their study Mas Sandoval and colleagues estimate, from human genomic data, two important parameters that measure how intermarriages have been affected by social stratification in the Americas: sex-biased admixture (SB), which refers to sex differences in the chances to intermarry with another ethnic group, and ancestry-based assortative mating (AM), which refers to the higher probability of partners to intermarry when they carry similar genetic ancestries. To do so, the authors train a deep neural network (DNN) with simulations of admixture with non-random mating and use ancestry tract length distributions to infer the two parameters. They show that their approach estimates SB and AM parameters with a relatively good accuracy in a number of scenarios. When applying the DNN to empirical data, they find solid evidence that social stratification has constrained the admixture processes in the Americas for the last centuries.

      In contrast with the vast majority of population genetic studies, which assume random mating, this study assesses if mating has been random or not in American populations. Furthermore, the study is very valuable because it leverages, for the first time, a deep learning approach and local ancestry inference to co-estimate the extent of SB and AM from genomic data. One limitation of the study, however, is that it assumes that (i) the admixture date in the simulations is known and equals 19 generations and (ii) admixture started at the same time in all admixed American populations. The authors also implicitly assume that the variance of the difference between male and female ancestry proportions only depends on AM, and not admixture timing. This may be problematic, as it has been shown that linkage disequilibrium between local ancestry tracts depends both on AM and admixture timing (Zaitlen et al., Genetics 2017). This is also suggested by the authors' results, showing that AM estimates are much lower in admixed Americans under the two-pulse model, relative to the one-pulse model, i.e., when admixture extends over time. Estimates of AM in admixed Americans may thus be biased, if admixture actually started less (or more) than 19 generations ago. Another potential limitation concerns local ancestry inference. The authors assume that RFMix makes no errors when inferring ancestry tracts. This can be a concern, as recent studies have shown that RFMix has reduced accuracy compared to other methods (Hilmarsson et al., bioRxiv 2022). In addition, the authors do not report a measure of uncertainty for the estimation of SB and AM, which is another important weakness. Interpretation of parameter estimates is limited if no measures of uncertainty are provided. Finally, the authors compare the likelihood of two competing models, assuming a single or two admixture pulses, but do not determine the accuracy of their model choice procedure. Overall, besides these methodological limitations, I expect that the study by Mas Sandoval and colleagues could be of great and broad interest for the scientific community studying population genetics, anthropology, sociology and history.

    2. Reviewer #2 (Public Review):

      This paper introduces a method to quantify how genetic ancestry drives non-random mating in admixed populations. Admixed American populations are structured by racial, gender, and class hierarchies. This has the potential to cause both ancestry-related assortative mating, in which the ancestry of mates tends to be correlated, and ancestry-related sex bias, in which individuals have a preference for mates with a particular ancestry composition. By applying their method to several African American and Latin American populations, Sandoval et al. further our understanding of ancestry-based population structure in this region more broadly.

      Strengths<br /> As many others have recently done, Sandoval et al. leverage the ability of a neural network to predict demographic parameters from high-dimensional population genomic data. Sandoval et al. first develop a clever probabilistic model of mating by defining the probability of a male and female mating as a function of the difference in ancestry between the individuals. They use this model to simulate population genomic data under various demographic scenarios, and then train a neural network on these simulated data. Finally, they apply the neural network to empirical data and learn the parameters of the underlying probability distribution, which can be related back to assortative mating and sex bias.

      One clear strength of this paper is their ability to jointly assess assortative mating and sex bias, as well as their ability to apply their model to multiple contemporary admixed populations.

      Importantly, the authors couch their results in an intersectional understanding of populations and consistently refer to research from historians and other social scientists throughout their paper, which reflects a very thoughtful awareness of the interdisciplinary nature of this research.

      Weaknesses<br /> The definition of assortative mating is conceptually confusing - in the text, assortative mating is introduced as genetic similarity between mates, i.e. positive assortative mating. However, based on the definition of assortative mating in their model, a population can have high assortative mating for a particular ancestry component even when there is non-zero sex bias for that component (e.g. males with low Native American ancestry are more likely to mate with females with high Native American ancestry). Fundamentally, this scenario cannot reflect positive assortative mating; rather, it reflects negative assortative mating (i.e. there is structured genetic dissimilarity between mates). However, the authors do not discuss the fact that the interpretation of the assortative mating parameter changes with the value of the sex bias parameter.

      In addition, the results of the inference in ASW are difficult to interpret. They find that males of high African ancestry are more likely to mate with females of low African ancestry. This result seems counterintuitive given the body of literature that suggests sex-biased admixture in African Americans has greater male European and female African contributions. The authors do not suggest potential explanations for this observation.

      Lastly, the authors have not done any simulations to assess how accurate parameter estimates are if the demographic model is misspecified, which weakens the interpretability of the results.

    1. Reviewer #1 (Public Review):

      This is a generally well-written manuscript that elegantly begins to explore the molecular basis of exosome release under conditions of sheer stress or calcium influx. The authors use a sensitive luciferase assay that enables them to monitor the release of exosomes from CD63-tag-expressing cells. Upon SLO pore formation or sheer stress, cells release exosomes in a calcium-dependent manner; MVBs are (indirectly) shown to undergo calcium-dependent plasma membrane fusion in a process that depends on a set of 4 proteins that were identified by an unbiased analysis of proteins that associate with MVBs. One of these is Annexin A6, a protein shown by several other groups to participate in membrane repair. Thus, calcium triggers the binding of 4 proteins to the surface of MVBs, and likely also to the plasma membrane, driving MVB fusion at the cell surface. The authors also present a semi-intact cell system that will permit functional analysis of the MVB fusion process.

    2. Reviewer #2 (Public Review):

      The authors improved significantly a previously published luminescence-based assay for the detection of MVB-derived exosome secretion, by using a membrane-impermeable Nluc inhibitor to make sure only intact vesicles and not cellular debris are quantified. Using this improved assay they confirmed prior reports that exposure to the Ca2+ ionophore ionomycin triggers exosome release. They then build on this by showing that exosomes are also released when Ca2+ influx is caused by plasma membrane (PM) wounding, using pore-forming toxins or mechanical stress. Investigating possible molecular mechanisms involved in Ca2+-regulated MVB exocytosis/exosome release, the authors use proteomics to identify proteins recruited to purified MVBs in an ionomycin-dependent fashion. One of these proteins is ANX6, which interestingly was previously implicated in the repair of PM wounds in other cell types. The paper then explores the possible role of ANX6, showing that ionophore-dependent exosome secretion is inhibited in ANX6-depleted intact cells, or in permeabilized cells reconstituted with cytosol in the presence of anti-ANX6 antibodies. These results are convincing and very consistent with prior findings from other groups. The interesting advance is the demonstration that Ca2+ influx through PM lesions also triggers exocytosis of MVBs, and not only mature lysosomes as previously described. This reveals that PM injury, a frequent event in vivo, could play a role in the extensively documented detection of extracellular exosomes in biological fluids.

      They also present some imaging data suggesting that ANX6 inhibition stalls MVBs at the cell surface and that ANX6 may promote MVB exocytosis and exosome release by tethering different intracellular membranes. These results are consistent with the author's interpretation but less compelling since they are based on limited confocal imaging without markers for specific compartments such as the PM and without quantification.

      Another limitation of the study is that most experiments were performed using 30 min of cell exposure to micromolar concentrations of ionomycin, and the kinetics of exosome secretion after shorter times of ionophore exposure is not shown. The improved luminescence assay is described as sensitive and linear, but a linear time course over 24 h is only shown for constitutive exosome release, not for cells treated with ionomycin. Nocodazole experiments led to the conclusion that microtubules are required for 'sustained' exosome release, but this is somewhat misleading since ionophores markedly enhance exocytosis, raising questions as to whether the process is still linear after 30 min in the presence of ionomycin. The permeabilized-cell reconstitution assay apparently detected a requirement for ANX6 after just 2 min, which is reassuring but also raises the possibility that exosome release may not be sustained up to 30 min. PM resealing is a rapid process, completed in 1-2 min, so if one of the goals was to explore a connection between MVB exocytosis and PM repair, shorter time points would make more sense. This is particularly important since prolonged exposure to micromolar concentrations of ionomycin is known to cause extensive cytotoxicity, including actin cytoskeleton alterations, changes in ATP levels, and apoptosis (the authors perform only one limited control for apoptosis, a western that did not detect PARP cleavage).

      Overall, this is an interesting study that brings together earlier observations but places them in a new context - that Ca2+-dependent exosome release from MVBs may occur in the context of PM wounding, and thus might play a role in PM resealing. Strong evidence was presented for the ANX6 requirement in ionophore-induced exosome release. However, since most previous studies implicating ANX6 in PM repair in other cell types involved a non-physiological form of laser wounding, it is still unclear if ANX6 is required for PM resealing after mechanical wounding, in the cells used in this study.

    3. Reviewer #3 (Public Review):

      The authors report that the secretion of endosome-derived exosomes is enhanced by a calcium-dependent response to damage to the plasma membrane of cells. The authors present convincing evidence that in response to the influx of calcium that follows damage to the plasma membrane annexin A6 is recruited to multivesicular bodies (MVBs) and likely serves to tether the MVBs to the plasma membrane causing a concomitant release of exosomes. Although it is not directly addressed in the Discussion, I am left with the impression that the authors are hinting that exosome secretion is more a byproduct of plasma membrane repair rather than a means of intercellular communication. In other words, the cell needs the membrane material from the MVB to patch and repair holes in the plasma membrane and exosome ejection from the cell is a secondary (perhaps even irrelevant) consequence. Obviously, these two possibilities are not mutually exclusive. The authors are encouraged to speculate about which possibility they favor and how their findings might change our understanding of the cell biology of exosome secretion.

    1. Reviewer #1 (Public Review):

      In this manuscript Radaelli et al investigate the effects of knocking out Parl, encoding a mitochondrial rhomboid protease, on spermatogenesis. Parl knockout has been used as a genetic model for Leigh syndrome, which in humans can be caused by mutations in several different components of the mitochondrial respiratory chain. This study describes the nature of the spermatogenesis defect found in Parl mutant mice, evaluates double mutants for Parl and other factors known to act with Parl in the context of neurodegeneration, and investigates the changes to mitochondrial function that occur in mutant testes. The authors conclude that Parl-/- males have a severe spermatogenesis defects with arrest at the spermatocyte stage, and that Parl function in spermatogenesis depends on different factors compared to neurons. Detailed characterization of mitochondrial function in mutant testis shows a variety of defects, including lower overall levels of coenzyme Q (coQ) and a higher ratio of reduced to oxidized coQ. They also conclude that ferroptosis is responsible for spermatocyte cell death in Parl mutants based on the presence of increased transferrin receptor, reduced GPX4 and increases in the ferroptosis end-product 4-hydroxynonenal (HNE).

      The conclusions of this manuscript are well supported by (a) strong genetics including phenotype analysis in multiple double knockout mouse strains to show that Parl acts through different pathways in spermatogenic cells compared to neurons; (b) a clear spermatogenesis phenotype as shown by histology and immunostaining; (c) demonstration of mitochondrial defects during spermatogenesis using electron microscopy and respirometry of testis mitochondria; and (d) evidence for a mechanism of spermatocyte death by ferroptosis based on changes in transferrin receptor protein 1, coQ, GPX4, and HNE. Overall, this study advances understanding of the effects of mitochondrial dysfunction on spermatogenesis and may shed light on patient phenotypes in Leigh syndrome. The study will be useful in the fields of fertility and mitochondrial biology. There are a few places where the conclusions are not robustly supported by the data, especially inadequate quantification of some of the phenotype data and some cases where the data presented is not consistent with the model proposed:

      1) In Figure 2, electron microscopy images represent n=1 cell, making it hard to know how generalizable the mitochondrial phenotypes are. It would be useful to see a quantitative summary of a larger dataset indicating how frequently the mitochondrial defects are seen.<br /> 2) In Figure 3, representative images are shown for a single field from n=1 animal. It is hard to decisively conclude that the phenotype of Pink1-/-;Pgam5-/- and Ttc19-/- testes is completely normal based on this limited data. There may be other tubules outside the field of view that are abnormal, or more subtle changes in cell ratios. This conclusion would be significantly strengthened by cell counting (e.g. # round spermatids per Sertoli cell per tubule and # spermatocytes per Sertoli cell per tubule) or other quantitation. Likewise, the similarities in phenotype between Parl-/-, Parl-/-;Pink2-/-, and Parl-/-;Pgam5-/- should be more thoroughly documented. At least some additional images should be shown.<br /> 3) In Figure 4, it looks like there is a significant decrease in CIV-driven respiration in Parl knockouts, but the text describes this as "did not significantly enhance" - that is, the absence of an increase. This result is difficult to interpret without further explanation.<br /> 4) In Figure 5B, there is some variation in band intensity between replicates. Quantifying the band intensity relative to the loading control would help to increase confidence in the conclusion that coQ levels are reduced.<br /> 5) GPX4 is not a Parl substrate, and no explanation is provided for why it might be reduced in Parl-/- testes. This makes the result and model difficult to interpret.<br /> 6) Since Parl knockout induces necrosis in the brain, necrosis could be a contributing factor to cell death in spermatocytes alongside ferroptosis. No data is presented that can exclude this possibility.<br /> 7) The severe spermatogenesis phenotype implies that Parl knockout males should be infertile, but the fertility status is not described in the manuscript. It may be difficult to test fertility in these animals due to the neurodegeneration phenotype; if so, this can be clarified. If it is feasible to test fertility, demonstration of a fertility phenotype would significantly strengthen the conclusion that loss of Parl leads to spermatogenic arrest.

    2. Reviewer #2 (Public Review):

      This study characterized the mice deficient for PARL and concluded that mitochondrial defects lead to ferroptosis and spermatogenic cell death. In mammalian germ cells, the existence of ferroptosis is not known so far. Interestingly, a study using C. elegans recently established the occurrence of germ cell ferroptosis (Perez et al., Dev Cell 2020: PMID: 32652074). Thus, if the conclusion of this study is valid, this study can be a timely demonstration of germ cell ferroptosis in mammals. I understand the potential value of this study. However, in this study, although several indirect data were provided, I do not think the results firmly established the occurrence of germ cell ferroptosis. Further, some major technical barriers prevent the interpretation of these results. In general, perturbations in mitochondria dynamics could be expected to disrupt spermatogenesis. It would be necessary to establish germ-cell ferroptosis to explain the specific phenotype of the PARL mutants. Overall, I appreciate the potential impact; but I am not fully convinced by the main conclusion reported in this study.

    1. Reviewer #1 (Public Review):

      The authors tried to measure the accuracy of the decision-making of honey bees by carrying out behavioural experiments in which they trained the bees to forage on artificial flowers of 5 different colours that offered different levels of reward. Subsequently, the bees' decision-making behaviour was tested with flowers of the same or different colours, with no reward present. The authors found that bees tend to approach a flower only when they are highly certain of a reward, and these decisions are made quickly. The majority of flowers were rejected by the bees. Based on the results of the tests, the authors created a model to identify what circuit elements or connections would be necessary to mimic the bees' decisions. This model could be potentially used for robotics.

      The study is well supported by the signal detection theory and the experiments are well designed which is a major strength. However, the methods are not completely clear, so would be better to make a clearer description. Another weakness is the lack of clear explanations of the importance and relevance of the model.

      Given the experimental design was optimal, the authors could potentially achieve the aims of this study.

    2. Reviewer #2 (Public Review):

      By elegantly designing experiments, MaBouDi et al. elucidated honeybee's behavioral strategy to quantitatively associate sensory cues with valences. The description is simple and concise enough to understand the logic. Particularly, the authors clearly demonstrated how sensory evidence and reward likelihood quantitatively affect the decision-making process and animals' response time. Their behavioral characterization approach and proposed model could also be helpful for studies using higher animal species. I have a few doubts regarding the definition of rejection behavior and the structure of the model that is critical to lead their main conclusions.

    1. Reviewer #1 (Public Review):

      Using in vitro assays that take advantage of thymic slices, with or without the ability to present pMHC antigens, the authors define an early period in which CCR4 expression is induced, which induces their migration to the medulla and likely encounter with cDC2 and other APCs. Notably, the timing for CCR4 expression precedes that of CCR7 and illustrates the potential role for this early expression to initiate the movement of post-positive selection thymocytes to the medulla. The evidence for supporting a role for CCR4, as well as CCR7, in sequential tolerance induction is provided using multiple approaches, and although the observed changes amount to small percent changes, the significance is clear and likely biologically relevant over the lifespan of a developing T cell repertoire. Overall, the model provides a holistic view of how tolerance to self-antigens is likely induced during T cell development, which makes this work highly topical and influential to the field.

    2. Reviewer #2 (Public Review):

      This manuscript describes that CCR4 and CCR7 differentially regulate thymocyte localization with distinct outcomes for central tolerance. Overall, the data are presented clearly. The distinct roles of CCR4 and CCR7 at different phases of thymocyte deletion (shown in Figure 6C) are novel and important. However, the conclusion that expression profiles of CCR4 and CCR7 are different during DP to SP thymocyte development was documented previously. More importantly, the data presented in this manuscript do not support the conclusion that CCR7 is uncoupled from medullary entry. Moreover, it is unclear how the short-term thymus slice culture experiments reflect thymocyte migration from the cortex to the medulla.

      1. Differential profiles in the expression of chemokine receptors, including CCR4, CCR7, and CXCR4, during DP to SP thymocyte development were well documented. Previous papers reported an early and transient expression of CCR4, a subsequent and persistent expression of CCR7, and an inverse reduction of CXCR4 (Campbell, et al., 1999, Cowan, et al., 2014, and Kadakia, et al. 2019). The data shown in Figures 1, 2, and 3 are repetitive to previously published data.

      2. The manuscript describes the lack of CCR7 at early stages during DP to SP thymocyte development (Figure 1-3). However, CCR7 expression is detected insensitively in this study. Unlike CCR4 detection with a wide fluorescence range between 0 and 2x10*4 on the horizontal axis, CCR7 detection has a narrow range between 0 and 2x10*3 on the vertical axis (Figure 1C, 1D, 4B, 4C, 6B, S2, S3), so that flow cytometric CCR7 detection in this study is 10-times less sensitive than CCR4 detection. It is therefore likely that the "CCR7-negative" cells described in this manuscript actually include "CCR7-low/intermediate" thymocytes described previously (for example, Figure S5A in Van Laethem, et al. Cell 2013 and Figure 6 in Kadakia, et al. J Exp Med 2019).

      3. Low levels of CCR7 expression could be functionally evaluated by the chemotactic assay as shown in Figure 2. However, the data in Figure 2 are unequally interpreted for CCR4 and CCR7; CCR4 assays are sensitive where a migration index at less than 1.5 is described as positive (Figure 2A and 2B), whereas CCR7 assays are dismissal to such a small migration index and are only judged positive when the migration index exceeds 10 or 20 (Figure 2C and 2D). CCR7 chemotaxis assays should be carried out more sensitively, to equivalently evaluate the chemotactic function of CCR4 and CCR7 during thymocyte development.

      4. Together, this manuscript suffers from the poor sensitivity for CCR7 detection both in flow cytometric analysis and chemotactic functional analysis. Conclusions that CCR7 is absent at early stages of DP to SP thymocyte development and that CCR7 is uncoupled from medullary entry are the overinterpretation of those results with the poor sensitivity for CCR7. The oversimplified scheme in Figure 3D is misleading.

      5. The short-term thymus slice culture experiments should be described more carefully in terms of selection events during DP to SP thymocyte development, which takes at least 2 days for CD4 lineage T cells and approximately 4 days for CD8 lineage T cells (Saini, et al. Sci Signal 2010 and Kimura, et al. Nat Immunol 2016). The slice culture experiments in this manuscript examined cellular localization within 12 hours and chemokine receptor expression within 24 hours (Figures 4, 5) even for the development of CD8 lineage T cells (Figure S2), which are too short to examine entire events during DP to SP thymocyte development and are designed to only detect early phase events of thymocyte selection.

      6. It is unclear what the medullary density alteration measured in the thymus slice culture experiments represents. Although the manuscript describes that the increase in the medullary density reflects the entry of cortical thymocytes to the medulla (Figure 4E and S2E), this medullary density can be affected by other mechanisms, including different survival of the cells seeded on the top of different thymus microenvironments. Thymocytes seeded on the medulla may be more resistant to cell death than thymocytes seeded in the cortex, for example, because of the rich supply of cytokines by the medullary cells. So, the detected alterations in the medullary density may be affected by the differential survival of thymocytes seeded in the cortex and the medulla. Also, the medullary density is measured only within a short period of up to 12 hours. The use of MHC-II-negative slices and CCR4- or CCR7-deficient thymocytes in the thymus slice cultures may verify whether the detected alteration in the medullary density is dependent on TCR-initiated and chemokine-dependent cortex-to-medulla migration.

    3. Reviewer #3 (Public Review):

      In this manuscript, Li et al. examine how the expression of the chemokine receptor CCR4 impacts the movement of thymocytes within the thymus. It is currently known that the chemokine receptor CCR7 is important for developing thymocytes to migrate from the cortical region into the medullary region and CCR7 expression is therefore often used to define medullary localization. This is important because key developmental outcomes, like enforcing tolerance to self-antigens amongst others, occur in the medullary environment. The authors demonstrate that the chemokine receptor CCR4 is induced on thymocytes prior to expression of CCR7 and thymocytes exhibit responsiveness to CCR4 ligands earlier in development. Using elegant live confocal microscopy experiments, the authors demonstrate that CCR4 expression is important for the entry and accumulation of specific thymocyte subsets while CCR7 expression is needed for the accumulation of more mature thymocyte subsets. The use of cells deficient in both CCR4 and CCR7 and competitive migration/accumulation experiments provide strong support for this conclusion. The elimination of CCR4 expression results in decreases in apoptosis of thymocyte subsets that have been signalled through their antigen receptor and are responsive to CCR4 ligands. As expected, more mature thymocyte subsets show decreased apoptosis when CCR7 is absent. Distinct antigen-presenting cells in the thymus express CCR4 ligands supporting a model where CCR4 expressing thymocytes can interact with thymic antigen-presenting cells for induction of apoptosis. The absence of CCR4 results in an increase in peripheral T cells that can respond to self-antigens presented by LPS-activated antigen-presenting cells providing further support for the model. Collectively, the manuscript convincingly demonstrates a previously unappreciated role for CCR4 in directing a subset of thymocytes to the medulla.

      Strengths:

      Relevant model systems and elegant experimental techniques are used throughout the manuscript. The experiments are extensively replicated resulting in robust and convincing data sets. These findings represent an important conceptual advance in our understanding of the processes and cellular regulation of T cell development in the thymus.

      Weaknesses:

      Evidence demonstrating a direct interaction between CCR4 expressing thymocytes and CCR4-ligand expressing antigen-presenting cells is lacking. Furthermore, increased self-reactivity in the absence of CCR4 is measured using mature peripheral CD4 T cells, but altered self-reactivity of thymocytes is not evaluated similarly.

    1. Reviewer #1 (Public Review):

      The sustainability of vaccination programs is subject to multiple threats, from a pandemic like COVID-19 to political changes. The present study assesses different strategies, including gender-neutral vaccination, to better respond to threats in HPV national immunization programs. The authors showed that vaccinating boys against HPV (compared to vaccinating girls alone), would not only prevent more cases of cervical cancer but also limit the impact of disruptions in the program. Moreover, it would help attain the goal set by the World Health Organization of eliminating cervical cancer as a public health problem sooner, even in the case of disruptions.

      Strengths and weaknesses: I found the manuscript well-written and easy to read. Decision-makers may find the results helpful in policy development and other researchers may use the study as an example to investigate similar scenarios in their local contexts. Nevertheless, there are some limitations. First, it should be considered that the present study is only applicable to India and other countries with a similar HPV context. Second, because it is a study based on a mathematical model, errors might arise from the assumptions considered for its construction. It also relies on the quality of the data used to construct and calibrate the model.

      Models are important tools for decision-making, they allow us to assess different scenarios when obtaining real-world data is not feasible. They also allow to carried-out multiple sensitivity analyses to test the strengths of the results. The study carries out a necessary assessment of different vaccination strategies to minimize the impact on cervical cancer prevention due to disruptions in the HPV immunization program. By using a mathematical model, the authors are able to assess different scenarios regarding vaccination coverage rates, disruption time, and cervical cancer incidence. Therefore, decision-makers can consider the scenario which best represents their current situation.

      The present study is not only valuable for decision-making, but also from a methodological point of view as future research can be conducted exploring more in deep the impact of vaccination disruptions and prevention measures.

      The conclusions of this paper are mostly well supported by data, but some aspects of the methodology need clarification; furthermore, some aspects of the calculations can be improved. It would be more informative, and better for comparisons between the four scenarios, to have relative measures instead of the absolute numbers of cases prevented.

    2. Reviewer #2 (Public Review):

      This study evaluated the effect of population-based HPV vaccination programs in India which is suffering from the disease burden of cervical cancer. The authors used model simulations for estimating the outcomes by adopting the latest available data in the literature. The findings provide evidence-based support for policymakers to devise efficient strategies to reduce the impacts of cervical cancer in the country.

      Strengths.<br /> The study investigated the potential impact of cervical cancer elimination when HPV vaccination was disrupted (e.g., during the COVID-19 pandemic) and for meeting the WHO's initiatives. The authors considered several settings from the low to high effects of vaccination disruption when concluding the findings. The natural history was calibrated to local-specific epidemiological data which helps highlight the validity of the estimation.

      Weaknesses.<br /> Despite the importance and strengths, the current study may likely be improved in several directions. First, the study considered the scenario of using a recently developed domestic HPV vaccine but assuming vaccine efficacy based on another foreign HPV vaccine that has been developed and used (overseas) for more than 10 years. More information should be provided to support this important setting.

      Second, the authors are advised to discuss the vaccine acceptability and particularly the feasibility to achieve high coverage scenarios in relatively conservative countries where HPV vaccines aim to prevent sexually transmitted infection. Third, as the authors highlighted, the health economics of gender-neutral strategies, which is currently missing in the manuscript, would be a substantial consideration for policymakers to implement a national, population-based vaccination program.

    3. Reviewer #3 (Public Review):

      The authors put together a rigorous study to model the impact of HPV vaccine programme disruptions on cervical cancer incidence and meeting WHO elimination goals in a low-income country - using India as an example. The study explores possible scenarios by varying HPV vaccination strategies for 10-year-old children between a) increasing vaccine coverage in a girls-only vaccination programme and b) vaccinating boys in addition to girls (i.e a gender-neutral vaccination programme).

      The main strength of this study is the strength of the modelling methodology in helping to make predictions and in contingency planning. The study methodology is rigorous and uses models that have been validated in other settings. The study employs a high level of detail in calibrating and adapting the model to the Indian context despite poor data availability. The detailed methodology allows future studies to employ the model and techniques with locally-contextualised parameters to study the potential impact of HPV vaccine programme disruptions in other countries.

      The work in this field can begin to help lower-income countries explore varying HPV vaccination strategies to reduce cervical cancer incidence, keeping in mind the potential for future supply chains or other related disruptions. However, the scenarios could be better sculpted to model potentially realistic scenarios to guide policymakers to make decisions in situations with limited vaccine supplies - in other words comparing scenario alternatives based on a fixed number of vaccines being available. Using comparative alternatives will help policymakers grapple with the decisions that need to be made regarding planning national HPV vaccination programmes. The results could afford to provide readers with a clearer measure of vaccine strategy 'resilience'.

      In all, the authors are able to successfully explore the potential impact of varying HPV vaccination strategies on cervical cancer cases prevented in the context of vaccine disruptions, and make valid conclusions. The results produced are rich in information and are worthy of deeper discussion.

    1. Reviewer #1 (Public Review):

      In this manuscript authors examined the effect of rif1 knockout on replication timing and transcription in early embryos of zebrafish. Contrary to the expectation, genome-wide replication timing domains did not significantly change upon Rif1 knockout, although the replication timing became less dynamic in the mutant, meaning the entire genomes are replicated toward the mid S. In contrast, transcriptional profiles change by rif1 mutation throughout the embryo stage. These effects were more predominantly observed after gastrulation at the early stages of zebrafish development.

      The results presented in this manuscript provide new information on the effects of rif1 mutation on early zebrafish development, although the underlying mechanism has not been explored. The information is useful for researchers in the field of early development, with specific focus on replication and transcription regulation.

      The genome wide analyses of replication timing has been conducted and analyzed properly. The transcriptional analyses are conducted by RNA-seq and SLAM-seq (determining the nascent mRNA), and the results convincingly show the overall transcriptional patterns at different developmental stages.

      This work shows that Rif1 regulates replication timing and transcription in zebrafish embryos, while the extents of the effects vary during the developmental process. Although the data convincingly illustrate the whole picture of Rif1 KO on replication and transcription during zebrafish development, the mechanistic insight is missing. Especially, how Rif1 may or may not coordinately regulate replication and transcription during the zebrafish development has not been addressed.

    2. Reviewer #2 (Public Review):

      This study by Masser et al. analyzes global replication timing and gene expression in rif-1 null zebrafish. This work is an extension of their previous report on the normal replication timing pattern during wild-type zebrafish development. The major valuable finding here is that Rif1 is not essential for viability in zebrafish, and - counter to expectation from studies in cultured cells and other species - late replication does not strongly depend on Rif1. Instead, the data suggest that Rif1 subtly sharpens replication timing pattern during normal development rather than function generally to delay replication timing. In the absence of Rif1, the normal pattern establishment is somewhat delayed. The authors also document some changes in expression during development with more genes being repressed by Rif1 than activated at some early stages.

      The study and analysis are generally rigorous, and the conclusions are supported by convincing data. The manuscript is well written, though there are aspects of the presentation that could be improved for a broader scientific audience. Given the strong link between replication timing and cell type/development, studying timing in a whole developing organism is important. The experimental approach is technically challenging, particularly the bioinformatic analysis. The scientific advance here is largely confined to documenting the timing of Rif1-affected transcription, the unanticipated effect of the rif1 deletion on replication timing and on sex determination, though the latter is not explored. The work is descriptive and feels like two relatively unconnected studies, transcription and replication plus a small bit of development, and the difference in timing of the transcription phenotypes and replication phenotypes suggests they may be very distinct Rif1 roles. There isn't a lot of new insight into the mechanism of how Rif1 affects either replication timing or gene expression. As such, the overall study is an useful set of findings and detailed data for future work, but it doesn't make a big step forward in understanding the role of Rif1 or the biological processes it affects.

      Weaknesses worth addressing include the following:

      1. Loss of Rif1 did not affect viability, but it did strongly influence sex determination, resulting in a lower population of females. This effect is the strongest organismal phenotype, but the study provides no explanation for the loss of females from the data gathered here.<br /> 2. The approach to distinguish nascent zygotically expressed mRNAs from maternal mRNAs is a strength. Are the differentially expressed genes related at all to regions of the genome whose replication timing is most affected? Are any of them related to the sex determination or developmental phenotypes?

    3. Reviewer #3 (Public Review):

      Using the zebrafish model system, this manuscript assessed the roles of Rif1 protein in replication timing control and transcription during early development, and successfully demonstrated the differential impact of Rif1 protein in replication timing control and transcription. Moreover, the comprehensive assessments of the impacts of mutating Rif1 on animal development (including animal survival and sexual development) were assessed. Although there are works that examined Rif1's implications in replication timing and transcription separately, this work is unique in assessing all these points at once.

      The strength of this manuscript is the genomic analyses of replication timing and transcription being combined in a single model system. Consequently, this manuscript clearly demonstrates the differential impact of Rif1 in these processes during zebrafish development.

      The weakness of this manuscript is, as the authors comment in the Discussion, analyses of replication timing and transcription were performed using bulk embryos. There is a possibility that tissue-specific changes could have been masked. Tissue-specific or single-cell analysis in the future will fill the gap in the knowledge.

      Some of the findings presented in this manuscript are consistent with previous findings using different models such as Drosophila and mice, whereas other findings do not necessarily agree. I hope further studies will reveal more clearly what is common in these systems, and what is different.

      Also, the suggestion that the Rif1 protein may be implicated in a function similar to Fanconi-Anemia genes/proteins is very intriguing.

      Overall, the data presented in this manuscript sufficiently justify the authors' claims. Moreover, this manuscript provides interesting insights into Rif1's function, as well as how development could be controlled.

    1. Reviewer #1 (Public Review):

      The manuscript by Mullen et al. investigated the gene expression changes in cancer cells treated with the DHODH inhibitor brequinar (BQ), to explore the therapeutic vulnerabilities induced by DHODH inhibition. The study found that BQ treatment causes upregulation of antigen presentation pathway (APP) genes and cell surface MHC class I expression, mechanistically which is mediated by the CDK9/PTEFb pathway triggered by pyrimidine nucleotide depletion. The combination of BQ and immune checkpoint therapy demonstrated a synergistic (or additive) anti-cancer effect against xenografted melanoma, suggesting the potential use of BQ and immune checkpoint blockade as a combination therapy in clinical therapeutics.

      The interesting findings in the present study include demonstrating a novel cellular response in cancer cells induced by DHODH inhibition. However, whether the increased antigen presentation by DHODH inhibition actually contributed to the potentiation of the efficacy of immune-check blockade (ICB) is not directly examined is the limitation of the study. Moreover, the mechanism of the increased antigen presentation pathway by pyrimidine depletion mediated by CDK9/PTEFb was not validated by genetic KD or KO targeting by CDK9/PTEFb pathways. Finally, high concentrations of BQ have been reported to show off-target effects, sensitizing cancer cells to ferroptosis, and the authors should discuss whether the dose used in the in vivo study reached the ferroptotic sensitizing dose or not.

    2. Reviewer #2 (Public Review):

      In their manuscript entitled "DHODH inhibition enhances the efficacy of immune checkpoint blockade by increasing cancer cell antigen presentation", Mullen et al. describe an interesting mechanism of inducing antigen presentation. The manuscript includes a series of experiments that demonstrate that blockade of pyrimidine synthesis with DHODH inhibitors (i.e. brequinar (BQ)) stimulates the expression of genes involved in antigen presentation. The authors provide evidence that BQ mediated induction of MHC is independent of interferon signaling. A subsequent targeted chemical screen yielded evidence that CDK9 is the critical downstream mediator that induces RNA Pol II pause release on antigen presentation genes to increase expression. Finally, the authors demonstrate that BQ elicits strong anti-tumor activity in vivo in syngeneic models, and that combination of BQ with immune checkpoint blockade (ICB) results in significant lifespan extension in the B16-F10 melanoma model. Overall, the manuscript uncovers an interesting and unexpected mechanism that influences antigen presentation and provides an avenue for pharmacological manipulation of MHC genes, which is therapeutically relevant in many cancers. However, a few key experiments are needed to ensure that the proposed mechanism is indeed functional in vivo.

      The combination of DHODH inhibition with ICB reflects more of an additive response instead of a synergistic combination. Moreover, the temporal separation of BQ and ICB raises the question of whether the induction of antigen presentation with BQ is persistent during the course of delayed ICB treatment. To confidently conclude that induction of antigen presentation is a fundamental component of the in vivo response to DHODH inhibition, the authors should examine whether depletion of immune cells can reduce the therapeutic efficacy of BQ in vivo. Moreover, they should examine whether BQ treatment induces antigen presentation in non-malignant cells and APCs to determine the cancer specificity. Finally, although the authors show that DHODH inhibition induces expression of both MHC-I and MHC-II genes at the RNA level, only MHC-I is validated by flow cytometry given the importance of MHC-II expression on epithelial cancers, including melanoma, MHC-II should be validated as well.

      Overall, the paper is clearly written and presented. With the additional experiments described above, especially in vivo, this manuscript would provide a strong contribution to the field of antigen presentation in cancer. The distinct mechanisms by which DHODH inhibition induces antigen presentation will also set the stage for future exploration into alternative methods of antigen induction.

    3. Reviewer #3 (Public Review):

      Mullen et al present an important study describing how DHODH inhibition enhances efficacy of immune checkpoint blockade by increasing cell surface expression of MHC I in cancer cells. DHODH inhibitors have been used in the clinic for many years to treat patients with rheumatoid arthritis and there has been a growing interest in repurposing these inhibitors as anti-cancer drugs. In this manuscript, the Singh group build on their previous work defining combinatorial strategies with DHODH inhibitors to improve efficacy. The authors identify an increase in expression of genes involved in the antigen presentation pathway and MHC I after BQ treatment and they narrow the mechanism to be strictly pyrimidine and CDK9/P-TEFb dependent. The authors rationalize that increased MHC I expression induced by DHODH inhibition might favor efficacy of dual immune checkpoint blockade. This combinatorial treatment prolonged survival in an immunocompetent B16F10 melanoma model.

      Previous studies have shown that DHODH inhibitors can increase expression of innate immunity-related genes but the role of DHODH and pyrimidine nucleotides in antigen presentation has not been previously reported. A strength of the manuscript is the use of multiple controls across a panel of cell lines to exclude off-target effects and to confirm that effects are exclusively dependent on pyrimidine depletion. Overall, the authors do a thorough characterization of the mechanism that mediates MHC I upregulation using multiple strategies. Furthermore, the in vivo studies provide solid evidence for combining DHODH inhibitors with immune checkpoint blockade.

      However, despite the use of multiple cell lines, most experiments are only performed in one cell line, and it is hard to understand why particular gene sets, cell lines or time points are selected for each experiment. It would be beneficial to standardize experimental conditions and confirm the most relevant findings in multiple cell lines. The differential in vivo survival depending on dosing schedule is interesting. However, this section could be strengthened with a more thorough evaluation of the tumors at endpoint.

      Overall, this is an interesting manuscript proposing a mechanistic link between pyrimidine depletion and MHC I expression and a novel therapeutic strategy combining DHODH inhibitors with dual checkpoint blockade. These results might be relevant for the clinical development of DHODH inhibitors in the treatment of solid tumors, a setting where these inhibitors have not shown optimal efficacy yet.

    1. Reviewer #1 (Public Review):

      Gap junctions, formed from connexins, are important in cell communication, allowing ions and small molecules to move directly between cells. While structures of connexins have previously reported, the structure of Connexin 43, which is the most widely expressed connexin and is important in many physiological processes was not known. Qi et al used cryo-EM to solve the structure of Connexin 43. They then compared this structure to structures of other connexins. Connexin gap junctions are built from two "hemichannels" consisting of hexamers of connexins. Hemichannels from two opposing cells dock together to form a complete channel that allows the movement of molecules between cells. N-terminal helices from each of the 6 subunits of each hemichannel allow control of whether the channels are open or closed. Previously solved structures of Cx26 and Cx46/50 have the N-termini pointing down into the pore of the protein leaving a central pore and so these channels have been considered to be open. The structure that Qi et al observed has the N-termini in a more raised position with a narrower pore through the centre. This led them to speculate whether this was the "closed" form of the protein. They also noted that, if only the protein was considered, there were gaps between the N-terminal helices, but these gaps were filled with lipid-like molecules. They therefore speculated that lipids were important in the closure mechanism. To address whether their structure was open or closed with respect to ions they carried out molecular dynamics studies, and demonstrated that under the conditions of the molecular dynamics ions did not traverse the channel when the lipids were present.

      Strengths<br /> The high resolution cryo-EM density maps clearly show the structure of the protein with the N-termini in a lateral position and lipid density blocking the gaps between the neighbouring helices. The conformation that they observe when they have solved the structure from protein in detergent is also seen when they reconstitute the protein into nanodiscs, which is ostensibly a more membrane-like environment. They, therefore, would appear to have trapped the protein in a stable conformational state.<br /> The molecular dynamics simulations are consistent with the channel being closed when the lipid is present and raises the possibility of lipids being involved in regulation.<br /> A comparison of this structure with other structures of connexin channels and hemichannels gives another representation of how the N-terminal helix of connexins can variously be involved in the regulation of channel opening.

      Weaknesses<br /> While the authors have trapped a relatively stable state of the protein and shown that, under the conditions of their molecular dynamics simulations, ions do not pass through, it is harder to understand whether this is physiologically relevant. Determining this would be beyond the scope of the article. To my knowledge there is no direct evidence that lipids are involved in regulation of connexins in this way, but this is also an interesting area for future exploration. It is also possible that lipids were trapped in the pore during the solubilisation process making it non-physiological. The authors acknowledge this and they describe the structure as a "putative" closed state.<br /> The positions of the mutations in disease shown in Figure 4 is interesting. However, the authors don't discuss/speculate how any of these mutations could affect the binding of the lipids or the conformational state of the protein.

      It should also be noted that a structure of the same protein has recently been published. This shows a very similar conformation of the N-termini with lipids bound in the same way, despite solubilising in a different detergent.

    2. Reviewer #2 (Public Review):

      The manuscript from Qi et. al. provides novel structures for connexin 43 (Cx43) gap junction channels (GJCs) and hemichannels, which they claim correspond to the closed conformations of these channels. This leads the authors to propose a mechanism of gating that implicates the existence of lipids in the pore, which could stabilize the N-terminal domain as the gate region within the pore. The authors performed a lipidomic assay in their structures and identified a dehydroepiandrosterone (DHEA), a sterol compound specifically enriched in their Cx43 purified samples. However, at the current structural resolution, they cannot conclude whether DHEA is the small lipid-like density found at the pore of closed channels. Further studies, including functional studies, are needed to determine whether DHEA is a gating intermediary. Interestingly, other recently published structures of large-pore channels support the notion that lipids are found inside the pore. However, this evidence is only supported by Cryo-EM structures and is an issue generating major controversy in the field, particularly when these molecules are implicated in the gating mechanisms. The finding of putative lipids-pore interactions is a very intriguing observation, but it should be interpreted carefully. A major concern is that channel reconstitution is performed in an excess of lipids and detergents that could lead to artifacts. Thus, these lipid-like densities observed in Cx43 (and other structures) after single particle analysis could not represent native lipid-protein interactions. Subsequently, all conclusions for the role of lipids in gating could rely on a potential protein purification-induced artifact. Also, it is hard to visualize how the lipids can move in/out of the pore during gating, particularly from this putative lipids-pore conformation to an open conformation.

      Another important aspect of this work is that provided structures for both Cx43 GJCs and hemichannels. As expected, there are differences in extracellular loops rearrangements between these two structures. One issue, however, is that the resolution for Cx43 hemichannels is still low (3.98 Å), thus interpretations need to be taken with caution. In addition, the intracellular domains that are important for the gating and regulation of Cx43, including the intracellular loop and the carboxyl-terminal domain were not resolved in these structures. Nevertheless, this is a common issue for other connexin Cryo-EM structures reported in the literature.

    1. Reviewer #1 (Public Review):

      The authors examine signaling factors that differentiate parallel routes to activating phosphoinositide 3-kinase gamma (PI3Kγ). Dissecting the convergent pathways that control PI3Kγ activity is critical because PI3Kγ is a therapeutic target for treating inflammatory disease and cancer. Here, the authors employ a multipronged approach to reveal new aspects for how p84 and p101 pair with p110γ to activate the PI3Kγ heterodimer. The key instigator to this study is a previously reported inhibitory Nanobody, NB7. The hypothesized mechanism for NB7 allosteric inhibition of p84- p110γ was previously proposed to involve blockage of the Ras-binding domain. The authors revise the allosteric inhibition model based on meticulous profiling of various PI3Kγ complex interactions with NB7. In parallel, a cryo-EM-derived model of NB7 bound to the p110γ subunit convincingly reveals a Nanobody interaction pocket involving the helical domain and regulatory motifs of the kinase domain. This revelation shifts the focus to the helical domain, a known target of PKC phosphorylation. While the connections between NB7 interactions and the effects of PKC phosphorylation are sometimes tenuous, it could be argued that the Nanobody served as a tool to reveal the importance of the helical domain to p110γ regulation.

      The sites of PKC-mediated p110γ helical domain phosphorylation were unexpectedly inaccessible in the available structural models. Nevertheless, mass spectrometry (MS)-based phosphorylation profiling indicates that PKC can phosphorylate the helical domain of p110γ and p84/p110γ (but not p101/p110γ) in vitro. The authors hypothesize that helical domain dynamics dictate susceptibility to PKC phosphorylation. To explore this notion, carefully executed, rigorous H/D exchange MS (HDX-MS) experiments were performed comparing phosphorylated vs. unphosphorylated p110γ. Notably, this design reveals more about the consequences of p110γ phosphorylation, rather than the mechanisms of p84/p101 promoting/resisting phosphorylation. Nevertheless, HDX-MS is very well suited to exploring secondary structure dynamics, and helical domain phosphorylation strikingly increases dynamics consistent with increased regional accessibility. The increased dynamics also nicely map to the pocket enveloped by the inhibitory NB7 Nanobody.

      Ultimately, this study reveals an unexpected p110γ pocket that allows an engineered Nanobody to allosterically inhibit PI3Kγ complexes. The cryo-EM characterization of the interaction inspired an HDX-MS investigation of known sites of phosphorylation in the region. These insights could be linked to differences/convergences of p84 and p101 complex formation and activation of PI3Kγ, and future work may clarify these mechanisms further. The data presented herein will also be useful for broadening the target surface for future therapeutic developments. New allosteric connections between effector binding sites and post-translational modifications are always welcome.

    2. Reviewer #2 (Public Review):

      Harris et al. have described the cryo-EM structure of PI3K p110gamma in a complex with a nanobody that inhibits the enzyme. This provided the first structure of full-length of PI3Kgamma in the absence of a regulatory subunit. This nanobody is a potent allosteric inhibitor of the enzyme, and might provide a starting point for developing allosteric, isotype-specific inhibitors of the enzyme. One distinct effect of the nanobody is to greatly decrease the dynamics of the enzyme as shown by HDX-MS, which is consistent with a growing body of observations suggesting that for the whole PI3K superfamily, enzyme activators increase enzyme dynamics.

      The most remarkable outcome of the study is that upon observing the site of nanobody binding, the authors searched the literature and found that there was a previous report of a PKCbeta phosphorylation of PI3Kgamma in the helical domain that is near the nanobody binding site. This led the authors to re-examine the consequence of the phosphorylation armed with better structural models and the tools to study the effects of this phosphorylation on enzyme dynamics. They found that the site of phosphorylation is buried in the helical domain, suggesting that a large conformational change would have to take place to enable the phosphorylation. HDX-MS showed that phosphorylation at three sites clustered in the helical domain generate a distinctly different conformation with rapid deuterium exchange. This suggests that the phosphorylation locks the enzyme in a more dynamic state. Their enzyme kinetics show that the phosphorylated, dynamic enzyme is activated.

      While this phosphorylation was reported before, the authors have provided a mechanism for why this activates the enzyme, and they have shown why binders that stabilise the helical domain (such as binding to the p101 regulatory subunit and the nanobody) prevent the phosphorylation. It is this insight into the dynamics of the PI3Kgamma that will likely be the long-lasting influence of the work.

      The paper is well written and the methods are clear.

    1. Reviewer #1 (Public Review):

      This paper consists in a comprehensive analysis of the malaria parasite Plasmodium falciparum during its development in erythrocytes, using expansion microscopy. The authors used general dyes to stain membranes or proteins and a set of specific markers to label diverse cellular structures of the parasite, with a particular focus on the microtubule organizing center (MTOC).

      This is by nature a purely descriptive study, providing remarkable images with great details on subcellular structures such as the MTOC, the basal complex, the cytostome and rhoptries. The work is extremely well performed and the images are beautiful. It confirms a number of previous observations, but does not bring much novel biological insights. However, the study illustrates the strength of expansion microscopy, an affordable and adaptable sample preparation method that will undoubtedly become standard in the field.

      While the narrative could be improved, this study provides a valuable resource that can serve as a reference dataset for analysis of P. falciparum and other apicomplexan parasites.

    2. Reviewer #2 (Public Review):

      In this work the authors describe the shape and interconnectedness of intracellular structures of malaria blood stage parasites by taking advantage of expansion microscopy. Compared to previous microscopy work with these parasites, the strength of this paper lies in the increased resolution and the fact that the NHE ester highlights protein densities. Together with the BodipyC membrane staining, this results in data that is somewhere in between EM and standard fluorescence microscopy: it has higher resolution than standard fluorescence microscopy and provides some points of reference of different cellular structures due to the NHE ester/BodipyC.

      This study makes many interesting and useful observations and although it is somewhat "old school descriptory" in its presentation, researchers working in many different areas will find something of interest here. This ranges from mitosis, to organisation and distribution of major cellular structures, endocytosis and invasion, overall providing a rich and interesting resource. The results section is long but by taking the space to explain everything in detail, it has the advantage that it clearly transpires how things were done and on how many cells a conclusion is based on. Further the authors often also included a brief interpretation of their findings with a very open assessment what it does and what it does not show, highlighting interesting questions left by the data.

      Overall this is a very nice and useful paper that will be of interest to many, particularly those working on nuclear division, cytokinesis, endocytosis or invasion in malaria parasites. The spatiotemporal arrangement and interconnection of subcellular structures will also give a framework for specific functional studies.

    3. Reviewer #3 (Public Review):

      Summary:

      In their study the authors analyze the localization of multiple organelles and subcellular structure of blood stage malaria parasites with unprecedented detail. They use a 3D super-resolution imaging technique that has gained popularity in the protozoan field, ultrastructure expansion microscopy. Building on markers and labels established in the field they generate an appealing collection of images for all stages of the intraerythrocytic developmental stages of asexual blood stage parasites with some focus on nuclear division and cell segmentation stages.

      Strengths:

      The authors generated an impressive amount of imaging data that presents the most comprehensive analysis of ultrastructural organization of the parasite cell so far. This atlas can serve as a reference for researchers studying the cell biology of the intraerythrocytic development cycle. The authors achieve a nice catalogue of the reorganization of well-established markers, which together with the improved resolution allows them to highlight some novel observations and consolidate previous findings. They e.g. improve our understanding of organization, duplication and constitutive tethering of the malaria parasite centrosome to the plasma membrane. Further they provide some interesting observations on rhoptry biogenesis, cytostome morphology, and organelle fission during segmentation.

      Weaknesses:

      While the comprehensiveness of the study is its strength the authors do not present any novel markers, stainings, or imaging protocols. There is no fundamentally new mechanistic insight derived from this study although some earlier findings are consolidated by the higher spatial resolution.

      In the following I want to comment on some major points.

      Most importantly, in order to justify the authors claim to provide an "Atlas", I want to strongly suggest they share their raw 3D-imaging data (at least of the main figures) in a data repository. This would allow the readers to browse their structure of interest in 3D and significantly improve the impact of their study in the malaria cell biology field.

      The organization of the manuscript can be improved. Aside some obvious modifications as citing the figures in the correct order (see also further comments and recommendations), I would maybe suggest one subsection and one figure per analyzed cellular structure/organelle (i.e. 13 sections). This would in my opinion improve readability and facilitate "browsing the atlas".

      Considering the importance of reliability of the U-ExM protocol for this study the authors should provide some validation for the isotropic expansion of the sample e.g. by measuring one well defined cellular structure.

      In the absence of time-resolved data and more in-depth mechanistic analysis the authors must down tone some of their conclusions specifically around mitochondrial membrane potential, supellicular microtubule depolymerization, and kinetics of the basal complex. More detailed suggestions for improvement are provided as further comments.

      In conclusion the authors provide an exciting cell biological reference framework and new working hypotheses about the function of some subcellular structures, which are still largely enigmatic in the malaria parasite, and can be investigated in the future.

    1. Joint Public Review:

      Tilk and colleagues present a computational investigation of tumor transcriptomes to investigate the hypothesis that the large number of somatic mutations in some tumors is detrimental and that these detrimental effects are mitigated by an up-regulation by pathways and mechanisms that prevent protein misfolding.

      The authors address this question by fitting a model that explains the log expression of a gene as a linear function of the log number of mutations in the tumor and additional effects for tumor homogeneity and type. This analysis identified a large number of genes (5000) that are more highly expressed at high mutational load at a FDR of 0.05. These genes are enriched in many core categories, most prominently in the proteasome, translation, and mitochondral translation. The authors then proceed to investigate specific categories of upregulated genes further.

      The individual reviews, and the discussion among the reviewers, raised several issues that could potentially undermine or weaken some of the findings presented in this paper.

      1) Systematic differences in expression of some genes from one tumor class to another might generate spurious associations with mutational load (ML), which would affect the results presented in Figs 1 and 3. The case of a causal link between ML and over-expression of genes that mitigate deleterious effects of misfolding would be stronger if these results were replicated within single cancer types with many samples with different ML (similar to how Fig S6 relates to Fig 3). A related concern might be an association between increased variance of expression and ML. The compositional nature of expression data could generate trends like the ones shown in Fig. 2 with changing variance.

      2) Fig 4, Fig S5 and Fig S8 show results for the regression coefficient of expression on ML after leaving out one cancer at a time. All of us initially read this as results for 'one cancer at a time', rather than 'leave-one-out'. These figures are used to argue that the results are not driven by specific cancer types. However, this analysis would not reveal if the signal was driven by a (small) subset of cancer types. To justify claims like "significant negative relationship between mutational load and cell viability across almost all cancer types", one needs to analyze individual cancer types. Results for specific genes, rather than broad groups would also help interpret these results.

      3) You use different model architecture for the TCGA and CCLE analysis because you suspect that the sample size imbalance in the latter might mean that a GLMM can not capture the different variance components accurately. Did you test this? Could you downsample to avoid this? Cancer type is likely a strong confounder of ML.

