6,971 Matching Annotations
  1. Sep 2025
    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is guided by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which has struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death processes. Unfortunately, though, the model shows little improvement over neutral models in predicting protein sequence evolution, although it can predict protein stability better than models assuming neutral evolution. It appears that more work is needed to determine exactly what aspects of protein sequence evolution are predictable under such non-neutral phylogenetic models. 

      We thank the reviewer for the positive comments about our work. We agree that further work is needed in the field of substitution models of molecular evolution to enable more accurate predictions of specific amino acid sequences in evolutionary processes.

      Major concerns: 

      (1) The authors have clarified the mapping between birth-death model parameters and fitness, but how fitness is modeled still appears somewhat problematic. The authors assume the death rate = 1 - birth rate. So a variant with a birth rate b = 1 would have a death rate d = 0 and so would be immortal and never die, which does not seem plausible. Also I'm not sure that this would "allow a constant global (birth-death) rate" as stated in line 172, as selection would still act to increase the population mean growth rate r = b - d. It seems more reasonable to assume that protein stability affects only either the birth or death rate and assume the other rate is constant, as in the Neher 2014 model. 

      The model proposed by Neher, et al. (2014), which incorporates a death rate (d) higher than 0 for any variant, was implemented and applied in the present method. In general, this model did not yield results different from those obtained using the model that assumes d = 1 – b, suggesting that this aspect may not be crucial for the study system. Next, the imposition of arbitrary death events based on an arbitrary death rate could be a point of concern. Regarding the original model, a variant with d = 0 can experience a decrease in fitness through the mutation process. In an evolutionary process, each variant is subject to mutation, and Markov models allow for the incorporation of mutations that decrease fitness (albeit with lower probability than beneficial ones, but they can still occur). All this information is included in the manuscript.

      (2) It is difficult to evaluate the predictive performance of protein sequence evolution. This is in part due to the fact that performance is compared in terms of percent divergence, which is difficult to compare across viral proteins and datasets. Some protein sequences would be expected to diverge more because they are evolving over longer time scales, under higher substitution rates or under weaker purifying selection. It might therefore help to normalize the divergence between predicted and observed sequences by the expected or empirically observed amount of divergence seen over the timescale of prediction. 

      AU: The study protein datasets showed different levels of sequence divergence over their evolutionary times, as indicated for each dataset in the manuscript. For some metrics, we evaluated the accuracy (or error) of the predictions through direct comparisons between real and predicted protein variants using percentages to facilitate interpretation: 0% indicates a perfect prediction (no error), while 100% indicates a completely incorrect prediction (total error). Regarding normalization of these evaluations, we respectfully disagree with the suggestion because diverse factors can affect (not only the substitution rate, but also the sample size, structural features of the protein that may affect stability when accommodating different sequences, among others) and this complicates defining a consistent and meaningful normalization criterion. Given that the manuscript provides detailed information for each dataset, we believe that the presentation of the prediction accuracy through direct comparisons between real and predicted protein variants, expressed as percentages of similarity, is the clearest way.

      (3) Predictability may also vary significantly across different sites in a protein. For example, mutations at many sites may have little impact on structural stability (in which case we would expect poor predictive performance) while even conservative changes at other sites may disrupt folding. I therefore feel that there remains much work to be done here in terms of figuring out where and when sequence evolution might be predictable under these types of models, and when sequence evolution might just be fundamentally unpredictable due to the high entropy of sequence space. 

      We agree with this reflection. Mutations can have different effects on folding stability, which are accounted for by the model presented in this study. However, accurately predicting the exact sequences of protein variants with similar stability remains difficult with current structurally constrained substitution models, and therefore, further work is needed in this regard. This aspect is indicated in the manuscript.

      We want to thank the reviewer again for taking the time to revise our work and for the insightful and helpful comments.

      Reviewer #2 (Public review): 

      In this study, the authors aim to forecast the evolution of viral proteins by simulating sequence changes under a constraint of folding stability. The central idea is that proteins must retain a certain level of structural stability (quantified by folding free energy, ΔG) to remain functional, and that this constraint can shape and restrict the space of viable evolutionary trajectories. The authors integrate a birth-death population model with a structurally constrained substitution (SCS) model and apply this simulation framework to several viral proteins from HIV-1, SARS-CoV-2, and influenza.

      The motivation to incorporate biophysical constraints into evolutionary models is scientifically sound, and the general approach aligns with a growing interest in bridging molecular evolution and structural biology. The authors focus on proteins where immune pressure is limited and stability is likely to be a dominant constraint, which is conceptually appropriate. The method generates sequence variants that preserve folding stability, suggesting that stability-based filtering may capture certain evolutionary patterns. 

      Correct. We thank the reviewer for the positive comments about our study.

      However, the study does not substantiate its central claim of forecasting. The model does not predict future sequences with measurable accuracy, nor does it reproduce observed evolutionary paths. Validation is limited to endpoint comparisons in a few datasets. While KL divergence is used to compare amino acid distributions, this analysis is only applied to a single protein (HIV-1 MA), and there is no assessment of mutation-level predictive accuracy or quantification of how well simulated sequences recapitulate real evolutionary paths. No comparison is made to real intermediate variants available from extensive viral sequencing datasets which gather thousands of sequences with detailed collection date annotation (SARS-CoV-2, Influenza, RSV). 

      There are several points in this comment.

      The presented method accurately predicts folding stability of forecasted variants, as shown through comparisons between real and predicted protein variants. However, as the reviewer correctly indicates, predicting the exact amino acid sequences remains challenging. This limitation is discussed in detail in the manuscript, where we also suggest that further improvements in substitution models of protein evolution are needed to better capture the evolutionary signatures of amino acid change at the sequence level, even between amino acids with similar physicochemical properties. Regarding the time points used for validation, the studied influenza NS1 dataset included two validation points. A key limitation in increasing the number of time points is the scarcity of datasets derived from monitoring protein evolution with sufficient molecular diversity between samples collected at consecutive time points (i.e., at least more than five polymorphic amino acid sites). 

      As described in the manuscript, calculating Kullback-Leibler (KL) divergence requires more than one sequence per studied time point. However, most datasets in the literature include only a single sequence per time point, typically a consensus sequence derived from bulk population sequencing. Generating multiple sequences per time point is experimentally more demanding, often requiring advanced methods such as single-virus sequencing or amplification of sublineages in viral subpopulations, as was done for the first dataset used in the study (Arenas, et al. 2016), which enabled the calculation of KL divergence. The extent to which the simulated sequences resemble real evolution is evaluated in the method validation. As noted, intermediate time point validation was performed using the influenza NS1 protein dataset. Although, as the reviewer indicates, thousands of viral sequences are available, these are usually consensus sequences from bulk sequencing. Indeed, many viral variants mainly differ through synonymous mutations, where the number of accumulated nonsynonymous mutations is small. For example, from the original Wuhan strain to the Omicron variant, the SARS-CoV-2 proteins Mpro and PLpro accumulated only 10 and 22 amino acid changes, respectively.

      Analyzing intermediate variants of concern (i.e., Gamma or Delta) would reduce this number affecting statistics. In addition, many available viral sequences are not consecutive in evolutionary terms (one dataset does not represent the direct origin of another dataset at a subsequent time point), which further limits their applicability in this study. There is little data from monitored protein evolution with consecutive samples. The most suitable studies usually involve in vitro virus evolution, but the data from these studies often show low genetic variability between samples collected at different time points. Finally, it is important to note that the presented method can only be applied to proteins with known 3D structures, as it relies on selection based on folding stability. Non-structural proteins cannot be analyzed using this approach. Future work could incorporate additional selection constraints, which may improve the accuracy of predictions. These considerations and limitations are indicated in the manuscript.

      The selection of proteins is narrow and the rationale for including or excluding specific proteins is not clearly justified. 

      The viral proteins included in the study were selected based on two main criteria, general interest and data availability. In particular, we included proteins from viruses that affect humans and for which data from monitored protein evolution, with sufficient molecular diversity between consecutive time points, is available. These aspects are indicated in the manuscript.

      The analyzed datasets are also under-characterized: we are not given insight into how variable the sequences are or how surprising the simulated sequences might be relative to natural diversity. Furthermore, the use of consensus sequences to represent timepoints is problematic, particularly in the context of viral evolution, where divergent subclades often coexist - a consensus sequence may not accurately reflect the underlying population structure. 

      The manuscript indicates the sequence identity among protein datasets of different time points, along with other technical details. Next, the evaluation based on comparisons between simulated and real sequences reflects how surprising the simulated sequences might be relative to natural diversity, considering that the real dataset is representative. We believe that the diverse study real datasets are useful to evaluate the accuracy of the method in predicting different molecular patterns. Regarding the use of consensus sequences, we agree that they provide an approximation. However, as previously indicated, most of the available data from monitored protein evolution consist of consensus sequences obtained through bulk sequencing. Additionally, analyzing every individual viral sequence within a viral population, which is typically large, would be ideal but computationally intractable.

      The fitness function used in the main simulations is based on absolute ΔG and rewards increased stability without testing whether real evolutionary trajectories tend to maintain, increase, or reduce folding stability over time for the particular systems (proteins) that are studied. While a variant of the model does attempt to center selection around empirical ΔG values, this more biologically plausible version is underutilized and not well validated.

      The applied fitness function, based on absolute ΔG, is well stablished in the field (Sella and Hirsh 2005; Goldstein 2013). The present study independently predicts ΔG for the real and simulated protein variants at each sampling point. This ΔG prediction accounts not only for negative design, informed by empirical data, but also for positive design based on the study data (Arenas, et al. 2013; Minning, et al. 2013), thereby enabling the detection of variation in folding stability among protein variants. These aspects are indicated in the manuscript. Therefore, in our view, the study provides a proper comparison of real and predicted evolutionary trajectories in terms of folding stability.

      Ultimately, the model constrains sequence evolution to stability-compatible trajectories but does not forecast which of these trajectories are likely to occur. It is better understood as a filter of biophysically plausible outcomes than as a predictive tool. The distinction between constraint-based plausibility and sequence-level forecasting should be made clearer. Despite these limitations, the work may be of interest to researchers developing simulation frameworks or exploring the role of protein stability in viral evolution, and it raises interesting questions about how biophysical constraints shape sequence space over time. 

      The presented method estimates the fitness of each protein variant, which can reflect the relative survival capacity of the variant. Therefore, despite the error due to evolutionary constraints not considered by the method, it indicates which variants are more likely to become fixed over time. In our view, the method does not merely filter plausible variants, rather, it generates predictions of variant survival through predicted fitness based on folding stability and simulations of protein evolution under structurally constrained substitution models integrated with birth-death population genetics approaches. The use of simulation-based approaches for prediction is well established in population genetics. For example, approaches such as approximate Bayesian computation (Beaumont, et al. 2002) rely on this strategy, and it has also been applied in other studies of forecasting evolution (e.g., Neher, et al. 2014). We believe that the distinction between forecasting folding stability and amino acid sequence is clearly shown in the manuscript, including the main text and the figures.

      Reviewer #2 (Recommendations for the authors): 

      I thank the authors for addressing the question about template switching, their clarification was helpful. However, the core concerns I raised remain unresolved: the claim that the method is useful for forecasting is not substantiated.  In order to support the paper's central claims or to prove its usefulness, several key improvements could be incorporated: 

      (1) Systematic analysis of more proteins: 

      The manuscript would be significantly strengthened by a systematic evaluation of model performance across a broader set of viral proteins, beyond the examples currently shown. Many human influenza and SARS-CoV-2 proteins have wellcharacterized structures or high-quality homology templates, making them suitable candidates. In the light of limited success of the method, presenting the model's behavior across a more comprehensive protein set, including those with varying structural constraints and immune pressures, would help assess generalizability and clarify the specific conditions under which the model is applicable. 

      Following a comment from the reviewer in a previous revision of the study, we included the analysis of an influenza NS1 protein dataset that contains two evaluation time points. Next, to validate the prediction method, it is necessary to have monitored protein sequences collected at least at two consecutive time points, with sufficient divergence between them to capture evolutionary signatures that allow for proper evaluation. Additionally, many data involve sequences that are not consecutive in evolutionary terms (one dataset is not a direct ancestor of another dataset existing at a posterior time point), which disallows their applicability in this study. Little data from monitored protein evolution with trustable consecutive (ancestor-descendant) samples exist. The most suitable studies often involve in vitro virus evolution, but they usually show low genetic variability between samples collected at different time points. Although thousands of sequences are available for some viruses, they are usually consensus sequences from bulk sequencing and often show a low number of nonsynonymous mutations at the study protein-coding gene between time points. For example, from the original Wuhan strain and the Omicron variant, the SARS-CoV-2 proteins Mpro and PLpro accumulated only 10 and 22 amino acid changes, respectively. Analyzing intermediate variants of concern (i.e., Gamma or Delta) would reduce this number affecting statistics. Thus, in practice, we found scarcity of data derived from monitoring protein evolution, with trustable ancestor and corresponding descendant data at consecutive time points and with sufficient molecular diversity between them (i.e., at least more than five polymorphic amino acid sites). In all, we believe that the diverse viral protein datasets used in the present study, along with the multiple analyzed datasets collected from monitored HIV-1 populations present in different patients, provide a representative application of the method, since notice that similar patterns were generally generated from the analysis of the different datasets.

      (2) Present clear data statistics: For each analyzed dataset, the authors should provide basic information about the number of unique sequences, levels of variability, and evolutionary divergence between start and end sequences. This would contextualize the forecasting task and clarify whether the simulations are non-trivial. In particular, it should be shown that the consensus sequence is indeed representative of the viral population at a given time point. In viral evolution we frequently observe co-circulation of subclades and the consensus sequence is then not representative. 

      For each dataset analyzed, the manuscript provides the sequence identity between samples at the study time points (which also informs about sequence variability), sample sizes, representative protein structure, and other technical details. The study assumes that consensus sequences, typically generated by bulk sequencing, are representative of the viral population. Next, samples at different time points should involve ancestor-descendant relationships, which is a requirement and one of the limitations to find appropriate data for this study, as noted in our previous response.

      (3) Explore other metrics for population level sequence comparison: 

      In the light of possible existence of subclades, mentioned above, the currently used metrics for sequence comparison may underestimate performance of the simulations. It would be sufficient to see some overlap of simulated clades and and the observed clades. 

      We found this to be a good idea. However, in practice, we believe that the criteria used to define subclades could introduce biases into the results. For some metrics, we evaluated the accuracy of the predictions through direct comparisons between all real and predicted protein variants, using percentages to facilitate interpretation. We believe that using subclades could potentially reduce the current prediction errors, but this would complicate the interpretation of the results, as they would be influenced by the subjective criteria used to define the subclades.

      Currently, the manuscript presents a plausible filtering framework rather than a predictive model. Without these additional analyses, the main claims remain only partially supported. 

      Please see our reply to the comment of the reviewer just before the section titled “Recommendations for the authors”.

      Response to some rebuttal statements: 

      (1) "Sequence comparisons based on the KL divergence require, at the studied time point, an observed distribution of amino acid frequencies among sites and an estimated distribution of amino acid frequencies among sites. In the study datasets, this is only the case for the HIV-1 MA dataset, which belongs to a previous study from one of us and collaborators where we obtained at least 20 independent sequences at each sampling point (Arenas, et al. 2016)" 

      The available Influenza and SARS-CoV-2 data gathers isolates annotated with exact collection dates, providing reach datasets for such analysis. 

      The available influenza and SARS-CoV-2 sequences are typically derived from bulk sequencing and, therefore, they are consensus sequences. As a result, they cannot be used to calculate KL divergence. Additionally, many of the indicated sequences from databases are not demonstrated to be consecutive in evolutionary terms (one dataset is not a direct ancestor of another dataset existing at a posterior time point), which disallows their applicability in this study. The most suitable studies often involve in vitro virus evolution, but they usually show low genetic variability between samples collected at different time points.

      (2) "Regarding extending the analysis to other time points (other variants of concern), we kindly disagree because Omicron is the variant of concern with the highest genetic distance to the Wuhan variant, and a high genetic distance is  required to properly evaluate the prediction method." 

      There have been many more variants of concern subsequent to Omicron which circulated in 2021. 

      A key aspect is the accumulation of diversity in the study proteins across different time points. The SARS-CoV-2 proteins Mpro and PLpro accumulated only 10 and 22 amino acid changes from the original Wuhan variant to Omicron, respectively.

      Analyzing intermediate variants of concern (e.g., Gamma or Delta) or those closely related to Omicron would reduce the number of accumulated mutations even further.   

      We want to thank the reviewer again for taking the time to revise our work and for the insightful and helpful comments.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is constrained by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral structural proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which have struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death. Unfortunately, though, the model shows little improvement over neutral models in predicting protein evolution, and this ultimately appears to be due to fundamental conceptual problems with how fitness is modeled and linked to the phylodynamic birth-death model. 

      AU: We thank the reviewer for the positive comments about our work.

      Regarding predictive power, the study showed a good accuracy in predicting the real folding stability of forecasted protein variants under a selection model, but not under a neutral model. Next, predicting the exact sequences was more challenging. In this revised version, where we added additional real data, we found that the accuracy of this prediction can vary among proteins (i.e., the SCS model was more accurate than the neutral model in predicting sequences of the influenza NS1 protein at different time points). Still, we consider that efforts are required in the field of substitution models of molecular evolution. For example, amino acids with similar physicochemical properties can result in predictions with appropriate folding stability while different specific sequence. The development of accurate substitution models of molecular evolution is an active area of research with ongoing progress, but further efforts are still needed. Next, forecasting the folding stability of future real proteins is fundamental for proper forecasting protein evolution, given the essential role of folding stability in protein function and its variety of applications. Regarding the conceptual concerns related to fitness modeling, we clarify them in detail in our responses to the specific comments below.

      Major concerns:

      (1) Fitness model: All lineages have the same growth rate r = b-d because the authors assume b+d=1. But under a birth-death model, the growth r is equivalent to fitness, so this is essentially assuming all lineages have the same absolute fitness since increases in reproductive fitness (b) will simply trade off with decreases in survival (d). Thus, even if the SCS model constrains sequence evolution, the birthdeath model does not really allow for non-neutral evolution such that mutations can feed back and alter the structure of the phylogeny. 

      We thank the reviewer for this comment that aims to improve the realism of our model. In the model presented (but see later another model, derived from the proposal of the reviewer, that we have now implemented into the framework and applied it to the study data), the fitness predicted from a protein variant is used to obtain the corresponding birth rate of that variant. In this way, protein variants with high fitness have high birth rates leading to overall more birth events, while protein variants with low fitness have low birth rates resulting in overall more extinction events, which has biological meaning for the study system. The statement “All lineages have the same growth rate r = b-d” in our model is incorrect because, in our model, b and d can vary among lineages according to the fitness. For example, a lineage might have b=0.9, d=0.1, r=0.8, while another lineage could have b=0.6, d=0.4, r=0.2. Indeed, the statement “this is essentially assuming all lineages have the same absolute fitness” is incorrect. Clearly, assuming that all lineages have the same fitness would not make sense, in that situation the folding stability of the forecasted protein variants would be similar under any model, which is not the case as shown in the results. In our model, the fitness affects the reproductive success, where protein variants with a high fitness have higher birth rates leading to more birth events, while those with lower fitness have higher death rates leading to more extinction events. This parameterization is meaningful for protein evolution because the fitness of a protein variant can affect its survival (birth or extinction) without necessarily affecting its rate of evolution. While faster growth rate can sometimes be associated with higher fitness, a variant with high fitness does not necessarily accumulate substitutions at a faster rate. Regarding the phylogenetic structure, the model presented considers variable birth and death events across different lineages according to the fitness of the corresponding protein variants, and this affects the derived phylogeny (i.e., protein variants selected against can go extinct while others with high fitness can produce descendants). We are not sure about the meaning of the term “mutations can feed back” in the context of our system. Note that we use Markov models of evolution, which are well-stablished in the field (despite their limitations), and substitutions are fixed mutations, which still could be reverted later if selected by the substitution model (Yang 2006). Altogether, we find that the presented birth-death model is technically correct and appropriate for modeling our biological system. Its integration with structurally constrained substitution (SCS) models of protein evolution as Markov models follows general approaches of molecular evolution in population genetics (Yang 2006; Carvajal-Rodriguez 2010; Arenas 2012; Hoban, et al. 2012). We have now provided a more detailed description of the models in the manuscript.

      Apart from these clarifications about the birth-death model used, we could understand the point of the reviewer and following the suggestion we have now incorporated an additional birth-death model that accounts for variable global birth-death rate among lineages. Specifically, we followed the model proposed by Neher et al (2014), where the death rate is considered as 1 and the birth rate is modeled as 1 + fitness. In this model, the global birth-death rate can vary among lineages. We implemented this model into the computer framework and applied it to the data used for the evaluation of the models. The results indicated that, in general, this model yields similar predictive accuracy compared to the previous birth-death model. Thus, accounting for variability in the global birth-death rate does not appear to play a major role in the studied systems of protein evolution. We have now presented this additional birth-death model and its results in the manuscript.

      (2) Predictive performance: Similar performance in predicting amino acid frequencies is observed under both the SCS model and the neutral model. I suspect that this rather disappointing result owes to the fact that the absolute fitness of different viral variants could not actually change during the simulations (see comment #1). 

      As indicated in our previous answer, our study shows a good accuracy in predicting the real folding stability of forecasted protein variants under a selection model, but not under a neutral model. Next, predicting the exact sequences was more challenging, which was not surprising considering previous studies. In particular, inferring specific sequences is considerably challenging even for ancestral molecular reconstruction (Arenas, et al. 2017; Arenas and Bastolla 2020). Indeed, observed sequence diversity is much greater than observed structural diversity (Illergard, et al. 2009; Pascual-Garcia, et al. 2010), and substitutions between amino acids with similar physicochemical properties can yield modeled protein variants with more accurate folding stability, even when the exact amino acid sequences differ. As indicated, further work is demanded in the field of substitution models of molecular evolution. Next, in this revised version, where we included analyses of additional real datasets, we found that the accuracy of sequence prediction can vary among datasets. Notably, the analysis of an influenza NS1 protein dataset, with higher diversity than the other datasets studied, showed that the SCS model was more accurate than the neutral model in predicting sequences across different time points. Datasets with relatively high sequence diversity can contain more evolutionary information, which can improve prediction quality. In any case, as previously indicated, we believe that efforts are required in the field of substitution models of molecular evolution. Apart from that, forecasting the folding stability of future real proteins is an important advance in forecasting protein evolution, given the essential role of folding stability in protein function (Scheiblhofer, et al. 2017; Bloom and Neher 2023) and its variety of applications.

      Next, also as indicated in our previous response, the birth-death model used in this study accounts for variation in fitness among lineages producing variable reproductive success. The additional birth-death model that we have now incorporated, which considers variation of the global birth-death rate among lineages, produced similar prediction accuracy, suggesting a limited role in protein evolution modeling. Molecular evolution parameters, particularly the substitution model, appear to be more critical in this regard. We have now included these aspects in the manuscript.

      (3) Model assessment: It would be interesting to know how much the predictions were informed by the structurally constrained sequence evolution model versus the birth-death model. To explore this, the authors could consider three different models: 1) neutral, 2) SCS, and 3) SCS + BD. Simulations under the SCS model could be performed by simulating molecular evolution along just one hypothetical lineage. Seeing if the SCS + BD model improves over the SCS model alone would be another way of testing whether mutations could actually impact the evolutionary dynamics of lineages in the phylogeny. 

      In the present study, we compared the neutral model + birth-death (BD) with the SCS model + BD. Markov substitution models Q are applied upon an evolutionary time (i.e., branch length, t) and this allows to determine the probability of substitution events during that time period [P(t) = exp (Qt)]. This approach is traditionally used in phylogenetics to model the incorporation of substitution events over time. Therefore, to compare the neutral and SCS models in terms of evolutionary inference, an evolutionary time is required, in this case it is provided by the birth-death process. Thus, the cases 1) and 2) cannot be compared without an underlined evolutionary history. Next, comparisons in terms of likelihood, and other aspects, between models that ignore the protein structure and the implemented SCS models are already available in previous studies based on coalescent simulations or given phylogenetic trees (Arenas, et al. 2013; Arenas, et al. 2015). There, SCS models outperformed models that ignore evolutionary constraints from the protein structure, and those findings are consistent with the results obtained in the present study where we explored the application of these models to forecasting protein evolution. We would like to emphasize that forecasting the folding stability of future real proteins is a significant finding, folding stability is fundamental to protein function and has a variety of applications. We have now indicated these aspects in the manuscript.

      (4) Background fitness effects: The model ignores background genetic variation in fitness. I think this is particularly important as the fitness effects of mutations in any one protein may be overshadowed by the fitness effects of mutations elsewhere in the genome. The model also ignores background changes in fitness due to the environment, but I acknowledge that might be beyond the scope of the current work. 

      AU: This comment made us realize that more information about the features of the implemented SCS models should be included in the manuscript. In particular, the implemented SCS models consider a negative design based on the observed residue contacts in nearly all proteins available in the Protein Data Bank (Arenas, et al. 2013; Arenas, et al. 2015). This data is distributed with the framework, and it can be updated to incorporate new structures (further details are provided in the distributed framework documentation and practical examples). Therefore, the prediction of folding stability is a combination of positive design (direct analysis of the target protein) and negative design (consideration of background proteins from a database to improve the predictions), thus incorporating background molecular diversity. We have now indicated this important aspect in the manuscript. Regarding the fitness caused by the environment, we agree with the reviewer. This is a challenge for any method aiming to forecast evolution, as future environmental shifts are inherently unpredictable and may affect the accuracy of the predictions. Although one might attempt to incorporate such effects into the model, doing so risks overparameterization, especially when the additional factors are uncertain or speculative. We have now mentioned this aspect in the manuscript.

      (5) In contrast to the model explored here, recent work on multi-type birth-death processes has considered models where lineages have type-specific birth and/or death rates and therefore also type-specific growth rates and fitness (Stadler and Bonhoeffer, 2013; Kunhert et al., 2017; Barido-Sottani, 2023). Rasmussen & Stadler (eLife, 2019) even consider a multi-type birth-death model where the fitness effects of multiple mutations in a protein or viral genome collectively determine the overall fitness of a lineage. The key difference with this work presented here is that these models allow lineages to have different growth rates and fitness, so these models truly allow for non-neutral evolutionary dynamics. It would appear the authors might need to adopt a similar approach to successfully predict protein evolution. 

      We agree with the reviewer that robust birth-death models have been developed applying statistics and, in many cases, the primary aim of those studies is the development and refinement of the model itself. Regarding the study by Rasmussen and Stadler 2019, it incorporates an external evaluation of mutation events where the used fitness is specific for the proteins investigated in that study, which may pose challenges for users interested in analyzing other proteins. In contrast, our study takes a different approach. We implement a fitness function that can be predicted and evaluated for any type of structural protein (Goldstein 2013), making it broadly applicable. Actually, in this revised version we added the analysis of additional data of another protein (influenza NS1 protein) with predictions at different time points. In addition, we provide a freely available and well-documented computational framework to facilitate its use. The primary aim of our study is not the development of novel or complex birthdeath models. Rather, we aim to explore the integration of a standard birth-death model with SCS models for the purpose of predicting protein evolution. In the context of protein evolution, substitution models are a critical factor (Liberles, et al. 2012; Wilke 2012; Bordner and Mittelmann 2013; Echave, et al. 2016; Arenas, et al. 2017; Echave and Wilke 2017), and the presented combination with a birth-death model constitutes a first approximation upon which next studies can build to better understand this evolutionary system. We have now indicated these considerations in the manuscript.

      Reviewer #2 (Public review): 

      Summary: 

      In this study, "Forecasting protein evolution by integrating birth-death population models with structurally constrained substitution models", David Ferreiro and coauthors present a forward-in-time evolutionary simulation framework that integrates a birth-death population model with a fitness function based on protein folding stability. By incorporating structurally constrained substitution models and estimating fitness from ΔG values using homology-modeled structures, the authors aim to capture biophysically realistic evolutionary dynamics. The approach is implemented in a new version of their open-source software, ProteinEvolver2, and is applied to four viral proteins from HIV-1 and SARS-CoV-2. 

      Overall, the study presents a compelling rationale for using folding stability as a constraint in evolutionary simulations and offers a novel framework and software to explore such dynamics. While the results are promising, particularly for predicting biophysical properties, the current analysis provides only partial evidence for true evolutionary forecasting, especially at the sequence level. The work offers a meaningful conceptual advance and a useful simulation tool, and sets the stage for more extensive validation in future studies.

      We thank the reviewer for the positive comments on our study. Regarding the predictive power, the results showed good accuracy in predicting the folding stability of the forecasted protein variants. In this revised version, where we included analyses of additional real datasets, we found that the accuracy of sequence prediction can vary among datasets. Notably, the analysis of an influenza NS1 protein dataset, with higher diversity than the other datasets studied, showed that the SCS model was more accurate than the neutral model in predicting sequences across different time points. Datasets with relatively high sequence diversity can contain more evolutionary information, which can improve prediction quality. Still, we believe that further efforts are required in the field in improving the accuracy of substitution models of molecular evolution. Altogether, accurately forecasting the folding stability of future real proteins is fundamental for predicting their protein function and enabling a variety of applications. Also, we implemented the models into a freely available computer framework, with detailed documentation and a variety of practical examples.

      Strengths: 

      The results demonstrate that fitness constraints based on protein stability can prevent the emergence of unrealistic, destabilized variants - a limitation of traditional, neutral substitution models. In particular, the predicted folding stabilities of simulated protein variants closely match those observed in real variants, suggesting that the model captures relevant biophysical constraints. 

      We agree with the reviewer and appreciate the consideration that forecasting the folding stability of future real proteins is a relevant finding. For instance, folding stability is fundamental for protein function and affects several other molecular properties.

      Weaknesses: 

      The predictive scope of the method remains limited. While the model effectively preserves folding stability, its ability to forecast specific sequence content is not well supported. 

      Our study showed a good accuracy in predicting the real folding stability of forecasted protein variants under a selection model, but not under a neutral model. Predicting the exact sequences was more challenging, which was not surprising considering previous studies. In particular, inferring specific sequences is considerably challenging even for ancestral molecular reconstruction (Arenas, et al. 2017; Arenas and Bastolla 2020). Indeed, observed sequence diversity is much greater than observed structural diversity (Illergard, et al. 2009; Pascual-Garcia, et al. 2010), and substitutions between amino acids with similar physicochemical properties can yield modeled protein variants with more accurate folding stability, even when the exact amino acid sequences differ. As indicated, further work is demanded in the field of substitution models of molecular evolution. Next, in this revised version, where we included analyses of additional real datasets, we found that the accuracy of sequence prediction can vary among datasets. Notably, the analysis of an influenza NS1 protein dataset, with higher diversity than the other datasets studied, showed that the SCS model was more accurate than the neutral model in predicting sequences across different time points. Datasets with relatively high sequence diversity can contain more evolutionary information, which can improve prediction quality. In any case, as previously indicated, we believe that efforts are required in the field of substitution models of molecular evolution. Apart from that, forecasting the folding stability of future real proteins is an important advance in forecasting protein evolution, given the essential role of folding stability in protein function (Scheiblhofer, et al. 2017; Bloom and Neher 2023) and its variety of applications. We have now expanded these aspects in the manuscript.

      Only one dataset (HIV-1 MA) is evaluated for sequence-level divergence using KL divergence; this analysis is absent for the other proteins. The authors use a consensus Omicron sequence as a representative endpoint for SARS-CoV-2, which overlooks the rich longitudinal sequence data available from GISAID. The use of just one consensus from a single time point is not fully justified, given the extensive temporal and geographical sampling available. Extending the analysis to include multiple timepoints, particularly for SARS-CoV-2, would strengthen the predictive claims. Similarly, applying the model to other well-sampled viral proteins, such as those from influenza or RSV, would broaden its relevance and test its generalizability. 

      The evaluation of forecasting evolution using real datasets is complex due to several conceptual and practical aspects. In contrast to traditional phylogenetic reconstruction of past evolutionary events and ancestral sequences, forecasting evolution often begins with a variant that is evolved forward in time and requires a rough fitness landscape to select among possible future variants (Lässig, et al. 2017). Another concern for validating the method is the need to know the initial variant that gives rise to the corresponding future (forecasted) variants, and it is not always known. Thus, we investigated systems where the initial variant, or a close approximation, is known, such as scenarios of in vitro monitored evolution. In the case of SARS-CoV-2, the Wuhan variant is commonly used as the starting variant of the pandemic. Next, since forecasting evolution is highly dependent on the used model of evolution, unexpected external factors can be dramatic for the predictions. For this reason, systems with minimal external influences provide a more controlled context for evaluating forecasting evolution. For instance, scenarios of in vitro monitored virus evolution avoid some external factors such as host immune responses. Another important aspect is the availability of data at two (i.e., present and future) or more time points along the evolutionary trajectory, with sufficient genetic diversity between them to identify clear evolutionary signatures. Additionally, using consensus sequences can help mitigate effects from unfixed mutations, which should not be modeled by a substitution model of evolution. Altogether, not all datasets are appropriate to properly evaluate or apply forecasting evolution. These aspects are indicated in the manuscript. Sequence comparisons based on the KL divergence require, at the studied time point, an observed distribution of amino acid frequencies among sites and an estimated distribution of amino acid frequencies among sites. In the study datasets, this is only the case for the HIV-1 MA dataset, which belongs to a previous study from one of us and collaborators where we obtained at least 20 independent sequences at each sampling point (Arenas, et al. 2016). This aspect is now more clearly indicated in the manuscript. Regarding the Omicron datasets, we used 384 curated sequences of the Omicron variant of concern to construct the study data and we believe that it is a representative sample. The sequence used for the initial time point was the Wuhan variant (Wu, et al. 2020), which is commonly assumed to be the origin of the pandemic in SARS-CoV-2 studies. As previously indicated, the use of consensus sequences is convenient to avoid variants with unfixed mutations. Regarding extending the analysis to other time points (other variants of concern), we kindly disagree because Omicron is the variant of concern with the highest genetic distance to the Wuhan variant, and a high genetic distance is required to properly evaluate the prediction method. Actually, we noted that earlier variants of concern show a small number of fixed mutations in the study proteins, despite the availability of large numbers of sequences in databases such as GISAID. Additionally, we investigated the evolutionary trajectories of HIV-1 protease (PR) in 12 intra-host viral populations with predictions for up to four different time points. Apart from those aspects, following the proposal of the reviewer, we have now incorporated the analysis of an additional dataset of influenza NS1 protein (Bao, et al. 2008), with predictions for two different time points, to further assess the generalizability of the method. We have now included details of this influenza NS1 protein dataset and the predictions derived from it in the manuscript.

      It would also be informative to include a retrospective analysis of the evolution of protein stability along known historical trajectories. This would allow the authors to assess whether folding stability is indeed preserved in real-world evolution, as assumed in their model.

      Our present study does not aim to investigate the evolution of the folding stability over time, although it provides this information indirectly at the studied time points. Instead, the present study shows that the folding stability of the forecasted protein variants is similar to the folding stability of the corresponding real protein variants for diverse viral proteins, which provides an important evaluation of the prediction method. Next, the folding stability can indeed vary over time in both real and modeled evolutionary scenarios, and our present study is not in conflict with this. In that regard, which is not the aim of our present study, some previous phylogenetic-based studies have reported temporal fluctuations in folding stability for diverse protein data (Arenas, et al. 2017; Olabode, et al. 2017; Arenas and Bastolla 2020; Ferreiro, et al. 2022).

      Finally, a discussion on the impact of structural templates - and whether the fixed template remains valid across divergent sequences - would be valuable. Addressing the possibility of structural remodeling or template switching during evolution would improve confidence in the model's applicability to more divergent evolutionary scenarios.

      This is an important point. For the datasets that required homology modeling (in several cases it was not necessary because the sequence was present in a protein structure of the PDB), the structural templates were selected using SWISS-MODEL, and we applied the best-fitting template. We have now included in a supplementary table details about the fitting of the structural templates. Indeed, our proposal assumes that the protein structure is maintained over the studied evolutionary time, which can be generally reasonable for short timescales where the structure is conserved (Illergard, et al. 2009; Pascual-Garcia, et al. 2010). Over longer evolutionary timescales, structural changes may occur and, in such cases, modeling the evolution of the protein structure would be necessary. To our knowledge, modeling the evolution of the protein structure remains a challenging task that requires substantial methodological developments. Recent advances in artificial intelligence, particularly in protein structure prediction from sequence, may offer promising tools for addressing this challenge. However, we believe that evaluating such approaches in the context of structural evolution would be difficult, especially given the limited availability of real data with known evolutionary trajectories involving structural change. In any case, this is probably an important direction for future research. We have now included this discussion in the manuscript.

      Reviewer #1 (Recommendations for the authors): 

      (1) Abstract: "expectedly, the errors grew up in the prediction of the corresponding sequences" <- Not entirely clear what is meant by "errors grew up" or what the errors grew with.

      This sentence refers to the accuracy of sequence prediction in comparison to that of folding stability prediction. We have now clarified this aspect in the manuscript.

      (2) Lines 162-165: "Alternatively, if the fitness is determined based on the similarity in folding stability between the modeled variant and a real variant, the birth rate is assumed to be 1 minus the root mean square deviation (RMSD) in folding stability." <- What is the biological motivation for using the RMSD? It seems like a more stable variant would always have higher fitness, at least according to Equation 1.

      RMSD is commonly used in molecular biology to compare proteins in terms of structural distance, folding stability, kinetics, and other properties. It offers advantages such as minimizing the influence of small deviations while amplifying larger differences, thereby enhancing the detection of remarkable molecular changes. Additionally, RMSD would facilitate the incorporation of other biophysical parameters, such as structural divergences from a wild-type variant or entropy, which could be informative for fitness in future versions of the method. We have now included this consideration in the manuscript.

      (3) Lines 165-166: "In both cases, the death rate (d) is considered as 1-b to allow a constant global (birth-death) rate" <- This would give a constant R = b / (1-b) over the entire phylogenetic tree. For applications to pathogens like viruses with epidemic dynamics, this is extremely implausible. Is there any need to make such a restrictive assumption? 

      Regarding technical considerations of the model, we refer to our answer to the first public review comment. Next, a constant global rate of evolution was observed in numerous genes and proteins of diverse organisms, including viruses (Gojobori, et al.1990; Leitner and Albert 1999; Shankarappa, et al. 1999; Liu, et al. 2004; Lu, et al. 2018; Zhou, et al. 2019). However, following the comment of the reviewer, and as we indicated in our answer to the first public review comment, we have now implemented and evaluated an additional birth-death model that allows for variation in the global birth-death rate among lineages. We have implemented this additional model in the framework and described it along with its results in the manuscript.

      (4) Lines 187-188: "As a consequence, since b+d=1 at each node, tn is consistent across all nodes, according to (Harmon, 2019)." <- This would also imply that all lineages have a growth rate r = b - d, which under a birth-death model is equivalent to saying all lineages have the same fitness! 

      We clarified this aspect in our answer to the first public review comment. In particular, in the model presented, protein variants with higher fitness have higher birth rates, leading to more birth events, while protein variants with lower fitness have lower birth rates leading to more extinction events, which presents biological meaning for the study system. In our model b and d can vary among lineages according to the corresponding fitness (i.e., a lineage may have b=0.9, d=0.1, r=0.8; while another one may have b=0.6, d=0.4, r=0.2). Since the reproductive success varies among lineages in our model, the statement “this is essentially assuming all lineages have the same absolute fitness” is incorrect, although it could be interpreted like that in certain models. Fitness affects reproductive success, but fitness and growth rate of evolution are different biological processes (despite a faster growth rate can sometimes be associated with higher fitness, a variant with a high fitness not necessarily has to accumulate substitutions at a higher rate). An example in molecular adaptation studies is the traditional nonsynonymous to synonymous substitution rates ratio (dN/dS), where dN/dS (that informs about selection derived from fitness) can be constant at different rates of evolution (dN and dS). In any case, we thank the reviewer for raising this point, which led us to incorporate an additional birth-death model and inspired some ideas.  Thus, following the comment of the reviewer and as indicated in the answer to the first public review comment, we have now implemented and evaluated an additional birthdeath model that allows for variation in the global birth-death rate among lineages. The results indicated that this model yields similar predictive accuracy compared to the previous birth-death model. We have now included these aspects, along with the results from the additional model, in the manuscript.

      (5) Line 321-322: "For the case of neutral evolution, all protein variants equally fit and are allowed, leading to only birth events," <- Why would there only be birth events? Lineages can die regardless of their fitness. 

      AU: In the neutral evolution model, all protein variants have the same fitness, resulting in a flat fitness landscape. Since variants are observed, we allowed birth events. However, it assumed the absence of death events as no information independent of fitness is available to support their inclusion and quantification, thereby avoiding the imposition of arbitrary death events based on an arbitrary death rate. We have now provided a justification of this assumption in the manuscript.

      Reviewer #2 (Recommendations for the authors): 

      (1) Clarify the purpose of the alternative fitness mode ("ΔG similarity to a target variant"): 

      The manuscript briefly introduces an alternative fitness function based on the similarity of a simulated protein's folding stability to that of a real protein variant, but does not provide a clear motivation, usage scenario, or results derived from it. 

      The presented model provides two approaches for deriving fitness from predicted folding stability. The simpler approach assumes that a more stable protein variant has higher fitness than a less stable one. The alternative approach assigns high fitness to protein variants whose stability closely matches observed stability, acknowledging that the real observed stability is derived from the real selection process, and this approach considers negative design by contrasting the prediction with real information. For the analyses of real data in this study, we used the second approach, guided by these considerations. We have now clarified this aspect in the manuscript.

      (2) Report structural template quality and modeling confidence: 

      Since folding stability (ΔG) estimates rely on structural models derived from homology templates, the accuracy of these predictions will be sensitive to the choice and quality of the template structure. I recommend that the authors report, for each protein modeled, the template's sequence identity, coverage, and modeling quality scores. This will help readers assess the confidence in the ΔG estimates and interpret how template quality might impact simulation outcomes. 

      We agree with the reviewer and we have now included additional information in a supplementary table regarding sequence identity, modeling quality and coverage of the structural templates for the proteins that required homology modeling. The selection of templates was performed using the well-established framework SWISS-MODEL and the best-fitting template was chosen. Next, a large number of protein structures are available in the PDB for the study proteins, which favors the accuracy of the homology modeling. For some datasets, homology modeling was not required, as the modeled sequence was already present in an available protein structure. We have now included this information in the manuscript and in a supplementary table.

      (3) Clarify whether structural remodeling occurs during simulation: 

      It appears that folding stability (ΔG) for all simulated protein variants is computed by mapping them onto a single initial homology model, without remodeling the structure as sequences evolve. If correct, this should be clearly stated, as it assumes that the structural fold remains valid across all simulated variants. A discussion on the potential impact of structural drift would be welcome.

      We agree with the reviewer. As indicated in our answer to a previous comment, our method assumes that the protein structure is maintained over the studied evolutionary time, which is generally acceptable for short timescales where the structure is conserved (Illergard, et al. 2009; Pascual-Garcia, et al. 2010). At longer timescales the protein structure could change, requiring the modeling of structural evolution over the evolutionary time. To our knowledge, modeling the evolution of the protein structure remains a challenging task that requires substantial methodological developments. Recent advances in artificial intelligence, particularly in protein structure prediction from sequence, can be promising tools for addressing this challenge. However, we believe that evaluating such approaches in the context of structural evolution would be difficult, especially given the limited availability of real datasets with known evolutionary trajectories involving structural change. In any case, this is probably an important direction for future research. We have now included this discussion in the manuscript.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this study, the authors develop a complete integral drive system in Anopheles gambiae malaria mosquitoes. This type of gene drive is interesting, with special advantages and disadvantages compared to more common designs. Here, the authors develop the Cas9 element and combine it with a previously developed antimalaria effector element. The new element performs very well in terms of drive efficiency, but it has unintended fitness costs, and a higher than desirable rate of functional resistance allele formation. Nevertheless, this study represents a very good step forward toward developing effective gene drives and is thus of high impact.

      The format of the manuscript is a bit suboptimal for review. Please add line numbers next time for easy reference. It would also help to have spaces between paragraphs and to have figures (with legends) added to the text where they first appear.

      It might be useful to add subsections to the results, just like in the methods section. It could even be expanded a bit with some specific parts from the discussion, through this is optional.

      Abstract: The text says: "As a minimal genetic modification, nanosd does not induce widespread transcriptomic perturbations." However, it does seem to change things based on Figure 3c.

      Page 2: "drive technologies for public health and pest control applications" needs a period afterward.

      Page 2: "The fitness costs, homing efficiency, and resistance rate of the gene drive is" should be "The fitness costs, homing efficiency, and resistance rate of the gene drive are".

      Page 2: "When they target important mosquito genes, gene drives are designed to ensure that the nuclease activity window (germline) does not overlap with that of the target gene (somatic)." is note quite correct. This is, of course, sensible for suppression drives, but it's not a necessary requirement for modification drives with rescue elements in many situations.

      Page 2: "recessive somatic fitness cost phenotypes" is unclear. I think that you are trying to avoid the recessive fitness cost of null alleles becoming a dominant fitness cost from a gene drive allele (in drive-wild-type heterozygotes).

      Page 2: "This optimization approach has had only limited success, and suboptimal performance is commonly attributed to not capturing all the regulatory elements specific to the germline gene's expression9,12". I don't think this is correct. There are several examples where a new promoter helped a lot. The zpg promoter in Anopheles gambiae allowed success at the dsx site in suppression cage studies (Kyrou et al 2018), and nanos gave big improvement to modification drives at the cardinal locus (Carballer et al 2020). In flies, several promoters were tested, and one allowed success in cage experiments (Du et al 2024). In Aedes, the shu promoter allowed for high drive performance (Anderson et al 2023), though this last one hasn't been tested in more difficult situations. I think you could certainly argue in the general case that not all promoters will work the way their transcriptome says, but there are many examples where they seem to be pretty good.

      Page 2: "make it more likely that mutations that disrupt the drive components are selected against though loss of function of the host gene." I think that this needs a bit more explanation. You are referring to mutations in regulatory elements or frameshift mutations. This will make it more resistant to mutation. Also, these mutations would tend to have a minor effect expect perhaps in the cargo gene of a modification drive. By using a cargo gene in an integral drive, you could still keep it somewhat safer, but whether this is 1.2x or 10x safer is unclear.

      Page 3: "they can incur severe unintended fitness costs". This is central to integral drives and this manuscript. It's worth elaborating on.

      Page 3: "Regulatory elements from germline genes that have worked sub-optimally in traditional gene drive designs for the reasons outlined above may work well in an IDG design20." This is setting up the integral drive with nanos, but nanos DOES work well in traditional Anopheles gambiae gene drive designs. It is possible that you might end up with less somatic expression than Hammond et al 2020 (though the comparison is unclear due to batch effects in that study), but there is no direct comparison in this manuscript to that.

      Page 3: "This suggests an impact of maternal deposition on drive efficiency only in female drive carriers." This is quite strange. Usually, I would expect to see an equal reduction in efficiency between male and female progeny. Could this be due to limited sample size? Random idea: It's also possible that almost all maternal deposition was mosaic and wouldn't be enough to direct affect drive conversion. However, it could cause enough of a fitness cost TOGETHER with new drive expression in females that perhaps only tissues with randomly low expression rates properly developed and led to progeny, reducing drive inheritance? Another possibility: Could the drive/resistance males have impaired fertility, so these ones are underrepresented in the batch cross? If nanos is needed in males and a single drive copy is not quite enough for good fertility or mating competitiveness, they may be underrepresented in your crosses. They might have worse fertility than drive homozygous males, which at least have two partially working copies of nanos rather than just one (in many cells, at least). Maybe check the testis for abnormal phenotypes?

      Overall, it would be favorable if the drive allele was somewhere more fit than a nonfunctional resistance allele. This could already be achieved in this drive, but it doesn't get much mention.

      Page 3: There should be a comma after, "Interestingly, while many of the observed mutations were predicted to abolish nanos expression" and "This could indicate that in these experiments".

      Page 3 last sentence: Please improve the clarity.

      Removing the EGFP is supposed to restore the fitness, and this was helpful in some previous integral drive constructs. This could get a bit more mention (it is possible that I missed this somewhere in the manuscript).

      Page 4: The MM-CP line and it's association with the integral drive strategy could get a little more introduction. Maybe even a supplemental figure showing the general idea.

      Page 5: "cassette is predicted to disrupt the CP function entirely (Fig. 5d)" also lacks a period.

      Page 5: "The subsequent stabilization of the nanosd frequency and the lack of rapid loss suggests that any associated fitness cost is primarily recessive." This is not quite correct because by this point, drive/wild-type heterozygotes are rare, and this is where you'd find a potential dominant fitness cost. It should be correct in the end stages where it is a mix of drive and functional/nonfunctional resistance alleles (though the nonfunctional resistance alleles may cause greater fitness costs when together with a drive - see above).

      Page 6: "Maternal deposition of Cas9, or Cas9;gRNA, into the zygote can lead to cutting at stages when homing is not favoured, and has been commonly observed for canonical Anopheles nanos drives9,10,35." Reference 35 (which is more suitable for referencing an example of nanos in other Anopheles) found some resistance alleles by deep sequencing, but the timing that they formed was unclear (it's not certain if it was maternal deposition). This study may be a more suitable reference: Carballar-Lejarazú R, Tushar T, Pham TB, James AA. Cas9-mediated maternal-effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, Anopheles gambiae. Genetics, 2022.

      Page 8: "could further reduce the likelihood of resistance allele formation by increasing the frequency of HDR events." Multiple gRNAs would mostly help by reducing functional resistance allele formation, especially since drive conversion is already very high in Anopheles.

      Page 8, last paragraph: This conclusion is perhaps a little optimistic considering the functional resistance alleles, which should get a little more attention in the summary or elsewhere in the discussion section.

      Figure 1d: The vertical text saying "Non-WT" is confusing. The circles themselves show + and -. Also, "-" isn't necessarily a knockout allele, so I'm not sure if - is the best symbol for resistance.

      Figure 2e: The vertical scale is not the most intuitive. Consider rearranging it to "Transition from larvae to pupae" starting at zero and going to 1 when all the larvae become pupae.

      Figure 2e-f: For both of these, there are clear differences between males and females. Thus, when comparing drive homozygotes to wild-type, it would probably be better to have separate statistical comparisons for males and females.

      Figure 3: Can any of these transcription results in individual genes potentially explain the observed fitness cost?

      Figure 3b: The scale here also doesn't quite make sense. It's the fraction of underdeveloped ovaries, but the graph is also perhaps trying to show whether just 1-2 ovaries are present, or maybe how many ovaries are undeveloped, but then it would say "zero"? This should be clarified. Number of ovaries and how well-developed they are is separate (it can be put on the same graph, but needs to be more clear).

      Figure 4f: The vertical axis should say "ONNV."

      Figure 5c-d: These should be labeled as the most common resistance allele. Also, I'm not sure how relevant it is, but we also found an alternate start codon here: Hou S, Chen J, Feng R, Xu X, Liang N, Champer J. A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistance. J Genet Genomics, 2024. Maybe this is a more common problem than one would expect?

      Figure 5cd,S4,S5: They have a bit of a weird plot. Why not make four line graphs for each? Also, some alleles use the  symbol. + is wild-type, which is well understood, but - as resistance is not always clear, and seeing them together may confuse readers. Additionally, the fact that you have the most common resistance allele in Figure 5cd might mean that you know more about the genotype? If so, it would be best to separate wild-type and resistance alleles in whatever the final figure looks like.

      Some supplemental raw data files would be useful if they were available, but the figures are through enough that this isn't essential.

      Review by:

      Jackson Champer, with major assistance from Ruobing Feng (essentially section B) and Jie Du

      Referee cross-commenting

      We don't have any cross-comments, other than supporting the idea of slightly more comparisons to the authors' previous construct.

      Significance

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      A key innovation of the nanosd gene drive is its integral gene drive (IGD) design, which inserts the drive cassette directly into the A. gambiae nanos gene, incorporating only the minimal components necessary for drive function. The drive achieves high transmission rates, without causing widespread disruption of gene expression or increasing susceptibility to malaria parasites, and imposes an acceptable fitness cost-primarily a reduction in female fecundity when homozygous. The strong performance of nanosd can be attributed to its design: Cas9 is expressed in the correct cells and timing to induce efficient homing, effectively hijacking the nanos gene's natural expression profile. However, despite the careful design aimed at preserving nanos function, the rescue was incomplete: homozygous female drive carriers exhibited a clear reduction in ovarian function.

      In caged population trials, both the drive and a co-introduced anti-malaria effector gene reached high frequencies, even in the presence of emerging resistance alleles. Because the drive is inserted into an essential gene, nonfunctional resistance alleles are selected against and tend to be purged over time. Nonetheless, functional resistance remains a concern. The use of a single, though precisely positioned gRNA targeting the native nanos gene ATG site increases the likelihood of generating functional resistance alleles. Over the long term, if the drive imposes fitness costs, it may be outcompeted by such functional resistance alleles, potentially undermining the goal of sustained population modification.

      Overall, this study represent a notable advance in Anopheles mosquito gene drive development and can be considered as high impact. - Place the work in the context of the existing literature (provide references, where appropriate).

      Previous IGD efforts in Drosophila, mice and mosquitoes have demonstrated nearly super‐Mendelian inheritance but often at the expense of host fitness. For example, Nash et al. built an intronic‐gRNA Cas9 drive at the D. melanogaster rcd-1r locus that propagated efficiently through cage populations (Nash et al., 2022), and Gonzalez et al. reported that a Cas9 drive inserted at the germline zpg locus in Anopheles stephensi biased inheritance by ~99.8% (Gonzalez et al., 2025). However, these strong drives disrupted essential genes: in A. gambiae, inserting Cas9 into zpg produced efficient homing but rendered females largely sterile (Ellis et al., 2022). A similar germline Cas9 knock-in in Mus musculus enabled gene conversion in both sexes, albeit with only modest efficiency and potential fitness trade-offs (Weitzel et al., 2021). The current nanosd IGD is explicitly designed to overcome this limitation by selecting a more permissive gene target and using a minimal drive cassette, so as to preserve mosquito viability while maintaining robust drive efficiency, although still with reduced female drive homozygotes fertility.

      This nanosd gene drive like previous homing drives in Anopheles, is capable of achieving a high level of inheritance bias. Although it uses the endogenous nanos regulatory elements, which have less leaky somatic expression compared to using vasa (Gantz et al., 2015; Hammond et al., 2016; Hammond et al., 2017) or zpg promoters(Hammond et al., 2021; Kyrou et al., 2018), to drive Cas9 expression and thereby reduces somatic expression-induced female sterility, the incomplete rescue of nanos function still leads to reduced female fertility in drive homozygotes. - State what audience might be interested in and influenced by the reported findings.

      It's worth noting the broad audience that will find this work relevant. Gene drive developers and molecular geneticists will be impressed by the good drive performance and directly influenced by the design principles showcased here. The study's integral gene drive architecture that leverages the endogenous nanos regulatory elements, in-frame E2A peptide linkage for co-expression, and intronic insertion of gRNA and selectable markers addresses long-standing challenges in promoter leakage, somatic fitness costs, and resistance allele evolution. What's more, vector biologists and malaria researchers will be interested in the successful deployment of a gene drive in A. gambiae that actually carries a disease-blocking trait. - Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      We have worked on CRISPR gene drive development in both fruit flies and Anopheles mosquitoes and have experience with modeling their spread.

      References

      Ellis, D.A., Avraam, G., Hoermann, A., Wyer, C.A.S., Ong, Y.X., Christophides, G.K., and Windbichler, N. (2022). Testing non-autonomous antimalarial gene drive effectors using self-eliminating drivers in the African mosquito vector Anopheles gambiae. PLOS Genetics 18, e1010244-e1010244.

      Gantz, V.M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V.M., Bier, E., and James, A.A. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A 112, E6736-E6743.

      Gonzalez, E., Anderson, M.A.E., Ang, J.X.D., Nevard, K., Shackleford, L., Larrosa-Godall, M., Leftwich, P.T., and Alphey, L. (2025). Optimization of SgRNA expression with RNA pol III regulatory elements in Anopheles stephensi. Scientific Reports 15, 13408.

      Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., Russell, S., et al. (2016). A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 34, 78-83.

      Hammond, A., Karlsson, X., Morianou, I., Kyrou, K., Beaghton, A., Gribble, M., Kranjc, N., Galizi, R., Burt, A., Crisanti, A., et al. (2021). Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLOS Genetics 17, e1009321-e1009321.

      Hammond, A.M., Kyrou, K., Bruttini, M., North, A., Galizi, R., Karlsson, X., Kranjc, N., Carpi, F.M., D'Aurizio, R., Crisanti, A., et al. (2017). The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLOS Genetics 13, e1007039-e1007039.

      Kyrou, K., Hammond, A.M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A.K., Nolan, T., and Crisanti, A. (2018). A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology 36, 1062-1066.

      Nash, A., Capriotti, P., Hoermann, A., Papathanos, P.A., and Windbichler, N. (2022). Intronic gRNAs for the construction of minimal gene drive systems. Frontiers in Bioengineering and Biotechnology 0, 570-570. Weitzel, A.J., Grunwald, H.A., Ceri, W., Levina, R., Gantz, V.M., Hedrick, S.M., Bier, E., and Cooper, K.L. (2021). Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline. Plos Biol 19, e3001478-e3001478.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-03064

      Corresponding author(s): Massimo, Hilliard; Sean, Coakley

      1. General Statements

      We are grateful to the reviewers for taking time to review our manuscript and for providing such clear, insightful and actionable suggestions. The consensus between 4 independent reviewers that this story is of general interest to cell biologists, neurobiologists and clinical researchers is remarkable. In addition to our mechanistic insights into the regulation of GTPase activity, we think that the experimental systems we have developed will be of great value to study how GTPases their associated GAPs and GEFs function to maintain the nervous system, especially due to the demonstrated conservation of these molecules. We believe that our data provides a powerful and tractable model to study such molecules in a physiological context.

      We agree with the reviewers' concerns and propose the following plan below to address them.

      2. Description of the planned revisions

      Reviewer #1(Evidence, reproducibility and clarity (Required)):


      __Summary Stability of the PLM axon in C. elegans is maintained through interactions with the epidermis. Previous studies by this group found that loss of the tbc-10 Rab GTPase Activating Protein strongly enhanced the PLM axon break phenotype of unc-70/beta-spectrin mutants. TBC-10 is a GAP for RAB-35 and thus loss of rab-35 suppresses the tbc-10 phenotype. Of the two RAB-35 GEFs, loss of RME-4 partially suppressed the tbc-10 phenotype and FLCN-1 was not involved suggesting that there may be an additional GEF involved. Here Bonacossa-Pereira et al identify a point mutation in agef-1a (vd92) as a suppressor of tbc-10 PLM axon break phenotype (all experiments also have a dominant allele of unc-70) and confirm that point mutation is causative by replicating the mutation via genome editing (vd123). Rescue experiments demonstrate that AGEF-1a is required in the epidermis and not PLM as previous demonstrated with tbc-10 and unc-70. Rescue is dependent on a functional SEC7/GEF activity. AGEF-1a is a functional ortholog to human BIG2/ArfGEF2 as its expression fully rescues tbc-10. AGEF-1a functions upstream of RAB-35 as expression of activated RAB-35 can suppress loss of agef-1. AGEF-1a functions in parallel to RME-4 as the double has stronger suppression of tbc-10. AGEF-1a is an ARF GEF, however it functions independently of ARF-1.2 as loss of arf-1.2 does not suppress tbc-10. They demonstrate that AGEF-1a interacts with RAB-35 through colocalization experiments suggesting that AGEF-1a could directly activate RAB-35. Finally, they demonstrate that AGEF-1a regulates the localization of the LET-805 epidermal attached complex component as it restores localization in a tbc-10 mutant.

      Major comments

      The manuscript is well written and easy to understand.

      The experiments are well done and controlled.

      I enjoyed reading this paper. However...

      Some of the claims are not supported by the data.__

      __1) The claim that AGEF-1a directly interacts with RAB-35 was not demonstrated. The evidence provided to support a direct interaction are colocalization experiments in Figure 3. AGEF-1a does partially colocalize with RAB-35 in the epidermis. However, colocalization does not indicate a physical interaction direct or indirect. A simple fix would be to change the claim to that they partially colocalize. Optional, a physical interaction could be done with the split-GFP since they already have the AGEF-1 strain or they could perform co-IP experiments, though neither of those are proof of direct interactions.

      __

      We agree that the biochemical co-IP experiment could provide some answers, however, using a full length AGEF-1a would not only represent a significant technical challenge but will also not prove a direct interaction in a physiological context. To overcome this limitation, and to directly test their interaction in vivo, we propose to use a split-GFP approach as suggested by the reviewer. In this experiment, we will generate an endogenously tagged GFP1-10::rab-35 allele and combine it with the previously generated and available tagged agef-1a::GFP11x7. If AGEF-1 and RAB-35 closely interact, we should observe the reconstitution of full length GFP. It is possible that the endogenously tagged versions only provide a very weak GFP signal that will be difficult to detect. As an alternative approach, we will generate the same tagged molecules as overexpressed transgenes under epidermal-specific promoters (such as Pdpy-7). If the results are still negative, we agree to temper our claim that these molecules physically interact and rephrase the manuscript to reflect the new data.

      • *

      2) The claim that AGEF-1a facilitates RAB-35 activation is not supported. While it is likely that AGEF-1a facilitates RAB-35 activation based on the epistasis experiments as well as studies in mammalian cells there were no experiments to demonstrate that modulating AGEF-1a activity resulted in a change in RAB-35 activity. I would suggest tempering this claim to something along the line that the data are consistent with AGEF-1a regulating RAB-35 activity as shown in mammalian cells. An optional experiment would be to look at the colocalization of RAB-35 with a known effector in wild type and agef-1(vd92) with the expectation that there would be a higher level of colocalization in agef-1 mutants. Effector pull-down experiments or perhaps a cell based GEF assay could be used (PMID: 35196081).


      We welcome this suggestion and acknowledge the limitations of these experiments. While we might be able to determine if AGEF-1 and RAB-35 physically interact in vivo with the experiments proposed above, screening for the relevant rab-35 effector in this context and/or doing effector pull-down/cell based GEF assays would be a significant technical challenge. We propose to temper our claim as suggested.

      3) The claim that AGEF-1a functions independently of ARF-1.2 is not well supported. The fact that the ARF-1.2 mutant does not suppress tbc-10 suggests that ARF-1.2 may not be involved but does not eliminate the possibility that ARF-1.2 functions redundantly with ARF-5 or WARF-1/ARF-1.1. This can be resolved by toning down the claim. Alternatively, this can be tested by RNAi of arf-5 and warf-1 in tbc-10 and arf-1.2; tbc-10 mutants.

      We agree that warf-1 and arf-5 could be functioning redundantly with arf-1.2. We have attempted to generate an AID::arf-5 allele to test the effect of cell-specific degradation, but homozygous AID::arf-5 animals were lethal. We have not yet examined warf-1. We believe the best way to test these two molecules is through RNAi knockdown, and we propose to do this experiment and adjust our interpretation and discussion according to the new data.

      Minor comments

      Figure 1C the CRISPR generated allele (vd123) is referred to as [S784L] and then in 1E vd92 is referred to as [S784L]. Perhaps it would be clearer if the allele name was used instead of the amino acid change.

      We will reformat the manuscript to include the allele names instead of amino acid change.

      Page 6 "We reasoned that if the S784L mutation we isolated causes a similar loss of the GTPase activation function, then SKIN::AGEF-1a[E608K] would not have the capacity to restore the rate of PLM axon breaks to background levels in agef-1[S784L]; tbc-10; vdSi2 animals." It was unclear to me whether you were testing if the S784L mutation could be disrupting a GEF independent function or might disrupt the nucleotide exchange activity as might be tested in a biochemical assay. There are many reasons this change could cause a loss of function phenotype (ie. Improper folding, mislocalization, etc.). The most clear explanation would be that you were testing if GEF function was required for rescue rather than testing if the S784L mutation disrupted GEF activity.

      Indeed, this experiment reveals that reducing the activation of the AGEF-1 target phenocopies the effect of S784L and does not further enhance the effect of S784L. However, it does not answer if, specifically, the GEF function is affected by S784L. We propose to rewrite the quoted sentence as follows: "We asked whether the GEF function is required for axonal damage. If that is the case, then SKIN::AGEF-1a[E608K] overexpression should phenocopy the effect of AGEF-1a[S784L]."

      • *

      Page 13. It was unclear how testing if AGEF-1, RME-4, ARF-5 and RAB-35 form complexes in vivo (I assume you are suggesting colocalize based on figure 3 interpretation) would resolve how AGEF-1 was regulating RAB-35.


      We apologize that our phrasing was not clear. We will rewrite this section to better reflect the following idea. Given literature data showing an allosteric interaction between RME-4/DENND1 and ARF-5/Arf5, and our own data showing that AGEF-1 regulates RAB-35, we believe these molecules could form a complex. Considering that we do not have data to support this notion, mostly due to the inability to test the effect of ARF-5, we will present this possibility in the discussion section.


      __**Cross-commenting**

      I agree with the comments made by the other reviewers and I stand by my own as well. I will echo that it is important to know the nature of their agef-1 allele.

      Reviewer #1 (Significance (Required)):

      Bonacossa-Pereira et al identify AGEF-1 as a regulator of axon integrity that functions in a pathway with RAB-35 in the epidermis is an exciting finding. As pointed out in the discussion, mutations in the human ortholog cause neurodevelopmental defects which leads to obvious characterization of BIG2/ArfGEF2 in neurons while this study indicates that this protein can have cell non-autonomous roles in regulating neurons. These findings could have important implications for understanding the etiology of these defects that would be of interest to neurobiologists and clinical researchers.

      The finding of this paper would also be of interest to cell biologists and particularly those studying the roles of Rab and Arf GTPases in membrane trafficking, such as myself. The idea that AGEF-1 might function as a Rab35 GEF is provocative and would generate a lot of interest and skepticism from the field. However, there is no data to support that AGEF-1 would be a direct regulator of Rab35 over the previously demonstrated cross regulation of Rab35 by Arf GTPases. Therefore, it would be fine to speculate in the discussion a direct interaction, but I would refrain from suggesting this as a model and elsewhere in the manuscript.

      __

      Although we agree that current evidence is not sufficient to support the model where AGEF-1 is a direct regulator of RAB-35, our data points to the direction where there is an important genetic relationship between these molecules in a physiological context in a living animal, with a defined phenotype relevant to the nervous system maintenance. We think that the proposed revision experiments will provide a better understanding of how AGEF-1 functions with RAB-35 and we agree with the suggestion to rephrase our manuscript to reflect the limitations of our results.


      __Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      This interesting manuscript reports the outcome of a fruitful C. elegans genetic screen with a complex but clever design. Through it, the authors identify AGEF-1 as a GEF that likely regulates the active state of the GTPase RAB-35 in the skin to protect touch receptor axons from mechanical breakage.

      Major points: 1. Based on localization experiments, the authors claim "AGEF-1a interacts with RAB-35 in the epidermis" (Results heading) and state "these data demonstrate that AGEF-1a interacts with a subset of RAB-35 molecules in the epidermis." In general, localization studies cannot be used to conclude physical interaction (with some exceptions such as single-molecule kinetics). In this case, the data in my view do not even make a compelling argument for co-localization. There is a lot of AGEF-1 and RAB-35 signal everywhere and it may not be meaningful that the signals sometimes overlap. A more quantitative approach with controls would be needed to conclude meaningful co-localization. Importantly, this would still not demonstrate interaction.__

      We thank the reviewer for the comment. Indeed, co-localization does prove a physical interaction, and we appreciate the concern about our imaging data not making a compelling argument. To address this notion, we plan to perform an experiment using a more robust, quantitative and physiologically relevant strategy. We will generate an endogenously tagged mScarlet3::rab-35 allele for precise endogenous localization. In addition, as a positive control, we will generate an endogenous rme-4::GFP11x7 allele to cell-specifically demonstrate the level of colocalization of RME-4 with mScarlet3::RAB-35 within the epidermis. To address the possible interaction between AGEF-1a and RAB-35 we will leverage a split-GFP approach to assess their interaction in vivo, in the context relevant to the phenotypes we observed (see reply to reviewer #1 point 1).

      __2. The effect of the AGEF-1(S784L) mutation is not clear to me. Naively, as the S784L mutation lies in the auto-inhibitory domain, I would have expected AGEF-1 to become constitutively active, not inactive as the authors seem to suggest. Is the idea that it is constitutively auto-inhibited? The main evidence for a loss of function effect seems to be that a putative dominant negative mutation AGEF-1(E608K) does not further supress axon breakage when co-expressed in trans to AGEF(S784L), but in my view this only shows that, once the defect is suppressed, it cannot be suppressed any further. Defining the nature of the S784L allele is important. Some suggestions, although the authors may come up with different approaches: use of an inducible or cell-specific depletion system like AID/TIR1, Cre/lox, or FLP/FRT to circumvent the lethality of agef-1(0) and reveal what a true loss-of-function looks like; testing if deletion of the auto-inhibitory domain phenocopies S784L to test if this mutation impairs autoinhibition.

      __

      This is an very insightful comment. To address this point, we will follow the reviewer's suggestion and deplete AGEF-1 cell-specifically in the epidermis using the auxin-inducible degron system. Specifically, we will generate an agef-1::AID allele to degrade this molecule in a spatially and temporally controlled fashion, which will allow to circumvent the lethality of agef-1(0) and determine whether the S784L allele mimics the depletion of AGEF-1.

      Although it would be interesting to further dissect the effect of this mutation on AGEF-1 activity, we believe that this falls outside of the scope of this manuscript. As an alternative, we propose to elaborate more in the discussion the implications of the possible roles for the S784L mutation to clarify our model of its function. Our data supports a model in which this mutation reduces AGEF-1 function leading to a reduction in the activity of its downstream target GTPases. It is possible that this is due to AGEF-1 becoming constitutively autoinhibited, or that this mutation affects the structure of the molecule in a way that it reduces its affinity towards its downstream effectors.

      Minor points: 1. I am not able to see the "vesicle-like structures with a clear luminal space" or RAB-35 being "notably enriched at the membrane near the epidermal furrow" in Fig. 3. The "3D surface rendering" in Fig. 3e is grossly oversampled and should not be included.

      We will rectify this section and include new super-resolved images using Airyscan confocal microscopy. We hope these will yield a better-quality representation of these concepts. __ 2. As the agef-1a isoform is specifically referenced throughout, please describe the different agef-1 isoforms somewhere to save readers from having to look this up.__

      Yes, we will include a description of the isoforms. In C. elegans there are two: AGEF-1a which has been confirmed by cDNA and AGEF-1b which is predicted and partially confirmed by cDNA. The mutation we isolated exclusively affects AGEF-1a.

      3. The authors include an interesting speculation in the Discussion: "Future investigations of BIG2-associated neurological disorders should consider... hyper-activity of BIG2 as a driver of neuropathology." If the authors have the tools to test the effect of hyperactive BIG2 in this system, it could be an exciting addition.


      This is an exciting idea that we would like to keep in the Discussion. The biology of BIG2 activity regulation is a nascent field of research and we believe that to accurately generate and characterise a hyperactive BIG2 would be beyond the scope of this manuscript.

      __ On a personal note, since GEFs act oppositely to GTPase Activating Proteins (GAPs), I had to stop and re-read carefully whenever the authors referred to a GEF "activating" a GTPase. I understand their meaning (i.e., putting the GTPase in its active GTP-bound state, not activating its GTPase function) but I wanted to point out this potential confusion in case there is a way to better define terms in the Introduction or change word choice. I realize this may be a standard jargon in the field.__

      Indeed, this is confusing nomenclature and a difficult concept to deliver in an accurate and succinct manner. We propose to include a clearer, more didactic explanation of their function. In a simple explanation, GTPases perform cellular functions when bound to GTP. GAPs terminate GTPase activity by catalysing GTP hydrolysis, generating GDP. GEFs initiate GTPase activity by catalysing the release of GDP and allowing GTP binding.

      __ Please check the correct nomenclature for CRISPR/Cas9.__


      We will rectify where appropriate.

      __6. p.7 "these molecules act in synergy", consider replacing with "redundantly".

      __

      We will rectify where appropriate.

      __Reviewer #2 (Significance (Required)):

      The significance of this story is to show that GEF-GTPases pairing can be highly context-dependent. Previous studies have identified GEFs that pair with RAB-35 and GTPases that pair with AGEF-1, but the authors find that these factors have at best a modest role in the context of skin-axon interactions. Instead, the authors suggest a novel GTPase-GEF pairing of RAB-35 with AGEF-1 and provide evidence that this relationship is conserved in the human homolog of AGEF-1. These results suggest that GTPase-GEF pairings depend not only on chemical affinity but also cellular context.

      The main strength of the study is its clever genetics. For the screen, the authors looked for suppressors of a synthetic defect in axon integrity caused in part by elevated activity of RAB-35 due to loss of its GAP TBC-10. It is satisfying that this screen isolated a mutation in a GEF that in principle could counterbalance the loss of a GAP.

      The main weakness of the study is the lack of direct evidence for an AGEF-1/RAB-35 interaction. While not necessary for publication, the inclusion of biochemical data to support the role of AGEF-1 as a GEF for RAB-35 and the effect of the S784L mutation on this activity would strongly elevate the study. The genetic data for this interaction are consistent with the model but not conclusive, and in my view the colocalization data are not compelling. Nevertheless this is a solid genetic story with a clever screen.__

      __ __We appreciate the feedback and are grateful for the positive comments on the significance of our study. As explained in the significance section related to Reviewer 1, if we find evidence of a direct interaction between AGEF-1 and RAB-35 in the proposed new experiments, we will include it in the manuscript; alternatively, we will present it as a possibility in the discussion section, as suggested. We agree that a more nuanced understanding of the effect of the S784L is interesting and that our colocalization data can be improved, and we have proposed experiments to address these concerns.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This paper investigates the mechanism by which molecular pathways in the skin protect the processes of nerves that innervate them from damage. The authors previously showed that spectrin and the small GTPase RAB-35 act in the epidermis of C. elegans to protect mechanosensory axons from breaking. In this paper they used a suppression screen to identify another gene involved in this process, an ARF-GEF called AGEF-1. Partial loss-of-function mutations in agef-1 suppress the axon-breakage phenotype of spectrin mutations, and genetic experiments by the authors are consistent with the possibility that AGEF-1 could act directly as an exchange factor for RAB-35. Consistent with this model, they show that AGEF-1 and RAB-35 colocalise in the skin.

      Major comments: The experiments in this paper are well-designed and well-controlled, and the interpretations of the results are all reasonable. On the other hand, I don't think the authors' hypothesis that AGEF-1 acts directly as an exchange factor for RAB-35, or that these two proteins directly interact, is definitively proven. This is not an issue of the authors overinterpreting their data--the paper is very carefully and thoughtfully written. However, the most interesting and counterintuitive finding--that an ARF-GEF could also be a RAB-GEF--might be strengthened with more experiments (for example, could they more directly show protein-protein interaction through co-IP or mass spec?).__

      We thank the reviewer for the suggestion. We propose to further investigate the notion that AGEF-1a might be a direct interactor of RAB-35 using a split-GFP approach to assess whether these molecules closely interact, in vivo, in the physiological context that is relevant for the maintenance of the touch sensing neurons (please see reply to reviewer #1 major point 1 and reviewer #2 major point 1 for more details).

      Minor comments: There are also two places where the fact that null mutations are lethal (for agef-1 and arf-5) prevented the authors from addressing the effect of agef-1 loss of function in the skin, and addressing whether ARF-5 could be an AGEF-1 target, respectively. In principle, they could have tried to make a CRISPR line in which these genes could be cell-specifically deleted in the skin (using a dpy-7-driven recombinase). I don't think either of these experiments are essential, but if it is feasible to make these lines it would tie up a couple of loose ends.

      We agree to explore the roles of agef-1 and arf-5 loss-of-function. We propose to tissue-specifically degrade agef-1 using an auxin-inducible degradation strategy (please see reviewer #2 major point 2 reply for more details). For arf-5, we propose knocking-down its function using RNAi to overcome lethality (please see reviewer #1 major point 3 reply for more details).

      __Reviewer #3 (Significance (Required)):

      Overall I think this is an interesting paper on a topic of general interest. The most interesting finding is that an exchange factor for an ARF (a small GRPase involved in vesicle coating/uncoating) could also be an exchange factor for a RAB (a small GTPase involved in vesicle tethering). The evidence presented is suggestive and intriguing, though as noted above not completely definitive. In summary, I think it is an interesting paper in its current form, and anything it could do to more firmly establish a direct interaction between AGEF-1 and RAB-35 would increase its impact and importance.

      __

      We thank the reviewer for the positive evaluation of the significance of our study.

      __ Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary: In this study Bonacossa-Pereira et al. identify AGEF-1a, an Arf-GEF, as a factor that functions in the epidermis through RAB-35 to regulate axonal integrity of the PLM mechanosensory neurons in C. elegans. Specifically, epidermal attachment sites are regulated by these genes form the epidermis and compromising these attachment sites results in axonal degeneration. The study provides some evidence that that RAB-35 and AGEF-1 at least partially colocalize in the skin. Finally, the authors provide evidence that the human orthologue BIG2 is capable of functionally replacing AGEF-1a in C. elegans. Overall, the experiments are well designed and the paper is clear and succinct. The conclusions are supported by the findings and provide an important extension of the author's findings a few back, when they identified the role of rab-35 in mediating the epidermal-neuronal attachment sites.

      Major comments: 1. AGEF-1/BIG2 are known to regulate other GTPases such as ARF-5 or ARF-2. The authors exclude a non-redundant function for ARF-2, but are unable to establish a role for ARF-5 because of the lethality associated with the mutation. Alternative approaches, such as cell specific knock out or knock down experiment. In addition, studies to test potentially physical interaction such as pull-down assays, co-IP experiments and FRET could be used to test whether AGEF-can bind RAB-35 or ARF-5.__

      We thank the reviewer for this suggestion. We propose addressing these concerns using a tissue-specific degradation for AGEF-1a (please see reviewer #1 major point 2 for details). To establish a role for ARF-5 we propose to do an RNAi mediated knock-down to overcome lethality (please see reviewer #1 major point 3 for details). Finally, we plan to use a split-GFP approach to test the physical interaction between agef-1a and rab-35 in vivo (please see reviewer #1 major point 1 for details)

      __ Phenotypic readout has been limited to only axon breaks. It may be interesting to also test other aspects such as axonal deformities including swellings and vesiculation in other parts of the nervous system. Moreover, behavioral or functional experiments such as response to gentle touch or synaptic integrity could be informative.__

      We have not observed any obvious touch receptor neurons axonal phenotypes other than axonal breaks in these mutants, and we will include a statement that reflects this concept. In relation to the behavior, we have not tested it as the results will be difficult to interpret for two reasons: first, the breaks are not always bilateral and one neuron is sufficient to provide mechanical response; second, the mixed identity of the PLM neurite allows it to retain some function despite being severed. However, if deemed essential, we will perform these experiments.

      __ Overexpression constructs such as SKIN::RAB-35[Q69L], SKIN::BIG2, SKIN::AGEF-1a[E608K] in extrachromosomal transgenes could lead to non-physiological localization or effects. Single copy expression using MosSCI or CRISPR insertions are generally considered better approaches (other than endogenous reporters) to provide accurate insights at the physiological level. While the authors tacitly acknowledge this by conducting the experiments in a rab-35 mutant background and very low transgene concentration, at the very least this caveat regarding the localization should be discussed.__

      This is an important remark, and we appreciate the comment. We acknowledge that experiments using extrachromosomal arrays have inherent caveats, especially for localization studies. To address the RAB-35 localization concern we plan to repeat the localization studies using an endogenously tagged RAB-35 using CRISPR to overcome the possible artifacts caused by extrachromosomal array driven expression (please see reviewer #1 point 1 for more details). For the cell-specific rescues or dominant-negative constructs expression, we believe that using extrachromosomal arrays is sufficient, since this allows us to compare genetically identical transgenic vs non-transgenic siblings of independent lines. Moreover, given these constructs are already driven by a tissue-specific promoter that is inherently stronger than their respective endogenous promoters, even a single-copy insertion would have the same caveats.

      __4. The study does not address clearly whether AGEF-1a acts in parallel to spectrin or upstream/ downstream to it. Epistasis experiments could help to figure out the signaling pathway involved.

      __

      Indeed, this is a concept that we need to communicate more clearly. We have data showing that a mutation in agef-1 does not cause axonal damage on its own, and that it has no effect on the axonal damage caused by unc-70 dominant negative mutation alone. We only detect an effect of agef-1 when tbc-10 is mutated together with unc-70 (Fig. 1a of manuscript). Together, these data indicate that agef-1 functions upstream of rab-35, thus acting in parallel to unc-70 (see schematic below) to ensure the mechanical stability of neuron epidermal attachment. We plan to include this data and the following schematic as a supplement to better convey the idea and discuss the results appropriately.

      __ The finding that BIG2 rescues the mutant defect is an important finding and rightfully finds its place in the abstract. I wonder whether a reference to the human diseases caused by loss of BIG2 in the abstract and introduction would not increase interest/impact for the study, rather than burying this potentially interesting connection in the discussion.

      __

      We appreciate the reviewer's comment, and welcome the suggestion. We propose to include relevant background about BIG2-related human diseases in the abstract and introduction as suggested and expand the discussion regarding BIG2 mutations.

      __Minor comments:

      1. Some explanation about how mutating the autoinhibitory domain could impact the catalytic activity of a GEF might be helpful.__

      2. *

      We acknowledge that this notion was not well communicated. We propose to elaborate more about why we think a mutation in the autoinhibitory domain might be affecting the GEF activity and we plan to do further experiments to dissect how this might be happening. Please see reviewer #2 major point 2 for a more detailed explanation.

      __ The paper refers to rme-4(b1001) as a null allele while wormbase refers to the same as a missense allele. It would be more accurate to refer rme-4(b1001) as a strong loss of function or putative null.__

      We agree and will refer to b1001 as a strong loss-of-function.

      __ The paper does not clearly discuss limitations of the hypomorphic agef-1[S784L] and that the observed phenotypes in this hypomorph might underestimate the complete role of AGEF-1a.__

      • *

      We thank the reviewer for this suggestion. We propose to elaborate more on these limitations, especially considering the possible new results from the experiments suggested in reply to reviewer #2 major comment point 2.

      __ In figure 1, where there really only one extrachromosomal transgenic line for some of the construct tested? __

      • *

      For the Pdpy-7::AGEF-1a lines we have scored 3 transgenic lines (data not included) and only one yielded a full rescue. For all extrachromosomal lines presented, we tested 3 independent transgenic lines. For brevity, we only included the result for the positive rescues (1 for BIG2 and 1 for AGEF-1a), except for the Pmec-4 lines, of which none rescued the phenotype (data included in Table S2). We will update Table S2 to include all the lines tested.

      __ The concentrations of transgenes vary in different transgenes. Is there a rationale behind this? __

      Yes, we have attempted multiple concentrations of injections for each transgene and there was some variability for each construct injected, thus we only included the ones where we observed an effect. As mentioned in point 4 above, we will update Table S2 to include details of all lines tested.

      __ In Fig.1e: I may be useful to also show the "WT" phenotype, i.e. the strong defects to get a visual comparison for the degree of rescue. __

      • *

      We think this suggestion will help the readers. We will include this as a representative dashed line showing the WT phenotype.

      __Reviewer #4 (Significance (Required)):

      The study has identified AGEF-1a as a regulator of axonal maintenance, functioning to protect neurons against mechanical stress by acting through RAB-35. Additionally, this epidermal GEF, AGEF-1a is functionally conserved as its human orthologue BIG2 can replace AGEF-1a in C. elegans for axonal protection. Important points here are that the findings extend prior work by the authors of non-autonomous mechanism that regulates epidermal-neuronal attachment. In my humble opinion, the human disease connection, in particular with regard to the unexplained neuronal phenotypes in patients could be better developed in the manuscript. It may also increase impact/interest of a wonderful story that right now reads a bit 'wormy'.__


      This is an important remark and we are grateful for the positive comments. The fact that human BIG2 is also conserved in C. elegans points to a fundamental role of this molecule in multicellular life, and it provides a tractable model to investigate the function of this molecule in a physiological context. We welcome the suggestion to elaborate more the connection with the unexplained neuronal phenotypes in patients and use a more accessible language to convey our findings to a wider audience.


      3. Description of the revisions that have already been incorporated in the transferred manuscript

      N/A

      4. Description of analyses that authors prefer not to carry out

      __Reviewer #1 __


      "...studies to test potentially physical interaction such as pull-down assays, co-IP experiments and FRET could be used to test whether AGEF-can bind RAB-35 or ARF-5."


      While pull-down assays, co-IP and FRET would reveal whether AGEF-1a can form a complex with RAB-35, we believe that using a full length AGEF-1a would not only represent a significant technical challenge but will also not prove a direct interaction in a physiological context.


      "...An optional experiment would be to look at the colocalization of RAB-35 with a known effector in wild type and agef-1(vd92) with the expectation that there would be a higher level of colocalization in agef-1 mutants. Effector pull-down experiments or perhaps a cell based GEF assay could be used (PMID: 35196081)."


      We think that screening for the relevant rab-35 effector in this context and/or doing effector pull-down/cell based GEF assays would be a significant technical challenge. We propose to address this concern by tempering our claim as suggested by the reviewer.


      "...It may be interesting to also test other aspects such as axonal deformities including swellings and vesiculation in other parts of the nervous system. Moreover, behavioral or functional experiments such as response to gentle touch or synaptic integrity could be informative."

      As indicated above in major point 2 of reviewer 4, these are interesting ideas that might answer how the function of these neurons might be affected. However, in addition to the challenges indicated above, they will not provide further insights into how their integrity is maintained. We believe these will fall outside the scope of the manuscript, but if deemed essential we will perform behavioral analysis.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      McDougal et al. aimed to characterize the antiviral activity of mammalian IFIT1 orthologs. They first performed three different evolutionary selection analyses within each major mammalian clade and identified some overlapping positive selection sites in IFIT1. They found that one site that is positively selected in primates is in the RNA-binding exit tunnel of IFIT1 and is tolerant of mutations to amino acids with similar biochemical properties. They then tested 9 diverse mammalian IFIT1 proteins against VEEV, VSV, PIV3, and SINV and found that each ortholog has distinct antiviral activities. Lastly, they compared human and chimpanzee IFIT1 and found that the determinant of their differential anti-VEEV activity may be partly attributed to their ability to bind Cap0 RNA. 

      Strengths: 

      The study is one of the first to test the antiviral activity of IFIT1 from diverse mammalian clades against VEEV, VSV, PIV3, and SINV. Cloning and expressing these 39 IFIT1 orthologs in addition to single and combinatorial mutants is not a trivial task. The positive connection between anti-VEEV activity and Cap0 RNA binding is interesting, suggesting that differences in RNA binding may explain differences in antiviral activity. 

      Weaknesses: 

      The evolutionary selection analyses yielded interesting results, but were not used to inform follow-up studies except for a positively selected site identified in primates. Since positive selection is one of the two major angles the authors proposed to investigate mammalian IFIT1 orthologs with, they should integrate the positive selection results with the rest of the paper more seamlessly, such as discussing the positive selection results and their implications, rather than just pointing out that positively selected sites were identified. The paper should elaborate on how the positive selection analyses PAML, FUBAR, and MEME complement one another to explain why the tests gave them different results. Interestingly, MEME which usually provides more sites did not identify site 193 in primates that was identified by both PAML and FUBAR. The authors should also provide the rationale for choosing to focus on the 3 sites identified in primates only. One of those sites, 193, was also found to be positively selected in bats, although the authors did not discuss or integrate that finding into the study. In Figure 1A, they also showed a dN/dS < 1 from PAML, which is confusing and would suggest negative selection instead of positive selection. Importantly, since the authors focused on the rapidly evolving site 193 in primates, they should test the IFIT1 orthologs against viruses that are known to infect primates to directly investigate the impact of the evolutionary arms race at this site on IFIT1 function. 

      We thank the reviewer for their assessment and for acknowledging the breadth of our dataset regarding diverse IFIT1s, number of viruses tested, and the functional data that may correlate biochemical properties of IFIT1 orthologous proteins with antiviral function. We have expanded the introduction and results sections to better explain and distinguish between PAML, FUBAR, and MEME analyses. Furthermore, we have expanded the discussion to incorporate the observation that site 193 is rapidly evolving in bats, as well as the observation that nearby sites to the TPR4 loop were identified as rapidly evolving in all clades of mammals tested. We also do observe an overall gene dN/dS of <1, however this is simply the average across all codons of the entire gene and does not rule out positive selection at specific sites. This is observed for other restriction factors, as many domains are undergoing purifying selection to retain core functions (e.g enzymatic function, structural integrity) while other domains (e.g. interfaces with viral antagonists or viral proteins) show strong positive selection. Specific examples include the restriction factors BST-2/Tetherin (PMID: 19461879) and MxA (PMID: 23084925). Furthermore, we agree that testing more IFIT1-sensitive viruses that naturally infect primates with our IFIT1 193 mutagenesis library would shed light on the influence of host-virus arms races at this site. However, VEEV naturally does also infect humans as well as at least one other species of primate (PMID: 39983680).

      Below we individually address the reviewers' claims of inaccurate data interpretation.

      Some of the data interpretation is not accurate. For example: 

      (1) Lines 232-234: "...western blot analysis revealed that the expression of IFIT1 orthologs was relatively uniform, except for the higher expression of orca IFIT1 and notably lower expression of pangolin IFIT1 (Figure 4B)." In fact, most of the orthologs are not expressed in a "relatively uniform" manner e.g. big brown bat vs. shrew are quite different. 

      We have now included quantification of the western blots to allow the reader to compare infection results with the infection data (Updated Figure 4B and 4G). We have also removed the phrase “relatively uniform” from the text and have instead included text describing the quantified expression differences.

      (2) Line 245: "...mammalian IFIT1 species-specific differences in viral suppression are largely independent of expression differences." While it is true that there is no correlation between protein expression and antiviral activity in each species, the authors cannot definitively conclude that the species-specific differences are independent of expression differences. Since the orthologs are clearly not expressed in the same amounts, it is impossible to fully assess their true antiviral activity. At the very least, the authors should acknowledge that the protein expression can affect antiviral activity. They should also consider quantifying the IFIT1 protein bands and normalizing each to GAPDH for readers to better compare protein expression and antiviral activity. The same issue is in Line 267. 

      We have now included quantification and normalization of the western blots to allow the reader to compare infection results with the infection data (Updated Figure 4B and 4G). Furthermore, we acknowledge in the text that expression differences may affect antiviral potency in infection experiments.

      (3) Line 263: "SINV... was modestly suppressed by pangolin, sheep, and chinchilla IFIT1 (Figure 4E)..." The term "modestly suppressed" does not seem fitting if there is 60-70% infection in cells expressing pangolin and chinchilla IFIT1. 

      We have modified the text to say “significantly suppressed” rather than “modestly suppressed.”

      (4) The study can be significantly improved if the authors can find a thread to connect each piece of data together, so the readers can form a cohesive story about mammalian IFIT1. 

      We appreciate the reviewer’s suggestion and have tried to make the story including more cohesive through commentary on positive selection and by using the computational analysis to first inform potential evolutionary consequences of IFIT1 functionality first by an intraspecies (human) approach, and then later an interspecies approach with diverse mammals that have great sequence diversity. Furthermore, we point out that almost all IFIT1s tested in the ortholog screen were also included in our computational analysis allowing for the potential to connect functional observations with those seen in the evolutionary analyses.

      Reviewer #2 (Public review): 

      McDougal et al. describe the surprising finding that IFIT1 proteins from different mammalian species inhibit the replication of different viruses, indicating that the evolution of IFIT1 across mammals has resulted in host speciesspecific antiviral specificity. Before this work, research into the antiviral activity and specificity of IFIT1 had mostly focused on the human ortholog, which was described to inhibit viruses including vesicular stomatitis virus (VSV) and Venezuelan equine encephalitis virus (VEEV) but not other viruses including Sindbis virus (SINV) and parainfluenza virus type 3 (PIV3). In the current work, the authors first perform evolutionary analyses on IFIT1 genes across a wide range of mammalian species and reveal that IFIT1 genes have evolved under positive selection in primates, bats, carnivores, and ungulates. Based on these data, they hypothesize that IFIT1 proteins from these diverse mammalian groups may show distinct antiviral specificities against a panel of viruses. By generating human cells that express IFIT1 proteins from different mammalian species, the authors show a wide range of antiviral activities of mammalian IFIT1s. Most strikingly, they find several IFIT1 proteins that have completely different antiviral specificities relative to human IFIT1, including IFIT1s that fail to inhibit VSV or VEEV, but strongly inhibit PIV3 or SINV. These results indicate that there is potential for IFIT1 to inhibit a much wider range of viruses than human IFIT1 inhibits. Electrophoretic mobility shift assays (EMSAs) suggest that some of these changes in antiviral specificity can be ascribed to changes in the direct binding of viral RNAs. Interestingly, they also find that chimpanzee IFIT1, which is >98% identical to human IFIT1, fails to inhibit any tested virus. Replacing three residues from chimpanzee IFIT1 with those from human IFIT1, one of which has evolved under positive selection in primates, restores activity to chimpanzee IFIT1. Together, these data reveal a vast diversity of IFIT1 antiviral specificity encoded by mammals, consistent with an IFIT1-virus evolutionary "arms race". 

      Overall, this is a very interesting and well-written manuscript that combines evolutionary and functional approaches to provide new insight into IFIT1 antiviral activity and species-specific antiviral immunity. The conclusion that IFIT1 genes in several mammalian lineages are evolving under positive selection is supported by the data, although there are some important analyses that need to be done to remove any confounding effects from gene recombination that has previously been described between IFIT1 and its paralog IFIT1B. The virology results, which convincingly show that IFIT1s from different species have distinct antiviral specificity, are the most surprising and exciting part of the paper. As such, this paper will be interesting for researchers studying mechanisms of innate antiviral immunity, as well as those interested in species-specific antiviral immunity. Moreover, it may prompt others to test a wide range of orthologs of antiviral factors beyond those from humans or mice, which could further the concept of host-specific innate antiviral specificity. Additional areas for improvement, which are mostly to clarify the presentation of data and conclusions, are described below. 

      Strengths: 

      (1) This paper is a very strong demonstration of the concept that orthologous innate immune proteins can evolve distinct antiviral specificities. Specifically, the authors show that IFIT1 proteins from different mammalian species are able to inhibit the replication of distinct groups of viruses, which is most clearly illustrated in Figure 4G. This is an unexpected finding, as the mechanism by which IFIT1 inhibits viral replication was assumed to be similar across orthologs. While the molecular basis for these differences remains unresolved, this is a clear indication that IFIT1 evolution functionally impacts host-specific antiviral immunity and that IFIT1 has the potential to inhibit a much wider range of viruses than previously described. 

      (2) By revealing these differences in antiviral specificity across IFIT1 orthologs, the authors highlight the importance of sampling antiviral proteins from different mammalian species to understand what functions are conserved and what functions are lineage- or species-specific. These results might therefore prompt similar investigations with other antiviral proteins, which could reveal a previously undiscovered diversity of specificities for other antiviral immunity proteins. 

      (3) The authors also surprisingly reveal that chimpanzee IFIT1 shows no antiviral activity against any tested virus despite only differing from human IFIT1 by eight amino acids. By mapping this loss of function to three residues on one helix of the protein, the authors shed new light on a region of the protein with no previously known function. 

      (4) Combined with evolutionary analyses that indicate that IFIT1 genes are evolving under positive selection in several mammalian groups, these functional data indicate that IFIT1 is engaged in an evolutionary "arms race" with viruses, which results in distinct antiviral specificities of IFIT1 proteins from different species. 

      Weaknesses: 

      (1) The evolutionary analyses the authors perform appear to indicate that IFIT1 genes in several mammalian groups have evolved under positive selection. However, IFIT1 has previously been shown to have undergone recurrent instances of recombination with the paralogous IFIT1B, which can confound positive selection analyses such as the ones the authors perform. The authors should analyze their alignments for evidence of recombination using a tool such as GARD (in the same HyPhy package along with MEME and FUBAR). Detection of recombination in these alignments would invalidate their positive selection inferences, in which case the authors need to either analyze individual non-recombining domains or limit the number of species to those that are not undergoing recombination. While it is likely that these analyses will still reveal a signature of positive selection, this step is necessary to ensure that the signatures of selection and sites of positive selection are accurate. 

      (2) The choice of IFIT1 homologs chosen for study needs to be described in more detail. Many mammalian species encode IFIT1 and IFIT1B proteins, which have been shown to have different antiviral specificity, and the evolutionary relationship between IFIT1 and IFIT1B paralogs is complicated by recombination. As such, the assertion that the proteins studied in this manuscript are IFIT1 orthologs requires additional support than the percent identity plot shown in Figure 3B. 

      (3) Some of the results and discussion text could be more focused on the model of evolution-driven changes in IFIT1 specificity. In particular, the chimpanzee data are interesting, but it would appear that this protein has lost all antiviral function, rather than changing its antiviral specificity like some other examples in this paper. As such, the connection between the functional mapping of individual residues with the positive selection analysis is somewhat confusing. It would be more clear to discuss this as a natural loss of function of this IFIT1, which has occurred elsewhere repeatedly across the mammalian tree. 

      (4) In other places in the manuscript, the strength of the differences in antiviral specificity could be highlighted to a greater degree. Specifically, the text describes a number of interesting examples of differences in inhibition of VSV versus VEEV from Figure 3C and 3D, but it is difficult for a reader to assess this as most of the dots are unlabeled and the primary data are not uploaded. A few potential suggestions would be to have a table of each ortholog with % infection by VSV and % infection by VEEV. Another possibility would be to plot these data as an XY scatter plot. This would highlight any species that deviate from the expected linear relationship between the inhibition of these two viruses, which would provide a larger panel of interesting IFIT1 antiviral specificities than the smaller number of species shown in Figure 4. 

      We thank the reviewer for their fair assessment of our manuscript. As the reviewer requested, we performed GARD analysis on our alignments used for PAML, FUBAR, and MEME (New Supp Fig 1). By GARD, we found 1 or 2 predicted breakpoints in each clade. However, much of the sequence was after or between the predicted breakpoints. Therefore, we were able to reanalyze for sites undergoing positive selection in the large region of the sequence that do not span the breakpoints. We were able to validate almost all sites originally identified as undergoing positive selection still exhibit signatures of positive selection taking these breakpoints into account: primates (11/12), bats (14/16), ungulates (30/37), and carnivores (2/4). To further validate our positive selection analysis, we used Recombination Detection Program 4 (RDP4) to remove inferred recombinant sequences from the primate IFIT1 alignment and performed PAML, FUBAR, and MEME. Once again, the sites in our original anlaysis were largely validated by this method. Importantly, sites 170, 193, and 366 in primates, which are discussed in our manuscript, were found to be undergoing positive selection in 2 of the 3 analyses using alignments after the indicated breakpoint in GARD and after removal of recombinant sequences by RDP4. We have updated the text to acknowledge IFIT1/IFIT1B recombination more clearly and include the GARD analysis as well as PAML, FUBAR, and MEME reanalysis taking into account predicted breakpoints by GARD and RDP4. Furthermore, to increase evidence that the sequences used in this study for both computational and functional analysis are IFIT1 orthologs rather than IFIT1B, we have included a maximum likelihood tree after aligning coding sequences on the C-terminal end (corresponding to bases 907-1437 of IFIT1). In Daughtery et al. 2016 (PMID: 27240734) this strategy was used to distinguish between IFIT1 and IFITB. All sequences used in our study grouped with IFIT1 sequences (including many confirmed IFIT1 sequences used in Daughterty et al.) rather than IFIT1B sequences or IFIT3. This new data, including the GARD, RDP4, and maximum likelihood tree is included as a new Supplementary Figure 1.

      We also agree with the reviewer that it is possible that chimpanzee IFIT1 has lost antiviral function due to the residues 364 and 366 that differ from human IFIT1. We have updated the discussion sections to include the possibility that chimpanzee IFIT1 is an example of a natural loss of function that has occurred in other species over evolution as well as the potential consequences of this occurrence. Regarding highlighting the strength of differences in antiviral activity between IFIT1 orthologs, we have included several updates to strengthen the ability of the reader to assess these differences. First, we have included a supplementary table that includes the infection data for each ortholog from the VEEV and VSV screen to allow for readers to evaluate ranked antiviral activity of the species that suppress these viruses. In addition, the silhouettes next to the dot plots indicate the top ranked hits in order of viral inhibition (with the top being the most inhibitory) giving the reader a visual representation in the figure of top antiviral orthologs during our screen. We have also updated the figure legend to inform the reader of this information.

      Reviewer #3 (Public Review):  

      Summary: 

      This manuscript by McDougal et al, demonstrates species-specific activities of diverse IFIT1 orthologs and seeks to utilize evolutionary analysis to identify key amino acids under positive selection that contribute to the antiviral activity of this host factor. While the authors identify amino acid residues as important for the antiviral activity of some orthologs and propose a possible mechanism by which these residues may function, the significance or applicability of these findings to other orthologs is unclear. However, the subject matter is of interest to the field, and these findings could be significantly strengthened with additional data.

      Strengths:

      Assessment of multiple IFIT1 orthologs shows the wide variety of antiviral activity of IFIT1, and identification of residues outside of the known RNA binding pocket in the protein suggests additional novel mechanisms that may regulate IFIT1 activity.

      Weaknesses:

      Consideration of alternative hypotheses that might explain the variable and seemingly inconsistent antiviral activity of IFIT1 orthologs was not really considered. For example, studies show that IFIT1 activity may be regulated by interaction with other IFIT proteins but was not assessed in this study.

      Given that there appears to be very little overlap observed in orthologs that inhibited the viruses tested, it's possible that other amino acids may be key drivers of antiviral activity in these other orthologs. Thus, it's difficult to conclude whether the findings that residues 362/4/6 are important for IFIT1 activity can be broadly applied to other orthologs, or whether these are unique to human and chimpanzee IFIT1. Similarly, while the hypothesis that these residues impact IFIT1 activity in an allosteric manner is an attractive one, there is no data to support this.  

      We thank the reviewer for their fair assessment of our manuscript. To address the weaknesses that the reviewer has pointed out we have expanded the discussion to more directly address alternate hypotheses, such as the possibility of IFIT1 activity being regulated by interaction with other IFIT proteins. Furthermore, we expanded the discussion to include an alternate hypothesis for the role of residues 364 and 366 in primate IFIT1 besides allosteric regulation. In addition, we did not intend to claim or imply that residues 364/6 are the key drivers of antiviral activity for all IFITs tested. However, we speculate that within primates these residues may play a key role as these residues differ between chimpanzee IFIT1 (which lacks significant antiviral activity towards the viruses tested in this study) and human IFIT1 (which possesses significant antiviral activity). In addition, these residues seem to be generally conserved in primate species, apart from chimpanzee IFIT1. We have included changes to the text to more clearly indicate that we highlight the importance of these residues specifically for primate IFIT1, but not necessarily for all IFIT1 proteins in all clades.

      Reviewer #1 (Recommendations for the authors): 

      (1) The readers would benefit from a more detailed background on the concept and estimation of positive selection for the readers, including the M7/8 models in PAML. 

      We have included more information in the text to provide a better background for the concepts of positive selection and how PAML tests for this using M7 and M8 models.

      (2) Presentation of data 

      a) Figure 3C and 3D: is there a better way to present the infection data so the readers can tell the ranked antiviral activity of the species that suppress VEEV? 

      We have included a supplementary table that includes the infection data for each ortholog from the VEEV and VSV screen to allow for readers to evaluate ranked antiviral activity of the species that suppress these viruses. In addition, the silhouettes next to the dot plots indicate the top ranked hits in order of viral inhibition (with the top being the most inhibitory). We have updated the figure legend to inform the reader of this information as well.

      b) Figure 4C and 4D: consider putting the western blot in Supplementary Figure 1 underneath the infection data or with the heatmap so readers can compare it with the antiviral activity. 

      We have also included quantification of the western blots performed to evaluate IFIT1 expression during the experiments shown in Figure 4C and 4D in an updated Figure 4B. We have also included normalized expression values with the heatmap shown in an updated Figure 4G so the reader can evaluate potential impact of protein expression on antiviral activity for all infection experiments shown in figure 4.

      (3) Line 269-270: as a rationale for narrowing the species to human, black flying fox, and chimp IFIT1, human and black flying fox were chosen because they strongly inhibit VEEV, but pangolin wasn't included even though it had the strongest anti-VEEV activity? 

      The rationale for narrowing the species to human, black flying fox, and chimpanzee IFIT1 was related to the availability of biological tools, high quality genome/transcriptome sequencing databases, and other factors. Specifically human and chimp IFIT1 are closely related but have variable antiviral activities, making their comparison highly relevant. Bats are well established as reservoirs for diverse viruses, whereas the reservoir status of many other mammals is less well defined. Furthermore, purifying large amounts of high quality IFIT1 protein after bacterial expression was another limitation to functional studies. We have added this information into the manuscript text.

      (4) Figure 5A: to strengthen the claim that "species-specific antiviral activities of IFIT1s can be partly explained by RNA binding potential", it would be good to include one more positive and one more negative control. In other words, test the cap0 RNA binding activity of an IFIT1 ortholog that strongly inhibits VEEV and an ortholog that does not. It would also be good to discuss why chimp IFIT1 still shows dose-dependent RNA binding yet it is one of the weakest at inhibiting VEEV. 

      We appreciate the reviewer's suggestion to include more controls and expand the dataset. While we understand the potential value of expanding the dataset, we believe that human IFIT1 serves as a robust positive control and human IFIT1 R187 (RNA-binding deficient) serves as an established negative control. Future experiments with other purified IFITs from other species will indeed strengthen evidence linking IFIT1 species-specific activity and RNA-binding.

      Regarding chimpanzee IFIT1, we acknowledge there appears to be some dose-dependent Cap0 RNA-binding. However, the binding affinity is much weaker than that of human or black flying fox IFIT1. We speculate that during viral infection reduced binding affinity could impair the ability of chimpanzee IFIT1 to efficiently sequester viral RNA and inhibit viral translation. This reduction in binding affinity may, therefore, allow the cell to be overwhelmed by the exponential increase in viral RNA during replication resulting in an ineffective antiviral IFIT1. In the literature, a similar phenomenon is observed by Hyde et. al (PMID: 24482115). In this study, the authors test mouse Ifit1 Cap0 RNA binding by EMSA of the 5’ UTR sequence of VEEV RNA containing an A or G at nucleotide position 3. EMSA shows binding of both the A3 and G3 Cap0 VEEV RNA sequences, however stronger Ifit1 binding is observed for A3 Cap0 RNA sequence. The consequences of the reduced Ifit1 binding of the G3 Cap0 VEEV RNA are observed in vitro by a substantial increase in viral titers produced from cells as well as an increase in protein produced in a luciferase-based translation assay. The authors also show in vivo relevance of this reduction of Ifit1 binding as WT B6 mice infected with VEEV containing the A3 UTR exhibited 100% survival, while WT B6 mice infected with VEEV containing the G3 UTR survived at a rate of only ~25%. Therefore, the literature supports that a decrease in Cap0 RNA binding by an IFIT protein (while still exhibiting Cap0 RNA binding) observed by EMSA can result in considerable alterations of viral infection both in vitro and in vivo.

      Minor: 

      (1) Line 82: "including 5' triphosphate (5'-ppp-RNA), or viral RNAs..." having a comma here will make the sentence clearer. 

      We have improved the clarity of this sentence. It now reads, “IFIT1 binds uncapped 5′triphosphate RNA (5′-ppp-RNA) and capped but unmethylated RNA (Cap0, an m<sup>7</sup>G cap lacking 2′-O methylation).”

      (2) Line 100: "...similar mechanisms have been at least partially evolutionarily conserved in IFIT proteins to restrict viral infection by IFIT proteins". 

      We have updated the text to improve clarity by revising the sentence to “VEEV TC-83 is sensitive to human IFIT1 and mouse Ifit1B, indicating at least partial conservation of antiviral function by IFIT proteins."

      (3) Line 109: "signatures of rapid evolution or positive selection" would put positive selection second because that is the more technical term that can benefit from the more layperson term (rapid evolution). 

      We have updated this sentence incorporating this suggestion. “Positive selection, or rapid evolution, is denoted by a high ratio of nonsynonymous to synonymous substitutions (dN/dS >1).”

      (4) Lines 116-117: "However, this was only assessed in a few species" would benefit from a citation. 

      We have inserted the citation.

      (5) Line 127 heading: "IFIT1 is rapidly evolving in mammals" would be more accurate to say "in major clades of mammals". 

      We have updated the text to include this suggestion.

      (6) Line 165: "IFIT1 L193 mutants". 

      We have updated the text to rephrase this for clarity.

      (7) Line 170: two strains of VEEV were mentioned in the Intro, so it would be good to specify which strain of VEEV was used?

      We have updated the text to clarify the VEEV strain. In this study, all experiments were performed using the VEEV TC-83 strain.

      (8) Line 174: "Indeed, all mutants at position 193, whether hydrophobic or positively charged, inhibited VEEV similarly to the WT..." It should read "all hydrophobic and positively charged mutants inhibited VEEV similarly to the WT...". 

      We corrected as suggested. 

      (9) Line 204: what are "control cells"? Cells that are mock-infected, or cells without IFIT1? 

      We have updated the text to improve clarity. What we refer to as control cells, were cells expressing an empty vector control rather than an IFIT1.

      (10) Need to clarify n=2 and n=3 replicates throughout the manuscript. Does that refer to three independent experiments? Or an experiment with triplicate wells/samples? 

      We have updated the text to say “independent experiments” instead of “biological replicates” to prevent any confusion.  All n=2 or n=3 replicates denote independent experiments.

      (11) Line 254: "dominant antiviral effector against the related human parainfluenza virus type 5..." 

      We have updated the text to improve clarity.

      (12) Line 271: "The black flying fox (Pteropus alecto), is a model megabat species..." scientific name was italicized here but not elsewhere. Remove comma.

      We have updated the text accordingly.

      (13) Line 293: "...chimpanzee IFIT1 lacked these properties" but chimp IFIT1 can bind cap0 RNA, just at a lower level. 

      We have updated the text to acknowledge that chimpanzee IFIT1 can bind cap0 RNA, albeit at a lower level than human IFIT1.

      (14) Figure 6B: please fix the x-axis labels. They're very cramped. 

      We have updated the x-axis labels for figure 6B and figure 6D to improve clarity.

      (15) Line 609: "...trimmed and aligned"? 

      Our phrasing is to indicate that coding sequences were aligned, and gaps were removed to reduce the chance of false positive signal by underrepresented codons such as gaps or short insertions. We have removed “trimmed” from the text and changed the text to say “aligned sequences” to increase clarity.

      Reviewer #2 (Recommendations for the authors): 

      (1) Numbers less than 10 should be spelled out throughout the manuscript (e.g. line 138). 

      We have updated the text to reflect the request.

      (2) Line 165: "expression of IFIT1 193 mutants" should be rephrased. 

      We have updated the text to rephrase this sentence for clarity.

      (3) A supplemental table or file should be included that contains the accession number and species names of sequences used for evolutionary analyses and for functional testing. In addition, the alignments that were used for positive selection can be included.  

      We have included a supplemental file containing accession numbers, species names for evolutionary analysis and functional studies. In addition, this table includes the infection data for each IFIT1 homolog for the screen performed in figure 3.

      (4) The discussion of potential functions of the C-terminus of IFIT1 should include possible interactions with other proteins. In particular, the C-terminus of IFIT1 has been shown to interact with IFIT3 in a way that modulates its activity (PMID: 29525521). Although residues 362-366 were not shown in that paper to interact with a fragment of IFIT3, it is possible that these residues may be important for interaction with full-length IFIT3 or some other IFIT1 binding partner. 

      We thank the reviewer for their suggestion. We have expanded the discussion to explore the possibility that residues 364 and 366 of IFIT1 may be involved in IFIT1-IFIT3 interactions and consequently Cap0 RNA-binding and antiviral activity.

      (5) The quantification of the EMSAs should be described in more detail. In particular, from looking at the images shown in Figure 5A, it would appear that human and chimpanzee IFIT1 show similar degrees of probe shift, while the human R187H panel shows no shifting at all. However, the quantification shows chimpanzee IFIT1 as being statistically indistinguishable from human R187H. Additional information on how bands were quantified and whether they were normalized to unshifted RNA would be helpful in attempting to resolve this visual discordance. 

      EMSAs were quantified by determining Adj. Vol. Intensity in ImageLab (BioRad), which subtracts background signal, after imaging at the same exposure and SYBR Gold staining time. To determine Adj. Vol. Intensity, we drew a box (same size for each gel and lane for each replicate) for each lane above the free probe. These values were not normalized to unshifted RNA, however equal RNA was loaded. While the ANOVA shows no significant difference, between human R187H and chimpanzee IFIT1 band shift intensity, this is potentially due to the between group variance in the ANOVA. The increase in the AUC value for chimpanzee IFIT1 is 36.4% higher than R187H.

      The AUC of Adj. Vol. Intensity of human IFIT1 band shift is roughly 2-fold more than that of chimpanzee IFIT1. We believe this matches with the visual representation as well, as human IFIT1 has a darker “upper” band in the shift, as well as a clear dark “lower” band that is not well defined in the chimpanzee shift. Furthermore, the upper band of the chimpanzee IFIT1 shift appears to be as intense in the 400nM as the upper band in the 240nM human IFIT1 lane, without taking into account the lower band seen for human IFIT1 as well. We included this quantification as kD was unable to be calculated due to no clear probe disappearance and we do not intend for this quantification to act as a substitute for binding affinity calculations, rather to aid the reader in data interpretation.

      Reviewer #3 (Recommendations for the authors): 

      (1) IFIT1 has been demonstrated to function in conjunction with other IFIT proteins, do you think the absence of antiviral activity is due to isolated expression of IFIT1 without these cofactors, and therefore might explain why there was little overlap observed in orthologs that inhibited the viruses tested (Figure 3, lines 209-210). 

      We do not believe that isolated expression of IFIT1 without cofactors (such as orthologous IFIT proteins) would fully explain the disparities in antiviral activity as many IFIT1s that expressed inhibited either VSV or VEEV in our screen. However, we acknowledge that the expression of IFIT1 alone does create a limitation in our study as IFIT1 antiviral activity and RNA-binding can be modulated by interactions with other IFIT proteins. Therefore, we do believe that it is possible that co-expression of IFIT1 with other IFITs from a given species might potentially enhance antiviral activity. Future studies may shed light on this.

      (2) Figure 5 - Calculating the Kd for each protein would be more informative. How does the binding affinity of these IFIT1 proteins compare to that which has previously been reported? 

      We are unable to accurately determine kD as there is not substantial diminished signal of the free probe. Therefore, we are only able to compare IFIT1 protein binding between species without accurate mathematical calculation of binding affinity. Our result does appear similar to that of mouse Ifit1 binding to VEEV RNA (PMID: 24482115), in which the authors also do not calculate a kD for their RNA EMSA.

      (3) Mutants 364 and 366 may not have direct contact with RNA, but RNA EMSA data presented suggest that the binding affinity may be different (though this is hard to conclude without Kd data). Additional biochemical data with these mutants might provide more insight here. 

      We agree that further studies using 364 and 366 double mutant human and chimpanzee protein in EMSAs would provide additional biochemical data and provide insight into the role of these residues in direct RNA binding. We acknowledge this is a limitation of our study as we provide only genetic data demonstrating the importance of these residues.

      (4) Given that there appears to be very little overlap observed in orthologs that inhibited the viruses tested, it's possible that other amino acids may be key drivers of antiviral activity in these other orthologs. Thus, it's difficult to conclude whether the findings that residues 362/4/6 are important for IFIT1 activity can be broadly applied to other orthologs. A more systematic assessment of the role of these mutations across multiple diverse orthologs would provide more insight here. Do other antiviral proteins show this trend (ie exhibit little overlap in orthologs that inhibit these viruses). What do you think might be driving this? 

      We agree that other residues outside of 364 and 366 may be key drivers of antiviral activity across the IFTI1 orthologs tested. We do not hypothesize that this will broadly apply across IFIT1 from diverse clades of mammals as overall amino acid identity can differ by over 30%. However, based on the chimpanzee and human IFIT1 data, as well as sequence alignment within primates specifically, we believe these residues may be key for primate (but not necessarily other clades of mammals) IFIT1 antiviral activity.

      Regarding if other antiviral proteins show little overlap in orthologs that inhibit a given virus, to our knowledge such a functional study with this large and divergent dataset of orthologs has not been performed. However, there are many examples of restriction factors exhibiting speciesspecific antiviral activity when ortholog screens have been performed. For example, HIV was reported to be suppressed by MX2 orthologs from human, rhesus macaque, and African green monkey, but not sheep or dog MX2 (PMID: 24760893). In addition, foamy virus was inhibited by the human and rhesus macaque orthologs of PHF11, but not the mouse and feline orthologs (PMID: 32678836). Furthermore, studies from our lab have shown variability in RTP4 ortholog antiviral activity inhibition towards viruses much as hepatitis C virus (HCV), West Nile virus (WNV), and Zika virus (ZIKV) (PMID: 33113352).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      Weiss and co-authors presented a versatile probabilistic tool. aTrack helps in classifying tracking behaviors and understanding important parameters for different types of single particle motion types: Brownian, Confined, or Directed motion. The tool can be used further to analyze populations of tracks and the number of motion states. This is a stand-alone software package, making it user-friendly for a broad group of researchers. 

      Strengths: 

      This manuscript presents a novel method for trajectory analysis. 

      Weaknesses: 

      (1) In the results section, is there any reason to choose the specific range of track length for determining the type of motion? The starting value is fine, and would be short enough, but do the authors have anything to report about how much is too long for the model? 

      We chose to test the range of track lengths (five-to-hundreds of steps) to cover the broad range of scenarios arising from single proteins or fluorophores to brighter objects with more labels.  While there is no upper-limit per se, the computation time of our method scales linearly with track length, 100 time-points takes ~2 minutes to run on a standard consumer-level desktop CPU. We have added the following sentence to note the time-cost with trajectory length:  

      “The recurrent formula enables our model computation time to scale linearly with the number of time points.”

      (2) Robustness to model mismatches is a very important section that the authors have uplifted diligently. Understanding where and how the model is limited is important. For example, the authors mentioned the limitation of trajectory length, do the authors have any information on the trajectory length range at which this method works accurately? This would be of interest to readers who would like to apply this method to their own data. 

      We agree that limitations are important to estimate, and trajectory length is an important consideration when choosing how to analyze a dataset. We report the categorization certainty, i.e. the likelihood differences, for a range of track lengths (Fig. 2 a,c, Fig. 3c-d, and Fig. 4 c,g.).

      For example, here are the key plots from Fig. 2 quantifying the relative likelihoods, where being within the light region is necessary. The light areas represent a useful likelihood ratio.

      We only performed analysis up to track lengths of 600 time steps but parameter estimations and significance can only improve when increasing the track length as long as the model assumptions are verified. The broader limitations and future opportunities for new methods are now expanded upon in the discussion, for example switching between states and model and state and model ambiguities (bound vs very slow diffusion vs very slow motion).

      (3) aTrack extracts certain parameters from the trajectories to determine the motion types. However, it is not very clear how certain parameters are calculated. For example, is the diffusion coefficient D calculated from fitting, and how is the confinement factor defined and estimated, with equations? This information will help the readers to understand the principles of this algorithm.

      We apologize for the confusion. All the model parameters are fit using the maximum likelihood approach. To make this point clearer in the manuscript, we have made three changes:

      (1) We modified the following sentence to replace “determined” with "fit”:

      “Finally, Maximum Likelihood Estimation (MLE) is used to fit the underlying parameter value”

      (2) We added the following sentence in the main text :

      “In our model, the velocity is the characteristic parameter of directed motion and the confinement factor represents the force within a potential well. More precisely, the confinement factor $l$ is defined such that at each time step the particle position is updated by $l$ times the distance particle/potential well center (see the Methods section for more details).”.

      (3) We have added a new section in the methods, called Fitting Method, where we have added the explanation below:

      “For the pure Brownian model, the parameters are the diffusion coefficient and the localization error. For the confinement model, the parameters are the diffusion coefficient, the localization error, confinement factor, and the diffusion coefficientof the potential well. For the directed model, the parameters are the diffusion coefficient, the localization error, the initial velocity and the acceleration variance.

      These parameters are estimated using the maximum likelihood approach which consists in finding the parameters that maximize the likelihood. We realize this fitting step using gradient descent via a TensorFlow model. All the estimates presented in this article are obtained from a single set of initial parameters to demonstrate that the convergence capacity of aTrack is robust to the initial parameter values.”

      (4) The authors mentioned the scenario where a particle may experience several types of motion simultaneously. How do these motions simulated and what do they mean in terms of motion types? Are they mixed motion (a particle switches motion types in the same trajectory) or do they simply present features of several motion types? It is not intuitive to the readers that a particle can be diffusive (Brownian) and direct at the same time. 

      In the text, we present an example where one can observe this type of motion to help the reader understand when this type of motion can be met: “Sometimes, particles undergo diffusion and directed motion simultaneously, for example, particles diffusing in a flowing medium (Qian 1991).”

      This is simulated by the addition of two terms affecting the hidden position variable before adding a localization term to create the observed variable. In the analysis, this manifests as non-zero values for the diffusion coefficient and the linear velocity. For example, Figure 4g and the associated text, where a single particle moves with a directed component and a Brownian diffusion component at each step.

      We did not simulate transitions between types of motion. Switching is not treated by this current model; however, this limitation is described in the discussion and our team and others are currently working on addressing this challenge.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors present a software package "aTrack" for identification of motion types and parameter estimation in single-particle tracking data. The software is based on maximum likelihood estimation of the time-series data given an assumed motion model and likelihood ratio tests for model selection. They characterized the performance of the software mostly on simulated data and showed that it is applicable to experimental data. 

      Strengths: 

      A potential advantage of the presented method is its wide applicability to different motion types. 

      Weaknesses: 

      (1) There has been a lot of similar work in this field. Even though the authors included many relevant citations in the introduction, it is still not clear what this work uniquely offers. Is it the first time that direct MLE of the time-series data was developed? Suggestions to improve would include (a) better wording in the introduction section, (b) comparing to other popular methods (based on MSD, step-size statistics (Spot-On, eLife 2018;7:e33125), for example) using the simulated dataset generated by the authors, (c) comparing to other methods using data set in challenges/competitions (Nat. Comm (2021) 12:6253).  

      We thank the reviewer for this suggestion and agree that the explanation of the innovative aspects of our method in the introduction was not clear enough. We have now modified the introduction to better explain what is improved here compared to previous approaches.

      “The main innovations of this model are: 1) it uses analytical recurrence formulas to perform the integration step for complex motion, improving speed and accuracy; 2) it handles both confined and directed motion; 3) anomalous parameters, such as the center of the potential well and the velocity vector are allowed to change through time to better represent tracks with changing directed motion or confinement area; and lastly 4) for a given track or set of tracks, aTrack can determine whether tracks can be statistically categorized as confined or directed, and the parameters that best describe their behavior, for example, diffusion coefficient, radius of confinement, and speed of directed motion.”

      Regarding alternatives, we compare our method in the text to the best-performing algorithm of the

      2021 Anomalous Diffusion (AnDi) Challenge challenge mentioned by the reviewer in Figure 6 (RANDI, Argun et al, arXiv, 2021, Muñoz-Gil et al, Nat Com. 2021). Notably, both methods performed similarly on fBm, but ours was more robust in cases where there were small differences between the process underlying the data and the model assumptions, a likely scenario in real datasets. Regarding Spot-On, this was not mentioned as it only deals with multiple populations of Brownian diffusers, preventing a quantitative comparison.

      (2) The Hypothesis testing method presented here has a number of issues: first, there is no definition of testing statistics. Usually, the testing statistics are defined given a specific (Type I and/or Type II) error rate. There is also no discussion of the specificity and sensitivity of the testing results (i.e. what's the probability of misidentification of a Brownian trajectory as directed? etc).

      We now explain our statistical approach and how to perform hypothesis testing with our metric in a new supplementary section, Statistical test. 

      We use the likelihood ratio as a more conservative alternative to the p-value. In Fig S2, we show that our metric is an upper bound of the p-value and can be used to perform hypothesis testing with a chosen type I error rate. 

      Related, it is not clear what Figure 2e (and other similar plots) means, as the likelihood ratio is small throughout the parameter space. Also, for likelihood ratio tests, the authors need to discuss how model complexity affects the testing outcome (as more complex models tend to be more "likely" for the data) and also how the likelihood function is normalized (normalization is not an issue for MLE but critical for ratio tests). 

      We present the likelihood ratio as an upper bound of the p-value. Therefore, we can reject the null hypothesis if it is smaller than a given threshold, e.g. 0.05, but this number should be decreased if multiple tests are performed. The colorscale we show in the figure is meant to highlight the working range (light), and ambiguous range (dark) of the method.

      As the reviewer mentions, we expect the alternative hypothesis to result in higher likelihoods than the simpler null hypothesis for null hypothesis tracks, but, as seen in the Fig S2, the likelihood ratio of a dataset corresponding to the null hypothesis is strongly skewed toward its upper limit 1. This means that for most of the tracks, the likelihood is not (or little) affected by the model complexity. The likelihoods of all the models are normalized so their integrals over the data equals 1/A with A the area of the field of view which is independent of the model complexity.

      (3) Relating to the mathematical foundation (Figure 1b). The measured positions are drawn as direct arrows from the real position states: this infers instantaneous localization. In reality, there is motion blur which introduces a correlation of the measured locations. Motion blur is known to introduce bias in SPT analysis, how does it affect the method here? 

      The reviewer raises an important point as our model does not explicitly consider motion blur. We have now added a paragraph that presents how our model performs in case of motion blur in the section called Robustness to model mismatches. This section and the corresponding new Supplemental Fig. S7 demonstrate that the estimated diffusion length is accurate so long as the static localization error is higher than the dynamic localization error. If the dynamic localization error is higher, our model systematically underestimates the diffusion length by a factor 0.81 = (2/3)<sup>0.5</sup> which can be corrected for with an added post-processing step.  

      (4) The authors did not go through the interpretation of the figure. This may be a matter of style, but I find the figures ambiguous to interpret at times.  

      We thank the reviewer for their feedback on improving the readability. To avoid overly repetitive and lengthy sections of text, we have opted for a concise approach. This allows us to present closely related panels at the same point in the text, while not ignoring important variations and tests. Considering this feedback and the reviewers, we have added more information and interpretation throughout our manuscript to improve interpretability.

      (5) It is not clear to me how the classification of the 5 motion types was accomplished. 

      We have modified the specific text related to this figure to describe an illustrative example to show how one could use aTrack on a dataset where not that much is known: First, we present the method to determine the number of states; second, we verify the parameter estimates correspond to the different states.  

      Classifying individual tracks is possible. While not done in the section corresponding to Fig. 5, this is done in Fig. 7 and a new supplementary plot, Fig. S9b (shown below). In brief, this is accomplished with our method by computing the likelihood of each track given each state. The probability that a given track is in state k equals the likelihood of the track given the state divided by the sum of the likelihoods given the different states. 

      (6) Figure 3. Caption: what is ((d_{est}-0.1)/0.1)? Also panel labeled as "d" should be "e". 

      Thank you for bringing these errors to our attention, the panel and caption have been corrected.

      Reviewer #3 (Public Review): 

      Summary: 

      In this work, Simon et al present a new computational tool to assess non-Brownian single-particle dynamics (aTrack). The authors provide a solid groundwork to determine the motion type of single trajectories via an analytical integration of multiple hidden variables, specifically accounting for localization uncertainty, directed/confined motion parameters, and, very novel, allowing for the evolution of the directed/confined motion parameters over time. This last step is, to the best of my knowledge, conceptually new and could prove very useful for the field in the future. The authors then use this groundwork to determine the motion type and its corresponding parameter values via a series of likelihood tests. This accounts for obtaining the motion type which is statistically most likely to be occurring (with Brownian motion as null hypothesis). Throughout the manuscript, aTrack is rigorously tested, and the limits of the methods are fully explored and clearly visualised. The authors conclude with allowing the characterization of multiple states in a single experiment with good accuracy and explore this in various experimental settings. Overall, the method is fundamentally strong, wellcharacterised, and tested, and will be of general interest to the single-particle-tracking field. 

      Strengths: 

      (1) The use of likelihood ratios gives a strong statistical relevance to the methodology. There is a sharp decrease in likelihood ratio between e.g. confinement of 0.00 and 0.05 and velocity of 0.0 and 0.002 (figure 2c), which clearly shows the strength of the method - being able to determine 2nm/timepoint directed movement with 20 nm loc. error and 100 nm/timepoint diffusion is very impressive. 

      We apologize for the confusion, the directed tracks in Fig 2 have no Brownian-motion component, i.e. D=0. We have made this clearer in the main text. Specifically, this section of the text refers to a track in linear motion with 2 nm displacements per step. With 70 time points (69 steps), a single particle which moved from 138 nm with a localization error of 20 nm (95% uncertainty range of 80 nm) can be statistically distinguished from slow diffusive motion.

      In Fig. 4g, we explore the capabilities of our method to detect if a diffusive particle also has a directed motion component. 

      (2) Allowing the hidden variables of confinement and directed motion to change during a trajectory (i.e. the q factor) is very interesting and allows for new interpretations of data. The quantifications of these variables are, to me, surprisingly accurate, but well-determined. 

      (3) The software is well-documented, easy to install, and easy to use. 

      Weaknesses: 

      (1) The aTrack principle is limited to the motions incorporated by the authors, with, as far as I can see, no way to add new analytical non-Brownian motion. For instance, being able to add a dynamical stateswitching model (i.e. quick on/off switching between mobile and non-mobile, for instance, repeatable DNA binding of a protein), could be of interest. I don't believe this necessarily has to be incorporated by the authors, but it might be of interest to provide instructions on how to expand aTrack.  

      We agree that handling dynamic state switching is very useful and highlight this potential future direction in the discussion. The revised text reads:

      “An important limitation of our approach is that it presumes that a given track follows a unique underlying model with fixed parameters. In biological systems, particles often transition from one motion type to another; for example, a diffusive particle can bind to a static substrate or molecular motor (46). In such cases, or in cases of significant mislinkings, our model is not suitable. However, this limitation can be alleviated by implicitly allowing state transitions with a hidden Markov Model (15) or alternatives such as change-point approaches (30, 47, 48), and spatial approaches (49).”

      (2) The experimental data does not very convincingly show the usefulness of aTrack. The authors mention that SPBs are directed in mitosis and not in interphase. This can be quantified and studied by microscopy analysis of individual cells and confirming the aTrack direction model based on this, but this is not performed. Similarly, the size of a confinement spot in optical tweezers can be changed by changing the power of the optical tweezer, and this would far more strongly show the quantitative power of aTrack. 

      We agree with the reviewer and have revised the biological experiment section significantly to better illustrate the potential of aTrack in various use cases.

      Now, we show an experiment to quantify the effect of LatA, an actin inhibitor, on the fraction of directed tracks obtained with aTrack. We find that LatA significantly decreases directed motion while a LatA-resistant mutant is not affected (Fig7a-c).

      As suggested by the reviewer, we have expanded the optical tweezer experiment by varying the laser power. As expected, increasing the laser power decreases the confinement radius.

      (3) The software has a very strict limit on the number of data points per trajectory, which is a user input. Shorter trajectories are discarded, while longer trajectories are cut off to the set length. It is not explained why this is necessary, and I feel it deletes a lot of useful data without clear benefit (in experimental conditions).

      We thank the reviewer for this recommendation; we have now modified the architecture of our model to enable users to consider tracks of multiple lengths. Note that the computation time is proportional to the longest track length times the number of tracks.  

      Reviewer #2 (Recommendations For The Authors): 

      Develop a better mathematical foundation for the likelihood ratio tests. 

      We added more explanation of the likelihood ratio tests and their interpretation a new section entitled Statistical test in the supplementary information to address this recommendation.

      Place this work in clearer contexts. 

      We have now revised the introduction to better contextualize this work.

      Improve manuscript clarity. 

      Based on reviewer feedback and input from others, we have addressed this point throughout the article to improve readability.

      Make the code available. 

      The code is available on https://github.com/FrancoisSimon/aTrack, now including code for track generation.

      Reviewer #3 (Recommendations For The Authors): 

      (1) I believe the underlying model presented in Figure 1 is of substantial impact, especially when considering it as a simulation tool. I would suggest the authors make their method also available as a simulator (as far as I can tell, this is not explicitly done in their code repository, although logically the code required for the simulator should already be in the codebase somewhere). 

      Thank you for this suggestion, the simulation scripts are now on the Github repository together with the rest of the analysis method. https://github.com/FrancoisSimon/aTrack

      (2) The authors should explore and/or discuss the effects of wrong trajectory linking to their method. Throughout the text, fully correct trajectory linking is assumed and assessed, while in real experiments, it is often the case that trajectory linking is wrong, e.g. due to blinking emitters, imaging artefacts, high-density localizations, etc etc. This would have a major impact on the accuracy of trajectories, and it is extremely relevant to explore how this is translated to the output of aTrack. 

      As the reviewer notes, our current model does not account for track mislinking. This limits the method to data with lower fluorophore-densities, which is the typical use-case for SPT. We have added a brief description of the issue into the discussion of limitations.  

      (3) aTrack only supports 2D-tracking, but I don't believe there is a conceptual reason not to have this expanded to three dimensions. 

      The stand-alone software is currently limited to 2D tracks, however, the aTrack Python package works for any number of dimensions (i.e. 1-3). Note that since the current implementation assumes a single localization error for all axes, more modifications may be required for some types of 3D tracking. See https://github.com/FrancoisSimon/aTrack for more details about aTrack implementations.

      (4) Crucial information is missing in the experimental demonstrations. Especially in the NP-bacteria dataset, I miss scalebars, and information on the number of tracks. It is not explained why 5 different states are obtained - especially because I would naively expect three states: immobile NPs (e.g. stuck to glass), diffusing NPs, and NPs attached to bacteria, and thus directed. Figure 7e shows three diffusive states (why more than one?), no immobile states (why?), and two directed states (why?). 

      We thank the reviewer for pointing out these issues. We have now added scalebars and more experimental details to the figure and text as well as modifying the plot to more clearly emphasize the directed nanoparticles that are attached to cells from the diffusive nanoparticles.  

      Likely, our focal plane was too high to see the particles stuck on glass. The multiple diffusive states may be caused by different sizes of nanoparticle complexes, the multiple directed states can be caused by the fact that directed motion of the cell-attached-nanoparticles occasionally shows drastic changes of orientations. We have also clarified in the text how multiple states can help handle a heterogeneous population as was shown by Prindle et al. 2022, Microbiol Spectr. The characterization and phenotyping of microbial populations by nanoparticle tracking was published in Zapata et al. 2022, Nanoscale. 

      (5) I don't think I agree that 'robustness to model mismatches' is a good thing. Very crudely, the fact that aTrack finds fractional Brownian motion to be normal Brownian motion is technically a downside - and this should be especially carefully positioned if (in the future) a fractional Brownian motion model would be added to aTrack. I think that the author's point can be better tested by e.g. widely varying simulated vs fitted loc precision/diffusion coefficient (which are somewhat interchangeable).

      In this context, our intention in describing the robustness to “model mismatches” refers to classifying subdiffusion as subdiffusive irrespective of the exact subdiffusion motion physics (as well as superdiffusion), that is, to use aTrack how MSD analysis is often deployed. This is important in the context of real-world applications where simple mathematical models cannot perfectly represent real tracks with greater complexity. 

      Inevitably, some fraction of tracks with a pure Brownian motion may appear to match with a fractional Brownian motion, and thus statistical tests are needed to determine if this is significant. In general, aTrack finds fBm to be normal Brownian motion only when the anomalous coefficient is near 1, i.e. when the two models are indeed the same. When analysing fBm tracks with anomalous coefficients of 0.5 or 1.5, aTrack find that these tracks are better explained by our confined diffusion model or directed motion model, respectively (Please see Fig. 6a, copied below). 

      To better clarify our objective, the section now has a brief introduction that reads:

      “One of the most important features of a method is its robustness to deviations from its assumptions. Indeed, experimental tracking data will inevitably not match the model assumptions to some degree, and models need to be resilient to these small deviations.”  

      Smaller points: 

      (1) It is not clear what a biological example is of rotational diffusion. 

      We modified the text to better explain the use of rotational diffusion.

      (2) The text in the section on experimental data should be expanded and clarified, there currently are multiple 'floating sentences' that stop halfway, and it does not clearly describe the biological relevance and observed findings.  

      We thank the reviewer for pointing out this issue. We have reworked the experimental section to better and more clearly explain the biological relevance of the findings.

      (3) Caption of figure 3: 'd' should be 'e'. 

      (4) Caption of Figure 7: log-likelihood should be Lconfined - Lbrownian, I believe. 

      (5) Equation number missing in SI first sentence. 

      (6) Supplementary Figure 1 top part access should be Lc-Lb instead of Ld-Lb. 

      We have made these corrections, thank you for bringing them to our attention.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their careful assessment and enthusiastic appreciation of our work.

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __In this article, Thomas et al. use a super-resolution approach in living cells to track proteins involved in the fusion event of sexual reproduction. They study the spatial organization and dynamics of the actin fusion focus, a key structure in cell-cell fusion in Schizosaccharomyces pombe. The researchers have adapted a high-precision centroid mapping method using three-color live-cell epifluorescence imaging to map the dynamic architecture of the fusion focus during yeast mating. The approach relies on tracking the centroid of fluorescence signals for proteins of interest, spatially referenced to Myo52-mScarlet-I (as a robust marker) and temporally referenced using a weakly fluorescent cytosolic protein (mRaspberry), which redistributes strongly upon fusion. The trajectories of five key proteins, including markers of polarity, cytoskeleton, exocytosis and membrane fusion, were compared to Myo52 over a 75-minute window spanning fusion. Their observations indicate that secretory vesicles maintain a constant distance from the plasma membrane whereas the actin network compacts. Most importantly, they discovered a positive feedback mechanism in which myosin V (Myo52) transports Fus1 formin along pre-existing actin filaments, thereby enhancing aster compaction.

      This article is well written, the arguments are convincing and the assertions are balanced. The centroid tracking method has been clearly and solidly controlled. Overall, this is a solid addition to our understanding of cytoskeletal organization in cell fusion.

      Major comments: No major comment.

      Minor comments: _ Page 8 authors wrote "Upon depletion of Myo52, Ypt3 did not accumulate at the fusion focus (Figure 3C). A thin, wide localization at the fusion site was occasionally observed (Figure 3C, Movies S3)" : Is there a quantification of this accumulation in the mutant?

      We will provide the requested quantification. The localization is very faint, so we are not sure that quantification will capture this faithfully, but we will try.

      _ The framerate of movies could be improved for reader comfort: For example, movie S6 lasts 0.5 sec.

      We agree that movies S3 and S6 frame rates could be improved. We will provide them with slower frame rate.

      Reviewer #1 (Significance (Required)):

      This study represents a conceptual and technical breakthrough in our understanding of cytoskeletal organization during cell-cell fusion. The authors introduce a high-precision, three-color live-cell centroid mapping method capable of resolving the spatio-temporal dynamics of protein complexes at the nanometer scale in living yeast cells. This methodological innovation enables systematic and quantitative mapping of the dynamic architecture of proteins at the cell fusion site, making it a powerful live-cell imaging approach. However, it is important to keep in mind that the increased precision achieved through averaging comes at the expense of overlooking atypical or outlier behaviors. The authors discovered a myosin V-dependent mechanism for the recruitment of formin that leads to actin aster compaction. The identification of Myo52 (myosin V) as a transporter of Fus1 (formin) to the fusion focus adds a new layer to our understanding of how polarized actin structures are generated and maintained during developmentally regulated processes such as mating.

      Previous studies have shown the importance of formins and myosins during fusion, but this paper provides a quantitative and dynamic mapping that demonstrates how Myo52 modulates Fus1 positioning in living cells. This provides a better understanding of actin organization, beyond what has been demonstrated by fixed-cell imaging or genetic perturbation.

      Audience: Cell biologists working on actin dynamics, cell-cell fusion and intracellular transport. Scientists involved in live-cell imaging, single particle tracking and cytoskeleton modeling.

      I have expertise in live-cell microscopy, image analysis, fungal growth machinery and actin organization.

      We thank the reviewer for their appreciation of our work.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ A three-color imaging approach to use centroid tracking is employed to determine the high resolution position over time of tagged actin fusion focus proteins during mating in fission yeast. In particular, the position of different protein components (tagged in a 3rd color) were determined in relation to the position (and axis) of the molecular motor Myo52, which is tagged with two different colors in the mating cells. Furthermore, time is normalized by the rapid diffusion of a weak fluorescent protein probe (mRaspberry) from one cell to the other upon fusion pore opening. From this approach multiple important mechanistic insights were determined for the compaction of fusion focus proteins during mating, including the general compaction of different components as fusion proceeds with different proteins having specific stereotypical behaviors that indicate underlying molecular insights. For example, secretory vesicles remain a constant distance from the plasma membrane, whereas the formin Fus1 rapidly accumulates at the fusion focus in a Myo52-dependent manner.

      I have minor suggestions/points: (1) Figure 1, for clarity it would be helpful if the cells shown in B were in the same orientation as the cartoon cells shown in A. Similarly, it would be helpful to have the orientation shown in D the same as the data that is subsequently presented in the rest of the manuscript (such as Figure 2) where time is on the X axis and distance (position) is on the Y axis.

      We have turned each image in panel B by 180° to match the cartoon in A. For panel D, we are not sure what the reviewer would like. This panel shows the coordinates of each Myo52 position, whereas Figure 2 shows oriented distance (on the Y axis) over time (on the X axis). Perhaps the reviewer suggests that we should display panel D with a rotation onto the Y axis rather than the X axis. We feel that this would not bring more clarity and prefer to keep it as is.

      (2) Figure 2, for clarity useful to introduce how the position of Myo52 changes over time with respect to the fusion site (plasma membrane) earlier, and then come back to the positions of different proteins with respect to Myo52 shown in 2E. Currently the authors discuss this point after introducing Figure 2E, but better for the reader to have this in mind beforehand.

      We have added a sentence at the start of the section describing Figure 2, pointing out that the static appearance of Myo52 is due to it being used as reference, but that in reality, it moves relative to the plasma membrane: “Because Myo52 is the reference, its trace is flat, even though in reality Myo52 also moves relative to other proteins and the plasma membrane (see Figure 2E)”. This change is already in the text.

      (3) First sentence of page 8 "..., peaked at fusion time and sharply dropped post-fusion (Figure S3)." Figure S3 should be cited so that the reader knows where this data is presented.

      Thanks, we have added the missing figure reference to the text.

      (4) Figure 3D-H, why is Exo70 used as a marker for vesicles instead of Ypt3 for these experiments? Exo70 seems to have a more confusing localization than Ypt3 (3C vs 3D), which seems to complicate interpretations.

      There are two main reasons for this choice. First, the GFP-Ypt3 fluorescence intensity is lower than that of Exo70-GFP, which makes analysis more difficult and less reliable. Second, in contrast to Exo70-GFP where the endogenous gene is tagged at the native genomic locus, GFP-Ypt3 is expressed as additional copy in addition to endogenous untagged Ypt3. Although GFP-Ypt3 was reported to be fully functional as it can complement the lethality of a ypt3 temperature sensitive mutant (Cheng et al, MBoC 2002), its expression levels are non-native and we do not have a strain in which ypt3 is tagged at the 5’ end at the native genomic locus. For these reasons, we preferred to examine in detail the localization of Exo70. We do not think it complicates interpretations. Exo70 faithfully decorates vesicles and exhibits the same localization as Ypt3 in WT cells (see Figure 2D) and in myo52-AID (see Figure 3C-D). We realize that our text was a bit confusing as we opposed the localization of Exo70 and Ypt3, when all we wanted to state was that the Exo70-GFP signal is stronger. We have corrected this in the text.

      (5) Page 10, end of first paragraph, "We conclude...and promotes separation of Myo52 from the vesicles." This is an interesting hypothesis/interpretation that is consistent with the spatial-temporal organization of vesicles and the compacting fusion focus, but the underlying molecular mechanism has not be concluded.

      This is an interpretation that is in line with our data. Firm conclusion that the organization of the actin fusion focus imposes a steric barrier to bulk vesicle entry will require in vitro reconstitution of an actin aster driven by formin-myosin V feedback and addition of myosin V vesicle-like cargo, which can be a target for future studies. To make clear that it is an interpretation and not a definitive statement, we have added “likely” to the sentence, as in: “We conclude that the distal position of vesicles in WT cells is a likely steric consequence of the architecture of the fusion focus, which restricts space at the center of the actin aster and promotes separation of Myo52 from the vesicles”.

      (6) Figure 5F and 5G, the results are confusing and should be discussed further. Depletion of Myo52 decreases Fus1 long-range movements, indicating that Fus1 is being transported by Myo52 (5F). Similarly, the Fus1 actin assembly mutant greatly decreases Fus1 long-range movements and prevents Myo52 binding (5G), perhaps indicating that Fus1-mediated actin assembly is important. It seems the author's interpretations are oversimplified.

      We show that Myo52 is critical for Fus1 long-range movements, as stated by the reviewer. We also show that Fus1-mediated actin assembly is important. The question is in what way.

      One possibility is that FH2-mediated actin assembly powers the movement, which in this case represents the displacement of the formin due to actin monomer addition on the polymerizing filament. A second possibility is that actin filaments assembled by Fus1 somehow help Myo52 move Fus1. This could be for instance because Fus1-assembled actin filaments are preferred tracks for Myo52-mediated movements, or because they allow Myo52 to accumulate in the vicinity of Fus1, enhancing their chance encounter and thus the number of long-range movements (on any actin track). Based on the analysis of the K1112A point mutant in Fus1 FH2 domain, our data cannot discriminate between these three different options, which is why we concluded that the mutant allele does not allow us to make a firm conclusion. However, the Myo52-dependence clearly shows that a large fraction of the movements requires the myosin V. We have clarified the end of the paragraph in the following way: “Therefore, analysis of the K1112A mutant phenotype does not allow us to clearly distinguish between Fus1-powered from Myo52-powered movements. Future work will be required to test whether, in addition to myosin V-dependent transport, Fus1-mediated actin polymerization also directly contributes to Fus1 long-range movements.”

      (7) Figure 6, why not measure the fluorescence intensity of Fus1 as a proxy for the number of Fus1 molecules (rather than the width of the Fus1 signal), which seems to be the more straight-forward analysis?

      The aim of the measurement was to test whether Myo52 and Fus1 activity help focalize the formin at the fusion site, not whether these are required for localization in this region. This is why we are measuring the lateral spread of the signal (its width) rather than the fluorescence intensity of the signal. We know from previous work that Fus1 localizes to the shmoo tip independently of myosin V (Dudin et al, JCB 2015), and we also show this in Figure 6. However, the precise distribution of Fus1 is wider in absence of the myosins.

      We can and will measure intensities to test whether there is also a quantitative difference in the number of molecules at the shmoo tip.

      (8) Figure 7, the authors should note (and perhaps discuss) any evidence as to whether activation of Fus1 to facilitate actin assembly depends upon Fus1 dissociating from Myo52 or whether Fus1 can be activated while still associated with Myo52, as both circumstances are included in the figure.

      This is an interesting point. We have no experimental evidence for or against Fus1 dissociating from Myo52 to assemble actin. However, it is known that formins rotate along the actin filament double helix as they assemble it, a movement that seems poorly compatible with processive transport by myosin V. In Figure 7, we do not particularly want to imply that Myo52 associates with Fus1 linked or not with an actin filament. The figure serves to illustrate the focusing mechanism of myosin V transporting a formin, which is more evident when we draw the formin attached to a filament end. We have now added a sentence in the figure legend to clarify this point: “Note that it is unknown whether Myo52 transports Fus1 associated or not with an actin filament.”

      (9) Figure 7, the color of secretory vesicles should be the same in A and B.

      This is now corrected.

      Reviewer #2 (Significance (Required)):

      This is an impactful and high quality manuscript that describes an elegant experimental strategy with important insights determined. The experimental imaging strategy (and analysis), as well as the insight into the pombe mating fusion focus and its comparison to other cytoskeletal compaction events will be of broad scientific interest.

      We thank the reviewer for their appreciation of our work.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Fission yeast cell-cell fusion during mating is mediated by an actin-based structure called the 'fusion focus', which orchestrates actin polymerization by the mating-specific formin, Fus1, to direct polarized secretion towards the mating site. In the current study, Thomas and colleagues quantitatively map the spatial distribution of proteins mediating cell-cell fusion using a three-color fluorescence imaging methodology in the fission yeast Schizosaccharomyces pombe. Using Myo52 (Type V myosin) as a fluorescence reference point, the authors discover that proteins known to localize to the fusion focus have distinct spatial distributions and accumulation profiles at the mating site. Myo52 and Fus1 form a complex in vivo detected by co-immunoprecipitation and each contribute to directing secretory vesicles to the fusion focus. Previous work from this group has shown that the intrinsically disordered region (IDR) of Fus1 plays a critical role in forming the fusion focus. Here, the authors swap out the IDR of fission yeast Fus1 for the IDR of an unrelated mammalian protein, coincidentally called 'fused in sarcoma' (FUS). They express the Fus1∆IDR-FUSLC-27R chimera in mitotically dividing fission yeast cells, where Fus1 is not normally expressed, and discover that the Fus1∆IDR-FUSLC-27R chimera can travel with Myo52 on actively polymerizing actin cables. Additionally, they show that acute loss of Myo52 or Fus1 function, using Auxin-Inducible Degradation (AID) tags and point mutations, impair the normal compaction of the fusion focus, suggesting that direct interaction and coordination of Fus1 and Myo52 helps shape this structure.

      Major Comments:

      (1) In the Results section for Figure 2, the authors claim that actin filaments become shorter and more cross-linked they move away from the fusion site during mating, and suggest that this may be due to the presence of Myo51. However, the evidence to support this claim is not made clear. Is it supported by high-resolution electron microscopy of the actin filaments, or some other results? This needs to be clarified.

      Sorry if our text was unclear. The basis for the claim that actin filaments become shorter comes from our observation that the average position of tropomyosin and Myo51, both of which decorate actin filaments, is progressively closer to both Fus1 and the plasma membrane. Thus, the actin structure protrudes less into the cytosol as fusion progresses. The basis for claiming that Myo51 promotes actin filament crosslinking comes mainly from previously published papers, which had shown that 1) Myo51 forms complexes with the Rng8 and Rng9 proteins (Wang et al, JCB 2014), and 2) the Myo51-Rng8/9 not only binds actin through Myo51 head domain but also binds tropomyosin-decorated actin through the Rng8/9 moiety (Tang et al, JCB 2016; reference 27 in our manuscript). We had also previously shown that these proteins are necessary for compaction of the fusion focus (Dudin et al, PLoS Genetics 2017; reference 28 in our manuscript). Except for measuring the width of Fus1 distribution in myo51∆ mutants, which confirms previous findings, we did not re-investigate here the function of Myo51.

      We have now re-written this paragraph to present the previous data more clearly: “The distal localization of Myo51 was mirrored by that of tropomyosin Cdc8, which decorates linear actin filaments (Figure 2B) (Hatano et al, 2022). The distal position of the bulk of Myo51-decorated actin filaments was confirmed using Airyscan super-resolution microscopy (Figure 2B, right). Thus, the average position of actin filaments and decreasing distance to Myo52 indicates they initially extend a few hundred nanometers into the cytosol and become progressively shorter as fusion proceeds. Previous work had shown that Myo51 cross-links and slides Cdc8-decorated actin filaments relative to each other (Tang et al, 2016) and that both proteins contribute to compaction of the fusion focus in the lateral dimension along the cell-cell contact area (perpendicular to the fusion axis) (Dudin et al, 2017). We confirmed this function by measuring the lateral distribution of Fus1 along the cell-cell contact area (perpendicular to the fusion axis), which was indeed wider in myo51∆ than WT cells (see below Figure 6A-B).”

      (2) In Figure 4, the authors comment that disrupting Fus1 results in more disperse Myo52 spatial distribution at the fusion focus, raising the possibility that Myo52 normally becomes focused by moving on the actin filaments assembled by Fus1. This can be tested by asking whether latrunculin treatment phenocopies the 'more dispersed' Myo52 localization seen in fus1∆ cells? If Myo52 is focused instead by its direct interaction with Fus1, the latrunculin treatment should not cause the same phenotype.

      This is in principle a good idea, though it is technically challenging because pharmacological treatment of cell pairs in fusion is difficult to do without disturbing pheromone gradients which are critical throughout the fusion process (see Dudin et al, Genes and Dev 2016). We will try the experiment but are unsure about the likelihood of technical success.

      We note however that a similar experiment was done previously on Fus1 overexpressed in mitotic cells (Billault-Chaumartin et al, Curr Biol 2022; Fig 1D). Here, Fus1 also forms a focus and latrunculin A treatment leads to Myo52 dispersion while keeping the Fus1 focus, which is in line with our proposal that Myo52 becomes focused by moving on Fus1-assembled actin filaments. Similarly, we showed in Figure 5B that Latrunculin A treatment of mitotic cells expressing Fus1∆IDR-FUSLC-27R also results in Myo52, but not Fus1 dispersion.

      (3) The Fus1∆IDR-FUSLC-27R chimera used in Figure 5 is an interesting construct to examine actin-based transport of formins in cells. I was curious if the authors could provide the rates of movement for Myo52 and for Fus1∆IDR-FUSLC-27R, both before and after acute depletion of Myo52. It would be interesting to see if loss of Myo52 alters the rate of movement, or instead the movement stems from formin-mediated actin polymerization.

      We will measure these rates.

      (4) Also, Myo52 is known to interact with the mitotic formin For3. Does For3 colocalize with Myo52 and Fus1∆IDR-FUSLC-27R along actin cables?

      This is an interesting question for which we do not have an answer. For technical reasons, we do not have the tools to co-image For3 with Fus1∆IDR-FUSLC-27R because both are tagged with GFP. We feel that this question goes beyond the scope of this paper.

      (5) If Fus1∆IDR-FUSLC-27R is active, does having ectopic formin activity in mitotic cells affect actin cable architecture? This could be assessed by comparing phalloidin staining for wildtype and Fus1∆IDR-FUSLC-27R cells.

      We are not sure what the purpose of this experiment is, or how informative it would be. If it is to evaluate whether Fus1∆IDR-FUSLC-27R is active, our current data already demonstrates this. Indeed, Fus1∆IDR-FUSLC-27R recruits Myo52 in a F-actin and FH2 domain-dependent manner (shown in Figure 5B and 5G), which demonstrates that Fus1∆IDR-FUSLC-27R FH2 domain is active. Even though Fus1∆IDR-FUSLC-27R assembles actin, we predict that its effect on general actin organization will be weak. Indeed, it is expressed under endogenous fus1 promoter, leading to very low expression levels during mitotic growth, such that only a subset of cells exhibit a Fus1 focus. Furthermore, most of these Fus1 foci are at or close to cell poles, where linear actin cables are assembled by For3, such that they may not have a strong disturbing effect. Because analysis of actin cable organization by phalloidin staining is difficult (due to the more strongly staining actin patches), cells with clear change in organization predicted to be rare in the population, and the gain in knowledge not transformative, we are not keen to do this experiment.

      Minor Comments:

      Prior studies are referenced appropriately. Text and figures are clear and accurate. My only suggestion would be Figure 1E-H could be moved to the supplemental material, due to their extremely technical nature. I believe this would help the broad audience focus on the experimental design mapped out in Figure 1A-D.

      We are relatively neutral about this. If this suggestion is supported by the Editor, we can move these panels to supplement.

      Reviewer #3 (Significance (Required)):

      Significance: This study provides an improved imaging method for detecting the spatial distributions of proteins below 100 nm, providing new insights about how a relatively small cellular structure is organized. The use of three-color cell imaging to accurately measure accumulation rates of molecular components of the fusion focus provides new insight into the development of this structure and its roles in mating. This method could be applied to other multi-protein structures found in different cell types. This work uses rigorously genetic tools such as knockout, knockdown and point mutants to dissect the roles of the formin Fus1 and Type V myosin Myo52 in creating a proper fusion focus. The study could be improved by biochemical assays to test whether Myo52 and Fus1 directly interact, since the interaction is only shown by co-immunoprecipitation from extracts, which may reflect an indirect interaction.

      Indeed, future studies should dissect the Fus1-Myo52 interaction, to determine whether it is direct and identify mutants that impair it.

      I believe this work advances the cell-mating field by providing others with a spatial and temporal map of conserved factors arriving to the mating site. Additionally, they identified a way to study a mating specific protein in mitotically dividing cells, offering future questions to address.

      This study should appeal to a range of basic scientists interested in cell biology, the cytoskeleton, and model organisms. The three-colored quantitative imaging could be applied to defining the architecture of many other cellular structures in different systems. Myosin and actin scientists will be interested in how this work expands the interplay of these two fields.

      I am a cell biologist with expertise in live cell imaging, genetics and biochemistry.

      We thank the reviewer for their appreciation of our work.

    1. Reviewer #1 (Public review):

      Summary:

      Parise presents another instantiation of the Multisensory Correlation Detector model that can now accept stimulus-level inputs. This is a valuable development as it removes researcher involvement in the characterization/labeling of features and allows analysis of complex stimuli with a high degree of nuance that was previously unconsidered (i.e. spatial/spectral distributions across time). The author demonstrates the power of the model by fitting data from dozens of previous experiments including multiple species, tasks, behavioral modality, and pharmacological interventions.

      Strengths:

      One of the model's biggest strengths, in my opinion, is its ability to extract complex spatiotemporal co-relationships from multisensory stimuli. These relationships have typically been manually computed or assigned based on stimulus condition and often distilled to a single dimension or even single number (e.g., "-50 ms asynchrony"). Thus, many models of multisensory integration depend heavily on human preprocessing of stimuli and these models miss out on complex dynamics of stimuli; the lead modality distribution apparent in figure 3b and c are provocative. I can imagine the model revealing interesting characteristics of the facial distribution of correlation during continuous audiovisual speech that have up to this point been largely described as "present" and almost solely focused on the lip area.

      Another aspect that makes the MCD stand out among other models is the biological inspiration and generalizability across domains. The model was developed to describe a separate process - motion perception - and in a much simpler organism - drosophila. It could then describe a very basic neural computation that has been conserved across phylogeny (which is further demonstrated in the ability to predict rat, primate, and human data) and brain area. This aspect makes the model likely able to account for much more than what has already been demonstrated with only a few tweaks akin to the modifications described in this and previous articles from Parise.

      What allows this potential is that, as Parise and colleagues have demonstrated in those papers since our (re)introduction of the model in 2016, the MCD model is modular - both in its ability to interface with different inputs/outputs and its ability to chain MCD units in a way that can analyze spatial, spectral, or any other arbitrary dimension of a stimulus. This fact leaves wide-open the possibilities for types of data, stimuli, and tasks a simplistic neutrally inspired model can account for.

      And so it's unsurprising (but impressive!) that Parise has demonstrated the model's ability here to account for such a wide range of empirical data from numerous tasks (synchrony/temporal order judgement, localization, detection, etc.) and behavior types (manual/saccade responses, gaze, etc.) using only the stimulus and a few free parameters. This ability is another of the model's main strengths that I think deserves some emphasis: it represents a kind of validation of those experiments - especially in the context of cross-experiment predictions.

      Finally, what is perhaps most impressive to me is that the MCD (and the accompanying decision model) does all this with very few (sometimes zero) free parameters. This highlights the utility of the model and the plausibility of its underlying architecture, but also helps to prevent extreme overfitting if fit correctly.

      Weaknesses:

      The model boasts an incredible versatility across tasks and stimulus configurations and its overall scope of the model is to understand how and what relevant sensory information is extracted from a stimulus. We still need to exercise care when interpreting its parameters, especially considering the broader context of top-down control of perception and that some multisensory mappings may not be derivable purely from stimulus statistics (e.g., the complementary nature of some phonemes/visemes).

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Parise presents another instantiation of the Multisensory Correlation Detector model that can now accept stimulus-level inputs. This is a valuable development as it removes researcher involvement in the characterization/labeling of features and allows analysis of complex stimuli with a high degree of nuance that was previously unconsidered (i.e., spatial/spectral distributions across time). The author demonstrates the power of the model by fitting data from dozens of previous experiments, including multiple species, tasks, behavioral modalities, and pharmacological interventions.

      Thanks for the kind words!

      Strengths:

      One of the model's biggest strengths, in my opinion, is its ability to extract complex spatiotemporal co-relationships from multisensory stimuli. These relationships have typically been manually computed or assigned based on stimulus condition and often distilled to a single dimension or even a single number (e.g., "-50 ms asynchrony"). Thus, many models of multisensory integration depend heavily on human preprocessing of stimuli, and these models miss out on complex dynamics of stimuli; the lead modality distribution apparent in Figures 3b and c is provocative. I can imagine the model revealing interesting characteristics of the facial distribution of correlation during continuous audiovisual speech that have up to this point been largely described as "present" and almost solely focused on the lip area.

      Another aspect that makes the MCD stand out among other models is the biological inspiration and generalizability across domains. The model was developed to describe a separate process - motion perception - and in a much simpler organism - Drosophila. It could then describe a very basic neural computation that has been conserved across phylogeny (which is further demonstrated in the ability to predict rat, primate, and human data) and brain area. This aspect makes the model likely able to account for much more than what has already been demonstrated with only a few tweaks akin to the modifications described in this and previous articles from Parise.

      What allows this potential is that, as Parise and colleagues have demonstrated in those papers since our (re)introduction of the model in 2016, the MCD model is modular - both in its ability to interface with different inputs/outputs and its ability to chain MCD units in a way that can analyze spatial, spectral, or any other arbitrary dimension of a stimulus. This fact leaves wide open the possibilities for types of data, stimuli, and tasks a simplistic, neutrally inspired model can account for.

      And so it's unsurprising (but impressive!) that Parise has demonstrated the model's ability here to account for such a wide range of empirical data from numerous tasks (synchrony/temporal order judgement, localization, detection, etc.) and behavior types (manual/saccade responses, gaze, etc.) using only the stimulus and a few free parameters. This ability is another of the model's main strengths that I think deserves some emphasis: it represents a kind of validation of those experiments, especially in the context of cross-experiment predictions (but see some criticism of that below).

      Finally, what is perhaps most impressive to me is that the MCD (and the accompanying decision model) does all this with very few (sometimes zero) free parameters. This highlights the utility of the model and the plausibility of its underlying architecture, but also helps to prevent extreme overfitting if fit correctly (but see a related concern below).

      We sincerely thank the reviewer for their thoughtful and generous comments. We are especially pleased that the core strengths of the model—its stimulus-computable architecture, biological grounding, modularity, and cross-domain applicability—were clearly recognized. As the reviewer rightly notes, removing researcher-defined abstractions and working directly from naturalistic stimuli opens the door to uncovering previously overlooked dynamics in complex multisensory signals, such as the spatial and temporal richness of audiovisual speech.

      We also appreciate the recognition of the model’s origins in a simple organism and its generalization across species and behaviors. This phylogenetic continuity reinforces our view that the MCD captures a fundamental computation with wide-ranging implications. Finally, we are grateful for the reviewer’s emphasis on the model’s predictive power across tasks and datasets with few or no free parameters—a property we see as key to both its parsimony and explanatory utility.

      We have highlighted these points more explicitly in the revised manuscript, and we thank the reviewer for their generous and insightful endorsement of the work.

      Weaknesses:

      There is an insufficient level of detail in the methods about model fitting. As a result, it's unclear what data the models were fitted and validated on. Were models fit individually or on average group data? Each condition separately? Is the model predictive of unseen data? Was the model cross-validated? Relatedly, the manuscript mentions a randomization test, but the shuffled data produces model responses that are still highly correlated to behavior despite shuffling. Could it be that any stimulus that varies in AV onset asynchrony can produce a psychometric curve that matches any other task with asynchrony judgements baked into the task? Does this mean all SJ or TOJ tasks produce correlated psychometric curves? Or more generally, is Pearson's correlation insensitive to subtle changes here, considering psychometric curves are typically sigmoidal? Curves can be non-overlapping and still highly correlated if one is, for example, scaled differently. Would an error term such as mean-squared or root mean-squared error be more sensitive to subtle changes in psychometric curves? Alternatively, perhaps if the models aren't cross-validated, the high correlation values are due to overfitting?

      The reviewer is right: the current version of the manuscript only provides limited information about parameter fitting. In the revised version of the manuscript, we included a parameter estimation and generalizability section that includes all information requested by the reviewer.

      To test whether using the MSE instead of Pearson correlation led to a similar estimated set of parameter values, we repeated the fitting using the MSE. The parameter estimated with this method (TauV, TauA, TauBim) closely followed those estimated using Pearson correlation (TauV, TauA, TauBim). Given the similarity of these results, we have chosen not to include further figures, however this analysis is now included in the new section (pages 23-24).

      Regarding the permutation test, it is expected that different stimuli produce analogous psychometric functions: after all, all studies relied on stimuli containing identical manipulation of lags. As a result, MCD population responses tend to be similar across experiments. Therefore, it is not a surprise that the permuted distribution of MCD-data correlation in Supplementary Figure 1K has a mean as high as 0.97. However, what is important is to demonstrate that the non-permuted dataset has an even higher goodness of fit. Supplementary Figure 1K demonstrates that none of the permuted stimuli could outperform the non-permuted dataset; the mean of the non-permuted distribution is 4.7 (standard deviations) above the mean of the already high  permuted distribution.

      We believe the new section, along with the present response, fully addresses the legitimate concerns of the reviewer.

      While the model boasts incredible versatility across tasks and stimulus configurations, fitting behavioral data well doesn't mean we've captured the underlying neural processes, and thus, we need to be careful when interpreting results. For example, the model produces temporal parameters fitting rat behavior that are 4x faster than when fitting human data. This difference in slope and a difference at the tails were interpreted as differences in perceptual sensitivity related to general processing speeds of the rat, presumably related to brain/body size differences. While rats no doubt have these differences in neural processing speed/integration windows, it seems reasonable that a lot of the differences in human and rat psychometric functions could be explained by the (over)training and motivation of rats to perform on every trial for a reward - increasing attention/sensitivity (slope) - and a tendency to make mistakes (compression evident at the tails). Was there an attempt to fit these data with a lapse parameter built into the decisional model as was done in Equation 21? Likewise, the fitted parameters for the pharmacological manipulations during the SJ task indicated differences in the decisional (but not the perceptual) process and the article makes the claim that "all pharmacologically-induced changes in audiovisual time perception" can be attributed to decisional processes "with no need to postulate changes in low-level temporal processing." However, those papers discuss actual sensory effects of pharmacological manipulation, with one specifically reporting changes to response timing. Moreover, and again contrary to the conclusions drawn from model fits to those data, both papers also report a change in psychometric slope/JND in the TOJ task after pharmacological manipulation, which would presumably be reflected in changes to the perceptual (but not the decisional) parameters.

      Fitting or predicting behaviour does not in itself demonstrate that a model captures the underlying neural computations—though it may offer valuable constraints and insights. In line with this, we were careful not to extrapolate the implications of our simulations to specific neural mechanisms.

      Temporal sensitivity is, by definition, a behavioural metric, and—as the reviewer correctly notes—its estimation may reflect a range of contributing factors beyond low-level sensory processing, including attention, motivation, and lapse rates (i.e., stimulus-independent errors). In Equation 21, we introduced a lapse parameter specifically to account for such effects in the context of monkey eye-tracking data. For the rat datasets, however, the inclusion of a lapse term was not required to achieve a close fit to the psychometric data (ρ = 0.981). While it is likely that adding a lapse component would yield a marginally better fit, the absence of single-trial data prevents us from applying model comparison criteria such as AIC or BIC to justify the additional parameter. In light of this, and to avoid unnecessary model complexity, we opted not to include a lapse term in the rat simulations.

      With respect to the pharmacological manipulation data, we acknowledge the reviewer’s point that observed changes in slope and bias could plausibly arise from alterations at either the sensory or decisional level—or both. In our model, low-level sensory processing is instantiated by the MCD architecture, which outputs the MCDcorr and MCDlag signals that are then scaled and integrated during decision-making. Importantly, this scaling operation influences the slope of the resulting psychometric functions, such that changes in slope can arise even in the absence of any change to the MCD’s temporal filters. In our simulations, the temporal constants of the MCD units were fixed to the values estimated from the non-pharmacological condition (see parameter estimation section above), and only the decision-related parameters were allowed to vary. From this modelling perspective, the behavioural effects observed in the pharmacological datasets can be explained entirely by changes at the decisional level. However, we do not claim that such an explanation excludes the possibility of genuine sensory-level changes. Rather, we assert that our model can account for the observed data without requiring modifications to early temporal tuning.

      To rigorously distinguish sensory from decisional effects, future experiments will need to employ stimuli with richer temporal structure—e.g., temporally modulated sequences of clicks and flashes that vary in frequency, phase, rhythm, or regularity (see Fujisaki & Nishida, 2007; Denison et al., 2012; Parise & Ernst, 2016, 2025; Locke & Landy, 2017; Nidiffer et al., 2018). Such stimuli engage the MCD in a more stimulus-dependent manner, enabling a clearer separation between early sensory encoding and later decision-making processes. Unfortunately, the current rat datasets—based exclusively on single click-flash pairings—lack the complexity needed for such disambiguation. As a result, while our simulations suggest that the observed pharmacologically induced effects can be attributed to changes in decision-level parameters, they do not rule out concurrent sensory-level changes.

      In summary, our results indicate that changes in the temporal tuning of MCD units are not necessary to reproduce the observed pharmacological effects on audiovisual timing behaviour. However, we do not assert that such changes are absent or unnecessary in principle. Disentangling sensory and decisional contributions will ultimately require richer datasets and experimental paradigms designed specifically for this purpose. We have now modified the results section (page 6) and the discussion (page 11) to clarify these points.

      The case for the utility of a stimulus-computable model is convincing (as I mentioned above), but its framing as mission-critical for understanding multisensory perception is overstated, I think. The line for what is "stimulus computable" is arbitrary and doesn't seem to be followed in the paper. A strict definition might realistically require inputs to be, e.g., the patterns of light and sound waves available to our eyes and ears, while an even more strict definition might (unrealistically) require those stimuli to be physically present and transduced by the model. A reasonable looser definition might allow an "abstract and low-dimensional representation of the stimulus, such as the stimulus envelope (which was used in the paper), to be an input. Ultimately, some preprocessing of a stimulus does not necessarily confound interpretations about (multi)sensory perception. And on the flip side, the stimulus-computable aspect doesn't necessarily give the model supreme insight into perception. For example, the MCD model was "confused" by the stimuli used in our 2018 paper (Nidiffer et al., 2018; Parise & Ernst, 2025). In each of our stimuli (including catch trials), the onset and offset drove strong AV temporal correlations across all stimulus conditions (including catch trials), but were irrelevant to participants performing an amplitude modulation detection task. The to-be-detected amplitude modulations, set at individual thresholds, were not a salient aspect of the physical stimulus, and thus only marginally affected stimulus correlations. The model was of course, able to fit our data by "ignoring" the on/offsets (i.e., requiring human intervention), again highlighting that the model is tapping into a very basic and ubiquitous computational principle of (multi)sensory perception. But it does reveal a limitation of such a stimulus-computable model: that it is (so far) strictly bottom-up.

      We appreciate the reviewer’s thoughtful engagement with the concept of stimulus computability. We agree that the term requires careful definition and should not be taken as a guarantee of perceptual insight or neural plausibility. In our work, we define a model as “stimulus-computable” if all its inputs are derived directly from the stimulus, rather than from experimenter-defined summary descriptors such as temporal lag, spatial disparity, or cue reliability. In the context of multisensory integration, this implies that a model must account not only for how cues are combined, but also for how those cues are extracted from raw inputs—such as audio waveforms and visual contrast sequences.

      This distinction is central to our modelling philosophy. While ideal observer models often specify how information should be combined once identified, they typically do not address the upstream question of how this information is extracted from sensory input. In that sense, models that are not stimulus-computable leave out a key part of the perceptual pipeline. We do not present stimulus computability as a marker of theoretical superiority, but rather as a modelling constraint that is necessary if one’s aim is to explain how structured sensory input gives rise to perception. This is a view that is also explicitly acknowledged and supported by Reviewer 2.

      Framed in Marr’s (1982) terms, non–stimulus-computable models tend to operate at the computational level, defining what the system is doing (e.g., computing a maximum likelihood estimate), whereas stimulus-computable models aim to function at the algorithmic level, specifying how the relevant representations and operations might be implemented. When appropriately constrained by biological plausibility, such models may also inform hypotheses at the implementational level, pointing to potential neural substrates that could instantiate the computation.

      Regarding the reviewer’s example illustrating a limitation of the MCD model, we respectfully note that the account appears to be based on a misreading of our prior work. In Parise & Ernst (2025), where we simulated the stimuli from Nidiffer et al. (2018), the MCD model reproduced participants’ behavioural data without any human intervention or adjustment. The model was applied in a fully bottom-up, stimulus-driven manner, and its output aligned with observer responses as-is. We suspect the confusion may stem from analyses shown in Figure 6 - Supplement Figure 5 of Parise & Ernst (2025), where we investigated the lack of a frequency-doubling effect in the Nidiffer et al. data. However, those analyses were based solely on the Pearson correlation between auditory and visual stimulus envelopes and did not involve the MCD model. No manual exclusion of onset/offset events was applied, nor was the MCD used in those particular figures. We also note that Parise & Ernst (2025) is a separate, already published study and is not the manuscript currently under review. 

      In summary, while we fully agree that stimulus computability does not resolve all the complexities of multisensory perception (see comments below about speech), we maintain that it provides a valuable modelling constraint—one that enables robust, generalisable predictions when appropriately scoped. 

      The manuscript rightly chooses to focus a lot of the work on speech, fitting the MCD model to predict behavioral responses to speech. The range of findings from AV speech experiments that the MCD can account for is very convincing. Given the provided context that speech is "often claimed to be processed via dedicated mechanisms in the brain," a statement claiming a "first end-to-end account of multisensory perception," and findings that the MCD model can account for speech behaviors, it seems the reader is meant to infer that energetic correlation detection is a complete account of speech perception. I think this conclusion misses some facets of AV speech perception, such as integration of higher-order, non-redundant/correlated speech features (Campbell, 2008) and also the existence of top-down and predictive processing that aren't (yet!) explained by MCD. For example, one important benefit of AV speech is interactions on linguistic processes - how complementary sensitivity to articulatory features in the auditory and visual systems (Summerfield, 1987) allow constraint of linguistic processes (Peelle & Sommers, 2015; Tye-Murray et al., 2007).

      We thank the reviewer for their thoughtful comments, and especially for the kind words describing the range of findings from our AV speech simulations as “very convincing.”

      We would like to clarify that it is not our view that speech perception can be reduced to energetic correlation detection. While the MCD model captures low- to mid-level temporal dependencies between auditory and visual signals, we fully agree that a complete account of audiovisual speech perception must also include higher-order processes—including linguistic mechanisms and top-down predictions. These are critical components of AV speech comprehension, and lie beyond the scope of the current model.

      Our use of the term “end-to-end” is intended in a narrow operational sense: the model transforms raw audiovisual input (i.e., audio waveforms and video frames) directly into behavioural output (i.e., button press responses), without reliance on abstracted stimulus parameters such as lag, disparity or reliability. It is in this specific technical sense that the MCD offers an end-to-end model. We have revised the manuscript to clarify this usage to avoid any misunderstanding.

      In light of the reviewer’s valuable point, we have now edited the Discussion to acknowledge the importance of linguistic processes (page 13) and to clarify what we mean by end-to-end account (page 11). We agree that future work will need to explore how stimulus-computable models such as the MCD can be integrated with broader frameworks of linguistic and predictive processing (e.g., Summerfield, 1987; Campbell, 2008; Peelle & Sommers, 2015; Tye-Murray et al., 2007).