      4) In the splicing analysis (Fig 2 and Fig S4), you report a 10% variation in splicing for a 100-fold variation in ML. This weak trend is replicated in very similar ways for many different types of alternative splicing events. It is not clear why different events (exon skipping, intron retention, etc) should respond in the same way to ML. A weak but homogeneous effect like the one shown here might result from some common confounder (see point 1). Similarly, it is not clear why with increasing intron retention PSI threshold the fraction of under-expressed transcripts would decrease and not increase.

    1. Reviewer #1 (Public Review):

      Wang and all present an interesting body of work focused on the effects of high altitude and hypoxia on erythropoiesis, resulting in erythrocytosis. This work is specifically focused on the spleen, identifying splenic macrophages as central cells in this effect. This is logical since these cells are involved in erythrophagocytosis and iron recycling. The results suggest that hypoxia induces splenomegaly with decreased number of splenic macrophages. There is also evidence that ferroptosis is induced in these macrophages, leading to cell destruction. Finally, the data suggest that ferroptosis in splenic red pulp macrophages causes the decrease in RBC clearance, resulting in erythrocytosis aka lengthening the RBC lifespan. However, there are many issues with the presented results, with somewhat superficial data, meaning the conclusions are overstated and there is decreased confidence that the hypotheses and observed results are directly causally related to hypoxia.

      Major points:

      1) The spleen is a relatively poorly understood organ but what is known about its role in erythropoiesis especially in mice is that it functions both to clear as well as to generate RBCs. The later process is termed extramedullary hematopoiesis and can occur in other bones beyond the pelvis, liver, and spleen. In mice, the spleen is the main organ of extramedullary erythropoiesis. The finding of transiently decreased spleen size prior to splenomegaly under hypoxic conditions is interesting but not well developed in the manuscript. This is a shortcoming as this is an opportunity to evaluate the immediate effect of hypoxia separately from its more chronic effect. Based just on spleen size, no conclusions can be drawn about what happens in the spleen in response to hypoxia.

      2) Monocyte repopulation of tissue resident macrophages is a minor component of the process being described and it is surprising that monocytes in the bone marrow and spleen are also decreased. Can the authors conjecture why this is happening? Typically, the expectation would be that a decrease in tissue resident macrophages would be accompanied by an increase in monocyte migration into the organ in a compensatory manner.

      3) Figure 3 does not definitively provide evidence that cell death is specifically occurring in splenic macrophages and the fraction of Cd11b+ cells is not changed in NN vs HH. Furthermore, the IHC of F4/80 in Fig 3U is not definitive as cells can express F4/80 more or less brightly and no negative/positive controls are shown for this panel.

      4) The phagocytic function of splenic red pulp macrophages relative to infection cannot be used directly to understand erythrophagocytosis. The standard approach is to use opsonized RBCs in vitro. Furthermore, RBC survival is a standard method to assess erythrophagocytosis function. In this method, biotin is injected via tail vein directly and small blood samples are collected to measure the clearance of biotinilation by flow; kits are available to accomplish this. Because the method is standard, Fig 4D is not necessary and Fig 4E needs to be performed only in blood by sampling mice repeatedly and comparing the rate of biotin decline in HH with NN (not comparing 7 d with 14 d).

      5) It is unclear whether Tuftsin has a specific effect on phagocytosis of RBCs without other potential confounding effects. Furthermore, quantifying iron in red pulp splenic macrophages requires alternative readily available more quantitative methods (e.g. sorted red pulp macrophages non-heme iron concentration).

      6) In Fig 5, PBMCs are not thought to represent splenic macrophages and although of some interest, does not contribute significantly to the conclusions regarding splenic macrophages at the heart of the current work. The data is also in the wrong direction, namely providing evidence that PBMCs are relatively iron poor which is not consistent with ferroptosis which would increase cellular iron.

      7) Tfr1 increase is typically correlated with cellular iron deficiency while ferroptosis consistent with iron loading. The direction of the changes in multiple elements relevant to iron trafficking is somewhat confusing and without additional evidence, there is little confidence that the authors have reached the correct conclusion. Furthermore, the results here are analyses of total spleen samples rather than specific cells in the spleen.

    2. Reviewer #2 (Public Review):

      The authors aimed at elucidating the development of high altitude polycythemia which affects mice and men staying in the hypoxic atmosphere at high altitude (hypobaric hypoxia; HH). HH causes increased erythropoietin production which stimulates the production of red blood cells. The authors hypothesize that increased production is only partially responsible for exaggerated red blood cell production, i.e. polycythemia, but that decreased erythrophagocytosis in the spleen contributes to high red blood cells counts.

      The main strength of the study is the use of a mouse model exposed to HH in a hypobaric chamber. However, not all of the reported results are convincing due to some smaller effects which one may doubt to result in the overall increase in red blood cells as claimed by the authors. Moreover, direct proof for reduced erythrophagocytosis is compromised due to a strong spontaneous loss of labelled red blood cells, although effects of labelled E. coli phagocytosis are shown.

      Their discussion addresses some of the unexpected results, such as the reduced expression of HO-1 under hypoxia but due to the above mentioned limitations much of the discussion remains hypothetical.

    3. Reviewer #3 (Public Review):

      The manuscript by Yang et al. investigated in mice how hypobaric hypoxia can modify the RBC clearance function of the spleen, a concept that is of interest. Via interpretation of their data, the authors proposed a model that hypoxia causes an increase in cellular iron levels, possibly in RPMs, leading to ferroptosis, and downregulates their erythrophagocytic capacity. However, most of the data is generated on total splenocytes/total spleen, and the conclusions are not always supported by the presented data. The model of the authors could be questioned by the paper by Youssef et al. (which the authors cite, but in an unclear context) that the ferroptosis in RPMs could be mediated by augmented erythrophagocytosis. As such, the loss of RPMs in vivo which is indeed clear in the histological section shown (and is a strong and interesting finding) can be not directly caused by hypoxia, but by enhanced RBC clearance. Such a possibility should be taken into account.

      Major points:

      1) The authors present data from total splenocytes and then relate the obtained data to RPMs, which are quantitatively a minor population in the spleen. Eg, labile iron is increased in the splenocytes upon HH, but the manuscript does not show that this occurs in the red pulp or RPMs. They also measure gene/protein expression changes in the total spleen and connect them to changes in macrophages, as indicated in the model Figure (Fig. 7). HO-1 and levels of Ferritin (L and H) can be attributed to the drop in RPMs in the spleen. Are any of these changes preserved cell-intrinsically in cultured macrophages? This should be shown to support the model (relates also to lines 487-88, where the authors again speculate that hypoxia decreases HO-1 which was not demonstrated). In the current stage, for example, we do not know if the labile iron increase in cultured cells and in the spleen in vivo upon hypoxia is the same phenomenon, and why labile iron is increased. To improve the manuscript, the authors should study specifically RPMs.

      2) The paper uses flow cytometry, but how this method was applied is suboptimal: there are no gating strategies, no indication if single events were determined, and how cell viability was assessed, which are the parent populations when % of cells is shown on the graphs. How RBCs in the spleen could be analyzed without dedicated cell surface markers? A drop in splenic RPMs is presented as the key finding of the manuscript but Fig. 3M shows gating (suboptimal) for monocytes, not RPMs. RPMs are typically F4/80-high, CD11-low (again no gating strategy is shown for RPMs). Also, the authors used single-cell RNAseq to detect a drop in splenic macrophages upon HH, but they do not indicate in Fig. A-C which cluster of cells relates to macrophages. Cell clusters are not identified in these panels, hence the data is not interpretable).

      3) The authors draw conclusions that are not supported by the data, some examples:

      a) they cannot exclude eg the compensatory involvement of the liver in the RBCs clearance (the differences between HH sham and HH splenectomy is mild in Fig. 2 E, F and G)

      b) splenomegaly is typically caused by increased extramedullary erythropoiesis, not RBC retention. Why do the authors support the second possibility? Related to this, why do the authors conclude that data in Fig. 4 G,H support the model of RBC retention? A significant drop in splenic RBCs (poorly gated) was observed at 7 days, between NN and HH groups, which could actually indicate increased RBC clearance capacity = less retention.

      c) lines 452-54: there is no data for decreased phagocytosis in vivo, especially in the context of erythrophagocytosis. This should be done with stressed RBCs transfusion assays, very good examples, like from Youssef et al. or Threul et al. are available in the literature.

      d) Line 475 - ferritinophagy was not shown in response to hypoxia by the manuscript, especially that NCOA4 is decreased, at least in the total spleen.

      4) In a few cases, the authors show only representative dot plots or histograms, without quantification for n>1. In Fig. 4B the authors write about a significant decrease (although with n=1 no statistics could be applied here; of note, it is not clear what kind of samples were analyzed here). Another example is Fig. 6I. In this case, it is even more important as the data are conflicting the cited article and the new one: PMCID: PMC9908853 which shows that hypoxia stimulates efferocytosis. Sometimes the manuscript claim that some changes are observed, although they are not visible in representative figures (eg for M1 and M2 macrophages in Fig. 3M)

      5) There are several unclear issues in methodology:

      - what is the purity of primary RPMs in the culture? RPMs are quantitatively poorly represented in splenocyte single-cell suspensions. This reviewer is quite skeptical that the processing of splenocytes from approx 1 mm3 of tissue was sufficient to establish primary RPM cultures. The authors should prove that the cultured cells were indeed RPMs, not monocyte-derived macrophages or other splenic macrophage subtypes.<br /> - (around line 183) In the description of flow cytometry, there are several missing issues. In 1) it is unclear which type of samples were analyzed. In 2) it is not clear how splenocyte cell suspension was prepared.<br /> - In line 192: what does it mean: 'This step can be omitted from cell samples'?<br /> - 'TO method' is not commonly used anymore and hence it was unclear to this Reviewer. Reticulocytes should be analyzed with proper gating, using cell surface markers.<br /> - The description of 'phagocytosis of E. coli and RBCs' in the Methods section is unclear and incomplete. The Results section suggests that for the biotinylated RBCs, phagocytosis? or retention? Of RBCs was quantified in vivo, upon transfusion. However, the Methods section suggests either in vitro/ex vivo approach. It is vague what was indeed performed and how in detail. If RBC transfusion was done, this should be properly described. Of note, biotinylation of RBCs is typically done in vivo only, being a first step in RBC lifespan assay. The such assay is missing in the manuscript. Also, it is not clear if the detection of biotinylated RBCs was performed in permeablized cells (this would be required).

    1. Joint Public Review:

      The authors report the first use of the bacterial Tus-Ter replication block system in human cells. A single plasmid containing two divergently oriented five-fold TerB repeats was integrated on chromosome 12 of MCF7 cells. ChIP and PLA experiments convincingly demonstrate the occupancy of Tus at the Ter sites in cells. Using an elegant Single Molecule Analysis of Replicated DNA (SMARD) assay, convincing data demonstrate the replication block at Ter sites dependent on the presence of the protein. As an orthogonal method to demonstrate fork stalling, ChIP data show the accumulation of the replicative helicase component MCM3 and the repair protein FANCM around the Ter sites. It is unclear whether the Ter sites integrated by a single copy plasmid have any effect on the replication of this region but the data show that the observed effects are dependent on expression of the Tus protein. The SMARD data do not reveal what proportion of forks are arrested at Tus/Ter, or how long the fork delay is imposed. Fork stalling led to a highly localized gammaH2AX response, as monitored by ChIP using primer pairs spread along the integrated plasmid carrying the Ter sites. This response was shown to be dependent on ATR using the ATR inhibitor VE-822. This contrasts with a single Cas9-induced DSB between the two Ter sites, which causes a more spread gammaH2AX response. While this was monitored only at a single distal site, the difference between the DSB and the Tus-induced stall is very significant. Interestingly, despite evidence for ATR activation through the gammaH2AX response, no evidence for phosphorylation of ATR-T1989, CHK1-S345, or RPA2-S33 could be found under fork stalling conditions. The global replication inhibitor hydroxyurea (HU) elicited phosphorylation of ATR-T1989, CHK1-S345, or RPA2-S33. In this context, it would have been of interest to examine if a single DSB in the Ter region leads to phosphorylation of ATR-T1989, CHK1-S345, or RPA2-S33 and cell cycle arrest. It is not shown whether the replication inhibitor HU leads to the same widely spread gamma H2AX response. Overall, this is a well written manuscript, and the data provide convincing evidence that the Tus-Ter system poses a site-specific replication fork block in MCF7 cells leading to a localized ATR-dependent DNA damage checkpoint response that is distinct from the more global response to HU or DSBs.

    1. Reviewer #1 (Public Review):

      The authors sought to address the longstanding question of which cell types are infected during congenital or perinatal rubella virus infection. They used brain slice and organoid-microglia experimental models to demonstrate that the main cell types targeted by rubella virus are microglia. It does not appear that microglia support rubella virus production in this experimental system, though future studies would be needed to address this more thoroughly. The authors further show that infection results in augmented interferon responses in neighboring neuronal cells but not in the microglia themselves. The data support the conclusions, with major strengths being the sophisticated primary cell models and single-cell RNA-Seq used to pinpoint microglia as the main cellular targets of rubella virus, and neurons as the bystander targets of immune signaling. This study reveals a new cellular target that will have important implications for basic studies on rubella virus-host interactions and for the potential development of therapies or improved vaccines targeting this virus. As rubella virus is a pathogen of high concern during human pregnancy, this study also has important implications in the field of neonatal infectious diseases.

    2. Reviewer #2 (Public Review):

      In this manuscript by Popova et al., the authors report the pathological impact of Rubella virus (RV) infection on human brain development. In particular, they uncovered a selective tropism of Rubella virus for microglial cells in cultured slices of human developing brain and 2D mixed fetal brain cell culture. Their results suggest that RV infection of microglia relies on the presence of diffusible factors from other cell populations. Moreover, the authors showed that RV infection of human brain organoids supplemented or not with microglia leads to interferon response and dysregulation of gene involved in brain development. This set of data will help understanding the cellular specificity and pathological mechanisms occurring in the developing brain upon RV infection. The data provided are overall of high quality and shed new light on the cellular tropism and the pathomechanisms of RV infection.

    1. Reviewer #1 (Public Review):

      This manuscript uses 3 large neuroimaging datasets - which together span childhood to late adulthood - to model the relationship between birthweight (BW) and cortical anatomy over time. The authors separately consider BW associations with the "height" of cortical anatomy trajectories (intercept effects) vs. BW associations with trajectory shape. The authors also distinguish between BW associations with cortical surface area (SA) and cortical thickness (CT), which together determine cortical volume (CV). Prior studies have firmly established robust positive associations between BW and cortical SA, but this study adds evidence for the protracted lifespan persistence of these associations, and the degree to which BW associations with cortical change over time are much weaker.

      The study has several strengths including: clear motivation of this work in the Introduction and contextualization of the results in Discussion; use of three large neuroimaging datasets; inclusion of sensible sensitivity analyses; disambiguation of SA and CT findings; and use of formal spatial analysis to quantify the reproducibility of effects across cohorts.

      The primary way in which this work seeks to extend beyond established findings is to determine if BW is associated with differences in cortical change over time. The results presented clearly establish that such BW-change associations are much more localized and less consistent across cohorts that BW-intercept associations. However, the evidential basis for this statement is partly limited by the nature of the neuroimaging cohorts used and the specific approaches taken to statistical modeling. Interpretation of findings for both BW-change and BW-intercept associations would also be assisted by greater clarity regarding the specification of statistical models, and the provision of effect-size maps.

      Moreover, several factors complicate interpretation of the BW effects on cortical change - which are arguably the main way in which this work could extend on established knowledge of BW associations with brain anatomy. Under the study design presented, inferences regarding age-varying BW effects come from two main sources ... age effects which are quantitatively modeled within each sample, and qualitative differences in age effects between samples. Any inferences from the latter source of evidence are weakened by the fact that (i) no direct statistical comparisons are conducted between samples (beyond the spin tests), and (ii) the composition of samples with regard to age span covered (e..g 2 in ABCD vs longer in UKB and longest in LCBC) and density of longitudinal data makes it hard to know if between-samples differences in age*BW effects are about biology or methodology. Inferences about age*BW effects from models within each sample are also limited by the fact that (i) some samples (ABCD) have very narrow age ranges precluding detection of age-related effects, and (ii) the modeling strategy used does not allow for non-linear interactions between age and BW or linear interactions that occur in the context of e.g. non-linear BW effects. For this last concern, it would be helpful to know that there is no evidence in the data for such non-linear effects

      The tests for spatial consistency between BW effects are a valuable aspect of the manuscript and provide a solid quantitative test for the main effects of BW. For the reasons detailed above however, I think that the more variable (and sometimes negative) correlations in age*BW maps are harder to interpret. One could argue for example that bivariate spline models of age*BW interactions on a lifespan dataset assembled from different COMBAT-aligned cohorts would provide a more solid basis for inference regarding the degree to which BW effects on cortical anatomy vary with age

      Overall, this work provides a valuable new data point in our understanding of the profound and protracted influences that prenatal developmental features can have on postnatal outcomes.

    2. Reviewer #2 (Public Review):

      This study focuses on the association between weight at birth and area, volume and thickness of the cerebral cortex measured at timepoints throughout the lifespan. Overall, the study is well designed, and supported by evidence from a large sample drawn from three geographically distinct cohorts with robust analytical and statistical methods.

      The authors test three hypotheses: (1) that higher birth weight is associated with greater cortical area in later life; (2) that associations are robust across samples and age; and (3) that associations are stable across the lifespan. Analyses are performed separately in three cohorts: ABCD, UKBB and LCBC and the pattern of associations compared by means of spatial correlations. They find that BW is positively associated with cortical area (and, as a consequence, cortical volume) across most of the cortex, with effect sizes being greatest in frontal and temporal regions. These associations remain largely unchanged when accounting for age, sex, length of gestation and (in one cohort) ethnicity. Variations due to MRI scanner and site are accounted for statistically. Measures are taken to determine within sample replicability through split-half analyses.

      The authors conclude that BW, as a marker of early development, is consistently associated with brain characteristics throughout the lifespan, acting as an 'intercept' and promoting brain reserve, i.e.: the capacity of the brain to withstand aging effects. Indeed, the authors calculate that 600g lower BW results in reductions in cortical volume akin to 6-7 years of aging in middle to later life. This is perhaps a startling statistic but one that is not entirely supported by the data presented.

      A key piece of information lacking from this study is the functional importance of the reported associations. That lower BW is associated with lower cortical volume and that cortical volume decreases with age is perhaps not surprising - the same could be said for height - one cannot conclude that the same processes underpin the two factors without examining the functional consequences of BW-related volume reductions in older age. The notion of 'brain reserve' indicates a protective effect. If this is the case, one might expect to see a mediating effect of BW on age-related cognitive effects. Without this data, it is difficult to reach the authors conclusions that decreased birthweight has the same effect as 7 years of aging in later life.

      In addition, it is not clear to what degree the association between BW and cortical area/volume is simply reflecting overall somatic growth: brain mass scales with body height, and birth weight and length are associated with adult height. While the specificity of the associations between cortical area/volume and BW are not fully tested, the effects are significantly diminished when controlling for a related measure of somatic growth: intracranial volume (Fig S5). In this context, additional commentary on the specificity of the reported BW-brain associations (or lack thereof) would be helpful.

      Finally, the authors use linear models to model brain area, thickness and volume as a function of age. The authors' previous studies have demonstrated nonlinear trajectories of cortical thickness in the LCBC cohort across most of the cortex. A stronger rationale (e.g.: theoretical or model selection) supporting the use of GLM in this study would be more compelling.

    1. Reviewer #1 (Public Review):

      The study by Sianga-Mete et al revisits the effects of substitution model selection on phylogenetics by comparing reversible and non-reversible DNA substitution models. This topic is not new, previous works already showed that non-reversible, and also covarion, substitution models can fit the real data better than the reversible substitution models commonly used in phylogenetics. In this regard, the results of the present study are not surprising. Specific comments are shown below.

      Major comments

      It is well known that non-reversible models can fit the real data better than the commonly used reversible substitution models, see for example,<br /> https://academic.oup.com/sysbio/article/71/5/1110/6525257<br /> https://onlinelibrary.wiley.com/doi/10.1111/jeb.14147?af=R<br /> The manuscript indicates that the results (better fitting of non-reversible models compared to reversible models) are surprising but I do not think so, I think the results would be surprising if the reversible models provide a better fitting.<br /> I think the introduction of the manuscript should be increased with more information about non-reversible models and the diverse previous studies that already evaluated them. Also I think the manuscript should indicate that the results are not surprising, or more clearly justify why they are surprising.

      In the introduction and/or discussion I missed a discussion about the recent works on the influence of substitution model selection on phylogenetic tree reconstruction. Some works indicated that substitution model selection is not necessary for phylogenetic tree reconstruction,<br /> https://academic.oup.com/mbe/article/37/7/2110/5810088<br /> https://www.nature.com/articles/s41467-019-08822-w<br /> https://academic.oup.com/mbe/article/35/9/2307/5040133<br /> While others indicated that substitution model selection is recommended for phylogenetic tree reconstruction,<br /> https://www.sciencedirect.com/science/article/pii/S0378111923001774<br /> https://academic.oup.com/sysbio/article/53/2/278/1690801<br /> https://academic.oup.com/mbe/article/33/1/255/2579471<br /> The results of the present study seem to support this second view. I think this study could be improved by providing a discussion about this aspect, including the specific contribution of this study to that.

      The real data was downloaded from Los Alamos HIV database. I am wondering if there were any criterion for selecting the sequences or if just all the sequences of the database for every studied virus category were analysed. Also, was any quality filter applied? How gaps and ambiguous nucleotides were considered? Notice that these aspects could affect the fitting of the models with the data.

      How the non-reversible model and the data are compared considering the non-reversible substitution process? In particular, given an input MSA, how to know if the nucleotide substitution goes from state x to state y or from state y to state x in the real data if there is not a reference (i.e., wild type) sequence? All the sequences are mutants and one may not have a reference to identify the direction of the mutation, which is required for the non-reversible model. Maybe one could consider that the most abundant state is the wild type state but that may not be the case in reality. I think this is a main problem for the practical application of non-reversible substitution models in phylogenetics.

    2. Reviewer #2 (Public Review):

      The authors evaluate whether non time reversible models fit better data presenting strand-specific substitution biases than time reversible models. Specifically, the authors consider what they call NREV6 and NREV12 as candidate non time-reversible models. On the one hand, they show that AIC tends to select NREV12 more often than GTR on real virus data sets. On the other hand, they show using simulated data that NREV12 leads to inferred trees that are closer to the true generating tree when the data incorporates a certain degree of non time-reversibility. Based on these two experimental results, the authors conclude that "We show that non-reversible models such as NREV12 should be evaluated during the model selection phase of phylogenetic analyses involving viral genomic sequences". This is a valuable finding, and I agree that this is potentially good practice. However, I miss an experiment that links the two findings to support the conclusion: in particular, an experiment that solves the following question: does the best-fit model also lead to better tree topologies?

      On simulated data, the significance of the difference between GTR and NREV12 inferences is evaluated using a paired t test. I miss a rationale or a reference to support that a paired t test is suitable to measure the significance of the differences of the wRF distance. Also, the results show that on average NREV12 performs better than GTR, but a pairwise comparison would be more informative: for how many sequence alignments does NREV12 perform better than GTR?

    1. Reviewer #1 (Public Review):

      Tippett et al present whole cell and proteoliposome transport data showing unequivocally that purified recombinant SLC26A6 reconstituted in proteoliposomes mediates electroneutral chloride/bicarbonate exchange, as well as coupled chloride/oxalate exchange unassociated with detectable current. Both functions contrast with the uncoupled chloride conductance mediated by SLC26A9. The authors also present a novel cryo-EM structure of full-length human SLC26A6 chloride/anion exchanger. As part of the structure, they offer the first partial view of the STAS domain previously predicted to be unstructured. They further define a single Arg residue of the SLC26A6 transmembrane domain required for coupled exchange, mutation of which yields apparently uncoupled electrogenic chloride transport mechanistically resembling that of SLC26A9, although of lower magnitude. The authors further apply to proteoliposomes for the first time a still novel approach to the measurement of bicarbonate transport using a bicarbonate-selective Europium fluorophor. The evidence strongly supports the authors' claims and conclusions, with one exception.

      The manuscript has numerous strengths:

      As a structural biology contribution, the authors extend the range of SLC26 structures to SLC26A6, comparing it in considerable detail to the published SLC26A9 structure, and presenting for the first time the structure of a portion of the STAS IVS domain of SLC26A6 long considered unstructured.

      The authors also apply a remarkably extensive range of creative technical approaches to assess the functional mechanisms of anion transport by SLC26A6, among them the first application of the novel, specific bicarbonate sensor Eu-L1+ to directly assess bicarbonate transport in reconstituted proteoliposomes. The authors also present the first (to this reviewer's knowledge) functional proteoliposome reconstitution of chloride-bicarbonate exchange mediated by an SLC26 protein. They define a residue in surrounding the anion binding pocket which explains part of the difference in anion exchange coupling between SLC26A6 and SLC26A9. In the setting of past conflicting results, the current work also contributes to the weight of previous evidence demonstrating that SLC26A6 mediates electroneutral rather than electrogenic Cl-/HCO3- exchange.

      Each of these achievements constitutes a significant advance in our understanding.

      The paper has only a few weaknesses:

      One is an incomplete explanation of the mechanistic determinants of anion exchange coupling in SLC26A6 vs. uncoupled anion transport by SLC26A9.

      A second weakness is the inconsistent, technique-dependent detection of SLC26A6- mediated electrogenic chloride/oxalate exchange. In particular whole cell currents attributable to SLC26A6 in SLC26A6-expressing HEK293 cells in an oxalate bath could not be detected, whereas robust, saturable Cl- efflux into oxalate solution from proteoliposomes reconstituted with recombinant SLC626A6 was detectable by AMCA fluorescence decay. This discrepancy was attributed to the relative sensitivities and/or signal-to-noise ratios of the assays.

      Overall, the manuscript represents an important advance in our understanding of the SLC26 protein family and of coupled vs uncoupled carrier-mediated anion transport.

    2. Reviewer #2 (Public Review):

      The eleven paralogs of SLC26 proteins in humans exhibit a remarkable range of functional diversity, spanning from slow anion exchangers and fast anion transporters with channel-like properties, to motor proteins found in the cochlear outer hair cells. In this study, the authors investigate human SLC26A6, which functions as a bicarbonate (HCO3-)/chloride (Cl-) and oxalate (C2O42-)/Cl- exchanger, combining cryo-electron microscopy, electrophysiology, and in vitro transport assays. The authors provide compelling evidence to support the idea that SLC26A6's exchange anions at equimolar stoichiometry, leading to the electroneutral and electrogenic transport of HCO3-/ Cl- and C2O42-/Cl-, respectively. Furthermore, the structure of SLC26A6 reveals a close resemblance to the fast, uncoupled Cl- transporter SLC26A9, with the major structural differences observed within the anion binding site. By characterizing an amino acid substitution within the SLC26A6 anion binding site (R404V), the authors also show that the size and charge variance of the binding pocket between the two paralogs could, in part, contribute to the differences in their transport mechanisms.

      This is a well-executed study, and the strength of this work lies in the reductionist, in vitro approach that the authors took to characterize the transport process of SLC26A6. The authors used and developed an array of functional experiments, including two electrogenic transport assays - a fast kinetic (electrophysiology) and a slow-kinetic (fluorescent-based ACMA) - and two electroneutral transport assays, probing for Cl- (lucigenin) and HCO3- (europium), which are well executed and characterized. The structural data is also of high quality and is the first structure of an SLC26 coupled anion exchanger, providing essential information for clarifying our understanding of the functional diversity between the SLC26 family of proteins.

    3. Reviewer #3 (Public Review):

      The mechanistically diverse SLC26 transporters play a variety of physiological roles. The current manuscript establishes the SLC26A6 subtype as electroneutral chloride/bicarbonate exchanges and reports its high-resolution structure with chloride bound.

      The claims in this manuscript are all well-supported by the data. Strengths include the comprehensive functional analysis of SLC26A6 in reconstituted liposome vesicles. The authors employ an array of assays, including chloride sensors, a newly developed fluorescent probe for bicarbonate, and assays to detect the electrogenicity of anion exchange. With this assortment of assays, the authors are able to establish the anion selectivity and stoichiometry of SLC26A6. Another strength of the manuscript is the functional comparison with SLC26A9, which permits fast, passive chloride transport, in order to benchmark the SLC26A6 activity. The structural analysis, including the assignment of the chloride binding site, is also convincing. The structural details and the chloride binding site are well-conserved among SLC26s. Finally, the authors present an interesting discussion comparing the structures of SLC26A5, SLC26A6, and SLC26A9, and how the details of the chloride binding site might influence the mechanistic distinctions between these similar transporters.

    1. Reviewer #1 (Public Review):

      Watanuki et al used metabolomic tracing strategies of U-13C6-labeled glucose and 13C-MFA to quantitatively identify the metabolic programs of HSCs during steady-state, cell-cycling, and OXPHOS inhibition. They found that 5-FU administration in mice increased anaerobic glycolytic flux and decreased ATP concentration in HSCs, suggesting that HSC differentiation and cell cycle progression are closely related to intracellular metabolism and can be monitored by measuring ATP concentration. Using the GO-ATeam2 system to analyze ATP levels in single hematopoietic cells, they found that PFKFB3 can accelerate glycolytic ATP production during HSC cell cycling by activating the rate-limiting enzyme PFK of glycolysis. Additionally, by using Pfkfb3 knockout or overexpressing strategies and conducting experiments with cytokine stimulation or transplantation stress, they found that PFKFB3 governs cell cycle progression and promotes the production of differentiated cells from HSCs in proliferative environments by activating glycolysis. Overall, in their study, Watanuki et al combined metabolomic tracing to quantitatively identify metabolic programs of HSCs and found that PFKFB3 confers glycolytic dependence onto HSCs to help coordinate their response to stress. Even so, several important questions need to be addressed as below:

      1. Based on previous reports, the authors expanded the LSK gate to include as many HSCs as possible (Supplemental Figure 1B). However, while they showed the gating strategy on Day 6 after 5-FU treatment, results from other time-points should also be displayed to ensure the strict selection of time-points.

      2. In Figure 1, the authors examined the metabolite changes on Day 6 after 5-FU treatment. However, it is important to consider whether there are any dynamic adjustments to metabolism during the early and late stages of 5-FU treatment in HSCs compared to PBS treatment, in order to coordinate cell homeostasis despite no significant changes in cell cycle progression at other time-points.

      3. As is well known, ATP can be produced through various pathways, including glycolysis, the TCA cycle, the PPP, NAS, lipid metabolism, amino acid metabolism and so on. Therefore, it is important to investigate whether treatment with 5-FU or oligomycin affects these other metabolic pathways in HSCs.

      4. In part 2, they showed that oligomycin treatment of HSCs exhibited activation of the glycolytic system, but what about the changes in ATP concentration under oligomycin treatment? Are other metabolic systems affected by oligomycin treatment?

      5. In Figure 5M, it would be helpful to include a control group that was not treated with 2-DG. Additionally, if Figure 5L is used as the control, it is unclear why the level of ATP does not show significant downregulation after 2-DG treatment. Similarly, in Figure 5O, a control group with no glucose addition should be included.

      6. In this study, their findings suggest that PFKFB3 is required for glycolysis of HSCs under stress, including transplantation. In Figure 7B, the results showed that donor-derived chimerism in PB cells decreased relative to that in the WT control group during the early phase (1 month post-transplant) but recovered thereafter. Although the transplantation cell number is equal in two groups of donor cells, it is unclear why the donor-derived cell count decreased in the 2-week post-transplantation period and recovered thereafter in the Pfkgb3 KO group. Therefore, they should provide an explanation for this. Additionally, they only detected the percentage of donor-derived cells in PB but not from BM, which makes it difficult to support the argument for increasing the HSPC pool.

      7. In Figure 7E, they collected the BM reconstructed with Pfkfb3- or Rosa-KO HSPCs two months after transplantation, and then tested their resistance to 5-FU. However, the short duration of the reconstruction period makes it difficult to draw conclusions about the effects on steady-state blood cell production.

      8. PFK is allosterically activated by PFKFB, and other members of the PFKFB family could also participate in the glycolytic program. Therefore, they should investigate their function in contributing to glycolytic plasticity in HSCs during proliferation. Additionally, they should also analyze the protein expression and modification levels of other members. Although PFKFB3 is the most favorable for PFK activation, the role of other members should also be explored in HSC cell cycling to provide sufficient reasoning for choosing PFKFB3.

      9. In this study, the authors identified PRMT1 as the upstream regulator of PFKFB3 that is involved in the glycolysis activation of HSCs. However, PRMT1 is also known to participate in various transcriptional activations. Thus, it is important to determine whether PRMT1 affects glycolysis through transcriptional regulation or through its direct regulation of PFKFB3? Additionally, the authors should investigate whether PRMT1i inhibits ATP production in normal HSCs. Moreover, could we combine Figure 6I and 6J for analysis. Finally, the authors could conduct additional rescue experiments to demonstrate that the effect of PRMT1 inhibitors on ATP production can be rescued by overexpression of PFKFB3.

    2. Reviewer #2 (Public Review):

      In the manuscript Watanuki et al. want to define the metabolic profile of HSCs in stress/proliferative (myelosuppression with 5-FU), and mitochondrial inhibition and homeostatic conditions. Their conclusions are that during proliferation HSCs rely more on glycolysis (as other cell types) while HSCs in homeostatic conditions are mostly dependent on mitochondrial metabolism. Mitochondrial inhibition is used to demonstrate that blocking mitochondrial metabolism results in similar features of proliferative conditions.

      The authors used state-of-the-art technologies that allow metabolic readout in a limited number of cells like rare HSCs. These applications could be of help in the field since one of the major issues in studying HSCs metabolism is the limited sensitivity of the "standard" assays, which make them not suitable for HSC studies.

      However, the observations do not fully support the claims. There are no direct evidence/experiments tackling cell cycle state and metabolism in HSCs. Often the observations for their claims are indirect, while key points on cell cycle state-metabolism, OCR analysis should be addressed directly.

      Specifically, there are several major points that rise concerns about the claims:

      1. The gating strategy to select HSCs with enlarged Sca1 gating is not convincing. I understand the rationale to have a sufficient number of cells to analyze, however this gating strategy should be applied also in the control group. From the FACS plot seems that there are more HSCs upon 5FU treatment (Figure S1b). How that is possible? Is it because of the 20% more of cycling cells at day 6? To prove that this gating strategy still represents a pure HSC population, authors should compare the blood reconstitution capability of this population with a "standard" gated population. If the starting population is highly heterogeneous then the metabolic readout could simply reflect cell heterogeneity.

      2. S2 does not show major differences before and after sorting. However, a key metabolite like Lactate is decreased, which is also one of the most present. Wouldn't that mean that HSCs once they move out from the hypoxic niche, they decrease lactate production? Do they decrease anaerobic glycolysis? How can quiescent HSC mostly rely on OXPHOS being located in hypoxic niche?

      3. The authors performed challenging experiments to track radiolabeled glucose, which are quite remarkable. However, the data do not fully support the conclusions. Mitochondrial metabolism in HSCs can be supported by fatty acid and glutamate, thus authors should track the fate of other energy sources to fully discriminate the glycolysis vs mito-metabolism dependency. From the data on S2 and Fig1 1C-F, the authors can conclude that upon 5FU treatment HSCs increase glycolytic rate.

      4. In Figure S1, 5-FU leads to the induction of cycling HSCs and in figure 1, 5-FU results in higher activation of glycolysis. Would it be possible to correlate these two phenotypes together? For example, by sorting NBDG+ cells and checking the cell cycle status of these cells?

      5. FIG.2B-C: Increase of Glycolysis upon oligomycin treatment is common in many different cell types. As explained before, other radiolabeled substrates should be used to understand the real effect on mitochondria metabolism.

      6. Why are only ECAR measurements (and not OCR measurements) shown? In Fig.2G, why are HSCs compared with cKit+ myeloid progenitors, and not with MPP1? The ECAR increased observed in HSC upon oligomycin treatment is shared with many other types of cells. However, cKit+ cells have a weird behavior. Upon oligo treatment cKit+ cells decrease ECAR, which is quite unusual. The data of both HSCs and cKit+ cells could be clarified by adding OCR curves. Moreover, it is recommended to run glycolysis stress test profile to assess the dependency to glycolysis (Glucose, Oligomycin, 2DG).

      7. Since HSCs in the niche are located in hypoxic regions of the bone marrow, would that not mimic OxPhos inhibition (oligomycin)? Would that not mean that HSCs in the niche are more glycolytic (anaerobic glycolysis)?

      FIG.3 A-C. As mentioned previously, the flux analyses should be integrated with data using other energy sources. If cycling HSCs are less dependent to OXPHOS, what happen if you inhibit OXHPHOS in 5-FU condition? Since the authors are linking OXPHOS inhibition and upregulation of Glycolysis to increase proliferation, do HSCs proliferate more when treated with oligomycin?

      8. FIG.4 shows that in vivo administration of radiolabeled glucose especially marks metabolites of TCA cycle and Glycolysis. The authors interpret enhanced anaerobic glycolysis, but I am not sure this is correct; if more glycolysis products go in the TCA cycle, it might mean that HSC start engaging mitochondrial metabolism. What do the authors think about that?

      9. FIG.4: the experimental design is not clear. Are BMNNCs stained and then put in culture? Is it 6-day culture or BMNNCs are purified at day 6 post 5FU? FIG-4B-C The difference between PBS vs 5FU conditions are the most significant; however, the effect of oligomycin in both conditions is the most dramatic one. From this readout, it seems that HSCs are more dependent on mitochondria for energy production both upon 5FU treatment and in PBS conditions.

      10. In Figure 5B, the orange line (Glucose+OXPHOS inhibition) remains stable, which means HSCs prefer to use glycolysis when OXPHOS is inhibited. Which metabolic pathway would HSCs use under hypoxic conditions? As HSCs resides in hypoxic niche, does it mean that these steady-state HSCs prefer to use glycolysis for ATP production? As mentioned before, mitochondrial inhibition can be comparable at the in vivo condition of the niche, where low pO2 will "inhibit" mitochondria metabolism.

      11. FIG.6H should be extended with cell cycle analyses. There are no differences between 5FU and ctrl groups. If 5FU induces HSCs cycling and increases glycolysis I would expect higher 2-NBDG uptake in the 5FU group. How do the authors explain this?

      12. In S7 the experimental design is not clear. What are quiescent vs proliferative conditions? What does it mean "cell number of HSC-derived colony"? Is it a CFU assay? Then you should show colony numbers. When HSCs proliferate, they need more energy thus inhibition of metabolism will impact proliferation. What happens if you inhibit mitochondrial metabolism with oligomycin?

      13. In FIG 7 since homing of HSCs is influenced by the cell cycle state, should be important to show if in the genetic model for PFKFB3 in HSCs there's a difference in homing efficiency.

    1. Reviewer #1 (Public Review):

      The article "A randomized multiplex CRISPRi-Seq approach for the identification of critical combinations of genes" describes the development of a multiplex randomized CRISPRi screening method that they named MurCiS and applied it to study redundancy of L. pneumophila virulence factors. The authors used a L. pneumophila strain carrying dCas9 on the chromosome that they had constructed for a CRISPRi screen they had published recently and here combined it with self-assembly randomized multiplex CRISPR arrays that they developed. The strains carrying the dCas9 and the different CRISPRi arrays were used to infect U937 or Acanthamoeba castellanii cells and the intracellular growth phenotypes were recorded as readout. This allowed the authors to identify certain gene combinations that when knocked down induced a growth defect in either or both cells tested but not when they were knocked down alone. A particular gene combination caught their attention, as the genes lpg2888 and lpg3000 were inducing a growth defect only when both were knocked down in U937 cells but in A. castellanii cells lpg3000 alone was sufficient to cause a growth defect.

      The concept of using CRISPRi to look at functional redundancy in effectors is a very useful one to the Legionella field and where biological redundancy limits studies. It has the potential to uncover virulence effectors of importance that have not been described before. However, my enthusiasm for the work was dampened when reading the article. The work presented here does not really flow and it seems to be more a method description than a research article but does not meet the requirements to be either.

      The strength of the study is undermined by how it is set up. The set-up of the CRISPRi technology deployed by the authors may explain why the authors found only very few examples of redundant genes in this study.

    2. Reviewer #2 (Public Review):

      The study by Ellis et al. documents the development of a CRISPR interference (CRISPRi) screen aiming at identifying virulence-critical genes of Legionella pneumophila, the facultative intracellular bacterium causing Legionnaires' disease. L. pneumophila employs the Dot/Icm type IV secretion system to translocate more than 300 different "effector proteins" into host cells. Many effector proteins appear to have redundant functions, and therefore, depleting several of them is required to observe a strong intracellular replication phenotype. In the current study, Ellis et al. develop a "multiplex, randomized CRISPRi sequencing" (MuRCiS) approach to silence several effector genes simultaneously and randomly, thereby possibly causing synthetic lethality for L. pneumophila upon infection of host cells.

      The MuRCiS approach comprises the ligation of different CRISPR spacers flanked by repeats in presence of "dead end" oligonucleotide pairs capping a random array of building blocks to be inserted into a library vector. Thus, spacer arrays with an average of 3.3 spacers per array were obtained. As a proof-of-concept, spacer arrays targeting 44 transmembrane effector-encoding L. pneumophila genes were employed to screen for intracellular growth defects in macrophages and amoeba. Consequently, novel pairs of synergistically functioning effector genes were identified by comparative next-generation sequencing of the input and output pools of spacer arrays.

      A major strength of this well-written and straightforward study is the construction and use of random and multiplexed CRISPRi arrays, allowing an unbiased and comprehensive screen for multiple genes affecting the intracellular growth of L. pneumophila. The ingenious approach established by Ellis et al. will be useful for further genetic analysis of L. pneumophila infection and might also be adopted for other pathogens employing a large set of (functionally redundant) virulence factors.

    1. Reviewer #1 (Public Review):

      In this manuscript, the authors identified and characterized the five C-terminus repeats and a 14aa acidic tail of the mouse Dux protein. They found that repeat 3&5, but not other repeats, contribute to transcriptional activation when combined with the 14aa tail. Importantly, they were able to narrow done to a 6 aa region that can distinguish "active" repeats from "inactive" repeats. Using proximal labeling proteomics, the authors identified candidate proteins that are implicated in Dux-mediated gene activation. They were able to showcase that the C-terminal repeat 3 binds to some proteins, including Smarcc1, a component of SWI/SNF (BAF) complex. In addition, by overexpressing different Dux variants, the authors characterized how repeats in different combinations, with or without the 14aa tail, contribute to Dux binding, H3K9ac, chromatin accessibility, and transcription. In general, the data is of high quality and convincing. The identification of the functionally important two C-terminal repeats and the 6 aa tail is enlightening. The work shined light on the mechanism of Dux function.

      A few major comments that the authors may want to address to further improve the work:

      1) The summary table for the Dux domain construct characteristics in Fig. 6a could be more accurate. For example, C3+14 clearly showed moderate weaker Dux binding and H3K9ac enrichment in Fig 3c and 3e. However, this is not illustrated in Fig. 6a. The authors may consider applying statistical tests to more precisely determine how the different Dux constructs contribute to DNA binding (Fig. 3c), H3K9ac enrichment (Fig. 3e), Smarcc1 binding (Fig. 5e), and ATAC-seq signal (Fig. 5f).

      2) Another concern is that exogenous overexpressed Dux was used throughout the experiments. The authors may consider validating some of the protein-protein interactions using spontaneous or induced 2CLCs (where Dux is expressed).

      3) It could be technically challenging, but the authors may consider to validate Dux and Smarcc1 interaction in a biologically more relevant context such as mouse 2-cell embryos where both proteins are expressed. Whether Smarcc1 binding will be dramatically reduced at 4-cell embryos due to loss of Dux expression?

    2. Reviewer #2 (Public Review):

      In this manuscript, Smith et al. delineated novel mechanistic insights into the structure-function relationships of the C-terminal repeat domains within the mouse DUX protein. Specifically, they identified and characterised the transcriptionally active repeat domains, and narrowed down to a critical 6aa region that is required for interacting with key transcription and chromatin regulators. The authors further showed how the DUX active repeats collaborate with the C-terminal acidic tail to facilitate chromatin opening and transcriptional activation at DUX genomic targets.

      Although this study attempts to provide mechanistic insights into how DUX4 works, the authors will need to perform a number of additional experiments and controls to bolster their claims, as well as provide detailed analyses and clarifications.

    3. Reviewer #3 (Public Review):

      Dux (or DUX4 in human) is a master transcription factor regulating early embryonic gene activation and has garnered much attention also for its involvement in reprogramming pluripotent embryonic stem cells to totipotent "2C-like" cells. The presented work starts with the recognition that DUX contains five conserved c. 100-amino acid carboxy-terminal repeats (called C1-C5) in the murine protein but not in that of other mammals (e.g. human DUX4). Using state-of-the-art techniques and cell models (BioID, Cut&Tag; rescue experiments and functional reporter assays in ESCs), the authors dissect the activity of each repeat, concluding that repeats C3 and C5 possess the strongest transactivation potential in synergy with a short C-terminal 14 AA acidic motif. In agreement with these findings, the authors find that full-length and active (C3) repeat containing Dux leads to increased chromatin accessibility and active histone mark (H3K9Ac) signals at genomic Dux binding sites. A further significant conclusion of this mutational analysis is the proposal that the weakly activating repeats C2 and C4 may function as attenuators of C3+C5-driven activity.

      By next pulling down and identifying proteins bound to Dux (or its repeat-deleted derivatives) using BioID-LC/MS/MS, the authors find a significant number of interactors, notably chromatin remodellers (SMARCC1), a histone chaperone (CHAF1A/p150) and transcription factors previously (ZSCAN4D) implicated in embryonic gene activation.

      The experiments are of high quality, with appropriate controls, thus providing a rich compendium of Dux interactors for future study. Indeed, a number of these (SMARCC1, SMCHD1, ZSCAN4) make biological sense, both for embryonic genome activation and for FSHD (SMCHD1).

      A critical question raised by this study, however, concerns the function of the Dux repeats, apparently unique to mice. While it is possible, as the authors propose, that the weak activating C1, C2 C4 repeats may exert an attenuating function on activation (and thus may have been selected for under an "adaptationist" paradigm), it is also possible that they are simply the result of Jacobian evolutionary bricolage (tinkering) that happens to work in mice. The finding that Dux itself is not essential, in fact appears to be redundant (or cooperates with) the OBOX4 factor, in addition to the absence of these repeats in the DUX protein of all other mammals (as pointed out by the authors), might indeed argue for the second, perhaps less attractive possibility.

      In summary, while the present work provides a valuable resource for future study of Dux and its interactors, it fails, however, to tell a compelling story that could link the obtained data together.

    1. Reviewer #1 (Public Review):

      Recent studies in plants and human cell lines argued for a central role of 1,5-InsP8 as the central nutrient messenger in eukaryotic cells, but previous studies concluded that this function is performed by 1-InsP7 in baker's yeast. Chabert et al now performed an elegant set of capillary electrophoresis coupled to mass spectrometry time course experiments to define the cellular concentrations of different inositol pyrophosphosphates (PP-InsPs) in wild-type yeast cells under normal and phosphate (Pi) starvation growth conditions. These experiments, in my opinion, form the center of the present study and clearly highlight that the levels of all major PP-InsPs drop under Pi starvation, with the 1,5-InsP8 isomer showing the most rapid changes.

      The analysis of known mutants in the PP-InsP biosynthetic pathways furthermore demonstrate that loss-of-function of the PPIP5K enzymes Kcs1 and Vip1 result in a loss of 1,5-InsP8 and a hyperaccumulation of 5-InsP7, respectively. In line with this, loss-of-function of known PP-InsP phosphatases Ddp1 and Swi14 result in hyperaccumulation of either 1- or 5-InsP7, as anticipated from their in vitro substrate specificities. These experiments are of high technical quality and add to our understanding of the kinetics of PP-InsP metabolism/catabolism in yeast.

      Next, the authors use changes in subcellular localisation of the central transcription factor Pho4 to assay at which time point after onset of Pi starvation the PHO pathway becomes activated. The early onset of the response, the behavior of the kcs1D mutant and of the ksc1D/vip1D all strongly argue for 1,5-InsP8 as the central nutrient messenger. I find this part of the manuscript well argued, nicely correlating PP-InsP levels, dynamics and the different mutant phenotypes.

      The third part of the manuscript is a structure-function study of the CDK inhibitor Pho81, basically using a reverse genetics approach. This analysis demonstrates at the genetic level that the Pho81 SPX domain is required for activation of the PHO pathway. Next, the authors design point mutations that should block either interaction of Pho81-SPX with 1,5-InsP8 or interaction of Pho81 with the Pho80/Pho85 complex. In my opinion, these data can only provide limited insight into the molecular mechanism, as no complementary in vitro binding assays / in vivo co-IP experiments with the wild-type and mutant forms of Pho81 are presented.

      The discussion section of the manuscript contains additional data such as PP-InsP levels for C. neoformans and complex structure predictions of Pho80 - Pho81. This, in my opinion, renders the discussion section of the work overly speculative. Perhaps, these results should be presented in the results section, and ideally (in the case of the complex structure predictions), be complemented by quantitative in vitro and/or qualitative in vivo binding assays.

      Taken together, the work by Chabert et al, reinvestigates and clarifies the activation of the yeast PHO pathway by PP-InsP nutrient messengers and their cellular SPX receptors. From this work, a more unified eukaryotic mechanism emerges, in which 1,5-InsP8 represents the central signaling molecule in different species, with conserved SPX receptors sensing this signaling molecule.

    2. Reviewer #2 (Public Review):

      The manuscript by Chambert et al. describes a thorough and careful characterization of inositol pyrophosphate isomers and the PHO pathways in different genetic backgrounds in S. cerevisiae. The paper ultimately arrives at a proposed model in which the inositol pyrophosphate 1,5-IP8 signals phosphate abundance to SPX-domain containing proteins. To arrive at their conclusion, the authors rely heavily on CE-MS analysis of inositol pyrophosphates in different yeast strains, and monitoring inositol pyrophosphate depletion over time in response to phosphate starvation. This analysis is complemented by different reporter systems of PHO pathway activation, such as Pho4 translocation and Pho81 expression.

      The experiments are well-designed and the results interpreted with care. With their findings, the authors demonstrate convincingly, that a previous study by O'Shea and co-workers (reference 15 and 16) had been misleading. Lee et al. claimed that the PHO pathway in S. cerevisiae is triggered by an increase in 1-IP7. This claim has been debated heavily in the community, and several groups were not able to reproduce this putative increase of inositol pyrophosphates (references 6, 11, 18). The confusion regarding these discrepancies has been resolved by the current study and is of significant importance to the community.

    3. Reviewer #3 (Public Review):

      Summary. This study sought to clarify the connection between inositol pyrophosphates (PP-IPs) and their regulation of phosphate homeostasis in the yeast Saccharomyces cerevisiae to answer the question of whether any of the PP-IPs (1-IP7, 5-IP7, and IP8) or only particular PP-IPs are involved in regulation. PP-IPs bind to SPX domains in proteins to affect their activity, and there are several key proteins in the PHO pathway that have an SPX domain, including Pho81. The authors use the latest methodology, capillary electrophoresis and mass spectrometry (CE-MS), to examine the cytosolic concentrations of PP-IPs in wild-type and strains carrying mutations in the enzymes that metabolize these compounds in rich medium and during a phosphate starvation time-course for the wild-type.

      Major strengths and weaknesses. The authors have strong premises for performing these experiments: clarifying the regulatory molecule(s) in yeast and providing a unifying mechanism across eukaryotes. They use the latest methodologies and a variety of approaches including genetics, biochemistry, cell biology and protein structure to examine phosphate regulation. Their experiments are rigorous and well controlled, and the story is clearly told. The consideration of physiological levels of PP-IPs throughout the study was critical to the interpretation of the data and the strength of the manuscript.

      There were a few places in which a deeper discussion of the data was warranted: not discussed was an explanation for the decrease in the levels of all of the PP-IPs upon phosphate starvation, nor of the phosphate regulation of two target genes of Pho4 when Pho4 is constitutively nuclear.

      Appraisal. The authors achieved their goal of determining the mechanistic details for phosphate regulation, revising the prior model with new insights. Additionally, they provided strong support for the idea that IP8 regulates phosphate metabolism across eukaryotes - including animals and plants in addition to fungi.

      Impact. This study is likely to have a broad impact because it addresses prior findings that are inconsistent with current understanding, and they provide good reasoning as to how older methods were inadequate.

    1. Reviewer #1 (Public Review):

      In this study, the authors investigate the biological function of the FK506-binding protein FKBP35 in the malaria-causing parasite Plasmodium falciparum. Like its homologs in other organisms, PfFKBP35 harbors peptidyl-prolyl isomerase (PPIase) and chaperoning activities, and has been considered a promising drug target due to its high affinity to the macrolide compound FK506. However, PfFKBP35 has not been validated as a drug target using reverse genetics, and the link between PfFKBP35-interacting drugs and their antimalarial activity remains elusive. The manuscript is structured in two parts addressing the biological function of PfFKBP35 and the antimalarial activity of FK506, respectively.

      The first part combines conditional genome editing, proteomics and transcriptomics analysis to investigate the effects of FKBP35 depletion in P. falciparum. The work is very well performed and clearly described. The data provide definitive evidence that FKBP35 is essential for P. falciparum blood stage growth. Conditional knockout of PfFKBP35 leads to a delayed death phenotype, associated with defects in ribosome maturation as detected by quantitative proteomics and stalling of protein synthesis in the parasite. The authors propose that FKBP35 regulates ribosome homeostasis but an alternative explanation could be that changes in the ribosome proteome are downstream consequences of the abrogation of FKBP35 essential activities as chaperone and/or PPIase. It is unclear whether FKBP35 has a specific function in P. falciparum as compared to other organisms. The knockdown of PfFKBP35 has no phenotypic consequence, showing that very low amounts of FKBP35 are sufficient for parasite survival and growth. In the absence of quantification of the protein during the course of the experiments, it remains unclear whether the delayed death phenotype in the knockout is due to the delayed depletion of the protein or to a delayed consequence of early protein depletion. This limitation also impacts the interpretation of the drug assays.

      In the second part, the authors investigate the activity of FK506 on P. falciparum, and conclude that FK506 exerts its antimalarial effects independently of FKBP35. This conclusion is based on the observation that FK506 has the same activity on FKBP35 wild type and knock-out parasites, suggesting that FK506 activity is independent of FKBP35 levels, and on the fact that FK506 kills the parasite rapidly whereas inducible gene knockout results in delayed death phenotype. However, there are alternative explanations for these observations. As mentioned above, the delayed death phenotype could be due to delayed depletion of the protein upon induction of gene knockout. FK506 could have a similar activity on WT and mutant parasites when added before sufficient depletion of FKBP35 protein. In some experiments, the authors exposed KO parasites to FK506 later, presumably when the KO is effective, and obtained similar results. However, in these conditions, the death induced by the knockout could be a confounding factor when measuring the effects of the drug. Furthermore, the authors show that FK506 binds to FKBP35, and propose that the FK506-FKBP35 complex interferes with ribosome maturation, which would point towards a role of FKBP35 in FK506 action. In summary, the study does not provide sufficient evidence to rule out that FK506 exerts its effects via FKBP35.

    2. Reviewer #2 (Public Review):

      The manuscript by Thomen et al. FKBP secures ribosome homeostasis in Plasmodium falciparum and focuses on the importance of PfKBP35 protein, its interaction with the FK506 compound, and the role of PfKBP35 in ribosome biogenesis. The authors showed the interaction of the PfKBP54 with FK506, but the part of the FK506 and PfKBP54 in ribosome biogenesis based on the data is unclear.

      The introduction is plotted with two parallel stories about PfKBP35 and FK506, with ribosome biogenesis as the central question at the end. In its current form, the manuscript suffers from two stories that are not entirely interconnected, unfinished, and somewhat confusing. Both stories need additional experiments to make the manuscript(s) more complete. The results from PfFBP35 need more evidence for the proposed ribosome biogenesis pathway control. On the other hand, the results from the drug FK506 point to different targets with lower EC50, and other follow-up experiments are needed to substantiate the authors' claims.

      The strengths of the manuscript are the figures and experimental design. The combination of omics methods is informative and gives an opportunity for follow-up experiments.

    3. Reviewer #3 (Public Review):

      The study by Thommen et al. sought to identify the native role of the Plasmodium falciparum FKBP35 protein, which has been identified as a potential drug target due to the antiplasmodial activity of the immunosuppressant FK506. This compound has multiple binding proteins in many organisms; however, only one FKBP exists in P. falciparum (FKBP35). Using genetically-modified parasites and mass spectrometry-based cellular thermal shift assays (CETSA), the authors suggest that this protein is in involved in ribosome homeostasis and that the antiplasmodial activity of FK506 is separate from its activity on the FKBP35 protein. The authors first created a conditional knockdown using the destruction domain/shield system, which demonstrated no change in asexual blood stage parasites. A conditional knockout was then generated using the DiCre system. FKBP35KO parasites survived the first generation but died in the second generation. The authors called this "a delayed death phenotype", although it was not secondary to drug treatment, so this may be a misnomer. This slow death was unrelated to apicoplast dysfunction, as demonstrated by lack of alterations in sensitivity to apicoplast inhibitors. Quantitative proteomics on the FKBP35KO vs FKBP35WT parasites demonstrated enrichment of proteins involved in pre-ribosome development and the nucleolus. Interestingly, the KO parasites were not more susceptible to cycloheximide, a translation inhibitor, in the first generation (G1), suggesting that mature ribosomes still exist at this point. The SunSET technique, which incorporates puromycin into nascent peptide chains, also showed that in G1 the FKBP35KO parasites were still able to synthesize proteins. But in the second generation (G2), there was a significant decrease in protein synthesis. Transcriptomics were also performed at multiple time points. The effects of knockout of FKBP35 were transcriptionally silent in G1, and the parasites then slowed their cell cycles as compared to the FKBP35WT parasites.

      The authors next sought to evaluate whether killing by FK506 was dependent upon the inhibition of PfKBP35. Interestingly, both FKBP35KO and FKBP35WT parasites were equally susceptible to FK506. This suggested that the antiplasmodial activity of FK506 was related to activity targeting essential functions in the parasite separate from binding to FKBP35. To identify these potential targets, the authors used MS-CETSA on lysates to test for thermal stabilization of proteins after exposure to drug, which suggests drug-protein interactions. As expected, FK506 bound FKBP35 at low nM concentrations. However, given that the parasite IC50 of this compound is in the uM range, the authors searched for proteins stabilized at these concentrations as putative secondary targets. Using live cell MS-CETSA, FK506 bound FKBP35 at low nM concentrations; however, in these experiments over 50 ribosomal proteins were stabilized by the drug at higher concentrations. Of note, there was also an increase in soluble ribosomal factors in the absence of denaturing conditions. The authors suggested that the drug itself led to these smaller factors disengaging from a larger ribosomal complex, leading to an increase in soluble factors. Ultimately, the authors conclude that the native function of FKBP35 is involved in ribosome homeostasis and that the antiplasmodial activity of FK506 is not related to the binding of FKBP35, but instead results from inhibition of essential functions of secondary targets.

      Strengths:

      This study has many strengths. It addresses an important gap in parasite biology and drug development, by addressing the native role of the potential antiplasmodial drug target FKBP35 and whether the compound FK506 works through inhibition of that putative target. The knockout data provide compelling evidence that the KBP35 protein is essential for asexual parasite growth after one growth cycle. Analysis of the FKBP35KO line also provides evidence that the effects of FK506 are likely not solely due to inhibition of that protein, but instead must have secondary targets whose function is essential. These data are important in the field of drug development as they may guide development away from structure-based FK506 analogs that bind more specifically to the FKBP35 protein.

      Weaknesses:

      There are also a few notable weaknesses in the evidence that call into question the conclusion in the article title that FKBP35 is definitely involved in ribosomal homeostasis. While the proteomics supports alterations in ribosome biogenesis factors, it is unclear whether this is a direct role of the loss of the FKBP35 protein or is more related to non-specific downstream effects of knocking down the protein. The CETSA data clearly demonstrate that FK506 binds PfKB35 at low nM concentrations, which is different than the IC50 noted in the parasite; however, the evidence that the proteins stabilized by uM concentrations of drug are actual targets is not completely convincing. Especially, given the high uM amounts of drug required to stabilize these proteins. This section of the manuscript would benefit from validation of a least one or two of the putative candidates noted in the text. In the live cell CETSA, it is noted that >50 ribosomal components are stabilized in drug treated but not lysate controls. Similarly, the authors suggest that the -soluble fraction of ribosomal components increases in drug-exposed parasites even at 37{degree sign}C and suggests that this is likely from smaller ribosomal proteins disengaging from larger ribosomal complexes. While the evidence is convincing that this protein may play a role in ribosome homeostasis in some capacity, it is not sure that the title of the paper "FKBP secures ribosome homeostasis" holds true given the lack of mechanistic data. A minor weakness, but one that should nonetheless be addressed, is the use of the term "delayed death phenotype" with regards to the knockout parasite killing. This term is most frequently used in a very specific setting of apicoplast drugs that inhibit apicoplast ribosomes, so the term is misleading. It is also possible that the parasites are able to go through a normal cycle because of the kinetics of the knockout and that the time needed for protein clearance in the parasite to a level that is lethal.

      Overall, the authors set out to identify the native role of FKB35 in the P. falciparum parasites and to identify whether this is, in fact, the target of FK506. The data clearly demonstrate that FKBP35 is essential for parasite growth and provide evidence that alterations in its levels have proteomic but not transcriptional changes. However, the conclusion that FKBP35 actually stabilizes ribosomal complexes remains intermediate. The data are also very compelling that FK506 has secondary targets in the parasite aside from FKBP35; however, the high uM concentrations of the drug needed to attain results and the lack of biological validation of the CETSA hits makes it difficult to know whether any of these are actually the target of the compound or instead are nonspecific downstream consequences of treatment.

    1. Reviewer #2 (Public Review):

      Wu et al. conducted longitudinal single-nucleus RNA sequencing in a Drosophila transgenic line expressing pathogenic tau (Arg406 ->Trp) and control to study presenile degenerative dementia with bitemporal atrophy. Their data is consistent with previous findings on Tau neurotoxicity, which significantly affects excitatory neurons in human brain samples and transgenic mice. Authors identify aging-like signatures, and an innate immune glial response, including the NFKB pathway, in the transgenic animals.

      Strength: This is a great resource for the dissection of dynamic, age-dependent gene expression changes at cellular resolution for the fly community. The article's conclusions are largely supported by the data.

      Weakness: No additional orthogonal validation is done on the identified pathways using immunohistochemistry. Also, the authors hypothesized that innate immune signatures might serve as predictors of neuronal subtype vulnerability in tauopathies. Although their data support stronger immune responses in the mutant lines, these findings are not validated. Moreover, the Authors need to use appropriate control animals to compare the mutant Tau animals.

    2. Reviewer #1 (Public Review):

      Wu et al. provide a powerful cross-species approach to better understand brain cell-type specific responses to mutant tau and aging. Therefore, they use scRNAseq of established Drosophila models that they had previously used for bulk RNAseq (Mangleburg et al., 2020) at 1, 10 and 20 days of age, which thus allows them to study the contribution of pathogenic tau (R406W-mutant) in isolation in an experimentally highly controllable manner. They find a large overlap between tau-induced and aging-induced deregulated genes, however different cell-types were primarily affected, suggesting that expression of tau does not simply induce accelerated aging. When assessing cell number abundance in response to tau expression the authors noted that certain excitatory neurons were preferentially lost. They then examined innate immune pathways downstream of NFkB, which they had already uncovered in their previous bulk studies to be associated with tau expression. Also at the scRNAseq level, they find these pathways to be deregulated after expression of tau. In addition, in control cell types that are lost when tau is expressed, they find an inverse correlation of the expression of these pathways and cellular loss, suggesting they might be predictors of neurodegeneration severity. Finally, they use this finding uncovered in Drosophila and reexamined human Alzheimer's disease snRNAseq datasets, were they also find the NFkB pathway to be deregulated.

      This study has several strengths. It demonstrates the power of studying tau-effects in a tractable model and then using the obtained knowledge to pin-point relevant pathways in cross-sectional studies of human tauopathy, which are otherwise not easy to interpret given the overlayed effects of other disease triggers. By examining the single-cell level they uncover cell type specific effects, which would otherwise be hidden. This study also represents a valuable resource. Given that the authors have included multiple time points the dataset provides an opportunity to understand the evolution of cell-type specific tau effects over time. The authors have also included a replication dataset, which confirms the results of the primary analysis of neuronal loss. I also appreciate the efforts to understand the apparent increase in glia cell number after expression of tau. By combining computational and experimental methods the authors reach the well supported conclusion that in fact glial cell numbers remain constant but only appear increased due to the proportional nature of the scRNAseq data and profound loss of some neurons. Overall, it is interesting that the authors nominate the innate immunity and NFkB pathways in tauopathy, based on deregulated genes and also based on vulnerable neurons. Nevertheless, this is a correlative finding and as such does not proof that it is causal.

      The authors correctly point out the importance of aging as a risk factor for Alzheimer's disease. However, it is unclear whether their models actually capture age-dependent neurodegeneration. Alternatively, they might represent neurodevelopmental tau toxicity. In Figure 1B it can be seen that all vulnerable cell types are already lost at day 1, most notably a'/b'-KC, a/b-KC and G-KC with a >4-fold decrease. This raises the question whether the lost cells might developmentally have not correctly formed, as suggested by a study that the authors cite (Kosmidis et al., 2010). This distinction is important in order to strengthen the translational value of the study to human tauopathies.

      The analysis of tau expression levels relative to its impact across cell types in Figure S8 is interesting, however has caveats. The profound neuronal loss makes the interpretation of the correlation analysis of tau levels vs. neuronal vulnerability difficult - since it might be that the individual surviving a'/b'-KC, a/b-KC and G-KC cells are the ones that expressed little amounts of tau, while those that are missing used to express high tau. In addition, it is unclear from the methods whether the 3' UTR from the transformation vector to generate the models was included in the counting. The majority of reads would be expected to be there.

      It would be relevant to know whether the animals were in the same genetic background. I.e. is UAS-TauR406W in the same background of the fly that was crossed to elav-Gal4 to serve as the control. This is not mentioned in the paper and also not in Mangleburg et al., 2020 which the authors refer to. There is a lot of tau-induced DEGs (~1/3 of the detected genes) and it would be relevant to know whether some of them might be due to genetic background.

      The finding of the authors that NFkB pathways are higher in cell types that degenerate more is interesting. However, in Figure 4D it is also apparent that multiple cell types that do not degenerate have comparably high expression. Therefore, it is not a sufficient factor to explain why some neurons are vulnerable vs. others are not, but rather predicts amongst the vulnerable neurons how much they will be lost. It would be helpful to make this distinction clear in the text.

    3. Reviewer #3 (Public Review):

      Understanding the changes in the brain during the progression of neurodegenerative diseases may provide a critical entry point towards medical treatments. Many genes have been directly or indirectly implemented in an array of neurodegenerative diseases, including the microtubule associated protein tau (MAPT). Various studies have shown that misexpression of tau can cause behavioral, genetic as well as molecular phenotypes that display properties of human neurodegenerative diseases connected to tauopathies. Here the authors use the fruit fly as model to assess phenotypic defects at single-cell resolution. Pan-neuronal misexpression of a mutant form of tau (R406W) and single-cell RNAseq at different time points provides the basis for the investigation.

      The authors assess which cell-types are affected (by comparing it with previously described brain cell atlas identities) and find that certain cell types are missing (or less abundant) while other appear unaffected. They do this comparison in relative abundance; both neurons and glia cells are affected.

      As next step they compare this with the cell-cluster changes during aging and compare both types of analysis; the investigation here includes the analysis of differentially expressed genes in defined cell clusters. One particularly affected pathway in response to tau is the NFκB signaling pathway. The authors investigate the gene expression changes of the NFκB signaling pathway in the current dataset in more detail. In the last section the authors compare single-cell transcriptomic analyses between fly and human postmortem tissue, showing that the NFκB signaling pathway might be a conserved aspect of neurodegeneration.

      The manuscript is overall an elegant example of how single-cell RNAseq can be employed as tool to study the impact of genetic modulators of neurodegeneration (in this case tau) and that it allows direct comparison with human tissues. The results are clean, logically presented and accordingly discussed. It shows that such approaches are indeed powerful for genetic dissection of mechanisms at a descriptive level and opening doors for functional studies.

    1. Reviewer #2 (Public Review):

      On the whole, I think this paper is a nice demonstration of how current and past aversive experiences shape an animal's behavior, and how this experience is shaped/encoded by neuromodulation. While most past work has focused on passive environmental cues such as chemical, physical, and electromagnetic perturbation, this work focuses on inter-species conflict, which is an important environmental factor that is understudied and would benefit from more research. The authors have created a nice paradigm to investigate this phenomenon further with an organism (C. elegans) that can be easily genetically modified to uncover genetic factors that influence this behavior.

      The authors initially present evidence that animals avoid food patches, and egg laying on these patches, in response to predation from P. pacificus and P. uniformis. P. pacificus is quite aggressive, and the RS5194 strain kills all prey animals after 20 hours. Even prior to death, animals exposed to this species experience significant cuticle damage that can be detected by the expression of NLP-29, a known antimicrobial peptide. After 6 hours, animals have a strong aversion to laying eggs on a bacterial lawn that is shared with this species.

      However, the authors choose to not use this species, and instead use P. uniformis males which do not lay eggs, and which do not appear to damage the cuticle (or at least sufficiently to induce nlp-29 expression). Nevertheless, their presence appears to cause a slight aversion to laying eggs on food. The authors then screen for neuromodulatory mutants that may alter this behavior, and identify dopamine signaling as an important contributor to this behavior. The authors do a nice job of rescuing the mutant effect with both cell-specific rescue, and general rescue with dopamine administration.

      This work is an important contribution to our understanding of predator-induced stresses on prey, and how dopamine neuromodulation alters prey behavior.

      My primary criticism of this work is how the data are quantified and explained. Worms perform random walks on and off food, the statistics of which are modified based on environmental cues and internal states. This drive to perform stochastic trajectories is a fundamental feature of these organisms (Klein et al, eLife, 2017). In all assays, the worms lay eggs throughout the arena (diameter ~ 6 mm), with a higher probability of laying eggs on food (diameter ~ 3mm). However, the data are presented as median egg distances from the edge of the food, with each data point representing an assay median from a distribution that spans the entire length of the arena. The recorded effect sizes for different conditions are a fraction of a millimeter for distributions that span the entire arena. These effect sizes are smaller than the length of a worm. Also, after 20 hours of worms crawling on food, the edge of the lawn is more diffuse, with a variance that exceeds the effect size.

      The authors present this as evidence of an intentional avoidance of food, but a simpler hypothesis is that the statistics of the worm's random walk have been altered as a response to predation. A larger rate of diffusion would also explain why the variance of body position and egg laying increases upon predation, and would cause the (very small) shift in median distance from the edge of the food. This is also consistent with the proposed role of dopamine, which is known to promote egg-laying during roaming (Cermak et al, 2020). The authors propose that predation increases dopamine release, which in turn leads to food avoidance, but an increased rate of egg-laying during roaming would also produce this effect.

      Given the high variance and very small effect sizes observed, a simpler hypothesis of changes to random walk statistics is more parsimonious with the data, and what is already known about C. elegans random walk behavior, and how environmental cues and internal state alter the statistics of this behavior.

    2. Reviewer #1 (Public Review):

      Understanding how predators alter the behavior of their prey, a central question in neuroethology, has the potential to provide important insight into the neurobiological basis for behavioral flexibility. In this creative and intriguing work, the authors demonstrate that the predatory nematodes Pacificus pristionchus and P. uniformus can induce long-lasting changes in the behavioral patterns of C. elegans hermaphrodites. Exposure to these predators, probably sensed by the physical damaged caused by a bite, leads C. elegans to spend more time in food-poor environments and to increase their preference for laying eggs in these regions. Interestingly, this behavioral change appears to last for at least 24 hours, indicating that predator exposure induces a longer-term modulation of neural circuit function. The authors convincingly demonstrate that both dopamine and serotonin are required for this behavioral change. They identify specific neurons and receptors important for the effects of dopamine in this process, though whether dopamine signaling is itself modulated by predator exposure remains unclear. Some specific conclusions are not fully supported by the results, including the proposal that the CEM neurons are the key source of dopamine and that injury, rather than chemical cues, triggers the observed behavioral changes. Nevertheless, this paper reports a fascinating and robust behavioral finding, and provides some initial progress toward understanding its underlying neurobiological basis. As such, it will be of interest to those studying neuroethology, behavioral neurogenetics, and the modulation of behavior by monoamines.

    1. Reviewer #1 (Public Review):

      The current paper tackles a central conundrum in transporter mechanism: how substrate recognition and conformational change are coupled to achieve substrate selectivity. The focus of this manuscript is the GLUT family of sugar importers, specifically GLUT5, a fructose importer. Using information from multiple GLUT structures in different conformational states, together with enhanced molecular dynamic simulations, the authors reconstruct a free energy landscape for the outward-open to inward-open GLUT5 conformational transition in the presence and absence of fructose. The authors are thorough in their approach, considering alternative approaches (for example, including vs. excluding a distantly related GLUT transporter).

      These experiments provide insight into the energy barriers, fructose coordination in the occluded conformation, and the coupling between substrate binding, the motion of the extracellular gate, and conformational change. Uptake assays are used to test predictions about gating residues and residues predicted to bind fructose in the occluded state. Overall, this is a comprehensive study that provides broad insight into mechanistic diversity among GLUT sugar porters.

    2. Reviewer #2 (Public Review):

      In this essential study for the field, McComas et al. use a combination of MD simulations and experiments to construct a unifying transport cycle for a single GLUT protein, GLUT5. The authors demonstrate that GLUT5 likely moves through a transient, intermediate-occluded state like that observed in PfHT1. They also demonstrate that substrate-binding, the specificity of which is regulated by allosteric coupling of the substrate binding site to the extracellular gate, lowers the energetic barriers for the transition from outward- to inward-facing states. The manuscript is clearly and logically written, the data is presented clearly, and the conclusions are sound.

    3. Reviewer #3 (Public Review):

      The authors investigated the mechanism of transport of the GLUT5 sugar porter using enhanced sampling molecular dynamics simulations and biochemical analysis.<br /> The results suggest a possible general mechanism by which binding to a transported substrate stabilizes an occluded intermediate conformation between outward and inward-facing states of the alternating access conformational change of the protein, thereby enabling transport.

      The authors also identified key elements of this transition, associated with residues involved in sugar binding, and through elegant biochemical experiments demonstrated how mutations of the latter affect the protein function, including mutations of gating residues that can recover the function of inactive mutants.<br /> The general computational methodology used by authors is appropriate for addressing these questions and compared to other techniques has the advantage of bringing forth an unbiased molecular description of the transport process. The results are overall qualitatively in line with the proposed conclusions.

      A major weakness of this work is that, in contrast to previous studies with the same type of methodology, the authors do not report error analysis or careful statistical assessment of the computational results. Therefore, it is not clear whether the latter is solid or if they support the proposed conclusions. The computational data might generally benefit from an improved methodological design, such as including more degrees of freedom (or collective variables) in the description of the minimum free energy pathway, e.g. the salt-bridges.

      Another weakness is that some of the details of the computational analysis are not reported, therefore other investigators would not know how to reproduce the results.

      Once these issues are addressed, this work could potentially provide important insights into the mechanism of transport of sugar porters, which as suggested by other recent studies might also apply to other types of membrane transporters.

    1. Reviewer #1 (Public Review):

      This manuscript presents an inference technique for estimating causal dependence between pairs of neurons when the population is driven by optogenetic stimulation. The key issue is how to mitigate spurious correlations between unconnected neurons that can arise due to polysynaptic and other network-level effects during stimulation. The authors propose to leverage each neuron's refractory period (which begins at approximately random times, assuming Poisson-distributed spikes and conditional on network state) as an instrumental variable, allowing the authors to tease apart causal dependence by considering how the postsynaptic neuron fires when the presynaptic neuron must be muted (i.e., is in its refractory period). The idea is interesting and novel, and the authors show that their modified instrumental variable method outperforms similar approaches.

      However, the scope of the technique is limited. The authors' results suggest that the proposed technique may not be practical because it requires considerable amounts of data (more than 10^6 trials for just 200 neurons, resulting in stimulation of more than 5000 times per neuron). Even with such data sizes, the method does not appear to converge to the true solution in simulations. The method is also not tested on any experimental data, making it difficult to judge how well the assumptions of the technique would be met in real use-cases. While the manuscript offers a unique solution to inferring causal dependence, its applicability for experimental data has not yet been convincingly demonstrated, and would therefore primarily be of interest to those looking to build on these theoretical results for further method development.

    1. Reviewer #1 (Public Review):

      HCN channels are atypically opened by the downward movement of gating charges during hyperpolarisation and have such weak coupling between the VSD and pore domain, and in the absence of an open state structure, extracting mechanistic information has been difficult. This manuscript is a continuation of a previous study on HCN channel gating that revealed how hyperpolarisation causes a downward movement of the VSD's S4, with breakage into two helices. The authors explore gating motions and the coupling between VSD and the pore domain using atomistic simulations. This includes microsecond MD with and without very strong -1V applied potentials to try to drive VSD-TMD changes to open the channel. In the end, however, the authors used a biased simulation approach (adiabatic bias) to enforce conformational change from resting to an open homology model of HCN based on hERG/rEAG. This microsecond simulation followed three interaction distances that were suggested to change between resting and open states based on free MD. This simulation caused pore opening and allowed a description of changes that may occur during gating, including a competition of S5-S6 and S6-S6 contacts and lipid binding locations, which may suggest lipid-dependent function and explain an unexpected closed structure at 0mV in micelles. While I feel the manuscript is written for the HCN expert audience, the mechanistic information in terms of hyperpolarisation-induced voltage gating makes it of much interest. The manuscript is presented at a high level, though there are a couple of points to address, including reproducibility of simulations and potential for more relation to experimental findings.

      The authors carried out 1μs-MD simulations of the resting, activated, and a Y289D mutant at 0 mV, and then tried to drive the conformational change with a very large -1V voltage (double that studied previously). In 1 us MD, is the membrane stable with such a big voltage, as it would likely not be experimentally? Even with a volt applied, there was incomplete activation of the voltage sensors, despite timescales approaching that of activation. For the pulling/ driving simulations (adiabatic bias MD) to change suspected interaction distances (V390-I302, N300-W281, and D290-K412), it seems to be just 1 simulation, without reproducibility. One has to wonder, if the simulation was redone from a very different initial conformation, would the results be the same (in addition to the distances themselves that were enforced by the ABMD). Moreover, the authors had to model the open state, such that the results depend on a homology model based on other CNBD channels, hERG / rEAG. Although the model stayed open for a microsecond, what other measures of accuracy of the homology model are there, such as preserved distances according to mutants/double mutants?

      The authors find that activation involves hydrophobic forces that strengthen the intra-subunit S4/S5/S6 interface, as well as lipid headgroups that make contact with hydrophilic residues at this interface, with lipid tails also contributing to hydrophobic contacts. The authors see bending and rotation of the lower S4 and a displacement of S1 away from S4 that exposes the VSD-pore interface to lipids, with increased lipid contacts at S4 and S5 during activation. This indicates lipid tails may play a role in coupling in HCN1 and may explain the closed state micelle structure at 0mV. Two sites of lipid contact are identified, one engaging VSD residues and the other polar or charged residues on S5 and S6. No experiments are presented or proposed to test the predicted lipid sites. e.g. Mutation of key residues, such as the arginine and histidine seen binding lipid headgroups could be tested as proof of their involvement, or perhaps experiments with varied phosphate moieties? In the absence of new experiments, is there existing data that could help validate the findings?

      During free MD simulation, the authors see tilting of S5 caused by activation of the Y289D mutation that brings D290 and K412 positions into proximity. How do we know that the adjacent mutant of Y289 to aspartate has not caused this, or was this interaction also seen in wild-type simulation? Fig.3c might suggest the wt activated simulation may see such an interaction, but it is unclear given the large C_alpha distances, as opposed to H-bonding distances.

      The authors predict that a D290-K412 salt bridge may be important for gating and sought to experimentally validate the interaction in the activated-open state using cysteine cross-bridging. As this is the only experimental backing in the paper, it is important to be able to judge its ability to report on the D290-K4512 salt bridge. A comparison experiment demonstrating other cross-links that do not favour the open state would have been helpful in this regard e.g. if cross-bridging at similar locations (but not predicted to change interaction during gating) had little effect on I/Imax, then the result may be bolstered. Are there existing mutagenesis experiments that may suggest the importance of these residues (as well as for other key interaction distances identified)?

      Rotation of the V390 side chain from a position facing the pore lumen to a position facing I302 on S5 is coupled to an increase of the pore radius at V390, an increased hydration of the pore intracellular gate, and K+ ion movement. Perhaps 5 or 6 ions cross in that single simulation. As K channel ion permeation can depend critically on starting ion configs (as well as the model/force field), reproducibility of this finding is important but does not appear to have been tested. How can we be sure that periods of permeation or no permeation in individual simulations are reliable?

    2. Reviewer #2 (Public Review):

      The authors here study the electromechanical coupling in HCN1 channels using molecular dynamics simulations and electrophysiological data. They proposed that the interfaces between S4, S5, S6, and lipids contribute to the coupling mechanism. Their simulations showed state-dependent interactions at the S4-S5 and S5-S6 interfaces, as well as at the interface between the S4-S5 linker and the C-linker. These later interactions were also shown with Cd2+ crosslinking experiments. Furthermore, lipids were also shown to have state-dependent interactions in their simulations and were proposed to be crucial for hyperpolarization-dependent gating. Finally, they propose a domino-like mechanism of activation of HCN channels.

      This is a well-written manuscript on a hot topic. The study would attract many readers.

    3. Reviewer #3 (Public Review):

      In this work, Elbahnsi and colleagues use enhanced sampling MD simulation, to recapitulate step by step, the electromechanical coupling between VSD and the pore in HCN1 channels. Building on the available cryoEM structures of HCN1 with the VSD in resting and active state, the authors characterize by MD a subset of interactions that seemingly stabilize the open channel. This subset is, in turn, used in enhanced-sampling simulations to guide channel opening.<br /> The main findings are that S4 movement induces a rearrangement of the hydrophobic interaction at the level of S1- S4- and S5 interfaces. Occupancy of lipids seems therefore state-dependent and highlights their regulatory role in HCN gating.

      The approach is rather innovative, and it apparently allows the reconstruction of the whole mechanism of gating, pushing the predictive power of MD simulation well beyond its actual temporal limitations. At the same time, the initial choice of interactions is crucial for this approach, because the result cannot differ from the inputs. And reading the paper it does not emerge clearly how the correctness of the reconstructed gating pathway can be verified, if not by functional validation.

      Here are my comments on the main interactions that were used to feed the final MD simulation:

      1. W281-N300: this interaction, previously identified and studied in SpH channels (Ramentol et al, 2020; Wu et al, 2021), has been elegantly confirmed in this paper. Its inclusion in the initial subset seems appropriate.<br /> In the other two cases, the choice of interactions requires further explanations and experimental validation.

      2. D290 and K412: the validation of this interaction shown in Figure 3 and suppl Figure 1 is missing a control, i.e., the effect of the addition of Cd++ on the wt channel. Please add.

      3. Modelling the open state of HCN1 pore (page 18), is done on the structure of the distantly related hERG rather than on the available open pore structure of HCN4. This choice is justified as follows by the authors:

      a) "Available structures in the CNBD channel family for which representative structures have been solved in closed and open states".<br /> b) "The structural mechanism of pore gating (i.e. the ⍺ to 𝜋 helix occurring at the glycine657 hinge in hERG) observed in rEAG/hERG may be a conserved gating transition in the CNBD family of channels"<br /> I encourage the authors to consider the following:

      a) The structure of hERG channel is not available in the closed/open configuration, indeed the comparison must be done with the closed configuration of the related channel rEAG. On the contrary, HCN4 is available in the closed/open configurations. Moreover, one of the open pore structures shows S4-S5-S6 in a very similar conformation to the lock open mutant (F186C/S264C) of HCN1 (Saponaro et al, 2021). With an available HCN4 open structure, forcing HCN1 to the open pore structure of hERG channel (which opens in depolarization and is not regulated by cAMP) seems not necessary.

      To my knowledge, hERG is the only channel of the CNBD family for which the transition ⍺ to 𝜋 helix reported by the Authors, occurs in S6. It is not reported for other CNBD family members, in particular for the CNG channels mentioned by the Authors (Zheng et al., 2020; Xue et al., 2021, 2022). Task 4 (Zheng et al) does not show it. Its pore opens by a right-handed twist of S6 at glycine 399, a conserved glycine in all CNG. Human CNGA1 too, opens the pore by a rotational movement of S6 hinged at the equivalent glycine (glycine 385) (Xue et al, 2021). And the same occurs in the non-symmetrical channel CNGA1/B1 (Xue te al, 2022). So, it seems that CNG channels do not show the ⍺ to 𝜋 helix transition in the open pore. Moreover, hERG excluded, all other members of the CNBD family, CNG, EAG, and HCN4 included, do not bend at the hinge glycine 657 of hERG, but at another glycine (gly 648 in hERG numbering) located upstream. Further, their opening is due to a rotation of S6 associated with an outward movement, rather than to the lifting of the lower part of S6, as in hERG.

      4- V390-I302: this interaction is predicted to stabilize the open pore configuration and was included in the subset. The contact between V390 on S6 and I302 on S5 is observed in the homology model discussed above when the S6 is twisted at the glycine hinge, rotating the preceding residue (V390) out of its pore-lining position and is.<br /> Again, I can only disagree with this hypothesis because it has been experimentally demonstrated (Cheng et al, J Pharmacol Exp Ther. 2007 Sep;322(3):931-9) that the side chain of Valine390 is inside the cavity of the open pore of HCN1 channels as it controls the affinity for the pore blocker ZD7288.

      In conclusion, modelling the open state pore of HCN1 on hERG rather than on that of HCN4 seems not justified based on accumulated evidence in the published literature. Therefore, the choice of the authors to use it as the open pore model of HCN1 channels needs to be experimentally validated. One possibility is to mutate the glycine hinge, gly391 in HCN1, into an Alanine in order to remove the flexible hinge. If this mutation alters pore gating, it will support the choice of the Authors.

    1. Reviewer #1 (Public Review):

      The manuscript of Parab et al. reports a beautiful phenotype analysis of the vascular brain/meningeal anatomy in a variety of reporter lines and mutants for Wnt/β-catenin signaling and angiogenic cues (Vegfaa, Vegfab Vegfc, Vegfd) during zebrafish development.

      The original finding is that a region-specific code of angiogenic cues controls fenestrated vessel formation. The authors show that fenestrated vessels form independently of Wnt/β-catenin signaling and BBB vascular development but require different combinations of Vegfa and Vegfc/d-dependent angiogenesis within and across brain regions. A previously unappreciated function of autocrine and paracrine Vegfc signaling is demonstrated in this brain region-specific regulation of fenestrated capillary development.

      My only main concern is that no information is provided on the regional diversity of angiogenic receptor expression that may correlate with the regional angiogenic factor code. Without asking for a spatial transcriptomic study, the combination of Vegfr-reporter lines or in situ hybridization with a combination of receptor probes would allow for generating a comprehensive set of ligand/receptor data relative to the regional angiogenic signaling pattern involved in fenestrated vessel formation.

    2. Reviewer #2 (Public Review):

      Building on their previous studies, Parab et al used a larger collection of genetically modified zebrafish lines to map the precise expression domains of different VEGF isoforms in the brain and demonstrated that different combinations of VEGF isoforms differentially control the formation of fenestrated vessels at different locations in the 0brain.

      The authors used three Wnt signaling mutants to convincingly show wnt signaling is essential for parenchymal angiogenesis, but not required for fenestrated vessel development, such as those in choroid plexus, suggesting fenestrated vessel and barrier vessel are differentially regulated. The previous work from this group has established that VEGF isoforms are critical for myelencephalic choroid plexus development. In this study, they carefully documented the developmental vessel patterning in the diencephalic choroid plexus/pineal gland interface. They also documented the local expression pattern of VEGF isoforms with a set of BAC transgenic fish, together with the phenotype of a series of VEGF mutant fish, the data well support that different combinations of VEGF isoforms regulate fenestrated vessel development at different brain locations.

      Given a larger temporal and spatial domain, VEGFs are critical for all forms of vessel development, there are potential redundancy mechanisms to maintain hemostasis of VEGF signaling, in this study, no data is provided to address whether LOF of one form of VEGF affects the expression of other isoforms.

      This work provided detailed evidence of different isoform combinations of VEGF regulate formation/patterning of the fenestrated vessel at CP, OVLT, and NH in zebrafish. It will be interesting to follow in the mammalian system, how well these findings are conserved, for example, which isoform of VEGF is critical for vascular patterning during the developmental stages of the pineal gland? How VEGF isoforms participate in choroid plexus development at different ventricle regions and subsequence secretory function maintenance. However, these tasks are challenging without a good genetic tool to locally manipulate VEGF isoform expression during mammalian brain vessel development.

    3. Reviewer #3 (Public Review):

      Parab et al. investigate the requirement of specific Vegf ligands during the embryonic development of new blood vessels in different brain regions. The authors implement their previously published experimental paradigm (Parab et al 2021 eLife) combined with new transgenic and mutant zebrafish lines to show that vegf ligands (vegfaa, vegfab, vegfc, and vegfd) are required in various combinations to drive angiogenesis in distinct brain regions. Specifically, they show that individual loss of different vegf ligands causes either undetectable or partial effects in angiogenesis, while combined loss of vegf ligands results in severe defects in brain region-specific angiogenesis. As different blood vessel types (i.e. arteries, veins, lymphatics) require specific angiogenic cues, this study provides interesting new data on how the combination of these signals drives brain region-specific vascular development.

      While the conclusions of the paper are generally well supported by the data, the authors overstate some of their findings, particularly with respect to the development of fenestrated capillaries. In this study, the authors use the zebrafish transgenic reporter line, plvap:EGFP, as an indicator of fenestrations. However, the authors do not provide any evidence of fenestrations of the blood vessels of the choroid plexuses or the cranial vessels used for quantification (Figures 1, 3, and 4). While expression of Plvap protein is often used as a marker for non-blood brain barrier endothelial cells, as Plvap is the major component of the diaphragms of fenestrated capillaries, plvap:EGFP expression alone does not indicate fenestrations. This is an important point because previous work has demonstrated that targeted deletion of Plvap does not cause a loss of fenestrations, but instead a loss of the diaphragms associated with fenestrations (Stan et al 2012 Dev Cell; Gordon et al 2019 Development). Similarly, Plvap expression alone does not necessarily indicate fenestrations as an expression of Plvap is not sufficient for fenestration formation. In fact, Plvap has initially been expressed in brain endothelial cells during initial angiogenesis to the brain without evidence of fenestrations, and subsequently, Plvap expression disappears during the maturation of the BBB. Thus, to conclude that specific vegf ligands are required for the development of fenestrated capillaries, transmission electron microscopy (TEM) should be used on the capillaries examined in this study or the language describing the results should be modified accordingly. Conversely, the authors did show TEM for the choriocapillaris (Figure 5A-C) but did not show plvap:EGFP expression in these vessels.

      Additionally, the authors' usage of the phrase "development of fenestrated vessels" suggests that the study was examining signals that regulate the formation of fenestrations and not angiogenesis of vessels that may become fenestrated as demonstrated here. Therefore, as Plvap expression does not necessarily equate fenestrations (and vice-versa), the title and some of the major claims of the study are somewhat overstated.

    1. Reviewer #1 (Public Review):

      The manuscript by Wagstyl et al. describes an extensive analysis of gene expression in the human cerebral cortex and the association with a large variety of maps capturing many of its microscopic and macroscopic properties. The core methodological contribution is the computation of continuous maps of gene expression for >20k genes, which are being shared with the community. The manuscript is a demonstration of several ways in which these maps can be used to relate gene expression with histological features of the human cortex, cytoarchitecture, folding, function, development and disease risk. The main scientific contribution is to provide data and tools to help substantiate the idea of the genetic regulation of multi-scale aspects of the organisation of the human brain. The manuscript is dense, but clearly written and beautifully illustrated.

      # Main comments

      The starting point for the manuscript is the construction of continuous maps of gene expression for most human genes. These maps are based on the microarray data from 6 left human brain hemispheres made available by the Allen Brain Institute. By technological necessity, the microarray data is very sparse: only 1304 samples to map all the cortex after all subjects were combined (a single individual's hemisphere has ~400 samples). Sampling is also inhomogeneous due to the coronal slicing of the tissue. To obtain continuous maps on a mesh, the authors filled the gaps using nearest-neighbour interpolation followed by strong smoothing. This may have two potentially important consequences that the authors may want to discuss further: (a) the intrinsic geometry of the mesh used for smoothing will introduce structure in the expression map, and (b) strong smoothing will produce substantial, spatially heterogeneous, autocorrelations in the signal, which are known to lead to a significant increase in the false positive rate (FPR) in the spin tests they used.

      ## a. Structured smoothing

      A brain surface has intrinsic curvature (Gaussian curvature, which cannot be flattened away without tearing). The size of the neighbourhood around each surface vertex will be determined by this curvature. During surface smoothing, this will make that the weight of each vertex will be also modulated by the local curvature, i.e., by large geometric structures such as poles, fissures and folds. The article by Ciantar et al (2022, https://doi.org/10.1007/s00429-022-02536-4) provides a clear illustration of this effect: even the mapping of a volume of *pure noise* into a brain mesh will produce a pattern over the surface strikingly similar to that obtained by mapping resting state functional data or functional data related to a motor task.

      1. It may be important to make the readers aware of this possible limitation, which is in large part a consequence of the sparsity of the microarray sampling and the necessity to map that to a mesh. This may confound the assessments of reproducibility (results, p4). Reproducibility was assessed by comparing pairs of subgroups split from the total 6. But if the mesh is introducing structure into the data, and if the same mesh was used for both groups, then what's being reproduced could be a combination of signal from the expression data and signal induced by the mesh structure.<br /> 2. It's also possible that mesh-induced structure is responsible in part for the "signal boost" observed when comparing raw expression data and interpolated data (fig S1a). How do you explain the signal boost of the smooth data compared with the raw data otherwise?<br /> 3. How do you explain that despite the difference in absolute value the combined expression maps of genes with and without cortical expression look similar? (fig S1e: in both cases there's high values in the dorsal part of the central sulcus, in the occipital pole, in the temporal pole, and low values in the precuneus and close to the angular gyrus). Could this also reflect mesh-smoothing-induced structure?<br /> 4. Could you provide more information about the way in which the nearest-neighbours were identified (results p4). Were they nearest in Euclidean space? Geodesic? If geodesic, geodesic over the native brain surface? over the spherically deformed brain? (Methods cite Moresi & Mather's Stripy toolbox, which seems to be meant to be used on spheres). If the distance was geodesic over the sphere, could the distortions introduced by mapping (due to brain anatomy) influence the geometry of the expression maps?<br /> 5. Could you provide more information about the smoothing algorithm? Volumetric, geodesic over the native mesh, geodesic over the sphere, averaging of values in neighbouring vertices, cotangent-weighted laplacian smoothing, something else?<br /> 6. Could you provide more information about the method used for computing the gradient of the expression maps (p6)? The gradient and the laplacian operator are related (the laplacian is the divergence of the gradient), which could also be responsible in part for the relationships observed between expression transitions and brain geometry.

      ## b. Potentially inflated FPR for spin tests on autocorrelated data

      Spin tests are extensively used in this work and it would be useful to make the readers aware of their limitations, which may confound some of the results presented. Spin tests aim at establishing if two brain maps are similar by comparing a measure of their similarity over a spherical deformation of the brains against a distribution of similarities obtained by randomly spinning one of the spheres. It is not clear which specific variety of spin test was used, but the original spin test has well known limitations, such as the violation of the assumption of spatial stationarity of the covariance structure (not all positions of the spinning sphere are equivalent, some are contracted, some are expanded), or the treatment of the medial wall (a big hole with no data is introduced when hemispheres are isolated).

      Another important limitation results from the comparison of maps showing autocorrelation. This problem has been extensively described by Markello & Misic (2021). The strong smoothing used to make a continuous map out of just ~1300 samples introduces large, geometry dependent autocorrelations. Indeed, the expression maps presented in the manuscript look similar to those with the highest degree of autocorrelation studied by Markello & Misic (alpha=3). In this case, naive permutations should lead to a false positive rate ~46% when comparing pairs of random maps, and even most sophisticated methods have FPR>10%.

      7. There's currently several researchers working on testing spatial similarity, and the readers would benefit from being made aware of the problem of the spin test and potential solutions. There's also packages providing alternative implementations of spin tests, such as BrainSMASH and BrainSpace (Weinstein et al 2020, https://doi.org/10.1101/2020.09.10.285049), which could be mentioned.<br /> 8. Could it be possible to measure the degree of spatial autocorrelation?<br /> 9. Could you clarify which version of the spin test was used? Does the implementation come from a package or was it coded from scratch?<br /> 10. Cortex and non-cortex vertex-level gene rank predictability maps (fig S1e) are strikingly similar. Would the spin test come up statistically significant? What would be the meaning of that, if the cortical map of genes not expressed in the cortex appeared to be statistically significantly similar to that of genes expressed in the cortex?

    2. Reviewer #2 (Public Review):

      The authors convert the AHBA dataset into a dense cortical map and conduct an impressively large number of analyses demonstrating the value of having such data.

      I only have comments on the methodology. First, the authors create dense maps by simply using nearest neighbour interpolation followed by smoothing. Since one of the main points of the paper is the use of a dense map, I find it quite light in assessing the validity of this dense map. The reproducibility values they calculate by taking subsets of subjects are hugely under-powered, given that there are only 6 brains, and they don't inform on local, vertex-wise uncertainties). I wonder if the authors would consider using Gaussian process interpolation. It is really tailored to this kind of problem and can give local estimates of uncertainty in the interpolated values. For hyperparameter tuning, they could use leave-one-brain-out for that.

      I know it is a lot to ask to change the base method, as that means re-doing all the analyses. But I think it would strengthen the paper if the authors put as much effort in the dense mapping as they did in their downstream analyses of the data.

      It is nice that the authors share some code and a notebook, but I think it is rather light. It would be good if the code was better documented, and if the user could have access to the non-smoothed data, in case they was to produce their own dense maps. I was only wondering why the authors didn't share the code that reproduces the many analyses/results in the paper.

    1. Reviewer #1 (Public Review):

      This important study from Jahncke et al. demonstrates inhibitory synaptic defects and elevated seizure susceptibility in multiple models of dystroglycanopathy. A strength of the paper is the use of a wide range of genetic models to disrupt different aspects of dystroglycan protein or glycosylation in forebrain neurons. The authors use a combination of immunohistochemistry and electrophysiology to identify cellular migration, lamination, axonal targeting, synapse formation/function, and seizure phenotypes in forebrain neurons. This is an elegant study with extensive data supporting the conclusions. The role of dystroglycan and the dystrophin glycoprotein complex (DGC) in cellular migration and synapse formation are of broad interest.

      A strength of this paper is the use of several transgenic mouse lines with mutations in genes involved in glycosylation of dystroglycan. Knockout of POMT2 abolishes the majority of dystroglycan glycosylation, while point mutations in B4GAT and FKRP presumably produce more minor changes in glycosylation. This is a powerful approach to investigate the role of glycosylation in dystroglycan function. However, the authors do not address how mutations in these genes may affect glycosylation or expression of proteins other than dystroglycan. It is possible, even likely, that some of the phenotypes observed are due to changing glycosylation in any number of other proteins. The paper would be strengthened by addressing this possibility more directly.<br /> It would be helpful to have a more clear description of how dystroglycan glycosylation is altered in B4GAT1M155T or FKRPP448L mice. For example, Figure 1 makes it appear that the distal sugar moieties are missing, however, the IIH6 antibody, which binds to terminal matriglycan repeats on the glycan chain, recognizes dystroglycan in these mutants.

      In Figure 1, the authors use the IIH6 antibody, which recognizes the terminal portion of the dystroglycan glycan chain, to label dystroglycan in the hippocampus. As expected, Emx1Cre,POMT2cKO mice, which lack glycosylation of dystroglycan, do not show any labelling. However, this experiment does not reveal anything about dystroglycan expression, only that the IIH6 antibody no longer recognizes dystroglycan. It would be very helpful in interpreting the later results to know whether the level and pattern of dystroglycan expression is normal or absent in the POMT2cKO mice, perhaps using another antibody that does not target the glycosylated region. For example, figure 3 shows reduced axon targeting to the cell body layer in POMT2cKO, however, it is unclear whether this is due to absence/mislocalization of dystroglycan at the cell surface, or if dystroglycan expression is normal, but glycosylation is directly required for axon targeting.

      In Figures 3 and 5, the authors use CB1R labelling to measure axon targeting and synapses formation. However, it is not clear how the authors measure axon targeting and synapses number separately using the same CB1R antibody. In addition, figure 3 shows reduced CB1R labelling in Dag1cyto pyramidal cell layer, but Figure 5 shows no change in CB1R labelling in the same mice. These results would appear to be contradictory.

      The authors measure spontaneous IPSCs (sIPSC) in CA1 pyramidal neurons to measure inhibitory synaptic function. This measure assesses inhibitory synaptic input from all sources, but dystroglycan mutations primarily impairs synapses arising from CCK+/CB1R interneurons, leaving synapses arising from PV or other interneurons relatively unchanged. To assess changes in CCK+/CB1R interneurons the authors apply the cholinergic receptor agonist Carbachol (which selectively activates CCK+/CB1R interneurons) and measure the change in sIPSC amplitude and frequency. While this is an interesting and reasonable experiment, the observed effects could be due to altered carbachol sensitivity in the transgenic mice. Control experiments showing that the effect of Carbachol on excitability of CCK+/CB1R interneurons is similar across mouse lines is missing.

      Earlier work has shown that selective deletion of dystroglycan from pyramidal neurons produces near complete loss of CCK+/CB1R interneurons and synapse formation, a more severe deficit than observed here using a more widespread Cre-driver. This finding is surprising, as generally more wide-spread gene deletion results in more severe, not less severe, phenotypes. The authors make the reasonable claim that more wide-spread gene deletion better mimics human pathologies. However, possible speculation on why this is the case for dystroglycan could provide insight into the nature of CNS deficits in different forms of dystroglycanopathies.

    2. Reviewer #2 (Public Review):

      The manuscript by Jahncke and colleagues is centered on the CCK+ synaptic defects that are a consequence of Dystroglycanopathy and/or impaired dystroglycan-related protein function. The authors use conditional mouse models for Dag1 and Pomt2 to ablate their function in mouse forebrain neurons and demonstrate significant impairment of CCK+/CB1R+ interneuron (IN) development in addition to being prone to seizures. Mice lacking the intracellular domain of Dystroglycan have milder defects, but impaired CCK+/CB1R+ IN axon targeting. The authors conclude that the milder dystroglycanopathy is due to the partially reduced glycosylation that occurs in the milder mouse models as opposed to the more severe Pomt2 models. Additionally, the authors postulate that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy and are required for the organization of functional inhibitory synapse assembly.

      The manuscript is overall, fairly well-written and the description of the phenotypic impact of disruption of Dystroglycan forebrain neurons (and similar glycosyltransferase pathway proteins) demonstrate impairment in axon targeting and organization. There are some questions with regards to interpretation of some of the results from these conditional mouse models. The study is mostly descriptive, and some validation of subunits of the dystroglycan-glycoprotein complex and laminin interactions would go towards defining the impact of disruption of dystroglycan's function in the brain. The statistics and basic analysis of the manuscript appear to be appropriate and within parameters for a study of this nature. Some clarification between the discrepancies between the Walker Warburg Syndrome (WWS) patient phenotypes and those observed in these conditional mouse models is warranted. This manuscript has the potential to be impactful in the Dystroglycanopathy and general neurobiology fields.

    3. Reviewer #3 (Public Review):

      The study presents a systematic analysis of how a range of dystroglycan mutations alter CCK/CB1 axonal targeting and inhibition in hippocampal CA1 and impact seizure susceptibility. The study follows up on prior literature identifying a role for dystroglycan in CCK/CB1 synapse formation. The careful assay includes comparison of 5 distinct dystroglycan mutation types known to be associated with varying degrees of muscular dystrophy phenotypes: a forebrain specific Dag1 knockout in excitatory neurons at 10.5, a forebrain specific knockout of the glycosyltransferase enzyme in excitatory neurons, mice with deletion of the intracellular domain of beta-Dag1 and 2 lines with missense mutations with milder phenotypes. They show that forebrain glutamatergic deletion of Dag1 or glycosyltransferase alters cortical lamination while lamination is preserved in mice with deletion of the intracellular domain or missense mutation. The study extends prior works by identifying that forebrain deletion of Dag1 or glycosyltransferase in excitatory neurons impairs CCK/CB1 and not PV axonal targeting and CB1 basket formation around CA1 pyramidal cells. Mice with deletion of the intracellular domain or missense mutation show limited reductions in CCK/CB1 fibers in CA1. Carbachol enhancement of CA1 IPSCs was reduced both in forebrain knockouts. Interestingly, carbachol enhancement of CA1 IPSCs was reduced when the intracellular domain of beta-Dag1was deleted, but not I the missense mutations, suggesting a role of the intracellular domain in synapse maintenance. All lines except the missense mutations , showed increased susceptibility to chemically induced behavioral seizures. Together, the study, is carefully designed, well controlled and systematic. The results advance prior findings of the role for dystroglycans in CCK/CB1 innervations of PCs by demonstrating effects of more selective cellular deletions and site specific mutations in extracellular and intracellular domains. The interesting finding that deletion of intracellular domain reduces both CB1 terminals in CA1 and carbachol modulation of IPSCs warrants further analysis. Lack of EEG evaluation of seizure latency is a limitation.

      Specific comments<br /> 1. Whether CCK/CB1 cell numbers in the CA1 are differentially affected in the transgenic mice is not clarified.<br /> 2. Whether basal synaptic inhibition is altered by the changes in CCK innervation is not examined.