      References

      Campbell, R. (2008). The processing of audio-visual speech: empirical and neural bases. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 1001-1010. https://doi.org/10.1098/rstb.2007.2155

      Nidiffer, A. R., Diederich, A., Ramachandran, R., & Wallace, M. T. (2018). Multisensory perception reflects individual differences in processing temporal correlations. Scientific Reports 2018 8:1, 8(1), 1-15. https://doi.org/10.1038/s41598-018-32673-y

      Parise, C. V, & Ernst, M. O. (2025). Multisensory integration operates on correlated input from unimodal transient channels. ELife, 12. https://doi.org/10.7554/ELIFE.90841

      Peelle, J. E., & Sommers, M. S. (2015). Prediction and constraint in audiovisual speech perception. Cortex, 68, 169-181. https://doi.org/10.1016/j.cortex.2015.03.006

      Summerfield, Q. (1987). Some preliminaries to a comprehensive account of audio-visual speech perception. In B. Dodd & R. Campbell (Eds.), Hearing by Eye: The Psychology of Lip-Reading (pp. 3-51). Lawrence Erlbaum Associates.

      Tye-Murray, N., Sommers, M., & Spehar, B. (2007). Auditory and Visual Lexical Neighborhoods in Audiovisual Speech Perception: Trends in Amplification, 11(4), 233-241. https://doi.org/10.1177/1084713807307409

      Reviewer #2 (Public review):

      Summary:

      Building on previous models of multisensory integration (including their earlier correlation-detection framework used for non-spatial signals), the author introduces a population-level Multisensory Correlation Detector (MCD) that processes raw auditory and visual data. Crucially, it does not rely on abstracted parameters, as is common in normative Bayesian models," but rather works directly on the stimulus itself (i.e., individual pixels and audio samples). By systematically testing the model against a range of experiments spanning human, monkey, and rat data, the authors show that their MCD population approach robustly predicts perception and behavior across species with a relatively small (0-4) number of free parameters.

      Strengths:

      (1) Unlike prior Bayesian models that used simplified or parameterized inputs, the model here is explicitly computable from full natural stimuli. This resolves a key gap in understanding how the brain might extract "time offsets" or "disparities" from continuously changing audio-visual streams.

      (2) The same population MCD architecture captures a remarkable range of multisensory phenomena, from classical illusions (McGurk, ventriloquism) and synchrony judgments, to attentional/gaze behavior driven by audio-visual salience. This generality strongly supports the idea that a single low-level computation (correlation detection) can underlie many distinct multisensory effects.

      (3) By tuning model parameters to different temporal rhythms (e.g., faster in rodents, slower in humans), the MCD explains cross-species perceptual data without reconfiguring the underlying architecture.

      We thank the reviewer for their positive evaluation of the manuscript, and particularly for highlighting the significance of the model's stimulus-computable architecture and its broad applicability across species and paradigms. Please find our responses to the individual points below.

      Weaknesses:

      (1) The authors show how a correlation-based model can account for the various multisensory integration effects observed in previous studies. However, a comparison of how the two accounts differ would shed light on the correlation model being an implementation of the Bayesian computations (different levels in Marr's hierarchy) or making testable predictions that can distinguish between the two frameworks. For example, how uncertainty in the cue combined estimate is also the harmonic mean of the unimodal uncertainties is a prediction from the Bayesian model. So, how the MCD framework predicts this reduced uncertainty could be one potential difference (or similarity) to the Bayesian model.

      We fully agree with the reviewer that a comparison between the correlation-based MCD model and Bayesian accounts is valuable—particularly for clarifying how the two frameworks differ conceptually and where they may converge.

      As noted in the revised manuscript, the key distinction lies in the level of analysis described by Marr (1982). Bayesian models operate at the computational level, describing what the system is aiming to compute (e.g., optimal cue integration). In contrast, the MCD functions at the algorithmic level, offering a biologically plausible mechanism for how such integration might emerge from stimulus-driven representations.

      In this context, the MCD provides a concrete, stimulus-grounded account of how perceptual estimates might be constructed—potentially implementing computations with Bayesian-like characteristics (e.g., reduced uncertainty, cue weighting). Thus, the two models are not mutually exclusive but can be seen as complementary: the MCD may offer an algorithmic instantiation of computations that, at the abstract level, resemble Bayesian inference.

      We have now updated the manuscript to explicitly highlight this relationship (pages 2 and 11). In the revised manuscript, we also included a new figure (Figure 5) and movie (Supplementary Movie 3), to show how the present approach extends previous Bayesian models for the case of cue integration (i.e., the ventriloquist effect).

      (2) The authors show a good match for cue combination involving 2 cues. While Bayesian accounts provide a direction for extension to more cues (also seen empirically, for eg, in Hecht et al. 2008), discussion on how the MCD model extends to more cues would benefit the readers.

      We thank the reviewer for this insightful comment: extending the MCD model to include more than two sensory modalities is a natural and valuable next step. Indeed, one of the strengths of the MCD framework lies in its modularity. Let us consider the MCDcorr​ output (Equation 6), which is computed as the pointwise product of transient inputs across modalities. Extending this to include a third modality, such as touch, is straightforward: MCD units would simply multiply the transient channels from all three modalities, effectively acting as trimodal coincidence detectors that respond when all inputs are aligned in time and space.

      By contrast, extending MCDlag is less intuitive, due to its reliance on opponency between two subunits (via subtraction). A plausible solution is to compute MCDlag in a pairwise fashion (e.g., AV, VT, AT), capturing relative timing across modality pairs.

      Importantly, the bulk of the spatial integration in our framework is carried by MCDcorr, which generalises naturally to more than two modalities. We have now formalised this extension and included a graphical representation in a supplementary section of the revised manuscript.

      Likely Impact and Usefulness:

      The work offers a compelling unification of multiple multisensory tasks- temporal order judgments, illusions, Bayesian causal inference, and overt visual attention - under a single, fully stimulus-driven framework. Its success with natural stimuli should interest computational neuroscientists, systems neuroscientists, and machine learning scientists. This paper thus makes an important contribution to the field by moving beyond minimalistic lab stimuli, illustrating how raw audio and video can be integrated using elementary correlation analyses.

      Reviewer #1 (Recommendations for the authors):

      Recommendations:

      My biggest concern is a lack of specificity about model fitting, which is assuaged by the inclusion of sufficient detail to replicate the analysis completely or the inclusion of the analysis code. The code availability indicates a script for the population model will be included, but it is unclear if this code will provide the fitting details for the whole of the analysis.

      We thank the reviewer for raising this important point. A new methodological section has been added to the manuscript, detailing the model fitting procedures used throughout the study. In addition, the accompanying code repository now includes MATLAB scripts that allow full replication of the spatiotemporal MCD simulations.

      Perhaps it could be enlightening to re-evaluate the model with a measure of error rather than correlation? And I think many researchers would be interested in the model's performance on unseen data.

      The model has now been re-evaluated using mean squared error (MSE), and the results remain consistent with those obtained using Pearson correlation. Additionally, we have clarified which parts of the study involve testing the model on unseen data (i.e., data not used to fit the temporal constants of the units). These analyses are now included and discussed in the revised fitting section of the manuscript (pages 23-24).

      Otherwise, my concerns involve the interpretation of findings, and thus could be satisfied with minor rewording or tempering conclusions.

      The manuscript has been revised to address these interpretative concerns, with several conclusions reworded or tempered accordingly. All changes are marked in blue in the revised version.

      Miscellanea:

      Should b0 in equation 10 be bcrit to match the below text?

      Thank you for catching this inconsistency. We have corrected Equation 10 (and also Equation 21) to use the more transparent notation bcrit instead of b0, in line with the accompanying text.

      Equation 23, should time be averaged separately? For example, if multiple people are speaking, the average correlation for those frames will be higher than the average correlation across all times.

      We thank the reviewer for raising this thoughtful and important point. In response, we have clarified the notation of Equation 23 in the revised manuscript (page 20). Specifically, we now denote the averaging operations explicitly as spatial means and standard deviations across all pixel locations within each frame.

      This equation computes the z-score of the MCD correlation value at the current gaze location, normalized relative to the spatial distribution of correlation values in the same frame. That is, all operations are performed at the frame level, not across time. This ensures that temporally distinct events are treated independently and that the final measure reflects relative salience within each moment, not a global average over the stimulus. In other words, the spatial distribution of MCD activity is re-centered and rescaled at each frame, exactly to avoid the type of inflation or confounding the reviewer rightly cautioned against.

      Reviewer #2 (Recommendations for the authors):

      The authors have done a great job of providing a stimulus computable model of cue combination. I had just a few suggestions to strengthen the theoretical part of the paper:

      (1) While the authors have shown a good match between MCD and cue combination, some theoretical justification or equivalence analysis would benefit readers on how the two relate to each other. Something like Zhang et al. 2019 (which is for motion cue combination) would add to the paper.

      We agree that it is important to clarify the theoretical relationship between the Multisensory Correlation Detector (MCD) and normative models of cue integration, such as Bayesian combination. In the revised manuscript, we have now modified the introduction and added a paragraph in the Discussion addressing this link more explicitly. In brief, we see the MCD as an algorithmic-level implementation (in Marr’s terms) that may approximate or instantiate aspects of Bayesian inference.

      (2) Simulating cue combination for tasks that require integration of more than two cues (visual, auditory, haptic cues) would more strongly relate the correlation model to Bayesian cue combination. If that is a lot of work, at least discussing this would benefit the paper

      This point has now been addressed, and a new paragraph discussing the extension of the MCD model to tasks involving more than two sensory modalities has been added to the Discussion section.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      Summary:

      Previous studies have shown that treatment with 17α-estradiol (a stereoisomer of the 17β-estradiol) extends lifespan in male mice but not in females. The current study by Li et al, aimed to identify cell-specific clusters and populations in the hypothalamus of aged male rats treated with 17α-estradiol (treated for 6 months). This study identifies genes and pathways affected by 17α-estradiol in the aged hypothalamus.

      Strengths:

      Using single-nucleus transcriptomic sequencing (snRNA-seq) on the hypothalamus from aged male rats treated with 17α-estradiol they show that 17α-estradiol significantly attenuated age-related increases in cellular metabolism, stress, and decreased synaptic activity in neurons.

      Thanks.

      Moreover, sc-analysis identified GnRH as one of the key mediators of 17α-estradiol's effects on energy homeostasis. Furthermore, they show that CRH neurons exhibited a senescent phenotype, suggesting a potential side effect of the 17α-estradiol. These conclusions are supported by supervised clustering by neuropeptides, hormones, and their receptors.

      Thanks.

      Weaknesses:

      However, the study has several limitations that reduce the strength of the key claims in the manuscript. In particular:

      (1) The study focused only on males and did not include comparisons with females. However, previous studies have shown that 17α-estradiol extends lifespan in a sex-specific manner in mice, affecting males but not females. Without the comparison with the female data, it's difficult to assess its relevance to the lifespan.

      This study was originally designed based on previous findings indicating that lifespan extension is only effective in males, leading to the exclusion of females from the analysis. The primary focus of our research was on the transcriptional changes and serum endocrine alterations induced by 17α-estradiol in aged males compared to untreated aged males. We believe that even in the absence of female subjects, the significant effects of 17α-estradiol on metabolism in the hypothalamus, synapses, and endocrine system remain evident, particularly regarding the expression levels of GnRH and testosterone. Notably, lower overall metabolism, increased synaptic activity, and elevated levels of GnRH and testosterone are strong indicators of health and well-being in males, supporting the validity of our primary conclusions. However, including female controls would enhance the depth of our findings. If female controls were incorporated, we propose redesigning the sample groups to include aged male control, aged female control, aged female treated, aged male treated, as well as young male control, young male treated, young female control, and young female treated. We regret that we cannot provide this data in the short term. Nevertheless, we believe this reviewer’s creative idea presents a valuable avenue for future research on this topic. In this study, we emphasize the role of 17α-estradiol in overall metabolism, synaptic function, GnRH, and testosterone in aged males and underscore the importance of supervised clustering of neuropeptide-secreting neurons in the hypothalamus.

      (2) It is not known whether 17α-estradiol leads to lifespan extension in male rats similar to male mice. Therefore, it is not possible to conclude that the observed effects in the hypothalamus, are linked to the lifespan extension.

      Thanks for the reminding. 17α-estradiol was reported to extend lifespan in male rats similar to male mice (PMID: 33289482). We have added the valuable reference to introduction in the new version.  

      (3) The effect of 17α-estradiol on non-neuronal cells such as microglia and astrocytes is not well-described (Figure 1). Previous studies demonstrated that 17α-estradiol reduces microgliosis and astrogliosis in the hypothalamus of aged male mice. Current data suggest that the proportion of oligo, and microglia were increased by the drug treatment, while the proportions of astrocytes were decreased. These data might suggest possible species differences, differences in the treatment regimen, or differences in drug efficiency. This has to be discussed.

      We have reviewed reports describing changes in cell numbers following 17α-estradiol treatment in the brain, using the keywords "17α-estradiol," "17alpha-estradiol," and "microglia" or "astrocyte." Only a limited amount of data was obtained. We found one article indicating that 17α-estradiol treatment in Tg (AβPP(swe)/PS1(ΔE9)) model mice resulted in a decreased microglial cell number compared to the placebo (AβPP(swe)/PS1(ΔE9) mice), but this change was not significant when compared to the non-transgenic control (PMID: 21157032). The transgenic AβPP(swe)/PS1(ΔE9) mouse model may differ from our wild-type aging rat model in this context.

      Moreover, the calculation of cell numbers was based on visual observation under a microscope across several brain tissue slices. This traditional method often yields controversial results. For example, oligodendrocytes in the corpus callosum, fornix, and spinal cord have been reported to be 20-40% more numerous in males than in females based on microscopic observations (PMID: 16452667). In contrast, another study found no significant difference in the number of oligodendrocytes between sexes when using immunohistochemistry staining (PMID: 18709647). Such discrepancies arising from traditional observational methods are inevitable.

      We believe the data presented in this article are reliable because the cell number and cell ratio data were derived from high-throughput cell counting of the entire hypothalamus using single-cell suspension and droplet wrapping (10x Genomics).

      (4) A more detailed analysis of glial cell types within the hypothalamus in response to drugs should be provided.

      We provided more enrichment analysis data of differentially expressed genes between Y, O, and O.T in microglia and astrocytes in Figure 2—figure supplement 3. In this supplemental data, we found unlike that in neurons, Micro displayed lower levels of synapse-related cellular processes in O.T. compared to O.

      (5) The conclusion that CRH neurons are going into senescence is not clearly supported by the data. A more detailed analysis of the hypothalamus such as histological examination to assess cellular senescence markers in CRH neurons, is needed to support this claim.

      We also noted the inappropriate claim and have changed "senescent phenotype" to "stressed phenotype" and "abnormal phenotype" in both the abstract and results sections. The stressed phenotype could be induced by heightened functional activity in the cells, potentially indicating higher cellular activity. The GnRH and CRH neurons discussed in this paper may represent such a case, as illustrated by the observed high serum GnRH, testosterone, and cortisol levels. This revision suggestion is highly valuable and constructive for our understanding of the unique physiological characteristics revealed by these data.

      Reviewer #2 (Public Review):

      Summary:

      Li et al. investigated the potential anti-ageing role of 17α-Estradiol on the hypothalamus of aged rats. To achieve this, they employed a very sophisticated method for single-cell genomic analysis that allowed them to analyze effects on various groups of neurons and non-neuronal cells. They were able to sub-categorize neurons according to their capacity to produce specific neurotransmitters, receptors, or hormones. They found that 17α-Estradiol treatment led to an improvement in several factors related to metabolism and synaptic transmission by bringing the expression levels of many of the genes of these pathways closer or to the same levels as those of young rats, reversing the ageing effect. Interestingly, among all neuronal groups, the proportion of Oxytocin-expressing neurons seems to be the one most significantly changing after treatment with 17α-Estradiol, suggesting an important role of these neurons in mediating its anti-ageing effects. This was also supported by an increase in circulating levels of oxytocin. It was also found that gene expression of corticotropin-releasing hormone neurons was significantly impacted by 17α-Estradiol even though it was not different between aged and young rats, suggesting that these neurons could be responsible for side effects related to this treatment. This article revealed some potential targets that should be further investigated in future studies regarding the role of 17α-Estradiol treatment in aged males.

      Strengths:

      (1) Single-nucleus mRNA sequencing is a very powerful method for gene expression analysis and clustering. The supervised clustering of neurons was very helpful in revealing otherwise invisible differences between neuronal groups and helped identify specific neuronal populations as targets.

      Thanks.

      (2) There is a variety of functions used that allow the differential analysis of a very complex type of data. This led to a better comparison between the different groups on many levels.

      Thanks.

      (3) There were some physiological parameters measured such as circulating hormone levels that helped the interpretation of the effects of the changes in hypothalamic gene expression

      Thanks.

      Weaknesses

      (1) One main control group is missing from the study, the young males treated with 17α-Estradiol.

      Given that the treatment period lasts six months, which extends beyond the young male rats' age range, we aimed to investigate the perturbation of 17α-Estradiol on the normal aging process. Including data from young males could potentially obscure the treatment's effects in aged males due to age effects, though similar effects between young and aged animals may exist. Long-term treatment of hormone may exert more developmental effects on the young than the old. Consequently, we decided to exclude this group from our initial sample design. We apologize for this omission.

      (2) Even though the technical approach is a sophisticated one, analyzing the whole rat hypothalamus instead of specific nuclei or subregions makes the study weaker.

      The precise targets of 17α-Estradiol within the hypothalamus remain unresolved. Selecting a specific nucleus for study is challenging. The supervised clustering method described in this manuscript allows us to identify the more sensitive neuron subtypes influenced by 17α-Estradiol and aging across the entire hypothalamus, without the need to isolate specific nuclei in a disturbed hypothalamic environment.

      (3) Although the authors claim to have several findings, the data fail to support these claims. You may mean the claim as the senescent phenotype in Crh neuron induced by 17a-estradiol.

      Thanks. We have changed the "senescent phenotype" to "stressed phenotype" in the abstract and results to avoid such claim. The stressed phenotype may be induced by heightened functional activity in the cells, potentially indicating higher cellular activity.

      (4) The study is about improving ageing but no physiological data from the study demonstrated such a claim with the exception of the testes histology which was not properly analyzed and was not even significantly different between the groups.

      The primary objective of this study is to elucidate the effects of 17α-Estradiol on the endocrine system in the aging hypothalamus; exploring anti-aging effects is not the main focus. From the characteristics of the aging hypothalamus, we know that down-regulated GnRH and testosterone levels, along with elevated mTOR signaling, are indicators of aging in these organs from previous publications (PMID: 37886966, PMID: 37048056, PMID: 22884327). The contrasting signaling networks related to metabolism and synaptic processes significantly differentiate young and aging hypothalami, and 17α-Estradiol helps rebalance these networks, suggesting its potential anti-aging effects.

      (5) Overall, the study remains descriptive with no physiological data to demonstrate that any of the effects on hypothalamic gene expression are related to metabolic, synaptic, or other functions.

      The study focuses on investigating cellular responses and endocrine changes in the aging hypothalamus induced by 17α-estradiol, utilizing single-nucleus RNA sequencing (snRNA-seq) and a novel data mining methodology to analyze various neuron subtypes. It is important to note that this study does not mainly aim to explore the anti-aging effects. Consequently, we have revised the claim in the abstract from “the effects of 17α-estradiol in anti-aging in neurons” to “the effects of 17α-estradiol on aging neurons.” We observed that the lower overall metabolism and increased expression levels of cellular processes in the synapses align with findings previously reported regarding 17α-estradiol. To address the lack of physiological data and the challenges in measuring multiple endocrine factors due to their volatile nature, we employed several bidirectional Mendelian analyses of various genome-wide association study (GWAS) data related to these serum endocrine factors to identify their mutual causal effects.

      Reviewing Editor Comment:

      Based on the Public Reviews and Recommendations for Authors, the Reviewers strongly recommend that revisions include an experimental demonstration of the physiological effects of the treatment on ageing in rats as well as the CRH-senescence link. Additional analysis of the glia would greatly strengthen the study, as would inclusion of females and young male controls. The important point was also raised that the work linking 17a-estradiol was performed in mice, and the link with lifespan in rats is not known. Discussion of this point is recommended.

      We thank the reviewers for their constructive feedback. Regarding the recommendations in the Public Reviews and Recommendations for Authors:

      a)  Physiological effects & CRH-senescence link:

      We acknowledge that 17α-estradiol has been reported to extend lifespan in male rats, consistent with findings in male mice (PMID: 33289482). This point has now been noted in the Introduction. We regret that further experimental validation of the treatment's physiological effects on aging in rats was beyond the scope of this study.

      b) Phenotype terminology:

      In response to concerns about the "senescent" characterization of CRH neurons, we have revised this terminology to "stressed phenotype" throughout the abstract and results. While we were unable to conduct additional experiments to confirm senescence markers, this revised description better reflects the heightened cellular activity observed (as evidenced by elevated serum GnRH and testosterone levels), without implying confirmed senescence.

      c) Glial cell analysis:

      To address questions about glial cell function during treatment, we have added new enrichment analysis data of differentially expressed genes in microglia and astrocytes from young (Y), old (O), and old treated (O.T) groups in Figure 2—figure supplement 3. This analysis reveals that microglia exhibit contrasting synaptic-related cellular processes compared to total neurons.

      d) Female and young controls:

      We sincerely apologize for the absence of female subjects and young male controls in the current study. The reviewers' suggestion to examine the male-specific effects of 17α-estradiol using female controls represents an excellent direction for future research, which we plan to pursue in upcoming studies.

      Reviewer #2 (Recommendations For The Authors):

      General comments:

      (1) The manuscript is very hard to read. Proofreading and editing by software or a professional seems necessary. The words "enhanced", "extensive" etc. are not always used in the right way.

      Thanks for the suggestion. We have revised the proofreading and editing. The words "enhanced" and "extensive" were also revised in most sentences.

      (2) The numbers of animals and samples are not well explained. Is it 9 rats overall or per group? If there are 8 testes samples per group, should we assume that there were 4 rats per group? The pooling of the hypothalamic how was it done? Were all the hypothalamic from each group pooled together? A small table with the animals per group and the samples would help.

      We appreciate your reminder regarding the initial mistake in our manuscript preparation. In the preliminary submission, we reported 9 rats based solely on sequencing data and data mining. The revised version (v1) now includes additional experimental data, with an effective total of 12 animals (4 per group). Unfortunately, we overlooked updating this information in the v1 submission. We have since added detailed information in the Materials and Methods sections: Animals, Treatment and Tissues, and snRNA-seq Data Processing, Batch Effect Correction, and Cell Subset Annotation.

      (3) The Clustering is wrong. There are genes in there that do not fall into any of the 3 categories: Neurotransmitters, Receptors, Hormones.

      We acknowledge the error in gene clustering and have implemented the following corrections:

      (a) The description has been updated to state: 'Vast majority of these subtypes were clustered by neuropeptides, hormones, and their receptors among all neurons.'

      (b) Genes not belonging to these three categories have been substantially removed.

      (c) The neuropeptide category (now including several growth hormones) has been expanded to 104 genes, while their corresponding receptors (including several sex hormone receptors) now comprise 105 genes.

      (4) The coloring of groups in the graphs is inconsistent. It must be more homogeneous to make it easier to identify.

      We have changed the colors of groups in Fig. 1D to make the color of cell clusters consistent in Fig. 1A-D.

      (5) The groups c1-c4 are not well explained. How did the authors come up with these?

      We have added more descriptions of c1-c4 in materials and methods in the new version.

      (6) In most cases it's not clear if the authors are talking about cell numbers that express a certain mRNA, the level of expression of a certain mRNA, or both. They need to do a better job using more precise descriptions instead of using general terms such as "signatures", "expression profiles", "affected neurons" etc. It is very hard to understand if the number of neurons is compared between the groups or the gene expression.

      We have changed the "signatures" to "gene signatures" to make it more accurate in meaning. The "affected neurons" were also changed to "sensitive neurons". But sorry that we were not able to find better alternatives to the "expression profiles".

      (7) Sometimes there are claims made without justification or a reference. For example, the claim about the senescence of CRH neurons due to the upregulation of mitochondrial genes and downregulation of adherence junction genes (lines 326-328) should be supported by a reference or own findings.

      The "senescence" here is not appropriate. We have changed it to "stressed phenotype" or "aberrant changes" in abstract and results.

      (8) Young males treated with Estradiol as a control group is necessary and it is missing.

      Your suggestion is appreciated; however, the treatment duration for aged mice (O.T) was set at 6 months, while the young mice were only 4 months old. This disparity makes it challenging to align treatment timelines for the young animals. The primary aim of this study is to investigate the perturbation of 17α-estradiol on the aging process, and any distinct effects due to age effect observed in young males might complicate our understanding of its role in aged males, though similar endocrine effects may exist in the young animals. Long-term treatment of hormone may exert more developmental effects on the young than the old. Therefore, we made the decision to exclude the young samples in our initial study design. We apologize for any confusion this may have caused.

      Specific Comments:

      Line 28: "elevated stresses and decreased synaptic activity": Please make this clearer. Can't claim changes in synaptic activity by gene expression.

      We have changed it to "the expression level of pathways involved in synapse"

      Line 32: "increased Oxytocin": serum Oxytocin.

      We have added the “serum”.

      Line 52 - 54: Any studies from rats?

      Thanks. In rats there is also reported that 17α-estradiol has similar metabolic roles as that in mice (PMID: 33289482) and we have added it to the refences. It’s very useful for this manuscript.

      Line 62 - 65: It wasn't investigated thoroughly in this paper so why was it suggested in the introduction?

      We have deleted this sentence as being suggested.

      Line 70: "synaptic activity" Same as line 28.

      We have changed it to "pathways involved in synaptic activity".

      Line 79: Why were aged rats caged alone and young by two? Could that introduce hypothalamic gene expression effects?

      The young males were bred together in peace. But the aged males will fight and should be kept alone.

      Lines 78, 99, 109-110: It is not clear how many animals per group were used and how many samples per group were used separately and/or grouped. Please be more specific.

      We have added these information to Materials and methods/Animals, treatment and tissues and Materials and methods/snRNA-seq data processing, batch effect correction, and cell subset annotation.

      Line 205: "in O" please add "versus young.".

      We have changed accordingly.

      Line 207: replace "were" with "was"

      We have alternatively changed the "proportion" to "proportions".

      Line 208: replace "that" with "compared to" and after "in O.T." add "compared to?"

      We have changed accordingly.

      Line 223: "O.T." compared to what? Figure?

      We have changed it accordingly.

      Line 227: Figure?

      We have added (Figure 1E) accordingly.

      Line 229: "synaptic activity" Same as line 28.

      We have revised it.

      Line 235: "synaptic activity" and "neuropeptide secretion" Same as line 28.

      We have revised it.

      Line 256:" interfered" please revise.

      We changed to "exerted".

      Line 263: "on the contrary" please revise.

      We have changed "on the contrary" to "opposite".

      Line 270: "conversed" did you mean "conserved"?

      We have changed "conversed" to "inversed".

      Line 296-298: Please explain. Why would these be side effects?

      It’s hard to explain, therefore, we deleted the words "side effects".

      Line 308: "synaptic activity" Same as line 28.

      We have changed it to "expression levels of synapse-related cellular processes".

      Line 314: "and sex hormone secretion and signaling"Isn't this expected?

      Yes, it is expected. We have added it to the sentence "and, as expected, sex hormone secretion and signaling".

      Line 325-328: Why is this senescence? Reference?

      We have added “potent” to it.

      Line 360-361: This doesn't show elevated synaptic activity.

      "elevated synaptic activity" was changed to "The elevated expression of synapse-related pathways"

      Line 363-364: "Unfortunately" is not a scientific expression and show bias.

      We have changed it to "Notably".

      Line 376: Similar as above.

      Yes, we have change it to "in contrast".

      Lines 382-385: This is speculation. Please move to discussion.

      Sorry for that. We think the causal effects derived from MR result is evidence. As such, we have not changed it.

      Line 389: Please revise "hormone expressing".

      We have changed it accordingly.

      Line 401: Isn't this effect expected due to feedback inhibition of the biochemical pathway? Please comment.

      The binding capability of 17alpha-estradiol to estrogen receptors and its role in transcriptional activation remain core questions surrounded by controversy. Earlier studies suggest that 17alpha-estradiol exhibits at least 200 times less activity than 17beta-estradiol (PMID: 2249627, PMID: 16024755). However, recent data indicate that 17alpha-estradiol shows comparable genomic binding and transcriptional activation through estrogen receptor α (Esr1) to that of 17beta-estradiol (PMID: 33289482). Additionally, there is evidence that 17alpha-estradiol has anti-estrogenic effects in rats (PMID: 16042770). These findings imply possible feedback inhibition via estrogen receptors. Furthermore, 17alpha-estradiol likely differs from 17beta-estradiol due to its unique metabolic consequences and its potential to slow aging in males, an effect not attributed to 17beta-estradiol. For instance, neurons are also targets of 17alpha-estradiol, with Esr1 not being the sole target (PMID: 38776045). Intriguingly, neurons expressing Ar and Esr1 ranked among the top 20 most perturbed receptor subtypes during aging (O vs Y), but were no longer ranked in this group following treatment (O.T vs Y and O.T vs O comparisons). This indicates that 17α-estradiol administration attenuated age-associated perturbation in these neuronal subtypes, which may be a consequence of potential feedback (Figure 3D). Nevertheless, the precise effective targets of 17alpha-estradiol are still unresolved.

      Line 409: This conclusion cannot be made because the effect is not statistically significant. Can say "trend" etc.

      Thanks for the recommendation. We have added "potential" in front of the conclusion.

      Line 426: "suggesting" please revise.

      sorry, it’s a verb.

      Lines 426-428: This is speculation. Please move to discussion.

      The elevated GnRH levels in O.T., observed through EIA analysis, suggest a deduction regarding the direct causal effects of 17alpha-estradiol on various endocrine factors related to feeding, energy homeostasis, reproduction, osmotic regulation, stress response, and neuronal plasticity through MR analysis. Thus, we have not amended our position. We apologize for any confusion.

      Lines 431-432: improved compared to what?

      The statement have been revised as " The most striking role of 17α-estradiol treatment revealed in this study showed that HPG axis was substantially improved in the levels of serum Gnrh and testosterone".

      Line 435: " Estrogen Receptor Antagonists". Please revise.

      Thanks for the recommendation. We have changed it to "estrogen receptor antagonists".

      Line 438" "Secrete". Please revise

      Sorry, it is "secret".

      Lines 439-449: None of this has been demonstrated. Please remove these conclusions.

      We appreciate the reviewer's scrutiny regarding lines 439-449. While these statements should not be interpreted as definitive conclusions from our current data, we propose they serve as clinically relevant discussion points worthy of exploration. Our findings demonstrate 17α-estradiol's role in modulating testosterone levels in aged males. This mechanistic insight warrants consideration of its therapeutic potential for age-related hypogonadism - a hypothesis we believe merits discussion given the compound's specific endocrine effects.

      Lines 450-457: No females were included in this study. Why? Also, why is this discussed? It is relevant but doesn't belong in this manuscript since it was not studied here.

      Testosterone levels are crucial for male health, while estradiol levels are essential for the health and fertility of females. Previous studies have demonstrated that 17α-estradiol does not contribute to lifespan extension in females. Given the effects of 17α-estradiol on males—specifically, its role in promoting testosterone and reducing estradiol levels—we believe it is important to discuss the potential sex-biased effects of 17α-estradiol, as this could inform future investigations. We have refined this section to clarify that these points represent mechanistic hypotheses derived from our male data and existing literature, not conclusions about unstudied female physiology. This framing maintains the discussion's scientific value while respecting the study's scope.

      Lines 458-459: This was not demonstrated in this article. Please remove.

      We have restricted the claim to "expression level of energy metabolism in hypothalamic neurons".

      Line 464: "Promoted lifespan extension" Not demonstrated. Please remove.

      At the end of the sentence it was revised as "which may be a contributing factor in promoting lifespan extension".

      Line 466: "Showed" No.

      The whole sentence was deleted in the new version.

      Line 483: "the sex-based effects". Not studied here.

      Since the changes in testosterone levels are significant in this dataset and this hormone has a sex-biased nature, we find it worthwhile to suggest this as a topic for future investigation. We have added "which needs further verification in the future" at the end of this sentence.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      In this manuscript, Dillard and colleagues integrate cross-species genomic data with a systems approach to identify potential driver genes underlying human GWAS loci and establish the cell type(s) within which these genes act and potentially drive disease. Specifically, they utilize a large single-cell RNA-seq (scRNA-seq) dataset from an osteogenic cell culture model - bone marrow-derived stromal cells cultured under osteogenic conditions (BMSC-OBs) - from a genetically diverse outbred mouse population called the Diversity Outbred (DO) stock to discover network driver genes that likely underlie human bone mineral density (BMD) GWAS loci. The DO mice segregate over 40M single nucleotide variants, many of which affect gene expression levels, therefore making this an ideal population for systems genetic and co-expression analyses. The current study builds on previously published work from the same group that used co-expression analysis to identify co-expressed "modules" of genes that were enriched for BMD GWAS associations. In this study, the authors utilize a much larger scRNA-seq dataset from 80 DO BMSC-OBs, infer co-expression-based and Bayesian networks for each identified mesenchymal cell type, focused on networks with dynamic expression trajectories that are most likely driving differentiation of BMSC-OBs, and then prioritized genes ("differentiation driver genes" or DDGs) in these osteogenic differentiation networks that had known expression or splicing QTLs (eQTL/sQTLs) in any GTEx tissue that colocalized with human BMD GWAS loci. The systems analysis is impressive, the experimental methods are described in detail, and the experiments appear to be carefully done. The computational analysis of the single-cell data is comprehensive and thorough, and the evidence presented in support of the identified DDGs, including Tpx2 and Fgfrl1, is for the most part convincing. Some limitations in the data resources and methods hamper enthusiasm somewhat and are discussed below. Overall, while this study will no doubt be valuable to the BMD community, the cross-species data integration and analytical framework may be more valuable and generally applicable to the study of other diseases, especially for diseases with robust human GWAS data but for which robust human genomic data in relevant cell types is lacking. 

      Specific strengths of the study include the large scRNA-seq dataset on BMSC-OBs from 80 DO mice, the clustering analysis to identify specific cell types and sub-types, the comparison of cell type frequencies across the DO mice, and the CELLECT analysis to prioritize cell clusters that are enriched for BMD heritability (Figure 1). The network analysis pipeline outlined in Figure 2 is also a strength, as is the pseudotime trajectory analysis (results in Figure 3). One weakness involves the focus on genes that were previously identified as having an eQTL or sQTL in any GTEx tissue. The authors rightly point out that the GTEx database does not contain data for bone tissue, but the reason that eQTLs can be shared across many tissues - this assumption is valid for many cis-eQTLs, but it could also exclude many genes as potential DDGs with effects that are specific to bone/osteoblasts. Indeed, the authors show that important BMD driver genes have cell-type-specific eQTLs. Furthermore, the mesenchymal cell type-specific co-expression analysis by iterative WGCNA identified an average of 76 co-expression modules per cell cluster (range 26-153). Based on the limited number of genes that are detected as expressed in a given cell due to sparse per-cell read depth (400-6200 reads/cell) and dropouts, it's hard to believe that as many as 153 co-expression modules could be distinguished within any cell cluster. I would suspect some degree of model overfitting here and would expect that many/most of these identified modules have very few gene members, but the methods list a minimum module size of 20 genes. How do the numbers of modules identified in this study compare to other published scRNA-seq studies that use iterative WGCNA? 

      In the section "Identification of differentiation driver genes (DDGs)", the authors identified 408 significant DDGs and found that 49 (12%) were reported by the International Mouse Knockout [sic] Consortium (IMPC) as having a significant effect on whole-body BMD when knocked out in mice. Is this enrichment significant? E.g., what is the background percentage of IMPC gene knockouts that show an effect on whole-body BMD? Similarly, they found that 21 of the 408 DDGs were genes that have BMD GWAS associations that colocalize with GTEx eQTLs/sQTLs. Given that there are > 1,000 BMD GWAS associations, is this enrichment (21/408) significant? Recommend performing a hypergeometric test to provide statistical context to the reported overlaps here. 

      We thank the reviewer for their constructive feedback and thoughtful questions. In regards to the iterativeWGCNA, a larger number of modules is sometimes an outcome of the analysis, as reported in the iterativeWGCNA preprint (Greenfest-Allen et al., 2017). While we did not make a comparison to other works leveraging this tool for scRNA-seq, it has been used broadly across other published studies, such as PMID: 39640571, 40075303, 33677398, 33653874. While model overfitting, as you mention, may be a cause for more modules, our Bayesian network analysis we perform after iterativeWGCNA highlights smaller aspects of coexpression modules, as opposed to focusing on the entirety of any given module.

      We did not perform enrichment or statistical tests as our goal was to simply highlight attributes or unique features of these genes for additional context.

      Reviewer #2 (Public review): 

      Summary: 

      In this manuscript, Farber and colleagues have performed single-cell RNAseq analysis on bone marrow-derived stem cells from DO Mice. By performing network analysis, they look for driver genes that are associated with bone mineral density GWAS associations. They identify two genes as potential candidates to showcase the utility of this approach. 

      Strengths: 

      The study is very thorough and the approach is innovative and exciting. The manuscript contains some interesting data relating to how cell differentiation is occurring and the effects of genetics on this process. The section looking for genes with eQTLs that differ across the differentiation trajectory (Figure 4) was particularly exciting. 

      Weaknesses: 

      The manuscript is in parts hard to read due to the use of acronyms and there are some questions about data analysis that need to be addressed. 

      We thank the reviewer for their feedback and shared enthusiasm for our work. We tried to minimize the use of technical acronyms as much as we could without compromising readability. Additionally, we addressed questions regarding aspects of data analysis. 

      Reviewer #1 (Recommendations for the authors):

      (1) For increased transparency and to allow reproducibility, it would be necessary for the scripts used in the analysis to be shared along with the publication of the preprint. Also, where feasible, sharing the processed data in addition to the raw data would allow the community greater access to the results and be highly beneficial. 

      Thank you for this suggestion. The raw data will be available via GEO accession codes listed in the data availability statement. We will make available scripts for some analyses on our Github (https://github.com/Farber-Lab/DO80_project) and processed scRNA-seq data in a Seurat object (.rds) on Zenodo (https://zenodo.org/records/15299631)

      (2) Lines 55-76: I think the summary of previous work here is too long. I understand that they would like to cover what has been done previously, but this seems like overkill. 

      Good suggestion. We have streamlined some of the summary of our previous work.

      (3) Did the authors try to map QTL for cell-type proportion differences in their BMSC-OBs? While 80 samples certainly limit mapping power, the data shown in Figs 4C/D suggest that you might identify a large-effect modifier of LMP/OB1 proportions. 

      We did try to map QTL for cell type proportion differences, but no significant associations were identified. 

      (4) Methods question: Does the read alignment method used in your analysis account for SNPs/indels that segregate among the DO/CC founder strains? If not, the authors may wish to include this in their discussion of study limitations and speculate on how unmapped reads could affect expression results. 

      The read alignment method we used does not account for SNPs/indels from the DO founder strains that fall in RNA transcripts captured in the scRNA-seq data. We have included this as a limitation in our discussion (line 422-424). 

      (5) Much of the discussion reads as an overview of the methods, while a discussion of the results and their context to the existing BMD literature is relatively lacking in comparison.

      We have added additional explanation of the results and context to the discussion (line 381-382, 396-407). 

      (6) Figure 1E and lines 146-149: Adjusted p values should be reported in the figure and accompanying text instead of switching between unadjusted and adjusted p values. 

      We updated Figure 1e to portray adjusted p-values, listed the adjusted p-values in legend of Figure 1e, and listed them in the main text (line 153-154).

      (7) Why do the authors bring the IMPC KO gene list into the analysis so late? This seems like a highly relevant data resource (moreso than the GTEx eQTLs/sQTLs) that could have been used much earlier to help identify DDGs. 

      Given that our scRNA-seq data is also from mice, we did choose to integrate information from the IMPC to highlight supplemental features of genes in networks (i.e., genes that have an experimentally-tested and significant effect on BMD in mice). However, our primary goal was to inform human GWAS and leverage our previous work in which we identified colocalizations between human BMD GWAS and eQTL/sQTL in a human GTEx tissue, which is why this information was used to guide our network analysis.

      (8) Does Fgfrl1 and/or Tpx2 have a cis-eQTL in your BMSC-OB scRNA-seq dataset? 

      We did not identify cis-eQTL effects for Fgfrl1 and Tpx2.

      (9) Figure 4B-C: These eQTLs may be real, but based on the diplotype patterns in Figure 4C, I suspect they are artifacts of low mapping power that are driven by rare genotype classes with one or two samples having outlier expression results. For example, if you look at the results in Fig 4C for S100a1 expression, the genotype classes with the highest/lowest expression have lower sample numbers. In the case of Pkm eQTL showing a PWK-low effect, the PWK genome has many SNPs that differ from the reference genome in the 3' UTR of this gene, and I wonder if reads overlapping these SNPs are not aligning correctly (see point 4 above) and resulting (falsely) in lower expression values for samples with a PWK haplotype. 

      As mentioned above, our alignment method did not consider DO founder genetic variation that is specifically located in the 3’ end of RNA transcripts in the scRNA-seq data. We have included this as a limitation in our discussion (line 422-424).

      In future studies, we intend to include larger populations of mice to potentially overcome, as you mention, any artifacts that may be attributable to low statistical power, rare genotype classes, or outlier expression.

      Reviewer #2 (Recommendations for the authors):

      Major Points 

      (1) The authors hypothesize "that many genes impacting BMD do so by influencing osteogenic differentiation or possibly bone marrow adipogenic differentiation". However, cell type itself does not correlate with any bone trait. Does this indicate that the hypothesis is not entirely correct, as genes that drive these phenotypes would not be enriched in one particular cell type? The authors have previously identified "high-priority target genes". So, are there any cell types that are enriched for these target genes? If not, this would indicate that all these genes are more ubiquitously expressed and this is probably why they would have a greater effect on the overall bone traits. Furthermore, are the 73 eGenes (so genes with eQTLs in a particular cell type that change around cell type boundaries) or the DDGs (Table 1) enriched for these high-priority target genes? 

      The bone traits measured in the DO mice are complex and impacted by many factors, including the differentiation propensity and abundance of certain cell types, both within and outside of bone. Though we did not identify correlations between cell type abundance and the bone traits we measured, we tailored our investigations to focus on cellular differentiation using the scRNA-seq data. However, future studies would need to be performed to investigate any connections between cellular differentiation, cell type abundance, and bone traits.

      We did not perform enrichment analyses of either the target genes identified from our other work or eGenes identified here, but instead used the target gene list to center our network analysis and the eGenes to showcase the utility of the DO mouse population.

      (2) The readability of the paper could be improved by minimising the use of acronyms and there are several instances of confusing wording throughout the paper. In many cases, this can be solved by re-organising sentences and adding a bit more detail. For example, it was unclear how you arrived at Fgfrl1 or Tpx2.

      One of the goals of our study was to identify genes that have (to our knowledge) little to no known connection to BMD. We chose to highlight Fgfrl1 and Tpx2 because there is minimal literature characterizing these genes in the context of bone, which we speak to in the results (line 296-297). Additionally, we prioritized these genes in our previous work and they were identified in this study by using our network analyses using the scRNA-seq data, which we mention in the results (line 276-279).

      (3) Technical aspects of the assay. In Figure 1d you show that the cell populations vary considerably between different DO mice. It would be useful to give some sense of the technical variance of this assay given that the assay involves culturing the cells in an exogenous environment. This could take the form of tests between mice within the same inbred strain, or even between different legs of the same DO mice to show that results are technically very consistent. It might also be prudent to identify that this is a potential limitation of the approach as in vitro culturing has the potential to substantially change the cell populations that are present. 

      We agree that in vitro culturing, in addition to the preparation of single cells for scRNA-seq, are unavoidable sources of technical variation in this study. However, the total number of cells contributed by each of the 80 DO mice after data processing does not appear to be skewed and the distribution appears normal (see added figures, now included as Supplemental Figure 3). Therefore, technical variation is at least consistent across all samples. Nevertheless, we have mentioned the potential for technical variation artifacts in our study in the discussion (line 414-416).

      (4) Need for permutation testing. "We identified 563 genes regulated by a significant eQTL in specific cell types. In total, 73 genes with eQTLs were also tradeSeq-identified genes in one or more cell type boundaries". These types of statements are fine but they need to be backed up with permutation testing to show that this level of enrichment is greater than one would expect by chance. 

      We did not perform enrichment tests as our only goal was to 1. determine if eQTL could be resolved in the DO mouse population using our scRNA-seq data and 2. predict in what cell type the associated eQTL and associated eGene may have an effect.

      (5) The main novelty of the paper seems to be that you have used single-cell RNA seq (given that you appear to have already detailed the candidates at the end). I don't think this makes the paper less interesting, but I think you need to reframe the paper more about the approach, and not the specific results. How you landed on these candidates is also not clear. So the paper might be improved by more robustly establishing the workflow and providing guidelines for how studies like this should be conducted in the future. 

      We sought to not only devise a rigorous approach to analyze our single cell data, but also showcase the utility of the approach in practice by highlighting targets for future research (i.e., Fgfrl1 and Tpx2).

      Our goal was to identify novel genes and we landed on these candidate genes (Fgfrl1 and Tpx2) because they had substantial data supporting their causality and they have yet to be fully characterized in the context of bone and BMD (line 295-297).

      In regards to establishing the workflow, we have included rationale for specific aspects of our approach throughout the paper. For example, Figure 2 itemizes each step of our network analysis and we explain why each step is utilized throughout various parts results (e.g., lines 168-170, 179-181, 191-193, 202-203, 257-260, 276-277).

      We have added a statement advocating for large-scale scRNA-seq from genetically diverse samples and network analyses for future studies (line 436-438).

      Minor Points 

      (1) In the summary you use the word "trajectory". Trajectories for what? I assume the transition between cell types, but this is not clear. 

      We added text to clarify the use of trajectory in the summary (line 34).

      (2) This sentence: "By 60 identifying networks enriched for genes implicated in GWAS we predicted putatively causal genes 61 for hundreds of BMD associations based on their membership in enriched modules." is also not clear. Do you mean: we predicted putatively causal genes by identifying clusters of co-expressed genes that were enriched for GWAS genes?" It is not clear how you identify the causal gene in the network. Is this just based on the hub gene? 

      The aforementioned sentence has since been removed to streamline the introduction, as suggested by Reviewer 1.

      In regards to causal gene identification, it is not based on whether it is hub gene. We prioritized a DDG (and their associated networks) if it was a causal gene that we identified in our previous work as having eQTL/sQTL in a GTEx tissue that colocalizes with human BMD GWAS.

      (3) Figure 3C. This is good but the labels are quite small. Would be good to make all the font sizes larger. 

      We have enlarged Figure 3C.

      (4) Line 341 in the Discussion should be "pseudotemporal". 

      We have edited “temporal” to “pseduotemporal”.

    1. Reviewer #1 (Public review):

      This is a well-designed and very interesting study examining the impact of imprecise feedback on outcomes on decision-making. I think this is an important addition to the literature and the results here, which provide a computational account of several decision-making biases, are insightful and interesting.

      I do not believe I have substantive concerns related to the actual results presented; my concerns are more related to the framing of some of the work. My main concern is regarding the assertion that the results prove that non-normative and non-Bayesian learning is taking place. I agree with the authors that their results demonstrate that people will make decisions in ways that demonstrate deviations from what would be optimal for maximizing reward in their task under a strict application of Bayes rule. I also agree that they have built reinforcement learning models which do a good job of accounting for the observed behavior. However, the Bayesian models included are rather simple- per the author descriptions, applications of Bayes' rule with either fixed or learned credibility for the feedback agents. In contrast, several versions of the RL models are used, each modified to account for different possible biases. However more complex Bayes-based models exist, notably active inference but even the hierarchical gaussian filter. These formalisms are able to accommodate more complex behavior, such as affect and habits, which might make them more competitive with RL models. I think it is entirely fair to say that these results demonstrate deviations from an idealized and strict Bayesian context; however, the equivalence here of Bayesian and normative is I think misleading or at least requires better justification/explanation. This is because a great deal of work has been done to show that Bayes optimal models can generate behavior or other outcomes that are clearly not optimal to an observer within a given context (consider hallucinations for example) but which make sense in the context of how the model is constructed as well as the priors and desired states the model is given.

      As such, I would recommend that the language be adjusted to carefully define what is meant by normative and Bayesian and to recognize that work that is clearly Bayesian could potentially still be competitive with RL models if implemented to model this task. An even better approach would be to directly use one of these more complex modelling approaches, such as active inference, as the comparator to the RL models, though I would understand if the authors would want this to be a subject for future work.

      Abstract:

      The abstract is lacking in some detail about the experiments done, but this may be a limitation of the required word count? If word count is not an issue, I would recommend adding details of the experiments done and the results. One comment is that there is an appeal to normative learning patterns, but this suggests that learning patterns have a fixed optimal nature, which may not be true in cases where the purpose of the learning (e.g. to confirm the feeling of safety of being in an in-group) may not be about learning accurately to maximize reward. This can be accommodated in a Bayesian framework by modelling priors and desired outcomes. As such the central premise that biased learning is inherently non-normative or non-Bayesian I think would require more justification. This is true in the introduction as well.

      Introduction:

      As noted above the conceptualization of Bayesian learning being equivalent to normative learning I think requires either further justification. Bayesian belief updating can be biased an non-optimal from an observer perspective, while being optimal within the agent doing the updating if the priors/desired outcomes are set up to advantage these "non-optimal" modes of decision making.

      Results:

      I wonder why the agent was presented before the choice - since the agent is only relevant to the feedback after the choice is made. I wonder if that might have induced any false association between the agent identity and the choice itself. This is by no means a critical point but would be interesting to get the authors' thoughts.

      The finding that positive feedback increases learning is one that has been shown before and depends on valence, as the authors note. They expanded their reinforcement learning model to include valence; but they did not modify the Bayesian model in a similar manner. This lack of a valence or recency effect might also explain the failure of the Bayesian models in the preceding section where the contrast effect is discussed. It is not unreasonable to imagine that if humans do employ Bayesian reasoning that this reasoning system has had parameters tuned based on the real world, where recency of information does matter; affect has also been shown to be incorporable into Bayesian information processing (see the work by Hesp on affective charge and the large body of work by Ryan Smith). It may be that the Bayesian models chosen here require further complexity to capture the situation, just like some of the biases required updates to the RL models. This complexity, rather than being arbitrary, may be well justified by decision making in the real world.

      The methods mention several symptom scales- it would be interesting to have the results of these and any interesting correlations noted. It is possible that some of individual variability here could be related to these symptoms, which could introduce precision parameter changes in a Bayesian context and things like reward sensitivity changes in an RL context.

      Discussion:

      (For discussion, not a specific comment on this paper): One wonders also about participant beliefs about the experiment or the intent of the experimenters. I have often had participants tell me they were trying to "figure out" a task or find patterns even when this was not part of the experiment. This is not specific to this paper, but it may be relevant in the future to try and model participant beliefs about the experiment especially in the context of disinformation, when they might be primed to try and "figure things out".

      As a general comment, in the active inference literature, there has been discussion of state-dependent actions, or "habits", which are learned in order to help agents more rapidly make decisions, based on previous learning. It is also possible that what is being observed is that these habits are at play, and that they represent the cognitive biases. This is likely especially true given, as the authors note, the high cognitive load of the task. It is true that this would mean that full-force Bayesian inference is not being used in each trial, or in each experience an agent might have in the world, but this is likely adaptive on the longer timescale of things, considering resource requirements. I think in this case you could argue that we have a departure from "normative" learning, but that is not necessarily a departure from any possible Bayesian framework, since these biases could potentially be modified by the agent or eschewed in favor of more expensive full-on Bayesian learning when warranted. Indeed in their discussion on the strategy of amplifying credible news sources to drown out low-credibility sources, the authors hint to the possibility of longer term strategies that may produce optimal outcomes in some contexts, but which were not necessarily appropriate to this task. As such, the performance on this task- and the consideration of true departure from Bayesian processing- should be considered in this wider context. Another thing to consider is that Bayesian inference is occurring, but that priors present going in produce the biases, or these biases arise from another source, for example factoring in epistemic value over rewards when the actual reward is not large. This again would be covered under an active inference approach, depending on how the priors are tuned. Indeed, given the benefit of social cohesion in an evolutionary perspective, some of these "biases" may be the result of adaptation. For example, it might be better to amplify people's good qualities and minimize their bad qualities in order to make it easier to interact with them; this entails a cost (in this case, not adequately learning from feedback and potentially losing out sometimes), but may fulfill a greater imperative (improved cooperation on things that matter). Given the right priors/desired states, this could still be a Bayes-optimal inference at a social level and as such may be ingrained as a habit which requires effort to break at the individual level during a task such as this.

      The authors note that this task does not relate to "emotional engagement" or "deep, identity-related, issues". While I agree that this is likely mostly true, it is also possible that just being told one is being lied to might elicit an emotional response that could bias responses, even if this is a weak response.

      Comments on revisions:

      In their updated version the authors have made some edits to address my concerns regarding the framing of the 'normative' bayesian model, clarifying that they utilized a simple bayesian model which is intended to adhere in an idealized manner to the intended task structure, though further simulations would have been ideal.

      The authors, however, did not take my recommendation to explore the symptoms in the symptom scales they collected as being a potential source of variability. They note that these were for hypothesis generation and were exploratory, fair enough, but this study is not small and there should have been sufficient sample size for a very reasonable analysis looking at symptom scores.

      However, overall the toned down claims and clarifications of intent are adequate responses to my previous review.

    2. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      This is a well-designed and very interesting study examining the impact of imprecise feedback on outcomes in decision-making. I think this is an important addition to the literature, and the results here, which provide a computational account of several decision-making biases, are insightful and interesting.

      We thank the reviewer for highlighting the strengths of this work.

      I do not believe I have substantive concerns related to the actual results presented; my concerns are more related to the framing of some of the work. My main concern is regarding the assertion that the results prove that non-normative and non-Bayesian learning is taking place. I agree with the authors that their results demonstrate that people will make decisions in ways that demonstrate deviations from what would be optimal for maximizing reward in their task under a strict application of Bayes' rule. I also agree that they have built reinforcement learning models that do a good job of accounting for the observed behavior. However, the Bayesian models included are rather simple, per the author's descriptions, applications of Bayes' rule with either fixed or learned credibility for the feedback agents. In contrast, several versions of the RL models are used, each modified to account for different possible biases. However, more complex Bayes-based models exist, notably active inference, but even the hierarchical Gaussian filter. These formalisms are able to accommodate more complex behavior, such as affect and habits, which might make them more competitive with RL models. I think it is entirely fair to say that these results demonstrate deviations from an idealized and strict Bayesian context; however, the equivalence here of Bayesian and normative is, I think, misleading or at least requires better justification/explanation. This is because a great deal of work has been done to show that Bayes optimal models can generate behavior or other outcomes that are clearly not optimal to an observer within a given context (consider hallucinations for example), but which make sense in the context of how the model is constructed as well as the priors and desired states the model is given.

      As such, I would recommend that the language be adjusted to carefully define what is meant by normative and Bayesian and to recognize that work that is clearly Bayesian could potentially still be competitive with RL models if implemented to model this task. An even better approach would be to directly use one of these more complex modelling approaches, such as active inference, as the comparator to the RL models, though I would understand if the authors would want this to be a subject for future work.

      We thank the reviewer for raising this crucial and insightful point regarding the framing of our results and the definitions of 'normative' and 'Bayesian' learning. Our primary aim in this work was to characterize specific behavioral signatures that demonstrate deviations from predictions generated by a strict, idealized Bayesian framework when learning from disinformation (which we term “biases”). We deliberately employed relatively simple Bayesian models as benchmarks to highlight these specific biases. We fully agree that more sophisticated Bayes-based models (as mentioned by the reviewer, or others) could potentially offer alternative mechanistic explanations for participant behavior. However, we currently do not have a strong notion about which Bayesian models can encompass our findings, and hence, we leave this important question for future work.

      To enhance clarity within the current manuscript we now avoided the use of the term “normative” to refer to our Bayesian models, using the term “ideal” instead. We also define more clearly what exactly we mean by that notion when the idea model is described:

      “This model is based on an idealized assumptions that during the feedback stage of each trial, the value of the chosen bandit is updated (based on feedback valence and credibility) according to Bayes rule reflecting perfect adherence to the instructed task structure (i.e., how true outcomes and feedback are generated).”

      Moreover, we have added a few sentences in the discussion commenting on how more complex Bayesian models might account for our empirical findings:

      “However, as hypothesized, when facing potential disinformation, we also find that individuals exhibit several important biases i.e., deviations from strictly idealized Bayesian strategies. Future studies should explore if and under what assumptions, about the task’s generative structure and/or learner’s priors and objectives, more complex Bayesian models (e.g., active inference (58)) might account for our empirical findings.”

      Abstract:

      The abstract is lacking in some detail about the experiments done, but this may be a limitation of the required word count. If word count is not an issue, I would recommend adding details of the experiments done and the results.

      We thank the reviewer for their valuable suggestion. We have now included more details about the experiment in the abstract:

      “In two experiments, participants completed a two-armed bandit task, where they repeatedly chose between two lotteries and received outcome-feedback from sources of varying credibility, who occasionally disseminated disinformation by lying about true choice outcome (e.g., reporting non reward when a reward was truly earned or vice versa).”

      One comment is that there is an appeal to normative learning patterns, but this suggests that learning patterns have a fixed optimal nature, which may not be true in cases where the purpose of the learning (e.g. to confirm the feeling of safety of being in an in-group) may not be about learning accurately to maximize reward. This can be accommodated in a Bayesian framework by modelling priors and desired outcomes. As such, the central premise that biased learning is inherently non-normative or non-Bayesian, I think, would require more justification. This is true in the introduction as well.

      Introduction:

      As noted above, the conceptualization of Bayesian learning being equivalent to normative learning, I think requires further justification. Bayesian belief updating can be biased and non-optimal from an observer perspective, while being optimal within the agent doing the updating if the priors/desired outcomes are set up to advantage these "non-optimal" modes of decision making.

      We appreciate the reviewer's thoughtful comment regarding the conceptualization of "normative" and "Bayesian" learning. We fully agree that the definition of "normative" is nuanced and can indeed depend on whether one considers reward-maximization or the underlying principles of belief updating. As explained above we now restrict our presentation to deviations from “ideal Bayes” learning patterns and we acknowledge the reviewer’s concern in a caveat in our discussion.

      Results:

      I wonder why the agent was presented before the choice, since the agent is only relevant to the feedback after the choice is made. I wonder if that might have induced any false association between the agent identity and the choice itself. This is by no means a critical point, but it would be interesting to get the authors' thoughts.

      We thank the reviewer for raising this interesting point regarding the presentation of the agent before the choice. Our decision to present the agent at this stage was intentional, as our original experimental design aimed to explore the possible effects of "expected source credibility" on participants' choices (e.g., whether knowledge of feedback credibility will affect choice speed and accuracy). However, we found nothing that would be interesting to report.

      The finding that positive feedback increases learning is one that has been shown before and depends on valence, as the authors note. They expanded their reinforcement learning model to include valence, but they did not modify the Bayesian model in a similar manner. This lack of a valence or recency effect might also explain the failure of the Bayesian models in the preceding section, where the contrast effect is discussed. It is not unreasonable to imagine that if humans do employ Bayesian reasoning that this reasoning system has had parameters tuned based on the real world, where recency of information does matter; affect has also been shown to be incorporable into Bayesian information processing (see the work by Hesp on affective charge and the large body of work by Ryan Smith). It may be that the Bayesian models chosen here require further complexity to capture the situation, just like some of the biases required updates to the RL models. This complexity, rather than being arbitrary, may be well justified by decision-making in the real world.

      Thanks for these additional important ideas which speak more to the notion that more complex Bayesian frameworks may account for biases we report.

      The methods mention several symptom scales- it would be interesting to have the results of these and any interesting correlations noted. It is possible that some of the individual variability here could be related to these symptoms, which could introduce precision parameter changes in a Bayesian context and things like reward sensitivity changes in an RL context.

      We included these questionnaires for exploratory purposes, with the aim of generating informed hypotheses for future research into individual differences in learning. Given the preliminary nature of these analyses, we believe further research is required about this important topic.

      Discussion:

      (For discussion, not a specific comment on this paper): One wonders also about participants' beliefs about the experiment or the intent of the experimenters. I have often had participants tell me they were trying to "figure out" a task or find patterns even when this was not part of the experiment. This is not specific to this paper, but it may be relevant in the future to try and model participant beliefs about the experiment especially in the context of disinformation, when they might be primed to try and "figure things out".

      We thank the reviewer for this important recommendation. We agree and this point is included in our caveat (cited above) that future research should address what assumptions about the generative task structure can allow Bayesian models to account for our empirical patterns.

      As a general comment, in the active inference literature, there has been discussion of state-dependent actions, or "habits", which are learned in order to help agents more rapidly make decisions, based on previous learning. It is also possible that what is being observed is that these habits are at play, and that they represent the cognitive biases. This is likely especially true given, as the authors note, the high cognitive load of the task. It is true that this would mean that full-force Bayesian inference is not being used in each trial, or in each experience an agent might have in the world, but this is likely adaptive on the longer timescale of things, considering resource requirements. I think in this case you could argue that we have a departure from "normative" learning, but that is not necessarily a departure from any possible Bayesian framework, since these biases could potentially be modified by the agent or eschewed in favor of more expensive full-on Bayesian learning when warranted.<br /> Indeed, in their discussion on the strategy of amplifying credible news sources to drown out low-credibility sources, the authors hint at the possibility of longer-term strategies that may produce optimal outcomes in some contexts, but which were not necessarily appropriate to this task. As such, the performance on this task- and the consideration of true departure from Bayesian processing- should be considered in this wider context.

      Another thing to consider is that Bayesian inference is occurring, but that priors present going in produce the biases, or these biases arise from another source, for example, factoring in epistemic value over rewards when the actual reward is not large. This again would be covered under an active inference approach, depending on how the priors are tuned. Indeed, given the benefit of social cohesion in an evolutionary perspective, some of these "biases" may be the result of adaptation. For example, it might be better to amplify people's good qualities and minimize their bad qualities in order to make it easier to interact with them; this entails a cost (in this case, not adequately learning from feedback and potentially losing out sometimes), but may fulfill a greater imperative (improved cooperation on things that matter). Given the right priors/desired states, this could still be a Bayes-optimal inference at a social level and, as such, may be ingrained as a habit that requires effort to break at the individual level during a task such as this.

      We thank the reviewer for these insightful suggestions speaking further to the point about more complex Bayesian models.

      The authors note that this task does not relate to "emotional engagement" or "deep, identity-related issues". While I agree that this is likely mostly true, it is also possible that just being told one is being lied to might elicit an emotional response that could bias responses, even if this is a weak response.

      We agree with the reviewer that a task involving performance-based bonuses, and particularly one where participants are explicitly told they are being lied to, might elicit weak emotional response. However, our primary point is that the degree of these responses is expected to be substantially weaker than those typically observed in the broader disinformation literature, which frequently deals with highly salient political, social, or identity-related topics that inherently carry strong emotional and personal ties for participants, leading to much more pronounced affective engagement and potential biases. Our task deliberately avoids such issues thus minimizing the potential for significant emotion-driven biases. We have toned down the discussion accordingly:

      “This occurs even when the decision at hand entails minimal emotional engagement or pertinence to deep, identity-related, issues.”

      Reviewer #2 (Public review):

      This valuable paper studies the problem of learning from feedback given by sources of varying credibility. The solid combination of experiment and computational modeling helps to pin down properties of learning, although some ambiguity remains in the interpretation of results.

      Summary:

      This paper studies the problem of learning from feedback given by sources of varying credibility. Two banditstyle experiments are conducted in which feedback is provided with uncertainty, but from known sources. Bayesian benchmarks are provided to assess normative facets of learning, and alternative credit assignment models are fit for comparison. Some aspects of normativity appear, in addition to deviations such as asymmetric updating from positive and negative outcomes.

      Strengths:

      The paper tackles an important topic, with a relatively clean cognitive perspective. The construction of the experiment enables the use of computational modeling. This helps to pinpoint quantitatively the properties of learning and formally evaluate their impact and importance. The analyses are generally sensible, and parameter recovery analyses help to provide some confidence in the model estimation and comparison.

      We thank the reviewer for highlighting the strengths of this work.

      Weaknesses:

      (1) The approach in the paper overlaps somewhat with various papers, such as Diaconescu et al. (2014) and Schulz et al. (forthcoming), which also consider the Bayesian problem of learning and applying source credibility, in terms of theory and experiment. The authors should discuss how these papers are complementary, to better provide an integrative picture for readers.

      Diaconescu, A. O., Mathys, C., Weber, L. A., Daunizeau, J., Kasper, L., Lomakina, E. I., ... & Stephan, K. E. (2014). Inferring the intentions of others by hierarchical Bayesian learning. PLoS computational biology, 10(9), e1003810.

      Schulz, L., Schulz, E., Bhui, R., & Dayan, P. Mechanisms of Mistrust: A Bayesian Account of Misinformation Learning. https://doi.org/10.31234/osf.io/8egxh

      We thank the reviewers for pointing us to this relevant work. We have updated the introduction, mentioning these precedents in the literature and highlighting our specific contributions:

      “To address these questions, we adopt a novel approach within the disinformation literature by exploiting a Reinforcement Learning (RL) experimental framework (36). While RL has guided disinformation research in recent years (37–41), our approach is novel in using one of its most popular tasks: the “bandit task”.”

      We also explain in the discussion how these papers relate to the current study:

      “Unlike previous studies wherein participants had to infer source credibility from experience (30,37,72), we took an explicit-instruction approach, allowing us to precisely assess source-credibility impact on learning, without confounding it with errors in learning about the sources themselves. More broadly, our work connects with prior research on observational learning, which examined how individuals learn from the actions or advice of social partners (72–75). This body of work has demonstrated that individuals integrate learning from their private experiences with learning based on others’ actions or advice—whether by inferring the value others attribute to different options or by mimicking their behavior (57,76). However, our task differs significantly from traditional observational learning. Firstly, our feedback agents interpret outcomes rather than demonstrating or recommending actions (30,37,72).”

      (2) It isn't completely clear what the "cross-fitting" procedure accomplishes. Can this be discussed further?

      We thank the reviewer for requesting further clarification on the cross-fitting procedure. Our study utilizes two distinct model families: Bayesian models and CA models. The credit assignment parameters from the CA models can be treated as “data/behavioural features” corresponding to how choice feedback affects choice-propensities. The cross fitting-approach allows us in effect to examine whether these propensity features are predicted from our Bayesian models. To the extent they are not, we can conclude empirical behavior is “biased”.

      Thus, in our cross-fitting procedure we compare the CA model parameters extracted from participant data (empirical features) with those that would be expected if our Bayesian agents performed the task. Specifically, we first fit participant behavior with our Bayesian models, then simulate this model using the best-fitted parameters and fit those simulations with our CA models. This generates a set of CA parameters that would be predicted if participants behavior is reduced to a Bayesian account. By comparing these predicted Bayesian CA parameters with the actual CA parameters obtained from human participants, the cross-fitting procedure allows us to quantitatively demonstrate that the observed participant parameters are indeed statistically significant deviations from normative Bayesian processing. This provides a robust validation that the biases we identify are not artifacts of the CA model's structure but true departures from normative learning.

      We also note that Reviewer 3 suggested an intuitive way to think about the CA parameters—as analogous to logistic regression coefficients in a “sophisticated regression” of choice on (recencyweighted) choice-feedback. We find this suggestion potentially helpful for readers. Under this interpretation, the purpose of the cross-fitting method can be seen simply as estimating the regression coefficients that would be predicted by our Bayesian agents, and comparing those to the empirical coefficients.

      In our manuscript we now explain this issues more clearly by explaining how our model is analogous to a logistic regression:

      “The probability to choose a bandit (say A over B) in this family of models is a logistic function of the contrast choice-propensities between these two bandits. One interpretation of this model is as a “sophisticated” logistic regression, where the CA parameters take the role of “regression coefficients” corresponding to the change in log odds of repeating the just-taken action in future trials based on the feedback (+/- CA for positive or negative feedback, respectively; the model also includes gradual perseveration which allows for constant log-odd changes that are not affected by choice feedback) . The forgetting rate captures the extent to which the effect of each trial on future choices diminishes with time. The Q-values are thus exponentially decaying sums of logistic choice propensities based on the types of feedback a bandit received.”

      We also explain our cross-fitting procedure in more detail:

      “To further characterise deviations between behaviour and our Bayesian learning models, we used a “crossfitting” method. Treating CA parameters as data-features of interest (i.e., feedback dependent changes in choice propensity), our goal was to examine if and how empirical features differ from features extracted from simulations of our Bayesian learning models. Towards that goal, we simulated synthetic data based on Bayesian agents (using participants’ best fitting parameters), but fitted these data using the CA-models, obtaining what we term “Bayesian-CA parameters” (Fig. 2d; Methods). A comparison of these BayesianCA parameters, with empirical-CA parameters obtained by fitting CA models to empirical data, allowed us to uncover patterns consistent with, or deviating from, ideal-Bayesian value-based inference. Under the sophisticated logistic-regression interpretation of the CA-model family the cross-fitting method comprises a comparison between empirical regression coefficients (i.e., empirical CA parameters) and regression coefficient based on simulations of Bayesian models (Bayesian CA parameters).”

      (3) The Credibility-CA model seems to fit the same as the free-credibility Bayesian model in the first experiment and barely better in the second experiment. Why not use a more standard model comparison metric like the Bayesian Information Criterion (BIC)? Even if there are advantages to the bootstrap method (which should be described if so), the BIC would help for comparability between papers.

      We thank the reviewer for this important comment regarding our model comparison approach. We acknowledge that classical information criteria like AIC and BIC are widely used in RL studies. However, we argue our method for model-comparison is superior.

      We conducted a model recovery analysis demonstrating a significant limitation of using AIC or BIC for model-comparison in our data. Both these methods are strongly biased in favor of the Bayesian models. Our PBCM method, on the other hand, is both unbiased and more accurate. We believe this is because “off the shelf” methods like AIC and BIC rely on strong assumptions (such as asymptotic sample size and trial-independence) that are not necessarily met in our tasks (Data is finite; Trials in RL tasks depend on previous trials). PBCM avoids such assumptions to obtain comparison criteria specifically tailored to the structure and size of our empirical data. We have now mentioned this fact in the results section of the main text:

      “We considered using AIC and BIC, which apply “off-the shelf” penalties for model-complexity. However, these methods do not adapt to features like finite sample size (relying instead on asymptotic assumption) or temporal dependence (as is common in reinforcement learning experiments). In contrast, the parametric bootstrap cross-fitting method replaces these fixed penalties with empirical, data-driven criteria for modelselection. Indeed, model-recovery simulations confirmed that whereas AIC and BIC were heavily biased in favour of the Bayesian models, the bootstrap method provided excellent model-recovery (See Fig. S20).”

      We have also included such model recovery in the SI document:

      (4) As suggested in the discussion, the updating based on random feedback could be due to the interleaving of trials. If one is used to learning from the source on most trials, the occasional random trial may be hard to resist updating from. The exact interleaving structure should also be clarified (I assume different sources were shown for each bandit pair). This would also relate to work on RL and working memory: Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European Journal of Neuroscience, 35(7), 10241035.

      We thank the reviewer for this point. The specific interleaved structure of the agents is described in the main text:

      “Each agent provided feedback for 5 trials for each bandit pair (with the agent order interleaved within the bandit pair).”

      As well as in the methods section:

      “Feedback agents were randomly interleaved across trials subject to the constraint that each agent appeared on 5-trials for each bandit pair.”

      We also thank the reviewer for mentioning the relevant work on working memory. We have now added it to our discussion point:

      “In our main study, we show that participants revised their beliefs based on entirely non-credible feedback, whereas an ideal Bayesian strategy dictates such feedback should be ignored. This finding resonates with the “continued-influence effect” whereby misleading information continues to influence an individual's beliefs even after it has been retracted (59,60). One possible explanation is that some participants failed to infer that feedback from the 1-star agent was statistically void of information content, essentially random (e.g., the group-level credibility of this agent was estimated by our free-credibility Bayesian model as higher than 50%). Participants were instructed that this feedback would be “a lie” 50% of the time but were not explicitly told that this meant it was random and should therefore be disregarded. Notably, however, there was no corresponding evidence random feedback affected behaviour in our discovery study. It is possible that an individual’s ability to filter out random information might have been limited due to a high cognitive load induced by our main study task, which required participants to track the values of three bandit pairs and juggle between three interleaved feedback agents (whereas in our discovery study each experimental block featured a single bandit pair). Future studies should explore more systematically how the ability to filter random feedback depends on cognitive load (61).”

      (5) Why does the choice-repetition regression include "only trials for which the last same-pair trial featured the 3-star agent and in which the context trial featured a different bandit pair"? This could be stated more plainly.

      We thank the reviewer for this question. When we previously submitted our manuscript, we thought that finding enhanced credit-assignment for fully credible feedback following potential disinformation from a different context would constitute a striking demonstration of our “contrast effect”. However, upon reexamining this finding we found out we had a coding error (affecting how trials were filtered). We have now rerun and corrected this analysis. We have assessed the contrast effect for both "same-context" trials (where the contextual trial featured the same bandit pair as the learning trial) and "different-context" trials (where the contextual trial featured a different bandit pair). Our re-analysis reveals a selective significant contrast effect in the samecontext condition, but no significant effect in the different-context condition. We have updated the main text to reflect these corrected findings and provide a clearer explanation of the analysis:

      “A comparison of empirical and Bayesian credit-assignment parameters revealed a further deviation from ideal Bayesian learning: participants showed an exaggerated credit-assignment for the 3-star agent compared with Bayesian models [Wilcoxon signed-rank test, instructed-credibility Bayesian model (median difference=0.74, z=11.14); free-credibility Bayesian model (median difference=0.62, z=10.71), all p’s<0.001] (Fig. 3a). One explanation for enhanced learning for the 3-star agents is a contrast effect, whereby credible information looms larger against a backdrop of non-credible information. To test this hypothesis, we examined whether the impact of feedback from the 3-star agent is modulated by the credibility of the agent in the trial immediately preceding it. More specifically, we reasoned that the impact of a 3-star agent would be amplified by a “low credibility context” (i.e., when it is preceded by a low credibility trial). In a binomial mixed effects model, we regressed choice-repetition on feedback valence from the last trial featuring the same bandit pair (i.e., the learning trial) and the feedback agent on the trial immediately preceding that last trial (i.e., the contextual credibility; see Methods for model-specification). This analysis included only learning trials featuring the 3-star agent, and context trials featuring the same bandit pair as the learning trial (Fig. 4a). We found that feedback valence interacted with contextual credibility (F(2,2086)=11.47, p<0.001) such that the feedback-effect (from the 3-star agent) decreased as a function of the preceding context-credibility (3-star context vs. 2-star context: b= -0.29, F(1,2086)=4.06, p=0.044; 2star context vs. 1-star context: b=-0.41, t(2086)=-2.94, p=0.003; and 3-star context vs. 1-star context: b=0.69, t(2086)=-4.74, p<0.001) (Fig. 4b). This contrast effect was not predicted by simulations of our main models of interest (Fig. 4c). No effect was found when focussing on contextual trials featuring a bandit pair different than the one in the learning trial (see SI 3.5). Thus, these results support an interpretation that credible feedback exerts a greater impact on participants’ learning when it follows non-credible feedback, in the same learning context.”

      We have modified the discussion accordingly as well:

      “A striking finding in our study was that for a fully credible feedback agent, credit assignment was exaggerated (i.e., higher than predicted by our Bayesian models). Furthermore, the effect of fully credible feedback on choice was further boosted when it was preceded by a low-credibility context related to current learning. We interpret this in terms of a “contrast effect”, whereby veridical information looms larger against a backdrop of disinformation (21). One upshot is that exaggerated learning might entail a risk of jumping to premature conclusions based on limited credible evidence (e.g., a strong conclusion that a vaccine is produces significant side-effect risks based on weak credible information, following non-credible information about the same vaccine). An intriguing possibility, that could be tested in future studies, is that participants strategically amplify the extent of learning from credible feedback to dilute the impact of learning from noncredible feedback. For example, a person scrolling through a social media feed, encountering copious amounts of disinformation, might amplify the weight they assign to credible feedback in order to dilute effects of ‘fake news’. Ironically, these results also suggest that public campaigns might be more effective when embedding their messages in low-credibility contexts , which may boost their impact.”

      And we have included some additional analyses in the SI document:

      “3.5 Contrast effects for contexts featuring a different bandit

      Given that we observed a contrast effect when both the learning and the immediately preceding "context trial” involved the same pair of bandits, we next investigated whether this effect persisted when the context trial featured a different bandit pair – a situation where the context would be irrelevant to the current learning. Again, we used in a binomial mixed effects model, regressing choice-repetition on feedback valence in the learning trial and the feedback agent in the context trial. This analysis included only learning trials featuring the 3-star agent, and context trials featuring a different bandit pair than the learning trial (Fig. S22a). We found no significant evidence of an interaction between feedback valence and contextual credibility (F(2,2364)=0.21, p=0.81) (Fig. S22b). This null result was consistent with the range of outcomes predicted by our main computational models (Fig. S22c).

      We aimed to formally compare the influence of two types of contextual trials: those featuring the same bandit pair as the learning trial versus those featuring a different pair. To achieve this, we extended our mixedeffects model by incorporating a new predictor variable, "CONTEXT_TYPE" which coded whether the contextual trial involved the same bandit pair (coded as -0.5) or a different bandit pair (+0.5) compared to the learning trial. The Wilkinson notation for this expanded mixed-effects model is:

      𝑅𝐸𝑃𝐸𝐴𝑇 ~ 𝐶𝑂𝑁𝑇𝐸𝑋𝑇_𝑇𝑌𝑃𝐸 ∗ 𝐹𝐸𝐸𝐷𝐵𝐴𝐶𝐾 ∗ (𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>2-star</sub> + 𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>3-star</sub>) + 𝐵𝐸𝑇𝑇𝐸𝑅 + (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)

      This expanded model revealed a significant three-way interaction between feedback valence, contextual credibility, and context type (F(2,4451) = 7.71, p<0.001). Interpreting this interaction, we found a 2-way interaction between context-source and feedback valence when the context was the same (F(2,4451) = 12.03, p<0.001), but not when context was different (F(2,4451) = 0.23, p = 0.79). Further interpreting the double feedback-valence * context-source interaction (for the same context) we obtained the same conclusions as reported in the main text.”

      (6) Why apply the "Truth-CA" model and not the Bayesian variant that it was motivated by?

      Thanks for this very useful suggestion. We are unsure if we fully understand the question. The Truth-CA model was not motivated by a new Bayesian model. Our Bayesian models were simply used to make the point that participants may partially discriminate between truthful and untruthful feedback (for a given source). This led to the idea that perhaps more credit is assigned for truth (than lie) trials, which is what we found using our Truth-CA model. Note we show that our Bayesian models cannot account for this modulation.

      We have now improved our "Truth-CA" model. Previously, our Truth-CA model considered whether feedback on each trial was true or not based on realized latent true outcomes. However, it is possible that the very same feedback would have had an opposite truth-status if the latent true outcome was different (recall true outcomes are stochastic). This injects noise into the trial classification in our previous model. To avoid this, in our new model feedback is modulated by the probability the reported feedback is true (marginalized over stochasticity of true outcome).

      We have described this new model in the methods section:

      “Additionally, we formulated a “Truth-CA” model, which worked as our Credibility-CA model, but incorporated a free truth-bonus parameter (TB). This parameter modulates the extent of credit assignment for each agent based on the posterior probability of feedback being true (given the credibility of the feedback agent, and the true reward probability of the chosen bandit). The chosen bandit was updated as follows:

      𝑄 ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄 + [𝐶𝐴(𝑎𝑔𝑒𝑛𝑡) + 𝑇𝐵 ∗ (𝑃(𝑡𝑟𝑢𝑡ℎ) − 0.5)] ∗ 𝐹

      where P(truth) is the posterior probability of the feedback being true in the current trial (for exact calculation of P(truth) see “Methods: Bayesian estimation of posterior belief that feedback is true”).”

      All relevant results have been updated accordingly in the main text:

      “To formally address whether feedback truthfulness modulates credit assignment, we fitted a new variant of the CA model (the “Truth-CA” model) to the data. This variant works as our Credibility-CA model but incorporated a truth-bonus parameter (TB) which increases the degree of credit assignment for feedback as a function of the experimenter-determined likelihood the feedback is true (which is read from the curves in Fig 6a when x is taken to be the true probability the bandit is rewarding). Specifically, after receiving feedback, the Q-value of the chosen option is updated according to the following rule: 𝑄 ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄 + [𝐶𝐴(𝑎𝑔𝑒𝑛𝑡) + 𝑇𝐵 ∗ (𝑃(𝑡𝑟𝑢𝑡ℎ) − 0.5)] ∗ 𝐹 where 𝑇𝐵 is the free parameter representing the truth bonus, and 𝑃(𝑡𝑟𝑢𝑡ℎ) is the probability the received feedback being true (from the experimenter’s perspective). We acknowledge that this model falls short of providing a mechanistically plausible description of the credit assignment process, because participants have no access to the experimenter’s truthfulness likelihoods (as the true bandit reward probabilities are unknown to them). Nonetheless, we use this ‘oracle model’ as a measurement tool to glean rough estimates for the extent to which credit assignment Is boosted as a function of its truthfulness likelihood. Fitting this Truth-CA model to participants' behaviour revealed a significant positive truth-bonus (mean=0.21, t(203)=3.12, p=0.002), suggesting that participants indeed assign greater weight to feedback that is likely to be true (Fig. 6c; see SI 3.3.1 for detailed ML parameter results). Notably, simulations using our other models (Methods) consistently predicted smaller truth biases (compared to the empirical bias) (Fig. 6d). Moreover, truth bias was still detected even in a more flexible model that allowed for both a positivity bias and truth-bias (see SI 3.7). The upshot is that participants are biased to assign higher credit based on feedback that is more likely to be true in a manner that is inconsistent with out Bayesian models and above and beyond the previously identified positivity biases.“

      Finally, the Supplementary Information for the discovery study has also been revised to feature this analysis:

      “We next assessed whether participants infer whether the feedback they received on each trial was true or false and adjust their credit assignment based on this inference. We again used the “Truth-CA” model to obtain estimates for the truth bonus (TB), the increase in credit assignment as a function of the posterior probability of feedback being true. As in our main study, the fitted truth bias parameter was significantly positive, indicating that participants assign greater weight to feedback they believe is likely to be true (Fig, S4a; see SI 3.3.1 for detailed ML parameter results). Strikingly, model-simulations (Methods) predicted a lower truth bonus than the one observed in participants (Fig. S4b).”

      (7) "Overall, the results from this study support the exact same conclusions (See SI section 1.2) but with one difference. In the discovery study, we found no evidence for learning based on 50%-credibility feedback when examining either the feedback effect on choice repetition or CA in the credibility-CA model (SI 1.2.3)" - this seems like a very salient difference, when the paper reports the feedback effect as a primary finding of interest, though I understand there remains a valence-based difference.

      We agree with the reviewer and thank them for this suggestion. We now state explicitly throughout the manuscript that this finding was obtained only in one of our two studies. In the section “Discovery study” of the results we state explicitly this finding was not found in the discovery study:

      “However, we found no evidence for learning based on 50%-credibility feedback when examining either the feedback effect on choice repetition or CA in the credibility-CA model (SI 1.2.3).”

      We also note that related to another concern from R3 (that perseveration may masquerade as positivity bias) we conducted additional analyses (detailed in SI 3.6.2). These analyses revealed that the observed positivity bias for the 1-star agent in the discovery study falls within the range predicted by simple choice-perseveration. Consequently, we have removed the suggestion that participants still learn from the random agent in the discovery study. Furthermore, we have modified the discussion section to include a possible explanation for this discrepancy between the two studies:

      “Notably, however, there was no corresponding evidence random feedback affected behaviour in our discovery study. It is possible that an individual’s ability to filter out random information might have been limited due to a high cognitive load induced by our main study task, which required participants to track the values of three bandit pairs and juggle between three interleaved feedback agents (whereas in our discovery study each experimental block featured a single bandit pair). Future studies should explore more systematically how the ability to filter random feedback depends on cognitive load (61).”

      (8) "Participants were instructed that this feedback would be "a lie 50% of the time but were not explicitly told that this meant it was random and should therefore be disregarded." - I agree that this is a possible explanation for updating from the random source. It is a meaningful caveat.

      Thank you for this thought. While this can be seen as a caveat—since we don’t know what would have happened with explicit instructions—we also believe it is interesting from another perspective. In many real-life situations, individuals may have all the necessary information to infer that the feedback they receive is uninformative, yet still fail to do so, especially when they are not explicitly told to ignore it.

      In future work, we plan to examine how behaviour changes when participants are given more explicit instructions—for example, that the 50%-credibility agent provides purely random feedback.

      (9) "Future studies should investigate conditions that enhance an ability to discard disinformation, such as providing explicit instructions to ignore misleading feedback, manipulations that increase the time available for evaluating information, or interventions that strengthen source memory." - there is work on some of this in the misinformation literature that should be cited, such as the "continued influence effect". For example: Johnson, H. M., & Seifert, C. M. (1994). Sources of the continued influence effect: When misinformation in memory affects later inferences. Journal of experimental psychology: Learning, memory, and cognition, 20(6), 1420.

      We thank the reviewer for pointing us towards the relevant literature. We have now included citations about the “continued influence effect” of misinformation in the discussion:

      “In our main study, we show that participants revised their beliefs based on entirely non-credible feedback, whereas an ideal Bayesian strategy dictates such feedback should be ignored. This finding resonates with the “continued-influence effect” whereby misleading information continues to influence an individual's beliefs even after it has been retracted (59,60).”

      (10) Are the authors arguing that choice-confirmation bias may be at play? Work on choice-confirmation bias generally includes counterfactual feedback, which is not present here.

      We agree with the reviewer that a definitive test for choice-confirmation bias typically requires counterfactual feedback, which is not present in our current task. In our discussion, we indeed suggest that the positivity bias we observe may stem from a form of choice-confirmation, drawing on the extensive literature on this bias in reinforcement learning (Lefebvre et al., 2017; Palminteri et al., 2017; Palminteri & Lebreton, 2022). However, we fully acknowledge that this link is a hypothesis and that explicitly testing for choice-confirmation bias would necessitate a future study specifically incorporating counterfactual feedback. We have included a clarification of this point in the discussion:

      “Previous reinforcement learning studies, report greater credit-assignment based on positive compared to negative feedback, albeit only in the context of veridical feedback (43,44,62). Here, supporting our a-priori hypothesis we show that this positivity bias is amplified for information of low and intermediate credibility (in absolute terms in the discovery study, and relative to the overall extent of CA in both studies) . Of note, previous literature has interpreted enhanced learning for positive outcomes in reinforcement learning as indicative of a confirmation bias (42,44). For example, positive feedback may confirm, to a greater extent than negative feedback one’s choice as superior (e.g., “I chose the better of the two options”). Leveraging the framework of motivated cognition (35), we posited that feedback of uncertain veracity (e.g., low credibility) amplifies this bias by incentivising individuals to self-servingly accept positive feedback as true (because it confers positive, desirable outcomes), and explain away undesirable, choice-disconfirming, negative feedback as false. This could imply an amplified confirmation bias on social media, where content from sources of uncertain credibility, such as unknown or unverified users, is more easily interpreted in a self-serving manner, disproportionately reinforcing existing beliefs (63). In turn, this could contribute to an exacerbation of the negative social outcomes previously linked to confirmation bias such as polarization (64,65), the formation of ‘echo chambers’ (19), and the persistence of misbelief regarding contemporary issues of importance such as vaccination (66,67) and climate change (68–71). We note however, that further studies are required to determine whether positivity bias in our task is indeed a form of confirmation bias.”

      Reviewer #3 (Public review):

      Summary

      This paper investigates how disinformation affects reward learning processes in the context of a two-armed bandit task, where feedback is provided by agents with varying reliability (with lying probability explicitly instructed). They find that people learn more from credible sources, but also deviate systematically from optimal Bayesian learning: They learned from uninformative random feedback, learned more from positive feedback, and updated too quickly from fully credible feedback (especially following low-credibility feedback). Overall, this study highlights how misinformation could distort basic reward learning processes, without appeal to higher-order social constructs like identity.

      Strengths

      (1) The experimental design is simple and well-controlled; in particular, it isolates basic learning processes by abstracting away from social context.

      (2) Modeling and statistics meet or exceed the standards of rigor.

      (3) Limitations are acknowledged where appropriate, especially those regarding external validity.

      (4) The comparison model, Bayes with biased credibility estimates, is strong; deviations are much more compelling than e.g., a purely optimal model.