    1. Reviewer #1 (Public Review):

      Continuous attractor networks endowed with some sort of adaptation in the dynamics, whether that be through synaptic depression or firing rate adaptation, are fast becoming the leading candidate models to explain many aspects of hippocampal place cell dynamics, from hippocampal replay during immobility to theta sequences during run. Here, the authors show that a continuous attractor network endowed with spike frequency adaptation and subject to feedforward external inputs is able to account for several previously unaccounted aspects of theta sequences, including (1) sequences that move both forwards and backwards, (2) sequences that alternate between two arms of a T-maze, (3) speed modulation of place cell firing frequency, and (4) the persistence of phase information across hippocampal inactivations.

      I think the main result of the paper (findings (1) and (2)) are likely to be of interest to the hippocampal community, as well as to the wider community interested in mechanisms of neural sequences. In addition, the manuscript is generally well written and the analytics are impressive. However, several issues should be addressed, which I outline below.

      Major comments:

      In real data, population firing rate is strongly modulated by theta (i.e., cells collectively prefer a certain phase of theta - see review paper Buzsaki, 2002) and largely oscillates at theta frequency during run. With respect to this cyclical firing rate, theta sweeps resemble "Nike" check marks, with the sweep backwards preceding the sweep forwards within each cycle before the activity is quenched at the end of the cycle. I am concerned that (1) the summed population firing rate of the model does not oscillate at theta frequency, and (2) as the authors state, the oscillatory tracking state must begin with a forward sweep. With regards to (1), can the authors show theta phase spike preference plots for the population to see if they match data? With regards to (2), can the authors show what happens if the bump is made to sweep backwards first, as it appears to do within each cycle?

      I could not find the width of the external input mentioned anywhere in the text or in the table of parameters. The implication is that it is unclear to me whether, during the oscillatory tracking state, the external input is large compared to the size of the bump, so that the bump lives within a window circumscribed by the external input and so bounces off the interior walls of the input during the oscillatory tracking phase, or whether the bump is continuously pulled back and forth by the external input, in which case it could be comparable to the size of the bump. My guess based on Fig 2c is that it is the latter. Please clarify and comment.

      I would argue that the "constant cycling" of theta sweeps down the arms of a T-maze was roughly predicted by Romani & Tsodyks, 2015, Figure 7. While their cycling spans several theta cycles, it nonetheless alternates by a similar mechanism, in that adaptation (in this case synaptic depression) prevents the subsequent sweep of activity from taking the same arm as the previous sweep. I believe the authors should cite this model in this context and consider the fact that both synaptic depression and spike frequency adaptation are both possible mechanisms for this phenomenon. But I certainly give the authors credit for showing how this constant cycling can occur across individual theta cycles.

      The authors make an unsubstantiated claim in the paragraph beginning with line 413 that the Tsodyks and Romani (2015) model could not account for forwards and backwards sweeps. Both the firing rate adaptation and synaptic depression are symmetry breaking models that should in theory be able to push sweeps of activity in both directions, so it is far from obvious to me that both forward and backward sweeps are not possible in the Tsodyks and Romani model. The authors should either prove that this is the case (with theory or simulation) or excise this statement from the manuscript.

      The section on the speed dependence of theta (starting with line 327) was very hard to understand. Can the authors show a more graphical explanation of the phenomenon? Perhaps a version of Fig 2f for slow and fast speeds, and point out that cells in the latter case fire with higher frequency than in the former?

      I had a hard time understanding how the Zugaro et al., (2005) hippocampal inactivation experiment was accounted for by the model. My intuition is that while the bump position is determined partially by the location of the external input, it is also determined by the immediate history of the bump dynamics as computed via the local dynamics within the hippocampus (recurrent dynamics and spike rate adaptation). So that if the hippocampus is inactivated for an arbitrary length of time, there is nothing to keep track of where the bump should be when the activity comes back on line. Can the authors please explain more how the model accounts for this?

      Can the authors comment on why the sweep lengths oscillate in the bottom panel of Fig 5b during starting at time 0.5 seconds before crossing the choice point of the T-maze? Is this oscillation in sweep length another prediction of the model? If so, it should definitely be remarked upon and included in the discussion section.

      Perhaps I missed this, but I'm curious whether the authors have considered what factors might modulate the adaptation strength. In particular, might rat speed modulate adaptation strength? If so, would have interesting predictions for theta sequences at low vs high speeds.

      I think the paper has a number of predictions that would be especially interesting to experimentalists but are sort of scattered throughout the manuscript. It would be beneficial to have them listed more prominently in a separate section in the discussion. This should include (1) a prediction that the bump height in the forward direction should be higher than in the backward direction, (2) predictions about bimodal and unimodal cells starting with line 366, (3) prediction of another possible kind of theta cycling, this time in the form of sweep length (see comment above), etc.

    2. Reviewer #2 (Public Review):

      In this work, the authors elaborate on an analytically tractable, continuous-attractor model to study an idealized neural network with realistic spiking phase precession/procession. The key ingredient of this analysis is the inclusion of a mechanism for slow firing-rate adaptation in addition to the otherwise fast continuous-attractor dynamics. The latter which continuous-attractor dynamics classically arises from a combination of translation invariance and nonlinear rate normalization.

      For strong adaptation/weak external input, the network naturally exhibits an internally generated, travelling-wave dynamics along the attractor with some characteristic speed. For small adaptation/strong external stimulus, the network recovers the classical externally driven continuous-attractor dynamics. Crucially, when both adaptation and external input are moderate, there is a competition with the internally generated and externally generated mechanism leading to oscillatory tracking regime. In this tracking regime, the population firing profile oscillates around the neural field tracking the position of the stimulus. The authors demonstrate by a combination of analytical and computational arguments that oscillatory tracking corresponds to realistic phase precession/procession. In particular the authors can account for the emergence of a unimodal and bimodal cells, as well as some other experimental observations with respect the dependence of phase precession/procession on the animal's locomotion.

      The strengths of this work are at least three-fold: 1) Given its simplicity, the proposed model has a surprisingly large explanatory power of the various experimental observations. 2) The mechanism responsible for the emergence of precession/procession can be understood as a simple yet rather illuminating competition between internally driven and externally driven dynamical trends. 3) Amazingly, and under some adequate simplifying assumptions, a great deal of analysis can be treated exactly, which allows for a detailed understanding of all parametric dependencies. This exact treatment culminates with a full characterization of the phase space of the network dynamics, as well as the computation of various quantities of interest, including characteristic speeds and oscillating frequencies.

      As mentioned by the authors themselves, the main limitation of this work is that it deals with a very idealized model and it remains to see how the proposed dynamical behaviors would persist in more realistic models. For example, the model is based on a continuous attractor model that assumes perfect translation-invariance of the network connectivity pattern. Would the oscillating tracking behavior persist in the presence of connection heterogeneities? Can the oscillating tracking behavior be observed in purely spiking models as opposed to rate models as considered in this work? Another important limitation is that the system needs to be tuned to exhibit oscillation within the theta range and that this tuning involves a priori variable parameters such as the external input strength. Is the oscillating-tracking behavior overtly sensitive to input strength variations? The author mentioned that an external pacemaker can serve to drive oscillation within the desired theta band but there is no evidence presented supporting this. A final and perhaps secondary limitation has to do with the choice of parameter, namely the time constant of neural firing which is chosen around 3ms. This seems rather short given that the fast time scale of rate models (excluding synaptic processes) is usually given by the membrane time constant, which is typically about 15ms. I suspect this latter point can easily be addressed.

      Despite these limitations, it is my opinion that the authors convincingly achieved their aims in this work.

    3. Reviewer #3 (Public Review):

      With a soft-spoken, matter-of-fact attitude and almost unwittingly, this brilliant study chisels away one of the pillars of hippocampal neuroscience: the special role(s) ascribed to theta oscillations. These oscillations are salient during specific behaviors in rodents but are often taken to be part of the intimate endowment of the hippocampus across all mammalian species, and to be a fundamental ingredient of its computations. The gradual anticipation or precession of the spikes of a cell as it traverses its place field, relative to the theta phase, is seen as enabling the prediction of the future - the short-term future position of the animal at least, possibly the future in a wider cognitive sense as well, in particular with humans. The present study shows that, under suitable conditions, place cell population activity "sweeps" to encode future positions, and sometimes past ones as well, even in the absence of theta, as a result of the interplay between firing rate adaptation and precise place coding in the afferent inputs, which tracks the real position of the animal. The core strength of the paper is the clarity afforded by the simple, elegant model. It allows the derivation (in a certain limit) of an analytical formula for the frequency of the sweeps, as a function of the various model parameters, such as the time constants for neuronal integration and for firing rate adaptation. The sweep frequency turns out to be inversely proportional to their geometric average. The authors note that, if theta oscillations are added to the model, they can entrain the sweeps, which thus may superficially appear to have been generated by the oscillations.

      The main weakness of the study is the other side of the simplicity coin. In its simple and neat formulation, the model envisages stereotyped single unit behavior regulated by a few parameters, like the two time constants above, or the "adaptation strength", the "width of the field" or the "input strength", which are all assumed to be constant across cells. In reality, not only assigning homogeneous values to those parameters seems implausible, but also describing e.g. adaptation with the simple equation included in the model may be an oversimplification. Therefore, it remains important to understand to what extent the mechanism envisaged in the model is robust to variability in the parameters or to eg less carefully tuned afferent inputs.

      The weak adaptation regime, when firing rate adaptation effectively moves the position encoded by population activity slightly ahead of the animal, is not novel - I discussed it, among others, in trying to understand the significance of the CA3-CA1 differentiation (2004). What is novel here, as far as I know, is the strong adaptation regime, when the adaptation strength m is at least larger than the ratio of time constants. Then population activity literally runs away, ahead of the animal, and oscillations set in, independent of any oscillatory inputs. Can this really occur in physiological conditions? A careful comparison with available experimental measures would greatly strengthen the significance of this study.

    1. Reviewer #2 (Public Review):

      It is increasingly recognized that the cerebellum is involved in a wide range of cognitive and behavioral processes beyond motor coordination and motor learning. This work contributes to the recent body of work showing functional connections between the cerebellum and many other brain regions. This study uses a combination of in vivo electrophysiology, viral tracing, and optogenetics to identify pathways from the deep cerebellar nuclei (DCN) to the nucleus accumbens (NA) core and medial shell running through "nodes" in the ventral tegmental area (VTA) and centromedial and parfascicular nuclei of the thalamus. The significance of this work is in providing function data and anatomical pathways that may underlie the role of the cerebellum in reward behavior.

      This work makes two significant contributions to the field. First, the authors show that electrical stimulation in the DCN (the output of the cerebellar circuit) elicits (primarily excitatory) responses in neurons of the NA core and medial shell. Previous studies have shown that stimulation in the cerebellum increases dopamine in the NA, but this study is the first to use in vivo electrophysiology to measure changes in neuronal firing rates. Responses in NA neurons are primarily excitatory, with a small number of neurons showing inhibitory or mixed excitatory/inhibitory responses. The data here are clear and support the conclusions. The only caveat, acknowledged by the authors, is the use of ketamine/xylazine to anesthetize the mice may alter the firing properties of NA neurons and the balance of excitation and inhibition in neuronal responses. The specific mechanisms (neurotransmitters, synapses, or circuits) resulting in excitation or inhibition of NA neurons are not investigated here, though this may be an interesting avenue of future work.

      The second significant contribution of this work is identifying anatomical pathways that connect DCN to the NA. The identification of these pathways is well supported by the viral injection data. The data using cre-expressing AAV in the DCN and floxed td-tomato AAV in the VTA or thalamus is particularly convincing. However, the inclusion of additional controls would strengthen the conclusions (see below).

      In general, the conclusions are well-supported by the data. However, in a few places inadequate controls or description of the experiments weakens the conclusions.

      1. In Figure 4, the authors injected a retrograde tracer in the NA and an anterograde tracer in DCN to find potential "nodes" of overlap. From this experiment, the authors identify the VTA and regions of the thalamus as potential areas of tracer overlap, but it is unclear how many other brain regions were examined. Did the authors jump straight to likely locations of overlap based on previous findings, or were large swaths of the brain examined systematically? If other brain regions were examined, which regions and how was this done? A table listing which brain regions were examined and the presence/intensity of ctb-Alexa568 and GFP fluorescence would be helpful.<br /> 2. In Figure 5, the authors inject AAV1-Cre in DCN and AAV-FLEX-tdTomato in VTA or thalamus. This is an interesting experiment, but controls are missing. An important control is to inject AAV-FLEX-tdTomato in the VTA or thalamus in the absence of AAV1-Cre injection in DCN. Cre-independent expression of tdTomato should be assessed in the VTA/thalamus and the NA.

    2. Reviewer #3 (Public Review):

      In this manuscript, D'Ambra and colleagues report the effects of stimulating the deep cerebellar nuclei (DCN) on neurons in the core and the medial shell of the nucleus accumbens (NAc). Electrical stimulation results in both excitation and inhibition, with excitation preceding the inhibition. In general, neurons that underwent excitation had lower baseline activity than neurons that underwent inhibition. They observed no relationship between the location of the stimulation site within the DCN, and the type of response observed in the NAc. In order to identify disynaptic connections between the two areas, the authors combined the injection of a retrograde tracer in the NAc with an anterograde tracer in the DCN. These experiments led them to describe co-localization of the anterograde and retrograde signals within two regions, the intralaminar thalamus (IL), and the ventral tegmental area (VTA). In order to confirm these results, they then used an anterograde transsynaptic viral tracing strategy to mark neurons in the IL and the VTA that project to the NAc. In addition, by injecting an excitatory opsin into the DCN, and stimulating these axons within the VTA and the IL, the authors were able to demonstrate increased activity in the NAc and describe the latency of these responses. Thus, using a series of rigorous and complementary experiments, the authors provide evidence for a disynaptic connection between the DCN and the NAc, via the VTA and the IL.

      Novelty and relationship to previous studies: The presence of a disynaptic connection between the DCN and the NAc has previously been shown, as has the projection from the DCN to the parafascicular nucleus of the intralaminar thalamus (Fujita et al. 2020); however, the intermediary nodes of the disynaptic connection between the DCN and NAc have not previously been mapped. Some other pieces of these results have also been shown previously: DCN to VTA: Watabe-Uchida et al. 2012, DCN-VTA-NAc Beier et al. 2015, Xiao and Schieffele 2018) Interestingly, the Beier et al. paper suggests that the connection from DCN-VTA-NAc is an extremely small proportion of the total inputs to the NAc. In contrast to the Fujita et al. paper, here the authors also stimulate or trace projections from the two other deep cerebellar nuclei, the lateral and the interposed (this is relevant for a comment below). In addition, previous studies have shown a projection from the DCN to the IL and, separately, from the IL to the NAc. Thus, the existence of the pathways described here is in line with previous work. Moreover, this study expands on previous ones through its electrophysiological measurement and description of neural responses to stimulation of DCN and DCN projections.

      Strengths: The strengths of this paper include the authors' use of multiple techniques to confirm the presence of the connections that they describe. Any one of the experiments using electrical stimulation, combining anterograde and retrograde tracing, transsynaptic tracing, or optical stimulation of DCN axons in the IL and VTA has its own caveats. However, the combination of these techniques nullifies many of these caveats.

      Weaknesses: While this is an interesting and exciting paper, there are a few weaknesses, listed below:

      - The novelty of this paper lies in the mapping of projections from the interposed and the lateral nuclei of the cerebellum, as the authors themselves mention. However, in some of the experiments the medial nucleus is also clearly injected (Fig. 4B and 6B). In those experiments, it is impossible to distinguish which nucleus these projections come from, and they could be the ones from the medial nucleus that were previously described (see above).<br /> - A strength of the paper is the use of both electrical and optogenetic stimulation. However, the responses to the two in the NAc are very different - electrical stimulation results in both excitation and inhibition, whereas opto stimulation mostly results in only excitation.<br /> - The stimulation frequency at which the electrical stimulation in Fig 1 is done to identify responses in the NAc is 200 Hz for 25 ms. Is this physiological? In addition, responses in the NAc are measured for 500 ms after, which is a very long response time.<br /> - Previous studies have described how different cell types within the DCN have different downstream projections (Fujita et al. 2020). However, the experiments here bundle together all this known heterogeneity.<br /> - Previous studies have also highlighted the importance of different cell types within the NAc and how input streams are differentially targeted to them. Here, that heterogeneity is also obscured.<br /> - In Fig. 4C, E and F, the experiments on overlap between anterograde and retrograde tracers are not particularly convincing - it's hard to see the overlap.

    1. Reviewer #1 (Public Review):

      In the manuscript entitled "A theory of hippocampal theta correlations", the authors propose a new mechanism for phase precession and theta-time scale generation, as well as their interpretation in terms of navigation and neural coding. The authors propose the existence of extrinsic and intrinsic sequences during exploration, which may have complementary functions. These two types of sequences depend on external input and network interactions, but differ on the extent to which they depend on movement direction. Moreover, the authors propose a novel interpretation for intrinsic sequences, namely to signal a landmark cue that is independent of direction of traversal. Finally, a readout neuron can be trained to distinguish extrinsic from intrinsic sequences.

      The manuscript has the potential to contribute to the way we interpret hippocampal temporal coding for navigation and memory. In its current form, however, there are some issues that affect the readability and intelligibility of the manuscript, that the authors may address in a revised version:

      - The findings generally relate to network models of phase precession (reviewed in e.g., Maurer and McNaughton, 2007, Jaramillo and Kempter, 2017). An important drawback of these models with respect to explaining specific experimentally observed features of phase precession, is that they cannot straightforwardly explain phase precession upon first exposure onto a novel track. This is because, specific connectivity in network models may require experience-dependent plasticity, which would not be possible upon first exposure. This is essential, given that the manuscript addresses the possible origin of phase precession in terms of network models and at minimum, this weakness should be discussed.

      - An important and perhaps essential component of the manuscript, is the distinction between extrinsic and intrinsic models. However, the main concepts on which this hinges, namely extrinsic and intrinsic sequences (and the related extrinsicity and intrinsicity) could be better explained and illustrated. Along these lines, the result suggested by the title, namely, hippocampal theta correlations, may be important yet incidental in light of the new concepts (e.g., extrinsicity, intrinsicity) and computational models (e.g., DG-CA3 recurrent loop) that are put forward.

      - The study seems to put forward novel computational ideas related to neural coding. However, assessing novelty is challenging as this manuscript builds on previous work from the authors, including published (Leibold, 2020, Yiu et al., 2022) and unpublished (Ahmedi et al., 2022. bioRxiv) work. For example, the interpretation of intrinsic sequences in terms of landmarks had been introduced in Leibold, 2020.

      - The significance of the readout tempotron neuron could be expanded on. In particular, there is room for interpretation of the output signal of that neuron (e.g., what is the significance of other neurons downstream? Why is the rationale for this output to being theta-modulated?)

    2. Reviewer #2 (Public Review):

      Place cells fire sequentially during hippocampal theta oscillations, forming a spatial representation of behavioral experiences in a temporally-compressed manner. The firing sequences during theta cycles are widely considered as essential assemblies for learning, memory, and planning. Many theoretical studies have investigated the mechanism of hippocampal theta firing sequences; however, they are either entirely extrinsic or intrinsic. In other words, they attribute the theta sequences to external sensorimotor drives or focus exclusively on the inherent firing patterns facilitated by the recurrent network architectures. Both types of theories are inadequate for explaining the complexity of the phenomena, particularly considering the observations in a previous paper by the authors: theta sequences independent of animal movement trajectories may occur simultaneously with sensorimotor inputs (Yiu et al., 2022).

      In this manuscript, the authors concentrate on the CA3 area of the hippocampus and develop a model that accounts for both mechanisms. Specifically, the model generates extrinsic sequences through the short-term facilitation of CA3 cell activities, and intrinsic sequences via recurrent projections from the dentate gyrus. The model demonstrates how the phase precession of place cells in theta sequences is modulated by running direction and the recurrent DG-CA3 network architecture. To evaluate the extent to which firing sequences are induced by sensorimotor inputs and recurrent network architecture, the authors use the Pearson correlation coefficient to measure the "intrinsicity" and "extrinsicity" of spike pairs in their simulations.

      I find this research topic to be both important and interesting, and I appreciate the clarity of the paper. The idea of combining intrinsic and extrinsic mechanisms for theta sequences is novel, and the model effectively incorporates two crucial phenomena: phase precession and directionality of theta sequences. I particularly commend the authors' efforts to integrate previous theories into their model and conduct a systematic comparison. This is exactly what our community needs: not only the development of new models, but also understanding the critical relationships between different models.

    1. Reviewer #1 (Public Review):

      In this study the authors develop methods to interrogate cultured neuronal networks to learn about the contributions of multiple simultaneously active input neurons to postsynaptic activity. They then use these methods to ask how excitatory and inhibitory inputs combine to result in postsynaptic neuronal firing in a network context.

      The study uses a compelling combination of high-density multi-electrode array recordings with patch recordings. They make ingenious use of physiology tricks such as shifting the reversal potential of inhibitory inputs, and identifying inhibitory vs. excitatory neurons through their influence on other neurons, to tease apart the key parameters of synaptic connections. The method doesn't have complete coverage of all neurons in the culture, and it appears to work on rather low-density cultures so the size of the networks in the current study is in the low tens.

      1. It would be valuable to see the caveats associated with the small size of the networks examined here.<br /> 2. It would be also helpful if there were a section to discuss how this approach might scale up, and how better network coverage might be achieved.

      The authors obtain a number of findings on the conditions in which the dynamics of excitatory and inhibitory inputs permit spiking, and the statistics of connectivity that result in this. This is of considerable interest, and clearly one would like to see how these findings map to larger networks, to non-cortical networks, and ideally to networks in-vivo. The suite of approaches discussed here could potentially serve as a basis for such further development.

      3. It would be useful for the authors to suggest such approaches.<br /> 4. The authors report a range of synaptic conductance waveforms in time. Not surprisingly, E and I look broadly different. Could the authors comment on the implications of differences in time-course of conductance profiles even within E (or I) synapses? Is this functional or is it an outcome of analysis uncertainty?

      One of the challenges in doing such studies in a dish is that the network is simply ticking away without any neural or sensory context to work on, nor any clear idea of what its outputs might mean. Nevertheless, at a single-neuron level one expects that this system might provide a reasonable subset of the kinds of activity an individual cell might have to work on.

      5. Could the authors comment on what subsets of network activity is, and is not, likely to be seen in the culture?<br /> 6. Could they indicate what this would mean for the conclusions about E-I summation, if the in-vivo activity follows different dynamics?

    2. Reviewer #2 (Public Review):

      The authors had two aims in this study. First, to develop a tool that lets them quantify the synaptic strength and sign of upstream neurons in a large network of cultured neurons. Second, they aimed at disentangling the contributions of excitatory and inhibitory inputs to spike generation.

      For the quantification of synaptic currents, their methods allows them to quantify excitatory and inhibitory currents simultaneously, as the sign of the current is determined by the neuron identity in the high-density extracellular recording. They further made sure that their method works for nonstationary firing rates, and they did a simulation to characterize what kind of connections their analysis does not capture. They did not include the possibility of (dendritic) nonlinearities or gap junctions or any kind of homeostatic processes. I see a clear weakness in the way that they quantify their goodness of fit, as they only report the explained variance, while their data are quite nonstationary. It could help to partition the explained variance into frequency bands, to at least separate the effects of a bias in baseline, the (around 100 Hz) band of synaptic frequencies and whatever high-frequency observation noise there may be. Another weak point is their explanation of unexplained variance by potential activation of extrasynaptic receptors without providing evidence. Given that these cultures are not a tissue and diffusion should be really high, this idea could easily be tested by adding a tiny amount of glutamate to the culture media.

      For the contributions of excitation and inhibition to neuronal spiking, the authors found a clear reduction of inhibitory inputs and increase of excitation associated with spiking when averaging across many spikes. And interestingly, the inhibition shows a reversal right after a spike and the timescale is faster during higher network activity. While these findings are great and provide further support that their method is working, they stop at this exciting point where I would really have liked to see more detail. A concern, of course is that the network bursts in cultures are quite stereotypical, and that might cause averages across many bursts to show strange behaviour. So what I am missing here is a reference or baseline or null hypothesis. How does it look when using inputs from neurons that are not connected? And then, it looks like the E/(E+I) curve has lots of peaks of similar amplitude (that could be quantified...), so why does the neuron spike where it does? If I would compare to the peak (of similar amplitude) right before or right after (as a reference) are there some systematic changes? Is maybe the inhibition merely defining some general scaffold where spikes can happen and the excitation causes the spike as spiking is more irregular?<br /> The averaged trace reveals a different timescale for high and low activity states. But does that reflect a superposition of EPSCs in a single trial or rather a different jittering of a single EPSC across trials? For answering this question, it would be good to know the variance (and whether/ how much it changes over time). Maybe not all spikes are preceded by a decrease in inhibition. Could you quantitify (correlate, scatterplot?) how exactly excitation and inhibition contributions relate for single postsynaptic spikes (or single postsynaptic non-spikes)? After all, this would be the kind of detail that requires the large amount of data that this study provides.

      For the first part, the authors achieved their goal in developing a tool to study synaptic inputs driving subthreshold activity at the soma, and characterizing such connections. For the second part, they found an effect of EPSCs on firing, but they barely did any quantification of its relevance due to the lack of a reference.

      With the availability of Neuropixels probes, there is certainly use for their tool in in vivo applications, and their statistical analysis provides a reference for future studies.<br /> The relevance of excitatory and inhibitory currents on spiking remains to be seen in an updated version of the manuscript.

      I feel that specifically Figures 6 and 7 lack relevant detail and a consistent representation that would allow the reader to establish links between the different panels. The analysis shows very detailed examples, but then jumps into analyses that show population averages over averaged responses, losing or ignoring the variability across trials. In addition, while their results themselves pass a statistical test, it is crucial to establish some measure of how relevant these results are. For that, I would really want to know how much spiking would actually be restricted by the constraints that would be posed by these results, i.e. would this be reflected in tiny changes in spiking probabilities, or are there times when spiking probabilities are necessarily high, or do we see times when we would almost certainly get a spike, but neurons can fire during other times as well.<br /> I would agree that a detailed, quantitative analysis of this question is beyond the scope of this paper, but a qualitative analysis is feasible and should be done. In the following, I am detailing what I would consider necessary to be done about these two Figures:

      Figure 6C is indeed great, though I don't see why the authors would characterize synchrony as low. When comparing with Figure 4B, I'd think that some of these values are quite high. And it wouldn't help me to imagine error bars in panel 6D.<br /> Figure 6B is useful, but could be done better: The autocovariance of a shotnoise process is a convolution of the autocovariance of underlying point process and the autocovariance of the EPSC kernel. So one would want to separate those to obtain a better temporal resolution. But a shotnoise process has well defined peaks, and the time of these local maxima can be estimated quite precisely. Now if I would do a peak triggered average instead of the full convolution, I would do half of the deconvolution and obtain a temporally asymmetric curve of what is expected to happen around an EPSC. Importantly, one could directly see expected excitation after inhibition or expected inhibition after excitation, and this visualization could be much better and more intuitively compared to panel 6E.<br /> Panel D needs some variability estimate (i.e. standard deviation or interquartile range or even a probability density) for those traces.<br /> Figure 6E: Please use more visible colors. A sensitivity analysis to see traces for 2E/(2E+I) and E/(E+2I) would be great.<br /> Figure 6F: with an updated panel B, we should be able to have a slope for average inhibition after excitation for each of these cells. A second panel / third column showing those slopes would be of interest. It would serve as a reference for what could be expected from E-I interactions alone.<br /> Figure 6G: Could the authors provide an interquartile range here?

      Figure 7A: it may be hard to squeeze in variability estimates here, but the information on whether and how much variance might be explained is essential. Maybe add another panel to provide a variability estimate? The variability estimate in panel 7B and 7D only reflect variability across connections, and it would be useful to add panels for the timecourses of the variability of g (or E/(E+I) respectively).

      As a suggestion for further analysis, though I am well aware that this is likely beyond the scope of this manuscript, I'd suggest the following analysis:<br /> I would split the data into the high and low activity states. Then I would compute the average of E/(E+I) values for spikes. Assuming that spikes tend to happen for local maxima of E/(E+I) I would find local maxima for periods without spike such that their average is equal to the value for actual spikes. Finally, I would test for a systematic difference in either excitation or inhibition.<br /> If there is no difference, you can make the claim that synaptic input does not guarantee a spike, and compare to a global average of E/(E+I).

    1. Reviewer #1 (Public Review):

      Using the colon transcriptomes of 52 BXD mouse strains fed either chow or a high-fat diet (HFD), Li et al. present their findings on gene-by-environment interactions underpinning inflammation and inflammatory bowel disease (IBD). They discovered modules that are enriched for IBD-dysregulated genes using co-expression gene networks. They determined Muc4 and Epha6 to be the leading candidates causing variations in HFD-driven intestinal inflammation by using systems genetics in the mouse and integration with external human datasets. In their analysis, they concluded that their strategy "enabled the prioritization of modulators of IBD susceptibility that were generalizable to the human situation and may have clinical value." This dataset is intriguing and generates hypotheses that will be investigated in the future. However, there were no mechanistic or causation-focused investigations; the results were primarily observational and correlative.

    2. Reviewer #2 (Public Review):

      In this paper, the authors seek to identify genes that contribute to gut inflammation by capitalizing on deep phenotyping data in a mouse genetic reference population fed a high-fat or chow diet and then integrating it with human genetic data on gut inflammatory diseases, such as inflammatory bowel disease (IBD) and Ulcerative Colitis (UC). To achieve this the authors performed genome-wide gene expression in the colon of 52 BXD strains of mice fed either a high-fat or chow diet. From this analysis, they observed significant variation in gene expression related to inflammation among the 52 BXD strains and differential gene expression of inflammatory genes fed a high-fat diet. Overlaying this data with existing mouse and human data of inflammatory gut disease identified a significant enrichment. Using the 52 BXD strains the authors were able to identify specific subsets of strains that were susceptible and resistant to gut inflammation and analysis of gene expression within the colon of these strains was enriched with mouse and human IBD. Furthermore, analysis of cytokine levels of IL-10 and IL-15 were analyzed and found to be increased in resistant BXD strains and increased in susceptible BXD strains.

      Using the colon genome-wide gene expression data from the 52 BXD strains, the authors performed gene co-expression analysis and were able to find distinct modules (clusters) of genes that correlated with mouse UC and human IBD datasets. Using the two modules, termed HFD_M28 and HFD_M9 that correlated with mouse UC and human IBD, the authors performed biological interrogation along with transcription factor binding motif analysis to identify possible transcriptional regulators of the module. Next, they performed module QTL analysis to identify potential genetic regulators of the two modules and identified a genome-wide significant QTL for the HFD_M28 on mouse chromosome 16. This QTL contained 552 protein-coding genes and through a deduction method, 27 genes were prioritized. These 27 genes were then integrated with human genetic data on IBD and two candidate genes, EPHA6 and MUC4 were prioritized.

      Overall, this paper provides a framework and elegant use of data from a mouse genetic reference population coupled with human data to identify two strong candidate genes that contribute to human IBD and UC diseases. In the future, it will be interesting to perform targeted studies with EPHA6 and MUC4 and understand their role in gut inflammatory diseases.

    1. Reviewer #1 (Public Review):

      The goal of this study was to examine the nature of the relationship between a number of close friends and mental health, cognition and brain structure. In particular, the authors were interested in any potential non-linear relationships between a number of close friends and various measures (neurocognition, brain structure).

      Strengths<br /> The sample sizes are very large (total size > 23,000) across two datasets.<br /> There are a wide range of measures in the ABCD dataset -- mental health, cognition and brain data.<br /> There were two independent datasets and the results were broadly similar across datasets.<br /> The longitudinal aspect (2-year follow up) to the data is also a strength, as is the use of cross-lagged panel models.<br /> The use of the two-lines test -- formally testing a non-linear relationship among variables -- is a notable strength (many studies only test using a quadratic equation, which does not necessarily mean that any relationship is significantly non-linear).

      Weaknesses<br /> The study is associational and causal relations cannot be determined (the authors' themselves are clear on this point).<br /> The measures in the two datasets were not identical, precluding a direct out-of-sample validation test.<br /> The depth of the information about friend relationships in the ABCD study was limited. The number of close friends was recorded, but not the quality of those relationships.

      To the extent that the authors were attempting to show relations among variables - and not causal associations - the authors have achieved their aims. An impact of these results lies in the link between 'Dunbar's number' of *close* relationships and neurocognitive measures, supporting the link between social relationships and brain and cognition in humans. The brain data in ABCD were very rich and notably allowed the authors to investigate neurotransmitter density. This is not a weakness of the study per se but it is notable that the effect sizes are quite small (although highly significant given the large sample sizes).

    2. Reviewer #2 (Public Review):

      This is a novel and interesting study in which the authors aimed to gain a better understanding of whether there is an optimum number of close friends to gain good mental well-being/functioning and its underlying neural mechanisms. They thoroughly examined how the number of close friendships contributes to mental health, cognition, (social) brain structure, and neural molecular processes in adolescents. They conducted multiple analyses on two large datasets to answer their research question(s) and support the results with visually attractive figures. I believe this paper is of added value to the literature as the evidence presently robustly points to the optimum number of 5 close friends in relation to mental health and cognition and related neurobiological mechanisms. This greatly advances the knowledge in the field of social and neurocognitive psychology.

      The authors use a variety of measures to assess mental health, cognition, and neural mechanisms, which is a strength of the study. However, the theoretical background of these constructs should be elaborated on or unpacked to a greater extent in the introduction. Relatedly, the discussion could benefit from clearer main messages conveyed by individual paragraphs. It is currently hard to follow how the authors interpret their results in the context of existing literature.

    1. Reviewer #2 (Public Review):

      Transporters cycle between several conformational states; however, developing a unifying cycle for a single transporter is often difficult, as different homologs are often used to experimentally determine the structures of different conformations. The manuscript of Mitrovic et al. is a clever and inspiring combination of computational methods to reconstruct the transport cycle and free-energy landscape of a single sugar transporter. Using co-evolution and machine learning, the authors extracted state-specific residue contacts, many of which were previously unobserved, and potentially describe subtle yet important structural features. Using these contacts, they bias AlphaFold2 structure determination and MD simulations to accurately predict any conformation. These structures combined with enhanced sampling methods facilitate the inference of free-energy landscapes of the transport cycle. Notably, this work continues to push the limits of using and interpreting AlphaFold2 past static snapshots of highly dynamic proteins. This combination of techniques represents the forefront of structural biology, clearly demonstrating how static protein structures can be leveraged using bioinformatic and computational techniques to understand the biophysical mechanisms of proteins. Though the methodology is technically and theoretically exciting, it is as of yet unclear if this represents a substantial enough improvement over existing techniques for wider adoption. Nevertheless, this work represents an innovative combination of existing approaches to create a cohesive framework of the sugar transport cycle, and the authors provide detailed methods and supplementary information to recreate these approaches in other transporter families.

    2. Reviewer #3 (Public Review):

      This work proposes a novel computational methodology that, using available structures of homologous proteins in different structural states, evolutionary couplings and machine-learning protocols, allows to predict structural states of a membrane transporter during the transport cycle. The core of the methodology is to use convolutional neural networks to distinguish state specific evolutionary contacts and drive alphafold2 models into a specific state based on the predicted contacts (using rosettaMP and short MD relaxation). The authors then derived the free energy landscape of the alternating access transition of GLUT5 (in absence of substrate) from enhanced sampling simulations biased along variables based on the previously mentioned contacts. The variables are constructed using a machine learning approach that allows distinguishing different structural states.

      The advantage of this approach is that it uses a combination of advanced modeling and innovative computational techniques that might help the structural characterization of the alternating access cycle of membrane transporters. An important innovation is the use of machine learning methods that, based on previous structural information, allow to construct collective variables for free energy calculations in an objective, data-driven manner.

      The results of the modellng part of the work are encouraging but could benefit from using more specific descriptors that better distinguish structural differences between states.

      An important weakness of this work is that there are critical flaws in the simulation analysis. Another weakness is that the different free energy landscapes calculated do not appear strongly consistent to each other, which suggests the presence of significant errors in the calculations that are not discussed. An additional important point is that a quantitative assessment of the quality of the models used in the simulations is currently lacking and this could affect the reliability of the simulation results. In this regard, previous systematic studies (Proteins 2012; 80:2071-2079) have shown that small imperfections in the predicted models (such as in backbone and side chains conformations) could lead to simulations that drift away from the initial structure in the multi microseconds time domain.

    3. Reviewer #1 (Public Review):

      This manuscript harnesses recent advances in co-evolution based modeling and computational approaches to provide molecular details about the transport cycles and mechanisms of an entire family of transporters, the sugar porters. The authors evaluate the validity of their approach in a number of ways, including comparison to structurally characterized proteins/states excluded from the training set, comparison to the GLUT5 transport free energy landscape determine through conventional enhanced MD methods in a companion paper, and a global evaluation of RMSDs between models. Based on these structural models, the authors are able to generate a number of interesting insights into the networks of co-evolving contacts that form in different conformational states, and different why certain sugar porters are or are not proton-coupled.

    1. Reviewer #1 (Public Review):

      This manuscript confirms previous studies suggesting a great deal of heterogeneity of gene expression at the neural plate border in early vertebrate embryos, as neural, placodal, neural crest, and epidermal lineages gradually segregate. Using scRNA-seq, the study expands previous studies by using far larger numbers of genes as evidence of this heterogeneity. The evidence for this heterogeneity and the change in heterogeneity over time is compelling.

      Many studies have suggested that there is considerable heterogeneity of gene expression in the developing neural plate border as the neural, neural crest, placodal and epidermal lineages segregate. Although the evidence for such heterogeneity was strong, until the advent of scRNA-seq, the extent of this heterogeneity was not appreciated. By using scRNA-seq at different stages of chick development, the authors sought to characterize how this heterogeneity develops and resolves over time.

      The work is technically sound, and the level of analysis of gene expression, clustering, synexpression groups, and dynamic changes in gene modules over time is state-of-the-art. A weakness of the results as they stand now is that the conclusions of the analysis are not tested by the authors and thus, are over-interpreted. Such tests could be performed in future studies either by gain- and loss-of-function experiments or by using lineage tracing to demonstrate that the cell states the authors observe - especially the "unstable progenitors" they characterize - are biologically meaningful. The data will nevertheless be a useful resource to investigators interested in understanding the development of different cell lineages at the neural plate border.

    2. Reviewer #2 (Public Review):

      The study of Thiery et al. aims to elucidate how cells undergo fate decisions between neural crest and (pan-) placodal cells at the neural plate border (NPB). While several previous single-cell RNA-Seq studies in vertebrates have included neural plate border cells (e.g. Briggs et al., 2018; Wagner et al., 2018; Williams et al., 2022), these previous studies did not provide conclusive insights on cell fate decisions between neural crest and placodes, due to either the limited number of genes recovered, the limited number of cells sampled or the limited numbers of stages included. The present study overcomes these limitations by analyzing almost 18,000 cells at six stages of development ranging from gastrulation until after neural tube closure (8 somite-stage), with an average depth of almost 4000 genes/cell. Using this extensive and high-quality data set, the study first describes the timing of segregation of neural crest and placodal lineages at the NPB suggesting that at late neural fold stages (somite stage 4) most cells have decided between placodal and neural crest fates. It then identifies gene modules specific for neural crest and placodal lineages and characterizes their temporal and spatial expression. Focusing on an NPB-specific subset of cells, the study then shows that initially most of these cells co-express neural crest and placodal gene modules suggesting that these are undecided cells, which they term "border-located unstable progenitors" (BLUPs). The proportion of BLUPs decreases over time, while cells classified as placodal or neural crest cells increases, with few BLUPs remaining at late neural fold stages (and a few scattered BLUPs even at somite stage 8). Based on these findings, the authors propose a new model of cell fate decisions at the NPB (termed the "gradient border model"), according to which the NPB is not defined by a specific transcriptional state but is rather a region of undecided cells, which diminishes in size between gastrulation and neural fold stages due to more and more cells committing to a placodal or neural crest fate based on their mediolateral position (with medial cells becoming specified as neural crest and lateral cells as placodal cells).

      The study of Thiery et al. provides an unprecedentedly detailed, methodologically careful, and well-argued analysis of cell fate decisions at the NPB. It provides novel insights into this process by clearly demonstrating that the NPB is an area of indecision, in which cells initially co-express gene modules for ectodermal fates (neural crest and placodes), which subsequently become segregated into mutually exclusive cell populations. The paper is very well written and largely succeeds in presenting the very complex strategy of data analysis in a clear way. By addressing the earliest cell fate decisions in the ectoderm and one of the earliest cell fate decisions in the developing vertebrate embryo, this study will have a significant impact and be of interest to a wide audience of developmental biologists. There are, two conceptual issues raised in the paper that require further discussion.

      First, the authors suggest that their data resolve a conflict between two previously proposed models, the "binary competence model" and the "neural plate border model". The authors correctly describe, that the binary competence model proposed by Ahrens and Schlosser (2005) and Schlosser (2006) suggests that the ectoderm is first divided into two territories (neural and non-neural), which differ in competence, with the neural territory subsequently giving rise to the neural plate and neural crest and the non-neural territory giving rise to placodes and epidermis (sequence of cell-fate decisions: ([neural or neural crest]-[epidermal or placodal]). This model was proposed as an alternative to a "neural plate border state model", which instead suggests that initially the NPB is induced as a territory characterized by a specific transcriptional state, from which then neural crest and placodes are induced by different signals (sequence of cell fate decisions: neural-[placodal or neural crest]-epidermal) (see Schlosser, 2006, 2014). Instead in this paper, the authors contrast the binary competence model with a model they call the "neural plate border" model according to which the NPB can give rise to all four ectodermal fates with equal probability. However, I think this misses the main point of contention since all previously proposed models are in agreement that initially the neural plate border region is unspecified and can give rise to all four fates and that lineage restrictions only appear over time. "Binary competence" and "Neural plate border state" model, differ, however, in their predictions about the sequence, in which these fate restrictions occur.

      Second, the authors should be more careful when relating their data to the specification or commitment of cells. Questions of specification and commitment can only be tested by experimental manipulation and cannot be inferred from a transcriptome analysis of normal development. So the conclusion that the activation of placodal, neural and neural crest-specific modules in that sequence suggests a sequence of specification in the same temporal order (lines 706-709) is not justified. Studies from the authors' own lab previously showed that epiblast cells from pre-gastrula stages are specified to express a large number of NPB border markers including neural crest and panplacodal markers, when cultured in vitro (Trevers et al., 2018; see also Basch et al., 2006 for early specification of the neural crest), which is not easily reconciled with this interpretation. I am not aware of any experimental evidence that shows that a panplacodal regulatory state is specified prior to neural crest in the chick (although I may have missed this). In Xenopus, experimental studies have shown instead that neural crest is specified and committed during late gastrulation, while the panplacodal states are specified much later, at neural fold stages (Mancilla and Mayor, 2006; Ahrens and Schlosser, 2005). It may well be the case that the relative timing of neural crest and panplacodal specification is different between species (and such easy dissociability may even be expected from the perspective of the binary competence model).

    3. Reviewer #3 (Public Review):

      The goal of this work was to better understand how cell fate decisions at the neural plate border (NPB) occur. There are two prevailing models in the field for how neural, neural crest and placode fates emerge: (i) binary competence which suggests initial segregation of ectoderm into neural/neural crest versus placode/epidermis; (ii) neural plate border, where cells have mixed identity and retain the ability to generate all the ectodermal derivatives until after neurulation begins.

      The authors use single-cell sequencing to define the development of the NPB at a transcriptional level and suggest that their cell classification identified increased ectodermal cell diversity over time and that as cells age their fate probabilities become transcriptionally similar to their terminal state. The observation of a placode module emerging before the neural and neural crest modules is somewhat consistent with the binary competence model but the observation of cells with potentially mixed identity at earlier stages is consistent with the neural plate border model.

      Differences in the timing of analyses and techniques used can account for the generation of these two original models, and in essence, the authors have found some evidence for both models, possibly due to the period over which they performed their studies. However, the authors propose recognizing the neural plate border as an anatomical structure, containing transcriptionally unstable progenitors and that a gradient border model defines cell fate choice in concert with spatiotemporal positioning.

      The idea that the neural plate border is an anatomical structure is not new to most embryologists as this has been well-recognized in lineage tracing and transplantation assays in many different species over many decades. The authors don't provide molecular evidence for transcriptional instability in any cells. It's a molecular term and phenomenon inaccurately applied to these cells that are simply bipotential progenitors. Lastly, there's no evidence of a gradient that fits the proper biochemical or molecular definition. Graded or sequential are more appropriate terms that reflect the lineage determination or segregation events the authors characterize, but there's no data provided to support a true role for a gradient such as that achieved by a concentration or time-dependent morphogen.

      A limitation of the study is that much of it reads like a proof-of-principle because validation comes primarily from known genes, their expression patterns in vivo, and their subsequent in vivo functions. Thus, the authors need to qualify their interpretations and conclusions and provide caveats throughout the manuscript to reflect the fact that no functional testing was performed on any novel genes in the emerging modules classified as placode versus neural or neural crest.

      Lastly, a limitation of gene expression studies is that it provides snapshots of cells in time, and while implying they have broad potential or are lineage fated, do not actually test and confirm their ultimate fate. Therefore, in parallel with their studies, the authors really need to consider, the wealth of lineage tracing data, especially single-cell lineage tracing, which has been performed using the embryos of the same stage as that sequenced in this study, and which has revealed critical data about the potential cells through when and where lineage segregation and cell fate determination occurs.

    1. Reviewer #3 (Public Review):

      There is a lack of consensus about the best way to isolate EVs from biofluids, mainly due to EVs being present at low levels in clinically relevant samples and difficult to quantify. As a following study of one previous eLife paper (https://elifesciences.org/articles/70725) from the same group, the authors have extended their Simoa assay to ApoB-100, the major protein component of several lipoproteins. Combining with previously developed Simoa assays, the authors developed a quick framework to quantify EVs, albumin, and lipoproteins on the same platform. Additionally, the authors developed a new EV isolation method that combines two additional resins (i.e., cation-exchange resin and Capto Core 700) as a bottom layer below the SEC layer. Although not greater than the density gradient centrifugation, EVs isolated using the newly developed method showed better purity than with SEC alone or dual-mode chromatography. A device automatically running columns in parallel for EV isolation was further developed to increase the throughput and reproducibility of column-based EV isolation. The development of Simoa assay to ApoB-100 and the Tri-Mode Chromatography would be of great relevance to EV studies.

    1. Reviewer #1 (Public Review):

      In this study, the authors investigate the role of triglycerides in spermatogenesis. This work is based on their previous study (PMID: 31961851) on triglyceride sex differences in which they showed that somatic testicular cells play a role in whole body triglyceride homeostasis. In the current study, they show that lipid droplets (LDs) are significantly higher in the stem and progenitor cell (pre-meiotic) zone of the adult testis than in the meiotic spermatocyte stages. The distribution of LDs anti-correlates with the expression of the triglyceride lipase Brummer (Bmm), which has higher expression in spermatocytes than early germline stages. Analysis of a bmm mutant (bmm[1]) - a P-element insertion that is likely a hypomorphic - and its revertant (bmm[rev]) as a control shows that bmm acts autonomously in the germline to regulate LDs. In particular, the number of LDs is significantly higher in spermatocytes from bmm[1] mutants than from bmm[rev] controls. Testes from males with global loss of bmm (bmm[1]) are shorter than controls and have fewer differentiated spermatids. The zone of bam expression, typically close to the niche/hub in WT, is now many cell diameters away from the hub in bmm[1] mutants. There is an increase in the number of GSCs in bmm[1] homozygotes, but this phenotype is probably due to the enlarged hub. However, clonal analyses of GSCs lacking bmm indicate that a greater percentage of the GSC pool is composed of bmm[1]-mutant clones than of bmm[rev]-clones. This suggests that loss of bmm could impart a competitive advantage to GSCs, but this is not explored in greater detail. Despite the increase in number of GSCs that are bmm[1]-mutant clones, there is a significant reduction in the number of bmm[1]-mutant spermatocyte and post-meiotic clones. This suggests that fewer bmm[1]-mutant germ cells differentiate than controls. To gain insights into triglyceride homeostasis in the absence of bmm, they perform mass spec-based lipidomic profiling. Analyses of these data support their model that triglycerides are the class of lipid most affected by loss of bmm, supporting their model that excess triglycerides are the cause of spermatogenetic defects in bmm[1]. Consistent with their model, a double mutant of bmm[1] and a diacylglycerol O-acyltransferase 1 called midway (mdy) reverts the bmm-mutant germline phenotypes.

      There are numerous strengths of this paper. First, the authors report rigorous measurements and statistical analyses throughout the study. Second, the authors utilize robust genetic analyses with loss-of-function mutants and lineage-specific knockdown. Third, they demonstrate the appropriate use of controls and markers. Fourth, they show rigorous lipidomic profiling. Lastly, their conclusions are appropriate for the results. In other words, they don't overstate the results.

      There are a few weaknesses. Although the results support the germline autonomous role of bmm in spermatogenesis, one potential caveat that the mdy rescue was global, i.e., in both somatic and germline lineages. The authors did not recover somatic bmm clones, suggesting that bmm may be required for somatic stem self-renewal and/or niche residency. While this is beyond the scope of this paper, it is possible that somatic bmm does impact germline differentiation in a global bmm mutant. Regarding data presentation, I have a minor point about Fig. 3L: why aren't all data shown as box plots (only Day 14 bmm[rev] does). Finally, the authors provide a detailed pseudotime analysis of snRNA-seq of the testis in Fig. S2A-D, but this analysis is not sufficiently discussed in the text.

      Overall, the many strengths of this paper outweigh the relatively minor weaknesses. The rigorously quantified results support the major aim that appropriate regulation of triglycerides are needed in a germline cell-autonomous manner for spermatogenesis.

      This paper should have a positive impact on the field. First and foremost, there is limited knowledge about the role of lipid metabolism in spermatogenesis. The lipidomic data will be useful to researchers in the field who study various lipid species. Going forward, it will be very interesting to determine what triglycerides regulate in germline biology. In other words, what functions/pathways/processes in germ cells are negatively impacted by elevated triglycerides. And as the authors point out in the discussion, it will be important to determine what regulates bmm expression such that bmm is higher in later stages of germline differentiation.

    2. Reviewer #2 (Public Review):

      Summary:

      Here, the authors show that neutral lipids play a role in spermatogenesis. Neutral lipids are components of lipid droplets, which are known to maintain lipid homeostasis, and to be involved in non-gonadal differentiation, survival, and energy. Lipid droplets are present in the testis in mice and Drosophila, but not much is known about the role of lipid droplets during spermatogenesis. The authors show that lipid droplets are present in early differentiating germ cells, and absent in spermatocytes. They further show a cell autonomous role for the lipase brummer in regulating lipid droplets and, in turn, spermatogenesis in the Drosophila testis. The data presented show that a relationship between lipid metabolism and spermatogenesis is congruous in mammals and flies, supporting Drosophila spermatogenesis as an effective model to uncover the role lipid droplets play in the testis.

      Strengths and weaknesses:

      The authors do a commendably thorough characterization of where lipid droplets are detected in normal testes: located in young somatic cells, and early differentiating germ cells. They use multiple control backgrounds in their analysis, including w[1118], Canton S, and Oregon R, which adds rigor to their interpretations. The authors employ markers that identify which lipid droplets are in somatic cells, and which are in germ cells. The authors use these markers to present measured distances of somatic and germ cell-derived lipid droplets from the hub. Because they can also measure the distance of somatic and germ cells with age-specific markers from the hub, these results allow the authors to correlate position of lipid droplets with the age of cells in which they are present. This analysis is clearly shown and well quantified.

      The quantification of lipid droplet distance from the hub is applied well in comparing brummer mutant testes to wild type controls. The authors measure the number of lipid droplets of specific diameters, and the spatial distribution of lipid droplets as a function of distance from the hub. These measurements quantitatively support their findings that lipid droplets are present in an expanded population of cells further from the hub in brummer mutants. The authors further quantify lipid droplets in germline clones of specified ages; the quantitative analysis here is displayed clearly, and supports a cell autonomous role for brummer in regulating lipid droplets in spermatocytes.

      Data examining testis size and number of spermatids in brummer mutants clearly indicates the importance of regulating lipid droplets to spermatogenesis. The authors show beautiful images supported by rigorous quantification supporting their findings that brummer mutants have both smaller testes with fewer spermatids at both 29 and 25C. There is also significant data supporting defects in testis size for 14-day-old brummer mutant animals compared to controls. The comparison of number of spermatids at this age is not significant, which does not detract from the the story but does not support sperm development defects specifically caused by brummer loss at 14 days. Their analysis clearly shows an expanded region beyond the testis apex that includes younger germ cells, supporting a role for lipid droplets influencing germ cell differentiation during spermatogenesis.

      The authors present a series of data exploring a cell autonomous role for brummer in the germline, including clonal analysis and tissue specific manipulations. The clonal data indicating increased lipid droplets in spermatocyte clones, and a higher proportion of brummer mutant GSCs at the hub are convincing and supported by quantitation. The authors also show a tissue specific rescue of the brummer testis size phenotype by knocking down mdy specifically in germ cells, which is also supported by statistically significant quantitation. The authors present data examining the number of spermatocyte and post-meiotic clones 14 days after clonal induction. While data they present is significant with a 95% confidence interval and a p value of 0.0496, its significance is not as robust as other values reported in the study, and it is unclear how much information can be gained from that specific result.