      (5) The conclusions are interesting, in particular the finding that positivity bias is stronger when learning from less reliable feedback (although I am somewhat uncertain about the validity of this conclusion)

      We deeply thank the reviewer for highlighting the strengths of this work.

      Weaknesses

      (1) Absolute or relative positivity bias?

      In my view, the biggest weakness in the paper is that the conclusion of greater positivity bias for lower credible feedback (Figure 5) hinges on the specific way in which positivity bias is defined. Specifically, we only see the effect when normalizing the difference in sensitivity to positive vs. negative feedback by the sum. I appreciate that the authors present both and add the caveat whenever they mention the conclusion (with the crucial exception of the abstract). However, what we really need here is an argument that the relative definition is the right way to define asymmetry....

      Unfortunately, my intuition is that the absolute difference is a better measure. I understand that the relative version is common in the RL literature; however previous studies have used standard TD models, whereas the current model updates based on the raw reward. The role of the CA parameter is thus importantly different from a traditional learning rate - in particular, it's more like a logistic regression coefficient (as described below) because it scales the feedback but not the decay. Under this interpretation, a difference in positivity bias across credibility conditions corresponds to a three-way interaction between the exponentially weighted sum of previous feedback of a given type (e.g., positive from the 75% credible agent), feedback positivity, and condition (dummy coded). This interaction corresponds to the nonnormalized, absolute difference.

      Importantly, I'm not terribly confident in this argument, but it does suggest that we need a compelling argument for the relative definition.

      We thank the reviewer for raising this important point about the definition of positivity bias, and for their thoughtful discussion on the absolute versus relative measures. We believe that the relative valence bias offers a distinct and valuable perspective on positivity bias. Conceptually, this measure describes positivity bias in a manner akin to a “percentage difference” relative to the overall level of learning which allows us to control for the overall decreases in the overall amount of credit assignment as feedback becomes less credible. We are unsure if one measure is better or more correct than the other and we believe that reporting both measures enriches the understanding of positivity bias and allows for a more comprehensive characterization of this phenomenon (as long as these measures are interpreted carefully). We have stated the significance of the relative measure in the results section:

      “Following previous research, we quantified positivity bias in 2 ways: 1) as the absolute difference between credit-assignment based on positive or negative feedback, and 2) as the same difference but relative to the overall extent of learning. We note that the second, relative, definition, is more akin to “percentage change” measurements providing a control for the overall lower levels of credit-assignment for less credible agent.”

      We also wish to point out that in our discovery study we had some evidence for amplification of positivity bias in absolute sense.

      (2) Positivity bias or perseveration?

      A key challenge in interpreting many of the results is dissociating perseveration from other learning biases. In particular, a positivity bias (Figure 5) and perseveration will both predict a stronger correlation between positive feedback and future choice. Crucially, the authors do include a perseveration term, so one would hope that perseveration effects have been controlled for and that the CA parameters reflect true positivity biases. However, with finite data, we cannot be sure that the variance will be correctly allocated to each parameter (c.f. collinearity in regressions). The fact that CA- is fit to be negative for many participants (a pattern shown more strongly in the discovery study) is suggestive that this might be happening. A priori, the idea that you would ever increase your value estimate after negative feedback is highly implausible, which suggests that the parameter might be capturing variance besides that it is intended to capture.

      The best way to resolve this uncertainty would involve running a new study in which feedback was sometimes provided in the absence of a choice - this would isolate positivity bias. Short of that, perhaps one could fit a version of the Bayesian model that also includes perseveration. If the authors can show that this model cannot capture the pattern in Figure 5, that would be fairly convincing.

      We thank the reviewer for this very insightful and crucial point regarding the potential confound between positivity bias and perseveration. We entirely agree that distinguishing these effects can be challenging. To rigorously address this concern and ascertain that our observed positivity bias, particularly its inflation for low-credibility feedback, is not merely an artifact of perseveration, we conducted additional analyses as suggested.

      First, following the reviewer’s suggestion we simulated our Bayesian models, including a perseveration term, for both our main and discovery studies. Crucially, none of these simulations predicted the specific pattern of inflated positivity bias for low-credibility feedback that we identified in participants.

      Additionally, taking a “devil’s advocate” approach, we tested whether our credibility-CA model (which includes perseveration but not a feedback valence bias) can predict our positivity bias findings. Thus, we simulated 100 datasets using our Credibility-CA model (based on empirical best-fitting parameters). We then fitted each of these simulated datasets using our CredibilityValence CA model. By examining the distribution of results across these synthetic datasets fits and comparing them to the actual results from participants, we found that while perseveration could indeed lead (as the reviewer suspected) to an artifactual positivity bias, it could not predict the magnitude of the observed inflation of positivity bias for low-credibility feedback (whether measured in absolute or relative terms).

      Based on these comprehensive analyses, we are confident that our main results concerning the modulation of a valence bias as a function of source-credibility cannot be accounted by simple choice-perseveration. We have briefly explained these analyses in the main results section:

      “Previous research has suggested that positivity bias may spuriously arise from pure choice-perseveration (i.e., a tendency to repeat previous choices regardless of outcome) (49,50). While our models included a perseveration-component, this control may not be preferent. Therefore, in additional control analyses, we generated synthetic datasets using models including choice-perseveration but devoid of feedback-valence bias, and fitted them with our credibility-valence model (see SI 3.6.1). These analyses confirmed that perseveration can masquerade as an apparent positivity bias. Critically, however, these analyses also confirmed that perseveration cannot account for our main finding of increased positivity bias, relative to the overall extent of CA, for low-credibility feedback.”

      Additionally, we have added a detailed description of these additional analyses and their findings to the Supplementary Information document:

      “3.6 Positivity bias results cannot be explained by a pure perseveration

      3.6.1 Main study

      Previous research has suggested it may be challenging to dissociate between a feedback-valence positivity bias and perseveration (i.e., a tendency to repeat previous choices regardless of outcome). While our Credit Assignment (CA) models already include a perseveration mechanism to account for this, this control may not be perfect. We thus conducted several tests to examine if our positivity-bias related results could be accounted for by perseveration.

      First we examined whether our Bayesian-models, augmented by a perseveration mechanism (as in our CA model) can generate predictions similar to our empirical results. We repeated our cross-fitting procedure to these extended Bayesian models. To briefly recap, this involved fitting participant behavior with them, generating synthetic datasets based on the resulting maximum likelihood (ML) parameters, and then fitting these simulated datasets with our Credibility-Valence CA model (which is designed to detect positivity bias). This test revealed that adding perseveration to our Bayesian models did not predict a positivity bias in learning. In absolute terms there was a small negativity bias (instructed-credibility Bayesian: b=−0.19, F(1,1218)=17.78, p<0.001, Fig. S23a-b; free-credibility Bayesian: b=−0.17, F(1,1218)=13.74, p<0.001, Fig. S23d-e). In relative terms we detected no valence related bias (instructed-credibility Bayesian: b=−0.034, F(1,609)=0.45, p=0.50, Fig. S22c; free-credibility Bayesian: b=−0.04, F(1,609)=0.51, p=0.47, Fig. S23f). More critically, these simulations also did not predict a change in the level of positivity bias as a function of feedback credibility, neither at an absolute level (instructed-credibility Bayesian: F(2,1218)=0.024, p=0.98, Fig. S23b; free-credibility Bayesian: F(2,1218)=0.008, p=0.99, Fig. S23e), nor at a relative level (instructedcredibility Bayesian: F(2,609)=1.57, p=0.21, Fig. S23c; free-credibility Bayesian: F(2,609)=0.13, p=0.88, Fig. S23f). The upshot is that our positivity-bias findings cannot be accounted for by our Bayesian models even when these are augmented with perseveration.

      However, it is still possible that empirical CA parameters from our credibility-valence model (reported in main text Fig. 5) were distorted, absorbing variance from a perseveration. To address this, we took a “devil's advocate” approach testing the assumption that CA parameters are not truly affected by feedback valance and that there is only perseveration in our data. Towards that goal, we simulated data using our CredibilityCA model (which includes perseveration but does not contain a valence bias in its learning mechanism) and then fitted these synthetic datasets using our Credibility-Valence CA model to see if the observed positivity bias could be explained by perseveration alone. Specifically, we generated 101 “group-level” synthetic datasets (each including one simulation for each participant, based on their empirical ML parameters), and fitted each dataset with our Credibility-Valence CA model. We then analysed the resulting ML parameters in each dataset using the same mixed-effects models as described in the main text, examining the distribution of effects of interest across these simulated datasets. Comparing these simulation results to the data from participants revealed a nuanced picture. While the positivity bias observed in participants is within the range predicted by a pure perseveration account when measured in absolute terms (Fig. S24a), it is much higher than predicted by pure perseveration when measured relative to the overall level of learning (Fig. S24c). More importantly, the inflation in positivity bias for lower credibility feedback is substantially higher in participants than what would be predicted by a pure perseveration account, a finding that holds true for both absolute (Fig. S24b) and relative (Fig. S24d) measures.”

      “3.6.2 Discovery study

      We then replicated these analyses in our discovery study to confirm our findings. We again checked whether extended versions of the Bayesian models (including perseveration) predicted the positivity bias results observed. Our cross-fitting procedure showed that the instructed-credibility Bayesian model with perseveration did predict a positivity bias for all credibility levels in this discovery study, both when measured in absolute terms [50% credibility (b=1.74,t(824)=6.15), 70% credibility (b=2.00,F(1,824)=49.98), 85% credibility (b=1.81,F(1,824)=40.78), 100% credibility (b=2.42,F(1,824)=72.50), all p's<0.001], and in relative terms [50% credibility (b=0.25,t(412)=3.44), 70% credibility (b=0.31,F(1,412)=17.72), 85% credibility (b=0.34,F(1,412)=21.06), 100% credibility (b=0.42,F(1,412)=31.24), all p's<0.001]. However, importantly, these simulations did not predict a change in the level of positivity bias as a function of feedback credibility, neither at an absolute level (F(3,412)=1.43,p=0.24), nor at a relative level (F(3,412)=2.06,p=0.13) (Fig. S25a-c). In contrast, simulations of the free-credibility Bayesian model (with perseveration) predicted a slight negativity bias when measured in absolute terms (b=−0.35,F(1,824)=5.14,p=0.024), and no valence bias when measured relative to the overall degree of learning (b=0.05,F(1,412)=0.55,p=0.46). Crucially, this model also did not predict a change in the level of positivity bias as a function of feedback credibility, neither at an absolute level (F(3,824)=0.27,p=0.77), nor at a relative level (F(3,412)=0.76,p=0.47) (Fig. S25d-f).

      As in our main study, we next assessed whether our Credibility-CA model (which includes perseveration but no valence bias) predicted the positivity bias results observed in participants in the discovery study. This analysis revealed that the average positivity bias in participants is higher than predicted by a pure perseveration account, both when measured in absolute terms (Fig. S26a) and in relative terms (Fig. S26c). Specifically, only the aVBI for the 70% credibility agent was above what a perseveration account would predict, while the rVBI for all agents except the completely credible one exceeded that threshold. Furthermore, the inflation in positivity bias for lower credibility feedback (compared to the 100% credibility agent) is significantly higher in participants than would be predicted by a pure perseveration account, in both absolute (Fig. S26b) and relative (Fig. S26d) terms.

      Together, these results show that the general positivity bias observed in participants could be predicted by an instructed-credibility Bayesian model with perseveration, or by a CA model with perseveration. Moreover, we find that these two models can predict a positivity bias for the 50% credibility agent, raising a concern that our positivity bias findings for this source may be an artefact of not-fully controlled for perseveration. However, the credibility modulation of this positivity bias, where the bias is amplified for lower credibility feedback, is consistently not predicted by perseveration alone, regardless of whether perseveration is incorporated into a Bayesian or a CA model. This finding suggests that participants are genuinely modulating their learning based on feedback credibility, and that this modulation is not merely an artifact of choice perseveration.”

      (3) Veracity detection or positivity bias?

      The "True feedback elicits greater learning" effect (Figure 6) may be simply a re-description of the positivity bias shown in Figure 5. This figure shows that people have higher CA for trials where the feedback was in fact accurate. But assuming that people tend to choose more rewarding options, true-feedback cases will tend to also be positive-feedback cases. Accordingly, a positivity bias would yield this effect, even if people are not at all sensitive to trial-level feedback veracity. Of course, the reverse logic also applies, such that the "positivity bias" could actually reflect discounting of feedback that is less likely to be true. This idea has been proposed before as an explanation for confirmation bias (see Pilgrim et al, 2024 https://doi.org/10.1016/j.cognition.2023.105693and much previous work cited therein). The authors should discuss the ambiguity between the "positivity bias" and "true feedback" effects within the context of this literature....

      Before addressing these excellent comments, we first note that we have now improved our "TruthCA" model. Previously, our Truth-CA model considered whether feedback on each trial was true or not based on realized latent true outcomes. However, it is possible that the very same feedback would have had an opposite truth-status if the latent true outcome was different (recall true outcomes are stochastic). This injects noise into the trial classification in our former model. To avoid this, in our new model feedback is modulated by the probability the reported feedback is true (marginalized over stochasticity of true outcome). Please note in our responses below that we conducted extensive analysis to confirm that positivity bias doesn’t in fact predict the truthbias we detect using our truth biased model

      We have described this new model in the methods section:

      “Additionally, we formulated a “Truth-CA” model, which worked as our Credibility-CA model, but incorporated a free truth-bonus parameter (TB). This parameter modulates the extent of credit assignment for each agent based on the posterior probability of feedback being true (given the credibility of the feedback agent, and the true reward probability of the chosen bandit). The chosen bandit was updated as follows:

      𝑄 ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄 + [𝐶𝐴(𝑎𝑔𝑒𝑛𝑡) + 𝑇𝐵 ∗ (𝑃(𝑡𝑟𝑢𝑡ℎ) − 0.5)] ∗ 𝐹

      where P(truth) is the posterior probability of the feedback being true in the current trial (for exact calculation of P(truth) see “Methods: Bayesian estimation of posterior belief that feedback is true”).”

      All relevant results have been updated accordingly in the main text:

      To formally address whether feedback truthfulness modulates credit assignment, we fitted a new variant of the CA model (the “Truth-CA” model) to the data. This variant works as our Credibility-CA model, but incorporated a truth-bonus parameter (TB) which increases the degree of credit assignment for feedback as a function of the experimenter-determined likelihood the feedback is true (which is read from the curves in Fig 6a when x is taken to be the true probability the bandit is rewarding). Specifically, after receiving feedback, the Q-value of the chosen option is updated according to the following rule:

      𝑄 ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄 + [𝐶𝐴(𝑎𝑔𝑒𝑛𝑡) + 𝑇𝐵 ∗ (𝑃(𝑡𝑟𝑢𝑡ℎ) − 0.5)] ∗ 𝐹

      where 𝑇𝐵 is the free parameter representing the truth bonus, and 𝑃(𝑡𝑟𝑢𝑡ℎ) is the probability the received feedback being true (from the experimenter’s perspective). We acknowledge that this model falls short of providing a mechanistically plausible description of the credit assignment process, because participants have no access to the experimenter’s truthfulness likelihoods (as the true bandit reward probabilities are unknown to them). Nonetheless, we use this ‘oracle model’ as a measurement tool to glean rough estimates for the extent to which credit assignment Is boosted as a function of its truthfulness likelihood.

      Fitting this Truth-CA model to participants' behaviour revealed a significant positive truth-bonus (mean=0.21, t(203)=3.12, p=0.002), suggesting that participants indeed assign greater weight to feedback that is likely to be true (Fig. 6c; see SI 3.3.1 for detailed ML parameter results). Notably, simulations using our other models (Methods) consistently predicted smaller truth biases (compared to the empirical bias) (Fig. 6d). Moreover, truth bias was still detected even in a more flexible model that allowed for both a positivity bias and truth-bias (see SI 3.7). The upshot is that participants are biased to assign higher credit based on feedback that is more likely to be true in a manner that is inconsistent with out Bayesian models and above and beyond the previously identified positivity biases.”

      Finally, the Supplementary Information for the discovery study has also been revised to feature this analysis:

      “We next assessed whether participants infer whether the feedback they received on each trial was true or false and adjust their credit assignment based on this inference. We again used the “Truth-CA” model to obtain estimates for the truth bonus (TB), the increase in credit assignment as a function of the posterior probability of feedback being true. As in our main study, the fitted truth bias parameter was significantly positive, indicating that participants assign greater weight to feedback they believe is likely to be true (Fig, S4a; see SI 3.3.1 for detailed ML parameter results). Strikingly, model-simulations (Methods) predicted a lower truth bonus than the one observed in participants (Fig. S4b).”

      Additionally, we thank the reviewer for pointing us to the relevant work by Pilgrim et al. (2024). We agree that the relationship between "true feedback" and "positivity bias" effects is nuanced, and their potential overlap warrants careful consideration. Note our analyses suggest that this is not solely the case. Firstly, simulations of our Credibility-Valence CA model predict only a small "truth bonus" effect, which is notably smaller than what we observed in participants. Secondly, we formulated an extension of our "Truth-CA" model that includes a valence bias in credit assignment. If our truth bonus results were merely an artifact of positivity bias, this extended model should absorb that variance, producing a null truth bonus parameter. However, fitting this model to participant data still revealed a significant positive truth bonus, which again exceeds the range predicted by simulations of our Credibility CA model:

      “3.7 Truth inference is still detected when controlling for valence bias

      Given that participants frequently select bandits that are, on average, mostly rewarding, it is reasonable to assume that positive feedback is more likely to be objectively true than negative feedback. This raises a question if the "truth inference" effect we observed in participants might simply be an alternative description of a positivity bias in learning. To directly test this idea, we extended our Truth-CA model to explicitly account for a valence bias in credit assignment. This extended model features separate CA parameters for positive and negative feedback for each agent. When we fitted this new model to participant behavior, it still revealed a significant truth bonus in both the main study (Wilkoxon’s signrank test: median = 0.09, z(202)=2.12, p=0.034; Fig. S27a) and the discovery study (median = 3.52, z(102)=7.86, p<0.001; Fig. S27c). Moreover, in the main study, this truth bonus remained significantly higher than what was predicted by all the alternative models, with the exception of the instructed-credibility bayesian model (Fig. S27b). In the discovery study, the truth bonus was significantly higher than what was predicted by all the alternative models (Fig. S27d).”

      Together, these findings suggest that our truth inference results are not simply a re-description of a positivity bias.

      Conversely, we acknowledge the reviewer's point that our positivity bias results could potentially stem from a more general truth inference mechanism. We believe that this possibility should be addressed in a future study where participants rate their belief that received feedback is true (rather than a lie).We have extended our discussion to clarify this possibility and to include the suggested citation:

      “Our findings show that individuals increase their credit assignment for feedback in proportion to the perceived probability that the feedback is true, even after controlling for source credibility and feedback valence. Strikingly, this learning bias was not predicted by any of our Bayesian or credit-assignment (CA) models. Notably, our evidence for this bias is based on a “oracle model” that incorporates the probability of feedback truthfulness from the experimenter's perspective, rather than the participant’s. This raises an important open question: how do individuals form beliefs about feedback truthfulness, and how do these beliefs influence credit assignment? Future research should address this by eliciting trial-by-trial beliefs about feedback truthfulness. Doing so would also allow for testing the intriguing possibility that an exaggerated positivity bias for non-credible sources reflects, to some extent, a truth-based discounting of negative feedback—i.e., participants may judge such feedback as less likely to be true. However, it is important to note that the positivity bias observed for fully credible sources (here and in other literature) cannot be attributed to a truth bias—unless participants were, against instructions, distrustful of that source.”

      The authors get close to this in the discussion, but they characterize their results as differing from the predictions of rational models, the opposite of my intuition. They write:

      “Alternative "informational" (motivation-independent) accounts of positivity and confirmation bias predict a contrasting trend (i.e., reduced bias in low- and medium credibility conditions) because in these contexts it is more ambiguous whether feedback confirms one's choice or outcome expectations, as compared to a full-credibility condition.”

      I don't follow the reasoning here at all. It seems to me that the possibility for bias will increase with ambiguity (or perhaps will be maximal at intermediate levels). In the extreme case, when feedback is fully reliable, it is impossible to rationally discount it (illustrated in Figure 6A). The authors should clarify their argument or revise their conclusion here.

      We apologize for the lack of clarity in our previous explanation. We removed the sentence you cited (it was intended to make a different point which we now consider non-essential). Our current narration is consistent with the point you are making.

      (4) Disinformation or less information?

      Zooming out, from a computational/functional perspective, the reliability of feedback is very similar to reward stochasticity (the difference is that reward stochasticity decreases the importance/value of learning in addition to its difficulty). I imagine that many of the effects reported here would be reproduced in that setting. To my surprise, I couldn't quickly find a study asking that precise question, but if the authors know of such work, it would be very useful to draw comparisons. To put a finer point on it, this study does not isolate which (if any) of these effects are specific to disinformation, rather than simply less information. I don't think the authors need to rigorously address this in the current study, but it would be a helpful discussion point.

      We thank the reviewer for highlighting the parallel (and difference) between feedback reliability and reward stochasticity. However, we have not found any comparable results in the literature. We also note that our discussion includes a paragraph addressing the locus of our effects making the point that more studies are necessary to determine whether our findings are due to disinformation per se or sources being less informative. While this paragraph was included in the previous version it led us to infer our Discussion was too long and we therefore shortened it considerably:

      “An important question arises as to the psychological locus of the biases we uncovered. Because we were interested in how individuals process disinformation—deliberately false or misleading information intended to deceive or manipulate—we framed the feedback agents in our study as deceptive, who would occasionally “lie” about the true choice outcome. However, statistically (though not necessarily psychologically), these agents are equivalent to agents who mix truth-telling with random “guessing” or “noise” where inaccuracies may arise from factors such as occasionally lacking access to true outcomes, simple laziness, or mistakes, rather than an intent to deceive. This raises the question of whether the biases we observed are driven by the perception of potential disinformation as deceitful per se or simply as deviating from the truth. Future studies could address this question by directly comparing learning from statistically equivalent sources framed as either lying or noisy. Unlike previous studies wherein participants had to infer source credibility from experience (30,37,72), we took an explicit-instruction approach, allowing us to precisely assess source-credibility impact on learning, without confounding it with errors in learning about the sources themselves. More broadly, our work connects with prior research on observational learning, which examined how individuals learn from the actions or advice of social partners (72–75). This body of work has demonstrated that individuals integrate learning from their private experiences with learning based on others’ actions or advice—whether by inferring the value others attribute to different options or by mimicking their behavior (57,76). However, our task differs significantly from traditional observational learning. Firstly, our feedback agents interpret outcomes rather than demonstrating or recommending actions (30,37,72). Secondly, participants in our study lack private experiences unmediated by feedback sources. Finally, unlike most observational learning paradigms, we systematically address scenarios with deliberately misleading social partners. Future studies could bridge this by incorporating deceptive social partners into observational learning, offering a chance to develop unified models of how individuals integrate social information when credibility is paramount for decision-making.”

      (5) Over-reliance on analyzing model parameters

      Most of the results rely on interpreting model parameters, specifically, the "credit assignment" (CA) parameter. Exacerbating this, many key conclusions rest on a comparison of the CA parameters fit to human data vs. those fit to simulations from a Bayesian model. I've never seen anything like this, and the authors don't justify or even motivate this analysis choice. As a general rule, analyses of model parameters are less convincing than behavioral results because they inevitably depend on arbitrary modeling assumptions that cannot be fully supported. I imagine that most or even all of the results presented here would have behavioral analogues. The paper would benefit greatly from the inclusion of such results. It would also be helpful to provide a description of the model in the main text that makes it very clear what exactly the CA parameter is capturing (see next point).

      We thank the reviewer for this important suggestion which we address together with the following point.

      (6) RL or regression?

      I was initially very confused by the "RL" model because it doesn't update based on the TD error. Consequently, the "Q values" can go beyond the range of possible reward (SI Figure 5). These values are therefore not Q values, which are defined as expectations of future reward ("action values"). Instead, they reflect choice propensities, which are sometimes notated $h$ in the RL literature. This misuse of notation is unfortunately quite common in psychology, so I won't ask the authors to change the variable. However, they should clarify when introducing the model that the Q values are not action values in the technical sense. If there is precedent for this update rule, it should be cited.

      Although the change is subtle, it suggests a very different interpretation of the model.

      Specifically, I think the "RL model" is better understood as a sophisticated logistic regression, rather than a model of value learning. Ignoring the decay term, the CA term is simply the change in log odds of repeating the just-taken action in future trials (the change is negated for negative feedback). The PERS term is the same, but ignoring feedback. The decay captures that the effect of each trial on future choices diminishes with time. Importantly, however, we can re-parameterize the model such that the choice at each trial is a logistic regression where the independent variables are an exponentially decaying sum of feedback of each type (e.g., positive-cred50, positive-cred75, ... negative-cred100). The CA parameters are simply coefficients in this logistic regression.

      Critically, this is not meant to "deflate" the model. Instead, it clarifies that the CA parameter is actually not such an assumption-laden model estimate. It is really quite similar to a regression coefficient, something that is usually considered "model agnostic". It also recasts the non-standard "cross-fitting" approach as a very standard comparison of regression coefficients for model simulations vs. human data. Finally, using different CA parameters for true vs false feedback is no longer a strange and implausible model assumption; it's just another (perfectly valid) regression. This may be a personal thing, but after adopting this view, I found all the results much easier to understand.

      We thank the reviewer for their insightful and illuminating comments, particularly concerning the interpretation of our model parameters and the nature of our Credit assignment model. We believe your interpretation of the model is accurate and we now narrate it to readers in the hope that our modelling will become clearer and more intuitively. We also present to readers how these recasts our “cross-fitting” approach in the way you suggested (we return to this point below).

      Broadly, while we agree that modelling results depend on underlying assumptions, we believe that “model-agnostic” approaches also have important limitations—especially in reinforcement learning (RL), where choices are shaped by histories of past events, which such approaches often fail to fully account for. As students of RL, we are frequently struck by how careful modelling demonstrates that seemingly meaningful “model-agnostic” patterns can emerge as artefacts of unaccounted-for variables. We also note that the term “model-agnostic” is difficult to define—after all, even regression models rely on assumptions, and some computational models make richer or more transparent assumptions than others. Ideally, we aim to support our findings using converging methods wherever possible.

      We want to clarify that many of our reported findings indeed stem from straightforward behavioral analyses (e.g., simple regressions of choice-repetition), which do not rely on complex modeling assumptions. The two key results that primarily depend on the analysis of model parameters are our findings related to positivity bias and truth inference.

      Regarding the positivity bias, identifying truly model-agnostic behavioral signatures, distinct from effects like choice-perseveration, has historically been a significant challenge in the literature. Classical research on this bias rests on the interpretation of model parameters (Lefebvre et al., 2017; Palminteri et al., 2017), or at least on the use of models to assess what an “unbiased learner” baseline should look like (Palminteri & Lebreton, 2022). Some researchers have suggested possible regressions incorporating history effects to detect positivity bias from choicerepetition behavior, but these regressions (as our model) rely on subtle assumptions about forgetting and history effects (Toyama et al., 2019). Specifically, in our case, this issue is also demonstrated by analysis we conducted related to the previous point the reviewer made (about perseveration masquerading as positivity bias). We believe that dissociating clearly positivity bias from perseveration is an important challenge for the field going forward.

      For our truth inference results, obtaining purely behavioral signatures is similarly challenging due to the intricate interdependencies (the reviewer has identified in previous points) between agent credibility, feedback valence, feedback truthfulness, and choice accuracy within our task design.

      Finally, we agree with the reviewer that regression coefficients are often interpreted as a “modelagnostic” pattern. From this perspective even our findings regarding positivity and truth bias are not a case of over-reliance on complex model assumptions but are rather a way to expose deviations between empirical “sophisticated” regression coefficients and coefficients predicted from Bayesian models.

      We have now described the main learning rule of our model in the main text to ensure that the meaning of the CA parameters is clearer for readers:

      “Next, we formulated a family of non-Bayesian computational RL models. Importantly, these models can flexibly express non-Bayesian learning patterns and, as we show in following sections, can serve to identify learning biases deviating from an idealized Bayesian strategy. Here, an assumption is that during feedback, the choice propensity for the chosen bandit (which here is represented by a point estimate, “Q value“, rather than a distribution) either increases or decreases (for positive or negative feedback, respectively) according to a magnitude quantified by the free “Credit-Assignment (CA)” model parameters (47):

      𝑄(𝑐ℎ𝑜𝑠𝑒𝑛) ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄(𝑐ℎ𝑜𝑠𝑒𝑛) + 𝐶𝐴(𝑎𝑔𝑒𝑛𝑡, 𝑣𝑎𝑙𝑒𝑛𝑐𝑒) ∗ 𝐹

      where F is the feedback received from the agents (coded as 1 for reward feedback and -1 for non-reward feedback), while fQ (∈[0,1]) is the free parameter representing the forgetting rate of the Q-value (Fig. 2a, bottom panel; Fig. S5b; Methods). The probability to choose a bandit (say A over B) in this family of models is a logistic function of the contrast choice-propensities between these two bandits. One interpretation of this model is as a “sophisticated” logistic regression, where the CA parameters take the role of “regression coefficients” corresponding to the change in log odds of repeating the just-taken action in future trials based on the feedback (+/- CA for positive or negative feedback, respectively; the model also includes gradual perseveration which allows for constant log-odd changes that are not affected by choice feedback; see “Methods: RL models”) . The forgetting rate captures the extent to which the effect of each trial on future choices diminishes with time. The Q-values are thus exponentially decaying sums of logistic choice propensities based on the types of feedback a bandit received.”

      We also explain the implications of this perspective for our cross-fitting procedure:

      “To further characterise deviations between behaviour and our Bayesian learning models, we used a “crossfitting” method. Treating CA parameters as data-features of interest (i.e., feedback dependent changes in choice propensity), our goal was to examine if and how empirical features differ from features extracted from simulations of our Bayesian learning models. Towards that goal, we simulated synthetic data based on Bayesian agents (using participants’ best fitting parameters), but fitted these data using the CA-models, obtaining what we term “Bayesian-CA parameters” (Fig. 2d; Methods). A comparison of these BayesianCA parameters, with empirical-CA parameters obtained by fitting CA models to empirical data, allowed us to uncover patterns consistent with, or deviating from, ideal-Bayesian value-based inference. Under the sophisticated logistic-regression interpretation of the CA-model family the cross-fitting method comprises a comparison between empirical regression coefficients (i.e., empirical CA parameters) and regression coefficient based on simulations of Bayesian models (Bayesian CA parameters). Using this approach, we found that both the instructed-credibility and free-credibility Bayesian models predicted increased BayesianCA parameters as a function of agent credibility (Fig. 3c; see SI 3.1.1.2 Tables S8 and S9). However, an in-depth comparison between Bayesian and empirical CA parameters revealed discrepancies from ideal Bayesian learning, which we describe in the following sections.”

      Recommendations for the authors:

      Reviewer #3 (Recommendations for the authors):

      (1) Keep terms consistent, e.g., follow-up vs. main; hallmark vs. traditional.

      We have now changed the text to keep terms consistent.

      (2) CA model is like a learning rate; but it's based on the raw reward, not the TD error - this seems strange.

      We thank the reviewer for this comment. We understand that the use of a CA model instead of a TD error model may seem unusual at first glance. However, the CA model offers an important advantage: it more easily accommodates what we term "negative learning rates". This means that some participants may treat certain agents (especially the random one) as consistently deceitful, leading them to effectively increase/reduce choice tendencies following negative/positive feedback. A CA model handles this naturally by allowing negative CA parameters as a simple extension of positive ones. In contrast, adapting a TD error model to account for this is more complex. For instance, attempting to introduce a "negative learning rate" makes the RW model behave in a non-stable manner (e.g., Q values become <0 or >1). At the initial stages of our project, we explored different approaches to dealing with this issue and we found the CA model provides the best approach. For these reasons, we decided to proceed with our CA model.

      Additionally, we used the CA model in previous studies (e.g., Moran, Dayan & Dolan (2021)) where we included (in SI) a detailed discussion of the similarities and difference between creditassignment and Rescorla-Wagner models

      (3) Why was the follow-up study not pre-registered?

      We appreciate the reviewer's comment regarding preregistration, which we should have done. Unfortunately, this is now “water under the bridge” but going forward we hope to pre-register increasing parts of our work.

      (4) Other work looking at reward stochasticity?

      As noted in point 4 of the main weaknesses, previous work on reward stochasticity primarily focused on explaining the increase/decrease in learning and its mechanistic bases under varying stochasticity levels. In our study, we uniquely characterize several specific learning biases that are modulated by source credibility, a topic not extensively explored within the existing reward stochasticity framework, as far as we know.

      (5) Equation 1 is different from the one in the figure?

      The reviewer is completely correct. The figure provides a simplified visual representation, primarily focusing on the feedback-based update of the Q-value, and for simplicity, it omits the forgetting term present in the full Equation 1. To ensure complete clarity and prevent any misunderstanding, we have now incorporated a more detailed explanation of the model, including the complete Equation 1 and its components, directly within the main text. This comprehensive description will ensure that readers are fully aware of how the model operates.

      “Next, we formulated a family of non-Bayesian computational RL models. Importantly, these models can flexibly express non-Bayesian learning patterns and, as we show in following sections, can serve to identify learning biases deviating from an idealized Bayesian strategy. Here, an assumption is that during feedback, the choice propensity for the chosen bandit (which here is represented by a point estimate, “Q value“, rather than a distribution) either increases or decreases (for positive or negative feedback, respectively) according to a magnitude quantified by the free “Credit-Assignment (CA)” model parameters (47):

      𝑄(𝑐ℎ𝑜𝑠𝑒𝑛) ← (1 – 𝑓<sub>Q</sub>) ∗ 𝑄(𝑐ℎ𝑜𝑠𝑒𝑛) + 𝐶𝐴(𝑎𝑔𝑒𝑛𝑡, 𝑣𝑎𝑙𝑒𝑛𝑐𝑒) ∗ 𝐹

      where F is the feedback received from the agents (coded as 1 for reward feedback and -1 for non-reward feedback), while fQ (∈[0,1]) is the free parameter representing the forgetting rate of the Q-value (Fig. 2a, bottom panel; Fig. S5b; Methods).”

      (6) Please describe/plot the distribution of all fitted parameters in the supplement. I would include the mean and SD in the main text (methods) as well.

      Following the reviewer’s suggestions, we have included in the Supplementary Document tables displaying the mean and SD of fitted parameters from participants for our main models of interest. We have also plotted the distributions of such parameters. Both for the main study:

      (7) "A novel approach within the disinformation literature by exploiting a Reinforcement Learning (RL) experimental framework".

      The idea of applying RL to disinformation is not new. Please tone down novelty claims. It would be nice to cite/discuss some of this work as well.

      https://arxiv.org/abs/2106.05402?utm_source=chatgpt.com https://www.scirp.org/pdf/jbbs_2022110415273931.pdf https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4173312

      We thank the reviewer for pointing us towards relevant literature. We have now toned down the sentence in the introduction and cited the references provided:

      “To address these questions, we adopt a novel approach within the disinformation literature by exploiting a Reinforcement Learning (RL) experimental framework (36). While RL has guided disinformation research in recent years (37–40), our approach is novel in using one of its most popular tasks: the “bandit task”.”

      (8) Figure 3a - The figures should be in the order that they're referenced (3 is referenced before 2).

      We generally try to stick to this important rule but, in this case, we believe that our ordering serves better the narrative and hope the reviewer will excuse this small violation.

      (9) "Additionally, we found a positive feedback-effect for the 3-star agent"

      What is the analysis here? To avoid confusion with the "positive feedback" effect, consider using "positive effect of feedback". The dash wasn't sufficient to avoid confusion in my case.

      We have now updated the terms in the text to avoid confusion.

      (10) The discovery study revealed even stronger results supporting a conclusion that the credibility-CA model was superior to both Bayesian models for most subjects

      This is very subjective, but I'll just mention that my "cherry-picking" flag was raised by this sentence. Are you only mentioning cases where the discovery study was consistent with the main study? Upon a closer read, I think the answer is most likely "no", but you might consider adopting a more systematic (perhaps even explicit) policy on when and how you reference the discovery study to avoid creating this impression in a more casual reader.

      We thank the reviewer for this valuable suggestion. To prevent any impression of "cherry-picking", we have removed specific references to the discovery study from the main body of the text. Instead, all discussions regarding the convergence and divergence of results between the two studies are now in the dedicated section focusing on the discovery study:

      “The discovery study (n=104) used a disinformation task structurally similar to that used in our main study, but with three notable differences: 1) it included 4 feedback agents, with credibilities of 50%, 70%, 85% and 100%, represented by 1, 2, 3, and 4 stars, respectively; 2) each experimental block consisted of a single bandit pair, presented over 16 trials (with 4 trials for each feedback agent); and 3) in certain blocks, unbeknownst to participants, the two bandits within a pair were equally rewarding (see SI section 1.1). Overall, this study's results supported similar conclusions as our main study (see SI section 1.2) with a few differences. We found convergent support for increased learning from more credible sources (SI 1.2.1), superior fit for the CA model over Bayesian models (SI 1.2.2) and increased learning from feedback inferred to be true (SI 1.2.6). Additionally, we found an inflation of positivity bias for low-credibility both when measured relative to the overall level of credit assignment (as in our main study), or in absolute terms (unlike in our main study) (Fig. S3; SI 1.2.5). Moreover, choice-perseveration could not predict an amplification of positivity bias for low-credibility sources (see SI 3.6.2). However, we found no evidence for learning based on 50%-credibility feedback when examining either the feedback effect on choice repetition or CA in the credibility-CA model (SI 1.2.3).”

      (11) An in-depth comparison between Bayesian and empirical CA parameters revealed discrepancies from normative Bayesian learning.

      Consider saying where this in-depth comparison can be found (based on my reading, I think you're referring to the next section?

      We have now modified the sentence for better clarity:

      “However, an in-depth comparison between Bayesian and empirical CA parameters revealed discrepancies from ideal Bayesian learning, which we describe in the following sections.”

      (12) "which essentially provides feedback" Perhaps you meant "random feedback"?

      We have modified the text as suggested by the reviewer.

      <(13) Essentially random

      Why "essentially"? Isn't it just literally random?

      We have modified the text as suggested by the reviewer.

      (14) Both Bayesian models predicted an attenuated credit-assignment for the 3-star agent

      Attenuated relative to what? I wouldn't use this word if you mean weaker than what we see in the human data. Instead, I would say people show an exaggerated credit-assignment, since Bayes is the normative baseline.

      We changed the text according to the reviewer’s suggestion:

      “A comparison of empirical and Bayesian credit-assignment parameters revealed a further deviation from ideal Bayesian learning: participants showed an exaggerated credit-assignment for the 3-star agent compared with Bayesian models.”

      (15) "there was no difference between 2-star and 3-star agent contexts (b=0.051, F(1,2419)=0.39, p=0.53)"

      You cannot confirm the null hypothesis! Instead, you can write "The difference between 2-star and 3-star agent contexts was not significant". Although even with this language, you should be careful that your conclusions don't rest on the lack of a difference (the next sentence is somewhat ambiguous on this point).

      Additionally, the reported b coefs do not match the figure, which if anything, suggests a larger drop from 0.75 (2-star) to 1 (3-star). Is this a mixed vs fixed effects thing? It would be helpful to provide an explanation here.

      We thank the reviewer for this question. When we previously submitted our manuscript, we thought that finding enhanced credit-assignment for fully credible feedback following potential disinformation from a DIFFERENT context would constitute a striking demonstration of our “contrast effect”. However, upon reexamining this finding we found out we had a coding error (affecting how trials were filtered). We have now rerun and corrected this analysis. We have assessed the contrast effect for both "same-context" trials (where the contextual trial featured the same bandit pair as the learning trial) and "different-context" trials (where the contextual trial featured a different bandit pair). Our re-analysis reveals a selective significant contrast effect in the same-context condition, but no significant effect in the different-context condition. We have updated the main text to reflect these corrected findings and provide a clearer explanation of the analysis:

      “A comparison of empirical and Bayesian credit-assignment parameters revealed a further deviation from ideal Bayesian learning: participants showed an exaggerated credit-assignment for the 3-star agent compared with Bayesian models [Wilcoxon signed-rank test, instructed-credibility Bayesian model (median difference=0.74, z=11.14); free-credibility Bayesian model (median difference=0.62, z=10.71), all p’s<0.001] (Fig. 3a). One explanation for enhanced learning for the 3-star agents is a contrast effect, whereby credible information looms larger against a backdrop of non-credible information. To test this hypothesis, we examined whether the impact of feedback from the 3-star agent is modulated by the credibility of the agent in the trial immediately preceding it. More specifically, we reasoned that the impact of a 3-star agent would be amplified by a “low credibility context” (i.e., when it is preceded by a low credibility trial). In a binomial mixed effects model, we regressed choice-repetition on feedback valence from the last trial featuring the same bandit pair (i.e., the learning trial) and the feedback agent on the trial immediately preceding that last trial (i.e., the contextual credibility; see Methods for model-specification). This analysis included only learning trials featuring the 3-star agent, and context trials featuring the same bandit pair as the learning trial (Fig. 4a). We found that feedback valence interacted with contextual credibility (F(2,2086)=11.47, p<0.001) such that the feedback-effect (from the 3-star agent) decreased as a function of the preceding context-credibility (3-star context vs. 2-star context: b= -0.29, F(1,2086)=4.06, p=0.044; 2star context vs. 1-star context: b=-0.41, t(2086)=-2.94, p=0.003; and 3-star context vs. 1-star context: b=0.69, t(2086)=-4.74, p<0.001) (Fig. 4b). This contrast effect was not predicted by simulations of our main models of interest (Fig. 4c). No effect was found when focussing on contextual trials featuring a bandit pair different than the one in the learning trial (see SI 3.5). Thus, these results support an interpretation that credible feedback exerts a greater impact on participants’ learning when it follows non-credible feedback, in the same learning context.”

      We have modified the discussion accordingly as well:

      “A striking finding in our study was that for a fully credible feedback agent, credit assignment was exaggerated (i.e., higher than predicted by our Bayesian models). Furthermore, the effect of fully credible feedback on choice was further boosted when it was preceded by a low-credibility context related to current learning. We interpret this in terms of a “contrast effect”, whereby veridical information looms larger against a backdrop of disinformation (21). One upshot is that exaggerated learning might entail a risk of jumping to premature conclusions based on limited credible evidence (e.g., a strong conclusion that a vaccine produces significant side-effect risks based on weak credible information, following non-credible information about the same vaccine). An intriguing possibility, that could be tested in future studies, is that participants strategically amplify the extent of learning from credible feedback to dilute the impact of learning from noncredible feedback. For example, a person scrolling through a social media feed, encountering copious amounts of disinformation, might amplify the weight they assign to credible feedback in order to dilute effects of ‘fake news’. Ironically, these results also suggest that public campaigns might be more effective when embedding their messages in low-credibility contexts, which may boost their impact.”

      And we have included some additional analyses in the SI document:

      “3.5 Contrast effects for contexts featuring a different bandit Given that we observed a contrast effect when both the learning and the immediately preceding "context trial” involved the same pair of bandits, we next investigated whether this effect persisted when the context trial featured a different bandit pair – a situation where the context would be irrelevant to the current learning. Again, we used in a binomial mixed effects model, regressing choice-repetition on feedback valence in the learning trial and the feedback agent in the context trial. This analysis included only learning trials featuring the 3-star agent, and context trials featuring a different bandit pair than the learning trial (Fig. S22a). We found no significant evidence of an interaction between feedback valence and contextual credibility (F(2,2364)=0.21, p=0.81) (Fig. S22b). This null result was consistent with the range of outcomes predicted by our main computational models (Fig. S22c).”

      We aimed to formally compare the influence of two types of contextual trials: those featuring the same bandit pair as the learning trial versus those featuring a different pair. To achieve this, we extended our mixedeffects model by incorporating a new predictor variable, "CONTEXT_TYPE" which coded whether the contextual trial involved the same bandit pair (coded as -0.5) or a different bandit pair (+0.5) compared to the learning trial. The Wilkinson notation for this expanded mixed-effects model is:

      𝑅𝐸𝑃𝐸𝐴𝑇 ~ 𝐶𝑂𝑁𝑇𝐸𝑋𝑇_𝑇𝑌𝑃𝐸 ∗ 𝐹𝐸𝐸𝐷𝐵𝐴𝐶𝐾 ∗ (𝐶 𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>2-star</sub> + 𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>3-star</sub>) + 𝐵𝐸𝑇𝑇𝐸𝑅 + (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡)

      This expanded model revealed a significant three-way interaction between feedback valence, contextual credibility, and context type (F(2,4451) = 7.71, p<0.001). Interpreting this interaction, we found a 2-way interaction between context-source and feedback valence when the context was the same (F(2,4451) = 12.03, p<0.001), but not when context was different (F(2,4451) = 0.23, p = 0.79). Further interpreting the double feedback-valence * context-source interaction (for the same context) we obtained the same conclusions as reported in the main text.”

      (16) "Strikingly, model-simulations (Methods) showed this pattern is not predicted by any of our other models"

      Why doesn't the Bayesian model predict this?

      Thanks for the comment. Overall, Bayesian models do predict a slight truth inference effect (see Figure 6d). However, these effects are not as strong as the ones observed in participants, suggesting that our results go beyond what would be predicted by a Bayesian model.

      Conceptually, it's important to note that the Bayesian model can infer (after controlling for source credibility and feedback valence) whether feedback is truthful based solely on prior beliefs about the chosen bandit. Using this inferred truth to amplify the weight of truthful feedback would effectively amount to “bootstrapping on one’s own beliefs.” This is most clearly illustrated with the 50% agent: if one believes that a chosen bandit yields rewards 70% of the time, then positive feedback is more likely to be truthful than negative feedback. However, a Bayesian observer would also recognize that, given the agent’s overall unreliability, such feedback should be ignored regardless.

      (17) "A striking finding in our study was that for a fully credible feedback agent, credit assignment was exaggerated (i.e., higher than predicted by a Bayesian strategy)".

      "Since we did not find any significant interactions between BETTER and the other regressors, we decided to omit it from the model formulation".

      Was this decision made after seeing the data? If so, please report the original analysis as well.

      We have included the BETTER regressor again, and we have re-run the analyses. We now report the results of such regression. We have also changed the methods section accordingly:

      “We used a different mixed-effects binomial regression model to test whether value learning from the 3-star agent was modulated by contextual credibility. We focused this analysis on instances where the previous trial with the same bandit pair featured the 3-star agent. We regressed the variable REPEAT, which indicated whether the current trial repeated the choice from the previous trial featuring the same bandit-pair (repeated choice=1, non-repeated choice=0). We included the following regressors: FEEDBACK coding the valence of feedback in the previous trial with the same bandit pair (positive=0.5, negative=-0.5), CONTEXT2-star indicating whether the trial immediately preceding the previous trial with the same bandit pair (context trial) featured the 2-star agent (feedback from 2-star agent=1, otherwise=0), and CONTEXT3star indicating whether the trial immediately preceding the previous trial with the same bandit pair featured the 3-star agent. We also included a regressor (BETTER) coding whether the bandit chosen in the learning trial was the better -mostly rewarding- or the worse -mostly unrewarding- bandit within the pair. We included in this analysis only current trials where the context trial featured a different bandit pair. The model in Wilkinson’s notation was:

      𝑅𝐸𝑃𝐸𝐴𝑇~ 𝐹𝐸𝐸𝐷𝐵𝐴𝐶𝐾 ∗ (𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>2-star</sub> + 𝐶𝑂𝑁𝑇𝐸𝑋𝑇<sub>3-star</sub>) + 𝐵𝐸𝑇𝑇𝐸𝑅 + (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) ( 13 )

      In figure 4c, we independently calculate the repeat probability difference for the better (mostly rewarding) and worse (mostly non-rewarding) bandits and averaged across them. This calculation was done at the participants level, and finally averaged across participants.”

    1. Shellfish reefs, particularly mussels, can form large areas of habitat that are vital to their infaunal communities (Cole and McQuaid, 2010), but past research has shown that as calcifying organisms, they are the most vulnerable to warming and acidification (Kroeker et al., 2013a; Parker et al., 2013). On temperate Australian rocky shores, habitats created by the native mussel Trichomya hirsuta, and to a lesser extent, the invasive mussel Mytilus galloprovincialis support a local diversity of annelids, crustaceans, molluscs, and echinoderms (People, 2006; Cole, 2010). Eastern Australia is a climate change “hot-spot” with sea surface temperatures in this region increasing three times faster than the global average (Wernberg et al., 2011; Hobday and Pecl, 2014), and oceans are acidifying worldwide (Collins et al., 2013). The invasive M. galloprovincialis is relatively tolerant to environmental change (Hiebenthal et al., 2013); whereas little is known about the tolerance of T. hirsuta. As the oceans warm and acidify, M. galloprovincialis may have the capacity to replace T. hirsuta as the dominant biogenic habitat on the Australian rocky shores. Any changes in the biogenic mussel habitat could alter the infaunal communities, with downstream consequences for dependent organisms. Such consequences will have an impact on the natural communities and the success of current and future shellfish reef restoration projects (Pereira et al., 2019).

      If natives are replaced by hardier shellfish, do we think organisms will adapt to consume the new shellfish? Perhaps softer shelled mussels move in to the territory, will these areas be more susceptible to storm surges and wave energy? The new species may temporarily sound good but could be quickly destroyed by storm systems. This may enable the new species to spread out further and possibly benefit, or lead to the softer shelled mussels demise. Could the stronger storm systems associated with climate change put more stress on these oyster beds?

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This work by Govorunova et al. identified three naturally blue-shifted channelrhodopsins (ChRs) from ancyromonads, namely AnsACR, FtACR, and NlCCR. The phylogenetic analysis places the ancyromonad ChRs in a distinct branch, highlighting their unique evolutionary origin and potential for novel applications in optogenetics. Further characterization revealed the spectral sensitivity, ionic selectivity, and kinetics of the newly discovered AnsACR, FtACR, and NlCCR. This study also offers valuable insights into the molecular mechanism underlying the function of these ChRs, including the roles of specific residues in the retinal-binding pocket. Finally, this study validated the functionality of these ChRs in both mouse brain slices (for AnsACR and FtACR) and in vivo in Caenorhabditis elegans (for AnsACR), demonstrating the versatility of these tools across different experimental systems.

      In summary, this work provides a potentially valuable addition to the optogenetic toolkit by identifying and characterizing novel blue-shifted ChRs with unique properties.

      Strengths:

      This study provides a thorough characterization of the biophysical properties of the ChRs and demonstrates the versatility of these tools in different ex vivo and in vivo experimental systems. The mutagenesis experiments also revealed the roles of key residues in the photoactive site that can affect the spectral and kinetic properties of the channel.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      While the novel ChRs identified in this work are spectrally blue-shifted, there still seems to be some spectral overlap with other optogenetic tools. The authors should provide more evidence to support the claim that they can be used for multiplex optogenetics and help potential end-users assess if they can be used together with other commonly applied ChRs. Additionally, further engineering or combination with other tools may be required to achieve truly orthogonal control in multiplexed experiments.

      To demonstrate the usefulness of ancyromonad ChRs for multiplex optogenetics as a proof of principle, we co-expressed AnsACR with the red-shifted cation-conducting ChR Chrimson and measured net photocurrent generated by this combination as a function of the wavelength. We found that it is hyperpolarizing in the blue region of the spectrum, and depolarizing at the red region. In the revision, we added a new panel (Figure 1D) showing these results and the following paragraph to the main text:

      “To test the possibility of using AnsACR in multiplex optogenetics, we co-expressed it with the red-shifted CCR Chrimson (Klapoetke et al., 2014) fused to an EYFP tag in HEK293 cells. We measured the action spectrum of the net photocurrents with 4 mM Cl<sup>-</sup> in the pipette, matching the conditions in the neuronal cytoplasm (Doyon, Vinay et al. 2016). Figure 1D, black shows that the direction of photocurrents was hyperpolarizing upon illumination with λ<500 nm and depolarizing at longer wavelengths. A shoulder near 520 nm revealed a FRET contribution from EYFP (Govorunova, Sineshchekov et al. 2020), which was also observed upon expression of the Chrimson construct alone (Figure 1D, red)”.

      In the C. elegans experiments, partial recovery of pharyngeal pumping was observed after prolonged illumination, indicating potential adaptation. This suggests that the effectiveness of these ChRs may be limited by cellular adaptation mechanisms, which could be a drawback in long-term experiments. A thorough discussion of this challenge in the application of optogenetics tools would prove very valuable to the readership.

      We added the following paragraph to the revised Discussion:

      “One possible explanation of the partial recovery of pharyngeal pumping that we observed after 15-s illumination, even at the highest tested irradiance, is continued attenuation of photocurrent during prolonged illumination (desensitization). However, the rate of AnsACR desensitization (Figure 1 – figure supplement 4A and Figure 1 – figure supplement 5A) is much faster than the rate of the pumping recovery, reducing the likelihood that desensitization is driving this phenomenon. Another possible reason for the observed adaptation is an increase in the cytoplasmic Cl<sup>-</sup> concentration owing to AnsACR activity and hence a breakdown of the Cl<sup>-</sup> gradient on the neuronal membrane. The C. elegans pharynx is innervated by 20 neurons, 10 of which are cholinergic (Pereira, Kratsios et al. 2015). A pair of MC neurons is the most important for regulation of pharyngeal pumping, but other pharyngeal cholinergic neurons, including I1, M2, and M4, also play a role (Trojanowski, Padovan-Merhar et al. 2014). Moreover, the pharyngeal muscles generate autonomous contractions in the presence of acetylcholine tonically released from the pharyngeal neurons (Trojanowski, Raizen et al. 2016). Given this complexity, further elucidation of pharyngeal pumping adaptation mechanisms is beyond the scope of this study.”

      Reviewer #2 (Public review):

      Summary:

      Govorunova et al present three new anion opsins that have potential applications in silencing neurons. They identify new opsins by scanning numerous databases for sequence homology to known opsins, focusing on anion opsins. The three opsins identified are uncommonly fast, potent, and are able to silence neuronal activity. The authors characterize numerous parameters of the opsins.

      Strengths:

      This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. The opsins AnsACR and FtACR are particularly notable, having extraordinarily fast onset kinetics that could have utility in many domains. Furthermore, the authors show that AnsACR is usable in multiphoton experiments having a peak photocurrent in a commonly used wavelength. Overall, the author's detailed measurements and characterization make for an important resource, both presenting new opsins that may be important for future experiments, and providing characterizations to expand our understanding of opsin biophysics in general.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      First, while the authors frequently reference GtACR1, a well-used anion opsin, there is no side-by-side data comparing these new opsins to the existing state-of-the-art. Such comparisons are very useful to adopt new opsins.

      GtACR1 exhibits the peak sensitivity at 515 nm and therefore is poorly suited for combination with red-shifted CCRs or fluorescent sensors, unlike blue-light-absorbing ancyromonad ACRs. Nevertheless, we conducted side-by-side comparison of ancyromonad ChRs, GtACR1 and GtACR2, the latter of which has the spectral maximum at 470 nm. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 added in the revision. We also added the following text, describing these results, to the revised Results section:

      “Figures 1E and F show the dependence of the peak photocurrent amplitude and reciprocal peak time, respectively, on the photon flux density for ancyromonad ChRs and GtACRs. The current amplitude saturated earlier than the time-to-peak for all tested ChRs. Figure 1 – figure supplement 4A-E shows normalized photocurrent traces recorded at different photon densities. Quantitation of desensitization at the end of 1-s illumination revealed a complex light dependence (Figure 1, Figure Supplement 4F). Figure 1 – figure supplement 5 shows normalized photocurrent traces recorded in response to a 5-s light pulse of the maximal available intensity and the magnitude of desensitization at its end.”

      Next, multiphoton optogenetics is a promising emerging field in neuroscience, and I appreciate that the authors began to evaluate this approach with these opsins. However, a few additional comparisons are needed to establish the user viability of this approach, principally the photocurrent evoked using the 2p process, for given power densities. Comparison across the presented opsins and GtACR1 would allow readers to asses if these opsins are meaningfully activated by 2P.

      We carried out additional 2P experiments in ancyromonad ChRs, GtACR1 and GtACR2 and added their results to a new main-text Figure 6 and Figure 6 – figure supplement 1. We added the new section describing these results, “Two-photon excitation”, to the main text in the revision:

      “To determine the 2P activation range of AnsACR, FtACR, and NlCCR, we conducted raster scanning using a conventional 2P laser, varying the excitation wavelength between 800 and 1,080 nm (Figure 6 – figure supplement 1). All three ChRs generated detectable photocurrents with action spectra showing maximal responses at ~925 nm for AnsACR, 945 nm for FtACR, and 890 nm for NlCCR (Figure 6A). These wavelengths fall within the excitation range of common Ti:Sapphire lasers, which are widely used in neuroscience laboratories and can be tuned between ~700 nm and 1,020-1,300 nm. To assess desensitization, cells expressing AnsACR, FtACR, or NlCCR were illuminated at the respective peak wavelength of each ChR at 15 mW for 5 seconds. GtACR1 and GtACR2, previously used in 2P experiments (Forli, Vecchia et al. 2018, Mardinly, Oldenburg et al. 2018), were included for comparison. The normalized photocurrent traces recorded under these conditions are shown in Figure 6B-F. The absolute amplitudes of 2P photocurrents at the peak time and at the end of illumination are shown in Figure 6G and H, respectively. All five tested variants exhibited comparable levels of desensitization at the end of illumination (Figure 6I).”

      Reviewer #3 (Public review):

      Summary:

      The authors aimed to develop Channelrhodopsins (ChRs), light-gated ion channels, with high potency and blue action spectra for use in multicolor (multiplex) optogenetics applications. To achieve this, they performed a bioinformatics analysis to identify ChR homologues in several protist species, focusing on ChRs from ancyromonads, which exhibited the highest photocurrents and the most blue-shifted action spectra among the tested candidates. Within the ancyromonad clade, the authors identified two new anion-conducting ChRs and one cation-conducting ChR. These were characterized in detail using a combination of manual and automated patch-clamp electrophysiology, absorption spectroscopy, and flash photolysis. The authors also explored sequence features that may explain the blue-shifted action spectra and differences in ion selectivity among closely related ChRs.

      Strengths:

      A key strength of this study is the high-quality experimental data, which were obtained using well-established techniques such as manual patch-clamp and absorption spectroscopy, complemented by modern automated patch-clamp approaches. These data convincingly support most of the claims. The newly characterized ChRs expand the optogenetics toolkit and will be of significant interest to researchers working with microbial rhodopsins, those developing new optogenetic tools, as well as neuro- and cardioscientists employing optogenetic methods.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      This study does not exhibit major methodological weaknesses. The primary limitation of the study is that it includes only a limited number of comparisons to known ChRs, which makes it difficult to assess whether these newly discovered tools offer significant advantages over currently available options.

      We conducted side-by-side comparison of ancyromonad ChRs and GtACRs, wildly used for optical inhibition of neuronal activity. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5 added in the revision. We also added the following text, describing these results, to the revised Results section:

      “Figures 1E and F show the dependence of the peak photocurrent amplitude and reciprocal peak time, respectively, on the photon flux density for ancyromonad ChRs and GtACRs. The current amplitude saturated earlier than the time-to-peak for all tested ChRs. Figure 1 – figure supplement 4A-E shows normalized photocurrent traces recorded at different photon densities. Quantitation of desensitization at the end of 1-s illumination revealed a complex light dependence (Figure 1, Figure Supplement 4F). Figure 1 – figure supplement 5 shows normalized photocurrent traces recorded in response to a 5-s light pulse of the maximal available intensity and the magnitude of desensitization at its end.”

      Additionally, although the study aims to present ChRs suitable for multiplex optogenetics, the new ChRs were not tested in combination with other tools. A key requirement for multiplexed applications is not just spectral separation of the blue-shifted ChR from the red-shifted tool of interest but also sufficient sensitivity and potency under low blue-light conditions to avoid cross-activation of the respective red-shifted tool. Future work directly comparing these new ChRs with existing tools in optogenetic applications and further evaluating their multiplexing potential would help clarify their impact.

      As a proof of principle, we co-expressed AnsACR with the red-shifted cation-conducting CCR Chrimson and demonstrated that the net photocurrent generated by this combination is hyperpolarizing in the blue region of the spectrum, and depolarizing at the red region. In the revision, we added a new panel (Figure 1D) showing these results and the following paragraph to the main text:

      “To test the possibility of using AnsACR in multiplex optogenetics, we co-expressed it with the red-shifted CCR Chrimson (Klapoetke et al., 2014) fused to an EYFP tag in HEK293 cells. We measured the action spectrum of the net photocurrents with 4 mM Cl<sup>-</sup> in the pipette, matching the conditions in the neuronal cytoplasm (Doyon, Vinay et al. 2016). Figure 1D, black shows that the direction of photocurrents was hyperpolarizing upon illumination with λ<500 nm and depolarizing at longer wavelengths. A shoulder near 520 nm revealed a FRET contribution from EYFP (Govorunova, Sineshchekov et al. 2020), which was also observed upon expression of the Chrimson construct alone (Figure 1D, red)”.

      Reviewing Editor Comments:

      The reviewers suggest that direct comparison to GtACR1 is the most important step to make this work more useful to the community.

      We followed the Reviewers’ recommendations and carried out side-by-side comparison of ancyromonad ChRs and GtACR1 as well as GtACR2 (Figure 1E and F, Figure 1 – figure supplement 4, Figure 1 – figure supplement 5, and Figure 6). Note, however, that GtACR1’s spectral maximum is at 515 nm, which makes it poorly suitable for blue light excitation. Also, ChRs are known to perform very differently in different cell types and upon expression of their genes in different vector backbones, so our results cannot be generalized for all experimental systems. Each ChR user needs to select the most appropriate tool for his/her purpose by testing several candidates in his/her own experimental setting.

      Reviewer #1 (Recommendations for the authors):

      (1) The figure legend for Figure 2D-I appears to be incomplete. Please provide a detailed explanation of the panels.

      In the revision, we have expanded the legend of Figure 2 to explain all individual panels.

      (2) The meaning of the Vr shift (Y-axis in Figure 2H-I) should be clarified in the main text to aid reader understanding.

      In the revision, we added the phrase “which indicated higher relative permeability to NO<sub>3</sub> than to Cl<sup>-“</sup> to explain the meaning of the Vr shift upon replacement of Cl<sup>-</sup> with NO<sub>3</sub>-.

      (3) Adding statistical analysis for the peak and end photocurrent values in Figure 2D-F would strengthen the claim that there is minimal change in relative permeability during illumination.

      In the revision, we added the V<sub>r</sub> values for the peak photocurrent to Figure 2H-I, which already contained the V<sub>r</sub> values for the end photocurrent, and carried out a statistical analysis of their comparison. The following sentence was added to the text in the revision:

      “The V<sub>r</sub> values of the peak current and that at the end of illumination were not significantly different by the two-tailed Wilcoxon signed-rank test (Fig. 2G), indicating no change in the relative permeability during illumination.”

      (4) Figure 4H and I seem out of place in Figure 4, as the title suggests a focus on wild-proteins and AnsACR mutants. The authors could consider moving these panels to Figure 3 for better alignment with the content.

      As noted below, we changed the panel order in Figure 4 upon the Reviewer’s request. In particular, former Figure 4I is Figure 4C in the revision, and former Figure 4H is now panel C in Figure 3 – figure supplement 1 in the revision. We rearranged the corresponding section of the text (highlighted yellow in the manuscript).

      (5) The characterization section could be strengthened by including data on the pH sensitivity of FtACR, which is currently missing from the main figures.

      Upon the Reviewer’s request, we carried out pH titration of FtACR absorbance and added the results as Figure 4B in the revision.

      (6) The logic in Figure 4A-G appears somewhat disjointed. For example, Figure 4A shows pH sensitivity for WT AnsACR and the G86E mutant, while Figure 4 B-D shifts to WT AnsACR and the D226N mutant, and Figure 4E returns to the G86E mutant. Reorganizing or clarifying the flow would improve readability.

      We followed the Reviewer’s advice and changed the panel order in Figure 4. In the revised version, the upper row (panels A-C) shows the pH titration data of the three WTs, the middle row (panels D-F) shows analysis of the AnsACR_D226N mutant, and the lower row (panels G-I) shows analysis of the AnsACR_G88E mutant. We also rearranged accordingly the description of these panels in the text.

      (7) In Figure 5A, "NIACR" should likely be corrected to "NlCCR".

      We corrected the typo in the revision.

      (8) The statistical significance in Figure 6C and D is somewhat confusing. Clarifying which groups are being compared and using consistent symbols would improve interoperability.

      In the revision, we improved the figure panels and legend to clarify that the comparisons are between the dark and light stimulation groups within the same current injection.

      (9) The authors pointed out that at rest or when a small negative current was injected, the neurons expressing Cl- permeable ChRs could generate a single action potential at the beginning of photostimulation, as has been reported before. The authors could help by further discussing if and how this phenomenon would affect the applicability of such tools.

      We mentioned in the revised Discussion section that activation of ACRs in the axons could depolarize the axons and trigger synaptic transmission at the onset of light stimulation, and this undesired excitatory effect need to be taken into consideration when using ACRs.

      Reviewer #2 (Recommendations for the authors):

      Govorunova et al present three new anion opsins that have potential applications in silencing neurons. This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. In general, I feel positively about this manuscript. It presents new potentially useful opsins and provides characterization that would enable its use. I have a few recommendations below, mostly centered around side-by-side comparisons to existing opsins.

      (1) My primary concern is that while there is a reference to GtACR1, a highly used opsin first described by this team, they do not present any of this data side by side.

      When evaluating opsins to use, it is important to compare them to the existing state of the art. As a potential user, I need to know where these opsins differ. Citing other papers does not solve this as, even within the same lab, subtle methodological differences or data plotting decisions can obscure important differences.

      As we explained in the response to the public comments, we carried out side-by-side comparison of ancyromonad ChRs and GtACRs as requested by the Reviewer. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5, added in the revision. However, we would like to emphasize a limited usefulness of such comparative analysis, as ChRs are known to perform very differently in different cell types and upon expression of their genes in different vector backbones, so our results cannot be generalized for all experimental systems. Each ChR user needs to select the most appropriate tool for his/her purpose by testing several candidates in his/her own experimental setting.

      (2) Multiphoton optogenetics is an emerging field of optogenetics, and it is admirable that the authors address it here. The authors should present more 2p characterization, so that it can be established if these new opsins are viable for use with 2P methods, the way GtACR1 is. The following would be very useful for 2P characterization:

      Photocurrents for a given power density, compared to GtACR1 and GtACR2.

      The new Figure 6 (B-F) added in the revision shows photocurrent traces recorded from the three ancyromonad ChRs and  two GtACRs upon 2P excitation of a given power density.

      Comparing NICCR and FtACR's wavelength specificity and photocurrent. If these opsins are too weak to create reasonable 2P spectra, this difference should be discussed.

      The new Figure 6A shows the 2P action spectra of all three ancyromonad ChRs.

      A Trace and calculated photocurrent kinetics to compare 1P and 2P. This need not be the flash-based absorption characterization of Figure 3, but a side-by-side photocurrent as in Figure 2.

      As mentioned above, photocurrent traces recorded from ancyromonad ChRs and GtACRs upon 2P excitation are shown in the new Figure 6 (B-F). However, direct comparison of the 2P data with the 1P data is not possible, as we used laser scanning illumination for the former and wild-field illumination for the latter.

      Characterization of desensitization. As the authors mention, many opsins undergo desensitization, presenting the ratio of peak photocurrent vs that at multiple time points (probably up to a few seconds) would provide evidence for how effectively these constructs could be used in different scenarios.

      We conducted a detailed analysis of desensitization under both 1P and 2P excitation. The new Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5 show the data obtained under 1P excitation, and the new Figure 6 shows the data for 2P conditions.

      I have to admit, that by the end of the paper, I was getting confused as to which of the three original constructs had which property, and how that was changing with each mutation. I would suggest that a table summarizing each opsin and mutation with its onset and offset kinetics, peak wavelength, photocurrent, and ion selectivity would greatly increase the ability to select and use opsins in the future.

      In the revision, we added a table of the spectroscopic properties of all tested mutants as Supplementary File 2. This study did not aim to analyze other parameters listed by the Reviewer. We added the following sentence referring to this table to the main text:

      “Supplementary File 2 contains the λ values of the half-maximal amplitude of the long-wavelength slope of the spectrum, which can be estimated more accurately from the action spectra than the λ of the maximum.”

      It may be out of the scope of this manuscript, but if a soma localization sequence can be shown to remove the 'axonal spiking' (as described in line 441), this would be a significant addition to the paper.

      Our previous study (Messier et al., 2018, doi: 10.7554/eLife.38506) showed that a soma localization sequence can reduce, but not eliminate, the axonal spiking. We plan to test these new ACRs with the trafficking motifs in the future.

      NICCR appears to have the best photocurrents of all tested opsins in this paper. It seems odd that it was omitted from the mouse cortical neurons experiments.

      We have not included analysis of NlCCR behavior in neurons because we are preparing a separate manuscript on this ChR.

      Figure 6 would benefit from more gradation in the light powers used to silence and would benefit from comparison to GtACR. I suggest using a fixed current with a series of illumination intensities to see which of the three opsins (or GtACR) is most effective at silencing. At present, it looks binary, and a user cannot evaluate if any of these opsins would be better than what is already available.

      In the revision, we added the data comparing the light sensitivity of AnsACR and FtACR with previously identified GtACR1 and GtACR2 (new Figure 1E and F) to help users compare these ACRs. Although they are less sensitive to light comparing to GtACR1 and GtACR2, they could still be activated by commercially available light sources if the expression levels are similar. Less sensitive ACRs may have less unwanted activation when using with other optogenetic tools.

      Reviewer #3 (Recommendations for the authors):

      Suggested Improvements to Experiments, Data, or Analyses:

      (1) Line 25: "significantly exceeding those by previously known tools" and Line 408: "NlCCR is the most blue-shifted among ancyromonad ChRs and generates larger photocurrents than the earlier known CCRs with a similar absorption maximum." As noted in the public review, this statement applies only to a very specific subgroup of ChRs with spectral maxima below 450 nm. If the goal was to claim that NlCCR is a superior tool among a broader range of blue-light-activated ChRs, direct comparisons with state-of-the-art ChRs such as ChR2 T159C (Berndt et al., 2011), CatCh (Kleinlogel et al., 2014), CoChR (Klapoetke et al., 2014), CoChR-3M (Ganjawala et al., 2019), or XXM 2.0 (Ding et al., 2022) would be beneficial. If the goal was to demonstrate superiority among tools with spectra below 450 nm, I suggest explicitly stating this in the paper.

      The Reviewer correctly inferred that we emphasized the superiority of NlCCR among tools with similar spectral maxima, not all blue-light-activated ChRs available for neuronal photoexcitation, most of which exhibit absorption maxima at longer wavelengths. To clarify this, we added “with similar spectral maxima” to the sentence in the original Line 25. The sentence in Line 408 already contains this clarification: “with a similar absorption maximum”.

      (2) Lines 111-113: "The absorption spectra of the purified proteins were slightly blue-shifted from the respective photocurrent action spectra (Figure 1D), likely due to the presence of non-electrogenic cis-retinal-bound forms." I would be skeptical of this statement. The spectral shifts in NlCCR and AnsACR are small and may fall within the range of experimental error. The shift in FtACR is more apparent; however, if two forms coexist in purified protein, this should be reflected as two Gaussian peaks in the absorption spectrum (or at least as a broader total peak reflecting two states with close maxima and similar populations). On the contrary, the action spectrum appears to have two peaks, one potentially below 465 nm. Generally, neither spectrum appears significantly broader than a typical microbial rhodopsin spectrum. This question could be clarified by quantifying the widths of the absorption and action spectra or by overlaying them on the same axis. In my opinion, the two spectra seem very similar, and just appearance of the "bump" in the action spectum shifts the apparent maximum of the action spectrum to the red. If there were two states, then they should both be electrogenic, and the slight difference in spectra might be explained by something else (e.g. by a slight difference in the quantum yields of the two states).

      As the Reviewer suggested, in the revision we added a new figure (Figure 1 – figure supplement 2), showing the overlay of the absorption and action spectra of each ancyromonad ChR. This figure shows that the absorption spectra are wider than the action spectra (especially in AnsACR and FtACR), which confirms our interpretation (contribution of the non-electrogenic blue-shifted cis-retinal-bound forms to the absorption spectrum). Note that the presence of such forms explaining a blue shift of the absorption spectrum has been experimentally verified in HcKCR1 (doi: 10.1016/j.cell.2023.08.009; 10.1038/s41467-025-56491-9). Therefore, we revised the text as follows:

      “The absorption spectra of the purified proteins (Figure 1C) were slightly blue-shifted from the respective photocurrent action spectra (Figure 1 – figure supplement 3), likely due to the presence of non-electrogenic cis-retinal-bound forms. The presence of such forms, explaining the discrepancy between the absorption and the action spectra, was verified by HPLC in KCRs (Tajima et al. 2023, Morizumi et al., 2025).”

      (3) Lines 135-136: "The SyncroPatch enables unbiased estimation of the photocurrent amplitude because the cells are drawn into the wells without considering their tag fluorescence." While SyncroPatch does allow unbiased selection of patched cells, it does not account for the fraction of transfected cells. Without a method to exclude non-transfected cells, which are always present in transient transfections, the comparison of photocurrents may be affected by the proportion of untransfected cells, which could vary between constructs. To clarify whether the statistically significant difference in the Kolmogorov-Smirnov test could indicate that the fraction of transfected cells after 48-72h differs between constructs, I suggest analyzing only transfected cells or reporting fractions of transfected cells by each construct.

      The Reviewer correctly states that non-transfected cells are always present in transiently transfected cell populations. However, his/her suggestion to “exclude non-transfected cells” is not feasible in the absence of a criterion for such exclusion. As it is evident from our data, transient transfection results in a continuum of the amplitude values, and it is not possible to distinguish a small photocurrent from no photocurrent, considering the noise level. We would like, however, to emphasize that not excluding any cells provides an estimate of the overall potency of each ChR variant, which depends on both the fraction of transfected cells and their photocurrents. This approach mimics the conditions of in vivo experiments, when non-expressing cells also cannot be excluded.

      (4) Line 176: "AnsACR and FtACR photocurrents exhibited biphasic rise." The fastest characteristic time is very close to the typical resolution of a patch-clamp experiment (RC = 50 μs for a 10 pF cell with a 5 MΩ series resistance). Thus, I am skeptical that the faster time constant of the biphasic opening represents a protein-specific characteristic time. It may not be fully resolved by patch-clamp and could simply result from low-pass filtering of a specific cell. I suggest clarifying this for the reader.

      The Reviewer is right that the patch clamp setup acts as a lowpass filter. Earlier, we directly measured its time resolution (~15 μs) by recording the ultrafast (occurring on the ps time scale) charge movements related to the trans-cis isomerization (doi: 10.1111/php.12558). However, the lowpass filter of the setup can only slow the entire signal, but cannot lead to the appearance of a separate kinetic component (i.e. a monophasic process cannot become biphasic). Therefore, we believe that the biphasic photocurrent rise reflects biphasic channel opening rather than a measurement artifact. Two phases in the channel opening have also been detected in GtACR1 (doi: 10.1073/pnas.1513602112) and CrChR2 (10.1073/pnas.1818707116).

      (5) Line 516: "The forward LED current was 900 mA." It would be more informative to report the light intensity rather than the forward current, as many readers may not be familiar with the specific light output of the used LED modules at this forward current.

      We have added the light intensity value in the revision:

      “The forward LED current was 900 mA (which corresponded to the irradiance of ~2 mW mm<sup>-2</sup>)…”

      (6) Lines 402-403: "The NlCCR ... contains a neutral residue in the counterion position (Asp85 in BR), which is typical of all ACRs. Yet, NlCCR does not conduct anions, instead showing permeability to Na+." This is not atypical for CCRs and has been demonstrated in previous works of the authors (CtCCR in Govorunova et al. 2021, ChvCCR1 in Govorunova et al. 2022). What is unique is the absence of negatively charged residues in TM2, as noted later in the current study. However, the absence of negatively charged residues in TM2 appears to be rare for ACRs as well. Not as a strong point of criticism, but to enhance clarity, I suggest analyzing the frequency of carboxylate residues in TM2 of ACRs to determine whether the unique finding is relevant to ion selectivity or to another property.

      The Reviewer is correct that some CCRs lack a carboxylate residue in the D85 position, so this feature alone cannot be considered as a differentiating criterion. However, the complete absence of glutamates in TM2 is not rare in ACRs and is found, for example, in HfACR1 and CarACR2. We have discussed this issue in our earlier review (doi: 10.3389/fncel.2021.800313) and do not think that repeating this discussion in this manuscript is appropriate.

      Recommendations for Writing and Presentation:

      (1) Some figures contain incomplete or missing labels:

      Figure 2: Panels D to I lack labels.

      In the revision, we have expanded the legend of Figure 2 to explain all individual panels.

      Figure 3 - Figure Supplement 1: Missing explanations for each panel.

      In the revision, we changed the order of panes and explained all individual panels in the legend.

      Figure 5 - Figure Supplement 1: Missing explanations for each panel.

      No further explanation for individual panels in this Figure is needed because all panels show the action spectra of various mutants, the names of which are provided in the panels themselves. Repeating this information in the figure legend would be redundant.

      (2) In Figure 2, "sem" is written in lowercase, whereas "SEM" is capitalized in other figures. Standardizing the format would improve consistency.

      In the revision, we changed the font of the SEM abbreviation to the uppercase in all instances.

      (3) Line 20: "spectrally separated molecules must be found in nature." There is no proof that they cannot be developed synthetically; rather, it is just difficult. I suggest softening this statement, as the findings of this study, together with others, will probably allow designing molecules with specified spectral properties in the future.

      In the revision, we changed the cited sentence to the following:

      “Multiplex optogenetic applications require spectrally separated molecules, which are difficult to engineer without disrupting channel function”.

      (4) Line 216-219: "Acidification increased the amplitude of the fast current ~10-fold (Figure 4F) and shifted its Vr ~100 mV (Figure 3 - figure supplement 1D), as expected of passive proton transport. The number of charges transferred during the fast peak current was >2,000 times smaller than during the channel opening, from which we concluded that the fast current reflects the movement of the RSB proton." The claim about passive transport of the RSB proton should be clarified, as typically, passive transport is not limited to exactly one proton per photocycle, and the authors observe the increase in the fast photocurrents upon acidification.

      We thank the Reviewer for pointing out the confusing character of our description. To clarify the matter, we added a new photocurrent trace to Figure 4I in the revision recorded from AnsACR_G86E at 0 mV and pH 7.4. We have rewritten the corresponding section of Results as follows:

      “Its rise and decay τ corresponded to the rise and decay τ of the fast positive current recorded from AnsACR_G86E at 0 mV and neutral pH, superimposed on the fast negative current reflecting the chromophore isomerization (Figure 4I, upper black trace). We interpret this positive current as an intramolecular proton transfer to the mutagenetically introduced primary acceptor (Glu86), which was suppressed by negative voltage (Figure 4I, lower black trace). Acidification increased the amplitude of the fast negative current ~10-fold (Figure 4I, black arrow) and shifted its V<sub>r</sub> ~100 mV to more depolarized values (Figure 4 – figure supplement 2A). This can be explained by passive inward movement of the RSB proton along the large electrochemical gradient.”

      Minor Corrections:

      (1) Line 204: Missing bracket in "phases in the WT (Figure 4D."

      The quoted sentence was deleted during the revision.

      (2) Line 288: Typo-"This Ala is conserved" should probably be "This Met is conserved."

      We mean here the Ala four residues downstream from the first Ala. To avoid confusion, we changed the cited sentence to the following:

      “The Ala corresponding to BR’s Gly122 is also found in AnsACR and NlCCR (Figure 5A)…”

      (3) Lines 702-704: Missing Addgene plasmid IDs in "(plasmids #XXX and #YYY, respectively)."

      In the revision, we added the missing plasmid IDs.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations. Importantly, the rescue experiments also demonstrated that sulfation enzymatic activity is important.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing.

      Significance:

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore, it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      Comments on revised version:

      Overall, I am pleased with the authors' revisions in response to my original comments and those of the other reviewers

      Reviewer #2 (Public review):

      Summary

      This study provides new insights into organ morphogenesis using the Drosophila salivary gland (SG) as a model. The authors identify a requirement for sulfation in regulating lumen expansion, which correlates with several effects at the cellular level, including regulation of intracellular trafficking and the organization of Golgi, the aECM and the apical membrane. In addition, the authors show that the ZP proteins Dumpy (Dpy) and Pio form an aECM regulating lumen expansion. Previous reports already pointed to a role for Papss in sulfation in SG and the presence of Dpy and Pio in the SG. Now this work extends these previous analyses and provides more detailed descriptions that may be relevant to the fields of morphogenesis and cell biology (with particular focus on ECM research and tubulogenesis). This study nicely presents valuable information regarding the requirements of sulfation and the aECM in SG development.

      Strengths

      -The results supporting a role for sulfation in SG development are strong. In addition, the results supporting the involvement of Dpy and Pio in the aECM of the SG, their role in lumen expansion, and their interactions, are also strong.

      -The authors have made an excellent job in revising and clarifying the many different issues raised by the reviewers, particularly with the addition of new experiments and quantifications. I consider that the manuscript has improved considerably.

      -The authors generated a catalytically inactive Papss enzyme, which is not able to rescue the defects in Papss mutants, in contrast to wild type Papss. This result clearly indicates that the sulfation activity of Papss is required for SG development.

      Weaknesses

      -The main concern is the lack of clear connection between sulfation and the phenotypes observed at the cellular level, and, importantly, the lack of connection between sulfation and the Pio-Dpy matrix. Indeed, the mechanism/s by which sulfation affects lumen expansion are not elucidated and no targets of this modification are identified or investigated. A direct (or instructive) role for sulfation in aECM organization is not clearly supported by the results, and the connection between sulfation and Pio/Dpy roles seems correlative rather than causative. As it is presented, the mechanisms by which sulfation regulates SG lumen expansion remains elusive in this study.

      -In my opinion the authors overestimate their findings with several conclusions, as exemplified in the abstract:

      "In the absence of Papss, Pio is gradually lost in the aECM, while the Dpy-positive aECM structure is condensed and dissociates from the apical membrane, leading to a thin lumen. Mutations in dpy or pio, or in Notopleural, which encodes a matriptase that cleaves Pio to form the luminal Pio pool, result in a SG lumen with alternating bulges and constrictions, with the loss of pio leading to the loss of Dpy in the lumen. Our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining luminal diameter."

      The findings leading to conclude that sulfation organizes the aECM and that the absence of Papss leads to a thin lumen due to defects in Dpy/Pio are not strong. The authors certainly show that Papss is required for proper Pio and Dpy accumulation. They also show that Pio is required for Dpy accumulation, and that Pio and Dpy form an aECM required for lumen expansion. However, the absence of Pio and Dpy do not fully recapitulate Papss mutant defects (thin lumen). I wonder whether other hypothesis and models could account for the observed results. For instance, a role for Papss affecting secretion, in which case sulfation would have an indirect role in aECM organization. This study does not address the mechanical properties of Dpy in normal and mutant salivary glands.

      -Minor issues relate to the genotype/phenotype analysis. It is surprising that the authors detect only mild effects on sulfation in Papss mutants using an anti-sulfoTyr antibody, as Papss is the only Papss synthathase. Generating germ line clones (which is a feasible experiment) would have helped to prove that this minor effect is due to the contribution of maternal product. The loss of function allele used in this study seems problematic, as it produces effects in heterozygous conditions difficult to interpret. Cleaning the chromosome or using an alternative loss of function condition (another allele, RNAi, etc...) would have helped to present a more reliable explanation.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Overall, I am pleased with the authors' revisions in response to my original comments and those of the other reviewers. The addition of the sulfation(-) mutant to Fig. 1 is particularly nice. I have just a few additional suggestions for text changes to improve clarity/precision.

      (1) The current title of this manuscript is quite broad, making it sound like a review article. I recommend adding sulfation and salivary gland to the title to convey the main points more clearly. e.g. Sulfation affects apical extracellular matrix organization during development of the Drosophila salivary gland tube.

      Thank you for the suggestion. We agree and have changed the title of the paper as suggested.

      (2) Figure 1B shows very striking enrichment of papss expression in the salivary gland compared to other tubes like the trachea that also contain Pio and Dpy. To me, this implies that the key substrate(s) of Papss are likely to be unique, or at least more highly enriched, in the salivary gland aECM compared to the tracheal aECM (e.g. probably not Pio or Dpy themselves). I suggest that the authors address the implications of this apparent SG specificity in the discussion (paragraph beginning on p. 21, line 559).

      Yes, we agree that there may be other key substrates of Papss in the SG, such as mucins, which play an important role in organizing the aECM and expanding the lumen. We have included a discussion.

      (3) p. 15, lines 374-376 "The Pio protein is known to be cleaved, at one cleavage site after the ZP domain by the furin protease and at another cleavage site within the ZP domain by the matriptase Notopleural (Np) (Drees et al., 2019; Drees et al., 2023; Figure 5B)." As far as I can see, the Drees papers show that Pio is cleaved somewhere in the vicinity of a consensus furin cleavage site, but do not actually establish that the cleavage happens at this exact site or is done by a furin protease (this is just an assumption). Please word more carefully, e.g. "at one cleavage site after the ZP domain, possibly by a furin protease".

      Thank you for pointing this out. We have edited the text.

      Reviewer #2 (Recommendations for the authors):

      Throughout the paper, I find a bit confusing the description of the lumen phenotype and their interpretations.

      Papss mutants produce SG that are either "thin" or show "irregular lumen with bulges". Do the authors think that these are two different manifestations of the same effect? or do they think that there are different causes behind?

      The thin lumen phenotype appears to occur when the Pio-Dpy matrix is significantly condensed. When this matrix is less condensed in one region of the lumen than in other regions, the lumen appears irregular with bulges.

      Are the defects in Grasp65 mutants categorized as "irregular lumen with bulges" similar to those in Papss mutants? Why do these mutants don't show a "thin lumen" defect?

      Grasp65 mutant phenotypes are milder than those of Papss mutants. Multiple mutations in several Golgi components that more significantly disrupt Golgi structures and function may cause more severe defects in lumen expansion and shape.

      How the defects described for Pio ("multiple constrictions with a slight expansion between constrictions") and Dpy mutants ("lumen with multiple bulges and constrictions") relate to the "irregular lumen with bulges" in Papss mutants?

      pio and dpy mutants show more stereotypical phenotypes, while Papss mutants exhibit more irregular and random phenotypes. The irregular lumen phenotypes in Papss mutants are associated with a condensed Pio-Dpy matrix.

    1. Author response:

      (1) General Statements

      Our manuscript studies mechanisms of planar polarity establishment in vivo in the Drosophila pupal wing. Specifically we seek to understand mechanisms of ‘cell-scale signalling’ that is responsible for segregating core pathway planar polarity proteins to opposite cell edges. This is an understudied question, in part because it is difficult to address experimentally.

      We use conditional and restrictive expression tools to spatiotemporally manipulate core protein activity, combined with quantitative measurement of core protein distribution, polarity and stability. Our results provide evidence for a robust cell-scale signal, while arguing against mechanisms that depend on depletion of a limited pool of a core protein or polarised transport of core proteins on microtubules. Furthermore, we show that polarity propagation across a tissue is hard, highlighting the strong intrinsic capacity of individual cells to establish and maintain planar polarity.

      The original manuscript received three fair and thorough peer-reviews, which raised many important points. In response, we decided to embark on a full revision that attempts to answer all of the points. We have included new data to support our conclusions in Supplemental Figures 1, 2 and 5.

      Additionally in response to the reviewers we have revised the manuscript title, which is now ‘Characterisation of cell-scale signalling by the core planar polarity pathway during Drosophila wing development’.

      (2) Point-by-point description of the revisions

      We thank all of the reviewers for their thorough and thoughtful review of our manuscript. They raise many helpful points which have been extremely useful in assisting us to revise the manuscript.

      In response we have carried out a major revision of the manuscript, making numerous changes and additions to the text and also adding new experimental data. Specific changes are listed after our detailed response to each comment.

      Reviewer #1:

      Summary

      The authors use inducible Fz::mKate2-sfGFP to explore "cell-scale signaling" in PCP. They reach several conclusions. First, they conclude that cell-scale signaling does not depend on limiting pools of core components (other than Fz). Second, they conclude that cell-scale signaling does not depend on microtubule orientation, and third, they conclude that cell-scale signaling is strong relative to cell to cell coupling of polarity. 

      There are some interesting inferences that can be drawn from the manuscript, but there are also some significant challenges in interpreting the results and conclusions from the work as presented. I suggest that the authors 1) define "cell-scale signaling," as the precise meaning must be inferred, 2) reconsider some premises upon which some conclusions depend, 3) perform an essential assay validation, and 4) explain some other puzzling inconsistencies.

      Major points

      The exact meaning of cell-scale signaling is not defined, but I infer that the authors use this term to describe how what happens on one side of a cell affects another side. The remainder of my critique depends on this understanding of the intended meaning.

      As the reviewer points out, it is important that the meaning of the term ‘cell-scale signalling’ is clear to the reader and in response to their comment we have had another go at defining it explicitly in the Introduction to the manuscript.

      Specifically, we use the term ‘cell-scale signalling’ to describe possible intracellular mechanisms acting on core protein segregation to opposite cell membranes during core pathway dependent planar polarisation. For example, this could be a signal from distal complexes at one side of the cell leading to segregation of proximal complexes to the opposite cell edge, or vice versa. See also our response to Reviewer #2 regarding the distinction between ‘molecular-scale’ and ‘cell-scale’ signalling. 

      Changes to manuscript: Revised definition of ‘cell-scale signalling’ in Introduction.

      The authors state that any tissue wide directional information comes from pre-existing polarity and its modification by cell flow, such that the de novo signaling paradigm "bypasses" these events and should therefore not be responsive to any further global cues. It is my understanding that this is not a universally accepted model, and indeed, the authors' data seem to suggest otherwise. For example, the image in Fig 5B shows that de novo induction restores polarity orientation to a predominantly proximal to distal orientation. If no global cue is active, how is this orientation explained?

      We assume that the reviewer’s point is that it is not universally accepted that de novo induction after hinge contraction leads to uncoupling from global cues (rather than that it is not accepted that hinge contraction remodels radial polarity to a proximodistal pattern). We are (we believe) the only lab that has used de novo induction as a tool, and we’re not aware of any debate in the literature about whether this bypasses global cues. Nevertheless, we accept that it is hard to prove there is no influence of global cues, when the nature of those cues and the time at which they act remain unclear. Below we summarise the reasons why we believe there are not significance effects of global cues in our experiments that would influence the interpretation of our results.

      First, our reading of the literature supports a broad consensus that an early radial core planar polarity pattern is realigned by cell flow produced by hinge contraction beginning at around 16h APF (e.g. Aigouy et al., 2010; Strutt and Strutt, 2015; Aw and Devenport, 2017; Butler and Wallingford, 2017; Tan and Strutt, 2025). Taken at face value, this suggests that there are ‘radial’ cues present prior to hinge contraction, maybe coming from the wing margin – arguably these radial cues could be Ft-Ds or Wnts or both, given they are expressed in patterns consistent with such a role (notwithstanding the published evidence arguing against roles for either of these cues). It then appears that hinge contraction supercedes these cues to convert a radial pattern to a proximodistal pattern – whether the radial cues that affect the core pathway earlier remain active after hinge contraction is unclear, although both Ft-Ds and Wnts appear to maintain their ‘radial’ patterns beyond the beginning of hinge contraction (e.g. Merkel et al., 2014; Ewen-Campen et al., 2020; Yu et al., 2020).

      We think that the reviewer is proposing the presence of a proximodistal cue that is active in the proximal region of the wing that we use for our experiments shown e.g. in Fig.5, and that this cue orients core polarity here (but not elsewhere in the wing) in a time window after 18h APF. Ft-Ds and Wnts do not seem to be plausible candidates as they are still in ‘radial’ patterns. This leaves either an unknown proximodistal cue (a gradient of some unknown signalling molecule?), or possibly some ability of hinge contraction to align proximodistal polarity specifically in this wing region but not elsewhere. We cannot definitively rule out either of these possibilities, but neither do we think there is sufficient evidence to justify invoking their existence to explain our observations.

      In particular, the reason that we don’t think there is a proximodistal cue in the proximal part of the wing after 18h APF, is that work from our lab shows that induction of Fz or Stbm expression at times around or after the start of hinge contraction (i.e. >16 h APF) results in increasing levels of trichome swirling with polarity not being coordinated with the tissue axis either proximally or distally (Strutt and Strutt, 2002; Strutt and Strutt 2007). Our simplest interpretation for this is that induction at these stages fails to establish the early radial pattern of core pathway polarity and hence hinge contraction cannot reorient radial to proximodistal. If hinge contraction alone could specify proximodistal polarity in the absence of the earlier radial polarity, then we would not expect to see swirling over much of the proximal wing (where the forces from hinge contraction are strongest (Etournay et al., 2015)).

      In this manuscript, our earliest de novo experiments begin with Fz induction at 18h APF (de novo 10h), then at 20h APF (de novo 8h) and at 22h APF (de novo 6h). The image in Fig. 5B, referred to by the reviewer, is of a wing where Fz is induced de novo at 22 h APF. In these wings, as expected, the core proteins localise asymmetrically in stereotypical swirling patterns throughout the wing surface (see Fig. 2M and also Strutt and Strutt, 2002; Strutt and Strutt 2007), but – usefully for our experiments – they broadly localise along the proximal-distal axis in the region analysed in Fig. 5B. Given the strong swirling in surrounding regions when inducing at >20h APF, we feel reasonably confident in assuming that the pattern is not due to a proximodistal cue present in the proximal wing.

      We appreciate that the original manuscript did not show images including the trichome pattern in adjacent regions, so this point would not have been clear, but we now include these in Supplementary Fig. 5. We have also added a note in the legend to Fig. 5B to clarify that the proximodistal pattern seen is local to this wing region. We apologise for this oversight and the confusion caused and appreciate the feedback.

      The 6 hr condition, that has only partial polarity magnitude, is quite disordered. Do the patterns at 8 and 10 hrs become more proximally-distally oriented? It is stated that they all show swirls, but please provide adult wing images, and the corresponding orientation outputs from QuantifyPolarity to help validate the notion that the global cues are indeed bypassed by this paradigm.

      In all three ‘normal’ de novo conditions (6h, 8h and 10h), regardless of the time of induction, the polarity orientation patterns of Fz-mKate2 in pupal and adult wings are very similar in the experimentally analysed region (Fig. S5B-E). The strong local hair swirling agrees with the previous published data (Strutt and Strutt, 2002; Strutt and Strutt 2007). Overall, we don’t see any evidence that the 10h de novo induction results in more proximodistally coordinated polarity than the 8h or 6h conditions. This is consistent with our contention that there is no global cue present at these stages, which presumably would have a stronger effect when core pathway activity was induced at earlier stages.

      Changes to manuscript: Added additional explanation of the ‘de novo induction’ paradigm and why we believe the resulting polarity patterns are unlikely to be influenced by any global signals in Introduction and Results section ‘Induced core protein relocalisation…’. Added quantification of polarity in the experiment region proximal to the anterior cross-vein in pupal wings (Fig.S5E-E’’’) and zoomed-out images of the surrounding region in adult wings showing that the polarity pattern does not become more proximodistal when induction time is longer, and also that there is not overall proximodistal polarity in proximal regions of the wing (Fig.S5B-D), arguing against an unknown proximodistal polarity cue at these stages of development.

      In the de novo paradigm, polarization is initiated immediately or shortly after heat shock induction. However, the results should be differently interpreted if the level of available Fz protein does not rise rapidly and then stabilize before the 6 hr time point, and instead continues to rise throughout the experiment. Western blots of the Fz::mKate2-sfGFP at time points after induction should be performed to demonstrate steady state prior to measurements. Otherwise, polarity magnitude could simply reflect the total available pool of Fz at different times after induction. Interpreting stability is complex, and could depend on the same issue, as well as the amount of recycling that may occur. Prior work from this lab using FRAP suggested that turnover occurs, and could result from recycling as well as replenishment from newly synthesized protein. 

      The reviewer raises an important point, which we agree could confound our experimental interpretations. As suggested we have now carried out western blotting and quantitation for Fz::mKate2-sfGFP levels and added these data to Fig.S1 (Fig. S1C,D). Quantified Fz is not significantly different between the three de novo polarity induction timings and not significantly different compared to constitutive Fz::mKate2-sfGFP expression (although there is a trend towards increasing Fz::mKate2-sfGFP protein levels with increasing induction times). These data are consistent with Fz::mKate2-sfGFP being at steady state in our experiments and that levels are sufficient to achieve normal polarity (as constitutive Fz::mKate2-sfGFP does so). Therefore it is unlikely that differing protein levels explain the differing polarity magnitudes at the different induction times. Interestingly, Fz::mKate2-sfGFP levels are lower than endogenous Fz levels, possibly due to lower expression or increased turnover/reduced recycling.

      Changes to manuscript: Added western blot analysis of Fz::mKate2-sfGFP expression under 10h, 8h and 6h induction conditions vs endogenous Fz expression and constitutive Fz::mKate2sfGFP expression (Fig.S1C-D) and discussed in Results section ‘Planar polarity establishment is…’.

      From the Fig 3 results, the authors claim that limiting pools of core proteins do not explain cellscale signaling, a result expected based on the lack of phenotypes in heterozygotes, but of course they do not test the possibility that Fz is limiting. They do note that some other contributing protein could be. 

      Previously published results from our lab (Strutt et al., 2016 Cell Reports; Supplemental Fig. S6E) show that in a heterozygous fz mutant background, Fz protein levels are not affected by halving the gene dosage when compared to wt, suggesting that Fz is most likely produced in excess and is not normally limiting, but that protein that cannot form complexes may be rapidly degraded. We have now added this information to the text.

      Changes to manuscript: Added explanation in text that Fz levels had previously been shown to not be dosage sensitive in Results section ‘Planar polarity establishment is…’ and also added a caveat to the Discussion about not directly testing Fz.

      In Fig 3, it is unclear why the authors chose to test dsh1/+ rather than dsh[null]/+. In any case, the statistically significant effect of Dsh dose reduction is puzzling, and might indicate that the other interpretation is correct. Ideally, a range including larger and smaller reductions would be tested. As is, I don't think limiting Dsh is ruled out. 

      Concerning the choice of dsh allele, we appreciate the query of the reviewer regarding use of dsh[1] instead of a null, as there might be a concern that dsh[1] would give a less strong phenotype. The answer is that over more than two decades we and others have never found any evidence that dsh[1] does not act as a ‘null’ for planar polarity in the pupal wing, and furthermore use of dsh[1] preserves function in Wg signalling – and we would prefer to rule out any phenotypic effects due to any potential cross-talk between the two pathways that might be seen using a complete null. To expand on this point, dsh[1] mutant protein is never seen at cell junctions (Axelrod 2001; Shimada et al., 2001; our own work), and by every criteria we have used, planar polarity is completely disrupted in hemizygous or homozygous mutants e.g. see quantifications of polarity in (Warrington et al., 2017 Curr Biol).

      In terms of the broader point, whether we can rule out Dsh being limiting, we were very careful to be clear that we did not see evidence for Dsh (or other core proteins) being limiting in terms of ‘rates of core pathway de novo polarisation’. When the reviewer says ‘the statistically significant effect of Dsh dose reduction is puzzling’ we believe they are referring to the data in Fig. 3J, showing a small but significantly different reduction in stable Fz in de novo 6h conditions (also seen in 8h de novo conditions, Fig. S3I). As Dsh is known to stabilise Fz in complexes (Strutt et al., 2011 Dev Cell; Warrington et al., 2017 Curr Biol), in itself this result is not wholly surprising. Nevertheless, while this shows that halving Dsh levels does modestly reduce Fz stability, it does not alter our conclusion that halving Dsh levels does not affect Fz polarisation rate under either 6h or 8h de novo conditions.

      Unfortunately, we do not have available to us a practical way of achieving consistent intermediate reductions in Dsh levels (e.g. a series of verified transgenes expressing at different levels). Levels of all the core proteins could be dialled down using transgenes, to see when the system breaks, and indeed we have previously published that lower levels of polarity are seen if Fmi levels are <<50% or if animals are transheterozygous for pk, stbm, dgo or dsh, pk, stbm, dgo simultaneously (Strutt et al., 2016 Cell Reports). However, it seems to be a trivial result that eventually the ability to polarise is lost if insufficient core proteins are present at the junctions. For this reason we have focused on a simple set of experiments reducing gene dosage singly by 50% under two de novo induction conditions, and have been careful to state our results cautiously. The assays we carried out were a great deal of work even for just the 5 heterozygous conditions tested.

      We believe that the experiments shown effectively make the point that there is no strong dosage sensitivity – and it remains our contention that if protein levels were the key to setting up cell-scale polarity, then a 50% reduction would be expected to show an effect on the rate of polarisation. We further note that as Fz::mKate2-sfGFP levels are lower than endogenous Fz levels (see above), the system might be expected to be sensitised to further dosage reductions, and despite this we failed to see an effect on rate of polarisation.

      We note that Reviewer #3 made a similar point about whether we can rule out dosage sensitivity on the basis of 50% reductions in protein level. To address the comments of both reviewers we had now added some further narrative and caveats in the text.

      In a similar vein, Reviewer #2 requested data on whether dosage reduction altered protein levels by the expected amount. We have now added further explanation/references and western blot data to address this.

      Changes to manuscript: Added more explanation of our choice of dsh[1] as an appropriate mutant allele to use in Results section ‘Planar polarity establishment is…’. Added some narrative and caveats regarding whether lowering levels more than 50% would add to our findings in the Discussion. Revised conclusions to be more cautious including altering section title to read ‘Planar polarity establishment is not highly sensitive to variation in protein levels of core complex components’.

      Also added westerns and text/references showing that for the tested proteins there is a reduction in protein levels upon removal of one gene dosage in Results section ‘Planar polarity establishment is…’ and Fig.S2.

      The data in Fig 5 are somewhat internally inconsistent, and inconsistent with the authors' interpretation. In both repolarization conditions, the authors claim that repolarization extends only to row 1, and row 1 is statistically different from non-repolarized row 1, but so too is row 3. Row 2 is not. This makes no sense, and suggests either that the statistical tests are inappropriate and/or the data is too sparse to be meaningful. 

      As we’re sure the reviewer appreciates, this was an extremely complex experiment to perform and analyse. We spent a lot of time trying to find the best way to illustrate the results (finally settling on a 2D vector representation of polarity) and how to show the paired statistical comparisons between different groups. Moreover, in the end we were only able to detect generally quite modest (statistically significant) changes in cell polarity under the experimental conditions.

      However, we note that failure to see large and consistent changes in polarity is exactly the expected result if it is hard to repolarise from a boundary – and this is of course the conclusion that we draw. Conversely, if repolarisation were easy, which was our expectation at least under de novo conditions without existing polarity, then we would have expected large and highly statistically significant changes in polarity across multiple cell rows. Hence we stand by our conclusion that ‘it is hard to repolarise from a boundary of Fz overexpression in both control and de novo polarity conditions’.

      Overall, we were trying to establish three points:

      (1) to demonstrate that repolarisation occurs from a boundary of overexpression i.e. from boundary 0 to row 0

      (2) to establish whether a wave of repolarisation occurs across rows 1, 2 and 3

      (3) to determine if in repolarisation in de novo condition it is easier to repolarise than in repolarisation in the control (already polarised) condition Taking each in turn:

      (1) To detect repolarisation from a boundary relative to the control condition, we have to compare row 0 in repolarisation condition (Fig.5G,K) vs control condition (Fig.5F,J). This comparison shows a significative repolarisation (p=0.0014). From now, row 0 in repolarisation condition is our reference for repolarisation occurring.

      (2) To determine if there is a wave of repolarisation in the repolarisation condition we have to compare row 0 vs row 1 to 3 in the repolarisation condition (Fig.5K). Row 1 is not significantly different to row 0, but rows 2 and 3 are different and the vectors show obviously lower polarity than row 0. Hence no wave of repolarisation is detected over rows 1 to 3.

      (3) To determine if it is easier to repolarise in the de novo condition, our reference for establishment of a repolarisation pattern is the polarisation condition in rows 0 to 3. So, we compare repolarisation condition vs repolarisation in de novo condition, row 0 vs row 0, row 1 vs row 1, row 2 vs row 2 and row 3 vs row 3 – in each case no significative difference in polarity is detected, supporting our conclusion that it is not easier to repolarise in the de novo condition.

      We agree that the variations in row 3 are puzzling, but there is no evidence that this is due to propagation of polarity from row 0, and so in terms of our three questions, it does not alter our conclusions.

      Changes to manuscript: We have extensively revised the text describing the results in Fig.5 to hopefully make the reasons for our conclusions clearer and also be more cautious in our conclusions in Results section ‘Induced core protein relocalisation…’. 

      For the related boundary intensity data in Fig 6, the authors need to describe exactly how boundaries were chosen or excluded from the analysis. Ideally, all boundaries would be classified as either meido-lateral (meaning anterior-posterior) or proximal-distal depending on angle. 

      We thank the reviewer for pointing out that this was not clear.

      All boundaries were classified following their orientation compared to the Fz over-expression boundary using hh-GAL4 expressed in the wing posterior compartment. Horizontal junctions were defined as parallel to the Fz over-expression boundary (between 0 and 45 degrees) and mediolateral junctions as junctions linking two horizontal boundaries (between 45 and 90 degrees).

      Changes to manuscript: The boundary classification detailed above has been added in the Materials and Methods.

      If the authors believe their Fig 5 and 6 analyses, how do they explain that hairs are reoriented well beyond where the core proteins are not? This would be a dramatic finding, because as far as I know, when core proteins are polarized, prehair orientation always follows the core protein distribution. Surprisingly, the authors do not so much as comment about this. The authors should age their wings just a bit more to see whether the prehair pattern looks more like the adult hair pattern or like that predicted by their protein orientation results.

      Again the reviewer makes an interesting point, and we agree that this is something that we should have more directly addressed in the manuscript.

      There are three reasons why we might expect adult trichomes to show a different effect from the measured core protein polarity pattern seen in our experiments:

      (i) we are assaying core protein polarity at 28h APF, but trichomes emerge at >32h APF, so there is still time for polarity to propagate a bit further from the boundary. We now have added data showing that by the point of trichome initiation, the wave of polarisation extends 3-4 cell rows (Fig.S5A).

      (ii) it has long been known that a strong localisation of core proteins at a cell edge is not required for polarisation of trichome polarity from a boundary. For instance, in Strutt & Strutt 2007 we show clones of cells overexpressing Fz causing propagation through pk[pk-sple] mutant tissue where there is no detectable core protein polarity. We were following up prior observations of Adler et al., 2000 in the wing and Lawrence et al., 2004 in the abdomen.

      (iii) there is evidence to suggest that the polarity of adult trichomes is locally coupled, possibly mechanically. This point is hard to prove without live imaging taking in both initial core protein localisation, the site of actin-rich trichome initiation and then the final orientation of the much larger microtubule filled trichome, and we’re not aware that such data exist. However, Wong & Adler 1993 (JCB) showed that over a number of hours trichomes become much larger and move towards the centre of the cell, presumably becoming decoupled from any core protein cue. The images in Guild … & Tilney, 2005 (MBoC)  are also interesting to look at in this regard. Finally, septate junction proteins have been implicated in local alignment of trichomes, independently of the core pathway (Venema … & Auld, 2004 Dev Biol).

      Changes to manuscript: Added new data in Fig.S5A showing where trichomes initiate under 6h de novo induction conditions, for comparison to core protein localisation and adult trichome data in Fig.5. Added some text explaining why adult trichome repolarisation might be stronger than the observed effects on core protein localisation in Discussion. 

      Minor points

      As the authors know, there is a model in the literature that suggests microtubule trafficking provides a global cue to orient PCP. The authors' repolarization data in Fig 4 make a reasonably convincing case against a role for no role for microtubules in cell-scale signaling, but do not rule out a role as a global cue. The authors should be careful of language such as "...MTs and core proteins being oriented independently of each other" that would appear to possibly also refer to a role as a global cue. 

      Thank you for pointing out that this was not clear. We have now modified the text to hopefully address this.

      Changes to manuscript: Text updated in Results section ‘Microtubules do not provide…’.

      Significance:

      There are two negative conclusions and one positive conclusion made by the authors. Provided the above points are addressed, the negative conclusions, that core proteins are not limiting and that microtubules are not involved in cell-scale signaling are solid. The positive conclusion is more nebulous - the authors say that cell-scale signaling is strong relative to cell-cell signaling - but how strong is strong? Strong relative to their prior expectations? I'm not sure how to interpret such a conclusion. Overall, we learn something from these results, though it fails to reveal anything about mechanism. These results will be of some interest to those studying PCP.

      The reviewer raises an interesting point, which is how do you compare the strength of two different processes, even if both processes affect the same outcome (in this case cell polarity). Repolarisation from a boundary has not been carefully studied at the level of core protein localisation in any previous study to our knowledge – this is one of the important novel aspects of this study. Hence there is not a baseline for defining strong repolarisation. Similarly, there has been no investigation of the nature of ‘cell-scale signalling’. This was a considerable challenge for us in writing the manuscript, and we have done our best to find appropriate language that hopefully conveys our message adequately. Minimally our work may provide a baseline for helping to define the ‘strengths’ of these processes in future studies.

      One of our main points is that we can generate an artificial boundary of Fz expression, where Fz levels are at least several fold higher than in the neighbouring cell (e.g. compare Fig.4N’ and O’) and only two rows of cells show a significant change in polarity relative to controls. Even when the tissue next to the overexpression domain is still in the process of generating polarity (de novo condition) then the boundary has little effect on polarity in neighbouring cell rows. This was a result that surprised us, and we tried to convey that by using language to suggest cell-scale signalling was stronger than cell-cell signalling i.e. stronger in terms of the ability to define the final direction of polarity.

      Changes to manuscript: In the revised manuscript we have reviewed our use of language and now avoid saying ‘strong’ but instead use terms such as ‘effective’ and ‘robust’ in e.g. Results section ‘Induced core protein relocalisation…’, the Discussion and we have also changed the title of the manuscript to avoid claiming a ‘strong’ signal.

      Reviewer #2:

      Overview

      This paper aims to dissect the relative importance of the various cues that establish PCP in the wing disc of Drosophila, which remains a prominent and relevant model for PCP. The authors suggest that one must consider cues at three scales (molecular, cell and tissue) and specifically design tests for the importance of cell-level cues, which they call non-local cell scale signalling. They develop clever experimental approaches that allow them to track complex stability and also to induce polarity at experimentally defined times. In a first set of experiments, they restore PCP after the global cues have disappeared (de novo polarisation) and conclude from the results that another (cell scale) cue must exist. In another set of experiments, they show that de novo repolarization is robust to the dosage of various components of core PCP, leading them to conclude that there must be an underlying cell scale polarity, which, apparently, has nothing to do with microtubule or cell shape polarity. They then describe nice evidence that de novo polarisation is relatively short range both in a polarised and unpolarised field. They conclude by there is a strong cell-intrinsic polarity that remains to be characterised.

      Critique

      The experiments described in this paper are of high quality with a sophisticated level of design and analysis. However, there needs to be some recalibration of the extent of the conclusions that can be drawn (see below). Moreover, a limitation of this paper is that, despite the quality of their data, they cannot give a molecular hint about the nature of their proposed cell-scale signal. Below are a two key points that the authors may want to clarify.

      (1) The first set of repolarisation experiment is performed after the global cell rearrangements that have been shown to act as global signal. However, this approach does not exclude the possible contribution of an unknown diffusible global signal.

      A similar point was raised by Reviewer 1. For the convenience of this reviewer, we’ll summarise the arguments against such an unknown cue again below. More broadly, both reviewers asking a similar question indicates that we have failed to lay out the evidence in sufficient detail. In our defence, we have used the same ‘de novo’ paradigm in three previous publications (Strutt and Strutt 2002, 2007; Brittle et al 2022) without attracting (overt) controversy. We have now added text to the Introduction and Results that goes into more detail, as well as more experimental evidence (Fig.S5).

      Firstly, it is worth noting that the global cues acting in the wing are poorly understood, with mostly negative evidence against particular cues accruing in recent years. This makes it a hard subject to succinctly discuss. Secondly, we accept that it is hard to prove there is no influence of global cues, when the nature of those cues and the time at which they act remain unclear. Below we summarise the reasons why we believe there are not significance effects of global cues in our experiments that would influence the interpretation of our results.

      First, our reading of the literature supports a broad consensus that an early radial core planar polarity pattern is realigned by cell flow produced by hinge contraction beginning at around 16h APF (e.g. Aigouy et al., 2010; Strutt and Strutt, 2015; Aw and Devenport, 2017; Butler and Wallingford, 2017; Tan and Strutt, 2025). Taken at face value, this suggests that there are ‘radial’ cues present prior to hinge contraction, maybe coming from the wing margin – arguably these radial cues could be Ft-Ds or Wnts or both, given they are expressed in patterns consistent with such a role (notwithstanding the published evidence arguing against roles for either of these cues). It then appears that hinge contraction supercedes these cues to convert a radial pattern to a proximodistal pattern – whether the radial cues that affect the core pathway earlier remain active after hinge contraction is unclear, although both Ft-Ds and Wnts appear to maintain their ‘radial’ patterns beyond the beginning of hinge contraction (e.g. Merkel et al., 2014; Ewen-Campen et al.,2020; Yu et al., 2020).

      We think that the reviewers are proposing the presence of a proximodistal cue that is active in the proximal region of the wing that we use for our experiments shown e.g. in Fig.5, and that this cue orients core polarity here (but not elsewhere in the wing) in a time window after 18h APF. Ft-Ds and Wnts do not seem to be plausible candidates as they are still in ‘radial’ patterns. This leaves either an unknown proximodistal cue (a gradient of some unknown signalling molecule?), or possibly some ability of hinge contraction to align proximodistal polarity specifically in this wing region but not elsewhere. We cannot definitively rule out either of these possibilities, but neither do we think there is sufficient evidence to justify invoking their existence to explain our observations.

      In particular, the reason that we don’t think there is a proximodistal cue in the proximal part of the wing after 18h APF, is that work from our lab shows that induction of Fz or Stbm expression at times around or after the start of hinge contraction (i.e. >16 h APF) results in increasing levels of trichome swirling with polarity not being coordinated with the tissue axis either proximally or distally (Strutt and Strutt, 2002; Strutt and Strutt 2007). Our simplest interpretation of this is that induction at these stages fails to result in the early radial pattern of core pathway polarity being established and hence a failure of hinge contraction to reorient radial to proximodistal. If hinge contraction alone could specify proximodistal polarity in the absence of the earlier radial polarity, then we would not expect to see swirling over much of the proximal wing (where the forces from hinge contraction are strongest, Etournay et al., 2015).

      In this manuscript, our earliest de novo experiments begin at 18h APF (de novo 10h), then at 20h APF (de novo 8h) and at 22h APF (de novo 6h). The image in Fig. 5B referred to by Reviewer 1, is of a wing where Fz is induced de novo at 22 h APF. In these wings, as expected, the core proteins localise asymmetrically in stereotypical swirling patterns throughout the wing surface (see Fig. 2M and also Strutt and Strutt, 2002; Strutt and Strutt 2007), but – usefully for our experiments – they broadly localise along the proximal-distal axis in the region analysed in Fig. 5B. Given the strong swirling in surrounding regions when inducing at >20h APF, we feel reasonably confident in assuming that the pattern is not due to a proximodistal cue present in the proximal wing. We appreciate that the original manuscript did not show images including the trichome pattern in adjacent regions, so this point would not have been clear, but we now include these in Supplementary Fig.S5. We have also added a note in the legend to Fig. 5B to clarify that the proximodistal pattern seen is local to this wing region.

      Changes to manuscript: Text extended in Introduction and Results to better explain why we believe the de novo conditions that we use most likely result in a polarity pattern that is not significantly influenced by ‘global cues’. Now show zoomed-out images of the surrounding region around the experiment region proximal to the anterior cross-vein region in adult wings, showing that the polarity pattern does not become more proximodistal when induction time is longer, and also that there is not overall proximodistal polarity in proximal regions of the wing, arguing against an unknown proximodistal polarity cue at these stages of development (Fig.S5B-E’’’).

      (2) The putative non-local cell scale signal must be more precisely defined (maybe also given a better name). It is not clear to me that one can separate cell-scale from molecular-scale signal.

      Local signals can redistribute within a cell (or membrane) so local signals are also cell-scale. Without a clear definition, it is difficult to interpret the results of the gene dosage experiments. The link between gene dosage and cell-scale signal is not rigorously stated. Related to this, the concluding statement of the introduction is too cryptic.

      We thank the reviewer for raising this, as again a similar comment was made by Reviewer 1, so we are clearly falling short in defining the term. We have now had another attempt in the Introduction.

      To more specifically answer the point made by the reviewer regarding molecular vs cellular, we are essentially being guided here by the prior computational modelling work, as at the biological level the details are still being worked out. A specific class of previous models only allowed ‘signals’ between core proteins to act ‘locally’, meaning within a cell junction, and within the models there was no explicit mechanism by which proteins on other junctions could ‘detect’ the polarity of a neighbouring junction (e.g. Amonlirdviman et al., 2005; Le Garrec et al., 2006; Fischer et al., 2013). Other models implicitly or explicitly encode a mechanism by which cell junctions can be influenced by the polarity of other junctions (e.g. Meinhardt, 2007; Burak and Shraiman, 2009; Abley et al., 2013; Shadkhoo and Mani, 2019), for instance by diffusion of a factor produced by localisation of particular planar polarity proteins.

      We agree with the reviewer that a cell-scale signal will depend on ‘molecules’ and thus could be called ‘molecular-scale’, but here by ‘molecular-scale’ we mean signals that at the range of the sizes of molecules i.e. nanometers, rather than cell-scale signals that act at the size of cells i.e. micrometers. A caveat to our definition is that we implicitly include interactions that occur locally on cell junctions (<1 µm range) within ‘molecular-scale’, but this is a shorter range than ‘cellular-scale’ which requires signals acting over the diameter of a cell (3-5 µm). Nevertheless, we think the concept of ‘molecular-scale’ vs ‘cell-scale’ is a helpful one in this context, and have attempted to address the issue through a more careful definition of the terms.

      Changes to manuscript: Text revised in Introduction and legend to Fig.1 to more carefully define ‘cell-scale signalling’ and to distinguish it from ‘molecular-scale signalling’. Final sentence of Introduction also altered so we no longer cryptically speculate on the nature of the cell-scale signal but leave this to the Discussion.

      Minor comments. 

      Some of the (clever) genetic manipulation may need more details in the text. For example:

      - Need to specify if the hs-flp approach induces expression throughout the tissue.

      We apologise for the lack of clarity. In all the experiments, the hs-FLP transgene is present in all cells, and heat-shock results in ubiquitous expression. 

      Changes to manuscript: We have clarified this in the Results and Materials and Methods.

      - Need to specify in the text that in the unpolarised condition the tissue is both dsh and fz mutant.

      The reviewer is of course correct and we have updated this point in the text. The full genotype for the unpolarised condition is: w dsh<sup>1</sup> hsFLP22/y;; Act>>fz-mKate2sfGFP, fz<sup>P21</sup>/fz<sup>P21</sup> (see Table S1). So this line is mutant for dsh and fz with induced expression of Fz-mKate2sfGFP. 

      Changes to manuscript: We have clarified this in the relevant part of the Results.

      - Need to specify in the text that the experiment illustrated in Fig 5 is with hh-gal4. 

      As noted by the reviewer, we continued to use the same hh-GAL4 repolarisation paradigm as in Fig.4 and this info was in the legend to Fig.5 legend. However, we agree it is helpful to be explicit about this in the main text.

      Changes to manuscript: We have added this to this section of the Results.

      - Need to address a possible shortcoming of the hh experiment, that the AP boundary is a region of high tension.

      It is true that the AP boundary is under high tension in the wing disc (e.g. Landsberg et al., 2009). But we are not aware of any evidence that this higher tension persists into the pupal wing. In separate studies we have labelled for Myosin II in pupal wings (Trinidad et al 2025 Curr Biol; Tan & Strutt 2025 Nature Comms), and as far as we have noticed have not seen preferentially higher levels on the AP boundary. We think if tension were higher, the cell boundaries would appear straighter than in surrounding cells (as seen in the wing disc) and this is not evident in our images.

      - Need to dispel the possibility that there is no residual polarisation (e.g. of other components) in fz1 mutant (I assume this is the case).

      We use the null allele fz[P21] through this work, and we and others have consistently reported a complete loss of polarisation of other core proteins or downstream components in this background. The caveat to this is that core proteins that persist at cell junctions always appear at least slightly punctate in mutant backgrounds for other core proteins, and so any automated detection algorithm will always find evidence of individual cell polarity above a baseline level of uniform distribution. Hence we tend to use lack of local coordination of polarity (variance of cell polarity angle) as an additional measure of loss of polarisation, in addition to direct measures of average cell polarity. (We discuss this in the QuantifyPolarity manuscript Tan et al 2021 e.g. Fig.S6).

      Changes to manuscript: We now include in the Materials and Methods section ‘Fly genetics…’ a much more extensive explanation of the evidence for specific mutant alleles being ‘null’ for planar polarity function (including dsh1 as raised by Reviewer 1), specifically that they result in no detectable planar polarisation of either other core proteins or downstream effectors, and added appropriate references.

      - Need to provide evidence that 50% gene dosage commensurately affect protein level. 

      This is a good suggestion. In the case of Stbm, we have already published a western blot showing that a reduction in gene dosage results in reduced protein levels (Strutt et al 2016, Fig.S6). We have now performed western blots to quantify protein levels upon reduction of fmi, pk and dgo levels (we actually used EGFP-dgo for the latter, as we don’t have antibodies that can detect endogenous Dgo on western blots).

      Changes to manuscript: When presenting the dosage reduction experiments, we now refer back to Strutt et al., 2016 explicitly for Stbm, and have added western blot data for Fmi, Pk and EGFPDgo in new Fig.S2.

      - I am surprised that the relationship with microtubule polarity was never investigated. Is this true? 

      We agree this is a point that needed further clarification, as Reviewer 1 made a related point regarding the two possible roles for microtubules, one being as a mediator of a global cue upstream of the core pathway, and the second (which we investigate in this manuscript) as a mediator of a cell-scale signal downstream of the core pathway.

      Both the Uemura and Axelrod groups have published on potential upstream function as a global cue mediator in the Drosophila wing (e.g. Shimada et al., 2006; Harumoto et al., 2010; Matis et al., 2014).

      Both groups have also looked out whether core pathway components could affect orientation of microtubules (Harumoto et al., 2010; Olofsson at al., 2014; Sharp and Axelrod 2016). Notably Harumoto et al., 2010 observed that in 24h APF wings, loss of Fz or Stbm did not alter microtubule polarity from a proximodistal orientation consistent with the microtubules aligning along the long cell axis in the absence of other cues. However, this did not rule out an instructive effect of Fz or Stbm on microtubule polarity during core pathway cell-scale signalling. The Axelrod lab manuscripts saw interesting effects of Pk protein isoforms on microtubule polarity, albeit not throughout the entire wing, which hinted at a potential role in cell-scale signalling. Taken together this prior work was the motivation for our directed experiments to specifically test whether the core pathway might generate cell-scale polarity by instructing microtubule polarity.

      Changes to manuscript: We have revised the Results section ‘Microtubules do not…’ to make a clearer distinction regarding possible ‘upstream’ and ‘downstream’ roles of microtubules in Drosophila core pathway planar polarity and the motivation for our experiments investigating the latter.

      - The authors suggest that polarity does not propagate as a wave. And yet the range measured in adult is longer than in the pupal wing. Explain. 

      Again an excellent point, also made by Reviewer 1, which we have now addressed explicitly in the manuscript. For the convenience of this reviewer, we lay out the reasons why we think the propagation of polarity seen in the adult is further than seen for core protein localisation.

      There are three reasons why we might expect adult trichomes to show a different effect from the measured core protein polarity pattern seen in our experiments:

      (i) we are assaying core protein polarity at 28h APF, but trichomes emerge at >32h APF, so there is still time for polarity to propagate a bit further from the boundary. We now have added data showing that by the point of trichome initiation, the wave of polarisation extends 3-4 cell rows (Fig.S5A).  

      (ii) it has long been known that a strong localisation of core proteins at a cell edge is not required for polarisation of trichome polarity from a boundary. For instance, in Strutt & Strutt 2007 we show clones of cells overexpressing Fz causing propagation through pk[pk-sple] mutant tissue where there is no detectable core protein polarity. We were following up prior observations of Adler et al 2000 in the wing and Lawrence et al 2004 in the abdomen.

      (iii) there is evidence to suggest that the polarity of adult trichomes is locally coupled, possibly mechanically. This point is hard to prove without live imaging taking in both initial core protein localisation, the site of actin-rich trichome initiation and then the final orientation of the much larger microtubule filled trichome, and we’re not aware that such data exist. However, Wong & Adler 1993 (JCB) showed that over a number of hours trichomes become much larger and move towards the centre of the cell, presumably becoming decoupled from any core protein cue. The images in Guild … & Tilney, 2005 (MBoC)  are also interesting to look at in this regard. Finally, septate junction proteins have been implicated in local alignment of trichomes, independently of the core pathway (Venema … & Auld, 2004 Dev Biol).

      Changes to manuscript: Added new data in Fig.S5A showing where trichomes initiate under 6h de novo induction conditions, for comparison to core protein localisation and adult trichome data in Fig.5. Added some text explaining why adult trichome repolarisation might be stronger than the observed effects on core protein localisation in Discussion. 

      - The discussion states that the cell-intrinsic system remains to be fully characterised, implying that it has been partially characterised. What do we know about it? 

      As the reviewer probably realises, we were attempting to side-step a long speculative discussion about the various hints and ideas in the literature by grouping them under the umbrella of ‘remaining to be fully characterised’. We would argue that this current manuscript is the first to attempt to systematically investigate the nature of ‘cell-scale signalling’. The lack of prior work is probably due to two factors (i) pioneering theoretical work showed that a sufficiently strong global signal coupled with ‘local’ (i.e. confined to one cell junction) protein interactions was sufficient to polarise cells without the need to invoke the existence of a cell-scale signal; (ii) there is no easy way to identify cell-scale signals as their loss results in loss of polarity which will also occur if other (i.e. more locally acting) core pathway functions are compromised.

      The main investigation of the potential for cell-scale signalling has been another set of theory studies (Burak and Shraiman 2009; Abley et al., 2013; Shadkhoo and Mani 2019) which have considered the possibility of diffusible signals. In our present work we have further considered the possibility of a ‘depletion’ model, based on the pioneering theory work of Hans Meinhardt, and as discussed above the possibility that microtubules could mediate a cell-scale signal.

      Changes to manuscript: We have revised the Discussion to hopefully be clearer about the current state of knowledge.

      Reviewer #3:

      The manuscript by Carayon and Strutt addresses the role of cell-scale signaling during the establishment of planar cell polarity (PCP) in the Drosophila pupal wing. The authors induce locally the expression of a tagged core PCP protein, Frizzled, and observe and analyze the de novo establishment of planar cell polarity. Using this system, the authors show that PCP can be established within several hours, that PCP is robust towards variation in core PCP protein levels, that PCP proteins do not orient microtubules, and that PCP is robust towards 'extrinsic' repolarization. The authors conclude that the polarization at the cell-scale is strongly intrinsic and only weakly affected by the polarity of neighboring cells. 

      Major comments

      The data are clearly presented and the manuscript is well written. The conclusions are well supported by the data. 

      (1) The authors use a system to de novo establish PCP, which has the advantage of excluding global cues orienting PCP and thus to focus on the cell-intrinsic mechanisms. At the same time, the system has the limitation that it is unclear to what extent de novo PCP establishment reflects 'normal' cell scale PCP establishment, in particular because the Gal4/UAS expression system that is used to induce Fz expression will likely result in much higher Fz levels compared with the endogenous levels. The authors should briefly discuss this limitation. 

      We apologise if this wasn’t clear. We only used GAL4/UAS overexpression when we were generating an artificial boundary of Fz expression with hh-GAL4 to induce repolarisation. The de novo induction system involves Fz::mKate2-sfGFP being expressed directly under an Act5C promoter without use of GAL4/UAS. In response to a comment from Reviewer 1 we have now carried out western blot analysis which shows that Fz::mKate2-sfGFP levels under Act5C are actually lower than endogenous Fz levels. As we achieve normal levels of polarity, similar to what we measure in wild-type conditions when measured using QuantifyPolarity, we assume that therefore Fz levels are not limiting under these conditions. However, we note that lower than normal levels of Fz might sensitise the system to perturbation, which in fact would be advantageous in our study, as it might for instance have been expected to more readily reveal dosage sensitivity of other components.

      Changes to manuscript: We now describe the levels of expression achieved using the de novo induction system (Fig.S1C-D) and discuss possible consequences in the relevant Results sections and Discussion.

      (2) Fig. 3. The authors use heterozygous mutant backgrounds to test the robustness of de novo PCP establishment towards (partial) depletion in core PCP proteins. The authors conclude that de novo polarization is 'extremely robust to variation in protein level'. Since the authors (presumably) lowered protein levels by 50%, this conclusion appears to be somewhat overstated. The authors should tune down their conclusion. 

      Reviewer 1 makes a similar point about whether we can argue that the lack of sensitivity to a 50% reduction in protein levels actually rules out the depletion model. To address the comments of both reviewers we had now added some further narrative and caveats in the text.

      We nevertheless believe that the experiments shown effectively make the point that there is no strong dosage sensitivity – and it remains our contention that if protein levels were the key to setting up cell-scale polarity, then a 50% reduction would be expected to show an effect on the rate of polarisation. We further note that as Fz::mKate2-sfGFP levels are lower than endogenous Fz levels, the system might be expected to be sensitised to further dosage reductions, and despite this we fail to see an effect on rate of polarisation.

      In a similar vein, Reviewer 2 requested data on whether dosage reduction altered protein levels by the expected amount. We have now added further explanation/references and western blot data to address this.

      Changes to manuscript: Added some narrative and caveats regarding whether lowering levels more than 50% would add to our findings in the Discussion. Revised conclusions to be more cautious including altering section title to read ‘Planar polarity establishment is not highly sensitive to variation in protein levels of core complex components.

      Also added westerns and text/references showing that for the tested proteins there is a reduction in protein levels upon removal of one gene dosage in Results section ‘Planar polarity establishment is…’ and Fig.S2.

      Minor comments 

      (1) Page 3. The authors mention and reference that they used the PCA method to quantify cell polarity magnification and magnitude. It would help the unfamiliar reader, if the authors would briefly describe the principle of this method. 

      Changes to manuscript: More details have been added in Materials & Methods.

      Significance:

      The manuscript contributes to our understanding of how planar cell polarity is established. It extends previous work by the authors (Strutt and Strutt, 2002,2007) that already showed that induction of core PCP pathway activity by itself is sufficient to induce de novo PCP. This manuscript further explores the underlying mechanisms. The authors test whether de novo PCP establishment depends on an 'inhibitory signal', as previously postulated (Meinhardt, 2007), but do not find evidence. They also test whether core PCP proteins help to orient microtubules (which could enhance cell intrinsic polarization of core PCP proteins), but, again, do not find evidence, corroborating previous work (Harumoto et al, 2010). The most significant finding of this manuscript, perhaps, is the observation that local de novo PCP establishment does not propagate far through the tissue. A limitation of the study is that the mechanisms establishing intrinsic cell scale polarity remain unknown. The work will likely be of interest to specialists in the field of PCP.

  2. Aug 2025
    1. L ‘„»I2'8

      If we can assume by the sign-off that he began his book in 1938, and then published in 1944, that would place us in Switzerland during Nazi Germany and the beginning of WWII. I wonder if any of his writings in this book were influenced by current events and if he considered war strategy as a form of play. It is easy for us to think of war as play, but for those who lived through it, it may have seemed like an outrageous statement.

    1. It's not: Can schools save more of our students? Because I think we have the answer to that -- and it's yes they can, if we save our schools first. We can start by caring about the education of other people's children ...

      Tying the amount of money we have lost as a nation to the lack of attention paid to the education system was an interesting point. The financial loss could sway people who previously did not care about other people's children (and their education). Due to the current state of the country it may be difficult to get people to "start caring about other people's children." in tems of improving the condition of our current educational system but the financial implications and losing earning potential could sway stakeholders to invest in educational reform.

    1. This is because our expectations are often based on previous experience and patterns we have observed and internalized, which allows our brains to go on “autopilot” sometimes and fill in things that are missing or overlook extra things.

      This sentence is very relatable. It highlights how our brains rely on past experiences and familiar patterns to make sense of what’s around us, sometimes without us even realizing it. The idea of going on “autopilot,” as stated in the text, is something I experience often. For example, there are times when I’m sitting in my living room and I think I see someone walking past my big front window. But when I actually look outside, there’s nobody there. This has happened multiple times, and I’ve always wondered why. Now, I think it’s because the walkway to the front door is right outside that window, so my brain may be expecting someone to come up to the door.

    1. We anticipate that layers that account for this depth order, e.g. through convolutions or possibly self-attention (as used in spatio-temporal graphs (e.g. Guo et al. 2019, Su et al. 2020)), will often be complementary to other layers acting on the topology (encoded in the phylogenetic graph), e.g. through graph convolutions.

      Related to the pooling operator, I think large gains may come from the use of 1) edge weights in your GCN layers so that not all neighbors are treated equally by the message passing mechanism, and 2) alternative MPNN layer types, including use of the graph attention mechanism (i.e. GAT) or graph transformers, which use the attention mechanism to learn which neighbors are more "important." I suspect that even with simple mean-pooling, these alternative layer types will be much more performant and generalizable (e.g. from CRBD to BiSSE). In effect the GCN layers (particularly without using edge weights) is more akin to the CRBD in that it assumes uniform, homogeneous contribution by all neighbors to feature updates.

    1. And some have suggested we may have been thinking about agriculture wrong. It now seems likely that agriculture began in a very gradual process that goes back much farther than we had imagined.

      I find it interesting how our understanding of the agricultural revolution has changed over the years. We as humans tend to think about history, and really a lot of things, in a chronological order. We’ve learned over the years that it isn’t always the cause, especially in our understanding of pre-written eras.

    1. Author response:

      Reviewer 1:

      (1) Line 65 "(Figure 1A). Inactivation causes a change in the leg's rest position; however, in preliminary experiments, the body rotation did not have a large effect on the rest positions of the leg following inactivation. This result is consistent with the one already reported for stick insects and shows that passive forces within the leg are much larger than the gravitational force on a leg and dominate limb position [1]." This is the direct replication of the previous work by Hooper et al 2009 and therefore authors should ideally show the data for this condition (no weight attached).

      We did not present this data – the effect of inactivation on the leg’s rest position in unweighted leg - because it was already reported in the case of stick insects. However, we understand the reviewer’s point that it is important to present the data showing this replication. We will do the same in the revised version.

      (2) The authors use vglut-gal4, a very broad driver for inactivating motor neurons. The driver labels all glutamatergic neurons, including brain descending neurons and nerve cord interneurons, in addition to motor neurons. Additionally, the strength of inactivation might differ in different neurons (including motor neurons) depending on the expression levels of the opsins. As a result, in this condition, the authors might not be removing all active forces. This is a major caveat that authors do not address. They explore that they are not potentially silencing all inputs to muscles by using an additional octopaminergic driver, but this doesn't address the points mentioned above. At the very least, the authors should try using other motor neuron drivers, as well as other neuronal silencers. This driver is so broad that authors couldn't even use it for physiology experiments. Additionally, the authors could silence VGlut-labeled motor neurons and record muscle activity (potentially using GCaMP as has been done in several recent papers cited by the authors, Azevedo et al, 2020) as a much more direct readout.

      This reviewer critique is related to the use of vglut-gal4 –a broad driver– to inactivate motor neurons (MNs). The reviewer argues that the use of a broad driver might result in some effects that are not due to MN inactivation. Conversely, it is possible that not all MNs are inactivated. These critiques raise important points that we will address in the revision by 1) performing experiments with other MN drivers as suggested by the reviewer, 2) performing experiments in flies that are inactivated by freezing. These measurements will provide other estimates of passive forces allowing us to better triangulate the range of values for the passive forces. Moreover, it appears that one of the reviewer’s main concern is that the passive forces are overestimated because of the residual active forces. We will discuss this possibility in detail. It is important to note that in the end what we hope to accomplish is to provide a useful estimate of the passive forces. It is unlikely that the passive force will be a precise number like a physical constant as the passive forces likely depend on recent history.

      (3) Figure 4 uses an extremely simplified OpenSim model that makes several assumptions that are known to be false. For example, the Thorax-Coxa joint is assumed to be a ball and socket joint, which it is not. Tibia-tarsus joint is completely ignored and likely makes a major contribution in supporting overall posture, given the importance of the leg "claw" for adhering to substrates. Moreover, there are a couple of recent open-source neuromechanical models that include all these details (NeuromechFly by Lobato-Rios et al, 2022, Nat. Methods, and the fly body model by Vaxenburg et al, 2025, Nature). Leveraging these models to rule in or rule out contributions at other joints that are ignored in the authors' OpenSim model would be very helpful to make their case.

      Our OpenSim model predates the newer mechanical model. In the revised manuscript, we will revisit the model in light of recent developments.

      (4) Figure 5 shows the experimental validation of Figure 4 simulations; however, it suffers from several caveats.

      a) The authors track a single point on the head of the fly to estimate the height of the fly. This has several issues. Firstly, it is not clear how accurate the tracking would be. Secondly, it is not clear how the fly actually "falls" on VGlut silencing; do all flies fall in a similar manner in every trial? Almost certainly, there will be some "pitch" and "role" in the way the fly falls. These will affect the location of this single-tracked point that doesn't reflect the authors' expectations. Unless the authors track multiple points on the fly and show examples of tracked videos, it is hard to believe this dataset and, hence, any of the resulting interpretations.

      b) As described in the previous point, the "reason" the fly falls on silencing all glutamatergic neurons could be due to silencing all sorts of premotor/interneurons in addition to the silencing of motor neurons.

      c) (line 175) "The first finding is that there was a large variation in the initial height of the fly (Figure 5C), consistent with a recent study of flies walking on a treadmill[20]." The cited paper refers to how height varies during "walking". However, in the current study, the authors are only looking at "standing" (i.e. non-walking) flies. So it is not the correct reference. In my opinion, this could simply reflect poor estimation of the fly's height based on poor tracking or other factors like pitch and role.

      d) "The rate at which the fly fell to the ground was much smaller in the experimental flies than it was in the simulated flies (Figure 5E). The median rate of falling was 1.3 mm/s compared to 37 mm/s for the simulated flies (Figure 5F). (Line 190) The most likely reason for the longer than expected time for the fly to fall is delays associated with motor neuron inactivation and muscle inactivation." I don't believe this reasoning. There are so many caveats (which I described in the above points) in the model and the experiment, that any of those could be responsible for this massive difference between experiment and modeling. Simply not getting rid of all active forces (inadequate silencing) could be one obvious reason. Other reasons could be that the model is using underestimates of passive forces, as alluded to in point 3.

      (4a) Although we agree that measuring different points on the body would allow us to estimate the moments, we disagree that the height of the fly cannot be evaluated from the measurement of a single point. The measurements have been performed using the same techniques that we used to assess the fly’s height in a different study where we estimated the resolution of our imaging system to be ~20 mm(Chun et. al. 2021). We will include these details in the revised manuscript. The video showing the falling experiments are not available or referenced in the manuscript. These will be made available.

      b) We will repeat the “falling” experiment with a more restrictive driver.

      c) We disagree with the reviewer on this point. The system has a resolution of ~20 mm and is sufficient to make conclusion about the difference in the height of the fly. We will clarify this point in the revised manuscript.

      d) We do not follow the reviewer’s rationale here. The passive forces in the model (along with any residual forces) are the same in the model as well as in the experiment. Moreover, there will be a delay between light onset, neuronal inactivation and muscle inactivation. These processes are not instantaneous. In Figure 6, we estimate these delays and have concluded that they will cause substantial delay. In the revised manuscript, we will discuss other reasons for the delay suggested by the reviewer.

      (5) Final figure (Figure 6) focuses on understanding the time course of neuronal silencing. First of all, I'm not entirely sure how relevant this is for the story. It could be an interesting supplemental data. But it seems a bit tangential. Additionally, it also suffers from major caveats.

      a) The authors now use a new genetic driver for which they don't have any behavioral data in any previous figures. So we do not know if any of this data holds true for the previous experiments. The authors perform whole-cell recordings from random unidentified motor neurons labeled by E49-Gal4>GtACR1 to deduce a time constant for behavioral results obtained in the VGlut-Gal4>GtACR1 experiments.

      b) The DMD setup is useful for focal inactivation, however, the appropriate controls and data are not presented. Line 200 "A spot of light on the cell body produces as much of the hyperpolarization as stimulating the entire fly (mean of 11.3 mV vs 13.1 mV across 9 neurons). Conversely, excluding the cell body produces only a small effect on the MN (mean of 2.6 mV)." First of all, the control experiment for showing that DMD is indeed causing focal inactivation would be to gradually move the spot of light away from the labeled soma, i.e. to the neighboring "labelled" soma and show that there is indeed focal inactivation. Instead authors move it quite a long distance into unlabeled neuropil. Secondly, I still don't get why the authors are doing this experiment. Even if we believe the DMD is functioning perfectly, all this really tells us is that a random subset motor neurons (maybe 5 or 6 cells, legend is missing this info) labeled by E49-Gal4 is strongly hyperpolarized by its own GtACR1 channel opening, rather than being impacted because of hyperpolarizations in other E49-Gal4 labeled neurons. This has no relevance to the interpretation of any of the VGlut-Gal4 behavioral data. VGLut-Gal4 is much broader and also labels all glutamatergic neurons, most of which are inhibitory interneurons whose silencing could lead to disinhibition of downstream networks.

      (5 a) However, we can address the reviewer critique by recording from the Vglut line while using a MN line to target the recordings to MNs.

      b) Once we use the Vglut driver to perform these recordings, it will help assess how much of the MN inactivation is due to the GtACR expressed in the MN versus other neurons.

      Reviewer 2:

      While (as mentioned above) the study's conclusions are well-supported by the results and modeling, limitations arise because of the assumptions made. For instance, using a linear approximation may not hold at larger joint angles, and future studies would benefit from accounting for nonlinearities. Future studies could also delve into the source of passive forces, which is important for more deeply understanding the anatomical and physical basis of the results in this study. For instance, assessments of muscle or joint properties to correlate stiffness values with physical structure might be an area of future consideration.

      We agree with these comments but believe that these studies represent avenues for future work.

      Reviewer 3:

      (1) Passive torques are measured, but only some short speculative statements, largely based on previous work, are offered on their functional significance; some of these claims are not well supported by experimental evidence or theoretical arguments. Passive forces are judged as "large" compared to the weight force of the limb, but the arguably more relevant force is the force limb muscles can generate, which, even in equilibrium conditions, is already about two orders of magnitude larger. The conclusion that passive forces are dynamically irrelevant seems natural, but contrasts with the assertion that "passive forces [...] will have a strong influence on limb kinematics". As a result, the functional significance of passive joint torques in the fruit fly, if any, remains unclear, and this ambiguity represents a missed opportunity. We now know the magnitude of passive joint torques - do they matter and for what? Are they helpful, for example, to maintain robust neuronal control, or a mechanical constraint that negatively impacts performance, e.g., because they present a sink for muscle work?

      To us, measuring passive forces was the first step to understanding neural/biomechanical control of limb. In general, we agree with these comments and would like to understand the role of passive forces in overall control of limb. A complete discussion of the role of the significance of passive forces in the control of limb is beyond the scope of this study. We would like to note that it is unlikely that the active forces are two orders of magnitude larger during unloaded movement of the limb. However, these issues will have to be settled in future work.

      (2) The work is framed with a scaling argument, but the assumptions that underpin the associated claims are not explicit and can thus not be evaluated. This is problematic because at least some arguments appear to contradict textbook scaling theory or everyday experience. For example, active forces are assumed to scale with limb volume, when every textbook would have them scale with area instead; and the asserted scaling of passive forces involves some hidden assumptions that demand more explicit discussion to alert the reader to associated limitations. Passive forces are said to be important only in small animals, but a quick self-experiment confirms that they are sufficient to stabilize human fingers or ankles against gravity, systems orders of magnitude larger than an insect limb, in seeming contradiction with the alleged dominance of scale. Throughout the manuscript, there are such and similar inaccuracies or ambiguities in the mechanical framing and interpretation, making it hard to fairly evaluate some claims, and rendering others likely incorrect.

      We interpret this comment as making two separate points. The first one is that the reviewer says that our statement that active forces depend on the third power of the limb or L<sup>3</sup> is incorrect. We agree and apologize for this oversight. Specifically, on L6-7 we say, “both inertial forces and active forces scale with the mass if the limb which in turn scales with the volume of the limb and therefore depends on the third power of limb length (L<sup>3</sup>)”. Instead, this statement should read “inertial forces scale with the mass if the limb which in turn scales with the volume of the limb and therefore depends on the third power of limb length (L<sup>3</sup>)”. However, this oversight does not affect the scaling argument as the scaling arguments in the rest of the manuscript only involves inertial forces and not active forces.

      The second point is about the scaling law that governs passive forces. In the current manuscript, we have assumed that the passive forces scale as L<sup>2</sup> based on previous work. The reviewer has pointed out that this assumption might be incorrect or at the very least needs a rationale. We agree with this assessment: passive forces that arise in the muscle are likely to scale as L<sup>2</sup> but passive forces that arise in the joint might not. In the revised manuscript, we will discuss this concern.

      Response to the public comment:

      There was a comment from a reader: “None of our work cited in various places in this preprint (i.e., Zakotnik et al. 2006, Guschlbauer et al. 2007, Page et al. 2008, Hooper et al. 2009, Hooper 2012, Ache and Matheson 2012, Blümel et al. 2012, Ache and Matheson 2013, von Twickel et al. 2019, and Guschlbauer et al. 2022) claims or implies that passive forces could be sufficient to support the weight of an insect or any animal. To claim or suggest otherwise (as done in lines 33-35) is incorrect and sets up a misleading straw man that misrepresents our work. All statements in the preprint regarding our work related to this specific matter need to be removed or edited accordingly. For instance, the investigations, calculations, and interpretations in Hooper et al. 2009 are solely about limbs that are not being used in stance or other loaded tasks (indeed, the article's title specifically refers to "unloaded" leg posture and movements). Trying to use this work to predict whether passive muscle forces alone can support a stick insect against gravity requires considering much more than the oversimplified calculation given in lines 290-292. Other “back of the envelope calculations” (lines 299-300) are likely also insufficient and erroneous. The discussion in lines 289-304 needs to be edited accordingly”

      We thank the reader for their comment. However, we interpret these studies differently. The studies above rightly focused on unloaded legs because it would be difficult to study passive forces in an intact insect without genetic tools. The commenter correctly points out that these studies do not comment on whether passive forces are strong enough to support the weight of the fly. However, we disagree that our arguments based on their results are unreasonable or strawman. We think that our interpretation of their measurements is correct. Moreover, we were motivated by Yox et. el. 1982 who states in so many words: “Stiffness of the muscles in the joints of all the legs might be sufficient to support a resting arthropod. A more rigorous analysis of all supporting limbs and joint angles would be required to prove this hypothesis”. We were inspired by this comment. In the revised manuscript, we will make it clear that the statement made in Line 33 is based on Yox. et. al. and our interpretation of measurements made by others.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      GENERAL COMMENTS

      We thank the three reviewers for their comments on the paper.

      We are pleased to see that they consider it be a comprehensive and well-executed study, which clearly establishes a previously overlooked connection between MRTF-SRF signalling and proliferation, and that its conclusions require no further experimentation.

      As review 3 points out, this work has implications for cancer biology, and suggests new research routes to understand the relation between cell adhesion, proliferation, and transformation.

      However, two referees raise significant concerns about its impact

      Review 1 suggests that the paper lacks impact without exploration the wider biological significance of our observations, although it considers it to be a good basic cell biology study. It suggests further work extending the findings to tissue- or tumor-based systems. While we consider such studies worthwhile – indeed we are currently pursuing these directions – we consider them beyond the scope of the present paper.

      Review 2 questions the novelty of our findings. We strongly disagree. This is is the first study to show that MRTF-SRF signalling is required for the proliferation of both primary and immortalised fibroblasts, and epithelial cells. We show that MRTF inactivation leads cells to enter a quiescence-like state under conditions that would permit efficient cell cycle progression in wildtype cells. The study will alter the field's perspective on the role of MRTF-SRF signalling, previously viewed as concerned with cell adhesion, morphology, and motility.

      Responses to individual reviews (italic) follow in regular text.

      RESPONSE TO INDIVIDUAL REVIEWS (comments in italic, response in regular, changes made)

      __Reviewer #1 __

      *(Evidence, reproducibility and clarity (Required)): *

      *The manuscript by Neilsen et al. presents a thorough and well-structured study showing that Myocardin-related transcription factors (MRTF-A/B), via MRTF-SRF, are essential for the proliferation of both primary and immortalized fibroblasts and epithelial cells. Using a combination of knockouts/rescue experiments, cytoskeletal analysis, and transcriptomics, the authors demonstrate that MRTF-SRF signalling controls actin dynamics and contractility-key drivers of cell cycle progression. Notably, they show that the proliferative arrest caused by MRTF loss is reversible, distinguishing it from classical senescence. **

      Major points*

      • The link between MRTF-SRF activity, cytoskeletal organisation, and cell proliferation is clearly established. The fact that disrupting contractility phenocopies MRTF loss strengthens the case that the pathway acts through mechanical control.*
      • The authors support their conclusions using multiple cell types (MEFs, primary fibroblasts, epithelial cells), a range of complementary assays (RNA-seq, traction force microscopy, adhesion/spreading), and genetic tools (CRISPR, inducible rescue).*
      • The ability to restore proliferation by re-expressing MRTF-A argues against true senescence and instead suggests a quiescence-like state driven by cytoskeletal disruption.*
      • This work particularly highlights how mechanical inputs feed into transcriptional programs to regulate proliferation, with implications for understanding anchorage-dependent growth.**

      Suggestions While the authors argue convincingly against classical senescence, elevated SA-βGal and SASP expression suggest a more nuanced arrest state. It not really clear what this state is or is not, therefore a deeper discussion of possible hybrid or intermediate states would be helpful - maybe potential additional experiments to include or exclude potential explanations - e.g. how does it differ from G0 exit?* Our findings show that MRTF inactivation inhibits cell proliferation under conditions that would permit efficient cell cycle progression in wildtype cells, inducing a state with some features associated with classical senescence, and others conventionally associated with reversible cell cycle arrest/quiescence. The reviewer correctly points out that this raises problems with accurately defining the nature of the MRTF-null proliferation defect.

      To our knowledge there are no rigorously defined unambiguous markers for senescence, quiescence, or G0. Indeed, recent studies have shown that senescence and quiescence / G0 states are not as distinct as previously assumed (Anwar et al, 2018; Ashraf et al 2023) as we reviewed in detail in Discussion p27, §2; p28 §3. We therefore do not consider it a productive endeavour to define markers for the MRTF-null state as opposed to defining its mechanistic basis. However, we agree that we should have been clearer about how the phenotypes we observe relate to classical cell arrest states.

      We have therefore revised the presentation of the Results to make it clear which features of the non-proliferative state associated with MRTF inactivation are seen in classical senescence, and which are found in reversible cell cycle exit or quiescence.

      Things done:

      • __Results pp16-17 and Fig 1. Figure panels and presentation are reordered to present “senescence” features together before marker expression (panel G is now panel I). Text now explicitly points out that the spectrum of cell cycle markers, specifically p27 upregulation, is not that associated with classical senescence (p16, p21,etc) but previously linked to reversible arrest or quiescence. Lines 371-380 have been moved up from the succeeding paragraph; statement added re p27 and reversible cell cycle exit on lines 387-389; summary sentence added in lines 398-401). __
      • Statement added that reversibility distinguishes the MRTF defect from classical senescence p20§1 line 454-455.
      • Note that p27 is associated with reversible arrest included on p20§2 line 460. We also explicitly summarised the features of the phenotype at the start of the Discussion.

      • Sentences added p27§1 lines 626-631.

      • Emphasis that p27 protein upregulation is associated with reversible cell cycle inhibition and quiescence is added on p28 line 668-669.

      • The transcriptomic data are strong, but the paper would benefit from zooming in on specific MRTF-SRF targets (e.g., actin isoforms, adhesion molecules) that directly link cytoskeletal regulation to cell cycle control.*

      We have now clarified presentation of the RNAseq data in Figure 5 and the data summary tables. Figure 5B now identifies which of those genes showing deficits in MRTF-null MEFs were previously identified as direct genomic targets for MRTF-SRF, and that the majority are cytoskeletal.

      • __Additional columns added in Table 1 to indicate whether genes are candidate genomic MRTF-SRF targets; Table 2 now show gene symbol lists as well as ENSMBL IDs for GO categories and NCBI Entrez IDs for GSEA categories, respectively. __
      • __Figure 5B revised to point out cytoskeletal genes that are genomic MRTF-SRF targets in bold, legend clarified p40 lines 920-922. __
      • Now noted____ p23 lines 527-529 that cytoskeletal genes affected include many direct MRTF-SRF targets. Our data confirms that in MEFs, MRTF inactivation affects fibroblast cell morphology, adhesion, spreading, motility and contractility (Figures 5, 6), as seen in many other settings.

      A critical question remains as to whether these effects a reflect limitation in one MRTF target gene or several, and how this defect relates to proliferation.

      Concerning specific MRTF-SRF gene targets:

      Cells lacking cytoplasmic actins are reported to exhibit defective proliferation, (__now noted in Results p23 lines 529-532). __We are currently evaluating whether this defect has similarities with the MRTF-null proliferation phenotype (see Discussion p31, §2).

      Previous findings suggest that defective cytoplasmic actin expression may underlie most MRTF knockout phenotypes (Salvany et al, 2014; Maurice et al., 2024) previously noted in the Discussion (see p31, §2).

      The myoferlin gene promotes growth of liver cancer cells by inhibiting ERK activation and oncogene induced senescence. We showed that myoferlin expression does not promote proliferation of MRTF-null MEFs in the original submission (see Figure S5E). Additionally, we now point out that the RNAseq data show that myoferlin expression is not significantly affected in MRTF-null MEFs __(new text p23, lines 532-534). __

      • It depends on where what target journal would be, but this is is a very well executes mechanistic study that doesn't really have an impact. Extending the discussion to human systems-or tissues where contractility is critical-could broaden the impact and applicability of the findings.*

      We interpret this comment as indicating that our paper does not address the wider biological implications of our findings by extension to studies in tissue or tumour systems.

      As outlined in our response to review 3, our study provides strong evidence that MRTF-SRF will be required for cell proliferation in settings where physical progression through cell cycle transitions requires high contractility, either owing to intrinsic factors or external physical constraints such as tissue stiffness, fibrosis, or tumour microenvironment.

      Discussion now explicitly addresses potential roles for tissue stiffness (pp30§2 lines 717-718, and p32§1 725-727). However, we feel that resolution of this question is beyond the scope of the present paper.

      • As above, the paper briefly mentions transformation, but it would be valuable to elaborate on whether MRTF-SRF acts as a barrier or enabler in tumorigenesis under different conditions. This I feel is the main weakness remaining - e.g. it would be fine with enabling different effects driven by other transcription events in emerging tumour cells (oncogenic in context of RAS, suppressive in context of p53) but I think the manuscript fails to be definitive on this points. Addressing this would make a much stronger and impactful study. I believe they have an impact peice of science that outlines how mechanical events impact cell fate decisions, but this is unlikely to be the driver - ie it facilitates cell fate decisions in context of tissue stiffness.*

      We find it difficult to understand the precise points being made here.

      However, transformation has long been known to bypass physical constraints on proliferation such as the requirement for adhesion. Moreover, MRTF-SRF activity is not necessarily required for proliferation of all transformed cells (Hampl et al, 2013; Medjkane et al, 2009; our unpublished data). The relation of our findings to transformation is thus an open question, which we are actively pursuing. Now noted in revised Discussion p32, lines 752-755.

      MRTF-independent proliferation of tumor cells could reflect oncogenic signals substituting for MRTF-dependent ones (eg from focal adhesions), or from relief of cytoskeletal contraints on proliferation (adhesion independent proliferation). In contrast, in proliferation of DLC1-deleted cancer cells is dependent on suppression of oncogene-induced senescence by MRTF-SRF signalling (Hampl et al, 2013). These points were already made in Discussion p28, pp30-31.

      Although our current work is focussed on cell transformation, we would respectfully suggest the in-depth resolution of this complex question is beyond the scope of the present paper.

      See also response to (3) above.

      *Reviewer #1 (Significance (Required)): *

      *Overall *

      This is a well-executed and insightful study that deepens our understanding of how cytoskeletal signals drive proliferation through MRTF-SRF. It broadens the role of this pathway beyond motility and offers new perspectives on mechanotransduction and cellular plasticity. If is weak in its demonstration of biological significance, but if the aim to to present a pure basic cell biology story it is good.

      The vast majority of work with the SRF system has led to the common perception that its role is exclusively with cell motility and adhesive processes, not proliferation. The results presented in the paper, even if limited to cell culture models, are therefore novel.

      Reviewer #2

      (Evidence, reproducibility and clarity (Required)):

      *In this manuscript, Nielsen and colleagues examine the impact of MRTF-A/B and SRF gene inactivation on cell proliferation. They performed an extensive body of work (using multiple cell types and multiple clones) to show that MRTF inactivation causes cell cycle arrest and senescence (mimicking the phenotype of SRF knockout cells) although the changes in the expression of various CDK inhibitors were cell-type specific. *

      *Very interestingly, simultaneous inactivation of all three major CDK inhibitors failed to rescue MRTF knockout cells from their proliferation defect. Expectedly, MRTF knockout cells exhibited defects in actin cytoskeleton, adhesion, and contractility. Interestingly, hyperactivating Rho also failed to rescue MRTF knockout cells from proliferation defect. The main conclusion of the paper was derived from experiments which showed that inhibition of either ROCK or myosin caused wild-type cells to behave like MRTF knockout cells rather than demonstration of any molecular perturbation that could reverse the proliferation defect of MRTF knockout cells. *

      While the experimental studies are thorough and rigorous, a vast majority of the core findings related to the loss-of-function of MRTF that are reported herein (i.e. defects in cell proliferation, elevation of CDK inhibitors, migration, actin cytoskeleton, contractility) are not conceptually new and have been previously reported in other cell systems by several investigators including this research group.

      This is the first study showing that MRTF-SRF signalling is required for the proliferation of both primary and immortalised fibroblasts, and epithelial cells. We show that the MRTF-SRF non-proliferative state combines features of both classical senescence and reversible cell cycle exit / quiescence.

      The vast majority of previous work with the SRF system has led to the common perception that its role is exclusively related to cell motility and adhesive processes and not proliferation (see Olson and Nordheim 2010). Where proliferation has been examined directly, both others and our own previous studies of the MRTFs in immune cells and cancer cells lines have revealed no direct role in proliferation (Schratt et al, 2001;Medjkane et al 2009; Maurice et al, 2024).

      The results presented here are therefore novel.

      In the reviewer's opinion, since the authors have not been able to identify a molecular strategy to reverse the proliferation phenotype of MRTF knockout cells, the underlying mechanisms of MRTF-dependent regulation of cell proliferation remain largely unanswered.

      Indeed, our attempts to rescue the phenotype (knockouts of the CKIs, and overexpression of different downregulated factors) did not restore proliferation. We therefore now aim to attack the problem (i) through overexpression screens, and (ii) by identifying differences between MRTF-SRF dependent and -independent (eg transformed) cells. However, these are new projects that are beyond the scope of a revised paper.

      • *

      Other comments: Majority of the immunoblot data have not been quantified.

      P16 data in Fig 1G vs Fig S1A are not similar (although the authors mention that the findings are similar)

      We have addressed these issues by reorganisation and quantification the immunoblotting data as follows:

      • Figure S1A has been moved to new Figure 1I, replacing the limited analysis shown in old Figure 1G. This more comprehensive, and displays data from all three WT and Mrtfab-/-
      • Figure 1I data is quantified. Marker expression in each Mrtfab-/- pool is evaluated relative its mean expression in the three WT pools treated in parallel.
      • A new Figure S1A shows mean marker expression across the three Mrtfab-/- pools, drawn from 5 independent analyses (not all markers included in each analysis). Different analyses of marker expression may exhibit variation, resulting from differences in handling, culture medium, plating density, relative confluence, etc. However, Mrtfab-/- cells exhibit markedly increased p27 and TLR2 expression, while expression of the other markers tested, including p16, consistently decreases.
      • Spearman comparisons among the WT and Mrtfab-/- pools show that relative marker expression is indeed well correlated between the pools of each genotype. Note on quantitation added in Methods p10 lines 209-213.

      Figure 1I moved from former Figure S1A, to replace former Figure 1G. New legend now includes quantitation, and reference to Spearman correlations, p44 lines 834-841.

      New Figure S1A displays data from multiple independent experiments with all 3 Mrtfab-/- pools. New legend, p44 lines 997-1002.

      Figure S1B legend notes correlation between relative marker expression in untreated WT and Mrtfab-/- cells, p44, lines 1005-1008.

      Results text rewritten p17 lines 383-391; no reference to “similar”.

      *Reviewer #2 (Significance (Required)): *

      *This study aims to investigate a fundamental biological question of how an actin-regulated transcription machinery regulates cell proliferation and is therefore of broad significance. Strengths and limitations of this study are described above. *

      Reviewer #3

      *(Evidence, reproducibility and clarity (Required)): *

      Summary

      *The manuscript by Nielsen et al. (Treisman lab) entitled "MRTF-dependent cytoskeletal dynamics drive efficient cell cycle progression" investigates the effects on cell proliferation elicited upon cellular depletion of the transcription factors MRTF-A and MRTF-B. The MRTFs are actin-dependent co-factors of SRF, which direct the transcription of SRF target genes. The MRTF-SRF regulatory circuit defines both the functioning and the control of actin-driven cytoskeletal dynamics. *

      *The work presented identifies essential molecular links that interconnect cytoskeleton-dependent cellular activities (cell-cell adhesion, cell-substrate contact, cell spreading) and cell proliferation. *

      *General assessment on used methodology. *

      *The presented comprehensive body of work is performed competently; it includes all relevant and necessary state-of-the-art technologies. *

      • *

      Reviewer #3 (Significance (Required)):

      Advance

      Previously published evidence by others (including the Treisman group) had indicated that SRF does not seem essential for the proliferation of some cell types (i. e., embryonic (stem) cells, activation-dependent immune cells, etc.). In regard to this, the authors discuss in the current manuscript: "Although further work is needed to elucidate the basis for these context-dependent dfferences, our data show that MRTF-SRF signalling is likely to play a more general role in proliferation than previously thought." The current manuscript already delineates this "general role": MRTF-SRF signalling impinges on cell proliferation whenever proliferative activities are dependent upon cytoskeletal dynamics.

      We of course support the view that it is MRTF-SRF's role in cytoskeletal dynamics, especially contractility, that is a limiting factor for cell cycle progression in our cells; however, this may not be the cases or other cell types or settings, such adhesion-independent or transformed cells, and/or stiff tissue environments.

      We have stated this view more strongly, modifying the abstract and discussion, and rewording the sentence quoted above.

      The major point is that MRTF-SRF-dependent proliferation may be more common than previously thought, the field having focussed on its role in cytoskeletal dynamics rather than proliferation.

      Abstract lines 48-49; Discussion p28, line 668-669; pp30-31, lines 713-714, 725-727. See also last para pp31/32, __added lines 752-755. __

      *The work has implications for cancer biology. It offers new directions to investigate the regulation of proliferative activities of anchorage-independent tumor cells. **

      Audience *

      *The insights generated serve the wide interests of a large and diverse group of cell and tumor biologists. *

      *Reviewers field of expertise (keywords). *

      Cytoskeletal dynamics, transcriptional con*

    1. Author response:

      The following is the authors’ response to the current reviews

      Reviewer #2 (Public review): 

      This manuscript describes the role of the production of c-di-AMP on the chlamydial developmental cycle. The main findings remain the same. The authors show that overexpression of the dacA-ybbR operon results in increased production of c-di-AMP and early expression of transitionary and late genes. The authors also knocked down the expression of the dacA-ybbR operon and reported a modest reduction in the expression of both hctA and omcB. The authors conclude with a model suggesting the amount of c-di-AMP determines the fate of the RB, continued replication, or EB conversion. 

      Overall, this is a very intriguing study with important implications however the data is very preliminary and the model is very rudimentary. The data support the observation that dramatically increased c-di-AMP has an impact on transitionary gene expression and late gene expression suggesting dysregulation of the developmental cycle. This effect goes away with modest changes in c-di-AMP (detaTM-DacA vs detaTM-DacA (D164N)). However, the model predicts that low levels of c-di-AMP delays EB production is not not well supported by the data. If this prediction were true then the growth rate would increase with c-di-AMP reduction and the data does not show this. The levels of of c-di-AMP at the lower levels need to be better validated as it seems like only very high levels make a difference for dysregulated late gene expression. However, on the low end it's not clear what levels are needed to have an effect as only DacAopMut and DacAopKD show any effects on the cycle and the c-di-AMP levels are only different at 24 hours. 

      These appear to be the same comments the reviewer presented last time, so we will reiterate our prior points here and elsewhere. We do not think and nor do we predict that low c-di-AMP levels should increase growth rate (as measured by gDNA levels), and this conclusion cannot be drawn from our data. Rather, we predict that the inability to accumulate c-di-AMP should delay production of EBs, and this is what the data show. The reviewer has applied their own subjective (and erroneous) interpretation to the model. The asynchronicity of the normal developmental cycle means RBs continue to replicate as EBs are forming, so gDNA levels cannot be used as the sole metric for determining RB levels. We show that reduced c-di-AMP levels reduce EB levels as well as transcripts associated with late stages of development. The parsimonious interpretation of these data support that low c-di-AMP levels delay progression through the developmental cycle consistent with our model.

      The data still do not support the overall model.

      We disagree.  We have presented quantified data that include appropriate controls and statistical tests, and the reviewer has not disputed that or pointed to additional experiments that need to be performed.  The reviewer has imposed a subjective interpretation of our model based on their own biases.  A reader is free, of course, to disagree with our model, but a reviewer should not block a manuscript based on such a disagreement if no experimental flaws have been identified. 

      In Figure 1 the authors show at 24 hpi. 

      We also showed data from 16hpi, which is a more relevant timepoint for assessing premature transition to EBs.  In contrast, the 24hpi is more important for assessing developmental effects of reduced c-di-AMP levels.

      DacA overexpression increases cdiAMP to ~4000 pg/ml 

      DacAmut overexpression reduces cdiAMP dramatically to ~256 pg/ml) 

      DacATM overexpression increases cdiAMP to ~4000 pg/ml. 

      DacAmutTM overexpression does not seem to change cdiAMP ~1500 pg/ml . 

      dacAKD decreases cdiAMP to ~300 pg/ml . 

      dacAKDcom increased cdiAMP to ~8000 pg/ml. 

      DacA-ybbRop overexpression increased cdiAMP to ~500,000 pg/ml. 

      DacA-ybbRopmut ~300 pg/ml. 

      However in Figure 2 the data show that overexpression of DacA (cdiAMP ~4000 pg/ml) did not have a different phenotype than over expression of the mutant (cdiAMP ~256 pg/ml). HctA expression down, omcB expression down, euo not much change, replication down, and IFUs down. Additionally, Figure 3 shows no differences in anything measured although cdiAMP levels were again dramatically different. DacATM overexpression (~4000 pg/ml) and DacAmutTM (~1500). This makes it unclear what cdiAMP is doing to the developmental cycle. 

      As we have explained in the text and in response to reviewer comments on previous rounds of review, overexpressing the full-length WT or mutant DacA is detrimental to developmental cycle progression for reasons that have nothing to do with c-di-AMP levels (likely disrupting membrane function), since, as the reviewer notes, the WT DacA deltaTM strain had similar c-di-AMP levels but no negative effects on growth/development. If we had not presented the effects of overexpressing the individual isoforms, then a reviewer would surely have requested such, which is why we present these data even though they don’t seem to support our model.  This is an honest representation of our findings.  The reviewer seems intent on nitpicking a minor datapoint that seems to contradict the rest of the manuscript while ignoring or not carefully reading the rest of the manuscript.

      In Figure 4 the authors knockdown dacA (dacA-KD) and complement the knockdown (dacA-KDcom) 

      dacAKD decreases cdiAMP (~300) while DacA-KDcom increases cdiAMP much above wt (~8000). 

      KD decreased hctA and omcB at 24hpi. Complementation resulted in a moderate increase in hctA at a single time point but not at 24 hpi and had no effect on euo or omcB expression.

      By 24hpi, late gene transcripts are being maximally produced during a normal developmental cycle. It is unclear why the reviewer thinks that these transcripts should be elevated above this level in any of our strains that prematurely transition to EBs. There is no basis in the literature to support such an assumption. As we noted in the text, the dacA-KDcom strain phenocopied the dacAop OE strain, and we showed RNAseq data and EB production curves for the latter that support our conclusions of the effect of increased c-di-AMP levels on developmental progression.

      Importantly, complementation decreased the growth rate.

      Yes, since the c-di-AMP levels breached the “EB threshold” at 16hpi, it causes premature transition to EBs, which do not replicate their gDNA, at an earlier stage of the cycle when fewer organisms are present. Therefore, the gDNA levels are decreased at 24hpi, which is consistent with our model.

      Based on the proposed model, growth rate should increase as the chlamydia should all be RBs and replicating and not exiting the cell cycle to become EBs (not replicating).

      This is a spurious conclusion from the reviewer. As we clearly showed, the dacA-KDcom did not restore a wild-type phenotype and instead mimicked the dacAop OE strain. This was commented on in the text.

      Interestingly reducing cdiAMP levels by over expressing DacAmut (~256 pg/ml) did not have an effect on the cycle but the reduction in cdiAMP by knockdown of dacA (~300 pg/ml) did have a moderate effect on the cycle. 

      This is again a spurious conclusion from the reviewer. The dacAMut and dacA-KD strains are distinct. As noted in the text and above for DacA WT OE, overexpressing the DacAMut similarly disrupts organism morphology, which is different from dacA-KD. These strains should not be directly compared because of this. This point has been previously highlighted in the text (in Results and Discussion).

      For Figure 5 DacA-ybbRop was overexpressed and this increased cdiAMP dramatically ~500,000 pg/ml as compared to wt ~1500. This increased hctA only at an early timepoint and not at 24hpi and again had no effect on omcB or euo.

      As we explained in prior reviews, our RNAseq data more comprehensively assessed transcripts for the dacAop OE strain. These data show convincingly that late gene transcripts (not just hctA and omcB) are elevated earlier in the developmental cycle. Again, it is not clear why the reviewer should expect that late gene transcripts should be higher in these strains than they are during a normal developmental cycle. This is not part of our model and appears to be a bias that the reviewer has imposed that is not supported by the literature.

      Overexpression of the operon with the mutation DacA-ybbRopmut reduced cdiAMP to ~300 pg/ml and this showed a reduction in growth rate similar to dacAmut but a more dramatic decrease in IFUs. 

      As we described in the text, in earlier revisions, and above, the dacAMut OE strain has distinct effects unrelated to c-di-AMP levels and, therefore, should not be compared to other strains in terms of linking its c-di-AMP levels to its phenotype.

      Overall: 

      DacA overexpression increases cdiAMP to ~4000 pg/ml (decreased everything except euo) 

      DacAmut overexpression reduces cdiAMP dramatically (~256 pg/ml). (decreased everything except euo) 

      DacATM overexpression increases cdiAMP to ~4000 pg/ml (no changes noted) 

      DacAmutTM overexpression does not seem to change cdiAMP ~1500 pg/ml (no changes noted) 

      dacAKD decrease cdiAMP to ~300 pg/ml (decreased everything except euo) 

      dacAKDcom increased cdiAMP to ~8000 pg/ml (decreases growth rate, increase hctA a little but not omcB) 

      DacA-ybbRop overexpression increased cdiAMP to ~500,000 pg/ml (decreases growth rate, increase hctA a little but not omcB) <br /> DacA-ybbRopmut ~300 pg/ml (decreased everything except euo) 

      Overall, the data show that increasing cdiAMP only has a phenotype if it is dramatically increased, no effect at 4000 pg/ml.

      Yes, this clearly shows there is a threshold - as we hypothesize!  However, these thresholds are more important at the 16hpi timepoint not 24hpi (which the reviewer is referencing) when assessing premature transition to EBs.  We specifically highlighted in our prior revision in Figure 1E this EB threshold to make this point clearer for the reader.  Once the threshold is breached, then the overall c-di-AMP levels become irrelevant as the RBs have begun their transition to EBs.

      Decreasing cdiAMP has a consistent effect, decreased growth rate, IFU, hctA expression and omcB expression. However, if their proposed model was correct and low levels of cdiAMP blocked EB conversion then more chlamydial cells would be RBs (dividing cells) and the growth rate should increase.

      The only effect should be normal gDNA levels, which is what we see in the dacA-KD.  Given the asynchronicity of a normal developmental cycle in which RBs continue to replicate as EBs are still forming, there is no basis to assume gDNA levels should increase under these conditions for the dacA-KD strain at 24hpi.

      Conversely, if cdiAMP levels were dramatically raised then all RBs would all convert and the growth rate would be very low.

      We agree. This is what is reflected by the dacAop OE and dacA-KDcom strains, with reduced gDNA levels at 24hpi since organisms have transitioned to EBs at an earlier time post-infection.

      When cdiAMP was raised to ~4000 pg/ml there was no effect on the growth rate.

      Yes, because it had not breached the EB threshold at 16hpi – consistent with our model!  The reviewer is confusing effects of elevated c-di-AMP at 24hpi when they should be assessed at the 16hpi timepoint for strains overproducing this molecule.

      However, an increase to ~8000 pg/ml resulted in a significant decrease but growth continued.

      If the reviewer is referring to the dacA-KDcom strain, then this is not accurate. gDNA levels were decreased in this strain at 24hpi when the c-di-AMP levels were increased compared to the WT (mCherry OE) control at 16hpi, indicating this strain had breached the “EB threshold” and initiated conversion to EBs at an earlier timepoint post-infection when fewer organisms were present.

      Increasing cdAMP to ~500,000 pg/ml had less of an impact on the growth rate.

      It is not clear what this conclusion is based on and what the reviewer is comparing to.  This is a subjective assessment not based on our data.

      Overall, the data does not cleanly support the proposed model.

      It is an unfortunate aspect of biology, particularly for obligate intracellular bacteria – a challenging experimental system on which to work, that the data are not always “clean”.  The overall effects of increased c-di-AMP levels on chlamydial developmental cycle progression we have documented support our model, and we think the reader, as always, should make their own assessment.


      The following is the authors’ response to the original reviews.

      Reviewer #2 (Public review): 

      This manuscript describes the role of the production of c-di-AMP on the chlamydial developmental cycle. The main findings remain the same. The authors show that overexpression of the dacA-ybbR operon results in increased production of c-di-AMP and early expression of transitionary and late genes. The authors also knocked down the expression of the dacA-ybbR operon and reported a modest reduction in the expression of both hctA and omcB. The authors conclude with a model suggesting the amount of c-di-AMP determines the fate of the RB, continued replication, or EB conversion. 

      Overall, this is a very intriguing study with important implications however, the data is very preliminary, and the model is very rudimentary. The data support the observation that dramatically increased c-di-AMP has an impact on transitionary gene expression and late gene expression suggesting dysregulation of the developmental cycle. This effect goes away with modest changes in c-di-AMP (detaTM-DacA vs detaTM-DacA (D164N)). However, the model predicts that low levels of c-di-AMP delays EB production is not not well supported by the data. If this prediction were true then the growth rate would increase with c-di-AMP reduction and the data does not show this.

      Thank you for the comments. We have apparently not adequately communicated our predictions and the model. We do not think and nor do we predict that low c-di-AMP levels should increase growth rate, and there is no basis in any of our data to support that. Rather, we predict that the inability to accumulate c-di-AMP should delay production of EBs, and this is what the data show. We have clarified this in the text (line 89 paragraph).