      The authors do a beautiful job of validating where they detect brummer-GFP by presenting their own pseudotime analysis of publicly available single cell RNA sequencing data. Their data is presented very clearly, and supports expression of brummer in older somatic and germline cells of the age when lipid droplets are normally not detected. The authors also present a thorough lipidomic analysis of animals lacking brummer to identify triglycerides as an important lipid droplet component regulating spermatogenesis.

      Impact:

      The authors present data supporting the broad significance of their findings across phyla. This data represents a key strength of this manuscript. The authors show that loss of a conserved triglyceride lipase impacts testis development and spermatogenesis, and that these impacts can be rescued by supplementing diet with medium-chain triglycerides. The authors point out that these findings represent a biological similarity between Drosophila and mice, supporting the relevance of the Drosophila testis as a model for understanding the role of lipid droplets in spermatogenesis. The connection buttresses the relevance of these findings and this model to a broad scientific community.

    3. Reviewer #3 (Public Review):

      In this manuscript, Chao et al seek to understand the role of brummer, a triglyceride lipase, in the Drosophila testis. They show that Brummer regulates lipid droplet degradation during differentiation of germ and somatic cells, and that this process is essential for normal development to progress. These findings are interesting and novel, and contribute to a growing realisation that lipid biology is important for differentiation.

      Major comments:

      1) The data in Figs 1 and 2, while helpful in setting the scene, do not add much to what was previously shown by the same group, namely that lipid droplets are present in both early germ cells and early somatic cells in the testis, and that Bmm regulates their degradation (PMID: 31961851). Measuring the distance of lipid droplets from the hub, while helpful in quantifying what is apparent, that only stem and early differentiated stages have lipid droplets, is not as informative as the way data are presented later (Fig. 2I), where droplets in specific stages are measured. Much of this could be condensed without much overall loss to the manuscript.

      2) It would be important to show images of the clones from which the data in Fig. 2I are generated. The main argument is that Bmm regulates lipid droplets in a cell autonomous manner; these data are the strongest argument in support of this and should be emphasised at the expense of full animal mutants (which could be moved to supplementary data). Similarly, the title of Fig. S2 ("brummer regulates lipid droplets in a cell autonomous manner") should be changed as the figure has no experiments with cell (or cell-type)-specific knockdowns/mutants. This figure does show changes in lipid droplets in both lineages in bmm mutants, so an appropriate title could be "brummer regulates lipid droplets in both germ and soma".

      3) Interestingly, the clonal data show that bmm is dispensable in germ cells until spermatocyte stages, as no increase in lipid droplet number is seen until then. This should be more clearly stated, as it indicates that the important function of Bmm is to degrade lipid droplets at the transition from spermatogonial to spermatocyte stages. This is consistent with the phenotypes observed in which late stage germ cells are reduced or missing. However, the effect on niche retention of the mutant GSCs at the expense of neighbouring wildtype GSCs is hard to explain. Are lipid droplets in mutant GSCs larger than in control? Is there any discernible effect of bmm mutation on lipids in GSCs? Additionally, bam expression is delayed, suggesting that bmm may have roles on cell fate in earlier stages than its roles that can be detected on lipid droplets.

      4) The bmm loss-of-function phenotype could be better described. Some of the data is glossed over with little description in the text (see for example the reference to Fig. 3A-C). For instance, in the discussion, the text states "loss of bmm delays germline differentiation leading to an accumulation of early-stage germ cells" (p13, l.259-60). However, this accumulation has not been clearly shown, or at least described in the manuscript. Most of the data show a reduction (or almost complete absence) of differentiated cell types. This could indeed be due to delayed differentiation, or alternatively to a block in differentiation or to death of the differentiated cells. The clonal data presented show a decrease in the number of cells recovered, but do not allow inferences as to the timing of differentiation, making it hard to distinguish between the various possibilities for the lack of differentiated spermatids. Apart from data showing that GSCs are more likely to remain at the niche, no further data are shown to support the fact that mutant germ cells accumulate in early stages. While additional experiments could help resolve some of these issues, much of this could also be resolved by tempering the conclusions drawn in the text.

      5) In the discussion (p.14, l-273 onwards), the authors suggest that products of triglyceride breakdown are important for spermatogenesis. However, an alternative interpretation of the results presented here (especially those using the midway mutant) could be that triglycerides impede normal differentiation directly. Indeed, preventing the cells' ability to produce triglycerides in the first place can rescue many of the defects observed. A better discussion of these results with a model for the function of triglycerides and their by-products would be a great improvement to this manuscript.

    1. Reviewer #1 (Public Review):

      This study aimed at the identification additional region of Cac1 involved in DNA binding. Previously, it has been shown that Cac1, the large subunit of chromatin assembly factor 1 (CAF-1), contains DNA binding other regions in addition to the known WHD domain. This study shows that the KER region of Cac1 form a single alpha helix based on CD and crystal structure analysis. Furthermore, unlike the SAH motif in other proteins, the Cac1 SAH motif binds DNA. Further, this motif, along with WHD motif, is important for the function of Cac1 in heterochromatin silencing and in response to DNA damage agents in cells, suggesting that these two regions are important for nucleosome assembly. The majority of experiments are well controlled and the results support the confusions. The major concern is that the human KER region cannot complement the yeast KER region, likely due to multiple possibilities, which needed to be tested.

    2. Reviewer #2 (Public Review):

      The manuscript illuminates the biological function of the Cac-1 "KER" region within the CAF-1 chromatin assembly factor 1. (This region has a high density of lysine, glutamic acid and arginine residues). The authors present a comprehensive study including quantitative EMSA analyses, analysis of mutants in-vivo, CD, and X-ray crystallography to identify the KER domain as a single alpha-helix element (SAH) that is largely responsible for the ability of the yCAF-1 complex to selectively binding ~40 bp dsDNA fragments over shorter ds oligos, thought to be a 'measuring' function that determines there is sufficient space for assembling H3/H4 tetramers after passage of the DNA replication complex. Moreover, they find that deletions or modifications of the KER domain contribute to yeast phenotypes consistent with a deficiency in chromatin assembly. The data in the paper is compelling, supports the conclusions and adds critical new information regarding how CAF-1 functions accomplishes its 'spacing' function in cooperation with DNA replication machinery to deposit H3/H4 dimers onto replicated DNA.

    1. Reviewer #1 (Public Review):

      This study shows that activation of α1-adrenergic receptors in hippocampal neurons in culture increases nPo of single L-type calcium channels. This pathway is dissected using a large number of activating agents and blockers to involve PKC, Pyk2 and src. The pathway is further examined using PC12 cells, where it is activated by bradykinin. Finally, a form of LTP which is dependent on L-type calcium channels is augmented in young mice by use of the α1-AR agonist, phenylephrine.

      1) My main critique would be that the study, while very well executed and rigorous, is fragmented, consisting of three parts that each feel incomplete: i, hippocampal neuron studies, mainly single channel recordings; ii, biochemical studies mainly in PC12 cells, using a different agonist bradykinin, and iii, the examination of LTP in young mice.

    2. Reviewer #2 (Public Review):

      The authors demonstrated that noradrenaline regulates Cav1.2 through PKC, which phosphorylates and activates Pyk2. Pyk2, in turn, autophosphorylates itself at Y402, which serves as a binding site for Src SH2 domain. Src will then phosphorylate Pyk2 at Y579 for full activation. Src also autophosphorylates itself at Y416. In this way, these two proteins generate a self-activating complex where Pyk activate Src, which then activates Pyk. Overall, this leads to an an activation of Cav1.2 and mediates noradrenaline-mediated augmentation of LTCC-mediated LTP.

    3. Reviewer #3 (Public Review):

      In this manuscript, Man et al. describe a new signaling pathway for regulation of the voltage-gated calcium channel Cav1.2 and show that it can modulate synaptic plasticity in the hippocampus. Studies with specific inhibitors, phosphopecific antibodies, and gene knockdown show that activation of alpha-1 adrenergic receptors induces downstream activation of the serine/threonine protein kinase PKC and the tyrosine protein kinases Pyk2 and Src, which bind to the Cav1.2 channel through its large intracellular segment connecting domains II and III. This signaling complex leads to tyrosine phosphorylation of Cav1.2 and increased channel activity. Block of this novel signaling pathway in hippocampal slices with specific inhibitors of Pyk2 and Src reduced a specific component of long-term potentiation whose induction requires Cav1.2 channel activity.

      This work is an important advance, as it presents a novel signaling pathway through which the ubiquitous neurotransmitter norepinephine and the neurohormone epinephrine can regulate synaptic plasticity, attention, learning, and memory. The experiments are comprehensive, carefully done, and clearly presented. The authors should consider revisions and responses to the points below.

      1. Figure 2B, D. Inhibitors reduce Ica below control. Is there endogenous stimulation of this regulatory pathway under control conditions?

      2. As noted by the authors, it would be interesting to know if peptides from the linker between domains II and III block this signaling pathway. This would be an important result because, without this information, it is not clear if this is the correct functional site of interaction for this regulatory complex.

      3. Figure 4B. The Brain IP for Src has a weak signal. The authors should replace this panel with a more convincing immunoblot.

      4. Scatter plots are provided for the electrophysiological results but not immunoblots. For immunoblots that are quanitified, it would be valuable to add a scatter plot of the replicates.

    1. Reviewer #1 (Public Review):

      The paper addresses why and how odor discrimination ability achieved after learning occurs in select contexts. The finding is that two related odors trigger near identical Kenyon cell responses when tested in isolation, but trigger different responses to the second odor if these are experienced in sequence within a small temporal window. The authors argue that this template comparison requires some activity downstream of Kenyon cells, that is recruited by MBONs. Overall, the experiments provide very nice physiological evidence for a neural mechanism that underlies a contextual basis for the precision of memory recall.

      The experiments were well designed and done. The findings are interesting, but the pitch (e.g. the last paragraph of the discussion and the title of the paper) seems to both ignore the main finding of the paper and overstate the novelty of the idea that memory recall can be flexibly regulated by context. There should be more space dedicated to clearly articulated statements/descriptions of hypotheses and candidate mechanisms to explain the interesting phenomenon described here. For instance, explaining "enhanced template mismatch detection" by potential " real-time and delay line summation" of MBON activity is not super useful for the reader as seems to use one abstraction to explain another. The authors cite Lin et al, 2014 from Miesenbock's lab which shows a key role for GABAergic APL neurons in discrimination. Is there increased activation of APL neurons when similar odourants are being compared and discrimination is required? This seems like a simple physically embodied mechanism that could/ should be examined.

      Overall, I think the idea that memories are recalled with high precision (less generalisation) only when increased precision is demanded, is a fact that sure is well appreciated by behavioral biologists even beyond the two papers cited here (Campbell et al., J Neurosci 2013; Xu and Südhof, Science 2013). The new findings fill in a physiological gap in this phenomenology. I think the paper would be greatly improved if the authors highlighted what and focused on the physiological correlate uncovered, and tried to communicate (or test) possible mechanistic origins for this in more physically accessible terms.

    2. Reviewer #2 (Public Review):

      One of the key questions in circuit neuroscience is how learned information guides behavior. Modi et al. investigated this question in Drosophila's mushroom bodies (MBs), where olfactory memory traces are formed during pavlovian olfactory conditioning. They have used optogenetics to restrict the formation of memory traces in selective output compartments of the Kenyon cell (KC) axon terminals, the principal intrinsic neurons of the MB, and tested how flies use these 'minimal memories' during learned olfactory discrimination. They found that memory traces formed in some compartments support discrimination between similar odor pairs, whereas others do not. They then investigated the neural basis of this difference by comparing the responses of relevant output neurons (MBONs) to similar and dissimilar odor pairs. They discovered that MBONs' responses could predict behavioral outcomes if odor presentation profiles during calcium imaging mimic olfactory experience during behavior. This paper and previous works support the idea that flies use olfactory memory templates flexibly to suit their behavioral needs. However, one key difference between this paper and the previous works is the site of discrimination. While previous studies using intensity discrimination have pointed towards spike-latency and on and off responses of the KCs as the main mechanism behind discrimination, Modi et al. have not detected any response difference for similar odor pairs among the KCs. Therefore, they concluded that a hitherto unknown mechanism creates these context-specific responses at the MBONs. The findings will advance our understanding of how memories are recalled during behavior. However, the authors need to bolster their data by including some critical controls that are currently missing.

    3. Reviewer #3 (Public Review):

      This manuscript by Modi et al represents a novel and significant advance in the neurobiology of memory retrieval. The authors employ a novel behavioral paradigm in order to investigate memory generalization and discrimination. They investigate the role of two different populations of dopamine neurons (DANs) targeting different compartments involved in aversion learning, i.e. α3 (MB630B) and γ2α'1 (MB296B).

      The behavioral platform is clear and convincing but lacks natural reinforcement comparisons. The entire paper uses optogenetic reinforcement of said DAN populations.

      The authors identify that the gamma DANs can enable both easy and hard odour discrimination, while the alphas DANs can only do easy.

      The odours can be separated by calcium imaging analysis of Kenyon cells. Subsequent calcium imaging of the gamma DANs themselves showed that a single training event was insufficient to enable easy odor discrimination at the gamma DAN level, but strangely not for the hard discrimination that gamma DANs can mediate. Seemingly, this is due to the lack of the temporal contiguity of odors (present in behavioral experiments but not in the initial imaging experiments.

      However, in gamma DANs, Odour transitions enabled discrimination of odours in hard discrimination, based on the depression of calcium activity in DANs after training that was odour-specific. The same was not true for alpha DANs, though the authors used natural electric shock pairings instead of optogenetic stimulation of DANs for the alpha experiment. However, statistical comparisons are done within group and need also be provided for between the groups for both pre and post-training. The authors persuasively show that hard discrimination can only happen in transitions. They also argue that the same engram can be read in two different ways. This is convincing overall, but they claim it is happening downstream of the Kenyon cells just because they do not see it in the Kenyon cells, and I cannot comment on the modelling in Figure 5 (expertise).

      Experimental methods used are appropriate, as are data analysis strategies.

      The manuscript itself is well written in parts, though at times paragraphs are quite patchy, especially in the discussion. There are also a visible number of typos. The figures are well constructed, and generally well organized. The overall document is concise and has sufficient detail.

    1. Reviewer #1 (Public Review):

      This study characterizes the localization of the lone voltage-gated Na channel in Drosophila Para in motor and sensory neurons. Like previous studies, the authors identify an enrichment of Na (and importantly the K+ channel Shal) in axon initial segment-like (AIS-) areas in motor neuron axons, and show that this structure is not apparent in axons of sensory neurons. Upon ablation of wrapping glia in the periphery, the authors find this AIS-like organization of Para is lost. Finally, compelling EM analyses of peripheral nerves suggest an intriguing area devoid of glia around AIS-like structures, and some evidence for myelin-like structures along the distal axon. The author propose several interesting ideas for how these structures might be involved in AP signaling and as evolutionary precursors to conventional myelination and saltatory conductance in vertebrates.

      Clearly, the evolution of myelination, and how glia contribute to neuronal firing in systems without classically accepted myelination and saltatory conductance are important questions. Although much of the Para clustering in AIS-like domains and regular densities along motor axons have been described in previous studies, the ultrastructural analyses and dependence on wrapping glia might be important advances in the field. In particular, major strengths of this study are the detailed analysis of AIS-like Para clusters, spanning molecular genetic, confocal and super resolution imaging, and ultrastructural approaches and clear writing. However, these strengths are somewhat tempered by a lack of functional approaches to test the idea of a lacunar structure that promotes ion exchange at putative AIS regions as well as little mechanistic insight into how glia may specifically coordinate the formation of Para clusters in AIS-like regions.

    2. Reviewer #2 (Public Review):

      In Rey et al., the authors goal was to characterize the development of a myelin-like (lacunar) expansion of glial membrane in Drosophila. Although myelin is largely considered a vertebrate innovation, there are a handful of invertebrate models that have been described with glial-derived "myelin," though these systems are not amenable to the same genetic control as Drosophila. To that end, the authors first newly-developed genetics and antibodies to characterize the presence of an axon initial segment (AIS) for adult Drosophila motor neurons that is present at the border between the central and peripheral nervous systems. They show that both sodium (Para) and potassium (Shal) channels, which are typically enriched at the AIS in mammalian neurons, are enriched at this border specifically on motor neurons. They then used multiple types of transmission electron microscopy to visualize this region and found that along with clustering of channels, there is an expansion of membranes from wrapping glia that is reminiscent of myelin. At times, this expansion spirally wraps around larger axons. Finally, they show that genetic ablation of wrapping glia results in an upregulation and redistribution of Para.

      Major strengths of this manuscript include the creation of new genetic tools for visualization of subcellular features (e.g. channels) by both light microscopy and electron microscopy.

      While this manuscript provides an interesting set of data, but suffers from a lack of quantification and annotation to allow the reader to judge whether this is a robust phenomenon. To increase the reader's confidence in these studies, substantially more quantification of the data is required.

      Furthermore, to improve the accessibility of this manuscript, I have the following suggestions:

      1. Please label the panels throughout the figures with an abbreviated genotype and what the fluorophores signify. Similarly, the presence of scale bars in uneven across the figures.

      2. For panels where only one channel is shown, please show these in black and white, which is easier for the visually-impaired.

      Overall, the description of "myelin" in Drosophila would open up the field of myelin biology to a new model system to study the molecular mechanisms that facilitated the evolution of this important glial structure. Thus, further analysis of the data would be advantageous.

    1. Reviewer #1 (Public Review):

      Inhibition of translation has been found as a conserved intervention to extend lifespan across a number of species. In this work, the authors systematically investigate the similarities and differences between pharmacological inhibition of protein synthesis at the initiation or elongation steps on longevity and stress resistance. They find that translation elongation inhibition is beneficial during times when proteostasis collapse is the primary phenotype such as proteasome dysfunction, hsf-1 mutants, and heat shock, but this intervention does not extend the lifespan of wt worms. While translation initiation inhibition extends the lifespan of wt worms and heat shock, but in an HSF-1 dependent manner. This work shows that a simple explanation of just inhibiting total protein synthesis and reduced folding load cannot explain all of the phenotypes seen from protein synthesis inhibition, as initiation and elongation inhibition repress overall translation similarly, but have different effects depending on the experiment tested. Using multiple interventions that target both initiation and elongation lends further support to their findings. These experiments are important for conceptualizing how translation inhibition actually extends lifespan and promotes proteostasis.

      Major Comment:

      The authors acknowledge that lifespan extension must not necessarily arise just from reducing protein synthesis, as elongation inhibition reduced protein synthesis but did not extend lifespan. Yet for the converse effects from elongation inhibition they seem to suggest that it arises from reducing protein synthesis. For example, regarding how elongation inhibition extends lifespan in an hsf-1 mutant, the authors suggest that "inhibition of elongation lowers the production of newly synthesized proteins and thus reduces the folding load on the proteostasis machinery", even though initiation inhibitors do not extend lifespan in an hsf-1 background (while presumably lowering the production of newly synthesized proteins).

    2. Reviewer #2 (Public Review):

      In this manuscript, Clay et al. investigate the underlying effects of reduced mRNA translation beneficial on protein aggregation and aging. They aim to test two pre-existing hypotheses: The selective translation model proposes that downregulation of overall translation increases the capacity of ribosomes to translate selected factors that in turn increase stress resistance against toxicity. The reduced folding load model suggests that during high mRNA translation rates, newly synthesized peptides and proteins can overwhelm the protein folding capacity of the cell and therefore cause protein toxicity. By generally lowering mRNA translation, lower loads of newly synthesized proteins should cause less protein folding stress and hence protein toxicity.

      To understand how reduced mRNA translation mediates its beneficial effects in the context of the proposed models, the authors use different drugs established previously in other in vitro and in vivo systems to inhibit selected steps of translation. The systemic effects of translation initiation versus elongation inhibition in C. elegans are compared during heat shock, specific protein aggregation stresses and aging. These phenotypes are further tested for dependence on hsf-1, as contradictory data on the effect of translation inhibition during thermal stress in the context of hsf-1 dependency exist.

      The data show that inhibition of translation initiation protects from heat stress and age-associated protein aggregation but on the contrary further sensitizes animals to protein toxicity induced by a misfunctioning proteasome. Further, inhibition of translation initiation increases lifespan in WT animals. The survival phenotypes observed during heat shock and regular lifespan assays are dependent of HSF-1, supporting the selective translation model. As stated in the manuscript, these findings themselves are not new, given that similar observations were made before using genetic models. Interestingly, the inhibition of translation elongation protects from heat stress, but, unlike initiation inhibition, also proteasome-misfunction-induced protein toxicity. Both phenotypes were observed to be independent of hsf-1. The authors further find that inhibiting elongation does not reduce protein aggregation in aged worms and does not prolong lifespan in wildtype animals. It does increase lifespan in short-lived hsf-1 mutants, where protein homeostasis is compromised. To a degree, these findings support the reduced folding load model. Overall, from these observations the authors summarize that the systemic consequences of lowering translation depend on the step in which translation is inhibited as well as the environmental context. The authors conclude that different ways to inhibit translation can protect from different insults by independent mechanisms.

      Impact, strengths and weaknesses:

      mRNA translation and its regulation is one of the most studied mechanisms connected to lifespan extension. However, gaps behind the protective effects of translation inhibition are so far unresolved, as stated by the authors. Therefore, testing existing hypotheses explaining the beneficial effects of translation inhibition is of great interest, not only for C. elegans researchers but a broad community working on the effects of misregulated translation during aging and disease. Overall, the conclusions made by the authors are generally supported by the data shown in this manuscript. However, some major gaps remain and need to be clarified and extended.

    3. Reviewer #3 (Public Review):

      Clay and colleagues investigate the proteostasis and longevity benefits derived from translation inhibition in C. elegans by examining the impacts of chemical translation initiation inhibitors (IIs) and translation elongation inhibitors (EIs) on thermotolerance, protein folding stress, aggregation and longevity. They observe somewhat distinct impacts by the two chemical groups. IIs increased longevity in wild-type animals in an hsf-1 dependent manner, whereas, EIs only extended hsf-1 mutants' lifespan. Only EIs protected against proteasome dysfunction. Both protected against heat stress but with differing hsf-1 dependence. The authors utilize these observations to derive conclusions regarding two dominant points of view on the mechanism by which translation inhibition improves lifespan and proteostasis.<br /> The study is based on interesting observations and several promising avenues of further investigation can be identified. However, the manuscript appears somewhat preliminary in nature, with many of the observations, while interesting, only explored superficially for mechanistic insights. The rationale behind some of the interpretations was also difficult to interpret. For example, the authors make conclusions about 'selective translation' being adopted upon IIs treatment without directly testing this. Protein aggregation, while possibly predictive, is not a reliable readout for selective translation of some mRNAs. Similarly, the evidence for a reduction in 'newly-synthesized protein load' by EIs is thin based on one reporter. Previous studies from the Blackwell lab have identified differential impacts of SKN-1 on select cytoprotective genes' expression and proteasomal gene expression based on inhibition of translation initiation or elongation. So there is precedence for both the differential impact of initiation vs. elongation inhibition as well as genetic background. There are several other such studies that reduce the impact of the observations presented here. With limited novelty and mechanistic insight, the impact of the study on the field is likely to be moderate.

    1. Reviewer #1 (Public Review):

      The role of HCO3 (or possibly CO2) in regulating sACs is well established yet its physiological context is less clear. The heart is indeed an excellent choice of organ to study this. Isolated mitochondria offer a tractable model for studying the model, although are not without limitations. The quality of recordings is very high, as judged by the consistency of results (i.e. lack of clustering between biological repeats). My primary concern is about distinguishing the effect of pH and HCO3. A rise in HCO3 will also raise pH unless this had been compensated by CO2. It is unclear, from the legend or results, if the bicarbonate effect is due to HCO3 or pH. Was pH controlled by matching the rise in HCO3 with an appropriate level of CO2? The swings in pH are likely to be very large and, potentially, a confounding factor. Certainly, there will be an effect on the proton motive force. A more informative test would compare the effect of 0 CO2/0HCO3 at a pH set to say 7.2, 2.5% CO2/7.5 mM HCO3, and then 5% CO2/15 mM HCO3, etc. Control experiments would then repeat these observations over a range of pH (at zero CO2/HCO3) and over a range of CO2 (at constant HCO3). Data for zero bicarbonate are not informative, as this will never be a physiological setting (results claim 0-15 mM bicarb to represent physiology). Importantly, there seems to be no significant difference in 2A between 10 v 15 mM bicarb, i.e. the physiological range.

      There is also a question on the validity of the model. A rise in respiratory rate will produce more CO2 in the matrix. This may raise matrix HCO3, and stimulate sACs therein, but the authors claim sACs are in the IMS, rather than the matrix. Since HCO3 is impermeable, it is unclear how sACs would detect HCO3 beyond the IMM. CO2 escaping the matrix will enter the continuum of the cytoplasmic space, which has finely controlled pH. Since membranes (including IMM) are highly permeable to CO2, the gradient between matrix and cytoplasm will be small (i.e. you only need a small gradient to drive a big flux, if the permeability is massive). Since CO2 can dissipate over a large volume, it is unlikely to accumulate to any degree. CO2 will be in equilibrium with HCO3 and pH (because there are carbonic anhydrases available). Since the cytoplasm has near-constant pH, [HCO3] must also be close to constancy. It is therefore difficult to imagine how HCO3 could change dramatically to meaningfully affect sACs and hence cAMP. Evidence for major changes in IMS pH in intact cells during swings of respiratory activity would be required to make this point. Indeed, for that reason, it would be more sensible to anchor sACS in the matrix, as there, HCO3 could rise to high levels, as it is impermeable, i.e. could be confined within the mitochondrion. I am therefore not convinced the numbers are favorable to the proposed mechanism to be meaningful physiologically.

    2. Reviewer #2 (Public Review):

      The authors explore the role of bicarbonate-regulated soluble adenylate cyclase in modulating cardiac mitochondrial energy supply. In isolated rat mitochondria, they show that cyclic AMP (but not the permeable cAMP analog 8-Br-cAMP) increases ATP production via a Ca-independent mechanism at a location in the intermembrane space of the mitochondria, rather than in the matrix, as previously reported. Moreover, they show that inhibition of EPAC, but not PKA, inhibits the response. The effect required supplementing the mitochondria with GTP and GDP to facilitate activation of the EPAC effector GTPase Rap1. The study provides interesting new information about how the heart might adapt to changes in energy supply and demand through complementary regulatory processes involving both Ca and cyclic AMP.

      The authors nicely demonstrate that soluble adenylate cyclase is localized to mitochondria. They argue, based on the effects of cyclic AMP, which is accessible to the mitochondrial intermembrane space (IMS) but not the matrix, that the signalling pathway is located in the IMS. They also find that EPAC/Rap1 is the likely downstream effector of cyclic AMP, through yet unknown targets regulating oxidative phosphorylation.

      A weakness is that the components of signaling (sAC, EPAC, and rap1) are not definitively localized to a specific mitochondrial compartment using the superresolution imaging methods employed.

    1. Reviewer #1 (Public Review):

      Jamge et al. sought to identify the relationships between histone variants and histone modifications in Arabidopsis by systematic genomic profiling of 13 histone variants and 12 histone modifications to define a set of "chromatin states". They find that H2A variants are key factors defining the major chromatin types (euchromatin, facultative heterochromatin, and constitutive heterochromatin) and that loss of the DDM1 chromatin remodeler leads to loss of typical constitutive heterochromatin and replacement of this state with features common to genes in euchromatin and facultative heterochromatin. This study deepens our understanding of how histone variants shape the Arabidopsis epigenome and provides a wealth of data for other researchers to explore.

      Strengths:<br /> 1. The manuscript provides convincing evidence supporting the claims that: A) Arabidopsis nucleosomes are homotypic for H2A variants and heterotypic for H3 variants, B) that H3 variants are not associated with specific H2A variants, and C) H2A variants are strongly associated with specific histone post-translational modifications (PTMs) while H3 variants show no such strong associations with specific PTMs. These are important findings that contrast with previous observations in animal systems and suggest differences in plant and animal chromatin dynamics.

      2. The authors also performed comprehensive epigenomic profiling of all H2A, H2B, and H3 variants and 12 histone PTMs to produce a Hidden Markov Model-based chromatin state map. These studies revealed that histone H2A variants are as important as histone PTMs in defining the various chromatin states, which is unexpected and of high significance.

      3. The authors show that in ddm1 mutants, normally heterochromatic transposable element (TE) genes lose H2A.W and gain H2A.Z, along with the facultative heterochromatin and euchromatin signatures associated with H2A.Z at silent and expressed genes, respectively.

      Weaknesses:<br /> 1. Following up on the finding that H2A.Z replaces H2A.W at TE genes in ddm1 mutants, the authors provide in vitro evidence that DDM1 binds to H2A.Z-H2B dimers. These results are taken together to conclude that DDM1 normally removes H2A.Z-H2B dimers from nucleosomes at TE genes and replaces them with H2A.W-H2B dimers. However, the evidence for this model is circumstantial and such a model raises a variety of other questions that are not addressed by the authors. For example: if DDM1 does remove H2A.Z from TE genes, how does H2A.Z normally come to occupy these sites, given that they are highly DNA methylated and that H2A.Z is known to anticorrelate with DNA methylation in plants and animals? Given that H2A.Z does not accumulate in TEs in h2a.w mutants, how would H2A.X and H2A instead become enriched at these sites if DDM1 cannot bind these forms of H2A? Given that there are no apparent regions with common sequence between H2A.Z and H2A.W variants that are not also shared with other H2A classes, how would DDM1 selectively bind to H2A.W-H2B and H2A.Z-H2B dimers to the exclusion of H2A(.X)-H2B dimers?

    2. Reviewer #2 (Public Review):

      Jamge et al. set out to delineate the relationship between histone variants, histone modifications and chromatin states in Arabidopsis seedlings and leaves. A strength of the study is its use of multiple types of data: the authors present mass-spec, immunoblotting and ChIP-seq from histone variants and histone modifications. They confirm the association between certain marks and variants, in particular for H2A, and nicely describe the loss of constitutive heterochromatin in the ddm1 mutant.

      The support for some of the conclusions is weak. The title of the discussion, "histone variants drive the overall organization of chromatin states" implies a causation which wasn't investigated, and overstates the finding that some broad chromatin states can be further subdivided when one considers histone variants (adding variables to the model).

      Adding variables to a ChromHMM model naturally increases the complexity of the models that can be built, however it is difficult to objectively define which level of complexity is optimal. The differences between states may be subtle to the point that they may be considered redundant. The authors claim that the sub-states they define are biologically important, but provide little evidence to support this claim. It is not obvious whether the 26 states model is much more useful than a 9-states model. Removing variables naturally affects the definition of states that depend on these variables, but it is also hard to define the biological significance of that change. This sensitivity analysis is thus not very developed.

      There are issues with the logical sequence of arguments in Fig1 and Fig3. Fig1A shows that nucleosomes often contain both H3.1 and H3.3. Therefore pulling-down H3.1-containing nucleosomes also pulls down H3.3 and whether specific H2A variants associated with H3.1 cannot be answered in this way (Fig1B). The same issue likely carries to the investigation of the association with H3 modifications if Fig1C and 1D, since the H3.1-HA pull-down also pulls down endogenous H3.1 (so presumably the rest of the nucleosome, with H3.3, as well).

      In Fig3, the conclusion that it is the loss of H2A.Z -> H2A.W exchange in the ddm1 mutant that causes loss of constitutive heterochromatin is rushed. The fact that the h2a.w mutant does not recapitulate the loss of constitutive heterochromatin seen in ddm1 argues against this interpretation. It's also difficult to conclude about the importance of dynamic exchanges when the ddm1 mutation has been present for generations and the chromatin landscape has fully readapted. Further work is needed to support the authors' hypothesis.

      The study also relies on a large number of custom (polyclonal) antibodies with no public validation data. Lack of specificity, a common issue with antibodies, would muddle the interpretation of the data.

      Overall, this study nicely illustrates that, in Arabidopsis, histone variants (and H2A variants in particular) display specificity in modifications and genomic locations, and correlate with some chromatin sub-states. This encourages future work in epigenomics to consider histone variants with as much attention as histone modifications.

    3. Reviewer #3 (Public Review):

      How chromatin state is defined is an important question in the epigenetics field. Here, Jamge et al. proposed that the dynamics of histone variant exchange control the organization of histone modifications into chromatin states. They found 1) there is a tight association between H2A variants and histone modifications; 2) H2A variants are major factors that differentiate euchromatin, facultative heterochromatin, and constitutive heterochromatin; 3) the mutation in DDM1, a remodeler of H2A variants, causes the mis-assembly of chromatin states in TE region. The topic of this paper is of general interest and results are novel.

      Overall, the paper is well-written and results are clearly presented. The biochemical analysis part is solid.

    4. Reviewer #4 (Public Review):

      This work aims at analyzing the impact of histone variants and histone modifications on chromatin states of the Arabidopsis genome. Authors claim that histone variants are as significant as histone modifications in determining chromatin states. They also study the effect of mutations in the DDM1 gene on the exchange of H2A.Z to H2A.W, which convert the silent state of transposons into a chromatin state normally found on protein coding genes.

      This is an interesting and well done study on the organization of the Arabidopsis genome in different chromatin states, adding to the previous reports on this issue.

    1. Reviewer #1 (Public Review):

      In this manuscript the authors performed experiments and simulations which showed that substrate evaporation is the main driver of early construction in termites. Additionally, these experiments and simulations were designed taking into account several different works, with independent (and sometimes conflicting) hypotheses, so that the current results shine a light on how substrate evaporation is a sufficient descriptor of most of the results seen previously.

      The authors managed through simulations and ingenious experiments to show how curvature is extremely correlated with evaporation, and therefore, how results coming from these 2 environmental factors can most of the time be explained through evaporation alone. The authors have continued to use their expertise of numerical simulations and a previously developed model for termite construction, to highlight and verify their findings. On my first pass of the manuscript I felt the authors were missing an experiment: an array of humidity probes to measure evaporation in the three spatial dimensions and over time. Technologically such an experiment is not out of reach, but the author's alternative (a substrate made with a saline solution and later measuring the salt deposits on the surface) was a very ingenious low tech solution to the problem.

      One possible missing experiment (and possibly the explanation of the only inconsistency of their results to previous literature) is to perform similar topographical experiments in high humidity chambers, where no humidity, or very low humidity gradients are present. Previous experiments done by Calovi and collaborators in 2019 showed that termite construction activity (without distinguishing digging from deposition) was focused on high curvature (concave) regions, where here the authors have seen higher depositions on convex structures. Despite the difference of "activity" by Calovi 2019 (clearly acknowledged by the authors), another main difference is that the experiments of the 2019 manuscript were performed in a closed chamber with very high humidity, and smooth transitions between regions of positive and negative curvature. Therefore, it stands to reason that the only missing component of the current article, would have been to perform similar experiments with curvature (positive and negative) but under an environment where gradients are reduced to a minimum.

      The results presented here are so far the best attempt on characterizing multiple cues that induce termite construction activity, and that also possibly unifies the different hypothesis presented in the last 8 years into a single factor. More importantly, even if these results come from different species of termites than some of the previous works, they are relatable and seem to be mostly consistent, improving the strength of the author's claims.

    2. Reviewer #2 (Public Review):

      This study investigates the drivers behind termite construction, with a particular focus on the environmental factors that drive pellet deposition. The authors performed experiments and computations in an attempt to disentangle the role of surface curvature, feature elevation, substrate evaporation, and a possible "cement" pheromone on the deposition of soil pellets.

      In three different types of experiments, the authors present termites with pre-made, unmarked (pheromone-free) pellets, and they vary pre-existing topographic building cues: some experiments have two pillars, others have a wall, and a third type had no cues. In experiments with topographic cues, the authors find that deposition seems to occur preferentially at the locations of highest curvature (i.e., peaks of pillars and corners of the walls). Complementary experiments and simulations show that locations of highest curvature correspond to locations with highest evaporation rates, at least for pillars. Evaporation rates seem inconclusive in the wall geometry, yet the termites still deposit material at the high-curvature wall corners. The authors conclude that: (1) no "cement" pheromone is needed for construction, (2) that depositions preferentially occur at locations of high curvature (all experiments for pillars, 7 out of 11 experiments for walls), and (3) that evaporation (which is fastest at places of highest curvature, at least for pillars) drives deposition. The experiments and results seem sound and interesting, but some of the interpretations need more justification. For instance, why conclude that evaporation drives construction when there is not a measurable difference in evaporation rate across the wall geometry?

      The authors also perform simulations (developed in a previous publication) that agree with their experimental observation that deposition occurs preferentially at locations of high curvature. However, there is not enough detail provided about the simulation to understand the degree to which simulation and experiment agree (e.g., is the agreement qualitative or quantitative?) as well as the significance of the agreement. The authors should provide additional details about the setup and mechanics of the simulation, the outputs and how they connect to experiments, and potential limitations of results/connections to the experimental system. Finally, more background about this termite species would be helpful in putting these results into context. For instance, what is known about the natural habitat and conditions, and natural nest locations and structures? What are (or might be, depending on what is known) the potential abilities/benefits for these animals to sense humidity gradients, and why building at these locations could benefit the animals?

    1. Reviewer #1 (Public Review):

      This manuscript by Neininger-Castro and colleagues presents a novel automatic image analysis method for assessing sarcomeres, the basic units of myofibrils and validates this tool in a couple of experimental approaches that interfere with sarcomere assembly in iPSC-cardiomyocytes (iPSC-CM).

      Automatic quantification of sarcomeres is definitely something that is useful to the field. I am surprised that there is no reference in the manuscript to SarcTrack, published by Toepfer and colleagues in 2019 (PMID 30700234), which has exactly the same purpose. The advantage of the image analysis software presented in the current manuscript appears to me to be that it can cover both mature sarcomeres and nascent sarcomeres in premyofibrils effectively.

      When going through the manuscript there were a few issues that should be addressed in a revised version of the manuscript:

      1. I am a bit puzzled that they took 1.4 um length as a cutoff length for a mature A-band in their quantifications, since the consensus in the field for thick filament length seems to be 1.6 um?

      2. When doing the knockdown for alpha and beta-myosin heavy chain, respectively, why did they not also do a Western blot for the "other" isoform as well (Figure 7)? We know that iPSC-CM express a mixture, so the relatively mild phenotype that they observe in single knockdown experiments may well be due to concomitant upregulation of the expression of the other isoform. In my point of view this should be checked.

      3. There seems to be a disconnect between the images for myomesin knockdown shown in Figure 8H and the quantification shown in Figure 8I, which makes me wonder whether the image shown in H middle (MYOM1 (1) KD), where the beta-myosin doublets do not seem to be much affected is really representative?

    2. Reviewer #2 (Public Review):

      Neininger-Castro et al report on their original study entitled "Independent regulation of Z-lines and M-lines during sarcomere assembly in cardiac myocytes revealed by the automatic image analysis software sarcApp", In this study, the research team developed two software, yoU-Net and sarcApp, that provide new binarization and sarcomere quantification methods. The authors further utilized human induced pluripotent stem cell-derived cardiomyocytes (hiCMs) as their model to verify their software by staining multiple sarcomeric components with and without the treatment of Blebbistatin, a known myosin II activity inhibitor. With the treatment of different Blebbistatin concentrations, the morphology of sarcomeric proteins was disturbed. These disrupted sarcomeric structures were further quantified using sarcApp and the quantification data supported the phenotype. The authors further investigated the roles of muscle myosins in sarcomere assembly by knocking down MYH6, MYH7, or MYOM in hiCMs. The knockdown of these genes did not affect Z-line assembly yet the knockdown of MYOM affected M-line assembly. The authors demonstrated that different muscle myosins participate in sarcomere assembly in different manners.

    3. Reviewer #3 (Public Review):

      Neininger-Castro and colleagues developed software tools for the quantification of sarcomeres and sarcomere-precursor features in immunostained human induced pluripotent stem cell-derived cardiac myocytes (hiCMs). In the first part they used a deep-learning- based model called a U-Net to construct and train a network for binarization of immunostained cardiomyocyte images. They also wrote graphical user interface (GUI) software that will assist other labs in using this approach and made it publicly available. They did not compare their approach to existing ones, but an example from one image suggests their binarization tool outperforms Otsu thresholding binarization.

      In the second part they developed a software tool called sarcApp that classifies sarcomere structures in the binarized image as a Z-Line or Z-Body and assigns each to either a myofibril or to stress fibers. The tools can then automatically count and measure multiple features (33 per cell and 24 per myofibril) and report them on a per-cell, per-myofibril, and per- stress fiber basis.

      To test the tools they used Blebbistatin to inhibit sarcomere assembly and showed that the sarcApp tool could capture changes in multiple features such as fewer myofibrils, fewer Z-Lines, decreased myofibril persistence, decreased Z-Line length and altered myofibril orientation in the Blebbistatin treated cells. With some changes the tool was also shown to quantify sarcomeres in titin and myomesin stained cardiomyocytes.

      Finally they used sarcApp to quantify the changes in sarcomere assembly after siRNA mediated knockout of MYH7, MYH7, or MYOM. The analysis indicates that neither MYH6 nor MYH7 knockdown perturbed the assembly of Z- or M-lines, and that knockdown of MYOM perturbed the A-band/M-Line but not the Z-Line assembly according to features captured by the sarcApp tool.

      Overall the authors developed and made publicly available an excellent software tool that will be very useful for labs that are interested in studying sarcomere assembly. Multiple features that are difficult to measure or count manually can be automatically measured by the software quickly and accurately.

      There are however some remaining questions about these tools:<br /> 1. The binarization tool which is tailored to sarcomere image binarization appears promising but was not systematically compared with existing approaches.<br /> 2. How robust is the tool? The tool was tested on images from one type of cardiomyocytes (hiCMs) taken from one lab using Nikon Spinning Disk confocal microscope equipped with Apo TIRF Oil 100X 1.49 NA objective or instant Structured Illumination Microscopy (iSIM), using deconvolution (Microvolution software) and in a specific magnification. It remains to be seen whether the tool would be equally effective with images taken with other microscopy systems, with other cardiomyocytes (chick or neonatal rat), with different magnifications, live imaging, etc.<br /> 3. The tool was developed for evaluation of sarcomere assembly. The authors show that for this application it can detect the perturbation by Blebbistatin, or knockdown of sarcomeric genes. It remains to be seen if this tool is also useful for assessment of sarcomere structure for other questions beside sarcomere assembly and in other sarcomere pathologies.

    1. Reviewer 1 (Public Review):

      This is a reasonably good paper and the use of a commonality analysis is a nice contribution to understanding variance partitioning across different covariates. I have some comments that I believe the authors ought to address which mostly relate to clarity and interpretation.

      First, from a conceptual point of view, the authors focus exclusively on cognition as a downstream outcome. I would suggest the authors nuance their discussion to provide broader considerations of the utility of their method and on the limits of interpretation of brain-age models more generally. Further, I think that since brain-age models by construction confound relevant biological variation with the accuracy of the regression models used to estimate them, there may be limits to the interpretation of (e.g.) the brain-age gap is as a dimensionless biomarker. This has also been discussed elsewhere (see e.g. https://academic.oup.com/brain/article/143/7/2312/5863667). I would suggest that the authors consider and comment on these issues.

      Second, from a methods perspective, there is not a sufficient explanation of the methodological procedures in the current manuscript to fully understand how the stacked regression models were constructed. Stacked models can be prone to overfitting when combined with cross-validation. This is because the predictions from the first-level models (i.e. the features that are provided to the second level 'stacked' models) contain information about the training set *and* the test set. If cross-validation is not done very carefully (e.g. using multiple hold-out sets), information leakage can easily occur at the second level. Unfortunately, there is not a sufficient explanation of the methodological procedures in the current manuscript to fully understand what was actually done. Please provide more information to enable the reader to better understand the stacked regression models. If the authors are not using an approach that fully preserves training and test separability, they need to do so.

      Please also provide an indication of the different regression strengths that were estimated across the different models and cross-validation splits. Also, how stable were the weights across splits?

      Please provide more details about the task designs, MRI processing procedures that were employed on this sample in addition to the regression methods, and bias-correction methods used. For example, there are several different parameterisations of the elastic net, please provide equations to describe the method used here so that readers can easily determine how the regularisation parameters should be interpreted.

    2. Reviewer 2 (Public Review):

      In this study, the authors aimed to evaluate the contribution of brain-age indices in capturing variance in cognitive decline and proposed an alternative index, brain-cognition, for consideration. The study employs suitable data and methods, albeit with some limitations, to address the research questions. A more detailed discussion of methodological limitations in relation to the study's aims is required. For instance, the current commonality analysis may not sufficiently address potential multicollinearity issues, which could confound the findings. Importantly, given that the study did not provide external validation for the indices, it is unclear how well the models would perform and generalize to other samples. This is particularly relevant to their novel index, brain-cognition, given that brain-age has been validated extensively elsewhere. In addition, the paper's rationale for using elastic net, which references previous fMRI studies, seemed somewhat unclear. The discussion could be more nuanced and certain conclusions appear speculative.

      The authors aimed to evaluate how brain-age and brain-cognition indices capture cognitive decline (as mentioned in their title) but did not employ longitudinal data, essential for calculating 'decline'. As a result, 'cognition-fluid' should not be used interchangeably with 'cognitive decline,' which is inappropriate in this context.

      In their first aim, the authors compared the contributions of brain-age and chronological age in explaining variance in cognition-fluid. Results revealed much smaller effect sizes for brain-age indices compared to the large effects for chronological age. While this comparison is noteworthy, it highlights a well-known fact: chronological age is a strong predictor of disease and mortality. Has the brain-age literature systematically overlooked this effect? If so, please provide relevant examples. They conclude that due to the smaller effect size, brain-age may lack clinical significance, for instance, in associations with neurodegenerative disorders. However, caution is required when speculating on what brain-age may fail to predict in the absence of direct empirical testing. This conclusion also overlooks extant brain-age literature: although effect sizes vary across psychiatric and neurological disorders, brain-age has demonstrated significant effects beyond those driven by chronological age, supporting its utility.

      The second aim's results reveal a discrepancy between the accuracy of their brain-age models in estimating age and the brain-age's capacity to explain variance in cognition-fluid. The authors suggest that if the ultimate goal is to capture cognitive variance, brain-age predictive models should be optimized to predict this target variable rather than age. While this finding is important and noteworthy, additional analyses are needed to eliminate potential confounding factors, such as correlated noise between the data and cognitive outcome, overfitting, or the inclusion of non-healthy participants in the sample. Optimizing brain-age models to predict the target variable instead of age could ultimately shift the focus away from the brain-age paradigm, as it might optimize for a factor differing from age.

      While a primary goal in biomarker research is to obtain indices that effectively explain variance in the outcome variable of interest, thus favouring models optimized for this purpose, the authors' conclusion overlooks the potential value of 'generic/indirect' models, despite sacrificing some additional explained variance provided by ad-hoc or 'specific/direct' models. In this context, we could consider brain-age as a 'generic' index due to its robust out-of-sample validity and significant associations across various health outcome variables reported in the literature. In contrast, the brain-cognition index proposed in this study is presumed to be 'specific' as, without out-of-sample performance metrics and testing with different outcome variables (e.g., neurodegenerative disease), it remains uncertain whether the reported effect would generalize beyond predicting cognition-fluid, the same variable used to condition the brain-cognition model in this study. A 'generic' index like brain-age enables comparability across different applications based on a common benchmark (rather than numerous specific models) and can support explanatory hypotheses (e.g., "accelerated ageing") since it is grounded in its own biological hypothesis. Generic and specific indices are not mutually exclusive; instead, they may offer complementary information. Their respective utility may depend heavily on the context and research or clinical question.

      The study's third aim was to evaluate the authors' new index, brain-cognition. The results and conclusions drawn appear similar: compared to brain-age, brain-cognition captures more variance in the outcome variable, cognition-fluid. However, greater context and discussion of limitations is required here. Given the nature of the input variables (a large proportion of models in the study were based on fMRI data using cognitive tasks), it is perhaps unsurprising that optimizing these features for cognition-fluid generates an index better at explaining variance in cognition-fluid than the same features used to predict age. In other words, it is expected that brain-cognition would outperform brain-age in explaining variance in cognition-fluid since the former was optimized for the same variable in the same sample, while brain-age was optimized for age. Consequently, it is unclear if potential overfitting issues may inflate the brain-cognition's performance. This may be more evident when the model's input features are the ones closely related to cognition, e.g., fMRI tasks. When features were less directly related to cognitive tasks, e.g., structural MRI, the effect sizes for brain-cognition were notably smaller (see 'Total Brain Volume' and 'Subcortical Volume' models in Figure 6). This observation raises an important feasibility issue that the authors do not consider. Given the low likelihood of having task-based fMRI data available in clinical settings (such as hospitals), estimating a brain-cognition index that yields the large effects discussed in the study may be challenged by data scarcity.

      This study is valuable and likely to be useful in two main ways. First, it can spur further research aimed at disentangling the lack of correspondence reported between the accuracy of the brain-age model and the brain-age's capacity to explain variance in fluid cognitive ability. Second, the study may serve, at least in part, as an illustration of the potential pros and cons of using indices that are specific and directly related to the outcome variable versus those that are generic and only indirectly related.

      Overall, the authors effectively present a clear design and well-structured procedure; however, their work could have been enhanced by providing more context for both the brain-age and brain-cognition indices, including a discussion of key concepts in the brain-age paradigm, which acknowledges that chronological age strongly predicts negative health outcomes, but crucially, recognizes that ageing does not affect everyone uniformly. Capturing this deviation from a healthy norm of ageing is the key brain-age index. This lack of context was mirrored in the presentation of the four brain-age indices provided, as it does not refer to how these indices are used in practice. In fact, there is no mention of a more common way in which brain-age is implemented in statistical analyses, which involves the use of brain-age delta as the variable of interest, along with linear and non-linear terms of age as covariates. The latter is used to account for the regression-to-the-mean effect. The 'corrected brain-age delta' the authors use does not include a non-linear term, which perhaps is an additional reason (besides the one provided by the authors) as to why there may be small, but non-zero, common effects of both age and brain-age in the 'corrected brain-age delta' index commonality analysis. The context for brain-cognition was even more limited, with no reference to any existing literature that has explored direct brain-cognitive markers, such as brain-cognition.

      While this paper delivers intriguing and thought-provoking results, it would benefit from recognizing the value that both approaches--brain-age indices and more direct, specific markers like brain-cognition--can contribute to the field.

    3. Reviewer 3 (Public Review):

      The main question of this article is as follows: "To what extent does having information on brain-age improve our ability to capture declines in fluid cognition beyond knowing a person's chronological age?" While this question is worthwhile, considering that there is considerable confusion in the field about the nature of brain-age, the authors are currently missing an opportunity to convey the inevitability of their results, given how brain-age and the brain-age gap are calculated. They also argue that brain-cognition is somehow superior to brain-age, but insufficient evidence is provided in support of this claim.

      Specific comments follow:

      - "There are many adjustments proposed to correct for this estimation bias" (p3). Regression to the mean is not a sign of bias. Any decent loss function will result in over-predicting the age of younger individuals and under-predicting the age of older individuals. This is a direct result of minimizing an error term (e.g., mean squared error). Therefore, it is inappropriate to refer to regression to the mean as a sign of bias. This misconception has led to a great deal of inappropriate analyses, including "correcting" the brain age gap by regressing out age.

      - "Corrected Brain Age Gap in particular is viewed as being able to control for both age dependency and estimation biases (Butler et al., 2021)" (p3). This summary is not accurate as Butler and colleagues did not use the words "corrected" and "biases" in this context. All that authors say in that paper is that regressing out age from the brain age gap - which is referred to as the modified brain age gap (MBAG) - makes it so that the modified brain age gap is not dependent on age, which is true. This metric is meaningless, though, because it is the variance left over after regressing out age from residuals from a model that was predicting age. If it were not for the fact that regression on residuals is not equivalent to multiple regression (and out of sample estimates), MBAG would be a vector of zeros. Upon reading the Methods, I noticed that the authors use a metric from Le et al. (2018) for the "Corrected Brain Age Gap". If they cite the Butler et al. (2021) paper, I highly recommend sticking with the same notation, metrics and terminology throughout. That would greatly help with the interpretability of the present manuscript, and cross-comparisons between the two.

      - "However, the improvement in predicting chronological age may not necessarily make Brain Age to be better at capturing Cognitionfluid. If, for instance, the age-prediction model had the perfect performance, Brian Age Gap would be exactly zero and would have no utility in capturing Cognitionfluid beyond chronological age" (p3). I largely agree with this statement. I would be really careful to distinguish between brain-age and the brain-age gap here, as the former is a predicted value, and the latter is the residual times -1 (i.e., predicted age - age). Therefore, together they explain all of the variance in age. Changing the first sentence to refer to the brain-age gap would be more accurate in this context. The brain-age gap will never be exactly zero, though, even with perfect prediction on the training set, because subjects in the testing set are different from the subjects in the training set.