      The levels of c-di-AMP at the lower levels need to be better validated as it seems like only very high levels make a difference for dysregulated late gene expression. However, on the low end it's not clear what levels are needed to have an effect as only DacAopMut and DacAopKD show any effects on the cycle and the c-di-AMP levels are only different at 24 hours.

      Our hypothesis is that increasing concentrations of c-di-AMP within a given RB is a signal for it to undergo secondary differentiation to the EB, and the data support this as noted by the reviewers. Again, we stress that low levels of c-di-AMP are irrelevant to the model. We have revised Figure 1E to indicate the level of c-di-AMP in the control strain at the 24hpi timepoint that coincides with increased EB levels. We hope this will further clarify the goals of our study. That a given strain might be below the EB control is not relevant to the model beyond indicating that it has not reached the necessary threshold for triggering secondary differentiation.

      The authors responded to reviewers' critiques by adding the overexpression of DacA without the transmembrane region. This addition does not really help their case. They show that detaTM-DacA and detaTM-DacA (D164N) had the same effects on c-di-AMP levels but the figure shows no effects on the developmental cycle.

      As it relates directly to the reviewer’s point, the delta-TM strains did not show the same level of c-di-AMP. It may be that the reviewer misread the graph. The purpose of testing these strains was to show that the negative effects of overexpressing full-length WT DacA were due to its membrane localization. Both the FL and deltaTM-DacA (WT) overexpression had equivalent c-di-AMP levels even though the delta-TM overexpression looked like the mCherry-expressing strain based on the measured parameters. This shows that the c-di-AMP levels were irrelevant to the phenotypes observed when overexpressing these WT isoforms. For the mutant isoforms, the delta-TM looked like the mCherry-expressing control while the FL isoform was negatively impacted for reasons we described in the Discussion (e.g., dominant negative effect). In addition, at 16hpi, neither delta-TM strain had c-di-AMP levels that approached the 24h control as denoted in Figure 1E (dashed line) and in the text, which explains why these strains did not show increased late gene transcripts at an earlier timepoint like the dacAop and dacA-KDcom strains.

      Describing the significance of the findings: 

      The findings are important and point to very exciting new avenues to explore the important questions in chlamydial cell form development. The authors present a model that is not quantified and does not match the data well. 

      We respectfully disagree with this assessment as noted above in response to the reviewer’s critique. All of our data are quantified and support the hypothesis as stated.

      Describing the strength of evidence: 

      The evidence presented is incomplete. The authors do a nice job of showing that overexpression of the dacA-ybbR operon increases c-di-AMP and that knockdown or overexpression of the catalytically dead DacA protein decreases the c-di-AMP levels. However, the effects on the developmental cycle and how they fit the proposed model are less well supported. 

      Overall this is a very intriguing finding that will require more gene expression data, phenotypic characterization of cell forms, and better quantitative models to fully interpret these findings. 

      It is not clear what quantitative models the reviewer would prefer, but, ultimately, it is up to the reader to decide whether they agree or not with the model we present. The data are the data, and we have tried to present them as clearly as possible. We would emphasize that, with the number of strains we have analyzed, we have presented a huge amount of data for a study with an obligate intracellular bacterium. As a comparison, most publications on Chlamydia might use a handful of transformant strains, if any. Given the cost and time associated with performing such studies, it is prohibitive to attempt all the time points that one might like to do, and it is not clear to us that further studies will add to or alter the conclusions of the current manuscript.

      Reviewer #2 (Recommendations for the authors): 

      Minor critiques 

      The graphs have red and blue lines but the figure legends are red and black. It would be better if these matched. 

      Changed.

      For Figure 1C. The labels are not very helpful. It's not clear what is HeLa vs mCherry. I believe it is uninfected vs Chlamydia infected.

      Changed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This study uses mesoscale simulations to investigate how membrane geometry regulates the multiphase organization of postsynaptic condensates. It reveals that dimensionality shifts the balance between specific and non-specific interactions, thereby reversing domain morphology observed in vitro versus in vivo.

      Strengths:

      The model is grounded in experimental binding affinities, reproduces key experimental observations in 3D and 2D contexts, and offers mechanistic insight into how geometry and molecular features drive phase behavior.

      Weaknesses:

      The model omits other synaptic components that may influence domain organization and does not extensively explore parameter sensitivity or broader physiological variability.

      We thank the reviewer for his/her time and effort to our manuscript. We agree with the point that the contribution of other synaptic components should be addressed. We have included a discussion of the effects of environmental factors such as protein and ion concentrations, as well as other omitted postsynaptic components (SAPAP, Shank, and Homer) on phase morphology. In the middle of the 2<sup>nd</sup> paragraph of Discussion, we added: 

      “While these in vivo results contain additional scaffold and cytoskeletal elements omitted in our model, such as SAPAP, Shank and Homer, nearly all proteins in the middle and lower layers of the PSD associate directly or indirectly with PSD-95 in the upper PSD layer. Consequently, it is probable that other scaffold proteins contribute to the mobility of AMPAR-containing and NMDAR-containing nanodomains indistinguishably. They may increase the stability of the AMPAR and NMDAR clusters but are unlikely to have a distinct effect to reverse the phase-separation phenomenon.”

      Also, as the reviewer pointed out, we agree with that physiological factors such as ion concentration may influence the phase. However, conditions such as ion concentration are implicitly implemented as the specific and nonspecific interactions in this model, which makes it difficult to estimate the effect of each physiological condition individually. We added the variability potential of physiological conditions to the discussion section as a limitation of this model. To investigate parameter sensitivity in more detail, we performed additional MD simulations with weakened membrane constraints to account for the behavior between 3D and 2D. We added:

      “First, our results did not provide direct insights to physiological conditions, such as ion concentrations. Since such factors are implicitly implemented in our model, it is difficult to estimate these effects individually. This suggests the need for future implementation of environmental factors and validation under a broader range of in vivo-like settings.”

      Reviewer #2 (Public review):

      This is a timely and insightful study aiming to explore the general physical principles for the sub-compartmentalization--or lack thereof--in the phase separation processes underlying the assembly of postsynaptic densities (PSDs), especially the markedly different organizations in three-dimensional (3D) droplets on one hand and the twodimensional (2D) condensates associated with a cellular membrane on the other. Simulation of a highly simplified model (one bead per protein domain) is carefully executed. Based on a thorough consideration of various control cases, the main conclusion regarding the trade-off between repulsive excluded volume interactions and attractive interactions among protein domains in determining the structures of 3D vs 2D model PSD condensates is quite convincing. The results in this manuscript are novel; however, as it stands, there is substantial room for improvement in the presentation of the background and the findings of this work. In particular,

      (i) conceptual connections with prior works should be better discussed 

      (ii) essential details of the model should be clarified, and

      (iii) the generality and limitations of the authors' approach should be better delineated.

      We appreciate the reviewer for his/her time and effort on our manuscript and for encouraging comments and helpful suggestions. We answered every technical comment the reviewer mentioned below.

      Specifically, the following items should be addressed (with the additional references mentioned below cited and discussed):

      (1) Excluded volume effects are referred to throughout the text by various terms and descriptions such as "repulsive force according to the volume" (e.g., in the Introduction), "nonspecific volume interaction", and "volume effects" in this manuscript. This is somewhat curious and not conducive to clarity, because these terms have alternate or connotations of alternate meanings (e.g., in biomolecular modeling, repulsive interactions usually refer to those with longer spatial ranges, such as that between like charges). It will be much clearer if the authors simply refer to excluded volume interactions as excluded volume interactions (or effects).  

      Thank you for this comment. We have substituted the words “excluded volume interactions” for words of similar meaning. However, we have left the expression of “non-specific interactions” as they are referring to explicit interactions that are given as force fields in the model, rather than in the general meaning of excluded volume effect.

      (2) In as much as the impact of excluded volume effects on subcompartmentalization of condensates ("multiple phases" in the authors' terminology), it has been demonstrated by both coarse-grained molecular dynamics and field-theoretic simulations that excluded volume is conducive to demixing of molecular species in condensates [Pal et al., Phys Rev E 103:042406 (2021); see especially Figures 4-5 of this reference]. This prior work bears directly on the authors' observation. Its relationship with the present work should be discussed.  

      We appreciate the reviewer’s insightful comment. We have now included a more detailed discussion on excluded volume effect in the revised manuscript, which provides important context for our findings. Furthermore, we have cited the references to support and enrich the discussion, as recommended.

      (3)  In the present model setup, activation of the CaMKII kinase affects only its binding to GluN2Bc. This approach is reasonable and leads to model predictions that are essentially consistent with the experiment. More broadly, however, do the authors expect activation of the CaMKII kinase to lead to phosphorylation of some of the molecular species involved with PSDs? This may be of interest since biomolecular condensates are known to be modulated by phosphorylation [Kim et al., Science 365:825-829 (2019); Lin et al, eLife 13:RP100284 (2025)].  

      We agree that phosphorylation effect on phase separation is an important and interesting aspect to consider. Some experimental results have shown that activation of CaMKII can lead to phosphorylation of various proteins and make PSD condensate more stable by altering their interactions. We included the sentence below in limitations:

      “In this context, we also do not explicitly account for downstream phosphorylation events. Although such proteins are not included in the current components, they will regulate PSD-95, affecting its binding valency, or diffusion coefficient. This is a subject worthy of future research.”

      (4) The forcefield for confinement of AMPAR/TARP and NMDAR/GluN2Bc to 2D should be specified in the main text. Have the authors explored the sensitivity of their 2D findings on the strength of this confinement?

      We thank the reviewer for the helpful recommendation. We have revised the manuscript to include membrane-mimicking potential on main text. Furthermore, we also think that exploring the shape of the 3D/2D condensate phase due to the sensitivity of confinement is a very interesting point. We have additionally performed MD simulations with smaller/larger membrane constraints and included the results in supporting information as Figure S5. The following parts are added:

      “We further attempted to mimic intermediate conditions between 3D and 2D systems in two different manners. First, we applied a weaker membrane constraint in 2D system. Even when the strength of membrane constraints is reduced by a factor of 1000, NMDARs are located on the inner side when the CaMKII was active, as well as the result in 2D system (Fig.S5ABC). Second, to weaken further the effect of membrane constraints, we artificially altered the membrane thickness from 5 nm to 50 nm, in addition to reducing the membrane constraints by 1000. As a result, NMDAR clusters move to the bottom and surround AMPAR (Fig.S5DEF). In this artificial intermediate condition, both states in which the NMDARs are outside (corresponding to 3D) and in which the NMDARs are inside (corresponding to 2D) are observed, depending on the strength of the membrane constraint.”

      (5)  Some of the labels in Figure 1 are confusing. In Figure 1A, the structure labeled as AMPAR has the same shape as the structure labeled as TARP in Figure 1B, but TARP is labeled as one of the smaller structures (like small legs) in the lower part of AMPAR in Figure 1A. Does the TARP in Figure 1B correspond to the small structures in the lower part of AMPAR? If so, this should be specified (and better indicated graphically), and in that case, it would be better not to use the same structural drawing for the overall structure and a substructure. The same issue is seen for NMDAR in Figure 1A and GluN2Bc in Figure 1B. 

      (6) In addition to clarifying Figure 1, the authors should clarify the usage of AMPAR vs TARP and NMDAR vs GluN2Bc in other parts of the text as well.

      (7) The physics of the authors' model will be much clearer if they provide an easily accessible graphical description of the relative interaction strengths between different domain-representing spheres (beads) in their model. For this purpose, a representation similar to that given by Feric et al., Cell 165:1686-1697 (2016) (especially Figure 6B in this reference) of the pairwise interactions among the beads in the authors' model should be provided as an additional main-text figure. Different interaction schemes corresponding to inactive and activated CAMKII should be given. In this way, the general principles (beyond the PSD system) governing 3D vs 2D multiple-component condensate organization can be made much more apparent.  \

      We sincerely appreciate the reviewer’s comments. According to the recommendation, we have changed the diagram in Figure 1B into interaction matrix with each mesoscale molecular representation and the expression in main text to be clearer about AMPAR and TARP, and about the relationship between NMDAR and GluN2Bc. Former diagram of the pairs of specific interaction is moved to supplementary figure. 

      (8) Can the authors' rationalization of the observed difference between 3D and 2D model PSD condensates be captured by an intuitive appreciation of the restriction on favorable interactions by steric hindrance and the reduction in interaction cooperativity in 2D vs 3D?  

      We thank the reviewer for the comment. As pointed out, the multiphase morphology change observed in this study can be attributed to a decrease in coordination number in 2D compared to 3D. We have included the physicochemical rationalization in the discussion.  

      (9) In the authors' model, the propensity to form 2D condensates is quite weak. Is this prediction consistent with the experiment? Real PSDs do form 2D condensates around synapses.  

      We are grateful to the reviewer for highlighting this important point. We agree with that the real PSD forms 3D condensates beneath the 2D membrane. Some lower PSD components under the membrane (i.e. SAPAP, Shank, and Homer) are omitted in our system, which may cause a weak condensation. To emphasize this, we have added the following sentence:

      “While these in vivo results contain additional scaffold and cytoskeletal elements omitted in our model, such as SAPAP, Shank and Homer, nearly all proteins in the middle and lower layers of the PSD associate directly or indirectly with PSD-95 in the upper PSD layer. Consequently, it is probable that other scaffold proteins contribute to the mobility of AMPAR-containing and NMDAR-containing nanodomains indistinguishably. They may increase the stability of the AMPAR and NMDAR clusters but are unlikely to have a distinct effect to reverse the phase-separation phenomenon.”

      However, we believe that the clusters formed on the 2D membrane are not a robust “phase” because they do not follow scaling law. In fact, in our previous study of PSD system with AMPAR(TARP)<sub>4</sub> and PSD-95, we have already reported that phase separation is less likely to occur in 2D than in 3D. The previous result suggests that phase separation on membrane may be difficult to achieve, which is consistent with the results of this study.

      (10) More theoretical context should be provided in the Introduction and/or Discussion by drawing connections to pertinent prior works on physical determinants of co-mixing and de-mixing in multiple-component condensates (e.g., amino acid sequence), such as Lin et al., New J Phys 19:115003 (2017) and Lin et al., Biochemistry 57:2499-2508 (2018). 

      (11) In the discussion of the physiological/neurological significance of PSD in the Introduction and/or Discussion, for general interest it is useful to point to a recently studied possible connection between the hydrostatic pressure-induced dissolution of model PSD and high-pressure neurological syndrome [Lin et al., Chem Eur J 26:11024-11031 (2020)].

      We thank the reviewer for the helpful recommendation. We have added the recommended references in each relevant part in introduction, respectively.

      (12) It is more accurate to use "perpendicular to the membrane" rather than "vertical" in the caption for Figure 3E and other such descriptions of the orientation of the CaMKII hexagonal plane in the text.

      We thank you for your comment. We replaced the word “vertical” with “perpendicular" in the main text and caption.

      Reviewer #3 (Public review):

      Summary:

      In this work, Yamada, Brandani, and Takada have developed a mesoscopic model of the interacting proteins in the postsynaptic density. They have performed simulations, based on this model and using the software ReaDDy, to study the phase separation in this system in 2D (on the membrane) and 3D (in the bulk). They have carefully investigated the reasons behind different morphologies observed in each case, and have looked at differences in valency, specific/non-specific interactions, and interfacial tension.

      Strengths:

      The simulation model is developed very carefully, with strong reliance on binding valency and geometry, experimentally measured affinities, and physical considerations like the hydrodynamic radii. The presented analyses are also thorough, and great effort has been put into investigating different scenarios that might explain the observed effects.

      Weaknesses:

      The biggest weakness of the study, in my opinion, has to do with a lack of more in-depth physical insight about phase separation. For example, the authors express surprise about similar interactions between components resulting in different phase separation in 2D and 3D. This is not surprising at all, as in 3D, higher coordination numbers and more available volume translate to lower free energy, which easily explains phase separation. The role of entropy is also significantly missing from the analyses. When interaction strengths are small, entropic effects play major roles. In the introduction, the authors present an oversimplified view of associative and segregative phase transitions based on the attractive and repulsive interactions, and I'm afraid that this view, in which all the observed morphologies should have clear pairwise enthalpic explanations, diffuses throughout the analysis. Meanwhile, I believe the authors correctly identify some relevant effects, where they consider specific/nonspecific interactions, or when they investigate the reduced valency of CaMKII in the 2D system.

      We thank the reviewer for the insightful and constructive comments. Regarding the difference in phase behavior between 2D and 3D systems, we appreciate the reviewer’s clarification that differences in coordination number and entropy in higher dimensions can account for the observed morphology of the phases. While it may be clear that entropy decreases due to the decrease of coordination number, our objective was to uncover how such an isotropic entropy reduction regulates the behavior of each phase driven by different interactions, which remains largely unknown. To emphasize this, we modified the introduction and have now included a discussion of the entropic contributions to phase behavior in both 2D and 3D systems, and we have made this clearer in the revised manuscript by referencing relevant theoretical frameworks. In the Discussion, we added the sentence below:

      “Generally, phase separation can be explained by the Flory-Huggins theory and its extensions: phase separation can be favored by the difference in the effective pairwise interactions in the same phase compared to those across different phases, and is disfavored by mixing entropy. The effective interactions contain various molecular interactions, including direct van der Waals and electrostatic interactions, hydrophobic interactions, and purely entropic macromolecular excluded volume interactions. For the latter, Asakura-Oosawa depletion force can drive the phase separation. Furthermore, the demixing effect was explicitly demonstrated in previous simulations and field theory (61). Importantly, we note that the effective pairwise interactions scale with the coordination number z. The coordination number is a clear and major difference between 3D and 2D systems. In 3D systems, large z allows both relatively strong few specific interactions and many weak non-specific interactions. While a single specific interaction is, by definition, stronger than a single non-specific interaction, contribution of the latter can have strong impact due to its large number. On the other hand, a smaller z in the membrane-bound 2D system limits the number of interactions. In case of limited competitive binding, specific interactions tend to be prioritized compared to non-specific ones. In fact, Fig. 3A clearly shows that number of specific interactions in 2D is similar to that in 3D, while that of non-specific interactions is dramatically reduced in 2D. In the current PSD system, CaMKII is characterized by large valency and large volume. In the 3D solution system, non-specific excluded volume interactions drive CaMKII to the outer phase, while this effect is largely reduced in 2D, resulting in the reversed multiphase.   

      Also, I sense some haste in comparing the findings with experimental observations. For example, the authors mention that "For the current four component PSD system, the product of concentrations of each molecule in the dilute phase is in good agreement with that of the experimental concentrations (Table S2)." But the data used here is the dilute phase, which is the remnant of a system prepared at very high concentrations and allowed to phase separate. The errors reported in Table S2 already cast doubt on this comparison. 

      We thank the reviewer for the insightful comment. In the validation process, we adjusted the parameters so that the number of molecules in dilute phase is consistent with the experimental lower limit of phase separation, based on the assumption that phase-separated dilute phase is the same concentration as the critical concentration. That is why we focus on comparing dilute phase concentration in Table S2. However, in our simulations, the number of protein molecules is relatively small since it is based on the average number per synapse spine. For example, there are only about 60 CaMKII molecules at most, and its presence in the dilute phase is highly sensitive to concentration, as the reviewer pointed out. This is one of the limitations, so we have added a description to the Limitations section. We added:

      “Second, parameter calibration contains some uncertainty. Previous in vitro study results used for parameter validation are at relatively high concentrations for phase separation, which may shift critical thresholds compared to that in in vivo environments. Also, since the number of molecules included in the model is small, the difference of a single molecule could result in a large error during this validation process.”

      Or while the 2D system is prepared via confining the particles to the vicinity of the membrane, the different diffusive behavior in the membrane, in contrast to the bulk (i.e., the Saffman-Delbrück model), is not considered. This would thus make it difficult to interpret the results of a coupled 2D/3D system and compare them to the actual system.

      We appreciate the reviewer’s helpful comment. We agree with that there is a concern that the Einstein-Stokes equation does not adequately reproduce the diffusion of membrane-embedded particles. We recalculated the diffusion coefficients for every membrane particle used in this model using the Saffman-Delbrück model and found that diffusion coefficients for receptor cores (AMPAR and NMDAR) were approximately three times larger. These values are still about ~10 times smaller than that of molecules diffusing under the cytoplasm. Additionally, since this study focuses on the morphology of the phase/cluster at the thermodynamic equilibrium, we think that the magnitude of the diffusion coefficient has little influence on the final structure of the cluster. However, we will incorporate the membrane-embedded diffusion as a future improvement item for better modelling and implementation. We added:

      “Third, we estimated all the diffusion coefficients from the Einstein-Stokes equation, which may oversimplify membrane-associated dynamics. Applying the Saffmann-Delbrück model to membrane-embedded particles would be desired although the resulting diffusion coefficients remain of the same order of magnitude. These limitations highlight the need for further research, yet they do not undermine the core significance of the present findings in advancing our understanding of multiphase morphologies.”

    1. Reviewer #2 (Public review):

      In this study, Fontana et al. develop a paradigm for associative conditioning by pairing exposure to an alarm substance with a novel tank. Exposure to conspecific alarm substance (CAS) in the novel tank triggers freezing and what they characterize as evasive swimming behaviour, which is subsequently seen in a re-exposure to the novel tank without the CAS present. Importantly, these states are identified via automated processes, including postural tracking and a random forest classification process, which could be very useful tools for subsequent studies.

      In their experiments, they focus on the differences in behaviour among strains of zebrafish (both males and females), and among individual zebrafish. For males and females of different strains, they find some differences, though the clearest message seems to be that the most robust measure of the behaviour in response to both the CAS and in the memory trials is the freezing behaviour, while evasive behaviour is more variable. and not always seen. This may relate to their observation of significant "evasiveness" in vehicle control experiments (discussed further below).

      Moving on to individual variation from within this multi-strain male/female dataset, they first examine transition matrices between states and find tthat his is not dramatically altered by stimulus exposure. They then use clustering to identify 4 different "classes" of zebrafish that differ in their expression (or not) of two types of behaviour: freezing and/or evasive behaviour. They show that over the three exposure epochs of the experiment, this classification is somewhat stable in an individual fish, though many fish change their behaviour - e.g., evading + freezing -> only freezing.

      In the final set of experiments, the authors move beyond behavioural analyses and perform whole-brain cFos mapping of these individual zebrafish. They perform analyses aimed at identifying correlations between individual behavioural expression and the number of cFos-positive cells in different brain regions. Using partial least squares analysis, they find areas associated with two types of behavioural contrasts, which differ in their weighting of different behavioural expression during the Memory trials. Covariation and network structure analysis within different classes of larvae also find some differences in covariation among brain areas, providing hypotheses as to underlying network effects that may govern the expression of freezing and/or evasive behavior in the memory trial phases.

      Overall, I find this to be an interesting study that employs state of the are methods of behavioural analyses and whole-brain cFos analyses, but I am left a little bit confused as to what the take home message is and what can be concluded from this complex study that mixes in analyses of strain, sex, and individuality within a quite complex assay with multiple behavioural parameters.

      My suggestions are as follows:

      (1) My first concern relates to the claim in the abstract that "We found that fear memory behavior fell into four distinct groups: non-reactive, evaders, evading freezers, and freezers".

      In my opinion, the "freezing" aspect is well supported as being both triggered by the CAS and for memory effect upon re-exposure to the tank, but I am less convinced about the "evasive" behaviour. In Figure 2, it appears that "evasiveness" is generally not increased in both the Exposure or Memory phases for many groups, and in Figure 5, it appears that "evasiveness" is expressed by nearly 50% of the fish in the pre-exposure condition before CAS addition and in all phases in the vehicle condition. Therefore, it appears that most of the expression of this behaviour is independent of any memory-based effect.

      (2) My second concern relates to the claim in the abstract that "background strain and sex influenced how fish respond to CAS, with males more likely to increase evasive behaviors than females and the TU strain more likely to be non-reactive."

      My understanding, based on the introduction and on the methods, is that it is likely important that the CAS be prepared from conspecifics of the same strain and sex, and for this reason, they prepared different CAS specific for each strain and each sex. Therefore, the "CAS" that is applied is necessarily different for each condition, and I am concerned about if the differences observed could relate more to variation in the quality, purity, concentration, etc. of the specific CAS samples for different groups, rather than their reactivity to the substance or their ability to form memories based on such experiences.

      (3) My third concern relates to the interpretation of the cFos data.

      As I mentioned above, I feel as though the behavioural analysis is perhaps more complex than is warranted via the inclusion of evasiveness, and I wonder if the conclusions from the experiments would be simpler if analyzed only from the perspective of freezing.

      But considering the presented analyses: while I dont think there is anything wrong with the partial least squares approach and the network analyses, I am concerned that the simple messaging in the text does not reflect the complexity of this analysis combining different weightings of different behavioural characteristics in a behavioural contrast, or covariations among many regions and what such analyses mean at the level of brain function. For these reasons, I feel like statements along the lines of "Behavioral variation is driven by differences in the activity of brain regions outside the telencephalon, such as the cerebellum, preglomerular nuclei, preoptic area and hypothalamus" are not well supported.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This manuscript from Jones and colleagues investigates a previously described phenomenon in which P. falciparum malaria parasites display increased trafficking of proteins displayed on the surface of infected RBCs, as well as increased cytoadherence in response to febrile temperatures. While this parasite response was previously described, it was not uniformly accepted, and conflicting reports can be found in the literature. This variability likely arises due to differences in the methods employed and the degree of temperature increase to which the parasites were exposed. Here, the authors are very careful to employ a temperature shift that likely reflects what is happening in infected humans and that they demonstrate is not detrimental to parasite viability or replication. In addition, they go on to investigate what steps in protein trafficking are affected by exposure to increased temperature and show that the effect is not specific to PfEMP1 but rather likely affects all transmembrane domain-containing proteins that are trafficked to the RBC. They also detect increased rates of phosphorylation of trafficked proteins, consistent with overall increased protein export.

      Strengths:

      The authors used a relatively mild increase in temperature (39 degrees), which they demonstrate is not detrimental to parasite viability or replication. This enabled them to avoid potential complications of a more severe heat shock that might have affected previously published studies. They employed a clever method of fractionation of RBCs infected with a var2csa-nanoluc fusion protein expressing parasite line to determine which step in the export pathway was likely accelerating in response to increased temperature. This enabled them to determine that export across the PVM is being affected. They also explored changes in phosphorylation of exported proteins and demonstrated that the effect is not limited to PfEMP1 but appears to affect numerous (or potentially all) exported transmembrane domain-containing proteins.

      Weaknesses:

      All the experiments investigating changes resulting from increased temperature were conducted after an increase in temperature from 16 to 24 hours, with sampling or assays conducted at the 24 hr mark. While this provided consistency throughout the study, this is a time point relatively early in the export of proteins to the RBC surface, as shown in Figure 1E. At 24 hrs, only approximately 50% of wildtype parasites are positive for PfEMP1, while at 32 hrs this approaches 80%. Since the authors only checked the effect of heat stress at 24 hrs, it is not possible to determine if the changes they observe reflect an overall increase in protein trafficking or instead a shift to earlier (or an accelerated) trafficking. In other words, if a second time point had been considered (for example, 32 hrs or later), would the parasites grown in the absence of heat stress catch up?

      We did not assess cytoadhesion at later stages, but in the supplementary figures we show that at 40 hours post infection both heat stress and control conditions have comparable proportions of VAR2CSA-positive iRBCs, whilst they differ at 24h. This is true for the DMSO (control wildtype resembling) HA-tagged lines of HSP70x and PF3D7_072500 (Supplementary Figures 9 and 12 respectively). In the light that protein levels appear not changed, we conclude that trafficking is accelerated during these earlier timepoints, but remains comparable at later stages. This would still increase the overall bound parasite mass as parasites start to adhere earlier during or after a heat stress.

      Reviewer #2 (Public review):

      This manuscript describes experiments characterising how malaria parasites respond to physiologically relevant heat-shock conditions. The authors show, quite convincingly, that moderate heat-shock appears to increase cytoadherance, likely by increasing trafficking of surface proteins involved in this process.

      While generally of a high quality and including a lot of data, I have a few small questions and comments, mainly regarding data interpretation.

      (1) The authors use sorbitol lysis as a proxy for trafficking of PSAC components. This is a very roundabout way of doing things and does not, I think, really show what they claim. There could be a myriad of other reasons for this increased activity (indeed, the authors note potential PSAC activation under these conditions). One further reason could be a difference in the membrane stability following heat shock, which may affect sorbitol uptake, or the fragility of the erythrocytes to hypotonic shock. I really suggest that the authors stick to what they show (increased PSAC) without trying to use this as evidence for increased trafficking of a number of non-specified proteins that they cannot follow directly.

      This is a valid point, however, uninfected RBCs do not lyse following heat stress, nor do much younger iRBCs, indicating that the observed effect is specific to infected RBCs at a defined stage. The sorbitol sensitivity assay is performed at 37°C under normal conditions after cells are returned to non–heat stress temperatures, so the effect is not due to transient changes in membrane permeability at elevated temperature. 

      Planned experiment: However, to increase the strength of our conclusions and further test our hypothesis, we will perform sorbitol sensitivity assays on >20 hours post infection iRBCs following heat stress in the presence and absence of furosemide, a PSAC inhibitor. If iRBC lysis is abolished with furosemide present, this would confirm that the effect is PSAC-dependent. However, the effect could also possibly be due to altered PSAC activity during heat stress which is maintained at lower temperatures, as outlined in the discussion.

      (2) Supplementary Figure 6C/D: The KAHRP signal does not look like it should. In fact, it doesn't look like anything specific. The HSP70-X signal is also blurry and overexposed. These pictures cannot be used to justify the authors' statements about a lack of colocalisation in any way.

      Planned experiment: We agree that the IFAs are not the best as presented and will include better quality supplementary images in a revised version.

      (3) Figure 6: This experiment confuses me. The authors purport to fractionate proteins using differential lysis, but the proteins they detect are supposed to be transmembrane proteins and thus should always be found associated with the pellet, whether lysis is done using equinatoxin or saponin. Have they discovered a currently unknown trafficking pathway to tell us about? Whilst there is a lot of discussion about the trafficking pathways for TM proteins through the host cell, a number of studies have shown that these proteins are generally found in a membrane-bound state. The authors should elaborate, or choose an experiment that is capable of showing compartment-specific localisation of membrane-bound proteins (protease protection, for example).

      We do not believe we identified a novel trafficking pathway, but that we capture trafficking intermediates of PfEMP1 between the PVM and the RBC periphery, in either small vesicles, and/ or possibly Maurer’s clefts. These would still be membrane embedded, but because of their small size, not be pelleted using the centrifugation speeds in our study (we did not use ultracentrifugation). This explanation, we believe, is in line with the current hypothesis of PfEMP1 and other exported TMD protein trafficking to the periphery or the Maurer’s clefts.

      (4) The red blood cell contains, in addition to HSP70-X, a number of human HSPs (HSP70 and HSP90 are significant in this current case). As the name suggests, these proteins non-specifically shield exposed hydrophobic domains revealed upon partial protein unfolding following thermal insult. I would thus have expected to find significantly more enrichment following heat shock, but this is not the case. Is it possible that the physiological heat shock conditions used in this current study are not high enough to cause a real heat shock?

      As noted by the reviewer, we do not see enrichment of red blood cell heat shock proteins following heat stress, either with FIKK10.2-TurboID or in the phosphoproteome. We used a physiologically relevant heat stress that significantly modifies the iRBC, as shown by our functional assays. While a higher temperature might induce an association of red blood cell heat shock proteins, such conditions may not accurately reflect the most commonly found context of malaria infection.

      Reviewer #3 (Public review):

      Summary:

      In this paper, it is established that high fever-like 39 C temperatures cause parasite-infected red blood cells to become stickier. It is thought that high temperatures might help the spleen to destroy parasite-infected cells, and they become stickier in order to remain trapped in blood vessels, so they stop passing through the spleen.

      Strengths:

      The strength of this research is that it shows that fever-like temperatures can cause parasite-infected red blood cells to stick to surfaces designed to mimic the walls of small blood vessels. In a natural infection, this would cause parasite-infected red blood cells to stop circulating through the spleen, where the parasites would be destroyed by the immune system. It is thought that fevers could lead to infected red blood cells becoming stiffer and therefore more easily destroyed in the spleen. Parasites respond to fevers by making their red blood cells stickier, so they stop flowing around the body and into the spleen. The experiments here prove that fever temperatures increase the export of Velcro-like sticky proteins onto the surface of the infected red blood cells and are very thorough and convincing.

      Weaknesses:

      A minor weakness of the paper is that the effects of fever on the stiffness of infected red blood cells were not measured. This can be easily done in the laboratory by measuring how the passage of infected red blood cells through a bed of tiny metal balls is delayed under fever-like temperatures.

      Previous work by Marinkovic et al. (cited in this manuscript) reported that all RBCs, both infected and uninfected, increase in stiffness at 41 °C compared with 37 °C, with trophozoites and schizonts exhibiting a particularly pronounced increase. We agree that it would be interesting to determine whether similar changes occur at physiological fever-like temperatures, and whether this increase in stiffness coincides with the period of elevated protein trafficking. However, since we have already demonstrated enhanced protein export using multiple complementary approaches, we have chosen to address these questions in a follow-up study.

    1. Different individuals, cultures and societies may place more value on one type of knowing than another, although most use a combination that includes science and religion.

      Its interesting to look at the differences in cultural values and morals, especially when it comes to knowing and understanding. For centuries, society has continued to attempt to answer the questions of knowing using both science and religion as a temporary band aid for what we have yet to understand. In no way do I think using these concepts is a negative thing, on the contrary, having something that keeps us content.

    1. But it has progressively realized that there is some kind of intelligibility in the world, that the world can, in part, be understood, and that we have experiences which, if properly interrogated, will yield answers to our questions.

      I don't think this is true. I don't think that we can always have an answer to our questions. Even when we do it can change. I don't think that there can ever truly be a universal truth because as humans we are not able to truly grasp all of the ideas and concepts that go on in the world. Even when we think we find a truth, that may change for us in the future.

    1. Author response:

      The following is the authors’ response to the original reviews

      We would like to express our sincere gratitude to the reviewers for their thorough analysis of the manuscript and their extremely helpful comments. We have taken all the suggestions into consideration and conducted a range of additional experiments to address the points raised. We have also extensively revised the manuscript to clarify descriptions, correct inaccuracies and remove inconsistencies. We have modified the figures for clarity and content.

      Overall, we expanded the description of the EBH structure to emphasise its dimeric nature and the impact of the two binding sites on interpreting the binding data, including cooperativity. Using ITC, we tested the effect of the pre-SxIP residues on the binding affinity with additional peptides. We found that these residues had a significant effect, albeit much smaller than that of the post-SxIP residues. We analysed the binding of the 11MACF-VLL mutant with EBH-ΔC and evaluated the exchange rates. In agreement with our model, we found that the EBH affinity for the SxIP peptide from CK5P2 (KKSRLPRILIKRSR), which has a C-terminal sequence similar to that of the 11MACF-VLLRK mutant, is 21nM, which is similar to the affinity of the mutant itself. This demonstrates the significant variation in affinity observed among natural SxIP ligands, as predicted by our study. Our responses to the specific points raised by the reviewers are provided below.

      Reviewer #1 (Public Review):

      There is no direct experimental evidence for independent dock and lock steps. The model is certainly plausible given their structural data, but all titration and CEST measurements are fully consistent with a simple one-step binding mechanism. Indeed, it is acknowledged that the results for the VLL peptide are not consistent with the predictions of this model, as affinity and dissociation rates do not co-vary. The model may still be a helpful way to interpret and discuss their results, and may indeed be the correct mechanism, but this has not yet been proven.

      Unfortunately, it is not possible to obtain direct experimental evidence because the folding of the C-terminus is too fast to influence the NMR parameters. However, as the reviewer pointed out, our structural data support the two-step model, since folding of the C-terminus is only possible once the ligand containing the post-SxIP residues has bound. By adopting a mechanistically supported model, we can analyse the contributions to binding and relate them to the structural characteristics of the complex. This provides a clearer insight into the roles of the various regions in the interaction and allows to modify them rationally to enhance the ligand affinity.

      In the revised version, we restate the equations in terms of comparing the on-rates. This provides a clearer view of the effect of the additional stage, which cannot increase the overall on-rate since the two stages are sequential. If the forward rate of the second stage is comparable to or slower than the off-rate of the first stage, the overall on-rate decreases. Conversely, if the forward rate is much faster, the overall on-rate remains unchanged. For the wild-type 11MACF peptide, we observed that the presence of the EBH C-terminus does not affect the on-rate of binding, which is in perfect agreement with the two-step model and indicates that the C-terminus folds very quickly.

      Additionally, we evaluated the binding of the 11MACF-VLL mutant to EBH-ΔC and observed a twofold decrease in Kd compared to WT 11MAC, primarily due to an increase in the on-rate. Interestingly, this rate is approximately twice as low as the overall on-rate for EBH/11MACF-VLL binding, contradicting the sequential two-step model. This suggests a more complex binding process where binding is accelerated by additional hydrophobic interactions with the unfolded C-terminus. However, given the difficulty of quantifying very slow exchange rates, it is more likely that the discrepancy is due to the accuracy of the rate measurements. Therefore, the model allows the rational analysis of changes in binding parameters due to mutations.

      There is little discussion of the fact that binding occurs to EBH dimers -  either in terms of the functional significance of this or in the  acquisition and analysis of their data. There is no discussion of  cooperation in binding (or its absence), either in the analysis of NMR  titrations or in ITC measurements. Complete ITC fit results have not  been reported so it is not possible to evaluate this for oneself.

      We added information about the dimer to the introduction, emphasising its role in enhancing interaction with microtubules (MTs) and its structural role in SxIP binding. The ITC data do not exhibit any biphasic behaviour and can be fitted to a single-site model with 1:1 stoichiometry relative to the EB1c monomer. This corresponds to two independent binding sites in the dimer. We have added the stoichiometry to Table 1 and the description. The NMR titration data for the 11MACF and 11MACF-VLL interactions were fitted to the TITAN dimer model, which includes cooperativity parameters. For WT 11MACF, both cooperativity parameters were zero, corresponding to independent binding sites in the ITC model. For 11MACF-VLL, the fitting suggests weak negative cooperativity, with a ~3-fold increase in Kd for binding to the second site and no change in the off-rate. This difference in Kd is likely to be too small to induce a biphasic shape to the ITC curve. As the cooperativity effect on the NMR spectra is small and absent in the ITC, we used the independent sites model for data analysis, as there is insufficient justification for introducing extra parameters into the model. Crucially, fitting to this model did not alter the off-rate value obtained by NMR or affect the conclusions. We added a description of cooperativity to the results and discussion.

      Three peptides are used to examine the role of C-terminal residues in SxIP motifs: 4-MACF (SKIP), 6-MACF (SKIPTP), and 11-MACF (KPSKIPTPQRK). The 11-mer demonstrates the strongest binding, but this has added residues to the N-terminal as well. It has also introduced charges at both termini, further complicating the interpretation of changes in binding affinities. Given this, I do not believe the authors can reasonably attribute increased affinities solely to post-SxIP residues.

      We tested the 9MACF peptide SKIPTPQRK, which has the same N-terminus as the 4- and 6-MACF peptides, and found that its binding affinity is ~10-fold weaker than that of 11MACF. This demonstrates the contribution of both the pre- and post-SxIP residues. This is likely due to electrostatic interactions between the positively charged N-terminus and the negatively charged EBH surface, similar to those involving the positive charges at the peptide C-terminus. Although significant, the contribution of the N-terminal peptide region is approximately one order of magnitude lower than that of the post-SxIP residues, meaning the post-SxIP region is the main affinity modulator. We have added the binding data on 9MACF and a discussion of the contributions to the manuscript.

      Experimental uncertainties are, with exceptions, not reported.

      Uncertainties added to the number in Table 1 and the text. Information on how uncertainties were calculated added to Table 1.

      Reviewer #1 (Recommendations For The Authors):

      (1) Have you tested the binding of the WT dimer in your cell model?

      We haven’t tested the WT dimer because it has already been reported in the 2009 Cell paper by Honappa et al. In the cell experiments, our main focus was on recruiting the high-affinity mutant to MTs. The low level of recruitment, despite the mutant's high affinity, highlights the importance of dimerisation or additional contributions to binding.

      (2) Please deposit all NMR dynamics measurements (relaxation rates and derived model-free parameters) alongside structural data in the BMRB.

      The relaxation data have been submitted to BMRB, IDs 53187 and 53188

      (3) Please report complete fitting results, e.g. for ITC, including stoichiometries. Clarify what this means for binding to a dimer, and if there is any evidence of cooperativity. Figure 3C, right hand panel, shows an unusual stoichiometry, can the authors comment on this?

      We have added more information on stoichiometry and cooperativity; please refer to our response to the above comment for details. We repeated the titration for the VLLRK mutant using fresh peptide stock. As expected, the stoichiometry was close to 1:1 relative to the EB1c monomer. The new data are now included in the table and figure.

      (4) Please report uncertainties for all measurements of Kd, koff, kon, ∆G, ∆H, ∆S, and explain whether these are determined from statistical analysis, technical or biological repeats (and where reported, clarify between standard deviation/standard error). Please also be aware of standard guidelines for reporting significant figures for data with uncertainties, as these have not been followed in Table 1.

      Uncertainties added to the number in Table 1 and the text. Information on how uncertainties were calculated added to Table 1.

      (5) The construct design for the cell model is unclear - given the importance of flanking residues, please report and discuss how the sequences are attached to venus: which termini is attached, and what is the linker composition?

      We cloned the peptides at the C-terminus of mTFP, after the GS linker of the vector. The peptide itself contains a GS sequence at the N-terminus, creating a highly flexible GSGS linker that separates the SxIP region from mTFP and minimises the potential effect of mTFP on binding. We followed the design of Honappa et al. to enable direct comparison with the published results. We have added this information to the 'Methods' section..

      (6) Which HSQC pulse sequence was used for 2D lineshape analysis? The authors mention non-linear chemical shift changes, presumably associated with the dimer interface - this would be useful to expand upon and clarify.

      For the lineshape analysis, we used the standard Bruker sequence hsqcfpf3gpphwg with soft-pulse watergate water suppression and flip-back. This sequence is included in the TITAN model. We added the description of the non-linear chemical shift changes and connection of these changes to the allosteric effect of the binding to the supplementary information describing details of the lineshape analysis.

      (7) Figure 1A could usefully highlight the dimer interface in the surface representation also.

      We believe that including the interface would make the figure too complicated. The dimer configuration is shown in different colours for the two subunits, clearly demonstrating their involvement in forming the binding site.

      (8) Figures 1C and 1D could usefully show a secondary structure schematic to assist the reader. The x-axis in these figures is not linear and this should be corrected. The calculation of combined chemical shift perturbations should be described.

      Thank you for the helpful suggestion. We changed the scale of the figures and added the diagram of the secondary structure.

      (9) Units are missing from many figure axes.

      We added missing units to the axes. Thank you for highlighting this.

      (10) What peptide concentrations are used in Figure 1C? Presumably, these should be reported at saturation for this to be a fair comparison, this should be clarified.

      The protein concentration was 50 µM. Peptides 4MACF and 6MACF were added at a 100-fold molar excess and peptide 11MACF was added at a 4-fold excess. Saturation was achieved for 11MACF. This was impossible for the short peptides due to their mM affinity. This information has been added to the figure legend. The figure's main aim is to illustrate the differences in the chemical shift perturbation profiles, which can be achieved even if full saturation is not attained. Although the absolute value of the chemical shifts is proportional to the degree of saturation, the distribution of the largest chemical shift changes is independent of this degree. Therefore, we can draw conclusions about the distribution of changes by comparing under non-saturation conditions.

      (11) The presentation of raw peak intensities in Figure 1D shows primarily the flexibility of the C-terminal region associated with high intensities. Beyond this, when comparing the binding of peptides it would be much more informative to show relative peak intensities. Residues around 210-225 appear to show strong broadening in the presence of peptide, but this is masked by the low initial intensity. Can the authors clarify and discuss this? Also, what peptide concentrations were used for this comparison? For a fair comparison, it should be close to saturation - particularly to exclude exchange broadening contributions.

      The protein concentration was 50 µM. 6MACF and 6MACF peptides were added at a 100-fold excess and 11MACF at a 4-fold excess. Saturation was achieved for 11MACF. This was impossible to achieve for the short peptide due to its mM affinity. This information has been added to the figure legend. Upon checking the data, we found a small systematic offset in the coiled-coil region of some of the complexes, as the integral intensity had been used in the initial plot. While this does not change the conclusion regarding the high dynamics of the C-terminus, it does create an inaccurate perception of the relative intensities of the folded regions in the different complexes, as noted by the reviewer. We have now plotted the amplitudes at the maximum of the peaks, which do not exhibit any systematic offset as they are much less susceptible to baseline distortions. We are grateful to the reviewer for highlighting this apparent discrepancy.

      (12) Figure 2 - the scale for S2 order parameters appears to be backwards, given the caption, but its range should be indicated. Similarly, the range of values for Rex should also be indicated. These data should also be tabulated/plotted in supporting information.

      We have corrected the figure legend and added S2 and Rex plots to the supplementary material. The figure aims to highlight regions of increased mobility, while the plots provide full quantitative information on the values. We thank the reviewer for pointing out the error in the figure legend and for the suggestions regarding the plots.

      (13) The scale in Figure 3B is illegible. Indeed, the whole structure is quite small and could usefully be expanded.

      We increased the size of the structure panels and added a scale.

      (14) Figure 4 does not show a decrease in exchange rates, as per the caption - no comparison of exchange rates is shown, only thermodynamic information in panel E. Panel C shows CEST measurements, but it is not clear what system this is for - please clarify, and consider showing the comparable data for the ∆C construct for comparison.

      We have amended the figure legend to clarify that the figure shows binding parameters. We added information about the CEST profiles for the EBH/11MACF interaction to the figure legend (Figure 4C). Exchange with the ∆C construct is too fast for CEST measurements. We used lineshape analysis to evaluate the exchange rates for this construct.

      (15) The schematics shown in Figure 4D, and elsewhere, are really quite difficult to understand. They may pose additional challenges to colourblind readers. Please consider ways that this could be clarified.

      We simplified the colour scheme in the model to make the colours easier to see and to highlight SxIP and non-SxIP regions. We believe that this improved the clarity of the figure.

      (16) Figures S1D/E - the x-axes are unclear and units are missing from the y-axes.

      We re-labelled the axes to clarify the scale and units. Thank you for pointing this.

      Reviewer #2 (Public Review):

      The C-terminal tail of EB1, which is adjacent to EBH and is not analyzed in this study, is highly acidic and plays an important role in protein interactions. If the authors discuss the C-terminus of EB1, they should analyze the whole C-terminus of EB1, which would strengthen the conclusion they have made.

      Honapa et al., Cell, 2009, reported chemical shift perturbations (CSPs) on the peptide binding for the full EB1c fragment, which includes the negatively charged C-terminus. Similar to our study, they observed significant CSPs in the FVIP region but negligible CSPs at the negatively charged EEY end. They concluded that the final eight EB1c residues did not contribute to binding and used a truncated EB1c construct for their structural analysis. Building on that study, we used the same EEY-truncated construct to analyse the contribution of the C-terminus in more detail. We believe that conducting additional experiments with the full C-terminus with respect to SxIP binding would be superfluous, as it would merely replicate the findings of Honapa EA. We have added the rationale for selecting the truncated EB1c construct to the text, referencing Honapa et al.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure 2C: The authors can analyze the 11MACF peptide as well, to provide more assurance to their argument. It would be easier to distinguish the sequences of "SKIP" and "FVIP" by changing their colors.

      Our relaxation analysis (Fig. 2C) focuses on the dynamics of the unstructured C-terminal region in both the free and complex forms. Further relaxation analysis of the peptide would not provide additional information on this, and would be complicated by the presence of free peptide in solution.

      (2) Figure 3B: Acidic residues in EBH should be labeled.<br /> Page 6, line 11: If the authors insist that the acidic patch will influence the interactions between EB1 and the peptide, the data of the analysis using the entire EB1 C-terminus should be included, given that the C-terminal tail of EB1 is highly acidic.

      To test the contribution of charge to binding, we conducted an ITC experiment at increasing salt concentrations. We observed a significant increase in Kd values when the concentration of NaCl increased from 50 to 150 mM, which supports our conclusion regarding the significant electrostatic contribution. This conclusion is independent of the presence or absence of the C-terminus.

      As we explained earlier, Honapa et al., Cell 2009, conducted an NMR experiment on the full EB1c and observed no CPSs in the EEY region, indicating a negligible contribution from the EEY region to SxIP binding. Therefore, we think that additional experiments involving the entire C-terminus are unnecessary, as they would simply replicate the results of Honapa et al. We have added the rationale for selecting the truncated EB1c to the text, referencing Honapa et al.

      It would be very difficult to label the acidic residues without enlarging 3B considerably. However, we do not think this is necessary as we are not discussing any specific residues. The current figure shows the distribution of the surface charge, which is sufficient for our purposes.

      (3) Figure 2B (Page 4, line 27): The side chain of S5477 should be drawn. The authors should include a figure of the crystal structure of EBH and SxIP as a comparison (Honnappa et al., Cell, 2009). In their paper, Honnappa et al. performed chemical shift perturbation titrations by NMR. From their analysis, I imagine that the EB1 tail may not be critical for the EB1 C-terminus:SxIP interactions, since the signals in the tail are not significantly perturbed. The authors should cite this paper.

      We are grateful to the reviewer for highlighting this. CSP analysis of the Honapa EA revealed significant changes in the FVIP region, which we also observed. They also reported negligible CSPs at the EEY end, demonstrating that this part of the tail is non-critical and can be removed. We have added text to the manuscript to highlight the similarity between CSPs and those observed in Honapa EA. Figure 2B shows the side chains for the residues with the strongest detected contacts. These do not include S5477.

      (4) Figure 3C (ITC data): The stoichiometric ratios in the ITC data look strange. EBH vs KPSKIPVLLRKRK, is it 1:1?

      We repeated the ITC experiments using a new stock of the peptide and a new batch of the protein, checking the concentrations using UV spectroscopy. The new experiments produced a stoichiometry close to 1, as shown in the table.

      (5) Page 10, line 27: "The TPQ sequence of 11MACF is not optimal...": What is the meaning of "optimal"? The transient interaction between EB1 and its binding partner is responsible for the dynamics of the microtubule cytoskeleton. In a sense, the relatively weak interaction is "optimal" for the system. The authors should rephrase the word.

      We agree that weak interactions are optimal from a functional perspective, as they have been selected through evolution. In our case, 'optimal' refers to the hydrophobic interaction with the C-terminus. We replaced 'optimal' with 'ideal' to draw more attention to the second part of the sentence, which clarifies the context.

      (6) Page 11, line 2: "small number of comets enriched in the peptide that were too faint for the quantitative analysis, comparable to the reported previously (Honnappa, Gouveia et al. 2009)." Honnappa et al. used EGFP-fusion constructs in their study: EGFP forms a weak dimer, which presumably gave different results from the authors' mTFP-constructs. The authors can note this point in the text.

      We are grateful to the reviewer for highlighting this. This aligns well with our conclusion that dimerisation is important for localisation to comets. We have added this point to the text.

      (7) Page 10, line 21: The authors calculate the free energy of complex formation between EBH and MACF peptide and explain in the text, but it is hard to follow.

      We simplified and clarified the description of the energy contributions by focusing on the SxIP and non-SxIP regions of the peptide, as well as the EBH C-terminus.

      Minor points:

      Page 2, line 9: IP motifs are not usually located in the C-terminus. For example, SxIP in Tastin is located in the N-terminal region, and SxIPs in CLASP are in the middle.

      We corrected this statement, removing C-terminal.

      Page 3, line 4: The authors should note the residue numbers of SKIP.

      We think that in this context the residue number of the SxIP region are not important and would be distracting.

      Figure 3D and Figure S3F: Make the colors and the order the same between the two figures.

      We changed the colour scheme and the order of ITC parameters in S3F to match the main figure.

      Figure 1A, 2B, Figure S5: Change the color of SKIP from other residues in the same chain, otherwise the readers cannot distinguish. Likewise, change the color of FVIP in Figure 2B.

      We think that changing the colours will complicate the figures unnecessary. The corresponding residues are clearly labelled in the figures.

      Figure 3, Figure S5, S6, S7: Box the letters of SKIP for clarity.

      We boxed the SxIP region in S5 (new S6) and underlined in S6 (new S7). In S7 (new S8) the location of SxIP is very clear from the homology.

      Figure 3B; Figure S2: Hard to recognize the peptide (MACF in green).

      We increased the size of 3D and S2, making it easier to see the peptide.

      Figure 1C and D: Make the residual numbers of the x-axes the same between the two graphs.

      We made new plots with a linear scale for the residue numbers.

      Figure 2A: The structures shown are not EB1. It should be described as EBH or EB1(191-260 a.a.).

      Corrected.

      Page 5, line 17: "the S2 values of the C-terminus" should be "the S2 values of the C-terminal loop in EBH", otherwise it is confusing.

      Corrected.

      Page 6, line 27; Figure S3C and S6: Please indicate the assignments of the resonances from "253FVI255" in the Figures.

      We labelled the peaks corresponding to the 253FVI255 region in figure S6 (new S7). Figure S3 shows EBH-ΔC that does not include this region.

      Page 7, line 25: Figure S7 should be S8.

      Corrected

      Page 12, line 6: "sulfatrahsferases" must by a typo.

      Corrected.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      This study examined the effect of blood pressure variability on brain microvascular function and cognitive performance. By implementing a model of blood pressure variability using an intermittent infusion of AngII for 25 days, the authors examined different cardiovascular variables, cerebral blood flow, and cognitive function during midlife (12-15-month-old mice). Key findings from this study demonstrate that blood pressure variability impairs baroreceptor reflex and impairs myogenic tone in brain arterioles, particularly at higher blood pressure. They also provide evidence that blood pressure variability blunts functional hyperemia and impairs cognitive function and activity. Simultaneous monitoring of cardiovascular parameters, in vivo imaging recordings, and the combination of physiological and behavioral studies reflect rigor in addressing the hypothesis. The experiments are well-designed, and the data generated are clear. I list below a number of suggestions to enhance this important work:

      (1) Figure 1B: It is surprising that the BP circadian rhythm is not distinguishable in either group. Figure 2, however, shows differences in circadian rhythm at different timepoints during infusion. Could the authors explain the lack of circadian effect in the 24-h traces?

      The circadian rhythm pattern is apparent in Figure 2 (Active BP higher than Inactive BP), where BP is presented as 12hour averages. When the BP data is expressed as one-hour averages (rather than minute-to-minute) over 24hours, now included in the revised manuscript as Supplemental Figure 3C-D, the circadian rhythm becomes noticeable. In addition, we have included one-hour average BP data for all mice in the control and BPV groups, Supplemental Figure 3A-B.

      Notably, the Ang-II induced pulsatile BP pattern remains evident in the one-hour averages for the BPV group, Supplemental Figure 3B. To minimize bias and validate variability, pump administrations start times were randomized for both control and BPV groups, Supplemental Figure 3A-B. Despite these adjustments, the circadian rhythm profile of BP is consistently maintained across individual mice and in the collective dataset, Supplemental Figure 3C-D.

      (2) While saline infusion does not result in elevation of BP when compared to Ang II, there is an evident "and huge" BP variability in the saline group, at least 40mmHg within 1 hour. This is a significant physiological effect to take into consideration, and therefore it warrants discussion.

      Thank you for this comment. The large variations in BP in the raw traces during saline infusion reflects transient BP changes induced by movement/activity, which is now included in Figure 1B (maroon trace). The revised manuscript now includes Line 222 “Note that dynamic activity-driven BP changes were apparent during both saline- and Ang II infusions, Figure 1B”.

      (3) The decrease in DBP in the BPV group is very interesting. It is known that chronic Ang II increases cardiac hypertrophy, are there any changes to heart morphology, mass, and/or function during BPV? Can the decrease in DBP in BPV be attributed to preload dysfunction? This observation should be discussed.

      The lower DBP in the BPV group was already present at baseline, while both groups were still infused with saline, and was a difference beyond our control. However, this is an important and valid consideration, particularly considering the minimal yet significant increase in SBP within the BPV group (Figure 1D). Our goal was to induce significant transient blood pressure responses (BPV) and investigate the impact on cardiovascular and neurovascular outcomes in the absence of hypertension. We did not anticipate any major cardiac remodeling at this early time point (considering the absence of overt hypertension) and thus cardiac remodeling was not assessed and this is now discussed in the revised manuscript (Line 443-453).

      (4) Examining the baroreceptor reflex during the early and late phases of BPV is quite compelling. Figures 3D and 3E clearly delineate the differences between the two phases. For clarity, I would recommend plotting the data as is shown in panels D and E, rather than showing the mathematical ratio. Alternatively, plotting the correlation of ∆HR to ∆SBP and analyzing the slopes might be more digestible to the reader. The impairment in baroreceptor reflex in the BPV during high BP is clear, is there any indication whether this response might be due to loss of sympathetic or gain of parasympathetic response based on the model used?

      We appreciate the reviewer’s suggestion and have accordingly generated new figures displaying scatter plots of SBP vs HR with linear regression analysis (Figure 3D-G). Our goal is to further investigate which branch of the autonomic nervous system is affected in this model. The loss of a bradycardic response suggests either an enhancement of sympathetic activity, a reduction in parasympathetic activity, or a combination of both. This is briefly discussed in the revised manuscript (Line 486-496).

      Heart rate variability (HRV) serves as an index of neurocardiac function and dynamic, non-linear autonomic nervous system processes, as described in Shaffer and Ginsber[1]. However, given that our data was limited to BP and HR readings collected at one-minute intervals, our primary assessment of autonomic function is limited to the bradycardic response. Further studies will be necessary to fully characterize the autonomic parameters influenced by chronic BPV.

      (5) Figure 3B shows a drop in HR when the pump is ON irrespective of treatment (i.e., independent of BP changes). What is the underlying mechanism?

      We apologize for any lack of clarity. These observed heart rate (HR) changes occurred during Ang II infusion, when blood pressure (BP) was actively increasing. In the control group, the pump solution was switched to Ang II during specific periods (days 3-5 and 21-25 of the treatment protocol) to induce BP elevations and a baroreceptor response, allowing direct comparisons between the control and BPV group.

      To clarify this point, we have revised Line 260-263 of the manuscript: “To compare pressure-induced bradycardic responses between BPV and control mice at both early and later treatment stages, a cohort of control mice received Ang II infusion on days 3-5 (early phase) (Supplemental Figure 4) and days 21-25 (late phase) thereby transiently increasing BP”.

      Additionally, a detailed description has been added to the Methods section (Line 96-101): “Controls receiving Ang II: To facilitate between-group comparisons (control vs BPV), a separate cohort of control mice were subjected to the same pump infusion parameters as BPV mice but for a brief period receiving Ang II infusions on days 3-5 and 21-25 for experiments assessing pressure-evoked responses, including bradycardic reflex, myogenic response, and functional hyperemia at high BP.”

      (6) The correlation of ∆diameter vs MAP during low and high BP is compelling, and the shift in the cerebral autoregulation curve is also a good observation. I would strongly recommend that the authors include a schematic showing the working hypothesis that depicts the shift of the curve during BPV.

      Thank you for this insightful comment. The increase in vessel reactivity to BP elevations in parenchymal arterioles of BPV mice suggests that chronic BPV induces a leftward shift and a potential narrowing of the cerebral autoregulation range (lower BP thresholds for both the upper and lower limits of autoregulation). This has been incorporated (and discussed) into the revised manuscript (see Figure 5N).

      One potential explanation for these changes is that the absence of sustained hypertension, a prominent feature in most rodent models of hypertension, limits adaptive processes that protect the cerebral microcirculation from large BP fluctuations (e.g., vascular remodeling). While this study does not specifically address arteriole remodeling, the lack of such adaptation may reduce pressure buffering by upstream arterioles, thereby rendering the microcirculation more vulnerable to significant BP fluctuations.

      The unique model allows for measurements of parenchymal arteriole reactivity to acute dynamic changes in BP (both an increase and decrease in MAP). Our findings indicate that chronic BPV enhances the reactivity of parenchymal arterioles to BP changes—both during an increase in BP and upon its return to baseline, Supplemental Figure 5C, F. The data suggest an increased myogenic response to pressure elevation, indicative of heightened contractility, a common adaptive process observed in rodent models of hypertension[2-4]. However, our model also reveals a notable tendency for greater dilation when the BP drops, Supplemental Figure 5F. This intriguing observation may suggest ischemia during the vasoconstriction phase (at higher BP), leading to enhanced release of dilatory signals, which subsequently manifest as a greater dilation upon BP reduction. This phenomenon bears similarities to chronic hypoperfusion models[5,6], where vasodilatory mechanisms become more pronounced in response to sustained ischemic conditions. Future studies investigating the effects of BPV on myogenic responses and brain perfusion will be a priority for our ongoing research.

      (7) Functional hyperemia impairment in the BPV group is clear and well-described. Pairing this response with the kinetics of the recovery phase is an interesting observation. I suggest elaborating on why BPV group exerts lower responses and how this links to the rapid decline during recovery.

      Based on the heightened reactivity of BPV parenchymal arterioles to intravascular pressure (Figure 5), we anticipate that the reduction of sensory-evoked dilations results from an increased vasoconstrictive activity and/or a decreased availability of vasodilatory signaling pathways (NO, EETs, COX-derived prostaglandins)[7,8]. Consequently, the magnitude of the FH response is blunted during periods of elevated BP in BPV mice.

      Additionally, upon termination of the stimulus-induced response−when vasodilatory signals would typically dominate−vasoconstrictive mechanisms are rapidly engaged (or unmasked), leading to quicker return to baseline. This shift in the balance between vasodilatory and vasoconstrictive forces favors vasoconstriction, contributing to the altered recovery kinetics observed in BPV mice. This has been included in the Discussion section of the revised manuscript.

      (8) The experimental design for the cognitive/behavioral assessment is clear and it is a reasonable experiment based on previous results. However, the discussion associated with these results falls short. I recommend that the authors describe the rationale to assess recognition memory, short-term spatial memory, and mice activity, and explain why these outcomes are relevant in the BPV context. Are there other studies that support these findings? The authors discussed that no changes in alternation might be due to the age of the mice, which could already exhibit cognitive deficits. In this line of thought, what is the primary contributor to behavioral impairment? I think that this sentence weakens the conclusion on BPV impairing cognitive function and might even imply that age per se might be the factor that modulates the various physiological outcomes observed here. I recommend clarifying this section in the discussion.

      We thank the reviewer for this comment. Clinical studies have demonstrated that patients with elevated BPV exhibit impairments across multiple cognitive domains, including declines in processing speed[9] and episodic memory[10]. To evaluate memory function, we utilized behavioral tests: the novel object recognition (NOR) task to assess episodic memory[11] and the spontaneous Y-maze to evaluate short-term spatial memory[12].

      Previous research indicates that older C57Bl6 mice (14-month-old) exhibit cognitive deficits compared to younger counterparts (4- and 9-month-old)[13]. To ensure rigorous selection for behavioral testing, we conducted preliminary NOR assessment, evaluating recognition memory at the one-hour delay but observing failures at the four-, and 24-hour delays, indicating age-related deficits. Based on these results, animals failing recognition criteria were excluded from subsequent behavioral assessment. However, because no baseline cognitive testing was conducted for the spontaneous Y-maze, it is possible that some mice with aged-related deficits were included in this test, which may have influenced data interpretation.

      Additionally, the absence of differences in the Y-maze performance may suggest that short-term spatial memory remains intact following 25 days of BPV, a point that is now discussed in the revised manuscript.

      (9) Why were only male mice used?

      We appreciate this comment and acknowledge the importance of conducting experiments in both male and female mice. Studies involving female mice are currently ongoing, with telemetry data collection approximately halfway completed and two-photon imaging studies on functional hyperemia also partially completed. However, using middleaged mice for these experiments has proven challenging due to high mortality rates following telemetry surgeries. As a result, we initially limited our first cohort to male mice.

      (10) In the results for Figure 3: "Ang II evoked significant increases in SBP in both control and BPV groups;...". Also, in the figure legend: "B. Five-minute average HR when the pump is OFF or ON (infusing Ang II) for control and BPV groups...." The authors should clarify this as the methods do not state a control group that receives Ang II.

      Please refer to response to comment 5.

      Reviewer #2 (Public review):

      Summary:

      Blood pressure variability has been identified as an important risk factor for dementia. However, there are no established animal models to study the molecular mechanisms of increased blood pressure variability. In this manuscript, the authors present a novel mouse model of elevated BPV produced by pulsatile infusions of high-dose angiotensin II (3.1ug/hour) in middle-aged male mice. Using elegant methodology, including direct blood pressure measurement by telemetry, programmable infusion pumps, in vivo two-photon microscopy, and neurobehavioral tests, the authors show that this BPV model resulted in a blunted bradycardic response and cognitive deficits, enhanced myogenic response in parenchymal arterioles, and a loss of the pressure-evoked increase in functional hyperemia to whisker stimulation.

      Strengths:

      As the presentation of the first model of increased blood pressure variability, this manuscript establishes a method for assessing molecular mechanisms. The state-of-the-art methodology and robust data analysis provide convincing evidence that increased blood pressure variability impacts brain health.

      Weaknesses:

      One major drawback is that there is no comparison with another pressor agent (such as phenylephrine); therefore, it is not possible to conclude whether the observed effects are a result of increased blood pressure variability or caused by direct actions of Ang II.

      We acknowledge this limitation and have attempted to address the concern by introducing an alternative vasopressor, norepinephrine (NE), Figure 4. A subcutaneous dose of 45 µg/kg/min was titrated to match Ang II-induced transient BP pulse (Systolic BP ~150-180 mmHg), Figure 4A. Similar to Ang II treated mice, NE-treated mice exhibited no significant changes in average mean arterial pressure (MAP) throughout the 20-day treatment period (Figure 4B). Although there was a trend (P=0.08) towards increased average real variability (ARV) (Figure 4C left), it did not reach statistical significance. The coefficient of variation (CV) (Figure 4C right) was significantly increased by day 3-4 of treatment (P=0.02).

      Notably, unlike the bradycardic response observed during Ang II-induced BP elevations, NE infusions elicited a tachycardic response (Figure 4A), likely due to β-1 adrenergic receptor activation. However, significant mortality was observed within the NE cohort: three of six mice died prematurely during the second week of treatment, and two additional mice required euthanasia on days 18 and 20 due to lethargy, impaired mobility, and tachypnea.

      While we recognize the importance of comparing results across vasopressors, further investigation using additional vasopressors would require a dedicated study, as each agent may induce distinct off-target effects, potentially generating unique animal models. Alternatively, a mechanical approach−such as implanting a tethered intra-aortic balloon[14] connected to a syringe pump−could be explored to modulate blood pressure variability without pharmacological intervention. However, such an approach falls beyond the scope of the present study.

      Ang II is known to have direct actions on cerebrovascular reactivity, neuronal function, and learning and memory. Given that Ang II is increased in only 15% of human hypertensive patients (and an even lower percentage of non-hypertensive), the clinical relevance is diminished. Nonetheless, this is an important study establishing the first mouse model of increased BPV.

      We agree that high Ang II levels are not a predominant cause of hypertension in humans, which is why it is critical that our pulsatile Ang II dosing did not cause overt hypertension, (no increase in 24-hour MAP). Ang II was solely a tool to produce controlled, transient increases in BP to yield a significant increase in BPV.

      Regarding BPV specifically, prior studies indicate that primary hypertensive patients with elevated urinary angiotensinogen-to-creatinine ratio exhibit significantly higher mean 24-hour systolic ARV compared to those with lower ratios[15]. However, the fundamental mechanisms driving these harmful increases in BPV remain poorly defined. A central theme across clinical BPV studies is impaired arterial stiffness, which has been proposed to contribute to BPV through reduced arterial compliance and diminished baroreflex sensitivity. Moreover, increased BPV can exert mechanical stress on arterial walls, leading to arterial remodeling and stiffness−ultimately perpetuating a detrimental feed-forward cycle[16].

      In our model, male BPV mice exhibited a minimal yet significant elevation in SBP without corresponding increases in DBP, potentially reflecting isolated systolic hypertension, which is strongly associated with arterial stiffness[17,18]. Our initial goal was to establish controlled rapid fluctuations in BP, and Ang II was selected as the pressor due to its potent vasoconstrictive properties and short half-life[19].

      We appreciate the reviewer’s insightful comment and acknowledge the necessity of exploring alternative mechanisms underlying BPV, and independent of Ang II. It is our long-term goal to investigate these factors in further studies.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) How was the dose of Ang II determined? It seems that this dose (3.1ug/hr) is quite high.

      The Ang II dose was titrated in a preliminary study to one that induced a significant and transient BP response without increasing 24-hour blood pressure (i.e. no hypertension).

      Ang II was delivered subcutaneously at 3.1 μg/hr, a concentration comparable to high-dose Ang II administration via mini-osmotic pumps (~1700 ng/kg/min)[20], with one-hour pulses occurring every 3-4 hours. With 6 pulses per day, the total daily dose equates to 18.6 µg/day in a ~30 gram mouse.

      For comparison, if the same 18.6 µg/day dose were administered continuously via a mini-osmotic pump (18.6 µg/0.03kg/1440min), the resulting dosage would be approximately 431 ng/kg/min[21,22], aligning with subpressor dose levels. Thus, while the total dose may appear high, it is not delivered in a constant manner but rather intermittently, allowing for controlled, rapid variations in blood pressure.

      (2) Were behavioral studies performed on the same mice that were individually housed? Individual housing causes significant stress in mice that can affect learning and memory tasks (PMC6709207). It's not a huge issue since the control mice would have been housed the same way, but it is something that could be mentioned in the discussion section.

      Behavioral studies were performed on mice that were individually housed following the telemetry surgery. The study was started once BP levels stabilized, as mice required several days to achieve hemodynamic stability post-surgery. Consequently, all mice were individually housed for several days before undergoing behavioral assessment.

      To account for potential cognitive variability, earlier novel object recognition (NOR) tests were conducted to established cognitive capacity, and mice that did not meet criteria were excluded from further behavioral testing. However, we acknowledge that individual housing induces stress, which can influence learning and memory, and this is a factor we were unable to fully control. Given that both experimental and control groups experienced the same housing conditions, this stress effect should be comparable across cohorts. A discussion on this limitation is now included in the text.

      (3) It looks like one control mouse that was included in both Figures 1 and 2 (control n=12) but was excluded in Table 1 (control n=11), this isn't mentioned in the text - please include the exclusion criteria in the manuscript.

      We apologize for the typo−12 control animals were consistently utilized across Figure 1-2, Table 1, Supplemental Table 1, Figure 6C, and Supplemental Figure 2B. Since the initial submission, one control mouse was completed and included into the telemetry control cohort. Thus, in the updated manuscript, we have corrected the control sample size to 13 mice across these figures ensuring consistency.

      Additionally, exclusion criteria have now been explicitly included in the manuscript (Line 173-175). Mice were excluded from the study if they died prematurely (died prior to treatment onset) or mice exhibited abnormally elevated pressure while receiving saline, likely due to complications from telemetry surgery.

      (4) Please include a statement on why female mice were not included in this study.

      As discussed in our response to Reviewer #1, our initial intention was to include both male and female mice in this study. However, high mortality rates following telemetry surgeries significantly constrained our ability to advance all aspects of the study. As a result, we limited our first cohort to males to establish the basics of the model. A statement is now included in the manuscript, Line 50-53: “Female mice were not included in the present study due to high post-surgery mortality observed in 12-14-month-old mice following complex procedures. To minimized confounding effects of differential survival and to establish foundational data for this model, we restricted the investigation to male mice.”

      Potential sex differences might be complex and warrants a separate future research to comprehensively assess sex as a biological variable, which are currently ongoing.

      (5) On page 14, "experiments from control vs experimental mice were not equally conducted in the same season raising the possibility for a seasonal effect" - does this mean that control experiments were not conducted at the same time as the Ang II infusions in BPV mice? This has huge implications on whether the effects observed are induced by treatment or just batch seasonal effects.

      We fully acknowledge the reviewer’s concern, and our statement aims to provide transparency regarding the study’s limitations. Several challenges contributed to this outcome, including high mortality rates following surgeries (primarily telemetry implantation) and technical issues related to instrumentation, particularly telemetry functionality.

      Differences between BPV and saline mice emerge primarily due to mortality or telemetry failures−some mice did not survive post-surgery, while others remain healthy but had non-functional telemeters. This issue was particularly pronounced in 14-month-old mice, as their fragile vasculature occasionally prevented proper BP readings.

      Each experiment required a minimum of two and a half months per mouse to complete, with a cost (also per mouse) exceeding $1500 USD ($300 pump, $175 mouse, $900 telemeters, per diem, drugs, reagents etc.). Despite our best effort to ensure comparable seasonal/batch data, these logistical and technical constraints prevented perfect synchronization.

      To evaluate whether seasonal differences influenced our results, we incorporated additional telemetry data into the control cohort. Of the seven included control mice, six underwent the same treatment but were allocated to a separate branch of the study, which endpoints did not require a chronic cranial window. We found no significant differences in 24-hour average MAP during the baseline period between control mice with or without a cranial window, Supplemental Figure 2A. Additionally, we grouped mice into seasonal categories based on Georgia’s climate: “Spring-Summer” (May-September) and “Fall-Winter” (October-April) but observed no BP differences between these periods, Supplemental Figure 2B.

      Given the absence of seasonal effects on BP and the fact that mice were sourced from two independent suppliers (Jackson Laboratory and NIA), we anticipate that the observed results are driven by treatment rather than seasonal or batch effects.

      (6) Methods, two-photon imaging: did the authors mean "retro-orbital" instead of "intra-orbital" injection of the Texas red dye? Also, is this a Texas red-dextran? If so, what molecular weight?

      Thank you for this comment. The correct terminology is “retro-orbital” rather than “intra-orbital” injection. Additionally, we utilized Texas Red-dextran (70 kDa, 5% [wt/vol] in saline) for the imaging experiments. These details have now been incorporated into the Methods section.

      (1) Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Front Public Health. 2017;5:258. doi: 10.3389/fpubh.2017.00258

      (2) Pires PW, Jackson WF, Dorrance AM. Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am J Physiol Heart Circ Physiol. 2015;309:H127-136. doi: 10.1152/ajpheart.00168.2015

      (3) Iddings JA, Kim KJ, Zhou Y, Higashimori H, Filosa JA. Enhanced parenchymal arteriole tone and astrocyte signaling protect neurovascular coupling mediated parenchymal arteriole vasodilation in the spontaneously hypertensive rat. J Cereb Blood Flow Metab. 2015;35:1127-1136. doi: 10.1038/jcbfm.2015.31

      (4) Diaz JR, Kim KJ, Brands MW, Filosa JA. Augmented astrocyte microdomain Ca(2+) dynamics and parenchymal arteriole tone in angiotensin II-infused hypertensive mice. Glia. 2019;67:551-565. doi: 10.1002/glia.23564

      (5) Kim KJ, Diaz JR, Presa JL, Muller PR, Brands MW, Khan MB, Hess DC, Althammer F, Stern JE, Filosa JA. Decreased parenchymal arteriolar tone uncouples vessel-to-neuronal communication in a mouse model of vascular cognitive impairment. GeroScience. 2021. doi: 10.1007/s11357-020-00305-x

      (6) Chan SL, Nelson MT, Cipolla MJ. Transient receptor potential vanilloid-4 channels are involved in diminished myogenic tone in brain parenchymal arterioles in response to chronic hypoperfusion in mice. Acta Physiol (Oxf). 2019;225:e13181. doi: 10.1111/apha.13181

      (7) Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, Farkas E, Hodges EL, Towner R, Deak F, et al. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab. 2015;35:1871-1881. doi: 10.1038/jcbfm.2015.162

      (8) Ma J, Ayata C, Huang PL, Fishman MC, Moskowitz MA. Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Physiol. 1996;270:H1085-1090. doi: 10.1152/ajpheart.1996.270.3.H1085

      (9) Sible IJ, Nation DA. Blood Pressure Variability and Cognitive Decline: A Post Hoc Analysis of the SPRINT MIND Trial. Am J Hypertens. 2023;36:168-175. doi: 10.1093/ajh/hpac128

      (10) Epstein NU, Lane KA, Farlow MR, Risacher SL, Saykin AJ, Gao S. Cognitive dysfunction and greater visit-to-visit systolic blood pressure variability. Journal of the American Geriatrics Society. 2013;61:2168-2173. doi: 10.1111/jgs.12542

      (11) Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive processing. 2012;13:93-110. doi: 10.1007/s10339-011-0430-z

      (12) Kraeuter AK, Guest PC, Sarnyai Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods Mol Biol. 2019;1916:105-111. doi: 10.1007/978-1-4939-8994-2_10

      (13) Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Breen J, Pederson SM, Manavis J, Hannan AJ, et al. Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behav Brain Res. 2020;383:112501. doi: 10.1016/j.bbr.2020.112501

      (14) Tediashvili G, Wang D, Reichenspurner H, Deuse T, Schrepfer S. Balloon-based Injury to Induce Myointimal Hyperplasia in the Mouse Abdominal Aorta. J Vis Exp. 2018. doi: 10.3791/56477

      (15) Ozkayar N, Dede F, Akyel F, Yildirim T, Ates I, Turhan T, Altun B. Relationship between blood pressure variability and renal activity of the renin-angiotensin system. J Hum Hypertens. 2016;30:297-302. doi: 10.1038/jhh.2015.71

      (16) Kajikawa M, Higashi Y. Blood pressure variability and arterial stiffness: the chicken or the egg? Hypertens Res. 2024;47:1223-1224. doi: 10.1038/s41440-024-01589-8

      (17) Laurent S, Boutouyrie P. Arterial Stiffness and Hypertension in the Elderly. Front Cardiovasc Med. 2020;7:544302. doi: 10.3389/fcvm.2020.544302

      (18) Wallace SM, Yasmin, McEniery CM, Maki-Petaja KM, Booth AD, Cockcroft JR, Wilkinson IB. Isolated systolic hypertension is characterized by increased aortic stiffness and endothelial dysfunction. Hypertension. 2007;50:228-233. doi: 10.1161/HYPERTENSIONAHA.107.089391

      (19) Al-Merani SA, Brooks DP, Chapman BJ, Munday KA. The half-lives of angiotensin II, angiotensin II-amide, angiotensin III, Sar1-Ala8-angiotensin II and renin in the circulatory system of the rat. J Physiol. 1978;278:471490. doi: 10.1113/jphysiol.1978.sp012318

      (20) Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004;95:210-216. doi: 10.1161/01.RES.0000135483.12297.e4

      (21) Gonzalez-Villalobos RA, Seth DM, Satou R, Horton H, Ohashi N, Miyata K, Katsurada A, Tran DV, Kobori H, Navar LG. Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. Am J Physiol Renal Physiol. 2008;295:F772-779. doi: 10.1152/ajprenal.00019.2008

      (22) Nakagawa P, Nair AR, Agbor LN, Gomez J, Wu J, Zhang SY, Lu KT, Morgan DA, Rahmouni K, Grobe JL, et al. Increased Susceptibility of Mice Lacking Renin-b to Angiotensin II-Induced Organ Damage. Hypertension. 2020;76:468-477. doi: 10.1161/HYPERTENSIONAHA.120.14972

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Proposed revision plan

      Based on the below reviews, we propose the following revision plan. Briefly:

      • We will remove the functional data on TGFβ signaling and mechanical loading/mechanosensing. We agree with the reviewers that we would need to generate additional histological and molecular data from conditional knockout mice, antibody and (ant)agonist treatments and the optogenetic model to determine their exact involvement in lining macrophage maturation. These experiments require significant time and other resources.
      • We would therefore like to uncouple this question for a follow-on manuscript.We will re-focus the manuscript on the developmental data providing a molecular and cellular blueprint of lining macrophage development. This will include our data on CSF1 as a key signal. The novelty and relevance of our developmental data have been highlighted by all three reviewers, and they have also praised the rigor of these experiments and their interpretation. We thus believe that this re-focus will improve the manuscript message.
      • To further enhance this, we are proposing to include additional data delineating the developmental dynamics of synovial fibroblasts. We have generated an in-depth single cell RNAsequencing dataset but did not include fibroblast-specific analyses in the original manuscript. This is not a change proposed by the reviewers, but we are proposing this because we believe this would be an impactful addition to a revised version of our study, providing data also on the maturation of the synovial (lining) macrophage niche.
      • We will otherwise respond to all individual reviewer comments and implement the requested changes, unless technically not possible. Please find below detailed point-by-point answers.

      Reviewer #1

      Evidence, reproducibility and clarity

      In their manuscript entitled "The synovial lining macrophage layer develops in the first weeks of life in a CSF1- and TGFβ-dependent but monocyte-independent process," the authors explore the developmental trajectory of synovial lining macrophages. They demonstrate that the formation of this specialized macrophage layer is age-dependent and governed by a distinct developmental program that proceeds independently of circulating monocytes. Through scRNA-Seq, the authors show that synovial lining macrophages originate locally from Aqp1⁺ macrophages and are marked by the expression of Csf1r, Tgfbr, and Piezo1. Notably, genetic ablation of each of these factors impaired the development of lining macrophages to varying degrees, suggesting differential contributions of CSF1, TGFβ, and PIEZO1 signaling pathways to their maturation and maintenance.

      The manuscript is well written, and the data quality and representation is of a high standard. The authors have employed a sophisticated array of state-of-the-art mouse models and cutting-edge technologies to elucidate the developmental origin of synovial lining macrophages. Notably, the supporting scRNA-Seq datasets are of excellence and provide valuable insights that will likely be of significant interest to researchers in the field of immunology and joint biology. Accordingly, the experimental approach and interpretations regarding macrophage origin are well-founded and compelling. However, in the eye of the reviewer, the section addressing the underlying molecular mechanisms is a bit less convincing. This part of the study appears slightly underdeveloped, and some of the mechanistic claims lack sufficient experimental clarity. A more rigorous experimental investigation would be essential to reinforce the manuscript's conclusions, particularly concerning the data related to Tgfbr and Piezo1, where the current evidence appears insufficiently substantiated.

      We thank the reviewer for their positive and constructive evaluation of our manuscript. We agree with them (and the other reviewers) that our functional data on the involvement of TGFβ signaling and mechanical loading/mechanosensing are comparably less convincing and substantiated than our developmental data. We are very grateful for their (and the other reviewers’) suggestions to provide more support for the involvement of these factors in lining macrophage development. However, we think that carrying this out to the same high standard will require substantial time and other resources. We have therefore decided to uncouple this from the developmental data and pursue this in follow-up work. We will re-focus the current manuscript on the developmental data. We have proposed to the editors to instead include additional data on synovial fibroblast development, to complement our macrophage data and also delineate the maturation of their niche, thereby providing a conclusive developmental atlas.

      Major point:

      1. The numbers of VSIG4⁺ macrophages appear either unaffected or only minimally altered in both Csf1rMerCreMer Tgfbr2floxed and Fcgr1Cre Piezo1floxed mouse models, respectively. This raises an important question: was the gene deletion efficiency sufficient in each model? Accordingly, the authors are encouraged to include quantitative data on gene deletion efficiency for both mouse models, as this information is critical for interpreting the observed phenotypic outcomes and validating the conclusions regarding gene function. Furthermore, to better assess the impact of Tgfbr2 and Piezo1 disruption, the authors should provide more comprehensive flow cytometry analyses and histological data for these mouse models. Given the apparent homogeneity of VSIG4⁺ macrophages (as shown by the authors themselves), bulk RNA-Seq of sorted Tgfbr2- and Piezo1-deficient VSIG4⁺ macrophages (or from TGFβ-treated animals) would offer valuable insights into both the effectiveness of gene deletion and the molecular pathways governed by TGFβ and PIEZO1 in lining macrophages.

      As outlined above, we have decided to uncouple our functional data on TGFβ, Piezo1 and mechanical loading. The points raised here are all very valid, and we will implement your suggestions in our follow-up functional work focusing on signaling events regulating lining macrophage development. On the suggestion to perform bulk RNA sequencing for VSIG4+ macrophages: This is a good one in principle – although we will not be able to use this strategy where we want to assess the consequences of experimental treatments or genetic models on lining macrophage maturation, because acquisition of VSIG4 is a key maturation event that might be impaired in these conditions.

      Minor points:

      Consistent usage of Cx3cr1-GFP+ nomenclature (for instance: Fig. S1 legend "adult mouse synovial tissue, showing PDGFRα⁺ fibroblasts (yellow) and CX3CR1-GFP⁺ cells (cyan)." versus Fig. 1 legend "Automated spot detection highlights Cx3cr1-GFP⁺ macrophages)".

      We will implement these changes.

      Unclear Fig. 3 legend: "Representative immunofluorescence images of synovial tissue from Clec9aCre:Rosa26lsl-tdT mice at 3 weeks and in adulthood, showing and tdTomato (yellow) and stained for DAPI (blue), VSIG4 (cyan)" Check 'showing and tdTomato.'

      We will implement these changes.

      For greater clarity, it would have been helpful if the transcript names had been directly included within Figures 3C, S3A, and S3C.

      We will implement these changes.

      Page 24: "(Mki67CreERT2:Rosa26lsl-tdT)" Last bracket not superscript.

      We will implement these changes.

      Page 25: "we again leveraged our scRNAsequencing dataset" Missing punctuation.

      We will implement these changes.

      Page 27: Fig. 5C legend: " of synovial tissue of 1 week-old, 3 weeks-old and adult mice." Please specify and change to 'adult Csf1rΔFIRE/ΔFIRE mice'.

      We will implement these changes.

      Page 30: The outcome observed in the Acta1-rtTA:tetO-Cre:ChR2-V5fl mouse model appears to be inconclusive: "This approach resulted in an increased density of VSIG4+ and total (F4/80+) macrophages in the exposed leg of some 5 days-old pups, but others showed the opposite trend (Figure S5D)." This variability may reflect low efficiency of the model or other technical limitations (e.g. muscle contractions frequency or time point of analysis). Given this ambiguity, it is worth reconsidering whether the data are sufficiently robust to warrant inclusion. Should the authors choose to include these findings, further experimentation of appropriate depth and precision is required to allow a conclusive interpretation (either it increases the density of VSIG4+ macrophages or not). The same applies to the Yoda1-treated mice, for which additional data are needed to determine whether VSIG4⁺ macrophage density is truly affected.

      We have decided to remove the data on the optogenetic mouse model and Yoda1 treatment and follow-on separately, implementing these suggestions, including proof of concept data for optogenetically induced muscle contractions.

      Significance

      General assessment: provide a summary of the strengths and limitations of the study. What are the strongest and most important aspects? What aspects of the study should be improved or could be developed? This is a well-designed study that uses cutting-edge methodologies to investigate the developmental trajectory of synovial lining macrophages under homeostatic conditions. The authors present robust experimental evidence and compelling interpretations concerning synovial macrophage origin, which are both well-substantiated and impactful. Nonetheless, from the reviewer's perspective, the section exploring the molecular mechanisms underlying macrophage differentiation is comparatively less convincing. This section appears somewhat underdeveloped, as some of the mechanistic claims lack sufficient depth and experimental rigor to fully substantiate the conclusions.

      Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field: In contrast to earlier studies (PMID: 31391580, 32601335), the inclusion of fate-mapping experiments adds an important dimension, offering novel insight into the ontogeny of synovial macrophages. This expanded perspective may prove particularly valuable in advancing our understanding of joint immunology, especially regarding the local origins and lineage relationships of macrophage populations.

      Furthermore, the authors present novel insights into the molecular pathways underlying the differentiation and development of synovial lining macrophages. By demonstrating previously unrecognized regulatory mechanisms, this work significantly deepens our understanding of the cellular and transcriptional programs that drive macrophage specialization within the joint microenvironment.

      Place the work in the context of the existing literature (provide references, where appropriate): This study builds upon previous work characterizing the macrophage compartment in the joint (PMID: 31391580, 32601335), yet provides a substantially more comprehensive dataset that spans multiple developmental time points and data on the origin of this specialized macrophage subset.

      State what audience might be interested in and influenced by the reported findings: Immunologist, clinicians

      Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. This study falls well within the scope of the reviewer's expertise in innate immunity.