      - "Can we further improve our ability to capture the decline in cognitionfluid by using, not only Brain Age and chronological age, but also another biomarker, Brain Cognition?". This question is fundamentally getting at whether a predicted value of cognition can predict cognition. Assuming the brain parameters can predict cognition decently, and the original cognitive measure that you were predicting is related to your measure of fluid cognition, the answer should be yes. Upon reading the Methods, it became clear that the cognitive variable in the model predicting cognition using brain features (to get predicted cognition, or as the authors refer to it, brain-cognition) is the same as the measure of fluid cognition that you are trying to assess how well brain-cognition can predict. Assuming the brain parameters can predict fluid cognition at all, it is then inevitable that brain-cognition will predict fluid cognition. Therefore, it is inappropriate to use predicted values of a variable to predict the same variable.

      - "However, Brain Age Gap created from the lower-performing age-prediction models explained a higher amount of variation in Cognitionfluid. For instance, the top performing age-prediction model, "Stacked: All excluding Task Contrast", generated Brain Age and Corrected Brain Age that explained the highest amount of variation in Cognitionfluid, but, at the same time, produced Brian Age Gap that explained the least amount of variation in Cognitionfluid" (p7). This is an inevitable consequence of the following relationship between predicted values and residuals (or residuals times -1): y=(y-y ̂ )+y ̂. Let's say that age explains 60% of the variance in fluid cognition, and predicted age (y ̂) explains 40% of the variance in fluid cognition. Then the brain age gap (-(y-y ̂)) should explain 20% of the variance in fluid cognition. If by "Corrected Brain Age" you mean the modified predicted age from Butler et al (2021), the "Corrected Brain Age" result is inevitable because the modified predicted age is essentially just age with a tiny bit of noise added to it. From Figure 4, though, this does not seem to be the case, because the lower left quadrant in panel (a) should be flat and high (about as high as the predictive value of age for fluid cognition). So it is unclear how "Corrected Brain Age" is calculated. It looks like you might be regressing age out of brain-age, though from your description in the Methods section, it is not totally clear. Again, I highly recommend using the terminology and metrics of Butler et al (2021) throughout to reduce confusion. Please also clarify how you used the slope and intercept. In general, given how brain-age metrics tend to be calculated, the following conclusion is inevitable: "As before, the unique effects of Brain Age indices were all relatively small across the four Brain Age indices and across different prediction models" (p10).

      "On the contrary, the unique effects of Brain Cognition appeared much larger" (p10). This is not a fair comparison if you do not look at the unique effects above and beyond the cognitive variable you predicted in your brain-cognition model. If your outcome measure had been another metric of cognition other than fluid cognition, you would see that brain-cognition does not explain any additional variance in this outcome when you include fluid cognition in the model, just as brain-age would not when including age in the model (minus small amounts due to penalization and out-of-sample estimates). This highlights the fact that using a predicted value to predict anything is worse than using the value itself.

      "First, how much does Brain Age add to what is already captured by chronological age? The short answer is very little" (p12). This is a really important point, but the paper requires an in-depth discussion of the inevitability of this result, as discussed above.

      "Third, do we have a solution that can improve our ability to capture Cognitionfluid from brain MRI? The answer is, fortunately, yes. Using Brain Cognition as a biomarker, along with chronological age, seemed to capture a higher amount of variation in Cognitionfluid than only using Brain Age" (p12). I suggest controlling for the cognitive measure you predicted in your brain-cognition model. This will show that brain-cognition is not useful above and beyond cognition, highlighting the fact that it is not a useful endeavor to be using predicted values.

      "Accordingly, a race to improve the performance of age-prediction models (Baecker et al., 2021) does not necessarily enhance the utility of Brain Age indices as a biomarker for Cognitionfluid. This calls for a new paradigm. Future research should aim to build prediction models for Brian Age indices that are not necessarily good at predicting age, but at capturing phenotypes of interest, such as Cognitionfluid and beyond" (p13). I whole-heartedly agree with the first two sentences, but strongly disagree with the last. Certainly your results, and the underlying reason as to why you found these results, calls for a new paradigm (or, one might argue, a pre-brain-age paradigm). As of now, your results do not suggest that researchers should keep going down the brain-age path. While it is difficult to prove that there is no transformation of brain-age or the brain-age gap that will be useful, I am nearly sure this is true from the research I have done. If you would like to suggest that the field should continue down this path, I suggest presenting a very good case to support this view.

    1. Reviewer #1 (Public Review):

      The study by Korona and colleagues presents a rigorous experimental strategy for generating and maintaining a nearly complete set of monosomic yeast lines, thereby establishing a new standard for studying monosomes. Their careful approach in generating and handling monosome yeast lines, coupled with their use of high-throughput DNA sequencing and RNA sequencing, addresses concerns related to genomic instability and is commendable. However, I would like to express my concerns regarding the second part of the study, particularly the calculation of epistasis and the conclusion that vast positive epistatic effects have been observed. I believe that the conclusion of positive epistasis for fitness might be premature due to potential errors in estimating the expected fitness.

      The method used to calculate fitness expectation (1 + sum(di), where di = rDRi - 1) may be inappropriate. By reading Figure 2a, it appears that the authors defined rDR as log(mutant growth rate)/log(wild-type growth rate), but I am unsure about the biological meaning of 1 + sum(di) here. In other words, what does it exactly mean when a negative y-axis value is observed in Figure 2b if it is a relative doubling rate? I would assume that the log transformation should be performed after (rather than before) dividing the mutant growth rate by the wild-type growth rate (i.e., log(mutant growth rate/wild-type growth rate)). I believe the expected growth rate for a monosome should be calculated as exp(sum(log(mutant growth rate i/wild-type growth rate))), which can then be compared with the wild-type (with a value equal to 1). Based on this calculation method, if gene A exhibits a 20% reduction in fitness when halved (A/-) and gene B exhibits a 30% reduction (B/-), the expected fitness of A/- B/- should be 56%. Therefore, it is unclear how exactly the expected fitness without epistasis was calculated and how that would affect the estimation of the sign and quantity of epistasis.

      While widespread positive epistasis in yeast has been reported by other studies (e.g., doi: 10.1038/ng.524, but not to the extent reported in this study), the conclusion of the current study might not be sufficiently supported. I recommend that the authors revisit their calculation methods to provide a more convincing conclusion on the presence of positive epistasis for fitness in their dataset. Overall, I appreciate the authors' efforts in this study, but believe that addressing these concerns is essential for strengthening the validity of their findings.

    2. Reviewer #2 (Public Review):

      This study examines most monosomies in yeast in comparison to synthetic lethals resulting from combinations of heterozygous gene deletions that individually have a detrimental effect. The survival of monosomies, albeit with detrimental growth defects, is interpreted as positive epistasis for fitness. Gene expression was examined in monosomies in an attempt to gain insight into why monosomies can survive when multiple heterozygous deletions on the respective chromosome do not. In the RNAseq experiments, many genes were interpreted to be increased in expression and some were interpreted as reduced. Those with the apparent strongest increase were the subunits of the ribosome and those with the apparent strongest decreases were subunits of the proteasome.

      The initiation and interpretation of the results were apparently performed in a vacuum of a century of work on genomic balance. Classical work in the flowering plant Datura and in Drosophila found that changes in chromosomal dosage would modulate phenotypes in a dosage sensitive manner (for references see Birchler and Veitia, 2021, Cytogenetics and Genome Research 161: 529-550). In terms of molecular studies, the most common modulation across the genome for monosomies is an upregulation (Guo and Birchler, Science 266: 1999-2002; Shi et al. 2021, The Plant Cell 33: 917-939).

      In the present yeast study, not only are there apparent increases for ribosomal subunits but also for many genes in the GAAC pathway, the NCR pathway, and Msn2p. The word "apparent" is used because RNAseq studies can only determine relative changes in gene expression (Loven et al., 2012, Cell 151: 476-482). Because aneuploidy can change the transcriptome size in general (Yang et al., 2021, The Plant Cell 33: 1016-1041), it is possible and maybe probable that this occurs in yeast monosomies as well. If there is an increase in the general transcriptome size, then there might not be much reduction of the proteosome subunits as claimed and the increases might be somewhat less than indicated.

      It should be noted that contrary to the claims of the cited paper of Torres et al 2007 (Science 317: 916-924), a reanalysis of the data indicated that yeast disomies have many modulated genes in trans with downregulated genes being more common (Hou et al, 2018, PNAS 115: E11321-E11330). The claim of Torres et al that there are no global modulations in trans is counter to the knowledge that transcription factors are typically dosage sensitive and have multiple targets across the genome. The inverse effect trend is also true of maize disomies (Yang et al., 2021, The Plant Cell 33: 1016-1041), maize trisomies (Shi et al., 2021), Arabidopsis trisomies (Hou et al. 2018) and Drosophila trisomies (Sun et al. 2013, PNAS 110: 7383-7388; Sun et al., 2013, PNAS 110: 16514-16519; Zhang et al., 2021, Scientific Reports 11: 19679; Zhang et al., genes 12: 1606). Taken as a whole it would seem to suggest that there are many inverse relationships of global gene expression with chromosomal dosage in both yeast disomies and monosomies.

      To clarify the claims of this study, it would be informative to produce distributions of the various ratios of individual gene expression in monosomy versus diploid as performed by Hou et al. 2018. This will better express the trends of up and down regulation across the genome and whether there are any genes on the varied chromosome that are dosage compensated. The authors claim there are no genes that are compensated on the varied chromosome but considering how many genes are upregulated across the genome, it would seem that a subset are probably upregulated on the cis chromosome as well and approach the diploid level, i.e. are dosage compensated. A second experiment that would clarify the results would be to perform estimates of the general transcriptome size. If the general transcriptome size is actually increased, the claims of reduced expression of the proteosome might need to be revised (See Loven et al., 2012 for an explanation).

    3. Reviewer #3 (Public Review):

      The current study examined 13 monosomic yeast strains that lost different individual chromosomes. By comparing the fitness of monosomic strains and several heterozygous deletion strains, the authors observed strong positive epistasis for fitness. The transcriptomes of monosomic strains indicated that general gene-dose compensation is not the reason for fitness gains. On the other hand, gene expression of ribosomal proteins was up-regulated and proteasome subunit expression was down-regulated in all tested monosomic strains. The authors speculated that overexpression in combination with decreased degradation of the insufficient proteins might explain the positive epistasis observed in monosomic strains. This study investigates an important biological question and has some interesting results. However, I have some reservations about the data interpretations listed below.

      1) In Figure 3b (and line 179), the authors stated that those haploinsufficient genes were not transcribed at elevated rates, but almost half of them are in reddish colors (indicating that the expression is higher than 1-fold). Obviously, many haploinsufficient genes are up-regulated in monosomic strains. What the data really show is that the level of overexpression is not correlated with the fitness effect of the deletion (since all the p values are not significant). The authors need to correct their conclusions.

      2) Why are some monosomic strains removed from the transcriptomics analysis, especially when the chromosome IV and XV strains show very strong positive epistasis? The authors need to provide an explanation here.

      3) The authors stated that diploidy observed in chromosome VII and XIII strains were due to endoreplication after losing the marked chromosomes (lines 97 and 117). Isn't chromosome missegregation an equally possible explanation? Since monosomic cells are generated by chromosome missegregation during mitosis, another chromosome missegregation event may occur to rescue the fitness (or viability) of monosomic cells in these strains.

    1. Reviewer #1 (Public Review):

      This manuscript is interesting because of the exploration of a novel model organisms utilizing next-generation sequencing approaches, such as single-cell-RNA-seq. Despite the authors' efforts the manuscript lacks a cohesive narrative and suffers from being extremely preliminary in nature. For example, most of the figures are cut and pasted directly from the computational programs with very little formatting or thought to creating new knowledge from the data generated. Essentially the manuscript consists of 2-3 experiments where the authors performed single-cell-RNA-seq on different anatomical locations in the pig and also on a couple of different pig types (The Chenghua and Large White). The authors used standard computational pipelines consisting of Seurat, Monocle, Cell Chat, and others to characterize differences in their data.

      There is potential in this manuscript but the authors should improve upon the manuscript by mining the data better and generating a better understanding of anatomical positions of pig skin by evaluating the Hox genes.

    2. Reviewer #2 (Public Review):

      The authors aimed to analyze different dermal compositions of various skin regions, focusing on fibroblast, endothelium and smooth muscle cells. They collect skin samples from six different skin regions of adult pig skin including the head, ear, shoulder, back, abdomen, and leg skins. After dissociating the tissues into single cells, they perform single-cell RNA analyses. A total of 215 thousand cells were analyzed. The authors identified distinct cell clusters, enriched molecules within each cell cluster, and the dynamic of cell cluster transition and interactions. Based on their findings, they conclude that tenascin N, collagen 11A1, and inhibin A are candidate genes for facilitating extracellular matrix accumulation.

      Strength:

      The methodology they used to prepare scRNA data is appropriate. Bioinformatic analyses are solid. The authors emphasize the heterogeneous phenotypes and composition ratios of smooth muscle cells, endothelial cells and fibroblasts in each skin region. They identify potential cell communication pathways among cell clusters. Expression of selective molecules on tissue sections were done.

      Weakness:

      While tenascin, collagen and inhibin are highlighted as genes important for ECM accumulation, there is no functional evaluation data. The discussion section is a compilation of comparisons, and is somewhat fragmentary. More significance from this dataset could have been extracted.

      Summary:

      The manuscript has the potential to be a useful cellular atlas. The direct impact of this paper on skin biology is limited because of the lack of evaluation data. But the database can be useful to many future studies using the pig skin model.

    1. Reviewer #1 (Public Review):

      The goal of the authors was to understand how the kinase, hpk-1, could regulate and interrogate different aspects of cellular stress resilience. To this end, the authors uncovered that hpk-1 is co-expressed with several transcription factors known to regulate different stress responses and this co-regulation only appears to occur in the nervous system. Taking a deeper dive, they convincingly find that hpk-1 overexpression in either serotonergic of GABAergic neurons can protect animals from heat stress or toxic protein aggregates. Interesting, it appears that hpk1 functions in serotonergic neurons differently from GABAergic neurons in the induction of the heat shock response and autophagy.

      Overall, the experiments and results are solid and the conclusions drawn reflect the result. The model suggests that the receiving cell deciphers that either heat shock response or autophagy can be induced in the same cell, but the data suggest otherwise. perhaps the model should be reworked to reflect this point.

    2. Reviewer #2 (Public Review):

      Lazaro-Pena et al. investigated how a conserved kinase called homeodomain interacting protein kinase (HPK-1), helps to preserve neuronal function, motlity and stress resilience during aging in the metazoan, C. elegans. HPK-1 is a member of the HIPK kinases that, in mammalian systems, regulate the activity of transcription factors (TFs), chromatin modifiers, signaling molecules and scaffolding proteins in response to cellular stress. The group finds that in C. elegans, HPK-1 depletion causes a premature shortening of lifespan and decreases motility and stress resilience in the whole animal. Conversely, increasing active, but not enzymatically dead, HPK-1 levels in the nervous system alone is sufficient to extend lifespan and mitigate the accumulation of aging-associated protein aggregates. The authors then identify a subset of neurons and cell stress response pathways that could be responsible for the contribution of HPK-1 to lifespan and neuronal health. This leads the authors to propose a hypothesis whereby HPK-1 activity in specific neurons preserves protein homeostasis and neuronal integrity, and thus limits the aging-induced decline in organismal function.<br /> Overall, the authors test several functional readouts for neuronal activity to support their claim that HPK-1 activity limits functional decline during aging. These experiments are solid, and the use of a kinase dead HPK-1 in these experiments adds strong support to their claim that HPK-1 activity preserves organismal health. However, weaknesses in the experimental layout and rigor, and the statistical analyses of the publicly available data, limit the inferences that can be made, and further experimental evidence would be required to confirm the working model proposed by the authors.

    1. Reviewer #1 (Public Review):

      The authors have investigated the effect of the toxin mycolactone produced by mycobacterium ulcerans on the endothelium. Mycobacterium ulcerans is involved in Buruli ulcer classified as a neglected disease by WHO. This disease has dramatic consequences on the microcirculation causing important cutaneous lesions. The authors have previously demonstrated that endothelial cells are especially sensitive to mycolactone. The present study brings more insight into the mechanism involved in mycolactone-induced endothelial cells defect and thus in microcirculatory dysfunction. The authors showed that mycolactone directly affected the synthesis of proteoglycans at the level of the golgi with a major consequence on the quality of the glycocalyx and thus on the endothelial function and structure. Importantly, the authors show that blockade of the enzyme involve in this synthesis (galactosyltransferase II) phenocopied the effects of mycolactone. The effect of mycolactone on the endothelium was confirmed in vivo. Finally, the authors showed that exogenous laminin-511 reversed the effects of mycolactone, thus opening an important therapeutic perspective for the treatment of wound healing in patients suffering Buruli ulcer and presenting lesions.

    2. Reviewer #2 (Public Review):

      The authors dissected the effects of mycolacton on endothelial cell biology and vessel integrity. The study follows up on previous work by the same group, which highlighted alterations in vascular permeability and coagulation in patients with Buruli ulcer. It provides a mechanistic explanation for these clinical observations, and suggests that blockade of Sec61 in endothelial cells contributes to tissue necrosis and slow wound healing.

      Overall, the generated data support their conclusions and I only have two major criticisms:

      - Replicating the effects of mycolactone on endothelial parameters with Ipomoeassin F (or its derivative ZIF-80) does not demonstrate that these effects are due to Sec61 blockade. This would require genetic proof, using for example endothelial cells expressing Sec61A mutants that confer resistance to mycolactone blockade. The authors claimed in the Discussion that they could not express such mutants in primary endothelial cells, but did they try expressing mutants in HUVEC cell lines? Without such genetic evidence all statements claiming a causative link between the observed effects on endothelial parameters and Sec61 blockade should be removed or rephrased. The same applies to speculations on the role of Sec61 in epithelial migration defects in discussion. Data corresponding to Ipomoeassin F and ZIF-80 do not add important information, and may be removed or shown as supplemental information.<br /> - While statistical analysis is done and P values are provided, no information is given on the statistical tests used, neither in methods nor results. This must be corrected, to evaluate the repeatability and reproducibility of their data.

    3. Reviewer #3 (Public Review):

      Buruli ulcer is a severe skin infection in humans that is caused by a bacterium, Mycobacterium ulcerans. The main clinical sign is a massive tissue necrosis subsequent to an edema stage. The main virulence factor called mycolactone is a polyketide with a lactone core and a long alkyl chain that is released within vesicles by the bacterium. Mycolactone was already shown to account for several disease phenotypes characteristic of Buruli ulcer, for instance tissue necrosis, host immune response modulation and local analgesia. A large number of cellular pathways in various cell types was reported to be impacted by mycolactone. Among those, the Sec61 translocon involved in the transport of certain proteins to the endoplasmic reticulum was first identified by the authors of the study and is currently the most consensual target. Mycolactone disruption of Sec61 function was then shown to directly impact on cell apoptosis in macrophages, limited immune responses by T-cells and increased autophagy in dermal endothelial cells and fibroblasts. In their manuscript, Tzung-Harn Hsieh and their collaborators investigated the Sec61- dependent role of mycolactone on morphology, adhesion and migration of primary human dermal microvascular endothelial cells (HDMEC). They used a combination of sugar and proteomic studies on a live image-based phenotypic assay on HDMEC to characterize the effect of mycolactone. First, they showed that upon incubation of monolayer of HDMEC with mycolactone at low dose (10 ng/mL) for 24h, the cells become elongated before rounding and eventually detached from the culture dish at 48h. Next, mycolactone was probed on a scratch assay and migration of the cells ceased upon a 24h incubation. The same effect as mycolactone on these two assays was observed for two other Sec61 inhibitors Ipomoeassin F and ZIF-80. Then, the authors resorted to the widely established mouse footpad model of M. ulcerans infection to evidence fibrinogen accumulation outside the blood vessel within the endothelium at 28 days post-infection, correlating with severe endothelial cell morphology changes.

      To dissect the molecular pathways involved in these phenotypes, the authors performed an HDMEC membrane protein analysis and showed a decrease in the numbers of proteins involved in glycosylation and adhesion. As protein glycosylation mainly occurs in the Golgi apparatus, a deeper analysis revealed that enzymes involved in glycosaminoglycan (GAG) synthesis were lost in mycolactone treated HDMEC. A combination of immunofluorescence and flow cytometry approaches confirmed the impact of mycolactone on the ability of endothelial cells to synthesize GAG chains. The mycolactone effect on cell elongation was phenocopied by knock-down of galactosyltransferase II (B3Galt6) involved in GAG biosynthesis. A second extensive analysis of the endothelial basement membrane component and their ligands identified multiple laminins affected by mycolactone. Using similar functional studies as for GAG, the impact of mycolactone on cell rounding and migration could be reversed by the addition of laminin α5.

      The major strengths of the study relies on a combination of cleverly designed phenotypic assays and in-depth cleverly designed membrane proteomic studies and follow-up analysis.<br /> The results really support the conclusions. Congratulations!<br /> The discussion takes into account the current state of the art, which has mostly been established by the authors of the present manuscript.

    1. Reviewer #1 (Public Review):

      Testosterone modulates a range of adult behaviors, and its signaling contributes to behavioral plasticity. One of the more remarkable examples of this influence can be found in female canaries, who do not normally sing or have elevated levels of testosterone. However, introducing testosterone experimentally causes female canaries to begin singing within days and results in an enlargement of the neural circuitry responsible for song production. This work seeks to characterize the transcriptional responses in a key song brain region, HVC, to testosterone treatment in female canaries. They assay gene expression at a number of time points following testosterone administration and perform analyses characterizing patterns of differential expression using a broad range of approaches. This analysis in particular has a focus on understanding the putative gene regulatory networks that drive the observed testosterone-driven transcriptional responses, with the ultimate aim of understanding how these networks influence neural and behavioral properties.

      Strengths

      This work is well-focused on a specific question and has a number of excellent qualities. The experimental design of this study is strong, and the fine temporal resolution analysis of testosterone effects on gene expression in female songbirds is a novel and compelling approach to understanding the molecular basis of sex hormone-regulated neural plasticity. The authors have carefully assessed the influence of testosterone on a range of female song features, providing an excellent behavioral reference point for their transcriptional analysis. The gene expression analysis, from differential expression to correlation-based network analysis, appears generally sound and provides a good overview of the effects of testosterone on gene expression in HVC. Combined, the expression, neural, and behavioral data provide a rich resource to better understand the molecular mechanisms underlying testosterone-modulate neural and behavioral plasticity.

      Weaknesses

      However, I do have several concerns about this work, and these concerns fall into three main areas:

      1) At several points, the authors make claims that I believe extend beyond the data presented here. For instance, in the Abstract (line 27), the authors state "the development of adult songs requires restructuring the entire HVC, including most HVC cell types, rather than altering only neuronal subpopulations or cellular components." The gene ontology analyses performed do suggest that there is a progression from cellular transcriptional changes to organ-level changes, however caution should be taken in claiming that "most HVC cell types" exhibit transcriptional changes. In fact, according to Fig. 3D most of the transcriptional changes appear restricted to neurons. As the authors themselves note elsewhere, claims at this resolution are difficult without support from single-cell approaches. I do not suggest that the authors need to perform single-cell RNA-seq for this work, but strong claims like this should be avoided.

      2) Similarly the Abstract states that parallel regulation "directly" by androgen and estrogen receptors, as well as the transcription factor SP8, "lead" to the transcriptional and neural changes observed after testosterone treatment of females. However, experiments that demonstrate such a causal role have not been performed. The authors do perform a set of bioinformatic analyses that point in this direction - enrichment of androgen and estrogen receptor binding sites in the promoters of differentially expressed genes, high coexpression of SP8 with other genes, and the enrichment of predicted SP8 binding sites in coexpressed genes. However, further support for direct regulation, at the level that the authors claim, would require some form of transcription factor binding assay, e.g. ChIP-seq or CUT&RUN. I am fully aware that these assays are enormously challenging to perform in this system (and again I don't suggest that these experiments need to be done for this work); however, statements of direct regulation should be tempered. This is especially true for the role of SP8. This does appear to be a compelling target, but without some manipulation of the activity of SP8 (e.g. through knockdowns) and subsequent analysis of gene expression, it is too much to claim that this transcription factor is a regulatory link in the testosterone-driven responses. SP8 does appear to be a highly connected hub gene in correlation network analysis, but this alone does not indicate that it acts as a hub transcription factor in a gene regulatory network.

      Along these lines, the in situ hybridizations of ESR2 and SP8 presented in Figure 5 need significant improvement. The signals in the red and green channels, SP8 and ESR2, look suspiciously similar, showing almost identical subcellular colocalization. This signal pattern usually suggests bleed-through during image acquisition, as it's highly unlikely that the mRNA of both genes would show this degree of overlap. I would suggest that control ISHs be run with one probe left out, either SP8 or ESR2, and compare these ISHs with the dual label ISHs to determine if signal intensity and cellular distribution look similar. Furthermore, on lines 354-356 the authors write, "The fact that the two genes were expressed nearby in the same cell may indicate physical interactions between the gene pair and warrant further investigation into the nature of their relationship.". Yet, even if the overlap between ESR2 and SP8 shown in Figure 5 is confirmed, close localization of transcripts does not imply that the protein products physically interact. The STRING bioinformatic analysis is more convincing that there is a putative regulatory interaction between ESR2 and the SP8 locus, and this suggestion of protein-protein interaction is weak and should be omitted. In addition, the authors note that ESR2 has not been detected in the songbird HVC in a previous study. To further demonstrate the expression of ESR2 (and SP8) in HVC, it would be useful to plot their expression from the microarray data across the different testosterone conditions.

      3) My final concern lies in the interpretation of these results as generalizable to other sex hormone-modualated behaviors. On lines 452-455, the authors write, "This suggests that the testosterone (or estrogen)-triggered induction of adult behaviors, such as parental behavior and courtship, requires a much more extensive reorganization of the transcriptome and the associated biological functions of the brain areas involved than previously thought.". The experiments and argument likely apply to other neural systems to undergo large seasonal fluctuations in sex hormones and similar morphological changes. However, the authors argue that the large number of transcriptional changes seen here may generalize broadly to sex hormone modulated adult behaviors. I think there are a couple of problems with this argument. First, as described here and in past work, testosterone drives major morphological changes the song system of adult canaries; such dramatic changes are not seen for instance in sex hormone-receptive areas underlying mating behavior in adult mammals. Similarly, the study introduced testosterone into female birds which drives a greater morphological change in HVC relative to similar manipulations in males, which again may account for the large number of differentially expressed genes. I would temper the generality of these results and note how the experimental and biological differences between this system and other sex hormone-responsive systems and behaviors may contribute to the observed transcriptional differences.

    2. Reviewer #2 (Public Review):

      During the breeding season, testosterone (T) levels rise in males, leading to seasonal song production. This behavioral plasticity is accompanied by changes in the size of brain nuclei that control song production, particularly the HVC, which expresses both androgen and estrogen receptors. To determine how testosterone controls song production, Ko et al performed a six point timecourse in female birds implanted with T capsules. The authors carefully document the onset of song production around day 4, and the subsequent progression from sub-songs to plastic songs with more complex syllables. They demonstrate a corresponding increase in HVC volume by 14 days. To identify the genes that direct these events, the authors compared gene expression in the HVC at each timepoint, ranging from 1 hr to 14 days. They report strong induction of gene expression at only 1 hr after T treatment. At subsequent time points, the number of induced genes varies markedly, with the greatest number of differential genes detected at day 14, when the HVC has increased in volume. Overall, a relatively small number of genes show consistent changes in expression across the duration of treatment, while the majority fall into a "transient" category of showing up- or -downregulation at one or a subset of timepoints. The authors put forward a model whereby T can rapidly induce the expression of transcription factors within the first 1-3 hours, followed by additional gene expression cascades directed by the induced TFs. These downstream pathways would then permit changes in HVC structure and connectivity to facilitate singing.

      The bulk of the manuscript details WGCNA, GO terms, and promoter ARE/ERE motif abundance, using the initial pairwise comparisons for each timepoint as input lists. However, there are no p/adjp values provided for these pair-wise comparisons that form the basis of all subsequent analyses. Nor are there supplementary tables to indicate how consistent the replicates are within each group or how abundantly the genes-of-interest are expressed. With the statistical tests used here, and the lack of relevant information in the supplementary tables, I cannot determine if the data support the authors' conclusions. These omissions mar what is otherwise a conceptually intriguing line of investigation.

    3. Reviewer #3 (Public Review):

      I found this paper fascinating. It is a study that needed to be done in the field of behavioral endocrinology, as it addresses our understanding of exactly how steroid hormone action might regulate behavioral output like few other published studies. For decades, researchers have been implanting animals with steroids and observing corresponding changes in behavior, noting that some behavioral traits are immediately expressed, while others take time to be expressed. Why would this be? The answer lies in the temporal dynamics of steroid action, but few have ever addressed this. Having said this, I do have several issues with the manuscript that I think need to be addressed.

      1) My biggest concern is the sample size. Most of the time points only have 5 or 6 individuals represented, and I question whether these numbers provide sufficient statistical power to uncover the effects the authors are trying to explore. This is a particular problem when it comes to evaluating the supposed "transient" of testosterone on gene expression. There is currently little basis for distinguishing such effects from noise that accrues because of low power. This can be a major problem with studies of gene expression in non-model species, like canaries, where among-individual variability in transcript abundance is quite high. Thus, it is possible that one or two outliers at a given time point cause the effect testosterone at this time point to become indistinguishable from the controls; if so, then a gene may get put into the transient category, when in fact its regulation was not likely transient.

      2) More on the transient categorization. Would a gene whose expression is not immediately upregulated (within 1 hour), but is upregulated later on (say in the 14d group) be considered transient? If so, this seems problematic. Aren't the authors setting the null expectation of "non-transient" as a gene that does not increase immediately after 1 hour of treatment? The authors even recognize that it is quite surprising that gene expression changes after an hour. It may be that some genes whose regulation is classified as transient are simply slower to upregulate; but, really, would we say their expression in transient per se? Maybe I'm misunderstanding the categorizations?

      3) The authors don't fully explain the logic for using females in this study to measure a "male-typical" behavior (singing). My understanding is that females have underlying circuitry to sign, and T administration triggers it; thus, this situation that creates a natural experiment in which we can explore T's on brain and behavior, unlike in males which have fluctuating T. First, it might be good to clarify this logic for readers, unless perhaps I'm misunderstanding something. Second, I found myself questioning this logic a little. Our understanding of basic sex differences and the role that steroid hormones play in generating them has changed over the last few decades. There are, for example, a variety of genetic factors that underlie the development of sex differences in the brain (I'm especially thinking about the incredible work from Art Arnold and many others that harness the experimental power of the four core genotype mice). Might some of these factors influence female development, such that T's effects on the female brain and subsequent ability to increase HVC size and sing is not the same as males.

      4) I was surprised by the authors assertion that testosterone would only influence several tens or hundreds of genes. My read of the literature says that this is low, and I would have expected 100s, if not 1,000s, of genes to be influenced. I think that the total number of genes influenced by T is therefore quite consistent with the literature.

      5) I found the GO analyses presented herein uncompelling. As the authors likely know, not all GO terms are created equally. Some GO terms are enriched by hundreds of genes and thus reflect broad functional categories, whereas other GO terms are much more specific and thus are enriched by only a few genes. The authors report broad GO terms that don't tell us much about what is happening in the HVC functionally. This is particularly the case when a good 50% of the genome is being differentially regulated.

      6) The Genomatix analyses are similarly uncompelling. This approach to finding putative response elements can uncover many false positives, and these should always be validated thoroughly. Don't get me wrong-I appreciate that these validations are not trivial, and I value the authors response element analysis.

      7) I'm sceptical about the section of the paper that speculates about modification of steroid sensitivity in the HVC. These conclusions are based on analyses of mRNA expression of AKR1D1, SRD5A2, and the like. However, this does not reflect a different in the capacity to metabolize steroids, or at least there is little evidence to suggest this. Note that many of these transcripts have different isoforms, which could also influence steroidal metabolism.

    1. Reviewer #1 (Public Review):

      The study by Meyer and collaborators is tackling the question of cell type evolution between sea urchins and sea stars. To address this question, they generated single nuclei RNA sequencing libraries originating from early developmental time points of the sea star Patiria miniata. The resulting cell type atlas recapitulated the cell types previously known to exist as indicated by traditional methods in the past and revealed hidden cell type complexity. The authors provide evidence for the existence of previously not described sea star neuronal types and provide a thorough characterization of their molecular signature. Once validating the sea star cell type atlas through means of WMISH they computationally compared the sea star cell types to the sea urchin ones by taking advantage of already available single-cell RNA sequencing data, carried out at equivalent stages of Strongylocentrotus purpuratus development. Using 1-1 orthologs they integrated the sea star and sea urchin datasets and provided evidence for the presence of novel cell types that are not shared between the two animals (at least novel for the specific developmental window analyzed) such as the left coelomic pouch in sea urchin. Moreover, their analysis suggests that sea urchin skeletal cells, a population known to not exist in sea stars, correlate transcriptionally to other mesodermal cell types of the sea star, while sea urchin pigment cells appear to be very similar to sea star immune cells and neurons. Overall, the data of this study demonstrate how single-cell RNA sequencing can be used as a tool to study cell type evolution and provide complete molecular evidence of cell type diversification between the two echinoderm species. Lastly, their P. miniata cell type atlas will be of great importance for the evo-devo field and contribute to a better understanding of the development and evolution of novelties.

    2. Reviewer #2 (Public Review):

      A comparison of sea stars and sea urchins has been shown in the past to be a very fertile ground to understand the evolution of cell types. Among other reasons, this is due to the rich amount of information on the gene regulatory networks that control the establishment of cell types in the sea urchin embryo, the experimental amenability of both the sea urchin and sea star embryos, and the fact that embryos of these two animal groups show homologous cell types as well as morphological innovations. The study by Meyer et. al. takes full advantage of these features and takes the comparison of the sea urchin and the sea star to a new technological level by implementing single-cell technologies in the sea star embryo for the first time. The authors employ a single-nuclei RNA-sequencing protocol to profile the transcriptomes of all cell types in the sea star embryo at three stages of development and very convincingly show that the generated dataset is able to capture known cell types as well as previously undescribed cell types. In this context, the study significantly advances the molecular characterization of the previously known cell types and draws convincing conclusions about the biological significance of the newly discovered cell types. By using the newly generated sea star dataset, and a previously published sea urchin single-cell RNA-sequencing dataset at equivalent developmental stages, Meyer et. al. compare cell types between the two animals. Three important claims arise from this comparison: 1. The unanticipated discovery of a cell cluster in each species that has no counterpart in the clusters of the other species. 2. That the primary mesenchyme cells (PMCs) of the sea urchin, thought to be a novel cell type in the sea urchin, share significant transcriptomic profiles with the cells of the right coelom of the sea star; 3. That pigment cells of the sea urchin also thought to be a novelty in the sea urchin, shares transcriptomic signatures with immune and neural cells of the sea star.

      The strength of the study by Meyer et. al. is the robustness of the newly generated sea star single-nuclei RNA-sequencing dataset, as well as the rigorous validation and biologically meaningful interpretation of the data. As a result, the conclusions of Meyer et. al. concerning the description of sea star cell types are convincing, robust, and biologically important. A potential weakness of the study is the method used for integrating this data with that of the sea urchin. The integration method employed is based on generating a list of genes with 1:1 orthology between the two species and then computing a common cell type atlas by using only the genes with 1:1 orthology. Given the relatively large evolutionary distance between sea urchins and sea stars, and the growing evidence suggesting that paralogs may be more functionally similar than orthologs across species, the method employed for integrating the two datasets might limit the depth and robustness of the comparison.

    3. Reviewer #3 (Public Review):

      Overall, the data quality and analyses are solid. The authors have extracted a lot of detailed information about gene expression in specific cell types of the sea star embryo, and this descriptive narrative forms much of the Results section. However, the most interesting analyses will be the between-species comparisons. The authors identify several striking differences in the apparent presence or absence of specific cell types between seastar and sea urchins. Some confirm well-known differences, such as the absence of pigmented and skeletogenic mesenchyme cells in seastar embryos based on morphological comparisons. Other findings are novel, such as transcriptionally distinct left and right coelomic pouches as early as late gastrula and the apparent absence of germ cells in seastar embryos. These findings are based on solid evidence, highly informative regarding molecular details, and will no doubt inspire many future studies, both into developmental mechanisms per se and into the evolution of development. While the descriptive part of this study is solid and highly informative, the evolutionary interpretations are more problematic. The Abstract and Introduction emphasize the promise of sc/snRNAseq to shed light on the evolution of cell types and novelty, but the data themselves tell a less clear-cut story. Indeed, for me, the biggest takeaway from reading this manuscript is that it is quite difficult to identify when a novel cell type has evolved based solely on analysis of embryonic stages. The last stage examined is late gastrula, which means that some cell types may appear to be missing simply because they have not yet begun to differentiate transcriptionally. An example would be germ cells since adults make gametes. Another limitation is that just two species are compared. This means that for any given difference in cell type composition, it is not possible to distinguish whether this represents a novel cell type in one species or the loss (or delay in differentiation) of a cell type in the other species. The authors are generally careful to identify these limitations when presenting results, but it does lead me to wonder why they did not choose to examine later stages of development when more cells are clearly differentiated.

    1. Reviewer #1 (Public Review):

      The authors have compiled and analysed a unique dataset of patients with treatment-resistant aggressive behaviours who received deep brain stimulation (DBS) of the posterior hypothalamic region. They used established analysis pipelines to identify local predictors of clinical outcomes and performed normative structural and functional connectivity analyses to derive networks associated with treatment response. Finally, Gouveia et al. perform spatial transcriptomics to determine the molecular substrates subserving the identified circuits. The inclusion of data from multiple centres is a notable strength of this retrospective study, but there are current limitations in the methodology and interpretation of findings that need to be addressed.

      1) The validation of findings is heterogeneous and inconsistent across analysis pipelines. While the authors performed non-parametric permutation testing during sweet-spot mapping, structural and functional connectivity were validated using a 'four-fold consistency analysis'. The latter consists of a visual representation of streamlines and peak intensities after randomly dividing data into four groups, the findings were not validated quantitatively. If possible, the authors should apply permutation analysis in alignment with sweet-spot mapping and demonstrate the predictive ability of their identified networks in a LOO or k-fold cross-validation paradigm as carried out by similar studies. Given that the data has been derived from multiple centers, the prediction of left-out cohorts based on models generated by the remaining cohorts could be another means of validation. If validation is not possible, the authors should clearly state the limitations of their approach.

      2) In addition to a 'four-fold consistency analysis', functional connectivity was evaluated using LOOCV in a priori identified ROIs. Their network analysis, however, revealed a far more extensive network encompassing cortical, subcortical, and cerebellar structures. To avoid selection bias the authors should incorporate identified structures into their analysis and apply appropriate means of validation.

      3) Functional connectivity mapping: how were R-maps generated? The authors mention that patient-specific R-maps were p-thresholded and corrected for multiple comparisons, but it is not clear how group-level maps were generated. How did the authors perform regression on these maps? Were voxels that did not survive thresholding excluded?

      4) The authors determined that age was a significant prédictor of the outcome, but it is unclear whether certain age groups presented with distinct etiologies underlying their aggressiveness. For example, aggression in epilepsy may show a better response to DBS as opposed to schizophrenia. How does patient outcome change when stratifying according to etiology? How does model performance change when controlling for etiology? The authors should include the etiology of aggressiveness in Table 1.

      5) Stimulation parameters. The authors report average pulse widths of 219 µs and 142µs respectively, which is up to 4-fold higher as compared to DBS settings used conventionally in movement disorders and will significantly alter the volume of activated tissue. Did the authors account for the drastic increases in pulse width during VAT modeling?

      6) Imaging transcriptomics. The methods described lack detail: How did the authors account for differences in expression across donors, samples, and regions during preprocessing of the Allen Human Brain Atlas? How was expression data collapsed into regions of interest? Did the authors apply any normalization? Recent publications have introduced reproducible workflows for processing and preparing the AHBA expression data for analysis that is publicly available.

      7) 'genes with similar patterns of spatial distribution to the TFCE map were compiled in an extensive list'. It is unclear why authors used TFCE maps for spatial transcriptomics as opposed to the functional connectivity map featured in Figure 5. How was similarity measured between the TFCE map and the AHBA? How were candidate genes identified? Please provide a more comprehensive description of the analysis pipeline.

      8) What do the bar plots in Figure 7 (left) represent? P-values? The authors should label the axes to make this clear to the reader.

      9) Interprétation of imaging transcriptomics: The authors identify a therapeutic circuit associated with deep brain stimulation of the posterior hypothalamic area, however, it is unclear how to reconcile genes associated with hormones, inflammation, and plasticity in this context. The authors mention and discuss genes implicated in hormonal processing, specifically oxytocin. The results provided in Figure 7, however, do not support this finding and it is unclear how the authors identified genes linked to oxytocin. In addition, the authors identified reductions in the number of microglia and astrocytes, while oligodendrocytes were overexpressed relative to the expected distribution of genes per cell type. These findings were attributed to DBS effects, however, both connectomic and transcriptomic data are acquired from healthy subjects, which suggests a physiological deficit/enrichment in a therapeutic circuit. How do the authors interpret findings given that no electrode implantation and stimulation were performed?

      10) Data availability. Code used for data processing should be made openly available or shared as source data along with the Figures that were generated using the code. Sweet-spot, structural, and functional connectivity maps should be shared openly.

    2. Reviewer #2 (Public Review):

      Deep brain stimulation (DBS) is an important, relatively new approach for treating refractory psychiatric illnesses including depression, addiction, and obsessive-compulsive disorder. This study examines the structural and functional connections associated with symptom improvement following DBS in the posterior hypothalamus (pHyp-DBS) for severe and refractory aggressive behavior. Behavioral assessments, outcome data, electrode placements, and structural and functional (resting-state) imaging data were collected from 33 patients from 5 sites. The results show structural connections of the effective electrodes (91% of patients responded positively) were with sensorimotor regions, emotional regulation areas, and monoamine pathways. Functional connectivity between the target, periaqueductal gray, and amygdala was highly predictive of treatment outcome.

      Strengths.<br /> This dataset is interesting and potentially valuable.

      Weaknesses.<br /> The figures seem to indicate that electrodes and symptom improvement is located lateral to the hypothalamus, perhaps in the subthalamic nucleus (STN). This is might explain why the streamlines from the tractography are strongest in motor regions. The inclusion of the monoaminergic based on the tractography is not warranted, as the resolution is not sufficient to demonstrate the distinction between the MFB (a relatively small bundle) and others flowing through this region to the brainstem.

    1. Reviewer #1 (Public Review):

      The strength of the manuscript is highlighted by the application of fractal formalism, which is commonly used in colloidal systems, in conjunction with MD simulation to study the phase separation of an IDP. The weakness lies in the fact that this study does not provide any discussion on how our understanding of the network structure and dynamical behavior of biomolecular condensates and their biological significance improves through this study. The experimental part remains weak, without any measurements of the dynamics of the condensates. Whether and how the formalism can distinguish between phase-separated condensates (WT) and classical protein aggregates (Y to A variant) remains unclear.

    2. Reviewer #2 (Public Review):

      A key aspect of the work is to use the simulations to explain differences between (i) dilute and dense phases and (ii) wild-type and mutant variants. Here, it would be important with a clearer analysis of convergence and errors to quantify which differences are significant.

      It would also be useful with a clearer description of how the analytical model is predictive, of which properties, and how they have been/can be validated. Which measurable quantities does the model predict?

      In addition to these overall questions, a number of more specific suggestions follow below.

      Major:

      p. 7, line 120 (Fig. S1B)<br /> The proteins do not appear particularly pure based on the presented SDS PAGE analysis. How pure is the protein estimated to be, and is the presence of the other bands expected to affect e.g. the data presented in Fig. 1?

      p. 7 & 8, lines 138-159:<br /> Has the method and energy function used to calculate the interact potential been validated by comparison to experiments, including studying the effect of varying the solvent? I see the computed error bars are very small, but am more interested in the average error when comparing to experiments. The numbers in water appear different from those e.g. reported by Krainer et al (https://doi.org/10.1038/s41467-021-21181-9), though the latter are also not immediately compared to experiments. Thus, it would be useful to know how much to trust these numbers.

      p. 8, lines 149-154:<br /> Following up on the above, the authors also write "Importantly, only in the latter case are the R-Y interactions slightly more favorable than the K-Y ones (Figure S1C). While this can potentially contribute to increasing of Csat for the R>K mutant as compared to WT, the estimated thermodynamic effect is not too strong, especially if one considers that these interactions take place in an environment with largely water-like polarity. Therefore, the effect of R>K substitution on LLPS should be further explored in the context of protein-protein interactions."<br /> In the absence of estimates of the accuracy of the predictions, these sentences are somewhat unclear. Also, it is unclear what the authors mean by that the effect of R>K should be studied; there are already several examples of this (https://doi.org/10.1016/j.cell.2018.06.006 [already cited], https://doi.org/10.1038/s41557-021-00840-w & https://doi.org/10.1073/pnas.2000223117 come to mind, but there are likely more).

      p. 8, lines 161-162:<br /> The authors perform MD simulations of Lge1 and variants using 24 copies and a box that gives them protein concentrations "in the mM concentration range". I realize that there's a concern about what is computationally feasible, but it would be important with an argument for this choice. Why is 24 expected to be enough to represent a condensate (I expect that there could be substantial finite-size effects)? What is the exact protein concentration in the simulations of the 24 chains [and of the 1-chain simulations]? How does this protein concentration compare to that in the condensates? The authors performed simulations in the NPT ensemble; how stable were the box dimensions?

      Also, did the authors include the Strep- and His-tags in the simulations? If not, why not?

      Throughout:<br /> One of my major concerns about this work is the general lack of analysis of convergence of the simulations. The authors must present some solid analysis of which results are robust given the relatively short simulations and potential for bias from the chosen starting structures.

      As an example, on p. 8 the authors discuss a potential asymmetry between the interactions found in the dilute (single-copy) and dense (24-mer) phases. These observations are somewhat in contrast to other observations in the field, namely that it is the same interactions that drive compaction of monomers as those that drive condensate formation.

      Obviously, both the results in the literature and those presented here could be true. But in order to substantiate the statements made here, the authors should show some substantial statistical analyses to make it clear which differences are robust.

      The above holds for all parts of the computational/simulation work (e.g. other aspects of Fig. 2)

      Similarly, how were the errors of the radius of gyration for WT, R>K and Y>A mutants calculated? Is the Rg for WT significantly smaller than the values for the two mutants? And are the differences in Rg between single-copy and multi-copy simulations statistically significant? I am asking since converging the Rg of IDPs of this length in all-atom MD is not easy.

      p. 12, line 251:<br /> Has the MIST formalism been validated for IDPs; if so please provide a reference.

      p. 5, line 105, p. 16 line 334 and p. 18 line 283:<br /> It is not completely clear what the predictions are and what/which experiments they are compared to. On p. 16, exactly what does the analytical model predict? As far as I understand, the results from the MD simulations are input to the model, but I am probably missing something.<br /> Which concrete and testable predictions does the model enable?

      p. 19, lines 408-411:<br /> The authors find that when building clusters of Y>A from the simulations they find filamentous structures that they suggest explain the aggregation of the Y>A variant at high concentrations. While that sounds like an intriguing suggestion, it would be useful with a bit more detail about the robustness of this observation. For example, the simulations of Y>A appear similar to that of R>K; are the differences in topology really significantly different?

      Finally, I would suggest that the authors make their code and data available in electronic format.

    1. Reviewer #1 (Public Review):

      This article describes the application of a computational model, previously published in 2021 in Neuron, to an empirical dataset from monkeys, previously published in 2018 in eLife. The 2021 modeling paper argued that the model can be used to determine whether a particular task depends on the perirhinal cortex as opposed to being soluble using ventral visual stream structures alone. The 2018 empirical paper used a series of visual discrimination tasks in monkeys that were designed to contain high levels of 'feature ambiguity' (in which the stimuli that must be discriminated share a large proportion of overlapping features), and yet animals with rhinal cortex lesions were unimpaired, leading the authors to conclude that perirhinal cortex is not involved in the visual perception of objects. The present article revisits and revises that conclusion: when the 2018 tasks are run through the 2021 computational model, the model suggests that they should not depend on perirhinal cortex function after all, because the model of VVS function achieves the same levels of performance as both controls and PRC-lesioned animals from the 2018 paper. This leads the authors of the present study to conclude that the 2018 data are simply "non-diagnostic" in terms of the involvement of the perirhinal cortex in object perception.

      The authors have successfully applied the computational tool from 2021 to empirical data, in exactly the way the tool was designed to be used. To the extent that the model can be accepted as a veridical proxy for primate VVS function, its conclusions can be trusted and this study provides a useful piece of information in the interpretation of often contradictory literature. However, I found the contribution to be rather modest. The results of this computational study pertain to only a single empirical study from the literature on perirhinal function (Eldridge et al, 2018). Thus, it cannot be argued that by reinterpreting this study, the current contribution resolves all controversy or even most of the controversy in the foregoing literature. The Bonnen et al. 2021 paper provided a potentially useful computational tool for evaluating the empirical literature, but using that tool to evaluate (and ultimately rule out as non-diagnostic) a single study does not seem to warrant an entire manuscript: I would expect to see a reevaluation of a much larger sample of data in order to make a significant contribution to the literature, above and beyond the paper already published in 2021. In addition, the manuscript in its current form leaves the motivations for some analyses under-specified and the methods occasionally obscure.

    2. Reviewer #2 (Public Review):

      The goal of this paper is to use a model-based approach, developed by one of the authors and colleagues in 2021, to critically re-evaluate the claims made in a prior paper from 2018, written by the other author of this paper (and colleagues), concerning the role of perirhinal cortex in visual perception. The prior paper compared monkeys with and without lesions to the perirhinal cortex and found that their performance was indistinguishable on a difficult perceptual task (categorizing dog-cat morphs as dogs or cats). Because the performance was the same, the conclusion was that the perirhinal cortex is not needed for this task, and probably not needed for perception in general, since this task was chosen specifically to be a task that the perirhinal cortex *might* be important for. Well, the current work argues that in fact the task and stimuli were poorly chosen since the task can be accomplished by a model of the ventral visual cortex. More generally, the authors start with the logic that the perirhinal cortex gets input from the ventral visual processing stream and that if a task can be performed by the ventral visual processing stream alone, then the perirhinal cortex will add no benefit to that task. Hence to determine whether the perirhinal cortex plays a role in perception, one needs a task (and stimulus set) that cannot be done by the ventral visual cortex alone (or cannot be done at the level of monkeys or humans).

      There are two important questions the authors then address. First, can their model of the ventral visual cortex perform as well as macaques (with no lesion) on this task? The answer is yes, based on the analysis of this paper. The second question is, are there any tasks that humans or monkeys can perform better than their ventral visual model? If not, then maybe the ventral visual model (and biological ventral visual processing stream) is sufficient for all recognition. The answer here too is yes, there are some tasks humans can perform better than the model. These then would be good tasks to test with a lesion approach to the perirhinal cortex. It is worth noting, though, that none of the analyses showing that humans can outperform the ventral visual model are included in this paper - the papers which showed this are cited but not discussed in detail.

      Major strength:<br /> The computational and conceptual frameworks are very valuable. The authors make a compelling case that when patients (or animals) with perirhinal lesions perform equally to those without lesions, the interpretation is ambiguous: it could be that the perirhinal cortex doesn't matter for perception in general, or it could be that it doesn't matter for this stimulus set. They now have a way to distinguish these two possibilities, at least insofar as one trusts their ventral visual model (a standard convolutional neural network). While of course, the model cannot be perfectly accurate, it is nonetheless helpful to have a concrete tool to make a first-pass reasonable guess at how to disambiguate results. Here, the authors offer a potential way forward by trying to identify the kinds of stimuli that will vs won't rely on processing beyond the ventral visual stream. The re-interpretation of the 2018 paper is pretty compelling.

      Major weakness:<br /> It is not clear that an off-the-shelf convolution neural network really is a great model of the ventral visual stream. Among other things, it lacks eccentricity-dependent scaling. It also lacks recurrence (as far as I could tell). To the authors' credit, they show detailed analysis on an image-by-image basis showing that in fine detail the model is not a good approximation of monkey choice behavior. This imposes limits on how much trust one should put in model performance as a predictor of whether the ventral visual cortex is sufficient to do a task or not. For example, suppose the authors had found that their model did more poorly than the monkeys (lesioned or not lesioned). According to their own logic, they would have, it seems, been led to the interpretation that some area outside of the ventral visual cortex (but not the perirhinal cortex) contributes to perception, when in fact it could have simply been that their model missed important aspects of ventral visual processing. That didn't happen in this paper, but it is a possible limitation of the method if one wanted to generalize it. There is work suggesting that recurrence in neural networks is essential for capturing the pattern of human behavior on some difficult perceptual judgments (e.g., Kietzmann et al 2019, PNAS). In other words, if the ventral model does not match human (or macaque) performance on some recognition task, it does not imply that an area outside the ventral stream is needed - it could just be that a better ventral model (eg with recurrence, or some other property not included in the model) is needed. This weakness pertains to the generalizability of the approach, not to the specific claims made in this paper, which appear sound.

      A second issue is that the title of the paper, "Inconsistencies between human and macaque lesion data can be resolved with a stimulus-computable model of the ventral visual stream" does not seem to be supported by the paper. The paper challenges a conclusion about macaque lesion data. What inconsistency is reconciled, and how?