      Reviewer #2

      Evidence, reproducibility and clarity

      In the manuscript „The synovial lining macrophage layer develops in the first weeks of life in a CSF1- and TGFβ- dependent but monocyte-independent process", Magalhaes Pinto and colleagues carefully employ a wide range of technologies including single cell profiling, imaging and an exceptional combination of fate mapping models to characterize the ontogeny and development of lining macrophages in the joint, thus dissecting their maturation during postnatal development. Over the last decade, several landmark studies highlighted the imprinting of tissue-resident macrophages by a combination of ontogenetic and tissue-specific niche factors during development. So far, the ontogeny and the tissue niche factors governing the development and maturation of lining macrophages have not been described. Therefore, the results of this study offers insights on a small highly adapted macrophage population with relevance in many disease settings in the joint. Furthermore, the findings are nicely showcasing how macrophages are specializing to even very small tissue niches across development within one bigger anatomical compartment to serve dedicated functions within this niche.

      This manuscript is beautifully written and highlights many novel, highly relevant findings on lining macrophage biology and the authors employ a wide range of different technologies to carefully dissect the postnatal development of lining macrophages.

      In particular, the combination of scRNA-seq and fate mapping is providing a unique the link of transcriptional programs to ontogeny within the tissue niche. Furthermore, the integrative use of distinct fate mapping strategies, transgenic mouse lines, and treatment paradigms to elucidate key niche factors guiding the development and maturation of lining macrophages provides many interesting findings and data that are highly relevant to the field. I really enjoyed reading this manuscript.

      Thank you for your complimentary and constructive assessment of our manuscript, and the detailed comments below, which are very helpful. Please find point-by-point responses below.

      Major points:

      The authors show dynamic regulation of VSIG4 in lining macrophages during development, therefore VSIG4 is maybe not an ideal choice for gating strategies to define lining macrophages or to show as a single markers in immunofluorescence (IF) stainings to demonstrate their abundance across development (even though it is clear that this is the reason why the F4/80 staining is shown next to it). To demonstrate the increase of lining macrophages during development in IF, it would be more helpful if the authors would show quantifications of all F4/80+ cells and additionally VSIG4+ as a proportion of F4/80+ cells (or VSIG4+ F4/80+ and all F4/80+ in a stacked bar plot). We agree with the assessment of VSIG4 not being ideal since this is a key marker of mature lining macrophages only.

      We will provide these additional analyses.

      In Figure 1C, the authors nicely demonstrate that the lining macrophages get closer in their distance across development to build the epithelial-like macrophage structure along the adult lining. Is the close proximity between lining macrophages already fully "matured" at 3 weeks of age and comparable to adults? Please quantify the distance in adult linings.

      We will provide data for adult joints.

      Can the authors explain how the grouping was performed between the analyzed human fetal joints? It is not clear why the cut was chosen between the groups at 16/17 weeks of age. Maybe it would be also beneficial if the authors would consider not grouping these samples but rather show the specific quantifications for each samples individually and estimate via linear regression the expansion over time across human development. Furthermore, can the authors give additional information about the distancing of lining macrophages in the human fetal samples, it would be great to see if they follow the same dynamics as in mouse. Maybe comparison to human juvenile/adult joints would also add on to substantiate the findings in human samples (if possible).

      We will show samples ungrouped and perform linear regression analysis as suggested.

      The scRNA-seq analysis leaves several questions open and some conclusions and workflows cannot be easily followed.

      We appreciate this comment and the complexity of the data, and will implement the below recommendations, and clarify the issues raised.

      It is not clear how and especially why the signature genes to define macrophages vs. monocytes were chosen. Especially as the signature genes for monocytes would not include patrolling monocytes and the macrophage signature genes seem to be highly regulated during development, see also Apoe expression in NB vs. adult in Figure S2e. Why did the authors not take classical markers such as Itgam, Fcgr1a, Csf1r?

      Can dendritic cell signatures be excluded? Cluster 11 and 12 show indeed some DC markers, are these really macrophages?

      The authors provide several figure panels showing TOP marker genes or key marker genes for the identified clusters, however it is not clear if these are TOP DE genes or if the genes were hand chosen. Somehow, the authors give the impression that the clusters were chosen and labeled not based on DE genes, but more on existing literature that previously reported these macrophage populations. DE gene lists for all annotated cell types and macrophage clusters need to be provided within the manuscript.

      The authors claim that Clusters 1 and 4 are "developing" macrophages. How is this defined? Why are these developing cells compared to other clusters? And why are these clusters later on not considered as progenitors of Aqp1 macrophages and Vsig4 macrophages? Why are Aqp1+ macrophages not labeled as developing when they are later on in the manuscript shown as potential intermediate progenitors of lining macrophages?

      Furthermore, it is again confusing that markers are used throughout Figure 2 which are labeled as "key marker genes" for a population and then later on they are claimed to be regulated during development within this population, see for example Figure 2D and 2H.

      It is appreciated that the authors distinguished cycling clusters such as 8, 9, and 10 based on their cycling gene signature. Here it would be very exciting to see a cell cycle analysis across all clusters and time points to see when exactly the cells are expanding during development; this would also substantiate the data later shown for the Mki67-CreERT2 mouse model.

      Can the authors identify certain gene modules during development of lining macrophages (and/or their progenitors) which are associated with certain functions (e.g. GO terms, GSEA enrichment)?

      To determine the actual presence of the identified macrophage clusters from the scRNA-seq as macrophage populations in the joint, the authors should perform IF or FACS for key markers. Especially, Aqp1+ macrophages should be shown in the developing joint.

      We will provide additional data, but would also like to reference a study by collaborators currently in revision at Immunity, which characterizes the Aqp1+ population in detail. We are hoping to have a doi available during our revision process.

      The authors used a wide range of fate mapping models, which is quite unique and highly appreciated. The obtained results and the conclusions made from the models raise a couple of questions: Whereas contribution of HSC-derived/monocyte-derived macrophages to the lining compartment seems to be minor, there is still labeling across different models. Various aspects would need to be clarified.

      We will clarify these data throughout as per below suggestions.

      For example, the authors employ Ms4a3-Cre as a tracing model for GMP-derived monocytes, however all quantifications of the labeling efficiency are not normalized to the labeling in monocytes or another highly recombined cell population. This should be shown, similar to the other fate mapping models (Figure 3 F-I).

      Labelling efficacy for Ms4a3-Cre is near complete for GMP-derived monocytes (and neutrophils) with the Rosa-lsl-tdT (aka Ai14) reporter we have used (see also PMID: 31491389 and doi: 10.1101/2024.12.03.626330); but we will include normalized data as requested.

      Please show Ms4a3 expression across clusters across time points, to exclude expression in fetal-derived clusters.

      We will include this in the revised supplementary information, but there is indeed very little at birth (in line with the original report for other tissues PMID: 31491389).

      In line with the question raised above, if the authors can exclude a development of the Egfr1+ and Clec4n+ developing macrophages into Aqp1+ macrophages and subsequently into Vsig4 lining macrophages, the obtained data from the Ms4a3-Cre model highly suggests a correlative labeling across these clusters what could implicate a relation. However, the authors do not discuss throughout the manuscript the role of these developing macrophages. It is highly encouraged to include this into the manuscript and it would be of high relevance to understand lining macrophage development.

      This is an interesting point and we agree it deserves consideration in the revised manuscript. Indeed, our trajectory analyses do not predict differentiation of the Egfr1+ and Clec4n+ developing macrophages into Aqp1+ macrophages, and hence, ultimately lining macrophages. Conversely, Aqp1+ cells might also convert into Egfr1+ and Clec4n+ developing macrophages. We will elaborate on this more in the revised manuscript.

      The authors conclude from the pseudo bulk transcriptomic profiling of the different macrophage clusters that TdT+ and TdT- macrophages do not differ in their gene expression profile and that this is due to niche imprinting rather than origin imprinting. Even though the data supports that conclusion, the authors should verify if inkling cells early during development also show this similar gene expression profile and gene expression should be compared at the different developmental time points. Tissue niche imprinting is happening within the niche during development, most likely in a stepwise progress, and therefore there should be differences in the beginning.

      This is another important point that we will address in the revised manuscript by performing additional differential gene expression analyses at the different developmental time points, including the earliest stages, as suggested.

      The trajectorial analysis using different pseudotime pipelines is very interesting and nicely points out the potential role of Aqp1 macrophages as intermediates of Vsig4 lining macrophages. From my point of view, all trajectories seem to suggest that Egfr1 developing macrophages and Clec4n developing macrophages might differentiate into Aqp1 macrophages, however the authors are not exploring this further and the role of both developing macrophage clusters is not further discussed (see also comments above).

      We will address and discuss this in the revised manuscript.

      How was the starting point of the trajectorial analyses defined and is it the same for each pipeline used?

      We will clarify this in the revised manuscript.

      Are there potentially two trajectories? It looks like there is one in the beginning of postnatal life and a second one appearing from the monocyte-compartment later in life. If this is true, that would rather speak for a dual ontogeny of Vsig4+ macrophages, wouldn't it?

      We will discuss this in the revised manuscript.

      A heatmap (transcriptional shift) of trajectories between more clusters should be shown at least for Cluster 0,1,2, and 3. It is not sufficient to demonstrate this only between two clusters.

      We will add these analyses during revision.

      To show the similarity between Aqp1 macrophages and proliferating macrophage clusters, the authors should remove the cycling signature and compare these clusters to show that the cycling cells might be Aqp1 macrophages or earlier developing macrophage progenitors aka Clec4n or Egfr1 macrophages.

      We will address this in the revised manuscript.

      The conclusions made from the Mki67-CreERT2 data are a bit difficult to understand, whereas all progenitors (monocyte progenitors and macrophage progenitors will proliferate at the neonatal time point and no conclusions can be made if the cells expand in the niche. The authors should employ Confetti mice or other models (Ubow mice) to analyze clonal expansion in the niche.

      We agree that interpretation of the Mki67-CreERT2 data is complicated by labeling of other cells, and notably, labeling observed in BM-derived cells. We will highlight this better in the revised manuscript. We have tried using Ubow mice to address this issue, but the recombination efficacy we yielded was too low to draw conclusions. We will address this during revision.

      All predicted cell-cell interactions between macrophages and fibroblasts should be provided in a supplementary table. Are the interactions shown in Figure 5 chosen interactions or the TOP predicted ones? Whereas the authors show different numbers of interactions, it is most likely hand-picked and therefore biased.

      We will provide a full list of all predicted interactions in the revised supplementary material in addition to a list of the full differential gene expression analysis.

      The authors further aim to dissect the factors involved in the developmental niche imprinting of lining macrophages. Even though it is highly appreciated that the authors used so many experimental setups to show the reliance of lining macrophages on Csf1 and TGF-beta as well as mechanosensation, the wide range of models the different methods used and selected developmental time points make it very difficult to really interpret the data. The authors should carefully choose time points and methods (either FACS analysis across all models or IF across all, or both). Often deletion efficiencies for transgenic models and proof of concept that the inhibitors and agonists are working in the treatment paradigm are not provided. For example, Csf1rMer-iCre-Mer Tgfbr2fl/fl mice are used but no deletion efficiency is shown or different time points of analysis, maybe the macrophages are not properly targeted in the set up.

      We have decided to uncouple our experimental data on Tgfb, Piezo1 and mechanosensing/mechanical loading, but are taking this into consideration for revision. In many cases, we have in fact performed flow cytometry and imaging analyses, and agree, we should be showing this consistently.

      The authors have shown the role of Csf1 and Tgfbr2 only for lining macrophages, is this specific in the joint to this population of are subliming macrophages affected in a similar manner.

      We will include data on sublining macrophages in the revised figure (for CSF1; Tgfb data will be uncoupled from this current manuscript).

      Can the authors confirm their results in CSF1R-FIRE mice with anti-Csf1 injections or in Csf1op/op mice?

      We will expand our discussion of the Csf1 findings, and will consider including anti-CSF1 data during revision. Phenotypes on other Csf1(r) deficient mice are published, if not with the same developmental resolution as our time course in Csf1rFIRE knockout mice and with simpler readouts. Csf1op/op mice are indeed deficient in synovial lining macrophages, from 2 days of age onwards (PMID: 8050349), and lining macrophages are also absent from 2-weeks-old and adult Csf1r-/- mice (PMID: 11756160).

      The setup in Figure S5G is very interesting to test the role of movement and mechanical load on the joint, however, there is basically no data on the model provided showing the efficiency of the induced optogenetic muscle contractions, and only one time point is shown.

      Data on mechanical loading will be uncoupled from the current manuscript and substantiated in a separate follow-up.

      The results regarding the role of Piezo1 and mechanosensation vary a lot. Could it be that analyses were done too early or that actually proper weight load on the joint must be applied for the maturation of the macrophages? The authors should test this to.

      We will uncouple these data from the current manuscript during revision. However, this is a possibility that we have discussed. In fact, the most appropriate experimental approach to address the involvement of mechanical loading, onset of walking and specifically, weight bearing would be a loss-of-function approach (i.e. paralysis at the newborn stage), for which we unfortunately could not obtain ethics approval from the UK Home Office.

      The Rolipram experiment is shown in Figure S5G, but is not described in the result section. It only appears at some point in the discussion part. The authors should move it to results or remove it from the manuscript.

      We will incorporate these data with the revised section on developing synovial macrophage populations.

      Minor points:

      Please reference the Figure panels in numeric order throughout the text.

      We will change this where not the case.

      Figure 2a and 2b are a bit out of the storyline, it is not obvious why this is shown here and maybe it would be good to move it to the supplements. Gating strategy is also not used for scRNA-seq. Therefore, it would better fit to the later analysis of joint macrophages across different transgenic mouse models and treatment paradigms. The gating strategies are changing across different experiments throughout the figures, it would be nice to have a similar gating strategy for all experiments, see also Figure 3 where the defining markers for joint macrophages are changing between models.

      We will revise Figures 2, 3 and the related supplementary figures.

      A lot of figure panels have very small labeling that is basically unreadable. Axes at FACS plots for example. Sometimes, it is even impossible to distinguish cluster labels especially when they have similar colors.

      We will revise this, thanks for pointing it out.

      In the text on page 14, many markers are named which are specifically regulated during development in lining macrophages, but these factors are not labeled anywhere in the volcano plot. It would be good to showcase at least some of these named genes in the figure panel, e.g. Trem2.

      We will do this for revision.

      Figure 2F and Figure S2F are really nicely showing the percentage of cells per cluster in each analyzed biological sample. Maybe the authors could additionally consider to show a stacked bar plot with the mean percentage of cells per cluster and how the clusters are distributed across time points?

      We will include this in the revised manuscript.

      Figure 3A: IF for adult lining macrophages and the quantification are missing.

      This will be included in the revised version.

      Significance

      This manuscript highlights novel, highly relevant findings on lining macrophage biology and the authors employ a wide range of different technologies to carefully dissect the postnatal development of lining macrophages. Furthermore, this study showcases in a very elegant and detailed way the adaptation of macrophage progenitors to a highly specific anatomical tissue niche.

      The manuscript is of high interest to basic scientists focussing on macrophage biology and immune cell development and clinicians and clinician scientists focussing on joint diseases such as RA.

      Therefore the manuscript is of interest to a wide community working in immunology.

      Reviewer #3

      Summary:

      Magalhaes Pinto, Malengier-Devlies, and co-authors investigated the developmental origins and maturation of synovial (lining and sublining) macrophages across embryonic, newborn, and postnatal stages in mouse. The authors used multiple transgenic reporter lines, lineage tracing, scRNA-seq, 2D confocal and 3D lightsheet imaging, and perturbations to delineate the macrophage states and ontogeny. They propose a model in which the majority of the joint lining macrophages has a fetal (EMP-derived) origin and a small proportion has a definitive HSC-derived monocyte origin, which both seed and mature within the synovial space in the postnatal period in the first 3 weeks of life. Using cell-cell communication analysis on their scRNA-seq data, they identified Fgf2, Csf1, and Tgfb as candidate signaling pathways that support (lining) macrophage development and maturation. Functional experiments indicate that the process is CSF1 and TGFb-dependent and also partly dependent on mechanosensing through Piezo1.

      The key conclusions on the composition of the synovial macrophages are convincing based on the presented results, and are carefully phrased. The study is very comprehensive, yet the description and organization of the results of the different mouse models could be altered to improve the storyline. Several refinements in data presentation, formulation, and minor validation experiments would further improve the clarity of the story, as well as summary recaps of the major findings throughout the text.

      We thank this reviewer for their detailed review. We will be implementing the requested changes wherever technically feasible.

      Major comments:

      Generally, the story could be more streamlined by introducing earlier reporter lines and lineage-origin logic. Clearly state which reporter/CreERT2 lines and acrosses are used. It was unclear in Figure 2 that cells of the cross of the Cx3cr1-GFP and Ms4a3Cre:Rosa26lsl-tdT reporter lines were used for the scRNA-seq. The principle that there are fetal-derived and bone marrow (GMP)-derived monocytes and macrophages doesn't need to be "hidden" until Figure 3. For example, also the imaging of Ms4a3Cre could be introduced before the scRNA-seq.

      We will revise the structure and order of the manuscript during revision.

      Figure 1 could benefit from a cartoon visualizing the anatomy of the knee joint. The terms "sublining" and "synovium" are now a bit unclear, as it appears that sometimes the synovium is indicated as sublining and vice versa. Additionally, a schematic developmental timeline could be added to indicate the parallels between mouse and human development (fetal and postnatal development in mouse versus gestational age in human). Also, the various waves of hematopoiesis could be indicated in this timeline, which would be particularly helpful for Figure 3 for the lineage-tracing readouts. Lastly, the authors could end the manuscript (a new Figure 6) with a general cartoon summarizing all the results presented.

      We will include illustrations as suggested.

      Figure 1 could be rearranged: first introduce the markers CX3CR1 and VSIG4 (Figure 1D) and then present the quantifications (Figure 1B/E). Where possible, co-visualization CX3CR1-GFP and VSIG4 on tissue sections to strengthen the claims on the relationship between these 2 markers. Tying the scRNA-seq insights (Figure 2) to the imaging would be elegant. Moreover, it would be informative to represent the CX3CR1+ and VSIG4+ macrophages as a percentage of F4/80+ macrophages (Figure 1B/E). Similarly, for the flow cytometry data in Figure 2, the relationship between the markers CX3CR1 and VSIG4 on macrophages could be more clearly displayed and discussed.

      Thanks for this remark. We will endeavor to show co-localization and analysis of both markers wherever possible. However, where we did not use Cx3cr1gfp mice, co-staining was limited by antibody choice.

      The 3D imaging of the joint is a nice addition to the manuscript, as it provides more context to the anatomical structure; however, while the text suggests several newborn joints were imaged, Figure 1F visualizes (again) the knee joint. Could other joints also be represented by 3D imaging? If the knee joint is the only joint available for imaging, and previous confocal imaging focused specifically on the meniscus in the knee joint, could the meniscus also be highlighted in the lightsheet imaging?

      Apologies if this was not clear from the original manuscript text, but we have only imaged the knee joint in 3D. We will clarify this during revision and consider inclusion of additional imaging data.

      Clarification is requested regarding the imaging quantification representation. The M&M section under "Statistical analysis and reproducibility" states that individual data points are displayed, and bars represent the mean. However, some of the Figure legends (e.g., Figures 1B and S1C) specify that each dot corresponds to an individual mouse, with quantification based on 2-3 sections per mouse. While this appears to be a very reasonable representation of the data, does this mean that for each dot, the mean value from the 2-3 sections per mouse was calculated and plotted?

      We will clarify this.

      It is not clear how the differential expression analysis was performed on the Vsig4+ cells. Please specify if Cluster 0 was used for analysis, or all Vsig4-expressing cells? Not all cells in Cluster 0 have Vsig4+ expression. The authors described the expression dynamics of Aqp1 as intriguing, but lack a reasoning on why this is interesting.

      We will revise this section.

      Figure S3E: In line with the previous comment, can the authors justify that the tdTomato+/- comparisons are not biased by scRNA-seq dropout (scRNA-seq is zero-inflated, so some tdTomato- cells could be false negatives), and provide methodological details (thresholds, ambient RNA correction, etc.) to support this?

      We will clarify this and include additional representations of the tdTomato transcript data.

      Although the sex-related differences in macrophage composition and the absence of differential expression are interesting, they distract from the manuscript's main messages. Moreover, the Discussion does not elaborate on how these observations relate to joint (disease) biology. Consider removing this section or integrating it clearly into the relevant biological context.

      We will remove this section as suggested.

      CreERT2 transgenic lines are often not 100% efficient in recombination, also depending on whether tamoxifen or 4-OHT is used. Could the authors report the percentage of tdTomato+ cells in the joints and compare them to the recombination efficiencies in the monocytes/microglia under the same tamoxifen or 4-OHT conditions? This would help clarify how the interpret the macrophage labeling %'s.

      We will report labelling efficacies and/or show normalized data in the revised manuscript.

      Could the authors draw parallels between the observations in the mouse knee joint macrophage populations and literature on other joints in mouse and the knee joint in human (for example, as described in Alivernini et al., 2020 and in the very recent Raut et al., 2025)?

      We will include a section on this in the revised manuscript.

      Minor comments:

      In general, the authors should clarify in the Results what each marker used for imaging, flow cytometry, or in the mouse reporter lines delineates. For example, mention that F4/80 is a marker for tissue-resident macrophages (correct?) in immunofluorescence, that IBA1 is a marker for macrophages on human tissue sections (Figure S1), and PDPN is GP38 (Figure S2 - align usage of marker reference across main text and figures).

      We will implement this request.

      For clarity in the microscopy representation, the single channels should be represented in a grey scale.

      We will revise image presentation.

      Figure S1B: Is CX3CR1 also restricted to the lining macrophages in human? Could a co-staining with IBA1 be performed to strengthen the species similarities?

      To our knowledge, there is no antibody available that works for imaging of human CX3CR1. Moreover, CX3CR1 is only limited to the lining population in adult joints, in fetal and newborn (mouse) joints, all macrophages express this receptor, as do fetal progenitors to macrophages. However, Alivernini and colleagues have reported that TREM2high macrophages are the human counterpart of the mouse CX3CR1+ lining population (PMID: 32601335).

      Adipocyte diameter quantification: Avoid plotting individual adipocytes from 2 mice without per-mouse visualization. Instead, report the mean adipocyte diameter per mouse and plot those means.

      We will implement this change.

      A little typo was spotted in the "Statistical analysis and reproducibility" section: it is Dunn's, not Bunn's multiple-comparison correction.

      Thanks for spotting this.

      Figure 2A: The gating strategy for the CX3CR1-GFP cells is missing.

      We will provide this in the revised manuscript or supplementary material.

      Improve the visualization of some plots. For example, Figure 2F is hard to read because of the big dot size. The dots seem to add no information to the graph and could be removed. Additionally, for comparing the clusters across the different time points, one could project the cells from the other time points in grey in the background.

      We will revise the presentation of these data.

      Figure S2: The dotplot is more informative than the heatmap, consider removing the heatmap.

      We will do that.

      Figure 3A: If technically feasible, image and visualize both the GFP and tdTomato expression. It would be informative to see the Cx3cr1+ and Ms4a3-derived cells in the same specimen.

      We will thrive to show this in the revised manuscript.

      Figure 3C: Highlight that tdTomato expression is visualized here.

      We will do that.

      Figure 3G,F: The authors should place the schematics and graphs next to each other, so the data points can be more easily compared.

      We aim to do this in the revised manuscript.

      Figure 4B: Which co-staining was performed for the immunofluorescence to quantify the % of tdTomato+ cells?

      We co-stained for F4/80 and assessed localization in the lining or sublining. This will be clarified in the revised Figure legend.

      Figure 4C: The trajectory analysis appears to have an arrow pointing from the Ccr2+ macrophages to the Ly6c+ monocytes. Please verify this directionality, as its seems against the known biology.

      This will be addressed during revision.

      Figure 5 mentions that the Csfr1 levels were reduced in a tissue-specific manner, but it is unclear how this tissue specificity was achieved.

      We apologize for this misunderstanding. Csfr1FIRE mice are not tissue-specific knockouts, but they are more specific than global knockout mice, since only a (myeloid-specific) enhancer is affected. We will clarify this in the relevant section.

      For the TGFb perturbations (Tgfbr2 KO and systemic TGFb depletion): did the authors validate reduced TGFb pathway activity in the macrophages, for example, reduced pSMAD2/3 levels? This would validate the effectiveness of the perturbations. This is an important point, and assessing signaling events downstream of TGFb is a very good suggestion.

      As per above comment, we have decided to uncouple the functional data with exception of CSF1 from the revised version of the current manuscript, but we will be taking this into account for substantiating our functional data in follow-up work.

      Figure 5F could benefit from a timeline of the treatment.

      As for the previous point raised, we will be taking this into account for follow-up work on the uncoupled functional data.

      The Methods mention that Gene Ontology analysis was performed on the single-cell data, but the results are not plotted in a figure. It would be informative to include this GO/pathway analysis in the appropriate figure(s).

      We will include this in the revised (supplementary) information.

      Significance:

      This work provides a high temporal-resolution and "spatial" resolution reference map of the ontogeny and maturation of the synovial lining macrophages in the knee joint. It complements existing literature that demonstrated the presence of tissue-resident macrophages in the synovial space and lining (Culemann, et al., 2019 and others) by charting the embryonic-to-postnatal emergence of lining and sublining subsets. In particular, this mouse work identified some key signaling pathways in shaping this tissue compartment. This dataset serves as a robust, steady-state reference for joint pathology and can be implemented with human studies on disease biology of the knee joint (e.g., Alivernini et al., 2020; Raut et al., 2025). Insights into the exact developmental origins, mechanisms contributing to diverse or seemingly similar cell types, and distinct maturation processes are crucial to understanding disease biology, in which developmental processes can be hijacked/reactivated.

      These findings will interest researchers in joint disease biology (osteoarthritis and immune-mediated arthritides such as RA and psoriasis), macrophage development (tissue-resident vs monocyte-derived lineages), the bone/joint microenvironment, and joint mechanobiology.

      The reviewer's expertise is in developmental biology, mesoderm, bone biology, hematopoiesis, and monocyte/macrophage biology in disease

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      The authors try to investigate how the population of microtubules (LSPMB) that originate from sporozoite subpellicular microtubules (SSPM) and are remodelled during liver-stage development of malaria parasites. These bundles shrink over time and help form structures needed for cell division. The authors have used expansion microscopy, live-cell imaging, genetically engineered mutants, and pharmacological perturbation to study parasite development with liver cells.

      A major strength of the manuscript is the live cell imaging and expansion microscopy to study this challenging liver stage of parasite development. It gives important knowledge that PTMs of α-tubulin, such as polyglutamylation and tyrosination/detyrosination, are crucial for microtubule stability. Mutations in α-tubulin reduce the parasite's ability to move and proliferate in the liver cells. The drug oryzalin, which targets microtubules, also blocks parasite development, showing how important dynamic microtubules are at this stage.

      The major problem in the manuscript was the way it flows, as the authors keep shifting from the liver stage to the sporogony stages and then back to the liver stages. It was very confusing at times to know what the real focus of the study is, whether sporozoite development or liver stage development. The flow of the manuscript could be improved. Some of the findings reported here substantiate the previous electron microscopy.

      Overall, the study represents an important contribution towards understanding cytoskeletal remodelling during liver stage infection. The study suggests that tubulin modifications are key for the parasite's survival in the liver and could be targets for new malaria treatments. This is also the stage that has been used for vaccine development, so any knowledge of how parasites proliferate in the liver cells will be beneficial towards intervention approaches.

      We would like to express our sincere gratitude to Reviewer #1 for the positive and encouraging feedback on our manuscript. We are delighted that the reviewer found our experimental design and methodologies appropriate and that our study represents an important contribution to understanding cytoskeletal remodelling during liver stage infection, a critical phase for vaccine development. We are also grateful to the reviewer for highlighting the issue with the manuscript's flow. We acknowledge this limitation and will significantly improve the narrative structure and logical progression in the revised manuscript to ensure clarity and avoid any potential confusion. Thank you again for your thoughtful and constructive comments.

      Reviewer #2 (Public review):

      Summary:

      The authors investigated microtubule distribution and their possible post-translational modifications (PTM) in Plasmodium berghei during development of the liver stage, using either hepatocytes or HeLa cells as models. They used conventional immunofluorescence assays and expansion microscopy with various antibodies recognising tubulin and, in the second part of the work, its candidate PTMs, as well as markers of Plasmodium, in addition to live imaging with a fluorescent marker for tubulin. In the third part of the study, they generated 3 mutants deprived of either the last four residues or the last 11 residues, or where a candidate polyglutamylation site was substituted by an alanine residue.

      Strengths:

      In the first part, microtubules are monitored by a combination of two approaches (IFA and live), revealing nicely the evolution of the sporozoite subpellicular microtubules (SSPM, the sporozoite is the developmental stage present in salivary glands of the mosquitoes and that infects hepatocytes) into a different structure termed liver-stage parasite microtubule bundle (LSPMB). The LSPMB shrinks during the course of parasite development and finally disappears while hemi-spindles emerge over time. Contact points between these two structures are observed frequently in live cells and occasionally in fixed cells, suggesting the intriguing possibility that tubulin might be recycled from the LSPMB to contribute to hemi-spindle formation.

      In the second part, antibodies recognising (1) the final tyrosine found at the C-terminal tail and (2) a stretch of 3 glutamate residues in a side chain are used to monitor these candidate PTMs. Signals are positive at the SSPM, and while it remains positive for polyglutamylation, it becomes negative for the final tyrosine at the LSPM, while a positive signal emerges at hemi-spindles at later stages of development.

      In the last part, the three mutants are fed to mosquitoes, where they show reduced development, the one lacking the alpha-tubulin tail even failing to reach the salivary glands. However, the two other mutants infect HeLa cells normally, whereas sporozoites with the C-terminal tail deletion recovered from the haemolymph did not develop in these cells.

      The first part provides convincing evidence that microtubules are extensively remodelled during the infection of hepatocytes and HeLa cells, in agreement with the spectacular Plasmodium morphogenetic changes accompanying massive and rapid proliferation. The third part brings further confirmation that the C-terminal tail of alpha-tubulin is essential for multiple stages of parasite development, in agreement with previous work (50). Since it is the region where several post-translational modifications take place in other organisms (detyrosination, polyglutamylation, glycylation), it makes sense to propose that the essential function is related to these PTMs also in Plasmodium.

      Weaknesses:

      The significance of tubulin PTM relies on two antibodies whose reactivity to Plasmodium tubulins is unclear (see below). The interpretation of the literature on detyrosination and polyglutamylation is confusing in several places, meaning that the statements about the possible role of these PTMs need to be carefully revisited.

      The authors use the term "tyrosination" but the alpha1-tubulin studied here possesses the final tyrosine when it is synthesised, so it is "tyrosinated" by default. It could potentially be removed by a tyrosine carboxypeptidase of the vasoinhibin family (VASH) as reported in other species. After removal, this tyrosine can be added again by a tubulin-tyrosine ligase (TTL) enzyme. It is therefore more appropriate to talk about detyrosination-retyrosination rather than tyrosination (this confusion is unfortunately common in the literature, see Janke & Magiera, 2020).

      The difficulty here is that there is so far no evidence that detyrosination takes place in Plasmodium. Neither VASH nor TTL could be identified in the Plasmodium genome (ref 31, something we can confirm with our unsuccessful BLAST analyses), and mass spectrometry studies of purified tubulin, albeit from blood stages, did not find evidence for detyrosination (reference 43). Western blots using an antibody against detyrosinated tubulin did not produce a positive signal, neither on purified tubulin, nor on whole parasites (43). Of course, the situation could be different in liver stages, but the question of the detyrosinating enzyme is still there. The existence of a unique Plasmodium system for detyrosination cannot be formally ruled out but given the high degree of conservation of these PTMs and their associated enzymes, it sounds difficult to imagine.

      The fact that the anti-tyrosinated antibody still produced a signal in the cell line where the final tyrosine is deleted raises issues about its specificity. A cross-reactivity with beta-tubulin is proposed, but the Plasmodium beta-tubulin does not carry a final tyrosine, further raising concerns about antibody specificity.

      The interpretation of these results should therefore be considered carefully. There also seems to be some confusion in the function of detyrosination cited from the literature. It is said in line 229 that "tyrosination has been associated with stable microtubules" (33, 34, 50, 55). References 33 and 34 actually show that tyrosinated microtubules turn over faster in neurons or in epithelial cells, respectively, while references 50 and 55 do not study de/retyrosination. The general consensus is that tyrosinated microtubules are more dynamic (see reference 24).

      The situation is a bit different for polyglutamylation since several candidate poly- or mono-glutamylases have been identified in the Plasmodium genome, and at least mono-glutamylation of beta-tubulin has been formally proven, still in bloodstream stages (ref 43). The authors propose that the residue E445 is the polyglutamylation site. To our knowledge, this has not been demonstrated for Plasmodium. This residue is indeed the favourite one in several organisms such as humans and trypanosomes (Eddé et al., Science 1990; Schneider et al., JCS, 1997), and it is tempting to propose it would be the same here. However, TTLLs bind the tubulin tails from their C-terminal end like a glove on a finger (Garnham et al., Cell, 2015), and the presence of two extra residues in Plasmodium tubulins would mean that the reactive glutamate might be in position E447 rather than E445. This is worth discussing.

      On the positive side, it is encouraging to see that signals for both anti-tyrosinated tail and poly-glutamylated side chain are going down in the various mutants, but this would need validation with a comparison for alpha-tubulin signal.

      Line 316: polyglutamylation "is commonly associated with dynamic microtubule behavior (78-80)". Actually, references 78 and 79 show the impact of this PTM on interaction with spastin, and reference 80 discusses polyglutamylation as a marker of stable microtubules in the context of cilia and flagella. The consensus is that polyglutamylated microtubules tend to be more stable (ref24).

      Conclusion:

      The first and the third parts of this manuscript - evolution of microtubules and importance of the C-terminal tails for Plasmodium development - are convincing and well supported by data. However, the presence and role of tubulin PTM should be carefully reconsidered.

      Plasmodium tubulins are more closely related to plant tubulins and are sensitive to inhibitors that do not affect mammalian microtubules. They therefore represent promising drug targets as several well-characterised compounds used as herbicides are available. The work produced here further defines the evolution of the microtubule network in sporozoites and liver stages, which are the initial and essential first steps of the infection. Moreover, Plasmodium has multiple specificities that make it a fascinating organism to study both for cell biology and evolution. The data reported here are elegant and will attract the attention of the community working on parasites but also on the cytoskeleton at large. It will be interesting to have the feedback of other people working on tubulin PTMs to figure out the significance of this part of the work.

      We thank Reviewer #2 for the thoughtful and detailed evaluation of our manuscript. We are pleased that the reviewer found our study elegant and believe it will attract the attention of the broader scientific community, both those working on parasites and those focused on cytoskeleton biology. We also acknowledge the concerns raised regarding the specificity of the antibodies used to detect tubulin post-translational modifications (PTMs), as well as the interpretation of their signals and the current lack of identified detyrosination enzymes in the Plasmodium genome. We agree that these are important limitations, and we will address them thoroughly in the revised manuscript. This includes clarifying our interpretation of tyrosination versus detyrosination, adjusting our claims regarding polyglutamylation sites, and carefully revisiting the literature cited to ensure accurate contextualization of PTM function in microtubule stability.

      We are grateful for the reviewer’s close reading and critical feedback, which will help us substantially improve the clarity, precision, and strength of our manuscript.

      Reviewer #3 (Public review):

      Summary:

      The manuscript by Atchou et al. investigates the role of the microtubule cytoskeleton in sporozoites of Plasmodium berghei, including possible functions of microtubule post-translational modifications (tyrosination and polyglutamylation) in the development of sporozoites in the liver. They also assessed the development of sporozoites in the mosquito. Using cell culture models and in vivo infections with parasites that contain tubulin mutants deficient in certain PTMs, they show that may aspects of the life cycle progression are impaired. The main conclusion is that microtubule PTMs play a major role in the differentiation processes of the parasites.

      However, there are a number of major and minor points of criticism that relate to the interpretation of some of the data.

      We thank Reviewer #3 for the overall positive assessment of our study and for recognizing its contribution to advancing our understanding of Plasmodium biology and malaria pathogenesis. We appreciate the reviewer’s constructive feedback, particularly regarding the interpretation of some of our data. These comments have been very helpful in guiding our revisions, and we have worked to improve both the clarity of our presentation and the precision of our interpretations in the revised manuscript.

      Below, we respond in detail to each of the reviewer’s points.

      Comments:<br /> (1) The first paragraph of "Results" almost suggests that the presence of a subpellicular MT-array in sporozoites is a new discovery. This is not the case, see e.g. the recent publication by Ferreira et al. (Nature Communications, 2023).

      We thank the reviewer for pointing this out and fully agree that the subpellicular microtubule (SPM) array in sporozoites is well established, as documented in earlier work (e.g., Cyrklaff et al., 2007) and more recently by Ferreira et al. (Nat. Commun., 2023). Our intention was not to suggest that the existence of the SSPM is a novel finding. Rather, our study builds on this existing knowledge by demonstrating that these sporozoite-derived microtubules are not disassembled upon hepatocyte entry but are repurposed into a newly described structure, the liver stage parasite microtubule bundle (LSPMB). This reorganization, its persistence into liver stage development, and its dynamic role in microtubule remodeling and nuclear division are, to our knowledge, novel observations. We will revise the manuscript to make this distinction clearer in the introduction and the results section.

      (2) Why were HeLa cells and not hepatocytes (as in Figure 3) used for measuring infection rates of the mutants in Figure 5H and 5L? As I understand, HeLa cells are not natural host cells for invading sporozoites. HeLa cells are epithelial cells derived from a cervical tumour. I am not an expert in Plasmodium biology, but is a HeLa infection an accepted surrogate model for liver stage development?

      We appreciate the opportunity to clarify our experimental model. While HeLa cells are not the natural host cells, they are a well-established and validated in vitro model for studying Plasmodium berghei liver stage development in our lab and others. In this system, the parasite completes its full development and generates infectious merozoites. Numerous studies have successfully used HeLa cells as a liver stage infection model, with key findings subsequently validated in primary hepatocytes or in vivo, confirming its utility as a representative model. We employed this cell line primarily to reduce animal usage in accordance with the 3Rs principles (Replacement, Reduction, Refinement). Importantly, to ensure the biological relevance of our discoveries in HeLa cells, we validated our key findings in primary mouse hepatocytes, as shown in Figure 3. Furthermore, we confirmed the in vivo infectivity of mutant parasite lines that produced typical salivary gland sporozoites through an in vivo infection assay, presented in Figure S4C.

      (3) The tubulin staining in Figures 1A and 1B is confusing and doesn't seem to make sense. Whereas in 1A the antibody nicely stains host and parasite tubulin, in 1B, only parasite tubulin is visible. If the same antibody and the same host cells have been used, HeLa cytoplasmic microtubules should be visible in 1B. In fact, they should be the predominant antigen. The same applies to Figure 2, where host microtubules are also not visible.

      We thank the reviewer for this careful observation regarding the α-tubulin staining in Figures 1A and 1B. The same host cell type (HeLa) and α-tubulin antibody were indeed used in both experiments. Figure 1A shows results from conventional immunofluorescence assays, where both host and parasite microtubules are clearly stained. In contrast, Figure 1B shows the outcome of ultrastructure expansion microscopy (U-ExM), where parasite microtubules appear prominently, while host microtubules are less visible.

      This effect appears to be a technical outcome of the U-ExM protocol, which can differentially preserve or reveal microtubule epitopes. We consistently observed stronger parasite signal across various cell types, including primary hepatocytes (Figure 3A,B). The lack of visible host microtubules in some U-ExM images does not reflect their absence, but rather reduced signal intensity relative to the parasite structures. This is not observed with all antibodies, e.g., host microtubules stain strongly with anti-tyrosinated α-tubulin (Figure 3B), likely reflecting their high tyrosination state.

      To overcome this limitation, we employed PS-ExM and combined PS-ExM/U-ExM approaches (as described in reference 56), which allowed simultaneous high-resolution visualization of both host and parasite microtubule networks. These combined methods are now being used in follow-up studies to investigate host–parasite microtubule interactions in more detail.

      We will clarify this point in the revised manuscript to avoid confusion.

      (4) In Figures 2A and B, the host nuclei appear to have very different sizes in the DMSO controls and in the drug-treated cells. For example, in the 20 µM (-) image (bottom right), the nuclei are much larger than in the DMSO (-) control (top left). If this is the case, expansion microscopy hasn't worked reproducibly, and therefore, quantification of fluorescence is problematic. The scalebar is the same for all panels.

      The expansion microscopy methods used in this study have been rigorously validated for both reproducibility and isotropicity. However, as the reviewer rightly notes, host cell nuclei can vary in size due to several factors, including cell cycle stage, infection status, and the extent of parasite development, all of which can influence host nuclei morphology and size.

      Importantly, the quantifications relevant to our conclusions were focused specifically on parasite structures. We did not rely on host nuclear size or host fluorescence intensity as a quantitative readout in this context. While we acknowledge the observed variability in host nuclear dimensions, it does not compromise the accuracy or reproducibility of the parasite specific measurements central to our study.

      We will clarify this point in the revised figure legend and manuscript.

      (5) I don't quite follow the argument that spindles and the LSPMB are dynamic structures (e.g., lines 145, 174). That is a trivial statement for the spindle, as it is always dynamic, but beyond that, it has only been shown that the structure is sensitive to oryzalin. That says little about any "natural" dynamic behaviour. Any microtubule structure can be destroyed by a particular physical or chemical treatment, but that doesn't mean all structures are dynamic. It also depends on the definition of "dynamic" in a particular context, for example, the time scale of dynamic behaviour (changes within seconds, minutes, or hours).

      We agree that sensitivity to chemical depolymerization alone does not necessarily indicate dynamic behavior, particularly in the absence of data on turnover kinetics or temporal changes.

      Our interpretation was based on two observations: first, that the LSPMB, which derives from the highly stable sporozoite subpellicular microtubules (known to be drug-resistant), becomes susceptible to depolymerization during the liver stage; and second, that the LSPMB gradually shrinks over time during parasite development. These features suggested a transition toward a more dynamic state compared to its origin. However, we fully agree that “dynamic” is a context-dependent term and that direct evidence such as turnover rates or structural changes on short time scales, is required to rigorously define microtubule dynamics.

      We will revise the manuscript to clarify our use of this term and explicitly acknowledge the need for further studies to characterize the timescale and mechanisms underlying LSPMB remodeling.

      (6) I am not sure what part in the story EB1 plays. The data are only shown in the Supplements and don't seem to be of particular relevance. EB1 is a ubiquitous protein associated with microtubule plus ends. The statement (line 192) that it "may play a broader role..." is unsubstantiated and cannot be based merely on the observation that it is expressed in a particular life cycle stage.

      We agree that EB1 is a ubiquitous microtubule plus-end binding protein and that its presence alone does not imply a novel function. Previous studies (e.g., Maurer et al., 2023; Yang et al., 2023; Zeeshan et al., 2023) have focused on its role during Plasmodium sexual stages, while its expression during liver and mosquito stages has not been previously documented.

      Our data extend this knowledge by showing that EB1 is also expressed during liver stage development, particularly during the highly mitotic schizont phase. While we agree that this observation alone does not prove functional involvement, it raises the possibility of a broader role for EB1 in regulating microtubule dynamics beyond sexual stages. To avoid overinterpretation, we have presented these findings in the supplementary material and will revise the manuscript to tone down speculative statements and clearly frame this as a preliminary observation that warrants further investigation.

      (7) Line 196 onwards: The antibody IN105 is better known in the field as polyE. Maybe that should be added in Materials and Methods. Also, the antibody T9028 against tyrosinated tubulin is poorly validated in the literature and rarely used. Usually, researchers in this field use the monoclonal antibody YL1/2. I am not sure why this unusual antibody was chosen in this study. In fact, has its specificity against tyrosinated α-tubulin from Plasmodium berghei ever been shown? The original antigen was human and had the sequence EGEEY. The Plasmodium sequence is YEADY and hence very different. It is stated that the LSPMB is both polyglutamylated and tyrosinated. This is unusual because polyglutamylated microtubules are usually indicative of stable microtubules, whereas tyrosinated microtubules are found on freshly polymerised and dynamic microtubules. However, a co-localisation within the same cell has not been attempted. This is, however, possible since polyE is a rabbit antibody and T9028 is a mouse antibody. I suspect that differences or gradients along the LSPMB would have been noticed. Also, in lines 207/208, it is said that tyrosination disappears after hepatocyte invasion, which is shown in Figure 3. However, in Figure 3A, quite a lot of positive signals for tyrosination are visible in the 54 and 56 hpi panels.

      First, we acknowledge that the IN105 antibody is more widely known as "polyE" in the field. We will update the Materials and Methods section accordingly to reflect this nomenclature.

      Regarding the use of the T9028 antibody against tyrosinated α-tubulin: we agree that this monoclonal antibody is less commonly used than YL1/2, and we appreciate the reviewer drawing attention to this. The original antigen for T9028 is based on the mammalian C-terminal sequence EGEEY, which differs from the Plasmodium α1-tubulin sequence (YEADY). Like many in the field, we face the challenge that most available antibodies are raised against mammalian epitopes, and specificity in Plasmodium can vary. Nonetheless, the literature (e.g., Hirst et al., 2022; Fennell et al., 2008) has demonstrated that tyrosination occurs in Plasmodium α1-tubulin, using anti-tyrosination antibodies including YL1/2.

      Following the reviewer’s excellent suggestion, we are currently repeating the key experiments using the YL1/2 antibody to compare staining patterns directly with those obtained using T9028. We will include these results in the revised manuscript.

      Concerning the potential co-localization of polyglutamylation and tyrosination on the LSPMB: we agree that this is an interesting and testable hypothesis. In the current manuscript, Figures 3A and 3B were generated from independent experiments, and thus co-localization was not assessed. However, as the reviewer correctly notes, polyE and T9028 antibodies are raised in rabbit and mouse, respectively, making co-staining feasible. We will follow up on this experimentally and, if feasible within our revision timeline, include data in the revised version or highlight this as a future direction.

      Finally, with regard to Figure 3 and the observation that tyrosination appears to persist at 54 and 56 hpi (Figure 3B): the reviewer is correct that tyrosination signal is still detectable at these time points. Our statement that tyrosination “disappears after hepatocyte invasion” was intended to refer to an overall decrease in signal intensity during early liver stage development, with a reappearance at later stages (e.g., cytomere formation). We will rephrase this section for greater clarity and ensure that figure annotations and legends unambiguously reflect the dynamics observed.

      (8) In line 229, it is stated that tyrosination "has previously been associated with stable microtubule in motility". This statement is not correct. In fact, none of the cited references that apparently support this statement show that this is the case. On the contrary, stable microtubules, such as flagellar axonemes, are almost completely detyrosinated. Therefore, tyrosination is a marker for dynamic microtubules, whereas detyrosinated microtubules are indicative of stable microtubules. This is an established fact, and it is odd that the authors claim the opposite.

      We fully agree that in canonical eukaryotic systems, tyrosinated microtubules are generally markers of dynamic microtubule populations, whereas detyrosinated microtubules are typically associated with stability particularly in structures such as flagellar axonemes.

      Our original statement will be corrected. In our study, we observed that tyrosinated microtubules are prevalent in invasive stages (sporozoites and merozoites), while detyrosinated forms become more prominent during intracellular liver stage development. This pattern is consistent with the established link between tyrosination and dynamic microtubules.

      What is particularly intriguing in Plasmodium is the apparent cycling of tyrosination despite the absence of known tubulin tyrosine ligase (TTL) homologs in the genome. This suggests either a highly divergent enzyme or the involvement of host cell factors, a hypothesis supported by the reappearance of tyrosinated microtubules during liver stage schizogony (Figure 3B).

      We will revise the relevant text and the Discussion section to reflect these mechanistic considerations more accurately and to avoid misrepresenting established principles of microtubule biology.

      (9) Line 236 onwards: Concerning the generation of tubulin mutants, I think it is necessary to demonstrate successful replacement of the wild-type allele by the mutant allele. I am sure the authors have done this by amplification and subsequent sequencing of the genomic locus using PCR primers outside the plasmid sequences. I suggest including this information, e.g., by displaying the chromatograph trace in a supplementary figure. Or are the sequences displayed in Figure S3B already derived from sequenced genomic DNA? This is not described in the Legend or in Materials and Methods. The left PCR products obtained for Figure S3 B would be a suitable template for sequencing.

      Indeed, these data are presented in Figure 4B and the corresponding sequence data are shown in Figure S3B. We appreciate the reviewer’s suggestion, which will help improve the transparency and reproducibility of our methodology.

      (10) It is also important to be aware of the fact that glutamylation also occurs on β-tubulin. This signal will also be detected by polyE (IN105). Therefore, it is surprising that IN105 immunofluorescence is negative on the C-term Δ cells (Figure S3 D). Is there anything known about confirmed polyglutamylation sites on both α- and β-tubulins in Plasmodium, e.g., by MS? In Toxoplasma, both α- and β-tubulin have been shown to be polyglutamylated.

      Indeed, polyglutamylation is known to occur not only on α-tubulin but also on β-tubulin in many organisms, including Toxoplasma gondii, and the polyE (IN105) antibody is expected to detect polyglutamylation on both tubulin isoforms.

      The parasites shown in Figure S3D correspond to mutant lines originally generated by Spreng et al. (2019): the IntronΔ mutant (with deletion of introns in the Plasmodium α1-tubulin gene) and the C-termΔ mutant (with deletion of the final three C-terminal residues: ADY). As the reviewer correctly notes, this particular C-terminal deletion does not include the predicted polyglutamylation site (E445 or E447, depending on alignment), and thus should not abolish all polyglutamylation. However, in our experiments, the IN105 signal is substantially reduced in this mutant. This may suggest that structural alterations in the tubulin tail affect accessibility of the polyglutamylation epitope or influence the modification itself though we cannot exclude other possibilities, including changes in antibody recognition.

      To date, polyglutamylation sites in Plasmodium tubulins have not been definitively confirmed by mass spectrometry. However, a recent MS-based study (reference 43) detected monoglutamylation on β-tubulin in blood stage parasites. Direct MS evidence for polyglutamylation of either α- or β-tubulin in Plasmodium liver stages is still lacking. We will clarify these points in the revised manuscript to avoid potential confusion and to highlight the need for future biochemical validation of PTM sites.

      (11) Figure S3 is very confusing. In the legend, certain intron deletions are mentioned. How does this relate to posttranslational tubulin modifications? The corresponding section in Results (lines 288-292) is also not very helpful in understanding this.

      The parasite lines shown in Figure S3D were originally generated by Spreng et al. (2019) and are not directly part of the main set of PTM-targeted mutants described in our study. Specifically, the IntronΔ line carries deletions in introns of the Plasmodium α1-tubulin gene, while the C-termΔ line lacks the final three C-terminal residues (ADY). These lines were included for comparative purposes to explore whether structural changes in α-tubulin could impact polyglutamylation signal, as detected by the polyE (IN105) antibody.

      We acknowledge that the figure legend and corresponding text (lines 288–292) did not adequately explain the rationale for including these control lines. We will revise both the legend and Results section to more clearly describe the origin, purpose, and relevance of these mutants to the overall study.

      (12) Figure 4E doesn't look like brightfield microscopy but like some sort of fluorescent imaging. In Figure 4C, were the control (NoΔ) cells with an integrated cassette, but no mutations, or non-transgenic cells?

      The reviewer is absolutely correct: Figure 4E shows a fluorescent image acquired using widefield microscopy and not a brightfield image. We will revise the figure legend accordingly to avoid confusion. The “BF” (brightfield) label applies only to the left panel in Figure 4C, which depicts oocysts imaged using transmitted light.

      Regarding the controls labeled "NoΔ" in Figure 4C, we confirm that these parasites contain the integrated selection cassette but do not harbor any mutations in the target gene. They serve as proper integration controls, allowing us to distinguish the effects of the point mutations or deletions introduced in the experimental lines.

      (13) It is difficult to understand why the TyΔ and the CtΔ mutants still show quite a strong signal using the anti-tyrosination antibody. If the mutants have replaced all wild-type alleles, the signal should be completely absent, unless the antibody (see my comment above concerning T9028) cross-reacts with detyrosinated microtubules. Therefore, the quantitation in Figures 5F and 5G is actually indicative of something that shouldn't be like that. The quantitation of 5F is at odds with the microscopy image in 5D. If this image is representative, the anti-Ty staining in TyΔ is as strong as in the control NoΔ.

      We agree that the persistence of anti-tyrosination signal in the TyΔ and CtΔ mutant lines is unexpected, given that all wild-type alleles were replaced. This discrepancy has led us to further investigate the specificity of the T9028 antibody, as raised in the reviewer’s earlier comment. To address this concern, we are currently repeating the key experiments using the well-established YL1/2 monoclonal antibody, which is widely accepted for detecting tyrosinated α-tubulin in other systems.

      We also acknowledge that Figure 5F shows residual tyrosination signal, and the reviewer is correct that this should not occur if the modified residues are the exclusive PTM sites. One possible explanation is that adjacent residues or even alternative tubulin isoforms may serve as substrates. While α1-tubulin is the dominant isoform in Plasmodium, low-level expression of α2-tubulin has been detected in liver stages based on transcriptomic data, and it may contribute to the observed signal.

      Regarding the apparent discrepancy between the quantification in Figure 5F and the representative image in Figure 5D, we will revise the figure legend to clarify that image selection aimed to show detectable signal, not necessarily the average phenotype. We will also reassess and, if needed, repeat the quantification with improved image sets to ensure accuracy and consistency.

      We will revise the manuscript to reflect these points and include a more nuanced interpretation of the residual staining in the mutant lines.

      (14) The statement that the failure of CtΔ mutants to generate viable sporozoites is due to the lack of microtubule PTMs (lines 295-296) is speculative. The lack of the entire C-terminal tail could have a number of consequences, such as impaired microtubule assembly or failure to recruit and bind associated proteins. This is not necessarily linked to PTMs. Also, it has been shown in yeast that for microtubules to form properly and exquisite regulation (proteostasis) of the ratio between α- and β-tubulin is essential (Wethekam and Moore, 2023). I am not sure, but according to Materials and Methods (line 423), the gene cassettes for replacing the wild-type tubulin gene with the mutant versions contain a selectable marker gene for pyrimethamine selection. Are there qPCR data that show that expression levels of mutant α-tubulin are more or less the same as the wild-type levels?

      We agree that attributing the developmental failure of the CtΔ mutants solely to the absence of microtubule post-translational modifications (PTMs) is speculative. As the reviewer rightly points out, deletion of the entire C-terminal tail may have multiple effects, including impaired microtubule assembly, altered α/β-tubulin stoichiometry, or disruption of interactions with essential microtubule-associated proteins (MAPs). These consequences may arise independently of PTMs.

      That said, we note that PTMs particularly polyglutamylation, can modulate MAP binding by altering the surface charge of microtubules (Genova et al., 2023; Mitchell et al., 2010). Therefore, while PTM loss may be a contributing factor, we acknowledge that the phenotype likely results from a combination of mechanisms. We will revise the relevant section of the manuscript to present a more cautious and balanced interpretation.

      Regarding the reviewer’s question on expression levels: although the replacement constructs include a pyrimethamine resistance cassette, we have not yet quantified α-tubulin transcript levels by qPCR. In the interim, the study by Spreng et al. (2019) (reference 50) on a related α1-tubulin nutations provides valuable insight. They observed no difference in mRNA levels in day 12 oocysts, yet reported fainter microtubule staining and shorter sporozoites, suggesting a post-transcriptional mechanism affecting protein expression or function in later stages. Furthermore, the phenotypic spectrum across their mutant panel (Suppl. Fig. 3 D and E) implies that robust α-tubulin regulation is highly sensitive to specific sequences.

      We acknowledge this as a current limitation in our study and will address it in the revised manuscript, noting that direct measurement of transcript levels is a key area for future investigation.

      (15) In the Discussion, my impression is that two recent studies, the superb Expansion Microscopy study by Bertiaux et al. (2021) and the cryo-EM study by Ferreira et al. (2023), are not sufficiently recognised (although they are cited elsewhere in the manuscript). The latter study includes a detailed description of the microtubule cytoskeleton in sporozoites. However, the present study clearly expands the knowledge about the structure of the cytoskeleton in liver stage parasites and is one of the few studies addressing the distribution and function of microtubule post-translational modifications in Plasmodium.

      Indeed, our work builds upon the established knowledge from Bertiaux et al. (2021) and the cryo-EM study by Ferreira et al. (2023), as rightly mentioned by the reviewer. We agree that these foundational studies, combined with our findings, will significantly expand the understanding of Plasmodium biology and cytoskeleton dynamics across its life cycle and will open the door for further investigations. We are grateful for this suggestion and will ensure these key studies are appropriately acknowledged in the revised manuscript.

      (16) I somewhat disagree with the statement of a co-occurrence of polyglutamylated and tyrosinated microtubules. I think the resolution is too low to reach that conclusion. As this is a bold claim, and would be contrary to what is known from other organisms, it would require a more rigorous validation. Given the apparent problems with the anti-Ty antibody (signal in the TyΔ mutant), one should be very cautious with this claim.

      This is a very important point to clarify. As mentioned previously, the initial experiments for these modifications were performed independently. It is established that sporozoite subpellicular microtubules exhibit both tyrosination and polyglutamylation. We will revise the manuscript to temper this statement and clearly indicate that the co-occurrence of these PTMs remains a hypothesis that requires more rigorous validation. As suggested, we are now conducting additional co-staining experiments using the better validated YL1/2 antibody to re-express and directly compare the distribution of both PTMs within the same cell. These follow-up experiments will help clarify whether both modifications occur simultaneously on the same microtubule structures in Plasmodium liver stages.

      (17) In the Discussion (lines 311 and 377), it is again claimed that tyrosinated microtubules are "a well-known marker of stable microtubules". This statement is completely incorrect, and I am surprised by this serious mistake. A few lines later, the authors say that polyglutamylated is "commonly associated with dynamic microtubule behaviour". Again, this is completely incorrect and is the opposite of what is firmly established in the literature. Polyglutamylation and detyrosination are markers of stable microtubules.

      Indeed, in canonical eukaryotic systems, tyrosinated microtubules are generally considered markers of dynamic microtubule populations, whereas detyrosinated and polyglutamylated microtubules are more commonly associated with stability.

      We acknowledge this mistake and will revise the Discussion to correct these statements accordingly. In the context of Plasmodium, our observations suggest an unusual regulation of microtubule dynamics, which may reflect parasite-specific adaptations. For example, we observed tyrosinated α-tubulin in the stable subpellicular microtubules of sporozoites structures typically known for their exceptional stability. This atypical association implies either non-canonical roles for tyrosination or parasite-specific mechanisms for modulating microtubule properties. Additionally, the presence of both PTMs at different stages of development and on different microtubule populations suggests tightly regulated spatial and temporal modulation of microtubule function.

      We will carefully revise the relevant sections of the manuscript to remove incorrect generalizations and ensure accurate representation of the current consensus in the field, while emphasizing the possibility of Plasmodium-specific adaptations that merit further study.

      (18) In line 339, the authors interpret the residual antibody staining after the introduction of the mutant tubulin as a compensatory mechanism. There is no evidence for this. More likely explanations are firstly the quality of the anti-Ty-antibody used (see comment above), and the fact that also β-tubulin carries C-terminal polyglutamylation sites, which haven't been investigated in this study. PTMs on β-tubulin are not compensatory, but normal PTMs, at least in all other organisms where microtubule PTMs have been investigated.

      As mentioned above, we are currently repeating the key experiments with the [YL1/2] antibody, as suggested. Furthermore, we fully agree with the reviewer's point regarding polyglutamylation on β-tubulin. The C-terminal tail of β-tubulin does indeed contain polyglutamylation sites. As we noted in the manuscript (Lines 340-352), this aspect has not been investigated in the present study, and we acknowledge it as a valuable direction for future research. We will revise the text accordingly to avoid overinterpretation and to more accurately reflect the limitations of our current data.

    1. many therapists believe strongly in the unconscious and the impact of early childhood experiences on the rest of a person’s life.

      Many therapists think that things we go through as young children, along with unconscious thoughts we may not even be aware of, can shape how we think, feel, and act for the rest of our lives. How might early childhood experiences affect the way a person handles relationships or emotions as an adult?

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this work, the authors apply TDCS to awake and anesthetized macaques to determine the effect of this modality on dynamic connectivity measured by fMRI. The question is to understand the extent to which TDCS can influence conscious or unconscious states. Their target was the PFC. During the conscious states, the animals were executing a fixation task. Unconsciousness was achieved by administering a constant infusion of propofol and a continuous infusion of the muscle relaxant cisatracurium. They observed the animals while awake receiving anodal or cathodal hd-TDCS applied to the PFC. During the cathodal stimulation, they found disruption of functional connectivity patterns, enhanced structure-function correlations, a decrease in Shannon entropy, and a transition towards patterns that were more commonly anatomically based. In contrast under propofol anesthesia anodal hd-TDCS stimulation appreciably altered the brain connectivity patterns and decreased the correlation between structure and function. The PFC stimulations altered patterns associated with consciousness as well as those associated with unconsciousness.

      Strengths: 

      The authors carefully executed a set of very challenging experiments that involved applying tDCS in awake and anesthetized non-human primates while conducting functional imaging.

      We thank the Reviewer for summarising our study and for his appreciation of the highly challenging experiments we performed.

      Weaknesses:

      The authors show that tDCS can alter functional connectivity measured by fMRI but they do not make clear what their studies teach the reader about the effects of tDCS on the brain during different states of consciousness. No important finding is stated contrary to what is stated in the abstract. It is also not clear what the work teaches us about how tDCS works nor is it clear what are the "clinical implications for disorders of consciousness." The deep anesthesia is akin to being in a state of coma. This was not discussed.  

      While the authors have executed a set of technically challenging experiments, it is not clear what they teach us about how tDCS works, normal brain neurophysiology, or brain pathological states such as disorders of consciousness.

      We thank the reviewer for his comments. We agree that we could better highlight the value and implications of our work, and we take this opportunity to improve our manuscript according to the suggestions.

      Actions in the text: We have added several new paragraphs in the Discussion section, considering these comments and other related remarks from the Reviewing Editor (see below our answer to the first comment of the Reviewing Editor: REC#1).

      Reviewer #2 (Public review): 

      General comments: 

      The authors investigated the effects of tDCS on brain dynamics in awake and anesthetized monkeys using functional MRI. They claim that cathodal tDCS disrupts the functional connectivity pattern in awake monkeys while anodal tDCS alters brain patterns in anesthetized monkeys. This study offers valuable insight into how brain states can influence the outcomes of noninvasive brain stimulation. However, there are several aspects of the methods and results sections that should be improved to clarify the findings.

      We thank the Reviewer for the summary and appreciation of our study.  

      Major comments 

      For the anesthetized monkeys, the anode location differs between subjects, with the electrode positioned to stimulate the left DLFPC in monkey R and the right DLPFC in monkey N. The authors mention that this discrepancy does not result in significant differences in the electric field due to the monkeys' small head size. However, this is incorrect, as placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side. Running an electric field simulation would confirm this. Additionally, the small electrode size suggested by the Easy cap configuration for NHP appears sufficient to stimulate the targeted regions focally. If this interpretation is correct, the authors should provide additional evidence to support their claim, such as a computational simulation of the EF distribution.

      We thank the Reviewer for the comments. First, regarding the reviewer’s statement that placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side, we would like to clarify that we did not use a typical 4 x 1 concentric ring high-definition setup (which consists of a small centre electrode surrounded by four return electrodes), but a two-electrode montage, with one electrode over the left or right PFC and the other one over the contralateral occipital cortex. According to EF modelling papers, a 4 x 1 high-definition setup would produce an EF that is focused and limited to the cortical area circumscribed by the ring of the return electrodes (Datta et al. 2009; Alam et al. 2016). Therefore, targeting the left or right DLPFC with a 4 x 1 setup would produce an EF confined to the targeted hemisphere of the PFC. In contrast, we expect the brain current flow generated with our 2-electrode setup to be broader, despite the small size of the electrodes,  because there is no constraint from return electrodes. Thus, with our setup, the current is expected to flow between the PFC and the occipital cortex (see also our responses to comments R3.3., R.E.C.#2.1. and R.E.C.#2.2.). 

      Second, we would like to point out that in awake experiments, in which we stimulated the right PFC of both monkeys, there was no gross evidence of left or right asymmetry in the computed functional connectivity patterns (Figure 3A, Figure 3 - figure supplement 2A; Figure 5A). These results, showing that our stimulation montages did not induce asymmetric dynamic FC changes in NHPs, support the idea that our setups did not generate EFs that were spatially focused enough to alter brain activity in one hemisphere substantially more than the other.

      Third, it is also worth noting that current evidence suggests that human brains are significantly more lateralized than those of macaques. Macaque monkeys have been found to have some degree of lateralized networks, but these are of lower complexity, and the lateralization is less pronounced and functionally organized than in humans. (Whey et al., 2014; Mantini et al., 2013). This suggests that, even if the stimulation were focal enough to stimulate the left or the right part of the PFC only, the behavioural effects would likely be similar.

      We strongly agree with the reviewer that conducting an EF simulation would be valuable to confirm our expectations and to gain a comprehensive view of the characteristics of the EFs generated with our different setups in NHPs. However, the challenge is in the fact that EF computational models have been developed for humans, and their use in NHPs is not straightforward due to significant anatomical differences. For example, macaque monkeys are distinct from humans in terms of brain size, shape and cortical organisation, skull thickness, and the presence of muscles, as well as different tissue conductivities (Lee et al. 2015; Datta et al.2016; Mantell et al. 2023). We plan to address this in future work.

      Actions in the text: In the Materials and Methods section, we have modified the sentence: “Because of the small size of the monkey's head and because we did not use return electrodes to restrict the current flow (as is achieved with typical high-definition montages (Datta et al. 2009; Alam et al. 2016)), we expected that tDCS stimulation with the two symmetrical montages would result in nearly equivalent electric fields across the monkey’s head and produce roughly similar effects on brain activity.” 

      We also added a new sentence about EF simulation: 

      “This would need to be confirmed by running an electric field simulation. However, computational electric field models have been developed for humans, and their use in NHPs is not straightforward due to anatomical specificities. Indeed, monkeys differ from humans in terms of brain size, shape and cortical organization, skull thickness, tissue conductivities and the presence of muscles (Lee et al. 2015; Datta et al. 2016; Mantell et al. 2023). Modelling of EFs generated with the specific tDCS montages employed in this study will be performed in future work.”

      For the anesthetized monkeys, the authors applied 1 mA tDCS first, followed by 2 mA tDCS. A 20-minute stimulation duration of 1 mA tDCS is strong enough to produce after-effects that could influence the brain state during the 2 mA tDCS. This raises some concerns. Previous studies have shown that 1 mA tDCS can generate EF of over 1 V/m in the brain, and the effects of stimulation are sensitive to brain state (e.g., eye closed vs. eye open). How do the authors ensure that there are no after-effects from the 1 mA tDCS? This issue makes it challenging to directly compare the effects of 1 mA and 2 mA stimulation.

      We agree with the reviewer's comment that 1 mA tDCS may induce aftereffects, as has been observed in several human studies (e.g., (Jamil et al. 2017, 2020). Although the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses, it's still possible that the stimulation produced some effects below the threshold of significance that may contribute, albeit weakly, to the changes observed during and after 2 mA stimulation. We have, therefore, amended the paper in line with the reviewer's comments.

      Actions in the text: We have added the following text in the Result section: 

      “While several human studies have reported that 1 mA transcranial stimulation induces aftereffects (e.g., (Jamil et al. 2017, 2020; Monte-Silva et al. 2010), the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses. However, it is still possible that the 1 mA stimulation produced some effects below the threshold of significance that may contribute to the changes observed during and after the 2 mA stimulation.”

      The occurrence rate of a specific structural-functional coupling pattern among random brain regions shows significant effects of tDCS. However, these results seem counterintuitive. It is generally understood that noninvasive brain stimulation tends to modulate functional connectivity rather than structural or structural-functional connectivity. How does the occurrence rate of structural-functional coupling patterns provide a more suitable measure of the effectiveness of tDCS than functional connectivity alone? I would recommend that the authors present the results based on functional connectivity itself. If there is no change in functional connectivity, the relevance of changes in structural-functional coupling might not translate into a meaningful alteration in brain function, making it unclear how significant this finding is without corresponding functional evidence.

      First, of all, we would like to make it clear that the occurrence rate of patterns as a function of their SFC is not intended to be used or seen as a ‘better’ measure of the efficacy of tDCS. Instead, it is one aspect of the effects of tDCS on whole-brain functional cortical dynamics, obtained from refined measures (phase-coherences), that specifically addresses the coupling between structure and function. This type of analysis is further motivated by its increasing use in the literature due to its suspected relationship to wakefulness (e.g., (Barttfeld et al. 2015, Demertzi et al. 2019; Castro et al. 2023)). Also, in our analysis, the structure is kept constant: the connectivity matrix used to correlate the functional brain states is always the same (CoCoMac82). Thus, the influence of tDCS on the structure-function side can only be explained by modulating the functional aspects, as suggested by intuition and previous results.

      Then, we agree with the reviewer that studying the functional changes induced by tDCS alone could be valuable. However, usual metrics used in FC analysis are usually done statistically: FC-states are either computed through averaging spatial correlations over time, then analyzed through graph-theoretical properties for instance (or by just directly computing the element-wise differences), or either by considering the properties of the different visited FC-states by computing spatial correlations over a sliding time-window, and then similar analysis can be done as previously explained. But these are static metrics, if the states visited are essentially the same (which is expected from non-invasive neuromodulations that haven’t already demonstrated strong and/or characteristic impact), but the dynamical process of visiting said states changes, one would see no difference in that regard. As such, in the case of resting-state fMRI, differences in FCs are hard to interpret given that between-sessions within-condition differences are usually found with some degree of variance for the respective conditions. Trying then to interpret between-condition differences is quite tricky in the case of subtle modulations of the system’s activity. On the other hand, more subtle differences can be captured by considering more detailed analysis, such as using phase-based methods like we did,  by incorporating some statistical learning component with regard to the dynamicity of the system (supervised learning for instance like we did followed by temporal & transition-based methodology), and by adding some dimensions along which one will be able to give some interpretation to the analysis.  In our case we were interested in characterizing resting-state differences between stimulation conditions, which have nuanced and subtle interactions with the biological system. 

      As such, classical measures of differences between FC states are likely to not be refined and precise enough. In fact, we propose additional files investigating those classically used measures such as differences in average FC matrices, or changes in functional graph properties (like modularity, efficiency and density) of the visited FC states. These figures show that, for the first case, comparing region-to-region specific FCs provides very few statistically significant results. With respect to the second part, we show that virtually no differences are observed in the properties of the functional states visited. 

      These results suggest, as expected, that the actual brain states visited across the different stimulation conditions are topologically quite similar, and that only very few region-specific pairwise functional connectivities are particularly modulated by specific tDCS montages while, on the other hand, the actual dynamical process dictating how the brain activity passes from one state to another is in fact being influenced as shown by the dynamical analysis presented in the main figures in a more apparent and meaningful way (in that it is dependent on the montage, somewhat consistent with regard to the post-stimulations conditions, and can be made sense of by considering the theoretical effect of near-anodal versus near-cathodal neuromodulatory effects).

      Actions in the text: We have added new supplementary files showing the effects of the stimulations on FC matrices and on classical functional graph properties in awake and anesthesia datasets (Supplementary Files 3 & 4).

      We have added new sentences about these new analyses on the effects of the stimulations on FC matrices and on classical functional graph properties in the Results section:

      “In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3).... In contrast, classical FC metrics did not show significant differences across stimulation conditions, highlighting the value of dynamic FC metrics to capture the neuromodulatory effects of tDCS.”

      “Analyses of the two monkeys separately showed that the changes in slope and Shannon entropy were bigger in one of the two monkeys but went in the same direction (Supplementary File 2), while classical FC metrics did not capture any statistical differences between the different stimulation conditions (Supplementary File 3).”

      The authors recorded data from only two monkeys, which may limit the investigation of the group effects of tDCS. As the number of scans for the second monkey in each consciousness condition is lower than that in the first monkey, there is a concern that the main effects might primarily reflect the data from a single monkey. I suggest that the authors should analyze the data for each monkey individually to determine if similar trends are observed in both subjects.

      We agree that the small number of subjects is a limitation of our study. However, we have already addressed these aspects by reporting statistical analyses that consider them, using linear models of such variables, and running them through ANOVA tests. In addition, we experimentally ensured that we recorded a relatively high number of sessions over a period of several years. Regardless, we agree that our study would benefit from further investigation into this matter. We have therefore prepared complementary figures showing the main analysis performed separately for the two monkeys as proposed, as well as further investigations into the inter-condition variability outmatching the inter-individual variability, itself being also outmatched by intra-individual changes. 

      Actions in the text: We have added a supplementary file showing the main analyses performed separately for the two monkeys (Supplementary File 2) and further investigations into the inter-condition variability (Supplementary Files 3 & 4).

      We have added new sentences about these analyses performed separately for the two monkeys in the Results section:

      “In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3). The separate analyses showed that the changes in slope and Shannon entropy were substantially more pronounced in one of the two monkeys, corroborating some of the effects captured in the ANOVA tests.”

      “Analyses of the two monkeys separately showed that the changes in slope and Shannon entropy were bigger in one of the two monkeys but went in the same direction (Supplementary

      File 2)”.

      Anodal tDCS was only applied to anesthetized monkeys, which limits the conclusion that the authors are aiming for. It raises questions about the conclusion regarding brain state dependency. To address this, it would be better to include the cathodal tDCS session for anesthetized monkeys. If cathodal tDCS changes the connectivity during anesthesia, it becomes difficult to argue that the effects of cathodal tDCS vary depending on the state of consciousness as discussed in this paper. On the other hand, if cathodal tDCS would not produce any changes, the conclusion would then focus on the relationship between the polarity of tDCS and consciousness. In that case, the authors could maintain their conclusion but might need to refine it to reflect this specific relationship more accurately. 

      We agree with the reviewer that it would have been interesting to investigate the effects of cathodal tDCS in anesthetized monkeys. However, due to the challenging nature of the experimental procedures under anesthesia, we had to limit the investigations to only one stimulation modality. We chose to deliver anodal stimulation because, from a translational point of view, we aimed to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness. It also made much more sense to increase the cortical excitability of the prefrontal cortex in an attempt to wake up the sedated monkeys rather than doing the opposite.

      Actions in the text: We have added a new sentence in the Results section:

      “Due to the challenging nature of the experimental procedures under anesthesia, we limited the investigations to only one stimulation modality. We chose to deliver anodal stimulation to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness and to increase the cortical excitability of the PFC in an attempt to wake up the sedated monkeys.”

      Reviewer #3 (Public review): 

      Summary: 

      This study used transcranial direct current stimulation administered using small 'high-definition' electrodes to modulate neural activity within the non-human primate prefrontal cortex during both wakefulness and anaesthesia. Functional magnetic resonance imaging (fMRI) was used to assess the neuromodulatory effects of stimulation. The authors report on the modification of brain dynamics during and following anodal and cathodal stimulation during wakefulness and following anodal stimulation at two intensities (1 mA, 2 mA) during anaesthesia. This study provides some possible support that prefrontal direct current stimulation can alter neural activity patterns across wakefulness and sedation in monkeys. However, the reported findings need to be considered carefully against several important methodological limitations. 

      Strengths: 

      A key strength of this work is the use of fMRI-based methods to track changes in brain activity with good spatial precision. Another strength is the exploration of stimulation effects across wakefulness and sedation, which has the potential to provide novel information on the impact of electrical stimulation across states of consciousness.

      We thank the Reviewer for the summary and for highlighting the strengths of our study. 

      Weaknesses: 

      The lack of a sham stimulation condition is a significant limitation, for instance, how can the authors be sure that results were not affected by drowsiness or fatigue as a result of the experimental procedure?

      We agree with the reviewer that adding control conditions could have strengthened our study. Control conditions usually consist of a sham condition or active control conditions. However, as mentioned in response to one of Reviewer 2 comments (R.2.5), we had to make choices as we could not perform as many experiments due to their demanding nature, especially under anesthesia. 

      In the awake state, we acquired data with two experimental conditions; the monkeys were exposed to either anodal (F4/O1) or cathodal (O1/F4) PFC tDCS. As anodal tDCS of the PFC induced only minor changes in brain dynamics, it could be considered as an active control condition for the cathodal condition, which had striking effects on the cortical dynamics. It is also worth noting that doubts have been raised about the neurobiological inertia of certain sham protocols. Indeed, different sham protocols have been employed in the literature, some of which may produce unintended effects (Fonteneau et al. 2019). Therefore, active control conditions, such as reversing the polarity of the stimulation or targeting a different brain region, have been proposed to provide better control (Fonteneau et al. 2019). Furthermore, in the context of experiments performed under anesthesia, the relevance of a sham control condition typically used to achieve adequate blinding is questionable. 

      With regard to drowsiness and fatigue as a result of the experimental procedure, we agree with the reviewer that this is a common problem in functional imaging due to the length of the recording sessions. We assumed, as was done in previous work (Uhrig, Dehaene, and Jarraya 2014; Wang et al. 2015), that the monkeys' performance on the fixation task during acquisition would capture these periods of fatigue. Therefore, only sessions with fixation rates above 85% were included in our analysis. 

      Actions in the text: We have now specified, in the Materials and Methods section, the fact that only runs with a high fixation rate (> 85%) were included in the study: 

      “To ensure that the results were not biased by fatigue or drowsiness due to the lengthy

      In the anaesthesia condition, the authors investigated the effects of two intensities of stimulation (1 mA and 2 mA). However, a potential confound here relates to the possibility that the initial 1 mA stimulation block might have caused plasticity-related changes in neural activity that could have interfered with the following 2 mA block due to the lack of a sufficient wash-out period. Hence, I am not sure any findings from the 2 mA block can really be interpreted as completely separate from the initial 1 mA stimulation period, given that they were administered consecutively. Several previous studies have shown that same-day repeated tDCS stimulation blocks can influence the effects of neuromodulation (e.g., Bastani and Jaberzadeh, 2014, Clin Neurophysiol; Monte-Silva et al., J. Neurophysiology). 

      We agree with the reviewer’s comment that the initial 1 mA stimulation block might have induced changes in neural activity and that the 20-minute post 1 mA block would not be long enough to wash out these changes. This comment is very similar to the second comment made by Reviewer 2 (R.2.2). Although our experimental data do not support this possibility (as the differences between the 1 mA post-stimulation and baseline conditions were not significant), it is still conceivable that the stimulation produced some effects below the threshold of significance and that these might weakly contribute to the changes observed during and after the 2 mA stimulation. 

      Actions in the text: We have modified the paper according to the reviewers' comments (please see our answer and actions in the text to R.2.2.).

      The different electrode placement for the two anaesthetised monkeys (i.e., Monkey R: F3/O2 montage, Monkey N: F4/O1 montage) is problematic, as it is likely to have resulted in stimulation over different brain regions. The authors state that "Because of the small size of the monkey's head, we expected that tDCS stimulation with these two symmetrical montages would result in nearly equivalent electric fields across the monkey's head and produce roughly similar effects on brain activity"; however, I am not totally convinced of this, and it really would need E-field models to confirm. It is also more likely that there would in fact be notable differences in the brain regions stimulated as the authors used HD-tDCS electrodes, which are generally more focal.

      We thank the Reviewer for the remark, which is very similar to the second comment from Reviewer 2. Please see our answer to the first comment of Reviewer 2 

      Actions in the text: We have modified the paper according to the reviewers' comments (please see the actions taken in response to R.2.1.).

      Given the very small sample size, I think it is also important to consider the possibility that some results might also be impacted by individual differences in response to stimulation. For instance, in the discussion (page 9, paragraph 2) the authors contrast findings observed in awake animals versus anaesthetised animals. However, different monkeys were examined for these two conditions, and there were only two monkeys in each group (monkeys J and Y for awake experiments [both male], and monkeys R and N [male and female] for the anaesthesia condition). From the human literature, it is well known that there is a considerable amount of inter-individual variability in response to stimulation (e.g., Lopez-Alonso et al., 2014, Brain Stimulation; Chew et al., 2015, Brain Stimulation), therefore I wonder if some of these differences could also possibly result from differences in responsiveness to stimulation between the different monkeys? At the end of the paragraph, the authors also state "Our findings also support the use of tDCS to promote rapid recovery from general anesthesia in humans...and suggest that a single anodal prefrontal stimulation at the end of the anesthesia protocol may be effective." However, I'm not sure if this statement is really backed-up by the results, which failed to report "any behavioural signs of awakening in the animals" (page 7)?

      We thank the Reviewer for this comment. Because working with non-human primates is expensive and labor intensive, the sample sizes in classical macaque experiments are generally small (typically 2-4 subjects per experiment). Our sample size (i.e. 2 rhesus macaques in awake experiments and 2 macaques under sedation, 11 +/- 9 scan sessions per animal, 288 and 136 runs in the awake and anesthesia state, respectively) is comparable to other previous work in non-human primates using fMRI (Milham et al. 2018; Yacoub et al. 2020; Uchimura, Kumano, and Kitazawa 2024). In addition, we would like to point out that the baseline cortical dynamics we found before stimulation, whether in the awake or sedated state, are comparable to previous studies (Barttfeld et al. 2015; Uhrig et al. 2018; Tasserie et al. 2022). This suggests our results are reproducible across datasets, despite the small sample size.

      That being said, we agree with the reviewer that inter-individual variability in response to stimulation can be considerable, as shown by a large body of literature in the field. It seems possible that the two monkeys studied in each condition responded differently to the stimulation. But even if that’s the case, our results suggest that at least in one of the two monkeys, cathodal PFC stimulation in the awake state and anodal PFC stimulation under propofol anesthesia induced striking changes in brain dynamics, which we believe is a significant contribution to the field. 

      In fact, supplementary analysis, as proposed by Reviewer 2 (cf R2.4), investigating how the different measurables we’ve used were differently affected by tDCS show that indeed monkey Y’s case is more apparent and significant than monkey J’s. Still, the effects observed in monkey J’s case are still congruent with what is observed in monkey Y’s and at the population level (though less flagrant). We also show that these inter-individual variabilities are outmatched by the inter-condition variability, (as indicated by our initially strong statistical results at the population levels), thus showing that, even though we have different responses depending on the subject, the effects observed at the population level cannot be only accounted for by the differences in subjects’ specificities.

      Lastly, the Reviewer questioned whether our results support that a single anodal prefrontal stimulation at the end of the anesthesia protocol could effectively promote rapid recovery from general anesthesia, because the stimulation did not wake the animals in our experiments. It should be emphasized that in our case, the monkeys were stimulated while they were still receiving continuous propofol perfusion. In contrast, during the recovery process from anesthesia, the delivery of the anesthetic drug is stopped. It is therefore conceivable that anodal PFC tDCS, which successfully enriched brain dynamics in sedated monkeys in our experiments, may accelerate the recovery from anesthesia when the drug is no longer administered. 

      Actions in the text: We have added a line in the Materials and Methods to compare to other studies:

      “Our sample size is comparable to previous work in NHP using fMRI (Milham et al. 2018; Yacoub et al. 2020; Uchimura, Kumano, and Kitazawa 2024).”

      Reviewing Editor Comments: 

      In some cases, authors opt to submit a revised manuscript. Should you choose to do so, please be aware that the reviewers have indicated that their appraisal is unlikely to change unless some of the suggested field modelling is incorporated into the work. This may change the evaluation of the strength of evidence, but the final wording will be subject to reviewer discretion. Details for responding to the reviews are provided at the bottom of this email.

      Reviewer #1 (Recommendations for the authors): 

      The work should discuss the implications of their experiments for using tDCS to arouse a patient from a coma. The anesthetized animal is effectively in a drug-induced coma. While they observed connectivity changes, these changes did not map nicely onto behavioral changes. 

      I would suggest that the authors spell out more clearly what they view as the clinical implications of their work in terms of new insights into how tDCS may be used to either understand and or treat disorders of consciousness.

      We thank the Reviewer for his thoughtful comments. We appreciate the opportunity to clarify and expand on the key findings and implications of our work, particularly regarding the new insights into how tDCS can be used to understand and treat disorders of consciousness. We therefore provide a broader perspective on the clinical implications of our experiments regarding coma and disorders of consciousness. We also agree with the Reviewer that the absence of behavioral changes but the presence of functional differences should be more clearly addressed. 

      Actions in the text: We have added a few lines about the relevance of anesthesia as a model for disorders of consciousness in the Introduction part:

      “Anesthesia provides a unique model for studying consciousness, which, similarly to DOC, is characterized by the disruption or even  the loss of consciousness (Luppi 2024). Additionally, anesthesia mechanisms involve several subcortical nuclei that are key components of the brain's sleep and arousal circuits (Kelz and Mashour 2019).”

      In the Discussion section, we have modified and expanded a paragraph about the effects of tDCS in DOC patients and how this technique could be further used to study consciousness: From another clinical perspective, our results demonstrating that 2 mA anodal PFC tDCS decreased the structure-function correlation and modified the dynamic repertoire of brain patterns during anesthesia (Figures 6 and 7) are consistent with the beneficial effects of such stimulation in DOC patients (Thibaut et al., 2014; Angelakis et al., 2014; Thibaut et al., 2017; Zhang et al., 2017; Martens et al., 2018; Cavinato et al., 2019; Wu et al., 2019; Hermann et al., 2020; Peng et al., 2022; Thibaut et al., 2023). Although some clinical trials investigated the effects of stimulating other brain regions, such as the motor cortex (Martens et al., 2019; Straudi et al., 2019) or the parietal cortex (Huang et al., 2017; Guo et al., 2019; Zhang et al., 2022; Wan et al., 2023; Wang et al., 2020), the DLPFC appears to be the most effective target for patients with a minimally conscious state (Liu et al., 2023). In terms of neuromodulatory effects in DOC patients, DLPFC tDCS has been reported to increase global excitability (Bai et al., 2017), increase the P300 amplitude (Zhang et al., 2017; Hermann et al., 2020), improve the fronto-parietal coherence in the theta band (Bai et al., 2018), enhance the putative EEG markers of consciousness (Bai et al., 2018; Hermann et al., 2020) and reduce the incidence of slow-waves in the resting state (Mensen et al., 2020). Our findings further support the PFC as a relevant target for modulating consciousness level and align with growing evidence showing that the PFC plays a key role in conscious access networks (Mashour, Pal, and Brown 2022; Panagiotaropoulos 2024). Nevertheless, we hypothesize that other brain targets for tDCS may be of interest for consciousness restoration, potentially using multi-channel tDCS (Havlík et al., 2023). Among transcranial electrical stimulation techniques, tDCS has the great advantage of facilitating either excitation or inhibition of brain regions, depending on the polarity of the stimulation (Sdoia et al., 2019) exploited this advantage to investigate the causal involvement of the DLPFC in conscious access to a visual stimulus during an attentional blink paradigm. While conscious access was enhanced by anodal stimulation of the left DLPFC compared to sham stimulation, opposite effects were found with cathodal stimulation compared to sham over the same locus. Finally, this literature and our findings suggest that tDCS constitutes a non-invasive, reversible, and powerful tool for studying consciousness.”

      We have added a new paragraph about patients with cognitive-motor dissociation and dissociation between consciousness and behavioral responsiveness:

      “Changes in the state of consciousness are generally closely associated with changes in behavioural responsiveness, although some rare cases of dissociation have been described. Cognitive-motor dissociation (CMD) is a condition observed in patients with severe brain injury, characterized by behavior consistent with unresponsive wakefulness syndrome or a minimally conscious state minus (Thibaut et al., 2019). However, in these patients, specific cortical brain areas activate in response to mental imagery tasks (e.g., imagining playing tennis or returning home) in a manner indistinguishable from that of healthy controls, as shown through fMRI or EEG (Thibaut et al., 2019; Owen et al., 2006; Monti et al., 2010; Bodien et al., 2024). Thus, although CMD patients are behaviorally unresponsive, they demonstrate cognitive awareness that is not outwardly apparent. It is worth noting that both the structure-function correlation and the rate of the pattern closest to the anatomy were shown to be significantly reduced in unresponsive patients showing command following during mental imagery tasks compared to those who do not show command following (Demertzi et al., 2019). These observations would be compatible with our findings in anesthetized macaques exposed to 2 mA anodal PFC tDCS. The richness of the brain dynamics would be recovered (at least partially, in our experiments), but not the behaviour. This hypothesis also fits with a recent longitudinal fMRI study on patients recovering from coma (Crone et al., 2020). The researchers examined two groups of patients: one group consisted of individuals who were unconscious at the acute scanning session but regained consciousness and improved behavioral responsiveness a few months later, and the second group consisted of patients who were already conscious from the start and only improved behavioral responsiveness at follow-up. By comparing these two groups, the authors could distinguish between the recovery of consciousness and the recovery of behavioral responsiveness. They demonstrated that only initially conscious patients exhibited rich brain dynamics at baseline. In contrast, patients who were unconscious in the acute phase and later regained consciousness had poor baseline dynamics, which became more complex at follow-up. Complete recovery of both consciousness and responsiveness under general anesthesia is possible through electrical stimulation of the central thalamus (Redinbaugh et al., 2020; Tasserie et al., 2022).”