    1. Reviewer #1 (Public Review):

      In this manuscript, Yong and colleagues link perturbations in lysosomal lipid metabolism with the generation of protein aggregates resulting from proteosome inhibition. The main tool used is the ProteoStat stain to assess protein aggregate burden in native cells (i.e. cells under no exogenous or endogenous stress). They initially use CRISPR-based genome-wide screens to identify several genes that affect this aggregate burden. Interestingly, knockdown of genes involved in lysosomal acidification was a major signature which led to identification of other culprit lysosome-associated genes that included ones involved in lipid metabolism. Subsequent CRISPR screen focused on lipidomic analysis led to identification of sphingolipid and cholesterol esters as lipid classes with effects on proteostasis. Despite using various tools of lysosomal function, acidity, permeability, etc, the authors couldn't identify the link between lysosomal lipid metabolism and protein aggregate formation. Nevertheless, the interrelationship of these two processes was the overall conclusion of this manuscript.

      Although this work is interesting and thought-provoking, their approach to identify novel pathways involved in proteostasis is limited and this weakens the contribution of the paper in its current form.

    2. Reviewer #2 (Public Review):

      It is certainly an interesting observation that lipid homeostasis influences proteostasis, although this need not be considered so surprising given that many fundamental cellular processes are interconnected. The paper is deserves to be read, but the level of general interest would be greatly enhanced if the authors were able to take the story further mechanistically. This might be too much of an ask, but they should go further in excluding one very attractive alternative model: effects on proteasome activity. This explanation should be addressed definitively because the transcription factor that regulates proteasome subunit gene expression (Nrf1/NFE2L1) is processed in the ER and is therefore well placed to be influenced by membrane conditions, and because it is shown here that proteasome inhibition increase ProteoStat puncta. Indeed, some years ago it was published that Nrf1/NFE2L1 is inhibited within the ER membrane by cholesterol, and a more recent paper showed that in C. elegans it is activated by oleic acid through effects on ER membrane homeostasis and lipid droplet formation. The authors address proteasome activity only by using a dye that is not referenced. Here a much more solid answer is needed. In general, most conclusions in the paper rely essentially solely on ProteoStat assays. The entire study would be greatly strengthened if the authors incorporated biochemical or other modalities to substantiate their results.

      The presentation would be improved greatly if the authors provided diagrams illustrating the pathways implicated in their results, as well as their models. As it is the paper falls flat at the end of the results in the absence of a mechanism to explain their findings. Diagrams would be helpful for focusing the reader on what IS learned from the work, which is important.

    1. Reviewer #1 (Public Review):

      A typical path from preprocessed data to findings in systems neuroscience often includes a set of analyses that often share common components. For example, an investigator might want to generate plots that relate one time series (e.g., a set of spike times) to another (measurements of a behavioral parameter such as pupil diameter or running speed). In most cases, each individual scientist writes their own code to carry out these analyses, and thus the same basic analysis is coded repeatedly. This is problematic for several reasons, including the waste of time, the potential for errors, and the greater difficulty inherent in sharing highly customized code.

      This paper presents Pynapple, a python package that aims to address those problems.

      Strengths:

      The authors have identified a key need in the community - well-written analysis routines that carry out a core set of functions and can import data from multiple formats. In addition, they recognized that there are some common elements of many analyses, particularly those involving timeseries, and their object-oriented architecture takes advantage of those commonalities to simplify the overall analysis process.

      The package is separated into a core set of applications and another with more advanced applications, with the goal of both providing a streamlined base for analyses and allowing for implementations/inclusion of more experimental approaches.

      Weaknesses:

      There are two main weaknesses of the paper in its present form.

      First, the claims relating to the value of the library in everyday use are not demonstrated clearly. There are no comparisons of, for example, the number of lines of code required to carry out a specific analysis with and without Pynapple or Pynacollada. Similarly, the paper does not give the reader a good sense of how analyses are carried out and how the object-oriented architecture provides a simplified user interaction experience. This contrasts with their GitHub page and associated notebooks which do a better job of showing the package in action.

      Second, the paper makes several claims about the values of object-oriented programming and the overall design strategy that are not entirely accurate. For example, object-oriented programming does not inherently reduce coding errors, although it can be part of good software engineering. Similarly, there is a claim that the design strategy "ensures stability" when it would be much more accurate to say that these strategies make it easier to maintain the stability of the code. And the authors state that the package has no dependencies, which is not true in the codebase. These and other claims are made without a clear definition of the properties that good scientific analysis software should have (e.g., stability, extensibility, testing infrastructure, etc.).

      There is also a minor issue - these packages address an important need for high-level analysis tools but do not provide associated tools for preprocessing (e.g., spike sorting) or for creating reproducible pipelines for these analyses. This is entirely reasonable, in that no one package can be expected to do everything, but a bit deeper account of the process that takes raw data and produces scientific results would be helpful. In addition, some discussion of how this package could be combined with other tools (e.g., DataJoint, Code Ocean) would help provide context for where Pynapple and Pynacollada could fit into a robust and reliable data analysis ecosystem.

    2. Reviewer #2 (Public Review):

      Pynapple and Pynacollada have the potential to become very valuable and foundational tools for the analysis of neurophysiological data. NWB still has a steep learning curve and Pynapple offers a user-friendly toolset that can also serve as a wrapper for NWB.

      The scope of the manuscript is not clear to me, and the authors could help clarify if Pynacollada and other toolsets in the making become a future aspect of this paper (and Pynapple), or are the authors planning on building these as separate publications.

      The author writes that Pynapple can be used without the I/O layer, but the author should clarify how or if Pynapple may work outside NWB.

      This brings us to an important fundamental question. What are the advantages of the current approach, where data is imported into the Ts objects, compared to doing the data import into NWB files directly, and then making Pynapple secondary objects loaded from the NWB file? Does NWB natively have the ability to store the 5 object types or are they initialized on every load call?

      Many of these functions and objects have a long history in MATLAB - which documents their usefulness, and I believe it would be fitting to put further stress on this aspect - what aspects already existed in MATLAB and what is completely novel. A widely used MATLAB toolset, the FMA toolbox (the Freely moving animal toolbox) has not been cited, which I believe is a mistake.

      A limitation in using NWB files is its standardization with limited built-in options for derived data and additional metadata. How are derived data stored in the NWB files?

      How is Pynapple handling an existing NWB dataset, where spikes, behavioral traces, and other data types have already been imported?

    1. Public Review:

      This paper presents two new tools for investigating GLP-1 signaling. The genetically encoded sensor GLPLight1 follows the plan for other GPCR-based fluorescent sensors, inserting a circularly permuted GFP into an intracellular loop of the GPCR. The light-uncaged agonist peptide, photo-GLP1, has no detectable agonist activity (as judged by the GLPLight1 sensor) until it is activated by light. However, based on the current characterization, it is unclear how useful either of these tools will be for investigating native GLP-1 signaling.

      The GLPLight1 sensor has a strong fluorescent response to GLP-1 with an EC50 of ~10 nM, and its specificity is high, as shown by lack of response to ligands of related class B GPCRs. However, the native GLP1R enables biological responses to concentrations that are ~1000-fold lower than this (as shown, for instance, in a supplemental figure of this paper). This makes it difficult to see how the sensor will be useful for in vivo detection of GLP-1 release, as claimed; although there may be biological situations where the concentration is adequate to stimulate the sensor, this is not established. Data using a GLP-1 secreting cell line suggest that the sensor has bound some of the released GLP-1, but it is difficult to have confidence without seeing an actual fluorescence response to stimulated release.

      Alternatively, the sensor might be used for drug screening, but it is unclear that this would be an improvement over existing high-throughput methods using the cAMP response to GLP1R activation (since those are much more sensitive and also allow detection of signaling through different downstream pathways).

      The utility of the caged agonist PhotoGLP1 is similarly unclear. The data demonstrate a substantial antagonism of GLP-1 binding by the still-caged compound, and it is therefore unclear whether the kinetics of the response to PhotoGLP1 itself would mimic the normal activation by GLP-1 in the absence of the caged compound. A further concern is that the light-dependence of the agonist effect of PhotoGLP1 was evaluated only with the GLPLight1 sensor and not with GLP1R signaling itself, which is 1000x more sensitive and which would be the presumed target of the tool. In addition, PhotoGLP1 is based upon native GLP-1, which is rapidly truncated and inactivated by the peptidase DPPIV, expressed in most cell types, and expressed at very high levels in the plasma. The utility of PhotoGLP1 is therefore limited to acute (minutes) in vitro experiments.

    1. Reviewer #1 (Public Review):

      Mature mammalian olfactory sensory neurons (OSN) express only one of the hundreds of possible odor receptors (ORs) encoded in the genome. The process of selecting this OR in each OSN is the consequence of both deterministic developmental processes involving transcription factors, and more stochastic processes. How this balance is implemented is a major problem in molecular neuroscience, one whose solution has significant systems-level implications for odor coding. In Bashkirova et al the authors substantially revise the canonical view of how this process works. By querying single cell transcriptomes and genetic architecture across OSN development, the authors demonstrate that OSN progenitors express ORs for their zone and for more dortsal zones, and that the degree of heterochromatinization of non-expressed ORs varies as a function of which zone a given OSN resides in. Through additional genetic experiments (including knockouts of transcription factors that seem to be associated with zonal identity, and the clever use of OR transgenes) they synthesize these findings into a model in which progenitors co-express many ORs - both ORs that are appropriate for their zone and ORs that are dorsal to their zone - and that this expression both facilitates heterochromatinzation of non-selected and extra-zonal ORs, and enables singular OR selection. The experiments are careful and the data are novel, and definitely revise our simplistic current view of how this process works; as such this work will have significant impact on the field. As presented the model requires additional experiments to fully flesh it out, and to definitively demonstrate that i.e., precocious expression leads to gene silencing, but with some additional clarifications in the discussion this paper both breaks new ground and sets the stage for future work exploring mechanisms of OSN development and OR selection.

    2. Reviewer #2 (Public Review):

      In this study, Bashkirova et al. analyzed how the gene choice of olfactory receptors (ORs) is regulated in olfactory sensory neurons (OSNs) during development. In the mouse olfactory system, there are more than 1000 functional OR genes and several hundred pseudogenes. It is well-established that each individual OSN expresses only one functional OR gene in a mono-allelic manner. This is referred to as the one neuron - one receptor rule. It is also known that OR gene choice is not entirely stochastic but restricted to a particular area or zone in the olfactory epithelium (OE) along the dorsoventral axis. It is interesting to study how this stochastic but biased gene-choice is regulated during OSN development, narrowing down the number of OR genes to be chosen to eventually achieve the monogenic OR expression in OSNs.

      In the present study, the authors cell-sorted OSNs into three groups; immediate neuronal precursors (INPs), immature OSNs (iOSNs), and mature OSNs (mOSNs). They found that OR gene choice is differentially regulated positively by transcription factors in INPs and negatively by heterochromatin-mediated OR gene silencing in iOSNs. The authors propose that by the combination of two opposing forces of polygenic transcription (positive) and genomic silencing (negative), each OSN finally expresses only one OR gene out of over 2000 alleles in a stochastic but stereotypic manner.

      The authors' model of OR gene choice is supported by well-designed experiments and by large amounts of data. In general, the paper is clearly written and easy to follow. It will attract a wide variety of readers in the fields of neuroscience, developmental biology, and immunology. The present finding will give new insight into our understanding of gene choice in the multigene family in the mammalian brain and shed light on the long-standing question of monogenic expression of OR genes.

    3. Reviewer #3 (Public Review):

      This manuscript investigates how a seemingly random choice of odourant receptor (OR) gene expression is organised into sterotypic zones of OR expression along the olfactory epithelium. Using a varietty of functional genomics methods, the authors find that along the differentiation axis (progenitor to mature olfactory sensory neuron, OSN) multiple ORs are initally transcribed and from among these, only one OR is selected for expression. The rest are suppressed through chromatin silencing. In addition to this, the authors report a dorso-ventral gradient in OR expression at the immature stage - dorsally expressed ORs are also expressed ventrally and these then get silenced. The expression of the ventrally expressed ORs, on the other hand, are restricted to the ventral region. They suggest a role for the transcription factor NF1 in this dorsoventral process.

      This is a valuable study. The data are compelling and generally well presented.

    1. Reviewer #1 (Public Review):

      The initial goal of this work was to study how the activity of the C. trachomatis effector Cdu1 impacts on the number and nature of ubiquitinated proteins in infected host cells, and how this is related to a previously described function of Cdu1 in promoting Golgi distribution around the Chlamydia vacuole, known as inclusion.

      The authors generated a cdu1-null mutant in C. trachomatis and used proteomics to analyse ubiquitinated proteins in cells infected with Cdu1-producing and Cdu1-deficient chlamydiae, by comparison to mock-infected cells. It was found that among the four proteins specifically ubiquitinated after infection with Cdu1-deficient chlamydiae there were three other C. trachomatis effectors (InaC, IpaM and CTL0480). These three proteins are part of a large family of Chlamydia effectors, known as Incs, that insert in the inclusion membrane.

      Based on these observations, the authors then focused in understanding how Cdu1 protects InaC, IpaM and CTL0480 from ubiquitination, and what are the consequences of this protection for the protein levels of these Incs and for their functions during infection. It is shown that Cdu1 can bind InaC, IpaM and CTL0480, and protects these Incs and itself from ubiquitination and proteasomal degradation. This protective function of Cdu1 depends on its acetylation, but not on its deubiquitinating activity, and host cells infected by the cdu1 null mutant show defects that phenocopy those of cells infected by inaC, ipaM or ctl0480 null-mutants.

      Finally, it was previously shown that CLT0480 controls/inhibits a pathway of chlamydial egress from host cells involving extrusion of the entire inclusion. The authors show that InaC and IpaM also control/promote extrusion of C. trachomatis inclusion and that the cdu1 null mutant also shows a defect in this process. This leads to the conclusion stated in the title that Cdu1 regulates chlamydial exit from host cells by protecting specific C. trachomatis effectors from degradation.

      This is an excellent and impressive work, both from technical and conceptual perspectives, which accomplishes the goal of providing mechanistic insights on the mode of action of Cdu1. Overall, the data provides solid evidence for the proposed model by which the acetylation activity of Cdu1 protects itself and three Incs (InaC, IpaM and CTL0480) from degradation.

      I agree that (all together) the data provides a solid support for the idea that the multiple phenotypes displayed by cells infected with the cdu1 null mutant are related to the decreased levels of InaC, IpaM and CTL0480. However, to some extent, these Incs can still be detected in cells infected with the cdu1 null mutant and it cannot be formally excluded that Cdu1 directly promotes assembly of F-actin and Golgi repositioning around the inclusion, MYPT1 recruitment to the inclusion, and extrusion of the inclusion.

      Still, I think the major significance of this work comes from the combined use of proteomics and chlamydial genetics to disclose a unique a mechanism by which one effector controls the levels of other effectors. This further emphasizes that for a single bacterium injecting dozens of effectors into host cells, the function of one bacterial effector can control, and be controlled by other effectors.

    2. Reviewer #2 (Public Review):

      The manuscript describes the detailed characterization of the C. trachomatis protein Cdu1. Previous work that laid the foundation identified two enzymatic activities associated with Cdu1 - deubiquitinase and transacetylase. This work advances current knowledge by identifying Cdu1 targets for stabilization, and establishing the relationship between the two activities of Cdu1. Furthermore, the authors determined that Cdu1 is subject to autostabilization. In addition to the novelty of the findings, the strength of this report is its scientific rigor, with several experimental evidence independently confirmed using a variety of approaches, including the creation of mutants that decoupled deubiquitination from transacetylase activity. Another strength is the direct demonstration of transacetylation of the targets, which increased the relevance of the reported colocalization and interaction of Cdu1 with the targets.

      The authors also made a convincing case for the basis of Cdu1 modification of each of the effector targets by linking loss of acetylation with decreased stability. An unexpected result, at least to this reviewer is the requirement for the three effectors in chlamydial egress by extrusion of the inclusion. Cdu1 regulating all three effectors underscores the importance of the timing and efficiency of inclusion extrusion. Additional insights into how the three effectors interact functionally could be obtained by specifically monitoring the timing of extrusion. Data for CTL0480 points to a negative regulator of extrusion, which could be at the level of timing, in addition to efficiency.

      Overall, the work is rigorous, and makes important contribution to our understanding of the significance of Cdu1 function in in vitro infection.

    3. Reviewer #3 (Public Review):

      In this article by Bastidas et al. the authors examine the functions of the Chlamydia deubiquitinating enzyme 1 (Cdu1) during infections of human cells. First, a mutant lacking Cdu1 but not Cdu2 was constructed using targetron and quantitative proteomics was used to identify differences in ubiquitinated proteins (both host and bacterial) during infection. While they found minimal changes in host protein ubiquitination, they identified three Chlamydia effector proteins, IpaM, InaC and CTL0480 were all ubiquitinated in the absence of Cdu1. Microscopy and immunoprecipitations found Cdu1 directly interacts with these Chlamydia effectors and confirmed that Cdu1 mediates the stabilization of these effectors at the inclusion membrane during late infection time points. Surprisingly rather than deubiquitination driving this stabilization, the acetylation function of Cdu1 was required, and acetylation on lysine residues prevented degradative ubiquitination of Cdu1, IpaM, InaC and CTL0480. In line with this observation the authors show that loss of Cdu1 phenocopies the loss of single effector mutants of InaC, IpaM and CTL0480, including golgi stack formation and the recruitment of MYPT1 to the inclusion. The aggregation of changes to the Chlamydia inclusion does not alter growth but controls extrusion of chlamydia from cells with reduced extrusion in Cdu1 mutant Chlamydia infections. The strengths of the manuscript are the range of assays used to convincingly examine the biochemical and cellular biology underlying Cdu1 functions. The finding that acetylation of lysine residues is a mechanisms for bacterial effectors to block degradative ubiqutination is impactful and will open new investigations into this mechanism for many intracellular pathogens. There are a few weaknesses that temper enthusiasm for the manuscript in its current form. These include caveats related to the timing of proteomics, the lack of an effect of Cdu1 directly on bacterial growth, and discussion of previous studies. Altogether this is an important series of findings that help to understand the mechanisms underpinning Chlamydia pathogenesis using orthologous methods with a few caveats that lower the overall impact.

    1. Reviewer #1 (Public Review):

      In the manuscript titled "Vangl2 suppresses NF-κB signaling and ameliorates sepsis by targeting p65 for NDP52-mediated autophagic degradation" by Lu et al, the authors show that Vangl2, a planner cell polarity component, plays a direct role in autophagic degradation of NFkB-p65 by facilitating its ubiquitination via PDLIM2 and subsequent recognition and autophagic targeting via the autophagy adaptor protein NDP52. Conceptually it is a wonderful study with excellent execution of experiments and controls. The concerns with the manuscript are mainly on two counts - First issue is the kinetics of p65 regulation reported here, which does not fit into the kinetics of the mechanism proposed here, i.e., Vangl2-mediated ubiquitination followed by autophagic degradation of p65. The second issue is more technical- an absolute lack of quantitative analyses. The authors rely mostly on visual qualitative interpretation to assess an increase or decrease in associations between partner molecules throughout the study. While the overall mechanism is interesting, the authors should address these concerns as highlighted below:

      Major points:

      1) Kinetics of p65 regulation by Vangl2: As mentioned above, authors report that LPS stimulation leads to higher IKK and p65 activation in the absence of Vangl2. The mechanism of action authors subsequently work out is that- Vangl2 helps recruit E3 ligase PDLIM to p65, which causes K63 ubiquitination, which is recognised by NDP52 for autophagic targeting. Curiously, peak p65 activation is achieved within 30 minutes of LPS stimulation. The time scale of all other assays is way longer. It is not clear that in WT cells, p65 could be targeted to autophagic degradation in Vangl2 dependent manner within 30 minutes. The HA-Myc-Flag-based overexpression and Co-IP studies do confirm the interactions as proposed. However, they do not prove that this mechanism was responsible for the Vangl2-mediated modulation of p65 activation upon LPS stimulation. Moreover, the Vangl2 KO line also shows increased IKK activation. The authors do not show the cause behind increased IKK activation, which in itself can trigger increased p65 phosphorylation.<br /> 2) The other major concern is regarding the lack of quantitative assessments. For Co-IP experiments, I can understand it is qualitative observation. However, when the authors infer that there is an increase or decrease in the association through co-IP immunoblots, it should also be quantified, especially since the differences are quite marginal and could be easily misinterpreted.<br /> 3) Figure 4E and F: It is evident that inhibiting Autolysosome (CQ or BafA1) or autophagy (3MA) led to the recovery of p65 levels and inducing autophagy by Rapamycin led to faster decay in p65 levels. Did the authors also note/explore the possibility that Vangl2 itself may be degraded via the autophagy pathway? IB of WCL upon CQ/BAF/3MA or upon Rapa treatment does indicate the same. If true, how would that impact the dynamics of p65 activation?<br /> 4) Autophagic targeting of p65 should also be shown through alternate evidence, like microscopy etc., in the LPS-stimulated WT cells.

      Limitation: The mechanism behind enhanced activation of IKK in the absence of Vangl2 remains unclear. It is possible there is an autophagy-independent mechanism also involved in this regulation.

      Summary: The study shows a new mechanism of NFkB-p65 regulation mediated by Vangl2-dependent autophagic targeting. Autophagic regulation of p65 has been reported earlier; this study brings an additional set of molecular players involved in this important regulatory event, which may have implications for chronic and acute inflammatory conditions.

    2. Reviewer #2 (Public Review):

      Vangl2, a core planar cell polarity protein involved in Wnt/PCP signaling, mediates cell proliferation, differentiation, homeostasis, and cell migration. Vangl2 malfunctioning has been linked to various human ailments, including autoimmune and neoplastic disorders. Interestingly, Vangl2 was shown to interact with the autophagy regulator p62, and indeed, autophagic degradation limits the activity of inflammatory mediators such as p65/NF-κB. However, if Vangl2, per se, contributes to restraining aberrant p65/NF-kB activity remains unclear.

      In this manuscript, Lu et al. describe that Vangl2 expression is upregulated in human sepsis-associated PBMCs and that Vangl2 mitigates experimental sepsis in mice by negatively regulating p65/NF-κB signaling in myeloid cells. Vangl2 recruits the E3 ubiquitin ligase PDLIM2 to promote K63-linked poly-ubiquitination of p65. Vangl2 also facilitates the recognition of ubiquitinated p65 by the cargo receptor NDP52. These molecular processes cause selective autophagic degradation of p65. Indeed, abrogation of PDLIM2 or NDP52 functions rescued p65 from autophagic degradation, leading to extended p65/NF-κB activity.

      As such, the manuscript presents a substantial body of interesting work and a novel mechanism of NF-κB control. If found true, the proposed mechanism may expand therapeutic opportunities for inflammatory diseases. However, the current draft has significant weaknesses that need to be addressed.

      Specific comments<br /> 1. Vangl2 deficiency did not cause a discernible increase in the cellular level of total endogenous p65 (Fig 2A and Fig 2B) but accumulated also phosphorylated IKK.<br /> Even Fig 4D reveals that Vangl2 exerts a rather modest effect on the total p65 level and the figure does not provide any standard error for the quantified data. Therefore, these results do not fully support the proposed model (Figure 7) - this is a significant draw back. Instead, these data provoke an alternate hypothesis that Vangl2 could be specifically mediating autophagic removal of phosphorylated IKK and phosphorylated IKK, leading to exacerbated inflammatory NF-κB response in Vangl2-deficient cells. One may need to use phosphorylation-defective mutants of p65, at least in the over-expression experiments, to dissect between these possibilities.<br /> 2. Fig 1A: The data indicates the presence of two subgroups within the sepsis cohort - one with high Vangl2 expressions and the other with relatively normal Vangle2 expression. Was there any difference with respect to NF-κB target inflammatory gene expressions between these subgroups?<br /> 3. The effect of Vangl2 deficiency was rather modest in the neutrophil. Could it be that Vangl2 mediates its effect mostly in macrophages?<br /> 4. Fig 1D and Figure 1E: Data for unstimulated Vangl2 cells should be provided. Also, the source of the IL-1β primary antibody has not been mentioned.<br /> 5. The relevance and the requirement of RNA-seq analysis are not clear in the present draft. Figure 1E already reveals upregulation of the signature NF-κB target inflammatory genes upon Vangl2 deficiency.<br /> 6. Fig 2A reveals an increased accumulation of phosphorylated p65 and IKK in Vangl2-deficient macrophages upon LPS stimulation within 30 minutes. However, Vangl2 accumulates at around 60 minutes post-stimulation in WT cells. Similar results were obtained for neutrophils (Fig 2B). There appears to be a temporal disconnect between Vangl2 and phosphorylated p65 accumulation - this must be clarified.<br /> 7. Figure 2E and 2F do not have untreated controls. Presentations in Fig 2E may be improved to more clearly depict IL6 and TNF data, preferably with separate Y-axes.<br /> 8. Line 219: "strongly with IKKα, p65 and MyD88, and weak" - should be revised.<br /> 9. It is not clear why IKKβ was excluded from interaction studies in Fig S3G.<br /> 10. Fig 3F- In the text, authors mentioned that Vangl2 strongly associates with p65 upon LPS stimulation in BMDM. However, no controls, including input or another p65-interacting protein, were used.<br /> 11. Figure 4D - Authors claim that Vangl2-deficient BMDMs stabilized the expression of endogenous p65 after LPS treatment. However, p65 levels were particularly constitutively elevated in knockout cells, and LPS signaling did not cause any further upregulation. This again indicates the role of Vangl2 in the basal state. The authors need to explain this and revise the test accordingly.

    3. Reviewer #3 (Public Review):

      Lu et al. describe Vangl2 as a negative regulator of inflammation in myeloid cells. The primary mechanism appears to be through binding p65 and promoting its degradation, albeit in an unusual autolysosome/autophagy dependent manner. Overall, the findings are novel and the crosstalk of PCP pathway protein Vangl2 with NF-kappaB is of interest. Whether PCP is anyway relevant or if this is a PCP-independent function of Vangl2 is not directly explored (the later appears more likely from the manuscript/discussion). PCP pathways intersect often with developmentally important pathways such as WNT, HH/GLI, Fat-Dachsous and even mechanical tension. It might be of importance to investigate whether Vangl2-dependent NF-kappaB is influenced by developmental pathways. Are Vangl2 phosphorylations (S5, S82 and S84) in anyway necessary for the observed effects on NF-kappaB or would a phospho-mutant (alanine substitution mutant) Vangl2 phenocopy WT Vangl2 for regulation of NF-kappaB? Another area to strengthen might be with regards to specificity of cell types where this phenomenon may be observed. LPS treatment in mice resulted in Vangl2 upregulation in spleen and lymph nodes, but not in lung and liver. What explains the specificity of organ/cell-type Vangl2 upregulation and its consequences observed here? Why is NF-kappaB signaling not more broadly or even ubiquitously affected in all cell types in a Vangl2-dependent manner, rather than being restricted to macrophages, neutrophils and peritoneal macrophages, or, for that matter, in spleen and LN and not liver and lung? After all, one may think that the PCP proteins, as well as NF-kappaB, are ubiquitous. Regardless, Vangl2 as a negative regulator of NF-kappaB is an important finding. There are, however, some concerns about methodology and statistics that need to be addressed.

    1. Reviewer #1 (Public Review):

      This manuscript features a key technical advance in single-molecular force spectroscopy. The critical advance is to employ a click chemistry (DBCO-cycloaddition) for making a stable covalent connection between a target biomacromolecule and solid support in place of conventional antigen-antibody binding. This tweak dramatically improves the mechanical stability of the pulling system such that the pulling/relaxation can be repeated up to a thousand times (the previous limit was a few hundred cycles at best). This improvement is broadly applicable to various molecular interactions and other types of single-molecule force spectroscopy allowing for more statistically reliable force measurements. Another strength of this method is that all conjugation steps are chemically orthogonal (except for Spy-catcher conjugation to the termini of a target molecule) such that the probability of side reactions could be reduced.

      The reliability of kinetic and thermodynamic parameters obtained from single-molecule force spectroscopy depends on statistics, that is, the number of pulling measurements and their distribution. By extending the number of measurements, this robust method enables fundamental/critical statistical assessment of those parameters. That is, it is an important and interesting lesson from this study that ~200 repeats can yield statistically reasonable parameters.

      The authors carried out carefully designed optimization steps and inform readers of the critical aspects of each. The merit, quality, and rigor as a method-oriented manuscript are impressive. Overall, this is an excellent study.

    2. Reviewer #2 (Public Review):

      In this study, the authors have developed methods that allow for repeatedly unfolding and refolding a membrane protein using a magnetic tweezers setup. The goal is to extend the lifespan of the single-molecule construct and gather more data from the same tether under force. This is achieved through the use of a metal-free DBCO-azide click reaction that covalently attaches a DNA handle to a superparamagnetic bead, a traptavdin-dual biotin linkage that provides a strong connection between another DNA handle and the coverslip surface, and SpyTag-SpyCatcher association for covalent connection of the membrane protein to the two DNA handles.

      The method may offer a long lifetime for single-molecule linkage; however, it does not represent a significant technological advancement. These reactions are commonly used in the field of single-molecule manipulation studies. The use of multiple tags including biotin and digoxygenin to enhance the connection's mechanical stability has already been explored in previous DNA mechanics studies by multiple research labs. Additionally, conducting single-molecule manipulation experiments on a single DNA or protein tether for an extended period of time (hours or even days) has been documented by several research groups.

    3. Reviewer #3 (Public Review):

      The authors describe a method to tether proteins via DNA linkers in magnetic tweezers and apply it to a model membrane protein. The main novelty appears to be the use of DBCO click chemistry to covalently couple to the magnetic bead, which creates stable tethers for which the authors report up to >1000 force-extension cycles. Novel and stable attachment strategies are indeed important for force spectroscopy measurements, in particular for membrane proteins that are harder and therefore less studied in this regard than soluble proteins, and recording >1000 stretch and release cycles is an impressive achievement. Unfortunately, I feel that the current work falls short in some regards to exploring the full potential of the method, or at least does not provide sufficient information to fully assess the performance of the new method. Specific questions and points of attention are included below.

      - The main improvement appears to be the more stable and robust tethering approach, compared to previous methods. However, the stability is hard to evaluate from the data provided. The much more common way to test stability in the tweezers is to report lifetimes at constant force(s). Also, there are actually previous methods that report on covalent attachment, even working using DBCO. These papers should be compared.

      - The authors use the attachment to the surface via two biotin-traptavidin linkages. How does the stability of this (double) bond compare to using a single biotin? Engineered streptavidin versions have been studied previously in the magnetic tweezers, again reporting lifetimes under constant force, which appears to be a relevant point of comparison.

      - Very long measurements of protein unfolding and refolding have been reported previously. Here, too, a comparison would be relevant. In light of this previous work, the statement in the abstract "However, the weak molecular tethers used in the tweezers limit a long time, repetitive mechanical manipulation because of their force-induced bond breakage" seems a little dubious. I do not doubt that there is a need for new and better attachment chemistries, but I think it is important to be clear about what has been done already.

      - Page 5, line 99: If the PEG layer prevents any sticking of beads, how do the authors attach reference beads, which are typically used in magnetic tweezers to subtract drift?

      - Figure 3 left me somewhat puzzled. It appears to suggest that the "no detergent/lipid" condition actually works best, since it provides functional "single-molecule conjugation" for two different DBCO concentrations and two different DNA handles, unlike any other condition. But how can you have a membrane protein without any detergent or lipid? This seems hard to believe.<br /> Figure 3 also seems to imply that the bicelle conditions never work. The schematic in Figure 1 is then fairly misleading since it implies that bicelles also work.

      - When it comes to investigating the unfolding and refolding of scTMHC2, it would be nice to see some traces also at a constant force. As the authors state themselves: magnetic tweezers have the advantage that they "enable constant low-force measurements" (page 8, line 189). Why not use this advantage?<br /> In particular, I would be curious to see constant force traces in the "helix coil transition zone". Can steps in the unfolding landscape be identified? Are there intermediates?

      - Speaking of loading rates and forces: How were the forces calibrated? This seems to not be discussed. And how were constant loading rates achieved? In Figure 4 it is stated that experiments are performed at "different pulling speeds". How is this possible? In AFM (and OT) one controls position and measures force. In MT, however, you set the force and the bead position is not directly controlled, so how is a given pulling speed ensured?<br /> It appears to me that the numbers indicated in Figures 4A and B are actually the speeds at which the magnets are moved. This is not "pulling speed" as it is usually defined in the AFM and OT literature. Even more confusing, moving the magnets at a constant speed, would NOT correspond to a constant loading rate (which seems to be suggested in Figure 4A), given that the relationship between magnet positions and force is non-linear (in fact, it is approximately exponential in the configuration shown schematically in Figure 1).

      - Finally, when it comes to the analysis of errors, I am again puzzled. For the M270 beads used in this work, the bead-to-bead variation in force is about 10%. However, it will be constant for a given bead throughout the experiment. I would expect the apparent unfolding force to exhibit fluctuations from cycle to cycle for a given bead (due to its intrinsically stochastic nature), but also some systematic trends in a bead-to-bead comparison since the actual force will be different (by 10% standard deviation) for different beads. Unfortunately, the authors average this effect away, by averaging over beads for each cycle (Figure 4). To me, it makes much more sense to average over the 1000 cycles for each bead and then compare. Not surprisingly, they find a larger error "with bead size error" than without it (Figure 5A). However, this information could likely be used (and the error corrected), if they would only first analyze the beads separately.<br /> What is the physical explanation of the first fast and then slow decay of the error (Figure 5B)? I would have expected the error for a given bead after N pulling cycles to decrease as 1/sqrt(N) since each cycle gives an independent measurement. Has this been tested?

    1. Reviewer #1 (Public Review):

      In the manuscript " Cell Rearrangement Generates Pattern Emergence as a Function of Temporal Morphogen Exposure" by Fulton et al., the authors set out to link cell dynamics and single-cell gene expression states, in order to understand the dynamics of cell differentiation. This important challenge is tackled by studying somitogenesis in the zebrafish embryo and combining reverse-engineering gene regulatory networks (GRNs) with cell tracking data. The differentiation of the presomitic cells is evaluated by the differential tbx marker expression through in situ HCR and antibody staining, and live imaging of reporters. Through mathematical modelling taking into consideration the HCR tbx data, live reporter data of the morphogen activity, and the 3D tracking data at different stages, the authors find a candidate model of a gene regulatory network that recapitulates both in vivo and in vitro patterns of the dynamics of cell differentiation. Using this live-modelling approach, the authors move on to question the impact of cell movement on gene expression and conclude that pattern emerges as a function of cell rearrangements tuning the temporal exposure of the cells to the morphogen gradients.

      The major strength of the manuscript is the development of a unique method for addressing cell differentiation dynamics by combining static gene expression data with live cell dynamics. Bridging spatiotemporal information is key to understanding tissue and embryo development and this work provides a great basis for it. A potential weakness is how one selects which of the GRNs predicted from the live-modelling is physiologically relevant to the system of interest, since it requires fitting techniques.

      The major goal of the paper is mostly achieved. This is evident by the proposed model predicting well the dynamics of differentiation both in vivo and in vitro. To fully support the conclusion that cell rearrangements are necessary for patterning, the addition of functional experiments targeted in this direction might be beneficial.

      Overall, this live-modelling approach has the potential of being relevant to various model systems where gene expression and migration are changing simultaneously (e.g. organoids and embryos) and it is thus important to a wide audience including the fields of developmental, stem cell, and quantitative biology.

    2. Reviewer #2 (Public Review):

      Fulton et al. seek to understand the interplay between "morphogen exposure, intrinsic timers of differentiation, and cell rearrangement" that together regulate the differentiation process within the presomitic mesoderm tissue (PSM) in developing Zebrafish embryos. A combination of live-cell microscopy to measure cell movements, static measurements of gene expression, and computational and mathematical methods was used to develop a model that captures the observed differentiation profile in the PSM as a function of cell rearrangements and morphogen signaling.

      The authors motivate their investigation into the link between cell rearrangements and differentiation by first comparing differentiation timing in vitro and in vivo. The authors report that a subset of cells differentiating in vitro do so synchronously while cells differentiating in vivo do so with a wide range of differentiation trajectories. By following a small group of photo-labeled cells, it is suggested that the variation of differentiation timing in vivo is related to variation in cell movements in the tissue. To explain these observations in terms of gene expression within single cells, a novel method to combine cell tracks with fixed measurements of gene expression is first used to estimate gene expression dynamics (AGET) in live cells within a tissue. A final ODE-based gene regulatory network (GRN) model is selected based on a combination of data fitting to AGETs and tissue level measurements, further in vitro experiments, and literature criteria. Importantly this model incorporates information from diverse experimental sources to generate a single unified model that can be potentially used in other contexts such as predicting how differentiation is perturbed by genetic mutations affecting cell rearrangement. The authors then use this GRN model to explain how cells starting from the same position in the PSM can have different fates due to differential movement along the A-P axis. Lastly, the model predicts and, the authors experimentally validate, that the expression of differentiation markers can be heterogeneously expressed between neighboring PSM cells.

      The presented research addresses the important topic of patterning regulation accounting for individual cell motion. contributes to larger tissue patterns, this work may directly contribute to our understanding of how regulation across biological scales. Additionally, the methodology to estimate AGET is especially intriguing because of its potential applicability to a wide variety of developmental processes.

      However several issues weigh down the strengths of this paper. First, some conclusions and interpretations in the paper do not obviously follow the data and require further clarification. Second, the authors should consider alternative explanations and models and include some discussion about instances where the final GRN model may not fit as well. Finally, the current manuscript lacks clarity in its presentation and this makes it difficult to follow and understand.

      Major concerns:

      1. A key conclusion made in this paper is that differentiation times show a high variability even when neighboring PSM cells are compared. This is based on the photoconversion experiment shown in Figure 2A-C, where a group of cells is labeled and over time, a trail of labeled cells is visible. It is crucial to understand which compartment is labeled, i.e. progenitor vs. maturation zone vs. PSM. If cells in the progenitor/marginal zone are labeled, the underlying reason for the trailing effect is not a difference in differentiation time, but rather, a difference in the timing of when cells exit the progenitor zone. This needs to be distinguished in my view. In other words, while the timing of progenitor zone exit varies (needs to), once cells are within the PSM, do they still show a difference in differentiation timing? From previous experimental evidence I would expect that in fact, PSM cells differ only very little in differentiation timing. My statement is based on previously published labeling experiments done in posterior PSM cells, not tail bud cells (in chick embryos), which showed that labeled neighboring PSM cells were incorporated into the same adjacent somites, without evidence of a 'trail' (see figure 4H in Dubrulle et al. 2001). In the case of single cell labeling, it was found that these are actually incorporated into the same somite (or adjacent one), even if labeled in the posterior PSM (Stern et al. 1988). The situation in zebrafish appears similar (see Griffin & Kimelman 2002 and Müller et al. 1996). Additionally, the scheme in Figure 2K suggests that the trailing effect reflects a sequential exit from the progenitor zone that is controlled and timed.

      2. The data on cell movement needs to be presented more clearly. Currently, this data is mainly presented in Figure 3D, which does not provide a good description of the cell movements. Visualization of the single cell tracks and the different patterns that are in the tissue along with the characterization of the movement/timescales is needed to better communicate the data and to tie it to the main conclusions.

      3. The conclusion "As a result of their different patterns of movement, and therefore different Wnt and FGF dynamics, the simulated T-box gene expression dynamics differ in both cells." (Line 249) is not convincing: what part of the data shows that it is not the other way around, i.e. the signaling activities control the movement? The way I understand the rationale of this analysis: the authors take the cell movement tracks as a given input into the problem, and then ask, what signaling environment is the cell exposed to? The challenge with this view is two-fold: first, the authors seem to assume that a cell moves into a new environment and is hence exposed to a different level of signal, while in reality, these signaling gradients act short-range and maybe even at a cellular scale and hence a moving cell would carry Wnt-ligands with it, essentially contributing to the signaling environment. This aspect of 'niche construction' seems to be missing. Second, it has been shown (in chick embryos) that cell movement is, in turn, controlled by signaling levels, how would this factor into this model?

      4. On the comparison with the in vitro model:<br /> A. The interpretation of cells differentiating synchronously or coherently in vitro seems inconsistent with the data presented in figure 1. To me figure 1F/G does not seem compatible with the previous figure 1D/E since 1F seems to describe cells that upregulate tbx6 over a range of times, in a manner analogous to what is reported in vivo, i.e. figure 2.

      B. The authors conclude that in vitro, single PSM cells differentiate 'synchronously' and hence differently to what is seen in vivo, where the authors conclude that there is a "range of time scales". As noted above, the situation in vivo can be explained by a timed exit from the progenitor zone, while PSM differentiation is proceeding similarly in all PSM cells. In this view, what is seen in vitro is that all those cells that undergo PSM differentiation, initiate this process in culture more synchronously but it is the exit from the progenitor state, not the dynamics of differentiation, that might be regulated differently in vivo vs. in vitro.

      C. Another important point to clarify is that the overall timing of differentiation is entirely different in the in vitro experiment: as has been shown previously (Rohde et al. 2021, Figure S12) both the period of the clock and the overall time it takes to differentiate is very substantially increased, in fact, more than doubled. This aspect needs to be taken into account and hence the conclusion: "Our analysis revealed that cells undergo a range of temporal trajectories in gene expression, with the fastest cells transiting through to a newly formed somite in 3 hours; half the time taken for cells to fully upregulate tbx6 in vitro (Figure 2K-L).)" (line 142) appears misleading, as it seems to emphasize how fast some cells in vivo differentiate. However, given the overall slowing down seen in vitro, which more than doubles the time it takes for differentiation (see Rohde et al. 2021, Figure S12), this statement needs to be refined.

      5. The GRN proposed in this work includes inhibition of ntl/brachyury by Fgf (Figure 3f). However, it has been shown that Fgf signaling activates, not inhibits, ntl (see for instance dnFgfr1 experiments in Griffin et al., 1995). This does not seem compatible with the presented GRN, can the authors clarify?

      6. The authors use static mRNA in situ hybridization and antibody stainings to characterize Wnt and Fgf signaling activities. First, it should be clarified in Figure 3A that this is not based on any dynamic measurement (it now states Tcf::GFP, as if GFP is the readout, so the label should be GFP mRNA). Second, and more importantly, it is not clear how this quantification has been done. Figure 3C shows a single line, while the legend says n=6 and "all data plotted"..can this be clarified? Without seeing the data it is not possible to judge if the profiles shown (the mean) are convincing. As this experimental result is used to inform the model and the remainder of the paper, it is of critical importance to provide convincing evidence, in this case, based on static snapshots.

      7. Although the AGET analysis and this specific GRN model development are of interest and warrant the explanation the authors have provided, I would be careful not to overstate the findings. In particular, I believe the word "predicted" is used too loosely throughout the manuscript to describe the agreement between model and experiments. For example, my understanding of Figure 4, and what is described in the supplemental diagram, is that the in vitro experiments are used to further refine the model selection process. Therefore, it should not be stated as a prediction of the selected model. This is not to say the final model is not predictive, but it's difficult to assess the predictive power of this model since it hasn't been tested in independent experimental conditions (e.g. by perturbing cell movement and using the model to predict the expected differentiation boundary).

    3. Reviewer #3 (Public Review):

      Fulton et al. look to apply approaches for tackling the readout of gene regulatory networks (GRNs) to a system where cell position itself is continually changing. The objective is highly laudable. GRN analysis has proven to be a powerful approach for understanding how cell fates are determined by morphogenetic inputs, but it has thus far been applied in a limited number of systems. Here, the authors look to substantially extend the application of GRNs to more dynamic systems. The theoretical and experimental approaches are integrated to achieve the analysis of the GRN. In principle, this has wide potential impact and applicability to other systems.

      Unfortunately, in its current form, the manuscript does not do justice to the central aims of the authors. The manuscript is unclear in nearly all sections, and figures and analysis can be substantially improved. The quantifications are not shown in a fitting manner. The modelling itself stands as the strongest part of the manuscript, but improvements are needed. Currently, the main claims of the authors cannot be evaluated based on the quality of the presented data.

    1. Reviewer #3 (Public Review):

      This study by Wang et al. investigates the role of the focal adhesion protein vinculin in osteocytes and its effect on bone mass. First, they showed decreased levels of vinculin in osteocytes in trabecular bone from aged individuals compared to young, suggesting a potential role for vinculin in regulating bone mass with aging. Next, they deleted vinculin in late osteoblasts and osteocytes in young and older mice and found decreased bone mineral density and trabecular bone mass. This was due to impaired bone formation, which the authors attributed to increased sclerostin levels. Further in vitro experiments showed that vinculin regulates sclerostin via the transcription factor Mefc2. Conditional knockout of vinculin in late osteoblasts and osteocytes had no effect on the bone of mice lacking Sost, further implicating an essential role for sclerostin in mediating the effects of vinculin in osteocytes. Interestingly, the vinculin conditional knockout mice had an impaired response to mechanical loading, suggesting an important role for vinculin in the osteocyte mechanoresponse. Finally, the authors showed that while ovariectomy increased osteoclast formation and bone resorption in control mice, it had no effect on the bone of the vinculin conditional knockout mice.

      Overall, the authors show convincing data for the important role of vinculin in osteocytes in regulating the anabolic effects of bone formation under physiological conditions. They also show that osteocyte vinculin may be a regulator of bone resorption under conditions mimicking postmenopausal osteoporosis. However, not all of the conclusions are fully supported by the data.

      Strengths:

      The use of both in vivo and in vitro approaches to determine the role of vinculin in osteocytes provides compelling evidence for its importance under basal conditions and in regulating the anabolic effects of mechanical loading. The in vitro assays nicely demonstrate a potential mechanism through Mef2c/ECR5.

      The creation of the vinculin and Sost double conditional knockout mouse model provides further convincing evidence for the causative role of sclerostin in the effects of vinculin knockout in osteocytes.

      The use of both young and older male mice links nicely with the human samples where vinculin expression appears to be reduced in osteocytes with aging. The authors need to be careful in describing 14-month-old mice as aged though, as these mice would not be typically thought of as old.

      Weaknesses:

      The methods section is lacking in basic details (e.g., there is no information on the CRISPR deletion of Vcl in the MLO-Y4 cells). While referencing their previous papers is fine, a brief description of the methods should be included in this paper.

      While much of the data linking vinculin to sclerostin is convincing, it is surprising that the authors show decreased trabecular bone volume in the vinculin cKO mice, yet show increased sclerostin levels in the cortical bone. If increased sclerostin is responsible for impaired bone formation in the vinculin cKO mice, why is there no cortical bone phenotype? It would be important for the authors to also show the sclerostin immunostaining in the trabecular bone of these animals.

      The authors do not provide any potential explanation for the effects of vinculin cKO in the ovariectomized mice. Under physiological conditions, osteocyte vinculin has no effect on osteoclast number or bone resorption. How is osteocyte vinculin affecting osteoclasts after ovariectomy? Are there differences in the osteocyte expression of Rankl or Opg in response to the loss of estrogen in the vinculin cKO and control mice?

      From their in vitro experiments, the authors deduce that loss of vinculin affects osteocyte attachment. However, their images would suggest that it is the formation of dendrites that is strongly inhibited in the cells lacking vinculin. It is surprising that no investigation of osteocyte dendrite number or connectivity was performed in the vinculin cKO mice. This is particularly important as a decrease in osteocyte dendrites and connectivity has been observed in the bones of aged mice (see Tiede-Lewis et al., Aging. 2017) and osteocyte dendrites are important for mechanosensation.

    1. Reviewer #1 (Public Review):

      In this study, authors examine immune signatures from patients that experienced mild, moderate, or severe COVID-19 symptoms and followed them for months to evaluate whether there was a correlation between their immune activation phenotypes, disease severity, and long COVID. Authors observed higher T cell activation/proliferation marker expression in blood samples of patients with severe disease whereas other cell types were more or less unchanged. The authors also examined the cytokine profile of the patient's serum samples to determine the potential drivers of T cell activation phenotypes. Authors then perform T-cell responses to viral peptides to determine the differences in activation phenotypes with disease severity.

      The major strengths of the paper appear in the evaluation of the appropriate cohort of human samples and following them over a period of months. Additionally, the authors perform detailed T-cell analysis in an unbiased way to determine any possible activation correlations with disease severity. The authors also perform antigen-specific T-cell analysis via peptide stimulation which adds to the overall findings. However, there are a number of drawbacks that need to be mentioned. Firstly, the phenotypes of T cells prior to the 3-month time-point are not known. Hence, there is no information on baseline or during the early phase of infection. Secondly, the response is largely obtained from blood. How much information about T cells in blood correlate with lung disease is a matter of concern. Analysis of lungs, where actual disease manifestation is ideal, however close to impossible in the human cohort. Alternatively, analysis of local lymph node aspirate or nasal swabs could be useful. Thirdly, the claim that bystander T cell activation plays a role seems loose, specifically the IL-15 in vitro data. Moreover, the analysis of T cells seems very focused on activation/proliferation phenotypes. Alternative T cell phenotypes such as regulatory, IL-10 producing, or FoxP3 expression are not extensively analyzed.

      Major points

      1) In Figure 1, the CD4 T cell activation phenotypes do not seem consistent across the groups. Why does moderate vs. severe show increases in CXCR3 expression but not mild vs. severe? The same goes for other markers. Performing T cell stimulation with class II peptides specific for CoV-2 and looking at IFN etc. to determine antigen-specific T cells and then gating on these activation/proliferation markers may be a better way to observe differences.

      2) One major drawback is the control patients. It would have helped to include a batch of samples from uninfected patients. Or to have the plasma/blood from patients before COVID-19 symptoms. This way there is a baseline for each group that could be compared. It is difficult to draw broad conclusions across the group at 3 months if we do not know their baseline phenotypes.

      3) Although the authors focused on activating/proliferating markers to correlate with disease severity, this analysis does not consider alternate T cell phenotypes such as the ones with regulatory or anti-inflammatory phenotypes. Did authors detect differences in T cells with regulatory profiles such as expression of IL-10, FoxP3, etc. in their unsupervised UMAP analysis or otherwise flow experiments?

    1. Reviewer #1 (Public Review):

      The authors introduce a computational model that simulates the dendrites of developing neurons in a 2D plane, subject to constraints inspired by known biological mechanisms such as diffusing trophic factors, trafficked resources, and an activity-dependent pruning rule. The resulting arbors are analyzed in terms of their structure, dynamics, and responses to certain manipulations. The authors conclude that 1) their model recapitulates a stereotyped timecourse of neuronal development: outgrowth, overshoot, and pruning 2) Neurons achieve near-optimal wiring lengths, and Such models can be useful to test proposed biological mechanisms- for example, to ask whether a given set of growth rules can explain a given observed phenomenon - as developmental neuroscientists are working to understand the factors that give rise to the intricate structures and functions of the many cell types of our nervous system.

      Overall, my reaction to this work is that this is just one instantiation of many models that the author could have built, given their stated goals. Would other models behave similarly? This question is not well explored, and as a result, claims about interpreting these models and using them to make experimental predictions should be taken warily. I give more detailed and specific comments below.

      Line 109. After reading the rest of the manuscript, I worry about the conclusion voiced here, which implies that the model will extrapolate well to manipulations of all the model components. How were the values of model parameters selected? The text implies that these were selected to be biologically plausible, but many seem far off. The density of potential synapses, for example, seems very low in the simulations compared to the density of axons/boutons in the cortex; what constitutes a potential synapse? The perfect correlations between synapses in the activity groups is flawed, even for synapses belonging to the same presynaptic cell. The density of postsynaptic cells is also orders of magnitude of, etc. Ideally, every claim made about the model's output should be supported by a parameter sensitivity study. The authors performed few explorations of parameter sensitivity and many of the choices made seem ad hoc.

      Many potentially important phenomena seem to be excluded. I realize that no model can be complete, but the choice of which phenomena to include or exclude from this model could bias studies that make use of it and is worth serious discussion. The development of axons is concurrent with dendrite outgrowth, is highly dynamic, and perhaps better understood mechanistically. In this model, the inputs are essentially static. Growing dendrites acquire and lose growth cones that are associated with rapid extension, but these do not seem to be modeled. Postsynaptic firing does not appear to be modeled, which may be critical to activity-dependent plasticity. For example, changes in firing are a potential explanation for the global changes in dendritic pruning that occur following the outgrowth phase.

      Line 167. There are many ways to include activity -independent and -dependent components into a model and not every such model shows stability. A key feature seems to be that larger arbors result in reduced growth and/or increased retraction, but this could be achieved in many ways (whether activity dependent or not). It's not clear that this result is due to the combination of activity-dependent and independent components in the model, or conceptually why that should be the case.

      Line 183. The explanation of overshoot in terms of the different timescales of synaptic additions versus activity-dependent retractions was not something I had previously encountered and is an interesting proposal. Have these timescales been measured experimentally? To what extent is this a result of fine-tuning of simulation parameters?

      Line 203. This result seems at odds with results that show only a very weak bias in the tuning distribution of inputs to strongly tuned cortical neurons (e.g. work by Arthur Konnerth's group). This discrepancy should be discussed.

      Line 268. How does the large variability in the size of the simulated arbors relate to the relatively consistent size of arbors of cortical cells of a given cell type? This variability suggests to me that these simulations could be sensitive to small changes in parameters (e.g. to the density or layout of presynapses).

      The modeling of dendrites as two-dimensional will likely limit the usefulness of this model. Many phenomena- such as diffusion, random walks, topological properties, etc - fundamentally differ between two and three dimensions.

      The description of wiring lengths as 'approximately optimal' in this text is problematic. The plotted data show that the wiring lengths are several deviations away from optimal, and the random model is not a valid instantiation of the 2D non-overlapping constraints the authors imposed. A more appropriate null should be considered.

      It's not clear to me what the authors are trying to convey by repeatedly labeling this model as 'mechanistic'. The mechanisms implemented in the model are inspired by biological phenomena, but the implementations have little resemblance to the underlying biophysical mechanisms. Overall my impression is that this is a phenomenological model intended to show under what conditions particular patterns are possible. Line 363, describing another model as computational but not mechanistic, was especially unclear to me in this context.

    2. Reviewer #2 (Public Review):

      This work combines a model of two-dimensional dendritic growth with attraction and stabilisation by synaptic activity. The authors find that constraining growth models with competition for synaptic inputs produces artificial dendrites that match some key features of real neurons both over development and in terms of final structure. In particular, incorporating distance-dependent competition between synapses of the same dendrite naturally produces distinct phases of dendritic growth (overshoot, pruning, and stabilisation) that are observed biologically and leads to local synaptic organisation with functional relevance. The approach is elegant and well-explained, but makes some significant modelling assumptions that might impact the biological relevance of the results.

      Strengths:<br /> The main strength of the work is the general concept of combining morphological models of growth with synaptic plasticity and stabilisation. This is an interesting way to bridge two distinct areas of neuroscience in a manner that leads to findings that could be significant for both. The modelling of both dendritic growth and distance-dependent synaptic competition is carefully done, constrained by reasonable biological mechanisms, and well-described in the text. The paper also links its findings, for example in terms of phases of dendritic growth or final morphological structure, to known data well.

      Weaknesses:<br /> The major weaknesses of the paper are the simplifying modelling assumptions that are likely to have an impact on the results. These assumptions are not discussed in enough detail in the current version of the paper.

      1) Axonal dynamics.<br /> A major, and lightly acknowledged, assumption of this paper is that potential synapses, which must come from axons, are fixed in space. This is not realistic for many neural systems, as multiple undifferentiated neurites typically grow from the soma before an axon is specified (Polleux & Snider, 2010). Further, axons are also dynamic structures in early development and, at least in some systems, undergo activity-dependent morphological changes too (O'Leary, 1987; Hall 2000). This paper does not consider the implications of joint pre- and post-synaptic growth and stabilisation.

      2) Activity correlations<br /> On a related note, the synapses in the manuscript display correlated activity, but there is no relationship between the distance between synapses and their correlation. In reality, nearby synapses are far more likely to share the same axon and so display correlated activity. If the input activity is spatially correlated and synaptic plasticity displays distance-dependent competition in the dendrites, there is likely to be a non-trivial interaction between these two features with a major impact on the organisation of synaptic contacts onto each neuron.

      3) BDNF dynamics<br /> The models are quite sensitive to the ratio of BDNF to proBDNF (eg Figure 5c). This ratio is also activity-dependent as synaptic activation converts proBDNF into BDNF. The models assume a fixed ratio that is not affected by synaptic activity. There should at least be more justification for this assumption, as there is likely to be a positive feedback relationship between levels of BDNF and synaptic activation.

      A further weakness is in the discussion of how the final morphologies conform to principles of optimal wiring, which is quite imprecise. 'Optimal wiring' in the sense of dendrites and axons (Cajal, 1895; Chklovskii, 2004; Cuntz et al, 2007, Budd et al, 2010) is not usually synonymous with 'shortest wiring' as implied here. Instead, there is assumed to be a balance between minimising total dendritic length and minimising the tree distance (ie Figure 4c here) between synapses and the site of input integration, typically the soma. The level of this balance gives the deviation from the theoretical minimum length as direct paths to synapses typically require longer dendrites. In the model this is generated by the guidance of dendritic growth directly towards the synaptic targets. The interpretation of the deviation in this results section discussing optimal wiring, with hampered diffusion of signalling molecules, does not seem to be correct.

    3. Reviewer #3 (Public Review):

      The authors propose a mechanistic model of how the interplay between activity-independent growth and an activity-dependent synaptic strengthening/weaken model influences the dendrite shape, complexity and distribution of synapses. The authors focus on a model for stellate cells, which have multiple dendrites emerging from a soma. The activity independent component is provided by a random pool of presynaptic sites that represent potential synapses and that release a diffusible signal that promotes dendritic growth. Then a spontaneous activity pattern with some correlation structure is imposed at those presynaptic sites. The strength of these synapses follow a learning rule previously proposed by the lab: synapses strengthen when there is correlated firing across multiple sites, and synapses weaken if there is uncorrelated firing with the relative strength of these processes controlled by available levels of BDNF/proBDNF. Once a synapse is weakened below a threshold, the dendrite branch at that site retracts and loses its sensitivity to the growth signal

      The authors run the simulation and map out how dendrites and synapses evolve and stabilize. They show that dendritic trees growing rapidly and then stabilize by balancing growth and retraction (Figure 2). They also that there is an initial bout of synaptogenesis followed by loss of synapses, reflecting the longer amount of time it takes to weaken a synapse (Figure 3). They analyze how this evolution of dendrites and synapses depends on the correlated firing of synapses (i.e. defined as being in the same "activity group"). They show that in the stabilized phase, synapses that remain connected to a given dendritic branch are likely to be from same activity group (Figure 4). The authors systemically alter the learning rule by changing the available concentration of BDNF, which alters the relative amount of synaptic strengthening, which in turn affects stabilization, density of synapses and interestingly how selective for an activity group one dendrite is (Figure 5). In addition the authors look at how altering the activity-independent factors influences outgrowth (Figure 6). Finally, one of the interesting outcomes is that the resulting dendritic trees represent "optimal wiring" solutions in the sense that dendrites use the shortest distance given the distribution of synapses. They compare this distribute to one published data to see how the model compared to what has been observed experimentally.

      There are many strengths to this study. The consequence of adding the activity-dependent contribution to models of synapto- and dendritogenesis is novel. There is some exploration of parameters space with the motivation of keeping the parameters as well as the generated outcomes close to anatomical data of real dendrites. The paper is also scholarly in its comparison of this approach to previous generative models. This work represented an important advance to our understanding of how learning rules can contribute to dendrite morphogenesis

    1. Reviewer #1 (Public Review):

      MCM8 and MCM9 are paralogues of the eukaryotic MCM2-7 proteins. MCM2-7 form a heterohexameric complex to function as a replicative helicase while MCM8-9 form another hexameric helicase complex that may function in homologous recombination-mediated long-tract gene conversion and/or break-induced replication. MCM2-7 complex is loaded during the low Cdk period by ORC, CDC6, and Cdt1, when the origin DNA may intrude into the central channel via the MCM2-MCM5 entry "gate". In the S phase, MCM2-7 complex is activated as CMG helicase with the help of CDC45 and GINS complex. On the other hand, it still remains unclear how MCM8-9 complex is loaded onto DNA and then activated.

      In this study, the authors first investigated the cryo-EM structure of chicken MCM8-9 (gMCM8-9) complex. Based on the data obtained, they suggest that the observed gMCM8-9 structure might represent the structure of a loading state with possible DNA entry "gate". The authors further investigated the cryo-EM structure of human MCM8-9 (hMCM8-9) complex in the presence of the activator protein, HROB, and compared the structure with that obtained without HROB1, which the authors published previously. As a result, they suggest that MCM8-9 complex may change the conformation upon HROB binding, leading to helicase activation. Furthermore, based on the structural analyses, they identified some important residues and motifs in MCM8-9 complex, mutations of which actually impaired the MCM8-9 activity in vitro and in vivo.

      Overall, the data presented would support the authors' conclusions and would be of wide interest for those working in the fields of DNA replication and repair. One caveat is that most of the structural data are shown only as ribbon model without showing the density map data obtained by cryo-EM, which makes accurate evaluation of the data somewhat difficult.

    2. Reviewer #2 (Public Review):

      MCM8 and MCM9 together form a hexameric DNA helicase that is involved in homologous recombination (HR) for repairing DNA double-strand breaks. The authors have previously reported on the winged-helix structure of the MCM8 (Zeng et al. BBRC, 2020) and the N-terminal structure of MCM8/9 hexametric complex (MCM8/9-NTD) (Li et al. Structure, 2021). This manuscript reports the structure of a near-complete MCM8/9 complex and the conformational change of MCM8/9-NTD in the presence of its binding protein, HROB, as well as the residues important for its helicase activity.

      The presented data might potentially explain how MCM8/9 works as a helicase. However, additional studies are required to conclude this point because the presented MCM8/9 structure is not a DNA-bound form and HROB is not visible in the presented structural data. Taking into these accounts, this work will be of interest to biologists studying DNA transactions.

      A strength of this paper is that the authors revealed the near-complete MCM8/9 structure with 3.66A and 5.21A for the NTD and CTD, respectively (Figure 1). Additionally, the authors discovered a conformational change in the MCM8/9-NTD when HROB was included (Figure 4) and a flexible nature of MCM8/9-CTD (Figure S6 and Movie 1).

      The biochemical data that demonstrate the significance of the Ob-hp motif and the N-C linker for DNA helicase activity require careful interpretation (Figures 5 and 6). To support the conclusion, the authors should show that the mutant proteins form the hexamer without problems. Otherwise, it is conceivable that the mutant proteins are flawed in complex formation. If that is the case, the authors cannot conclude that these motifs are vital for the helicase function.

      A weakness of this paper is that the authors have already reported the structure of MCM8/9-NTD utilizing human proteins (Li et al. Structure, 2021). Although they succeeded in revealing the high-resolution structure of MCM8/9-NTD with the chicken proteins in this study, the two structures are extremely comparable (Figure S2), and the interaction surfaces seem to be the same (Figure 2).

      Another weakness of this paper is that the presented data cannot fully elucidate the mechanistic insights into how MCM8/9 functions as a helicase for two reasons. 1) The presented structures solely depict DNA unbound forms. It is critical to reveal the structure of a DNA-bound form. 2) The MCM8/9 activator, HROB, is not visible in the structural data. Even though HROB caused a conformational change in MCM8/9-NTD, it is critical to visualize the structure of an MCM8/9-HROB complex.

    1. Reviewer #1 (Public Review):

      This manuscript presents a model in which combined action of the transporter-like protein DISP and the sheddases ADAM10/17 promote shedding of a mono-cholesteroylated Sonic Hedgehog (SHH) species following cleavage of palmitate from the dually lipidated precursor ligand. The authors propose that this leads to transfer of the cholesterol-modified SHH to HDL for solubilization. The minimal requirement for SHH release by this mechanism is proposed to be the covalently linked cholesterol modification because DISP could promote transfer of a cholesteroylated mCherry reporter protein to serum HDL. The authors used an in vitro system to demonstrate dependency on DISP/SCUBE2 for release of the cholesterol modified ligand. These results confirm previously published results from other groups (PMC3387659 and PMC3682496). In vivo support for these activities is provided by data from previously published studies from this group. It is unclear whether new in vivo experiments were conducted for this study.

      A strength of the work is the use of a bicistronic SHH-Hhat system to consistently generate dually-lipidated ligands to determine the quantity and lipidation status of SHH released into cell culture media.

      A critical shortcoming of the study is that the experiments showing SHH secretion/export by western blot of media fractions do not include a SHH(-) control condition. This is an essential control because SHH media blots can be dirty. Without demonstration that the bands being analyzed are specific for SHH(+) conditions, these experiments cannot be appropriately evaluated. Further, it appears that SHH is transiently transfected/expressed for each experimental condition. A stably expressing SHH/HHAT cell line would reduce condition to condition and experiment to experiment variability. Unusual normalization strategies are used for many experiments, and quantification/statistical analyses are missing for several experiments. Due to these shortcomings, the data do not justify the conclusions. The significance of the data provided is overstated because many of the presented experiments confirm/support previously published work. The study provides a modest advance in the understanding of the complex issue of SHH membrane extraction.

    2. Reviewer #2 (Public Review):

      Ehring et al. analyze contributions of Dispatched, Scube2, serum lipoproteins and Sonic Hedgehog lipid modifications to the generation of different Shh release forms. Hedgehog proteins are anchored in cellular membranes by N-terminal palmitate and C-terminal cholesterol modifications, yet spread through tissues and are released into the circulation. How Hedgehog proteins can be released, and in which form, remains unclear. The authors systematically dissect contributions of several previously identified factors, and present evidence that Disp, Scube2 and lipoproteins concertedly act to release a novel Shh variant that is cholesterol-modified but not palmitoylated. The systematic analysis of key factors that control Shh release is a commendable effort and helps to reconcile apparently disparate models. However, the results concerning the roles of lipoproteins and Shh lipid modifications are largely confirmatory of previous results, and molecular identity/physiological relevance of the newly identified Shh variant remain unclear.

      The authors conclude that an important result of the study is the identification of HDL as a previously overlooked serum factor for secretion of lipid-linked Shh (p15, l24-25). This statement should be removed. A detailed analysis of Shh release on human lipoproteins was reported previously, including contributions of the major lipoprotein classes, in cells that endogenously express Shh, in human plasma and for Shh variants lacking palmitate and/or cholesterol modifications (PMID 23554573). The involvement of Disp is also not unexpected: the importance of Dips for release of cholesterol-modified Shh is well established, as is the essential function of Drosophila Disp for formation of lipoprotein-associated hemolymph Hh. A similar argument can be made for the sufficiency of sterol modification for lipoprotein association. The authors point out that GFP insertion at the C-terminus of the N-terminal Shh domain does not abrogate function. Perhaps more relevant, an mCherry-sterol that was generated using a similar strategy as in the present study associates with Drosophila lipoproteins (PMID 20685986).

      A novel and surprising finding of the present study is the differential removal of Shh N- or C-terminal lipid anchors depending on the presence of HDL and/or Disp. In particular, the identification of a non-palmitoylated but cholesterol-modified Shh variant that associates with lipoproteins is potentially important. However, the significance of this result could be substantially improved in two ways: 1) The molecular properties of the processed Shh variants are unclear - incorporation of palmitate/cholesterol and removal of peptides were not directly demonstrated. This is particularly relevant for the N-terminus, as the signaling activity of non-palmitoylated Hedgehog proteins is controversial. A decrease in hydrophobicity is no proof for cleavage of palmitate, this could also be due to addition of a shorter acyl group. 2) All experiments rely on over-expression of Shh in a single cell line. The authors point out that co-overexpression of Hhat is important to ensure Shh palmitoylation, but the same argument could be made for any other protein that acts in Shh release, such as Disp or a plasma membrane sheddase. The authors detect Shh variants that are released independently of Disp and Scube2 in secretion assays, which however are excluded from interpretation as experimental artifacts. Thus, it would be important to demonstrate key findings in cells that secrete Shh endogenously.

      The co-fractionation of Shh and ApoA1 in serum-containing media is not convincing (Fig. 4C), as the two proteins peak at different molecular weights. To support their conclusion, the authors could use an orthogonal approach, optimally a demonstration of physical interaction, or at least fractionation by a different parameter (density). On a technical note, all chromatography results are presented as stylized graphs. Please include individual data points.

    1. Reviewer #1 (Public Review):

      Park et al demonstrate that cells on either side of a BM-BM linkage strengthen their adhesion to that matrix using a positive feedback mechanism involving a discoidin domain receptor (DDR-2) and integrin (INA-1 + PAT-3). In response to its extracellular ligand (Collagen IV/EMB-9), DDR-2 is endocytosed and initiates signaling that in turn stabilizes integrin at the membrane. DDR-2 signaling operates via Ras/LET-60. This work's strength lies in its excellent in vivo imaging, especially of endogenously tagged proteins. For example, tagged DDR-2:mNG could be seen relocating from seam cell membranes to endosomes. I also think a second strength of this system is the ability to chart the development of BM-BM linkage over time based on the stages of worm larval development. This allows the authors to show DDR signaling is needed to establish linkage, rather than maintain it. It likely is relevant to many types of cells that use integrin to adhere to BM and left me pondering a number of interesting questions. For example: (1) Does DDR-2 activation require integrin? Perhaps integrin gets the process started and DDR-2 positively reinforces that (conversely is DDR-2 at the top of a linear pathway)? (2) In ddr-2(qy64) mutants, projections seem to form from the central portion of the utse cell. Does this reveal a second function for DDR-2, regulating perhaps the cytoskeleton? And (3) can you use the forward genetic tools available in C. elegans to find new genes connecting DDR-2 and integrin?

      I do see two areas where the manuscript could be improved. First, the authors rely on imprecise genetic methods to reach their conclusions (i.e. systemic RNAi, or expression of dominant negative constructs.) I think their conclusion would be stronger if they used tissue specific degradation to block ddr-2 function specifically in the utse or seam cells. Methods to do this are now regularly used in C. elegans and the authors have already developed the necessary tissue-specific promoters. Second, the manuscript is presented in the introduction as a study on formation and function of BM-BM linkage. The authors start the discussion in a similar manner. But their results are about adhesion between cells and BM. In fact they show the BM-BM linkage forms normally in ddr-2 mutants. Thus it seems like what they have really uncovered is an adhesion mechanism that works in parallel to the BM-BM linkage. Since ddr-2 appears to function equally in both utse + seam cells (based on their dominant negative data), there are likely three layers of adhesion (utse-BM, BM-BM, BM-seam) and if any of those break down, you get a partially penetrant rupture phenotype.

      These concerns do not undercut the significance of this work, which identifies an interesting mechanism cells use to strengthen adhesion during BM linkage formation. In fact, I am excited to read future papers detailing the connection between DDR-2 and integrin. But before undertaking those experiments the authors should be certain which cells require DDR-2 activity, and that should not be determined based solely on mis expression of a dominant negative.

    1. Reviewer #1 (Public Review):

      The present study examined the physiological mechanisms through which impaired TG storage capacity in adipose tissues affects systemic energy homeostasis in mice. To accomplish this, the authors deleted DGAT1 and DGAT2, crucial enzymes for TG synthesis, in an adipocyte-specific manner. The authors found that ADGAT DKO mice substantially lost the adipose tissues and developed hypothermia when fasted; however, surprisingly, ADGAT KO mice were metabolically healthy on a high-fat diet. The authors found that it was accompanied by elevated energy expenditure, enhanced glucose uptake by the BAT, and enhanced browning of white adipose tissues. This unique animal model provided exciting opportunities to identify new mechanisms to maintain systemic energy homeostasis even in a compromised energy storage capacity. Overall, the data are compelling and well support the conclusion of this paper. The manuscript is clearly written.

    2. Reviewer #2 (Public Review):

      Here, Chitraju et al have studied the phenotype of mice with an adipocyte-specific deletion of the diglycerol acyltransferases DGAT1 and DGAT2, the two enzymes catalyzing the last step in triglyceride biosynthesis. These mice display reduced WAT TG stores but contrary to their expectations, the TG loss in WAT is not complete and the mice are resistant to a high-fat diet intervention and display a metabolically healthier profile compared to control littermates. The mechanisms underlying this are not entirely clear, but the double knockout (DKO) animals have increased EE and a lower RQ suggesting that enhanced FA oxidation and WAT "browning" may be involved. Moreover, both adiponectin and leptin are expressed in WAT and are detectable in circulation. The authors propose that "the capacity to store energy in adipocytes is somehow sensed and triggers thermogenesis in adipose tissue. This phenotype likely requires an intact adipocyte endocrine system...." Overall, I find this to be an interesting notion.

    3. Reviewer #3 (Public Review):

      In this study, the authors sought to test the hypothesis that blocking triglyceride storage in adipose tissue by knockout of DGAT1 and DGAT2 in adipocytes would lead to ectopic lipid deposition, lipodystrophy, and impaired glucose homeostasis. Surprisingly, the authors found the opposite result, with DGAT1/2 DKO in adipocytes leading to increased energy expenditure, minimal ectopic lipid deposition, and improved glucose homeostasis with HFD feeding. These metabolic improvements were largely attributed to increased beiging of the white fat and increased brown adipose tissue activity. This study provides an interesting new paradigm whereby impairing fat storage, the major function of adipose tissue, does not lead to severe metabolic disease, but rather improves it. The authors provide a comprehensive assessment of the metabolism of these DKO mice under chow and HFD conditions, which support their claims. The study lacks in mechanistic insight, which would strengthen the study, but does not detract from the authors' major conclusions.

      The conclusions of this paper are mostly well-supported, but some aspects should be clarified and extended.

      1. The authors claim the beiging of WAT of ADGAT DKO mice is partially through the SNS; however, housing these mice at thermoneutrality did not block the beiging, which seems to negate that claim. Is there evidence of increased cAMP/PKA activation in the adipose tissues of ADGAT DKO to support the premise that the beiging is activated by the SNS, even at thermoneutrality? Alternatively, if the authors block beta-adrenergic receptors with antagonists, such as propranolol, does this block the beiging?

      2. It's been shown that autocrine FGF21 signaling is sufficient to promote beiging of iWAT (PMID 34192547). The authors show Fgf21 mRNA is increased in iWAT of chow-fed ADGAT DKO mice. Is Fgf21 also increased in iWAT of HFD-fed mice? This and measurement of local FGF21 secretion by adipocytes would strengthen this study.

      3. The primary adipocytes in Figure S6A do not appear to have any depletion in TG stores, suggesting this may not be an appropriate model to study the cell autonomous effects of ADGAT DKO on beiging. The authors should use DGAT inhibitors instead to corroborate or investigate this question.

      4. Multiple studies have shown the importance of lipolysis for the activation of brown and beige thermogenic programs (PMID 35803907, 34048700) and can be potentiated by HFD feeding (PMID 34048700). In the absence of DGAT activity in ADGAT DKO mice, it seems plausible that free fatty acids could be elevated, especially in the context of HFD. Are free fatty acids elevated in the adipose tissues, which could promote thermogenic gene expression?

      5. The lack of ectopic lipid deposition in the ADGAT DKO mice is striking, especially under HFD conditions. Can the increased energy expenditure fully account for the difference in whole body fat accumulation between Control and DKO mice or have the mice activated other energy disposal mechanisms? Please discuss or include measurement of fat excretion in the feces to strengthen this study.

    1. Reviewer #1 (Public Review):

      This study uses single-cell genomics and gene pathway analysis to characterize the transcriptional effects of influenza H1N1 infection on cell types of the lateral hypothalamus and dorsomedial hypothalamus. The authors use droplet-based single-nuclei RNA-seq to profile single-cell gene expression at 3, 7, and 23 days post intranasal infection with H1N1 influenza virus. Through state-of-the-art and rigorous computational methods, the authors find that many hypothalamic cell types, including glia and neurons, are transcriptionally altered by respiratory infection with a non-neurotropic influenza virus, and that these alterations can persist for weeks and potentially affect cell type interactions that disrupt function. Their thorough discussion of the findings raises interesting questions and hypotheses about the functional implications of the molecular changes they observed, including the physiological changes that can persist long after acute viral infection. Given the role of the hypothalamus in homeostasis, this work sheds light on potential mechanisms by which the H1N1 virus can disrupt cell function and organismal homeostasis beyond the cells that it directly infects.

      Despite its strengths, there are several points in the manuscript lacking sufficient evidence or clarity, which need to be addressed through revision. For instance, the conclusion that neurons but not non-neurons show persistent changes in gene expression may be alternatively explained by differences in the number of neuron and non-neuronal cells and transcripts. Also, the authors highlight the connection between influenza infection and loss of appetite and sleepiness but do not explore whether the influenza infection affected the cell types in their dataset previously associated with appetite and sleepiness, or whether differences in weight loss among the influenza-infected subjects correspond to any differences in gene expression.

    2. Reviewer #2 (Public Review):

      The new work from Lemcke et al suggests that the infection with Influenza A virus causes such flu symptoms as sleepiness and loss of appetite through the direct action on the responsible brain region, the hypothalamus. To test this idea, the authors performed single-nucleus RNA sequencing of the mouse hypothalamus in controlled experimental conditions (0, 3, 7, and 23 days after intranasal infection) and analyzed changes in the gene expression in the specific cell populations. The key results are promising.

      However, the analysis (cell type annotation, integration, group comparison) is not optimal and incomplete and, therefore should be significantly improved.

      More specifically:

      1) The current annotation of cell types (especially neuronal but also applicable to the group of heterogeneous "Unassigned cells") did not make a good link to existing cell heterogeneity in the hypothalamus identified with scRNA seq in about 20 recently published works. All information about different peptidergic groups can not be extracted from the current version (except for a few). There are also some mistakes or wrong interpretations (eg, authors assigned hypothalamic dopamine cells to the glutamatergic group, which is not true). This state is feasible to improve (and should be improved) with already existing data.

      2) I am confused with the results shown in the label transfer (suppl fig 3 and 4; note, they do not have the references in the text) applied to some published datasets (authors used the Seurat functions 'FindTransferAnchors' and 'TransferData'). The final results don't make sense: while the dataset for the arcuate nucleus (Campbel et al) well covered the GABAergic neurons it is not the case for the whole hypothalamus datasets (Chen et al; Zeisel et al). Similarly, for glutamatergic neurons. Additionally, I could not see that the label transfer works well for PMCH cells which should be present in the dataset for the lateral hypothalamus (Mickelsen et al,2019).

      3) There are newly developed approaches to check the shifts in the cell compositions and specific differential gene expression in the cell groups (e.g. Cacoa from Kharchenko lab, scCoda from Büttner et al; etc). Therefore, I did not fully understand why here the authors used the pseudo-bulk approaches for the data analysis (having such a valuable dataset with multiple hashed samples for each timepoint). Therefore it would be great to use at least one of those approaches, which were developed specifically for the scRNAseq data analysis. Or, if there are some reasons - the authors should argue why their approach is optimal

      4) When the authors describe the DGE changes upon experimental conditions (Figures 5 and 6), my first comment is again relevant: it is difficult to use the current annotation and cell type description as the reference for testing virus effects and shifts in the DGE in distinct neuronal subtypes.

      I have to note that the experimental design is well done and logical. Therefore I believe that to strengthen the conclusions, the already obtained datasets can be used for improved analysis.

    1. Joint Public Review:

      In the current paper, Jones et al. describe a new framework, named coccinella, for real-time high-throughput behavioral analysis aimed at reducing the cost of analyzing behavior. In the setup used here each fly is confined to a small circular arena and able to walk around on an agar bed spiked with nutrients or pharmacological agent. The new framework, built on the researchers' previously developed platform Ethoscope, relies on relatively low-cost Raspberry Pi video cameras to acquire images at ~0.5 Hz and pull out, in real time, the maximal velocity (parameter extraction) during 10 second windows from each video. Thus, the program produces a text file, and not voluminous videos requiring storage facilities for large amounts of video data, a prohibitive step for many behavioral analyses. The maximal velocity time-series is then fed to an algorithm called Highly Comparative Time-Series Classification (HCTSA)(which itself is based on a large number of feature extraction algorithms) developed by other researchers. HCTSA identifies statistically salient features in the time-series which are then passed on to a type of linear classifier algorithm called support vector machines (SVM). In cases where such analyses are sufficient for characterizing the behaviors of interest this system performs as well as other state-of-the-art systems used in behavioral analysis (e.g., DeepLabCut).

      In a pharmacobehavior paradigm testing different chemicals, the authors show that coccinella can identify specific compounds as effectively as other more time-consuming and resource-consuming systems.<br /> The new paradigm should be of interest to researchers involved in drug screens, and more generally, in high-throughput analysis focused on gross locomotor defects in fruit flies such as identification of sleep phenotypes. By extracting/saving only the maximal velocity from video clips, the method is fast. However, the rapidity of the platform comes at a cost--loss of information on subtle but important behavioral alterations. When seeking subtle modifications in animal behavior, solutions like DeepLabCut, which are admittedly slower but far superior in terms of the level of details they yield, would be more appropriate.

      The manuscript reads well, and it is scientifically solid.

      1- The fact that Coccinella runs on Ethoscopes, an open source hardware platform described by the same group, is very useful because the relevant publication describes Ethoscope in detail. However, the current version of the paper does not offer details or alternatives for users that would like to test the framework, but do not have an Ethoscope. Would it be possible to overcome this barrier and have coccinella run with any video data (and, thus, potentially be used to analyze data obtained from other animal models)?

      2- Readers who want background on the analytical approaches that the platform relies on following maximal velocity extraction, will have to consult the original publications. In particular, the current manuscript does not provide much information on Highly Comparative Time-Series Classification (HCTSA) or SVM; this may be reasonable because the methods were developed earlier by others. While some readers may find that the lack of details increases the manuscript's readability, others may be left wanting to see more discussion on these not-so-trivial approaches. In addition, it is worth noting that the same authors who published the HCTSA method also described a shorter version named catch22, that runs faster with a similar output. Thus, explaining in more detail how HCTSA operates, considering that it is a relatively new method, will make the method more convincing.

    1. Reviewer #1 (Public Review):

      This paper aims to study the effects of choice history on action-selective beta band signals in human MEG data during a sensory evidence accumulation task. It does so by placing participants in three different stochastic environments, where the outcome of each trial is either random, likely to repeat, or likely to alternate across trials. The authors provide good behavioural evidence that subjects have learnt these statistics (even though they are not explicitly told about them) and that they influence their decision-making, especially on the most difficult trials (low motion coherence). They then show that the primary effect of choice history on lateralised beta-band activity, which is well-established to be linked to evidence accumulation processes in decision-making, is on the slope of evidence accumulation rather than on the baseline level of lateralised beta.

      The strengths of the paper are that it is: (i) very well analysed, with compelling evidence in support of its primary conclusions; (ii) a well-designed study, allowing the authors to investigate the effects of choice history in different stochastic environments.

      There are no major weaknesses to the study. On the other hand, investigating the effects of choice/outcome history on evidence integration is a fairly well-established problem in the field. As such, I think that this provides a valuable contribution to the field, rather than being a landmark study that will transform our understanding of the problem.

      The authors have achieved their primary aims and I think that the results support their main conclusions. One outstanding question in the analysis is the extent to which the source-reconstructed patches in Figure 2 are truly independent of one another (as often there is 'leakage' from one source location into another, and many of the different ROIs have quite similar overall patterns of synchronisation/desynchronisation.). A possible way to investigate this further would be to explore the correlation structure of the LCMV beamformer weights for these different patches, to ask how similar/dissimilar the spatial filters are for the different reconstructed patches.

    2. Reviewer #2 (Public Review):

      In this work, the authors use computational modeling and human neurophysiology (MEG) to uncover behavioral and neural signatures of choice history biases during sequential perceptual decision-making. In line with previous work, they see neural signatures reflecting choice planning during perceptual evidence accumulation in motor-related regions, and further show that the rate of accumulation responds to structured, predictable environments suggesting that statistical learning of environment structure in decision-making can adaptively bias the rate of perceptual evidence accumulation via neural signatures of action planning. The data and evidence show subtle but clear effects, and are consistent with a large body of work on decision-making and action planning.

      Overall, the authors achieved what they set out to do in this nice study, and the results, while somewhat subtle in places, support the main conclusions. This work will have impact within the fields of decision-making and motor planning, linking statistical learning of structured sequential effects in sense data to evidence accumulation and action planning.

      Strengths:<br /> - The study is elegantly designed, and the methods are clear and generally state-of-the-art<br /> - The background leading up to the study is well described, and the study itself conjoins two bodies of work - the dynamics of action-planning processes during perceptual evidence accumulation, and the statistical learning of sequential structure in incoming sense data<br /> - Careful analyses effectively deal with potential confounds (e.g., baseline beta biases)

      Weaknesses:<br /> - Much of the study is primarily a verification of what was expected based on previous behavioral work, with the main difference (if I'm not mistaken) being that subjects learn actual latent structure rather than expressing sequential biases in uniform random environments. Whether this difference - between learning true structure or superstitiously applying it when it's not there - is significant at the behavioral or neural level is unclear. Did the authors have a hypothesis about this distinction? If the distinction is not relevant, is the main contribution here the neural effect?<br /> - The key effects (Figure 4) are among the more statistically on-the-cusp effects in the paper, and the Alternating group in 4C did not reliably go in the expected direction. This is not a huge problem per se, but does make the key result seem less reliable given the clear reliability of the behavioral results<br /> - The treatment of "awareness" of task structure in the study (via informal interviews in only a sub-sample of subjects) is wanting

    3. Reviewer #3 (Public Review):

      This study examines how the correlation structure of a perceptual decision making task influences history biases in responding. By manipulating whether stimuli were more likely to be repetitive or alternating, they found evidence from both behavior and a neural signal of decision formation that history biases are flexibly adapted to the environment. On the whole, these findings are supported across an impressive range of detailed behavioral and neural analyses. The methods and data from this study will likely be of interest to cognitive neuroscience and psychology researchers. The results provide new insights into the mechanisms of perceptual decision making.

      The behavioral analyses are thorough and convincing, supported by a large number of experimental trials (~600 in each of 3 environmental contexts) in 38 participants. The psychometric curves provide clear evidence of adaptive history biases. The paper then goes on to model the effect of history biases at the single trial level, using an elegant cross-validation approach to perform model selection and fitting. The results support the idea that, with trial-by-trial accuracy feedback, the participants adjusted their history biases due to the previous stimulus category, depending on the task structure in a way that contributed to performance.

      The paper then examines MEG signatures of decision formation, to try to identify neural signatures of these adaptive biases. Looking specifically at motor beta lateralization, they found no evidence that starting-level bias due to the previous trial differed depending on the task context. This suggests that the adaptive bias unfolds in the dynamic part of the decision process, rather than reflecting a starting level bias. The paper goes on to look at lateralization relative to the chosen hand as a proxy for a decision variable (DV), whose slope is shown to be influenced by these adaptive biases.

      This analysis of the buildup of action-selective motor cortical activity would be easier to interpret if its connection with the DV was more explicitly stated. The motor beta is lateralized relative to the chosen hand, as opposed to the correct response which might often be the case. It is therefore not obvious how the DV behaves in correct and error trials, which are combined together here for many of the analyses.

    1. Reviewer #1 (Public Review):

      This study presents an important finding on human m6A methyltransferase complex (including METTL3, METTL14 and WTAP). The evidence supporting the claims of the authors is convincing, although the model and assays need to be further modified. The work will be of interest to biologists working on RNA epigenetics and cancer biology.

      In mammals, a large methyltransferase complex (including METTL3, METTL14 and WTAP) deposits m6A across the transcriptome, and METTL3 serves as its catalytic core component. In this manuscript, the authors identified two cleaved forms of METTL3 and described the function of METTL3a (residues 239-580) in breast tumorigenesis. METTL3a mediates the assembly of METTL3-METTL14-WTAP complex, the global m6A deposition and breast cancer progression. Furthermore, the METTL3a-mTOR axis was uncovered to mediate the METTL3 cleavage, providing potential therapeutic target for breast cancer. This study is properly performed and the findings are very interesting; however, some problems with the model and assays need to be modified. It is widely known that METTL3 and METTL14 form a stable heterodimer with the stoichiometric ratio of 1:1 (Wang X et al. Nature 534, 575-578 (2016), Su S et al. Cell Res 32(11), 982-994 (2022), Yan X et al. Cell Res 32(12), 1124-1127 (2022)), the numbers of METTL3 and METTL14 in the model of Fig 7P are not equivalent and need to be modified.

    2. Reviewer #2 (Public Review):

      In this study, Yan et al. report that a cleaved form of METTL3 (termed METTL3a) plays an essential role in regulating the assembly of the METTL3-METTL14-WTAP complex. Depletion of METTL3a leads to reduced m6A level on TMEM127, an mTOR repressor, and subsequently decreased breast cancer cell proliferation. Mechanistically, METTL3a is generated via 26S proteasome in an mTOR-dependent manner.

      The manuscript follows a smooth, logical flow from one result to the next, and most of the results are clearly presented. Specifically, the molecular interaction assays are well-designed. If true, this model represents a significant addition to the current understanding of m6A-methyltransferase complex formation.

      A few minor issues detailed below should be addressed to make the paper even more robust. The specific comments are contained below.

      1. The existence of METTL3a and METTL3b.<br /> In this study, the author found the cleaved form of METTL3 in breast cancer patient tissues and breast cancer cell lines. Is it a specific event that only occurs in breast cancer? The author may examine the METTL3a in other cell lines if it is a common rule.<br /> 2. Generation of METTL3a and METTL3b.<br /> 1) Figure 1 shows that METTL3a and METTL3b were generated from the C-terminal of full-length METTL3. Because the sequence of METTL3a is involved in the sequences of METTL3b, can METTL3b be further cleaved to produce METTL3a?<br /> 2) Based on current data, the generation of METTL3a and METTL3b are separated. Are there any factors that affect the cleavage ratio between METTL3a and METTL3b?<br /> 3. In Figure 2G, the author shows the result that incubation of the Δ198+Δ238 METTL3 protein with T47D cell lysates cannot produce the METTL3a and METTL3b variants. The author may also show the results that Δ198 METTL3 protein or Δ238 METTL3 protein incubates with T47D cell lysates, respectively.<br /> 4. As well as many results published in previous studies, the in vitro methylation assay shows that WT METTL3 is capable of methylating RNA probe (figure 2H). The main point of this study is that METTL3a is required for the METTL3-METTL14 assembly. However, the absence of METTL3a in the in vitro system did not inhibit METTL3-METTL14 methylation activity. Moreover, the presence of METTL3a even resulted in a weak m6A level.<br /> 5. In Figure 4A, the author suggests that WTAP cannot be immunoprecipitated with METTL3a and 3b because WTAP interacted with the N-terminal of METTL3. If this assay is performed in WT cells, the endogenous full-length METTL3 may help to form the complex. In this case, WTAP is supposed to be co-immunoprecipitated.

    1. Reviewer #1 (Public Review):

      Masson et al. leveraged the natural genetic diversity presented in a large cohort of the Diversity Outbred in Australia (DOz) mice (n=215) to determine skeletal muscle proteins that were associated with insulin sensitivity. The hits were further filtered by pQTL analysis to construct a proteome fingerprint for insulin resistance. These proteins were then searched against Connectivity Map (CMAP) to identify compounds that could modulate insulin sensitivity. In parallel, many of these compounds were screened experimentally alongside other compounds in the Prestwick library to independently validate some of the compound hits. These two analyses were combined to score for compounds that would potentially reverse insulin resistance. Thiostrepton was identified as the top candidate, and its ability to reverse insulin resistance was validated using assays in L6 myotubes. The mechanism of action was also partially investigated. The concept of this work is certainly interesting, and the reviewer appreciates the amount of work the authors put into this study.

      (1) What's the rationale of trypsinizing the tissue prior to mitochondrial isolation? This is not standard for subsequent proteomics analysis. This step will inevitably cause protein loss, especially for the post mitochondrial fractions (PMF). Treating samples with 0.01ug/uL trypsin for 37oC 30 min is sufficient to partially digest a substantial portion of the proteome. If samples from different subjects were not of the same weight, then this partial digestion step may introduce artificial variability as variable proportions of proteins from different subjects would be lost during this step. In addition, the mitochondrial protein enrichment in the mito fraction, despite statistically significant, does not look striking (Figure 1E, ~30% mitochondrial proteins in the mito fraction). As a comparison, Williams et al., MCP 2018 seem to have obtained high mitochondrial protein content in the mito fraction without trpsinizing the frozen quadriceps using a similar SWATH-MS-based approach.

      (2) The authors mentioned that the proteomics data were Log2 transformed and median-normalized. Would it be possible to provide a bit more details on this? Were the subjects randomized?

      (3) In Figure 1D, what were the numbers of mice the authors used for the CV comparisons in each group? Were they of similar age and sex? Were the differences in CV values statistically significant?

      (4) The authors stated in lines 155-157 that proteins negatively associated with the Matsuda index were further filtered by presence of their cis-pQTLs. Perhaps more explanations would be needed to justify this filtering criterion? Having a cis-pQTL would mean the protein abundance variation is explained by the variation in its coding gene, this however conceptually would not be relevant to its association with the Matsuda index. With the data that the authors have in hand, would it not be natural to align the Matsuda index QTL with the pQTLs (cis and trans if available), and/or to perform mediation analysis to examine causal relationships with statistical significance?

      (5) It seems a bit odd that the first half of the paper focused extensively on the authors' discoveries in the mitochondrial proteome, and how proteins involved in mitochondrial processes (such as complex I) were associated with Matsuda Index, but the final fingerprint list of insulin resistance, which contained 76 proteins, only had 7 mitochondrial proteins. Was this because many mitochondrial proteins were filtered out due to no cis-pQTL presenting?

      (6) The authors found that thiostrepton-induced insulin resistance reversal effects were not through insulin signalling. It activated glycolysis but the mechanism of action was not clear. What are the proteins in the fingerprint list that led to identification of thiostrepton on CMAP? Is thiostrepton able to bind or change the expression of these proteins? Since thiostrepton was identified by searching the insulin resistance fingerprint protein list against CMAP, it would be rational to think that it exerts the biological effects by directly or indirectly acting on these protein targets.

    2. Reviewer #2 (Public Review):

      In the present study, Masson et al. provide an elegant and profound demonstration of utilization of systems genetics data to fuel discovery of actionable therapeutics. The strengths of the study are many: generation of a novel skeletal muscle genetics proteomic dataset which is paired with measures of glucose metabolism in mice, systematic utilization of these data to yield potential therapeutic molecules which target insulin resistance, cross-referencing library screens from connectivity map with an independent validation platform for muscle glucose uptake and preclinical data supporting a new mechanism for thiostrepton in alleviating muscle insulin resistance. Future studies evaluating similar integrations of omics data from genetic diversity with compound screens, as well as detailed characterization of mechanisms such as thiostrepton on muscle fibers will further inform some remaining questions. In general, the thorough nature of this study not only provides strong support for the conclusions made, but additionally offers a new framework for analysis of systems-based data. As a result, my questions/comments below are mostly derived from interest and curiosity.

      Line 105: The observation that variance in respiratory proteins is stable while lipid pathways is variable is quite interesting. Is this due to lower overall levels of lipid metabolism enzymes (ex. do these differ substantially from similar pathways ranked from high-low abundance?).

      Line 154: the 664 associations are impressive and potentially informative. It would be valuable to know which of these co-map to the same locus - either to distinguish linkage in a 2mb window or identify any cis-proteins which directly exert effects in trans-

      Line 194: Cross-platform validation of the CMAP fingerprint results is an admirable set of validations. It might be good to know general parameters like how many compounds were shared/unique for each platform. Also the concordance between ranking scores for significant and shared compounds.

      Line 319: Another consideration in the molecular fingerprint is how unique these are for muscle. While studies evaluating gene expression have shown that many cis-eQTLs are shred across tissues, to my knowledge, this hasn't been performed systematically for pQTLs. Therefore, consider adding a point to the discussion pointing out that some of the proteins might be conserved pQTLs whereas others which would be more relevant here present unique druggable targets in muscle.

      Line 332: These are fascinating observations. 1, that in general insulin signaling and ampk were not themselves shown as top-ranked enrichments with matsuda and that this was sufficient to alter glucose metabolism without changes in these pathways. While further characterization of this signaling emchanism is beyond the scope of this study, it would be good to speculate as to additional signaling pathways that are relevant beyond ROS (ex. CNYP2 and others)

      Line: 314: Remove the statement: "While this approach is less powerful than QTL co-localisation for identifying causal drivers,", as I don't believe that this has been demonstrated. Clearly, the authors provide a sufficient framework to pinpoint causality and produce an actionable set of proteins.

      Line 346: I would highlight one more appeal of the approach adopted by the authors. Given that these compound libraries were prioritized from patterns of diverse genetics, these observations are inherently more-likely to operate robustly across target backgrounds.

      Line 434: I might have missed but can't seem to find where the muscle data are available to researchers. Given the importance and novelty of these studies, it will be important to provide some way to access the proteomic data.

    1. Reviewer #1 (Public Review):

      The hippocampus is a structure in the cerebral cortex known to be compartmentalised into regions with different functions. Dorsal hippocampus is involved in cognitive functions such as declarative memory and spatial navigation and interconnects chiefly with the neocortex. Ventral hippocampus interconnects with limbic structures such as amygdala and hypothalamus and is involved in affective states and anxiety. What specifies this functional regionalisation during development is not well understood. The present study focuses on the role of transcription factors COUPTFI and COUPTFII, confirming a previously observed dorsal to ventral gradient of expression of COUPTFI in both embryonic and adult mouse hippocampus, and reporting that expression of COUPTFII is strongest in ventral hippocampus. The aim of the authors was then to probe the role of these transcription factors with the use of conditional knockout of one or both factors using RxCre+ mice (sometimes Emx1Cre+ for comparison). As predicted, COUPTFI insufficiency resulted in failure of the CA1 subregion of the dorsal hippocampus to develop properly (with concomitant loss of performance in a spatial memory task) COUPTFII knockdown had even more marked effects upon the ventral hippocampus with ectopic CA1/CA3 domains forming, while a double knockout lead to a drastic reduction in size of the hippocampus with subsequent effects upon the appearance of hippocampal synaptic circuitry and the capacity for adult neurogenesis (a feature of rodent hippocampus). In order to help explain the role of COUPTFI/II a role in regulating expression of two transcription factors LHX2 and LHX5, known to be crucial to hippocampal development, was tested by examining gene and protein expression. Changes in LHX2 and LHX5 was observed and a role for COUPTFI/II in regulating expression of these genes was postulated.

      I believe the authors have largely achieved their aims and the results mostly support the conclusions, but, as discussed further below, there are some weaknesses in the data and some areas that could be expanded upon and improved. The methods are mostly appropriate. The use of the transgenic mice and the application of histological methods, especially tyramide amplified immunohistochemistry, is exemplary. However, I'm not sure a wide enough range of tests to explore the phenotype of the transgenic mice was employed to back the conclusions drawn by the authors. The introduction and discussion are nicely written and explain the general concepts and conclusions well. The work makes an important contribution to our understanding of brain development in general and hippocampal development in particular.

      Turning to more specific comments, I must first point out that specification of the ventral hippocampus by expression of COUPTFII is not an entirely original finding, as it was suggested for the developing human hippocampus following immunohistochemical experiments illustrating COUPTFII expression to be confined to the ventral hippocampal structures of the medial temporal cortex (doi: 10.1093/cercor/bhx185). Of course, this study, unlike the present study, was restricted to fetal cortex, not adult, and also reported expression of COUP-TFI throughout dorsal and ventral hippocampal structures but without observing any dorsal to ventral gradient, however I feel its contribution to the field has been overlooked by the present study, and should be incorporated into the introduction and/or discussion.

      More information about Rx-cre mice would be informative and could help explain the different phenotype observed when EMX1-cre mice were used to conditionally knock down COUPTFI/II expression.

      The demonstration of antagonistic gradients of COUP-TFI and -TFII across the hippocampus is more convincing in the immunohistochemical preparations than in the western blots. The qualitative data presented in Fig.1p does not convincingly represent the quantitative data presented in Fig.1q. There seem to be multiple bands for COUP-TFII and I wonder exactly how quantifying this was approached?

      Behavioural testing is limited to one test of dorsal hippocampus function. other tests for non-spatial memory, e.g. novel object recognition, or ventral hippocampus function, e.g. step through passive avoidance, might have lead to some interesting discriminations between the various knock down animals (see doi: 10.3389/fnagi.2018.00091).

      Abnormalities in the trisynaptic circuit. No studies of actual synapses, either physiological or morphological, were carried out. I wonder to what extent these immunohistochemical studies just further reflect the abnormalities in hippocampal morphology presented earlier in the manuscript without specifically telling us about synaptic circuits? Although the immunohistochemical preparations are beautiful, they are inadequate on their own in telling us much about what sort of synaptic circuitry exists in the transgenic animals.

      LHX2/LHX5 interaction. The immunohistochemical study, which shows clear differences in LHX5 and LHX2 protein expression at E14.5 in double knockdown mice is more convincing than the qPCR study at E11.5, which show surprisingly small differences in mRNA expression. Could the authors expand upon whether this is due to stage of development, or differences between mRNA and protein expression? Why hasn't both mRNA and protein expression data at both time points been presented?

    2. Reviewer #2 (Public Review):

      The authors Yang et al., examine the role of NR2F1/COUPTFI and NR2F2/COUPTF2 genes in hippocampus (HP) development, using two Cre lines, RxCre, and Emx1Cre. They report that loss of COUPTFI leads to a defective specification of dorsal CA1; loss of COUPTF2 leads to defects in the morphogenesis of the ventral HP with some ectopic CA field domains; loss of both results in a greatly shrunken hippocampus.

      While the phenotypes are indeed interesting and important to examine carefully, there are major lacunae in (A) the authors' interpretation of the literature that sets up the problem (B) the data itself and the experimental design (C) the interpretation of the data. These are detailed below.

      [A] Interpretation of the literature<br /> A1: The author's interpretation of the Lhx5 mutant phenotype (line 74-76) missed the fact that the hem appears to be missing or greatly reduced (Zhao et al., 1999; Figure 4D,I; Miquelajáuregui et al., 2010 Figure 5). If the hem is deficient, shrinkage/ agenesis of hippocampus is not surprising. It is incorrect to conclude that Lhx5 has a role in the hippocampal primordium, not only because of the above, but also because Lhx5 expression has been well characterized to be limited to the early hem and CR cells, but is not known to be expressed in the hippocampal primordium. The immunohistochemistry data in Figure 5B showing Lhx5 presence in the vz of the hippocampal and neocortical primordium is perplexing and not what other studies in the literature show for this gene. This is a major point because "regulation of the Lhx2-Lhx5 axis" is one of the main conclusions of the study.

      A2: The Lhx2<->Lhx5 inhibition is pitched as a mechanism, but there's no evidence in the literature for this nor in this study. Lines 78-79 "Intriguingly, deficiency of either Lhx5 or Lhx2 results in agenesis of the hippocampus, and more particularly, these genes inhibit each other" are an incorrect interpretation of the literature. The "agenesis" of the hippocampus in the Lhx5 mutant (Zhao et al., 1999) is likely to be because the hem is deficient (point A1 above). The Lhx2 mutant lacks a hippocampus (and neocortex) because the entire dorsal telencephalon has transformed into hem and antihem (Mangale et al., 2008). To cite this as "agenesis of the hippocampus" as originally described by Porter et al (1997) misinterprets a complex stepwise process that was elucidated subsequently in the literature.

      Finally, it has not been shown that Lhx2 and Lhx5 inhibit each other- the literature cited does not contain this information. The phenotype reported by the authors may actually have a basis in the effect of loss of COUPTFI/ II on the hem, and a rostro-caudal variation in this effect (or in the timing of action of the Cre lines used) may explain the phenotype.

      Problems in the experimental design:<br /> B1: What is the expression domain and timing of RxCre? If it has a dorso-ventral bias in the early embryo, it could explain the regional difference in the COUPTF phenotypes. The authors must show the domain of Cre activation using an Ai9 reporter at E10.5-E11.5 and also at later embryonic stages to be able to interpret whether the shrunken hippocampal phenotype in the single and double mutants is a due to a defect in induction (from the hem), specification (in the early hippocampal primordium), or growth and maintenance (at later embryonic/ postnatal stages). A related point is whether COUPTFI expressed in the hem at E10.5-E11.5, since the earliest age shown is E14.5 which does show expression in the hem; likewise COUPTFII is shown to be expressed in the hem at E12.5. Emx1Cre acts in the hem and therefore the phenotypes could be partially explained by a deficit in the hem itself. Where RxCre acts is not shown and nor is it cited and the logic of shifting between RxCre and Emx1Cre is not clear. A comparison of the expression domains of these lines at relevant early and late embryonic ages is important.

      B2:<br /> Line 187: "We would like to investigate the correlation of the CH and/or amygdala anlage with the duplicated ventral hippocampal domains in the COUP-TFII mutant in detail in our future study."<br /> This is inadequate, the effect of the mutation on the cortical hem may be central to the hippocampal phenotype and therefore is central to this study. Ectopic CA fields arising in unexpected places is a finding that needs an explanation, this is not a mere morphogenesis issue as implied in line 190.

      B3: Questionable immunofluoresence data: Figure 5B panel h shows that Lhx2 expression extends into the region of the hem at E14.5, suggesting that the hem may in fact not have been specified in the first place. However, the choroid plexus appears to be LHX2 positive in the same image, which it isn't supposed to be, and this calls into question the quality and specificity of the immunofluoresence data. LHX5 staining in Figure 5B panel has been mentioned in point A1- it does not reflect the known expression pattern of this gene (Allen Brain atlas, Zhao et al., 2009). SOX2 also shouldn't be seen in the choroid plexus.

      [C] Interpretation of the data<br /> C1: In the COUPTFII mutant, the ectopic presence of HuB+ve cells is intriguing, however it is a stretch to conclude that these cells are born at the expense of CTIP2+ve cells (line 179) without experiments that examine this point.

      C2: Line 251: "Unexpectedly, an ectopic nucleus was observed in the region of the prospected temporal hippocampus, indicated by the arrowhead, in the double-mutant mice (Figure 3Ag, h)"<br /> These data are unclear and difficult to appreciate.

      C3: The hippocampus is shrunken in the double mutants but the underlying cause has not been examined from the perspective of early cell cycle exit or cell death. How does the reduction of Tbr2+ and NeuroD1+ cells speak to the hippocampal defect? (Figure 5)