      Reviewer #2 (Recommendations for the authors): 

      Method 

      (1) The authors mentioned that they used HD-tDCS in their experiments; however, they used 1 x 1 tDCS, which is not HD-tDCS but rather single-channel tDCS.

      We thank the Reviewing Editor for pointing out this ambiguous wording. We understand that "HD-tDCS", which we used in our paper to refer to high-density 1x1 tDCS (because we used small carbon electrodes instead of the large sponge electrodes employed in conventional tDCS), may cause some confusion with high-definition tDCS, which uses compact ring electrodes and most commonly refers to a 4x1 montage (1 active central electrode over the target area and 4 return electrodes placed around the central electrode).

      Therefore, to avoid any confusion, we will use the term "tDCS" rather than “HD-tDCS” to qualify the technique used in this paper and suppress mentions of high-density or high-definition tDCS.

      Actions in the text: We have replaced the abbreviation “HD-tDCS” with “tDCS” throughout the paper. We have also suppressed the sentence about high-definition tDCS in the Introduction (“While conventional tDCS relies on the use of relatively large rectangular pad electrodes, high-density tDCS (HD-tDCS) utilizes more compact ring electrodes, allowing for increased focality, stronger electric fields, and presumably, greater neurophysiological changes (Datta et al. 2009; Dmochowski et al. 2011)”) and the two related citations in the References section.

      (2) Please provide the characteristics of electrodes, including their size, shape, and thickness.

      We thank the Reviewing Editor for this recommendation. We now provide the complete characteristics of the tDCS electrodes used in the paper.

      Actions in the text: We have added a sentence describing the characteristics of the tDCS electrodes in the Materials and Methods section:

      “We used a 1x1 electrode montage with two carbon rubber electrodes (dimensions: 1.4 cm x 1.85 cm, 0.93  cm thick) inserted into Soterix HD-tES MRI electrode holders (base diameter: 25 mm; height: 10.5 mm), which are in contact with the scalp. These electrodes (2.59 cm2) are smaller than conventional tDCS sponge electrodes (typically 25 to 35 cm<sup>2</sup>).”

      (3) Could the authors clarify why they chose to stimulate the right DLPFC? Is there a specific rationale for this choice? Additionally, could the authors explain how they ensured that the stimulation targeted the DLPFC, given that the monkey cap might differ from human configurations? In many NHP studies, structural MRI is used to accurately determine electrode placement. Considering that a single channel F4 - O2 montage was used, even a small displacement of the frontal electrode laterally could result in the electric field not adequately covering the DLPFC. Could the authors provide structural MRI images and details of electrode positioning to help readers better understand targeting accuracy?

      We thank the Reviewing Editor for the thoughtful comments and recommendations. We appreciate the opportunity to further clarify our rationale for stimulating the right DLPFC and also the suggestion to provide structural MRI images and details of electrode positioning, which we think will improve the quality of the paper by showing targeting accuracy.

      First, we would like to clarify that our initial decision to stimulate the right PFC in most animals was driven by experimental constraints. Indeed, we had limited access to the left PFC in three of the four macaques, either due to the presence of cement (spreading asymmetrically from the centre of the head) used to fix the head post in awake animals or due to a scar in one of the two animals studied under anesthesia. 

      Second, we agree with the Reviewing Editor on the importance of showing details of electrode positioning and evidence of targeting accuracy across MRI sessions. Therefore, we now provide structural images showing the positions of anodal and cathodal electrodes in almost all acquired sessions: 10 sessions (out of 10) under anesthesia and 30 sessions in the awake state (out of 34 sessions, because we could not acquire structural images in four sessions). These images show that, in anesthesia experiments, the anodal electrode was positioned over the dorsal prefrontal cortex and the cathodal electrode was placed over the contralateral occipital cortex (at the level of the parieto–occipital junction) in both monkeys. In the awake state, the montage still targeted the prefrontal cortex and the occipital cortex, but with a slightly different placement. One of the electrodes was placed over the prefrontal cortex, closer to the premotor cortex than in anesthesia experiments, while the other one was placed over the occipital cortex (V1), slightly more posterior than in anesthesia experiments. These images therefore show that the placement was relatively accurate across sessions and reproducible between monkeys in each of the two arousal conditions.

      Actions in the text: We have added a supplementary file showing electrode positioning in 40 of the 44 acquired MRI sessions (Supplementary File 1). We have also added a new supplement figure (Figure 1 - figure supplement 1) showing electrode positioning in representative MRI sessions of the awake and anesthetized experiments in the main manuscript. 

      We added a few sentences referring to these figures in the Result section: 

      “Representative structural images showing electrode placements on the head of the two awake monkeys are shown in Figure 1 - figure supplement 1A). Supplementary File 1 displays the complete set of structural images, showing that the two electrodes were accurately placed over the prefrontal cortex and the occipital cortex in a reproducible manner across awake sessions.”

      Figure 1 - figure supplement 1. Structural images displaying electrode placements on the head of monkeys. A) Awake experiments. Representative sagittal, coronal and transverse MRI sections, and the corresponding skin reconstruction images showing the position of the prefrontal and the occipital electrodes on the head of monkeys J. and Y. B) Anesthesia experiments. Representative sagittal, coronal and transverse MRI sections, and the corresponding skin reconstruction images showing the position of the prefrontal and occipital electrodes over the occipital cortex on the head of monkeys R. and N.

      Supplementary File 1 (see attached file). Structural images showing the position of the tDCS electrodes on the monkey's head across sessions. Sagittal, coronal and transverse MRI sections, and corresponding skin reconstruction images showing the position of the prefrontal and occipital electrodes on the monkey's head for each MRI session (except for 4 sessions in which no anatomical scan was acquired). The two electrodes were accurately placed over the prefrontal cortex and the occipital cortex in a reproducible manner across sessions and between the two monkeys studied in each arousal state. In anesthesia experiments, the anodal electrode was placed over the dorsal prefrontal cortex, while the cathodal electrode was positioned over the parieto-occipital junction. In awake experiments, the prefrontal electrode was positioned over the dorsal prefrontal cortex/pre-motor cortex, while the occipital electrode was placed over the visual area 1. The position of the two electrodes differed slightly between the anesthetized and awake experiments due to different body positions (the prone position of the sedated monkeys prevented a more posterior position of the occipital electrode) and also due to the presence of a headpost on the head of the two monkeys in awake experiments (the monkeys we worked with in anesthesia experiments did not have an headpost).

      (4) If the authors did not analyze the data for the passive event-related auditory response, it may be helpful to remove the related sentence to avoid potential confusion for readers.

      We thank the Reviewing Editor for the comment. Although we understand the reviewer’s point of view, we decide to keep this information in the paper to inform the reader that the macaques were passively engaged in an auditory task, as this could have some influence on the brain state. In the Materials and Methods section, we already mentioned that the analysis of the cerebral responses to the auditory paradigm is not part of the paper. We have modified the sentence to make it clearer and to avoid potential confusion for readers.

      Actions in the text: We have modified the sentence referring to the passive event-related auditory response in the Materials and Methods section:

      “All fMRI data were acquired while the monkeys were engaged in a passive event-related auditory task, the local-global paradigm, which is based on local and global deviations from temporal regularities (Bekinschtein et al. 2009; Uhrig, Dehaene, and Jarraya 2014). The present paper does not address how tDCS perturbs cerebral responses to local and global deviants, which will be the subject of future work.”

      (5) Could the authors clarify what x(t) represents in the equation? Additionally, it would be better to number the equations.

      We apologize for the confusion,  x(t) represents the evolution of the BOLD signals over time. We have numbered the equations as suggested. 

      Actions in the text: We have added explanations about the notation and numerotation of equations.

      (6) It would be much better to provide schematic illustrations to explain what the authors did for analyzing fMRI data.

      We thank the Reviewing Editor for the suggestion and now provide a new figure as suggested.  

      Actions in the text: We have added a new figure (Figure 2) graphically showing the overall analysis performed. We have added a sentence about the new Figure 2 in the Results section:  “A graphical overview of the overall analysis is shown in Figure 2.” We have renumbered Figure 2 - supplement figures accordingly.

      Figure 2. fMRI Phase Coherence analysis. A) Left) Animals were scanned before, during and after PFC tDCS stimulation in the awake state (two macaques) or under deep propofol anesthesia (two macaques). Right) Example of Z-scored filtered BOLD time series for one macaque, 111 time points with a TR of 2.4 s. B) Hilbert transform of the z-scored BOLD signal of one ROI into its time-varying amplitude A(t) (red) and the real part of the phase φ (green). In blue, we recover the original z-scored BOLD signal as A(t)cos(φ). C) Example of the phase of the Hilbert transform for each brain region at one TR. D) Symmetric matrix of cosines of the phase differences between all pairs of brain regions. E) We concatenated the vectorized form of the triangular superior of the phase difference matrices for all TRs for all participants, in all the conditions for both datasets separately obtaining using the K-means algorithm, the brain patterns whose statistics are then analyzed in the different conditions.

      Results 

      (1) In Figures 3A, 5A, and 6A showing brain connectivity, it is difficult to relate the connectivity variability among the brain regions. Instead of displaying connection lines for nodes, it would be more effective if the authors highlighted significant, strong connectivity within specific brain regions using additional methods, such as bootstrapping.

      We thank the Reviewing Editor for the comment and suggestion. The connection lines indeed represent all the synchronizations above 0.5 and all the anti-synchronization below -0.5 between all pairs of brain regions. As suggested, another element we haven’t addressed is the heterogeneity in coherences between individual brain regions. We hence propose additional supplementary figures showing, for all centroids mentioned in main figures, the variance in phase-based connectivity of the distributions of coherence of all brain regions to the rest of the brain. High value would then indicate a wide range of values of coherence, while low would indicate the different coherence a region has with the rest of the brain have similar values. Thus, a brain with uniform color would indicate high homogeneity in coherence among brain regions, while sharp changes in colors would reveal that certain regions are more subject to high variance in their coherence distributions. We expect this new figure to more clearly expose the connectivity variability among the brain regions.

      Actions in the text: We have added new figures showing, for all centroids mentioned in the main figures, the variances in phase-based connectivity of the distributions of coherence  (Figure 3 - figure supplement 3;  Figure 5 - figure supplement 2; Figure 6 - figure supplement 3; Figure 7 - figure supplement 2). One of them is shown below for the only awake analysis (Figure 3 - figure supplement 3).

      Figure 3 - figure supplement 3. Variance in inter-region phase coherences of brain patterns. Low values (red and light red) indicate that the distribution of synchronizations between a brain region and the rest of the brain has relatively low variance, while high values (blue and light blue) indicate relatively high variance. Are displayed both supra (top) and subdorsal (bottom) views for each brain pattern from the main figure, ordered similarly as previously: from left (1) to right (6) as their respective SFC increases. 

      We added a few sentences about variances in phase-based connectivity of the distributions of coherence in the Result section: 

      “Further investigation of the variances in inter-region phase coherences of brain patterns, presented in Figure 3 - figure supplement 3, revealed two main findings. First, all the patterns exhibited some degree of lateral symmetry. Second, except for the pattern with the highest SFC, most patterns displayed high heterogeneity in their coherence variances and striking inter-pattern differences. These observations reflect both the segmentation of distinct functional networks across patterns and a topological organization within the patterns themselves: some regions showed a broader spectrum of synchrony with the rest of the brain, while others exhibited narrower distributions of coherence variances. For instance, unlike other brain patterns, pattern 5 was characterized by a high coherence variance in the frontal premotor areas and low variance in the occipital cortex, whereas pattern 3 had a high variance in the frontal and orbitofrontal regions. In addition, we performed the main analyses separately for the two monkeys, explored the inter-condition variability (Supplementary File 2), and computed classical measures of functional connectivity such as average FC matrices and functional graph properties (modularity, efficiency and density) of the visited FC states (Supplementary File 3).”

      “The variance in inter-regional phase coherence across brain patterns showed notably that pattern 4, in contrast to most other patterns, was characterized by a high variance in frontal premotor areas and a low variance in the occipital cortex (Figure 5 - figure supplement 2)." 

      “The variance in inter-region phase coherences of the brain patterns is displayed in Figure 6 - figure supplement 3 and showed a striking heterogeneity between the patterns. For example, pattern 5 had a low overall variance (except in the frontal cortex), while pattern 1 was the only pattern with a high variance in the occipital cortex.”

      “The variance in inter-region phase coherences of brain patterns is displayed in Figure 6 - figure supplement 2.”

      (2) For both conditions, only 2 to 3 out of 6 patterns showed significant effects of tDCS on the occurrence rate. Is it sufficient to claim the authors' conclusion?

      We thank the Reviewer Editor for the comment. We would like to point out that similar kinds of differences in the occurrence rates of specific brain patterns (particularly in patterns at the extremities of the SFC scale) have already been reported previously. Prior works in patients suffering from disorders of consciousness, in healthy humans or in non-human primates,  have shown, by using a similar method of analysis, that not all brain states are equally disturbed by loss of consciousness, even in different modalities of unconscious transitioning (Luppi et al. 2021; Z. Huang et al. 2020; Demertzi et al. 2019; Castro et al. 2023; Golkowski et al. 2019; Barttfeld et al. 2015). Therefore, yes we believe that our conclusions are still supported by the results.

      (3) If the authors want to assert that the brain state significantly influences the effects of tDCS as discussed in the manuscript, further analysis is necessary. First, it would be great to show the difference in connectivity between two consciousness conditions during the baseline (resting state) to see how resting state connectivity or structural connectivity varies. Second, demonstrating the difference in connectivity between the awake and anesthetized conditions (e.g., awake during cathodal vs. anesthetized cathodal) to show how the connectivity among the brain regions was changed by the brain state during tDCS. This would strengthen the authors' conclusion.

      We thank the reviewer for this comment. Firstly, we’d like to clarify that the structural connectivity doesn’t change from one session to another in the same animal and minimally between subjects. Secondly, we agree with the Reviewing Editor that it is informative to show the differences between the baselines and this is what we have done. The results are shown in Figures 5 and 7. Regarding the comparison of the stimulating conditions across arousal levels, the only contrast that we could make is to compare 2 mA anodal awake with 2 mA anodal anesthetized (during and post-stimulation). However, as 2 mA anodal stimulation in the awake state did not affect the connectivity much (compared to the awake baseline), the results would be almost similar to the comparison of the awake baseline with 2 mA anodal anesthetized, which is shown in Figure 7. Therefore, we believe that this would result in minimal informative gains and even more redundancy. 

      Reviewer #3 (Recommendations for the authors): 

      Introduction, par 2: HD-tDCS does not necessarily produce stronger electric fields (E-fields) in the brain. The E-field is largely montage-dependent, and some configurations such as the 4x1 configuration can actually have weaker E-fields compared to conventional tDCS designs (i.e., with two sponge electrodes) as electrodes are often closer together resulting in more current being shunted by skull, scalp, and CSF. I would consider re-phrasing this section.

      We agree with the Reviewer Editor that high-definition tDCS does not necessarily produce stronger electric fields in the brain and apologize for the confusion caused by our use of HD-tDCS to refer to high-density tDCS. To avoid any confusion, we have removed the sentence mentioning that HD-tDCS produces stronger electric fields. 

      Actions in the text: We have removed the sentence about high-definition tDCS in the Introduction (“While conventional tDCS relies on the use of relatively large rectangular pad electrodes, high-density tDCS (HD-tDCS) utilizes more compact ring electrodes, allowing for increased focality, stronger electric fields, and presumably, greater neurophysiological changes (Datta et al. 2009; Dmochowski et al. 2011)”) and the two related citations in the References section.

    1. Author response:

      General Statements:

      The formation of three-dimensional tubes is a fundamental process in the development of organs and aberrant tube size leads to common diseases and congenital disorders, such as polycystic kidney disease, asthma, and lung hypoplasia. The apical (luminal) extracellular matrix (ECM) plays a critical role in epithelial tube morphogenesis during organ formation, but its composition and organization remain poorly understood. Using the Drosophila embryonic salivary gland as a model, we reveal a critical role for the PAPS Synthetase (Papss), an enzyme that synthesizes the universal sulfate donor PAPS, as a critical regulator of tube lumen expansion. Additionally, we identify two zona pellucida (ZP) domain proteins, Piopio (Pio) and Dumpy (Dpy) as key apical ECM components that provide mechanical support to maintain a uniform tube diameter.

      The apical ECM has a distinct composition compared to the basal ECM, featuring a diverse array of components. Many studies of the apical ECM have focused on the role of chitin and its modification, but the composition of the non-chitinous apical ECM and its role, and how modification of the apical ECM affects organogenesis remain elusive. The main findings of this manuscript are listed below.

      (1) Through a deficiency screen targeting ECM-modifying enzymes, we identify Papss as a key enzyme regulating luminal expansion during salivary gland morphogenesis. 

      (2) Our confocal and transmission electron microscopy analyses reveal that Papss mutants exhibit a disorganized apical membrane and condensed aECM, which are at least partially linked to disruptions in Golgi structures and intracellular trafficking. Papss is also essential for cell survival and basal ECM integrity, highlighting the role of sulfation in regulating both apical and basal ECM.

      (3) Salivary gland-specific overexpression of wild-type Papss rescues all defects in Papss mutants, but the catalytically inactive mutant form does not, suggesting that defects in sulfation are the underlying cause of the phenotypes.

      (4) We identify two ZP domain proteins, Piopio (Pio) and Dumpy (Dpy), as key components of the salivary gland aECM. In the absence of Papss, Pio is progressively lost from the aECM, while the Dpy-positive aECM structure is condensed and detaches from the apical membrane, resulting in a narrowed lumen. 

      (5) Mutations in pio or dpy, or in Notopleural (Np), which encodes a matriptase that cleaves Pio, cause the salivary gland lumen to develop alternating bulges and constrictions. Additionally, loss of pio results in loss of Dpy in the salivary gland lumen, suggesting that the Dpycontaining filamentous structures of the aECM is critical for maintaining luminal diameter, with Pio playing an essential role in organizing this structure.

      (6) We further reveal that the cleavage of the ZP domain of Pio by Np is critical for the role of Pio in organizing the aECM structure.

      Overall, our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining tube diameter. Mammals have two isoforms of Papss, Papss1 and Papss2. Papss1 shows ubiquitous expression, with higher levels in glandular cells and salivary duct cells, suggesting a high requirement for sulfation in these cell types. Papss2 shows a more restricted expression, such as in cartilage, and mutations in Papss2 have been associated with skeletal dysplasia in humans. Our analysis of the Drosophila Papss gene, a single ortholog of human Papss1 and Papss2, reveals its multiple roles during salivary gland development. We expect that these findings will provide valuable insights into the function of these enzymes in normal development and disease in humans. Our findings on the key role of two ZP proteins, Pio and Dpy, as major components of the salivary gland aECM also provide valuable information on the organization of the non-chitinous aECM during organ formation.

      We believe that our results will be of broad interest to many cell and developmental biologists studying organogenesis and the ECM, as well as those investigating the mechanisms underlying human diseases associated with conserved mutations.

      Point-by-point description of the revisions:

      We are delighted that all three reviewers were enthusiastic about the work. Their comments and suggestions have improved the paper. The details of the changes we have made in response to each reviewer’s comments are included in italicized text below.

      Reviewer #1 (Evidence, reproducibility and clarity):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      (1) The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K’). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      (2) The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed “normal, fully expanded” lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system. 

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E). 

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I’), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.  

      (3) Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      (4) A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy. 

      (5) Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I’). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      (6) A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManIIGFP signals. Standard colocalization analysis methods, such as Pearson’s correlation coefficient or Mander’s overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L’). 

      (7) I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed “filled” electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      (8) The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology. 

      (9) Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to “defective sulfation affects Golgi structures and multiple routes of intracellular trafficking”. 

      (10) DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      (11) WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. DpyYFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5figure supplement 2C. 

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly. 

      (12) Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to “constrictions” to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      (13) The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes? 

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H). 

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np. 

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT. 

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      (14) Minor:

      Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error.  It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      Minor comments

      (1) Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsm<sup>MI07716</sup> line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.  

      (2) The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      (3) TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      (4) The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.  

      Reviewer #2 (Significance):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      - This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I’) and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.  

      - A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed).

      This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila.

      Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130. 

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants–although this line was very sick and difficult to grow–showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss. 

      - A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a

      product recognized by WGA?

      For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We’re also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism’s proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant. 

      - Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      After cleavages by Np and furin, the Pio protein should have three fragments. The Nterminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals. 

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1’s comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I. 

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      -  What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That’s probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      - The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3. 

      - The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      - It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.   

      - The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a “C-terminal ZP domain”, which is a middle piece after furin + Np cleavages. 

      - The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this study, the authors identify an insect salivary protein participating viral initiate infection in plant host. They found a salivary LssaCA promoting RSV infection by interacting with OsTLP that could degrade callose in plants. Furthermore, RSV NP bond to LssaCA in salivary glands to form a complex, which then bond to OsTLP to promote degradation of callose.

      The story focus on tripartite virus-insect vector-plant interaction and is interesting. However, the study is too simple and poor-conducted. The conclusion is also overstated due to unsolid findings.

      We thank the reviewer for their constructive feedback. We have conducted additional experiments to strengthen our results and conclusions as detailed below:

      (1) The comparison between vector inoculation and microinjection involves multiple confounding factors that could affect the experimental results, including salivary components, RSV inoculation titers, and the precision of viral deposition. The differential outcomes could be attributed to these various factors rather than definitively demonstrating the necessity of salivary factors. Therefore, we have removed this comparison from the revised manuscript and instead focused on elucidating the specific mechanisms by which LssaCA facilitates viral infection.

      (2) We conducted new experiments to assess the function of LssaCA enzymatic activity in mediating RSV infection. Additional experiments revealed that OsTLP enzymatic activity is highly pH-dependent, with increased activity as pH decreases from 7.5 to 5.0 (Fig. 3H). However, the LssaCA-OsTLP interaction at pH 7.4 significantly enhanced OsTLP enzymatic activity without requiring pH changes. These results demonstrate that LssaCA-OsTLP protein interactions are crucial for mediating RSV infection. In contrast to pH-dependent mechanisms, our study demonstrated that LssaCA's biological function in mediating RSV infection is at least partially, if not completely, independent of its enzymatic activity. We have added these new resulted into the revised manuscript (Lines 220-227). We have also added a comprehensive discussion comparing the aphid CA mechanism described by Guo et al. (2023 doi.org/10.1073/pnas.2222040120) with our findings in the revised manuscript (Lines 350-371).

      (3) We have repeated majority of callose deposition experiments, providing clearer images (Figures 5-6). In addition to aniline blue staining, we quantified callose concentrations using a plant callose ELISA kit to provide more precise measurements (Figure 5A, I, 6A, C and S8A). We utilized RT-qPCR to measure callose synthase expression in both feeding and non-feeding areas, confirming that callose synthesis was induced specifically in feeding regions, leading to localized callose deposition (Figures 5D-G and S8B-E). For sieve plate visualization, we examined longitudinal sections, which revealed callose deposition in sieve plates during SBPH feeding and RSV infection (Figure S7).

      (4) We generated OsTLP mutant rice seedlings (ostlp) and use this mutant to directly demonstrate that LssaCA mediates callose degradation in planta through enhancement of OsTLP enzymatic activity (Lines 288-302 and Figure 6).

      (5) We produced LssaCA recombinant proteins in sf9 cells to ensure full enzymatic activity and constructed a comprehensive CA mutant protein, in which all seven residues constituting the enzymatic active center mutated (LssaCA<sup>H111D</sup>,LssaCA<sup>N139H</sup>,LssaCA<sup>H141D</sup>, LssaCA<sup>H143D</sup>, LssaCA<sup>E153H</sup>, LssaCA<sup>H166D</sup>, LssaCA<sup>T253E</sup>) (Fig. S1B). This LssaCA mutant protein demonstrated complete loss of enzymatic activity (Fig. 1C).

      Major comments:

      (1) The key problem is that how long the LssCA functioned for in rice plant. Author declared that LssCA had no effect on viral initial infection, but on infection after viral inoculation. It is unreasonable to conclude that LssCA promoted viral infection based on the data that insect inoculated plant just for 2 days, but viral titer could be increased at 14 days post-feeding. How could saliva proteins, which reached phloem 12-14 days before, induce enough TLP to degrade callose to promote virus infection? It was unbelievable.

      We appreciate your insightful comment and acknowledge that our initial description may have been unclear. We agree that salivary proteins would not present in plant tissues for two weeks post-feeding or post-injection. Our intention was to clarify that when salivary proteins enhance RSV infection, this initial enhancement leads to sustained high viral loads. We measured viral burden at 14 days post-feeding or post-injection because this is the common measurement time point when viral titers are sufficiently high for reliable detection by qRT-PCR or western blotting. We have clarified this rationale in the revised manuscript (Lines 155-157).

      To determine the actual persistence of LssaCA in plant tissues, we conducted additional experiments where insects were allowed to feed on a defined aera of rice seedlings for two days. We then monitored LssaCA protein levels at 1 and 3 days after removing the insects. Western blotting analysis revealed that LssaCA protein levels decreased post-feeding and remained detectable at 3 days post-feeding. These results are presented in Figure 2H and described in detail in Lines 184-193.

      (2) Lines 110-116 and Fig. 1, the results of viruliferous insect feeding and microinjection with purified virus could not conclude the saliva factor necessary of RSV infection, because these two tests are not in parallel and comparable. Microinjection with salivary proteins combined with purified virus is comparable with microinjection with purified virus.

      We thank the reviewer’s insightful comment. We agree that “the results of viruliferous insect feeding and microinjection with the purified virus could not conclude the saliva factor necessary of RSV infection”. However, due to the technical difficulty in collecting sufficient quantities of salivary proteins to conduct the microinjection experiment, we have removed these results from the revised manuscript.

      (3) The second problem is how many days post viruliferous insect feeding and microinjection with purified virus did author detect viral titers? in Method section, authors declared that viral titers was detected at 7-14 days post microinjection. Please demonstrate the days exactly.

      We thank the reviewer’s insightful comment. We typically measured RSV infection levels at both 7- and 14-days post-microinjection. However, since the midrib microinjection experiments have been removed from the revised manuscript, this methodology has also been removed accordingly.

      (4) The last problem is that how author made sure that the viral titers in salivary glands of insects between two experiments was equal, causing different phenotype of rice plant. If not, different viral titers in salivary glands of insects between two experiments of course caused different phenotype of rice plant.

      We thank the reviewer’s comment. When we compared the effects of LssaCA deficiency on RSV infection of rice plants, we have compared the viral titers in the insect saliva and salivary glands. The results indicated that the virus titers in both tissues have not changed by LssaCA deficiency, suggesting that the viruses inoculated into rice phloem by insects of different treatments were comparable. Please refer to the revised manuscript Figures 2D-G and Lines 161-173.

      (5) The callose deposition in phloem can be induced by insect feeding. In Fig. 5H, why was the callose deposition increased in the whole vascular bundle, but not phloem? Could the transgenic rice plant directional express protein in the phloem? In Fig. 5, why was callose deposition detected at 24 h after insect feeding? In Fig. 6A, why was callose deposition decreased in the phloem, but not all the cells of the of TLP OE plant? Also in Fig.6A and B, expression of callose synthase genes was required.

      We thank the reviewer for these insightful comments.

      (1) Figure 5. The callose deposition increased in multiple cells within the vascular bundle, including sieve tubes, parenchymatic cells, and companion cells. While callose deposition was detected in other parts of the vascular bundle, no significant differences were observed between treatments in these regions, indicating that in response to RSV infection and other treatments, altered callose deposition mainly occurred in phloem cells. Please refer to the revised 5B, 5J, 6B, and 6D.

      (2) Transgenic plant expression. The OsTLP-overexpressing transgenic rice plants express TLP proteins in various cells under the control of CaMV 35S promoter, rather than being directionally expressed in the phloem. However, since TLP proteins are secreted, they are potentially transported and concentrated in the phloem where they can degrade callose.

      (3) Figure 5. The 24-hour time point for callose deposition detection was selected based on established protocols from previous studies. According to Hao et al. (Plant Physiology 2008), callose deposition increased during the first 3 days of planthopper infestation and decreased after 4 days. Additionally, Ellinger and Voigt (Ann Bot 2014) demonstrated that callose visualization typically begins 18-24 hours after treatment, making 24 hours an optimal detection time point.

      (4) Figure 6, Phloem-specific changes. Similar to Figure 5, while callose deposition was detected in other parts of vascular bundle, significant differences between treatments were mainly observed in phloem cells, indicating that RSV infection specifically affects callose deposition in phloem tissue.

      (5) Callose synthase gene expression. We performed RT-qPCR analysis to measure the expression levels of callose synthase genes. The results indicated that OsTLP overexpression did not significantly alter the mRNA levels of these genes, regardless of RSV infection status in SBPH.

      Reviewer #2 (Public Review):

      There is increasing evidence that viruses manipulate vectors and hosts to facilitate transmission. For arthropods, saliva plays an essential role for successful feeding on a host and consequently for arthropod-borne viruses that are transmitted during arthropod feeding on new hosts. This is so because saliva constitutes the interaction interface between arthropod and host and contains many enzymes and effectors that allow feeding on a compatible host by neutralizing host defenses. Therefore, it is not surprising that viruses change saliva composition or use saliva proteins to provoke altered vector-host interactions that are favorable for virus transmission. However, detailed mechanistic analyses are scarce. Here, Zhao and coworkers study transmission of rice stripe virus (RSV) by the planthopper Laodelphax striatellus. RSV infects plants as well as the vector, accumulates in salivary glands and is injected together with saliva into a new host during vector feeding.

      The authors present evidence that a saliva-contained enzyme - carbonic anhydrase (CA) - might facilitate virus infection of rice by interfering with callose deposition, a plant defense response. In vitro pull-down experiments, yeast two hybrid assay and binding affinity assays show convincingly interaction between CA and a plant thaumatin-like protein (TLP) that degrades callose. Similar experiments show that CA and TLP interact with the RSV nuclear capsid protein NT to form a complex. Formation of the CA-TLP complex increases TLP activity by roughly 30% and integration of NT increases TLP activity further. This correlates with lower callose content in RSV-infected plants and higher virus titer. Further, silencing CA in vectors decreases virus titers in infected plants.

      (1) Interestingly, aphid CA was found to play a role in plant infection with two non-persistent non-circulative viruses, turnip mosaic virus and cucumber mosaic virus (Guo et al. 2023 doi.org/10.1073/pnas.2222040120), but the proposed mode of action is entirely different.

      We appreciate the reviewer’s insightful comment and have carefully examined the cited publication. The study by Guo et al. (2023) elucidates a distinct mechanism for aphid-mediated transmission of non-persistent, non-circulative viruses (turnip mosaic virus and cucumber mosaic virus). In their model, aphid-secreted CA-II in the plant cell apoplast leads to H<sup>+</sup> accumulation and localized acidification. This trigger enhanced vesicle trafficking as a plant defense response, inadvertently facilitating virus translocation from the endomembrane system to the apoplast.

      In contrast to these pH-dependent mechanisms, our study demonstrated that LssaCA’s biological function in mediating RSV infection is, if not completely, at least partially independent of its enzymatic activity. We performed additional experiments to reveal that OsTLP enzymatic activity is highly pH-dependent and exhibits increased enzymatic activity as pH decreases from 7.5 to 5.0 (Fig. 3H); however, the LssaCA-OsTLP interaction occurring at pH 7.4 significantly enhanced OsTLP enzymatic activity without any change in buffer pH (Fig. 3G). These results demonstrate the crucial importance of LssaCA-OsTLP protein interactions, rather than enzymatic activity alone, in mediating RSV infection.

      We have incorporated these new experimental results and added a comprehensive discussion comparing the aphid CA mechanism described by Guo et al. (2023) with our findings in the revised manuscript. Please refer to Figures 3G-H, Lines 220-227 and 350-371 for detailed information.

      (2) While this is an interesting work, there are, in my opinion, some weak points. The microinjection experiments result in much lower virus accumulation in rice than infection by vector inoculation, so their interpretation is difficult.

      We acknowledge the reviewer's concern regarding the lower virus accumulation observed in microinjection experiments compared to vector-mediated inoculation. We have removed these experiments from the revised manuscript. To address the core question raised by these experiments, we have conducted new experiments that directly demonstrate the importance of LssaCA-OsTLP protein-protein interactions in mediating RSV infection. These results demonstrate the crucial importance of LssaCA-OsTLP protein interactions, rather than enzymatic activity alone, in mediating RSV infection. Additionally, we have incorporated a comprehensive discussion examining carbonic anhydrase activity, pH homeostasis, and viral infection. Please refer to the detailed experimental results and discussion in the sections mentioned in our previous response (Figures 3G-H, Lines 220-227 and 350-371).

      (3) Also, the effect of injected recombinant CA protein might fade over time because of degradation or dilution.

      We appreciate the reviewer’s insightful comment. This is indeed a valid concern that could affect the interpretation of microinjection results. To address the temporal dynamics of CA protein presence in planta, we conducted time-course experiments to monitor the retention of naturally SBPH-secreted CA proteins in rice plants. Our analysis at 1- and 3- days post-feeding (dpf) revealed that CA protein levels decreased progressively following SBPH feeding, but could also been detected at 3dpf (Fig. 2H). Please refer to Figures 2H and lines 184-193 for detailed information.

      (4) The authors claim that enzymatic activity of CA is not required for its proviral activity. However, this is difficult to assess because all CA mutants used for the corresponding experiments possess residual activity.

      We appreciate the reviewer’s insightful comment. We constructed a comprehensive CA mutant protein in which all seven residues constituting the enzymatic active center mutated (LssaCA<sup>H111D</sup>, LssaCA<sup>N139H</sup>, LssaCA<sup>H141D</sup>, LssaCA<sup>H143D</sup>, LssaCA<sup>E153H</sup>, LssaCA<sup>H166D</sup>, LssaCA<sup>T253E</sup>) (Fig. S1B). This LssaCA mutant protein demonstrated complete loss of enzymatic activity (Fig. 1C). However, since we have removed the recombinant CA protein microinjection experiments from the revised manuscript, we lack sufficient direct evidence to definitively demonstrate that CA enzymatic activity is dispensable for its proviral function. To address the core question raised by these experiments, we have conducted new experiments that provide direct evidence for the importance of LssaCA-OsTLP protein-protein interactions in mediating RSV infection. Additionally, we have incorporated a comprehensive discussion examining carbonic anhydrase activity, pH homeostasis, and viral infection. Please refer to the detailed experimental results and discussion in the sections mentioned in our previous response (Figures 3G-H, Lines 220-227 and 350-371).

      (5) It remains also unclear whether viral infection deregulates CA expression in planthoppers and TLP expression in plants. However, increased CA and TLP levels could alone contribute to reduced callose deposition.

      We have compared LssaCA mRNA levels in RSV-free and RSV-infected L.striatellus salivary glands, which indicated that RSV infection does not significantly affect LssaCA expression (Figure 1J). By using RSV-free and RSV-infected L.striatellus to feed on rice seedlings, we clarified that RSV infection does not affect TLP expression in plants (Figure 5H).

      Reviewer #1: (Recommendations For The Authors):

      Other comments:

      (1) Most data proving viral infection and LssaCA expression were derived from qPCR assays. Western blot data are strongly required to prove the change at the protein level.

      We agree that western blot data are required to prove the change at the protein level. In the revised manuscript, we have added western-blotting results (Figures 1F, 1I, 2C, 2J, and S6).

      (2) Line 145, data that LssaCA was significantly downregulated should be shown.

      Thank you and the data has been added to the revised manuscript. Please refer to Line 165 and Figure 2D.

      (3) Lines 159-161, how did authors assure that the dose of recombinant LssCA was closed to the release level of insect feeding, but not was excessive? How did author exclude the possibility of upregulated RSV titer caused by excessive recombinant LssCA?

      We appreciate this important concern regarding dosage controls. While microinjection of recombinant proteins typically yields viral infection levels significantly lower than those achieved through natural insect feeding, higher protein concentrations are often required to achieve high viral infection levels. In this experiment, we compared RSV infection levels following microinjection of BSA+RSV versus LssaCA+RSV, with the expectation that any observed upregulation in RSV titer would be specifically attributable to recombinant LssaCA rather than excessive protein dosing. However, given the low RSV infection levels observed with viral microinjection, we have removed their corresponding results from the revised manuscript.

      (4) Lines 124-125, recombinantly expressed LssaCA protein should be underlined, but not the LssaCA protein itself.

      We have clearly distinguished recombinantly expressed LssaCA from endogenous LssaCA protein throughout the manuscript, ensuring that all references to recombinant proteins are properly labeled as such.

      (5) LssaCA expression in salivary glands of viruliferous and nonviruliferous insects is required. LssaCA accumulation in rice plant exposed to viruliferous and nonviruliferous insects is also required.

      We have measured LssaCA mRNA levels in salivary glands of viruliferous and nonviruliferous insects (Figure 1J), and protein levels in rice plant exposed to viruliferous and nonviruliferous insects (Figure 1I).

      (6) Fig. 4G, the enzymatic activities of OsTLP were too low compared with that in Fig. 4E and Fig. 7E. Why did the enzymatic activities of the same protein show so obvious difference?

      We apologize for the error in Fig. 4G. The original data presented relative fold changes between OsTLP+BSA and OsTLP+LssaCA treatment, with OsTLP+BSA normalized to 1.0 and OsTLP+LssaCA values expressed as fold changes relative to this baseline. However, the Y-axis was incorrectly labeled as “β-1,3-glucanase (units mg<sup>-1</sup>)”, which suggested absolute enzymatic activity values. We have now corrected the figure (revised Figure 3G) to display the actual absolute enzymatic activity values with the appropriate Y-axis label “β-1,3-glucanase (units mg<sup>-1</sup>)”.

      (7) Fig. 7E, was the LssaCA + NP and LssaCA + GST quantified?

      Yes, all proteins were quantified, and enzymatic activity values were calculated and expressed as units per milligram of proteins (units mg<sup>-1</sup>).

      Minor comments:

      (1) The keywords: In fact, the LssaCA functioned during initial viral infection in plant, but not viral horizontal transmission.

      We appreciate the reviewer’s insightful comment. We have revised the manuscript title to “Rice stripe virus utilizes an Laodelphax striatellus salivary carbonic anhydrase to facilitate plant infection by direct molecular interaction” and changed the keyword from “viral horizontal transmission” to “viral infection of plant”.

      (2) Fig. 2A, how about testes? Was this data derived from female insects? Fig. 2C, is the saliva collected from nonviruliferous insects? Fig. 2E, what is the control?

      We appreciate the reviewer’s insightful comments.

      (1) Fig. 2A: The data present mean and SD calculated from three independent experiments, with 5 tissue samples per experiment. Since 3<sup>rd</sup> instar nymphs were used for feeding experiments in this study, we also used 3<sup>rd</sup> instar RSV-free nymphs to measure gene expression in guts, salivary glands and fat bodies. R-body represents the remaining body after removing these tissues. Female insects were used to measure gene expression in ovaries, and gene expression in testes was also added. We have added this necessary information to the revised manuscript (please refer to new Figure 1F and Lines 402-403).

      (2) Fig. 2C: Yes, saliva was collected from nonviruliferous insects.

      (3) Fig. 2E: The control consisted of 100 mM PBS, as described in the experimental section (Lines 643-644): “A blank control consisted of 2 mL of 100 mM PBS (pH 7.0) mixed with 1 mL of 3 mM p-NPA.” In the revised manuscript, we recombinantly expressed LssaCA and its mutant proteins in both sf9 cells and E.coli. Therefore, we have used the mutant proteins as controls to demonstrate specific enzymatic activity. Please refer to Figure 1C, Lines 115-122 and 621-635 for detailed information.

      (3) Some figure labeling appeared unprofessional. For example, "a-RSV", "loading" in Fig. 1, "W-saliva", "G-saliva" in Fig. 2, and so on, the related explanations were absent.

      We appreciate the reviewer’s insightful comments. We have thoroughly reviewed all figures to ensure professional labels. Specifically, we have:

      (1) Used proper protein names to label western blots and clearly explained the antibodies used for protein detection.

      (2) Provided comprehensive explanations for all abbreviations used in figures within the corresponding figure legends.

      (3) Ensured consistent and clear labeling throughout all figures.

      Please refer to the revised Figures 1-3 for these corrections.

      (4) Lines 83-84, please cite references on callose preventing viral movement. I do not think the present references were relevant.

      We have added a more relevant reference (Yue et al., 2022, Line 82), which revealed that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at plasmodesmata.

      (5) The background of transgenic plants of OsTLP OE should be characterized. And the overexpression of OsTLP should be shown. Which generation of OsTLP OE did authors use?

      The background of transgenic plants of OsTLP OE and its generation used have been shown in the “Materials and methods” section (Line 782-786) and has been mentioned in the main text (Line 214). T<sup>2</sup> lines have been selected for further analysis (Line 789).

      (6) Fig. 5A, the blank, which derived from plants without exposure to insect, was absent.

      We appreciate the reviewer’s insightful comments. We have added the non- fed control in the revised Figure 5A-C.

      (7) Fig. 7A, the nonviruruliferous insects were required to serve as a control.

      Immunofluorescence localization of RSV and LssaCA in uninfected L. striatellus salivary glands have been added to the revised manuscript (Figure S2).

      (8) The manuscript needs English language edit.

      The manuscript has undergone comprehensive English language editing to improve clarity, grammar, and overall readability.

      Reviewer #2 (Recommendations For The Authors):

      (1) The first experiment compares vector inoculation vs microinjection of RSV in tissue. I am not sure that your claim (saliva factors are necessary for inoculation) holds, because the vector injects RSV directly into the phloem, whereas microinjection is less precise and you cannot control where exactly the virus is deposed. However, virus deposited in other tissues than the phloem might not replicate, and indeed you observe, compared to natural vector inoculation, highly reduced virus titers.

      We appreciate the reviewer’s insightful comments. We agree that the comparison between vector inoculation and microinjection involves multiple confounding factors that could affect the experimental results, including salivary components, RSV inoculation titers, and the precision of viral deposition. As the reviewer correctly points out, the differential outcomes could be attributed to these various factors rather than definitively demonstrating the necessity of salivary factors. Therefore, we have removed this comparison from the revised manuscript and instead focused on elucidating the specific mechanisms by which LssaCA facilitates viral infection.

      (2) Next the authors show that a carbonic anhydrase (CA) that they previously detected in saliva is functional and secreted into rice. I assume this is done with non-infected insects, but I did not find the information. Silencing the CA reduces virus titers in inoculated plants at 14 dpi, but not in infected planthoppers. At 1 dpi, there is no difference in RSV titer in plants inoculated with CA silenced planthoppers or control hoppers. To see a direct effect of CA in virus infection, purified virus is injected together with a control protein or recombinant CA into plants. At 14 dpi, there is about double as much virus in the CA-injected plants, but compared to authentic SBPH inoculation, titers are 20,000 times lower. Actually, I believe it is not very likely that the recombinant CA is active or present so long after initial injection.

      We appreciate the reviewer’s insightful comments.

      (1) Our previous study identified the CA proteins from RSV-free insects. We have added this information to the revised manuscript (Line 110).

      (2) We acknowledge the reviewer's concern regarding the lower virus accumulation observed in microinjection experiments compared to vector-mediated inoculation. We have removed these experiments from the revised manuscript and instead focused on elucidating the specific mechanisms by which LssaCA facilitates viral infection.

      (3) We didn’t intend to suggest that LssaCA proteins presented for 14 days post-injection. We measured viral titers at 14 days post-feeding or post-injection because this is the common measurement time point when viral titers are sufficiently high for reliable detection by RT-qPCR or western blotting. We have clarified this rationale in the revised manuscript (Lines 155-157). To determine the actual persistence of LssaCA in plant tissues, we monitored LssaCA protein levels at 1 and 3 dpf. Western blotting analysis revealed that LssaCA protein levels decreased post-feeding and remained detectable at 3 dpf. These results are presented in Figure 2H and described in detail in Lines 184-193.

      (3) Then the authors want to know whether CA activity is required for its proviral action and single amino acid mutants covering the putative active CA site are created. The recombinant mutant proteins have 30-70 % reduced activity, but none of them has zero activity. When microinjected together with RSV into plants, RSV replication is similar as injection with wild type CA. Since no knock-out mutant with zero activity is used, it is difficult to judge whether CA activity is unimportant for viral replication, as claim the authors.

      We appreciate the reviewer’s insightful comment. We constructed a comprehensive CA mutant protein in which all seven residues constituting the enzymatic active center mutated (LssaCA<sup>H111D</sup>, LssaCA<sup>N139H</sup>, LssaCA<sup>H141D</sup>, LssaCA<sup>H143D</sup>, LssaCA<sup>E153H</sup>, LssaCA<sup>H166D</sup>, LssaCA<sup>T253E</sup>) (Fig. S1B). This LssaCA mutant protein demonstrated complete loss of enzymatic activity (Fig. 1C). However, since we have removed the recombinant CA proteins microinjection experiments from the revised manuscript, we lack sufficient direct evidence to definitively demonstrate that CA enzymatic activity is dispensable for its proviral function. To address the core question raised by these experiments, we have conducted new experiments that provide direct evidence for the importance of LssaCA-OsTLP protein-protein interactions in mediating RSV infection. Additionally, we have incorporated a comprehensive discussion examining carbonic anhydrase activity, pH homeostasis, and viral infection. Please refer to the detailed experimental results and discussion in the sections mentioned in our previous response (Figures 3G-H, Lines 220-227 and 350-371).

      (4) Next a yeast two hybrid assay reveals interaction with a thaumatin-like rice protein (TLP). It would be nice to know whether you detected other interacting proteins as well. The interaction is confirmed by pulldown and binding affinity assay using recombinant proteins. The kD is in favor of a rather weak interaction between the two proteins.

      We have added a list of rice proteins that potentially interact with LssaCA (Table S1) and have measured interactions with additional proteins (unpublished data). Despite the relatively weak binding affinity, the functional significance of the LssaCA-OsTLP interaction in enhancing TLP enzymatic activity is substantial.

      (5) Then the glucanase activity of TLP is measured using recombinant TLP-MBP or in vivo expressed TLP. It is not clear to me which TLP is used in Fig. 4G (plant-expressed or bacteria-expressed). If it is plant-expressed TLP, why is its basic activity 10 times lower than in Fig. 4F?

      Fig. 4G is the Fig. 3G in the revised manuscript. A E. coli-expressed TLP protein has been used. We apologize for the error in our original Fig. 4G. The original data presented relative fold changes between OsTLP+BSA and OsTLP+LssaCA treatment, with OsTLP+BSA normalized to 1.0 and OsTLP+LssaCA values expressed as fold changes relative to this baseline. However, the Y-axis was incorrectly labeled as “β-1,3-glucanase (units mg<sup>-1</sup>)”, which suggested absolute enzymatic activity values. We have now corrected the figure to display the actual absolute enzymatic activity values with the appropriate Y-axis label “β-1,3-glucanase (units mg<sup>-1</sup>)”.

      (6) There is also a discrepancy in the construction of the transgenic rice plants: did you use TLP without signal peptide or full length TLP? If you used TLP without signal peptide, you should explain why, because the wild type TLP contains a signal peptide.

      We cloned the full-length OsTLP gene including the signal peptide sequence (Line 782 in the revised manuscript).

      (7) The authors find that CA increases glucanase activity of TLP. Next the authors test callose deposition by aniline blue staining. Feeding activity of RSV-infected planthoppers induces more callose deposition than does feeding by uninfected insects. In the image (Fig. 5A) I see blue stain all over the cell walls of xylem and phloem cells. Is this what the authors expect? I would have expected rather a patchy pattern of callose deposition on cell walls. Concerning sieve plates, I cannot discern any in the image; they are easier to visualize in longitudinal sections than in transversal section as presented here.

      We appreciate the reviewer’s insightful comment.

      (1) Callose deposition pattern: While callose deposition was detected in other parts of the vascular bundle, significant differences between treatments were mainly observed in phloem cells, indicating that phloem-specific callose deposition is the primary response to RSV infection and SBPH feeding (Figures 5B and 5J).

      (2) Sieve plate visualization: We have examined longitudinal sections to visualize sieve plates, which revealed callose deposition in sieve plates during SBPH feeding and RSV infection (Figure S7).

      (3) Quantitative analysis: In addition to aniline blue staining, we quantified callose concentrations using a plant callose ELISA kit to provide more precise measurements (Figure 5A, 5I and S8A).

      (4) Gene expression analysis: We utilized RT-qPCR to measure callose synthase expression in both feeding and non-feeding areas, confirming that callose synthesis was induced specifically in feeding regions, leading to localized callose deposition (Figures 5D-H).

      These experimental results collectively demonstrate that RSV infection induces enhanced callose synthesis and deposition, with this response occurring primarily in phloem cells, including sieve plates, within feeding sites and their immediate vicinity.

      (8) I do not quite understand how you quantified callose deposition (arbitrary areas?) with ImageJ. Please indicate in detail the analysis method.

      We have added more detailed information for the methods to quantify callose deposition (Lines 673-678).

      (9) More callose content is also observed by a callose ELISA assay of tissue extracts and supported by increased expression of glucanase synthase genes. Did you look whether expression of TLP is changed by feeding activity and RSV infection? Silencing CA in planthoppers increases callose deposition, which is inline with the observation that CA increases TLP activity.

      We measured OsTLP expression following feeding by RSV-free or RSV-infected SBPH and found that gene expression was not significantly affected by either insect feeding or RSV infection. These results have been added to the revised manuscript (Lines 275-277 and Figure 5H).

      (10) Next, callose is measured after feeding of RSV-infected insects on wild type or TLP-overexpressing rice. Less callose deposition (after 2 days) and more virus (after 14 days) is observed in TLP overexpressors. I am missing a control in this experiment, that is feeding of uninfected insects on wild type or TLP overexpressing rice, where I would expect intermediate callose levels.

      We appreciate the reviewer’s insightful comment and fully agree with the prediction. In the revised manuscript, we have constructed ostlp mutant plants and conducted additional experiments to further clarify how callose deposition is regulated by insect feeding, RSV infection, LssaCA levels, and OsTLP expression. Specifically: 

      (1) Both SBPH feeding and RSV infection induce callose deposition, with RSV-infected insect feeding resulting in significantly higher callose levels compared to RSV-free insect feeding (Fig. 5A-C).

      (2) LssaCA enhances OsTLP enzymatic activity, thereby promoting callose degradation (Fig. 5I-K).

      (3) OsTLP-overexpressing (OE) plants exhibit lower callose levels than wild-type (WT) plants, while ostlp mutant plants show higher callose levels than WT (Fig. 6A-B).

      (4) In ostlp knockout plants, LssaCA no longer affects callose levels, indicating that OsTLP is required for LssaCA-mediated regulation of callose (Fig. 6C-D).

      These additional data address the reviewer’s concern and support the conclusion that OsTLP plays a central role in modulating callose levels in response to RSV infection and insect feeding.

      (11) Next the authors test for interaction between virions and CA. Immunofluorescence shows that RSV and CA colocalize in salivary glands; in my opinion, there is partial and not complete colocalization (Fig. 7A).

      We agree with the reviewer’s observation. CA is primarily produced in the small lobules of the principal salivary glands, while RSV infects nearly all parts of the salivary glands. In regions where RSV and CA colocalize within the principal glands, the CA signal appears sharper than that of RSV, likely due to the relatively higher abundance of CA compared to RSV in these areas. This may explain the partial, rather than complete, colocalization observed in our original Figure 7A. In the revised manuscript, please refer to Figure 1A.

      (12) Pulldown experiments with recombinant RSV NP capsid protein and CA confirm interaction, binding affinity assays indicate rather weak interaction between CA and NP. Likewise in pull-down experiments, interaction between NP, CA and TLP is shown. Finally, in vitro activity assays show that activity of preformed TLP-CA complexes can be increased by adding NP; activity of TLP alone is not shown.

      We performed two independent experiments to confirm the influence on TLP enzymatic activity by LssaCA or by the LssaCA-RSV NP complex. In the first experiment, we compared the enhancement of TLP activity by LssaCA using TLP alone as a control (Figure 3G). In the second experiment examining the LssaCA-RSV NP complex effect on TLP activity, we used the LssaCA-TLP combination as the baseline control rather than TLP alone (Figure 4B), since we had already established the LssaCA enhancement effect in the previous experiment.

      (13) For all microscopic acquisitions, you should indicate the exact acquisition conditions, especially excitation and emission filter settings, kind of camera used and objectives. Use of inadequate filters or of a black & white camera could for example be the reason why you observe a homogeneous cell wall label in the aniline blue staining assays. Counterstaining cell walls with propidium iodide might help distinguish between cell wall and callose label.

      Thank you for your insightful suggestions. We have added the detailed information to the revised manuscript (Lines 656-659 and 673-678).

      (14) You should provide information whether CA is deregulated in infected planthoppers, as this could also modify its mode of action.\

      We have compared LssaCA mRNA levels in RSV-free and RSV-infected L.striatellus salivary glands. The results indicated that RSV infection does not significantly affect LssaCA expression (Figure 1J).

      (15) You should show purity of the proteins used for affinity binding measurements.

      We have included SDS-PAGE results of purified proteins in the revised manuscript (Figure S3).

      (16) L 39: Not all arboviruses are inoculated into the phloem.

      Thank you. We have revised this description (Lines 40, 73, 95 and 97).

      (17) L 76: Watery saliva is also injected in epidermis and mesophyll cells.

      Thank you. We have revised this description (Line 73).

      (18) L 79: What do you mean by "avirulent gene"?

      Thank you for your valuable comments. We have revised this description as “certain salivary effectors may be recognized by plant resistance proteins to induce effector-triggered immunity”. Please refer to Lines 76-77 for detail.

      (19) L 128: Please add delivery method.

      Thank you. We have added the delivery methods (Line 134).

      (20) L 195: Please explain "MST".

      Explained (Line 124). Thank you.

      (21) L 203: Please add the plant species overexpressing TLP.

      Added (Line 214). Thank you.

      (22) L 213: Callose deposition has also a role against phloem-feeding insects.

      We appreciate the reviewer’s insight comment. We have added this information to the revised manuscript (Line 252).

      (23) L 626: What is a "mutein"?

      "mutein" is an abbreviation for mutant proteins. Since the recombinant protein microinjection experiments have been removed from the revised manuscript, the term “mutein” has also been removed. For all other instances, we now use the full term “mutant proteins”.

      (24) Fig. 1E: what is "loading"? You should rather show here and elsewhere (or add to supplement) complete protein gels and Western blot membranes and not only bands of interest.

      Thank you for your valuable suggestion. Although Figure 1E has been removed from the revised manuscript, we have carefully reviewed all figures to ensure that the term “loading” has been replaced with the specific protein names where appropriate.

      (25) Fig. 2C: Please indicate which is the blot and which is the silver stained gel and add mass markers in kDa to the silver stained gel.

      Thank you for your suggestion. We have revised figure to include labeled silver-stained gels with indicated molecular weight markers (Figure 1H in the revised manuscript).

    1. Reviewer #2 (Public review):

      In this paper, Hamid et al present 40 genomes from the Faroe Islands. They use these data (a pilot study for an anticipated larger-scale sequencing effort) to discuss the population genetic diversity and history of the sample, and the Faroes population. I think this is an overall solid paper; it is overall well-polished and well-written. It is somewhat descriptive (as might be expected for an explorative pilot study), but does make good use of the data.

      The data processing and annotation follows a state-of-the-art protocol, and at least I could not find any evidence in the results that would pinpoint towards bioinformatic issues having substantially biased some of the results, and at least preliminary results lead to the identification of some candidate disease alleles, showing that small, isolated cohorts can be an efficient way to find populations with locally common, but globally rare disease alleles.

      I also enjoyed the population structure analysis in the context of ancient samples, which gives some context to the genetic ancestry of Faroese, although it would have been nice if that could have been quantified, and it is unfortunate that the sampling scheme effectively precludes within-Faroes analyses.

      I am unfortunately quite critical of the selection analysis, both on a statistical level and, more importantly, I do not believe it measures what the authors think it does.

      Major comments:

      (1) Admixture timing/genomic scaling/localization:<br /> As the authors lay out, the Faroes were likely colonized in the last 1,000-1,500 years, i.e., 40-60 generations ago. That means most genomic processes that have happened on the Faroese should have signatures that are on the order of ~1-2cM, whereas more local patterns likely indicate genetic history predating the colonization of the islands. Yet, the paper seems to be oblivious to this (to me) fascinating and somewhat unique premise. Maybe this thought is wrong, but I think the authors miss a chance here to explain why the reader should care beyond the fact that the small populations might have high-frequency risk alleles and the Faroes are intrinsically interesting, but more importantly, it also makes me think it leads to some misinterpretations in the selection analysis

      (2) ROH:<br /> Would the sampling scheme impact ROH? How would it deal with individuals with known parental coancestry? As an example of what I mean by my previous comment, 1MB is short enough in that I would expect most/many 1MB ROH-tracts to come from pedigree loops predating the colonization of the Faroes. (i.e, I am actually quite surprised that there isn't much more long ROH, which makes me wonder if that would be impacted by the sampling scheme).

      (3) Selection scan:

      We are talking about a bottlenecked population that is recently admixed (Faroese), compared to a population (GBR) putatively more closely related to one of its sources. My guess would be that selection in such a scenario would be possibly very hard to detect, and even then, selection signals might not differentiate selection in Faroese vs. GBR, but rather selection/allele frequency differences between different source populations. I think it would be good to spell out why XP-EHH/iHS measures selection at the correct time scale, and how/if these statistics are expected to behave differently in an admixed population.

      (4) Similarly, for the discussion of LCT, I am not convinced that the haplotypes depicted here are on the right scale to reflect processes happening on the Faroes. Given the admixture/population history, it at the very least should be discussed in the context of whether the 13910 allele frequency on the Faroes is at odds with what would be expected based on the admixture sources.

      (5) I am lacking information to evaluate the procedure for turning the outliers into p-values. Both iHS and XP-EHH are ratio statistics, meaning they might be heavy-tailed if one is not careful, and the central limit theorem may not apply. It would be much easier (and probably sufficient for the points being made here) to reframe this analysis in terms of empirical outliers.

      (6) Oldest individual predating gene flow: It seems impossible to make any statements based on a single individual. Why is it implausible that this person (or their parents), e.g., moved to the Faroes within their lifetime and died there?

    1. AbstractRice (Oryza sativa) is one of the most important staple food crops worldwide, and its wild relatives serve as an important gene pool in its breeding. Compared with cultivated rice species, African wild rice (Oryza longistaminata) has several advantageous traits, such as resistance to increased biomass production, clonal propagation via rhizomes, and biotic stresses. However, previous O. longistaminata genome assemblies have been hampered by gaps and incompleteness, restricting detailed investigations into their genomes. To streamline breeding endeavors and facilitate functional genomics studies, we generated a 343-Mb telomere-to-telomere (T2T) genome assembly for this species, covering all telomeres and centromeres across the 12 chromosomes. This newly assembled genome has markedly improved over previous versions. Comparative analysis revealed a high degree of synteny with previously published genomes. A large number of structural variations were identified between the O. longistaminata and O. sativa. A total of 2,466 segmentally duplicated genes were identified and enriched in cellular amino acid metabolic processes. We detected a slight expansion of some subfamilies of resistance genes and transcription factors. This newly assembled T2T genome of O. longistaminata provides a valuable resource for the exploration and exploitation of beneficial alleles present in wild relative species of cultivated rice.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf074), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 1: Francois Sabot

      The manuscript from Guang et al deals with a T2T assembly for the wild perennial African rice Oryza longistaminata. Using last up to date technologies and approaches, authors provided a high quality assembly for this wild species, rending it a valuable ressource for understanding rice evolution. While the results as assembly are of high quality, the interpretation of some biological results, in particular about the NBS-LRR, are quite weird, in my opinion, and need to be more refined. That's why I think the manuscript should be published, but after major corrections.

      in details:

      -Introduction: not sure the exceptional biomass is a good idea from longistaminata, as this plant has avery high content in silicium, rendering its biomass complex to use. - Methods: We do not have access to most of the command options and command-lines. please provide them at least as a texte file in supp data. In addition, some of the references for tools are missing. Finally, please provide the accession number of the assembled plant. - Assembly in itself: O longistaminata is a outcrossing heterozygous organism. Did you obtained the two haplotypes ? - Comparison with the previous longistaminata genome: is the inversion in middle of Chr6 specific ? or due to an error of previous assembly ? - Table 1: what do you mean "Total size of assembled genomes (bp) 331,045,917" ? What is the residual percentage of N ? - Figure 1 and others: please show the legend in other way, here we may mix it with the main text. in addition, check the legends for spelling and the size of figure (3b eg) for lisibility - Syri/MUMmer analysis: you limit as min size at 1kb ? What was the order of query vs ref ? can we have a bed file with the positions ? - SD: is there a statistical link between chromosome size and number of SD ? It could explain why the first 4 ones have more SD. In general, the data are missing stats. - GO in SD: any statistical validation ? - Genomes comparison: please provide the acc number of the genome you used for comparison. - NBS-LRR: the longistaminata genome has 215 genes for 116 to 289 for other oryza so I cannot see any contraction or expansion. in addition, the text here is weird, starting speaking of onctraction then going to expansion ??? - TF analysis; the african assemblies are quite bad I think, explaining the discrepency. For glaberrima, did you check the one from Tranchant-Dubreuil et al, 2023 ?

    1. AbstractBackground The central bearded dragon (Pogona vitticeps) is widely distributed in central eastern Australia and adapts readily to captivity. Among other attributes, it is distinctive because it undergoes sex reversal from ZZ genotypic males to phenotypic females at high incubation temperatures. Here, we report an annotated telomere to telomere phased assembly of the genome of a female ZW central bearded dragon.Results Genome assembly length is 1.75 Gbp with a scaffold N50 of 266.2 Mbp, N90 of 28.1 Mbp, 26 gaps and 42.2% GC content. Most (99.6%) of the reference assembly is scaffolded into 6 macrochromosomes and 10 microchromosomes, including the Z and W microchromosomes, corresponding to the karyotype. The genome assembly exceeds standard recommended by the Earth Biogenome Project (6CQ40): 0.003% collapsed sequence, 0.03% false expansions, 99.8% k-mer completeness, 97.9% complete single copy BUSCO genes and an average of 93.5% of transcriptome data mappable back to the genome assembly. The mitochondrial genome (16,731 bp) and the model rDNA repeat unit (length 9.5 Kbp) were assembled. Male vertebrate sex genes Amh and Amhr2 were discovered as copies in the small non-recombining region of the Z chromosome, absent from the W chromosome.This, coupled with the prior discovery of differential Z and W transcriptional isoform composition arising from pseudoautosomal sex gene Nr5a1, suggests that complex interactions between these genes, their autosomal copies and their resultant transcription factors and intermediaries, determines sex in the bearded dragon.Conclusion This high-quality assembly will serve as a resource to enable and accelerate research into the unusual reproductive attributes of this species and for comparative studies across the Agamidae and reptiles more generally.Species Taxonomy Eukaryota; Animalia; Chordata; Reptilia; Squamata; Iguania; Agamidae; Amphibolurinae; Pogona; Pogona vitticeps

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf085), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 1: Heiner Kuhl

      Patel et al. present a genome assembly of the bearded dragon Pogona vitticeps a lizard species that is widely distributed as a pet and known for its interesting sex-determination, which may switch from genetic sex-determination (ZW) to temperature dependent sex-reversal. The methods chosen to assemble the genome are very state-of-the-art including HIFI and ONT long reads, Hi-C and suitable bioinformatic tools.

      I have to admit that I have recently been reviewing a similar manuscript for Gigascience (https://www.biorxiv.org/content/10.1101/2024.09.05.611321v1), where a female ZZ P. vitticeps had been sequenced/assembled from long read data of a different nanopore technology and analyses of the ZW-chromosome was done by short read coverage analysis. One of my major comments was that this approach lacked a true assembly of the W-chromosome. Thus, I am happy to see that the assembly of the W-specific region has been achieved here and the sequencing technologies used might even improve the assembly quality over the ZZ assembly in terms of phasing, consensus accuracy etc. The two manuscripts are highly complementary and I think they should be published, if possible, in the very same issue of Gigascience. Surely both groups have invested a lot of efforts. (Reading L. 685, I just have realized that this seems to be the intention of the journal and I very much support this idea.)

      Still there are some minor points that need improvement for the current manuscript:

      Why do you leave the Z and W splitted into PAR, Z- and W-specific scaffolds and do not assemble the full-length chromosomes (L. 676)? Would the Hi-C data not support that?

      Mitochondrial assembly: from ONT only (L. 307), please do a consensus correction with illumina data, or at least show that the MT assembly has a high consensus accuracy (Q40-Q50).

      Genome annotation: show BUSCO scores for annotated proteins (do they fit to BUSCO performed on the whole genome?). If possible, compare to results of the NCBI RefSeq annotation (is it already available?). In this regard please explain the relatively low mapping rates (L. 647) of RNAseq to the annotated sequences.

      Could you provide some expression data for the Z-specific Amh and AmhR2? Is it differentially expressed in testis/ovary (after correction for copy number)?

      Table1, could you show results for the two different ONT library types (ligation vs. ultralong kit). It seems the overall yield was low (5 cells -> 100Gb), any speculation why?

      I think assembly statistics (Table2) should also contain contig N50 length as an additional value to show the high continuity of the assembly.

      L. 488: "48.36 (1 error in 146kb)", I think something is wrong here. Q48.36 would be 1 error in 68.5kb. I would suggest to re-check these values and incorporate them in Table2. The high consensus accuracy is one selling point compared to the competitor's assembly.

      L. 490: "Individual haplotypes were 85.5% complete…". Explain why you are confident that the haplotypes are more complete than the Merqury results suggest (just one sentence).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to the reviewers

      We would like to thank the reviewers for their overall positive evaluations of our manuscript and for their invaluable suggestions that will allow us to reinforce our conclusions. We acknowledge that there is some work to be done and are ready to address most of the reviewers' comments as detailed in our replies below.

      Reviewer #1

      1. The findings that mmDicer is proviral in bat cells relies exclusively on the observation that the depletion of Dicer in M. myotis cells leads to a reduced accumulation of SFV and SINV at the RNA and protein levels (figure 2). Heterologous expression of mmDicer in HEK 293T NoDice doesn't lead to an increase permissivity to viral infections (figure 1) and the accumulation of Dicer foci is only observed in M. myotis cells but not when mmDicer is expressed in HEK 293 NoDice cells (figure 6). Given that the key finding of this manuscript relies on these knockdown experiments, the authors should ensure that the impact on viral infections is due to the specific silencing of mmDicer and not caused by off-target effects of their siRNA-mediated approach. The authors designed a siRNA pool to efficiently knock-down mmDicer. They should validate their findings by using individual Dicer siRNA and verify whether the decrease SFV/SINV accumulation is observed with at least two individual siRNAs targeting Dicer. It would also strengthen their findings if they could show a complementation experiment in which a mmDicer (designed to not be affected by the siRNA-mediated silencing) is introduced exogenously in Dicer-depleted cells and show that it rescues the observed decrease in viral accumulation to demonstrate that the proviral role is strictly dependent on mmDicer. Alternatively, the authors could consider a CRISPR/Cas9 genome editing approach to knockout Dicer in bat cells to test whether this proviral effect is confirmed.

      Reply: We agree with this reviewer that it is important to provide evidence for the specificity of the knock-down and to rule out any off-target effect of the siRNAs. This is the reason for using the siTool technology, which relies on the use of a pool of 30 siRNAs that are transfected at a final concentration of 3 nM. This means that each individual siRNA in the pool is at a concentration of 0.1 nM, so the possibility of off-target effect is largely avoided and the efficiency of silencing is boosted by the cooperative activity of many siRNAs (see https://www.sitoolsbiotech.com/documents/sipools/siPOOLBrochure2019_Web.pdf for more details). This being said, we agree that it would be better to confirm that the observed effect can be recapitulated using a single siRNA and that a complementation experiment would definitely strengthen our findings. For this reason, we will test two individual siRNAs targeting the 3' UTR of mmDicer, which will allow us to complement the knock-down by transfecting a cDNA construct. Regarding the CRISPR/Cas9 genome editing approach, we will give it a try, but Dicer is notoriously difficult to knock-out, so we cannot be sure that this will be successful.

      Figure 2: the authors knock-downed Dicer in M. myotis nasal epithelial cells and carried out infections with SINV-GFP and SFV. The authors conclude that Dicer is proviral as its depletion causes a decrease in SINV-GFP and SFV accumulation. While this conclusion is supported by the decrease levels of viral RNA and protein levels upon Dicer depletion (figure 2D, 2E, 2G), the effect on the viral titers is non-significant for both viruses (Figure 2C and 2F) based on the statistical analysis. This reviewer appreciates that the titers are lower upon Dicer knockdown, which support the authors' findings at the viral RNA and protein levels. However, as these results are central to the core message of the manuscript, the authors should provide evidence that this proviral effect observed is statistically significant on viral titers by perhaps providing additional repeats and/or comment on this observation.

      Reply: Indeed, we agree that even if the effect of Dicer knockdown results in a lowering of the viral titer, it would be better to have a statistically significant effect. We will repeat the experiment to increase the number of replicates and the power of the statistical test.

      a) *In figure 4 and 5, the authors nicely show that mmDicer accumulate to cytoplasmic foci in M. myotis cells upon infection with SFV and SINV and these foci co-localise with double-stranded RNA. The authors used a commercial polyclonal antibody against Dicer (A301-937A, Bethyl according to the Material and Methods section) which is specific to human Dicer to carry out their immunostaining in bat cells. The authors should provide evidence that this antibody indeed recognises/crossreacts with mmDicer as well and that the staining shown is indeed specific to mmDicer localisation especially because the heterologous expression of HA-tagged version of mmDicer in HEK 293T NoDice cells did not show this accumulation of cytoplasmic foci. The authors should verify the specificity of their mmDicer immunostaining by performing the same labelling in bat cells in which Dicer is knock-downed (or knock out) by individual and validated siRNA against mmDicer. The decrease signal of bat Dicer staining using the anti-human Dicer antibody would indicate specificity. *

      Reply: the reviewer is correct in its assertion and it is important to provide evidence that the protein that is detected by the anti-human Dicer antibody in bat cells is indeed Dicer. We will perform the suggested experiment and do an immunostaining using the Dicer antibody in bat cells upon Dicer knockdown.

      b) Another complementary approach would be to test their Dicer staining between HEK NoDice cells (no Dicer present) versus NoDice complemented with either mmDicer or human Dicer constructs, which would then indicate how much the anti-human Dicer antibody recognises bat Dicer.

      Reply: this complementary approach should yield even cleaner result than the previous one as there will be no expression of Dicer at all in the HEK NoDice cells. Therefore, we should be able to measure the increase of signal in the IF upon expression of either human or bat Dicer. We will perform this experiment together with the other one suggested above. In addition, since the constructs are tagged, we might be able to do a double-staining and verify the colocalization of the two signals.

      c) In addition, the authors should overexpress HA-tagged mmDicer in M. myotis nasal epithelial cells and test whether HA-mmDicer accumulate into foci upon infection using an anti-HA immunostaining. This would confirm that these accumulation into foci indeed is specific to mmDicer but also would reinforce the authors' findings that host factors within bat cells are important for this formation into foci since mmDicer expression in HEK 293T No Dice cells didn't show this phenotype upon infection (figure 6). OPTIONAL: it would be interesting to overexpress HA-tagged human Dicer into M. myotis nasal epithelial cells as well to then test using anti-HA staining whether human Dicer in presence of host factors from the bat can accumulate into cytoplasmic foci or not upon viral infection.

      Reply: we could perform the suggested experiment, but we might face the issue that transfected cells might mount an immune response, which makes them resistant to the infection. We have observed indeed that we needed to use a higher MOI to infect cells after they have been transfected. Since we will have controls in place, this might not be too much of a problem, but we will have to keep it in mind. Alternatively, we will perform a lentiviral transduction of the cells.

      This reviewer appreciates that this might be judged as beyond the scope of this study since it is focused on the role of Dicer in M. myotis. However, the observation that mmDicer accumulates into foci containing as well viral dsRNA is very interesting and it would significantly improve the manuscript if the authors would provide further indications that this phenotype is related to the lack of antiviral activity of mmDicer compared to what has been previously shown in other bat species (P.alecto and T. brasiliensis). In other words, is this accumulation of mmDicer into foci responsible for its different impact on virus infection? It would therefore be insightful to compare Dicer localisation upon infection in M. myotis versus P.alecto and/or T. brasiliensis bat cells in which Dicer was shown to be antiviral and test whether this accumulation in foci is only observed in bat cells in which Dicer is proviral (M. myotis) but not in the other bat cells in which Dicer is antiviral (P.alecto and/or T. brasiliensis).

      Reply: this is something that we have been wondering about and we have therefore started to look for the cell lines that have been described in the two published studies. While it proved difficult to find the PaKi cells from P. alecto bats, which is not commercially available, we have obtained the Tblu cells from T. brasiliensis and will look at Dicer localization in this model. However, we have to pay attention to the fact that the published data reported a contribution of RNAi in this cell line upon SARS-CoV-2 infection and that we will be using SINV. In addition, we do not know yet whether the anti-Dicer antibody will cross react with the T. brasiliensis Dicer protein.

      OPTIONAL: Given the difference between the provial role of mmDicer compared to the antiviral activity of Dicer in cells from P.alecto and T. brasiliensis bat cells, it would strengthen the authors' findings. if additional experiments would be conducted in parallel using M. myotis, P.alecto and/or T. brasiliensis cells. Notably knocking down Dicer in both M. myotis, P.alecto and/or T. brasiliensis cells, compare the impact on viral infections with SINV, SFV, VSV and correlate any observed difference in phenotype with putative variations in the formation of foci.

      Reply: it would indeed be really nice to be able to do the Dicer knockdown experiment in several bat cell lines and to correlate the phenotype with the formation of foci. This experiment might take a long time and we are not sure to be able to realize it in a reasonable amount of time. It could however be the subject of another manuscript further down the line.

      *Minor comments *

        • Figure 2I: The authors performed a knockdown of Dicer in M. myotis nasal epithelial cells and monitor the impact on VSV-GFP infection. They found that knocking down Dicer leads to an increase in GFP protein and RNA levels suggesting an antiviral role of Dicer while, in contrast, no effect is observed on the production of infectious particles (figure 2H). On the western blot there is only a slight/weak increase of GFP protein level observed upon Dicer knockdown. Yet, the quantification of the band intensity shows a 4-fold increase relative to tubulin and compared to cells treated with siRNA control. This 4-fold increase seems exaggerated given the low increase in the intensity shown on the blot. This discrepancy is most likely due to the lower intensity of tubulin in the western blot analysis of siDicer-treated cells compared to siNeg-treated cells. The authors should reload their western blot with equal amount of protein extract loaded to ensure that the results shown on the western blot are in line with the quantification.*

      Reply: the signal quantification for this experiment was done across several replicates, but we agree that the observed effect seems exaggerated when compared to the signal seen on the blot. We observed important variations between replicates, but we will make sure that this was not due to a problem in the analysis and reload the western blot if needed.

        • Figure 3D: the authors mention that in both HEK293T cells and M. myotis nasal epithelial cells infected with SINV-GFP, there was an enrichment of 22-nucleotides (nt) paired positive and negative sense reads that overlapped with a 2-nt overhang, typical of Dicer cleavage. In Figure 3D, the data shows indeed that the duplexes are enriched for reads of 22-nt but it is unclear how this analysis reveals a 3' 2nt overhang within these duplexes. Can the authors clarify this point and if the data provided in that particular analysis indeed doesn't allow to detect these overhangs, please rephrase accordingly or provide additional analysis to support that point. *

      Reply: In Figure 3D, the graphs show the probability of pairing of all 22 nucleotides sequence mapping either to the plus or the minus strand of the viral RNA. Thus, for each sequence mapping to the plus strand, the number of sequences mapping to the minus strand with a full or partial overall is counted. A corresponding probability of pairing and Z score is calculated for each number of overlapping nucleotides (for more information on the calculation see Antoniewski (2014) Computing siRNA and piRNA Overlap Signatures. In Animal Endo-SiRNAs: Methods and Protocols, Werner A (ed) pp 135-146. New York, NY: Springer). The Z score peaks for an overlap of 20 nt in both HEK293T and M. myotis nasal epithelial cells infected with SINV. This means that there is a higher probability of two 22 nt sequence to pair along 20 nt, and thus that there are two unpaired nucleotides at the extremities of the duplexes. This higher Z score at 20 nt is not seen in VSV-infected cells. We will rephrase the text in the manuscript to make this point clearer.

        • Typo: page 5, line 152: the authors mention that Dicer knock down had an antiviral effect against VSV-GFP infection at the RNA and protein levels. However, the data in Figure 2I and 2J show an increase in both GFP RNA and proteins levels upon knockdown of Dicer. Although this data suggests that Dicer is antiviral against VSV, the knockdown of Dicer itself is not antiviral but rather proviral/increase virus accumulation. Please rephrase this sentence to avoid confusions. *

      Reply: thank you for spotting this typo. We have corrected it accordingly.

      Reviewer #2.

      1. Figure 1 relies on transduction of cells and antibiotic selection to obtain mmDicer-expressing cells. Although we would expect that every cell expresses the construct of interest, this is not always the case, depending on the cell type and toxicity of the construct. As the constructs are tagged, I suggest that the authors use flow cytometry to measure expression levels in a single cell manner. While doing so, they can infect with SINV-GFP and correlate GFP signal with construct expression in each cell, providing a more accurate measurement of mmDicer effect on viral infection. Alternatively, the authors could use live microscopy, as done in Fig 2, to obtain similar data.

      Reply: the reviewer is correct that we did not go for monoclonal selection of our mmDicer-expressing cells and therefore that there could be some cell-to-cell variation in expression. However, we have done immunostaining of Dicer in these cells and did not see drastic differences in expression, so we do not think this should impact SINV-GFP expression in a major way. We will provide these images and a quantification of the Dicer signal as a supplementary figure.

      For Fig 1C and 1F, it would be great to have growth curves with two different MOIs, instead of a single time point, to ensure that a putative antiviral effect is not missed. Same goes for Fig 2C, especially when the authors document quite a big defect on GFP expression (a proxy for SINV infection) when Dicer is knocked down (Fig 2B). There may be a bigger difference in titers at earlier time points. This matter runs throughout the manuscript. I do not suggest that the authors should provide growth curves every time viral titers are measured, but it is still worth doing it for the 2-3 key experiments of the paper.

      Reply: we will perform growth curves of virus infection for the key experiments in the manuscript as suggested. We already have done kinetic measurements of GFP accumulation at different MOIs, which we can provide as supplementary data, but we agree with the reviewer that GFP signal should not been used as the only proxy for the infection and that measuring viral titers by plaque assay is important as well.

      Figure 4, could the authors provide a proof that the Dicer antibody is specific in the bat context? This can be done by staining Dicer in bat cells knocked down for Dicer and infected with SINV. The apparition of foci upon anti-Dicer antibody staining should be abbrogated or severely impaired by the knock-down.

      Reply: see our reply to point 3 of Reviewer 1.

      Fig 5C, please provide a quantification of the images.

      Reply: these microscopy images have not been quantified because they have been obtained with an epifluorescence microscope. Indeed, the Pearson correlation coefficient can only be obtained using a confocal microscope. In fact, we have tried to use a confocal microscope to take pictures of these FISH images, but the SINV gRNA signal was too weak or the dots too small to be properly visualized. Furthermore, there is a very large difference in signal intensity between HEK293T and M. myotis cells, making it difficult to define a signal threshold compatible for both cell lines.

      l.263, when comparing this work with the recent publications on bat antiviral RNAi, the authors could also provide the percentage identity between Dicers from different species.

      Reply: this is a valid point, we have looked at the percentage identity between Dicer proteins from different bat species but we did not include this in our manuscript. We will provide this analysis in the revised version together with a comparison of Dicer from other mammals as a reference point.

      Reviewer 3.

        • Without direct comparison to the other bat species Dicers (especially where RNAi activity has been suggested as antiviral in previous publications) there is little in this paper that can be concluded about global aspects of bat dicer/RNAi.*

      Reply: see our reply to point 4 of Reviewer 1. We are planning to look at least in Tblu cells whether there is also a relocalization of Dicer upon SINV infection. So far, we could not obtain PaKi cells, but we are still looking and should we get those, we will test them as well.

      *Minor *

      What rules out that the mmDicer re-localization observed in the immortalized mm nasal epithelial is due simply to greater expression levels over the NoDice cells heterologously expressing mmDicer?

      Reply: we will provide an immunoblot to show the level of Dicer expression between HEK NoDice + mmDicer and M. myotis nasal epithelial cells as suggested below to address this point.

      • Although partially addressed in the text stating the generally long half-life of miRNAs, it seems the simplest explanation for this observation is due to some activity of a shorter-lived miRNA is required for optimal alphavirus replication is the mm nasal epithelial cells. *

      Reply: this is an interesting hypothesis that would prove difficult to test in a reasonable amount of time. We thank the reviewer and will mention this possibility in the discussion of the revised manuscript.

      *Suggestions that could enhance the magnitude of conclusions that can be drawn from this work. *

      *Major *

        • Making NoDice cells expressing other bat species Dicers, including those with claims that RNAi is antiviral, would address how universal these current observations are to bats/cell lines.*

      Reply: this could be an alternative to the use of P. alecto or T. brasiliensis cell lines that we have mentioned above. We will try to clone Dicer from the Tblu cells that we have in the laboratory. Since we do not have PaKi cells at the moment, it will be more complicated for the Pteropus Dicer, but one possibility could be to synthesize it. However, Dicer is a big gene so it could prove tricky.

        • Including an immunoblot showing that mm cells express mmDicer no more abundantly than the heterologous NoDice cells would allow ruling out the trivial explanation that foci occur at a certain critical mass of Dicer*

      Reply: yes, we will provide this piece of data as stated in reply to point 2.

      *Minor *

        • I believe line 151 " In contrast, Dicer * *knock down had an ANTIVIRAL effect against VSV-GFP infection at the RNA and protein *

      *levels, but no difference in titers was found (Fig. 2H-J)." should be " In contrast, Dicer *

      *knock down had an PROVIRAL effect against VSV-GFP infection at the RNA and protein *

      *levels, but no difference in titers was found (Fig. 2H-J)." *

      Reply: thank you for spotting this error, which was also mentioned by Reviewer 1, we have corrected this in the text.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02946

      Corresponding author(s): Margaret, Frame

      Roza, Masalmeh

      [Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.

      If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We thank the reviewers for recognizing the significance of our work and for their constructive feedback and suggestions, most of which we have implemented in our revised manuscript.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      Reviewer #1

      Evidence, reproducibility and clarity

      Review of Masalmeh et al. Title: "FAK modulates glioblastoma stem cell energetics..."

      Previous studies have implicated FAK and the related tyrosine kinase PYK2 in glioblastoma growth, cell migration, and invasion. Herein, using a murine stem cell model of glioblastoma, the authors used CRISPR to inactivate FAK, FAK-null cells selected and cloned, and lentiviral re-expression of murine FAK in the FAK-null cells (termed FAK Rx) was accomplished. FAK-/- cells were shown to possess epithelial characteristics whereas FAK Rx cells expressed mesenchymal markers and increased cell migration/invasion in vitro. Comparisons between FAK-/- and FAK Rx cells showed that FAK re-expressed increased mitochondrial respiration and amino acid uptake. This was associated with FAK Rx cells exhibiting filamentous mitochondrial morphology (potentially an OXPHOS phenotype) and decreased levels of MTFR1L S235 phosphorylation (implicated in mito morphology fragmentation). Mito and epithelial cell morphology of FAK-/- cells was reversed by treatment with Rho-kinase inhibitors that also increased mito metabolism and cell viability. Last, FAK-dependent glioblastoma tumor growth was shown by comparisons of FAK-/- and FAK Rx implantation studies.

      The studies by Masalmeh provide interesting findings associating FAK expression with changes in mitochondrial morphology, energy metabolism, and glutamate uptake. According to the authors model, FAK expression is supporting a glioblastoma stem cell like phenotype in vitro and tumor growth in vivo. What remains unclear is the mechanistic connection to cell changes and whether or not these are be dependent on intrinsic FAK activity or as the Frame group has previously published, potentially FAK nuclear localization. The associations with MTFR1L phosphorylation and effects by Rho kinase inhibition are likely indirect and remind this reviewer of long-ago studies with FAK-null fibroblasts that exhibit epithelial characteristics, still express PYK2, exhibited elevated RhoA GTPase activity. Some of these phenotypes were linked to changes in RhoGEF and RhoGAP signaling with FAK and/or Pyk2. At a minimum, it would be informative to know whether Pyk2 signaling is relevant for observed phenotypes and whether the authors can further support their associations with FAK-targeted or FAK-Pyk2-targeted inhibitors or PROTACs.

      Some questions that would enhance potential impact. 1. Cell generation. Please describe the analysis of FAK-/- clones in more detail. The "low viability" phenotype needs further explanation with regard to clonal expansion and growth characteristics?

      Response:

      • We included a better description and a supplementary figure in our revised manuscript to indicate that we have examined several FAK -/- clones and confirmed that our observations were not due to clonal variation; multiple clones displayed similar morphological changes (Figure S1D). We also show that the elongated mesenchymal-like morphology was observed at 48 h after nucleofecting the cells with the FAK‑expressing vector, before beginning G418 selection to enrich for cells expressing FAK (Figure S1C). We also included experiments to acutely modulate FAK signalling (detaching and seeding cells on fibronectin) (Figure S2D, E, F and Figure S3) to exclude the possibility that the profound effects are due to protocols/selection we used for generating FAK-deleted cells.
      • Regarding the term "low viability", we have clarified in the text that there is no significant difference in cell number (Figure S1A) or 'cell viability' when it is assessed by trypan blue exclusion (a non-mitochondria-dependent read-out) (Figure S1B) between FAK-expressing FAK Rx and FAK-/- cells cultured for three days under normal conditions. Therefore, we agree the term 'cell viability' in this context could be confusing and have replace "cell viability" with "metabolic activity as measured by Alamar Blue." in Figure 1D and Figure 5B, and the corresponding text in the original manuscript. This wording more accurately reflects the data.

      Figure 1F: need further support of MET change upon FAK KO and EMT reversion.

      Response: We have added a heatmap (Figure S1E) illustrating the changes in protein expression of core-enriched EMT/MET genes products (by proteomics) after FAK gene deletion (EMT genes as defined in Howe et al., 2018) ; this strengthens the conclusion that the MET reversion morphological phenotype is accompanied by recognised MET protein changes.

      Fig. 2: Need further support if FAK effects impact glycolysis or oxidative phosphorylation in particular as implicated by the stem cell model.

      Response: We show that FAK impacts both glycolysis (Figure 2A, 2E, and 2F) and mitochondrial oxidative phosphorylation on the basis of the oxygen consumption rate (OCR) (Figure 2B, and 2D), showing both are contributing pathways to FAK-dependent energy production. We have clarified this in the text.

      Is there a combinatorial potential between FAKi and chemotherapies used for glioblastoma. Need to build upon past studies.

      Response: Yes, previous studies suggest that inhibiting FAK can sensitize GBM cells to chemotherapy (Golubovskaya et al., 2012; Ortiz-Rivera et al., 2023). We have included a paragraph in the discussion section to make sure this is clearer. Although it is not the subject of this study, we appreciate it is useful context.

      The notation of changes in glucose transporter expression should be followed up with regard to the potential that FAK-expressing cells may have different uptake of carbon sources and other amino acids. Altered uptake could be one potential explanation for increase glycolysis and glutamine flux.

      Response: We agree with the reviewer that glucose uptake could be contributing and we include data that 2 glucose transporters are indeed FAK-regulated namely Glucose transporter 1 (GLUT1, encoded by Slc2a1 gene) and Glucose transporter 3 (GLUT 3, encoded by Slc2a3 gene) (shown in Figure S2B and C).

      It would be helpful to support the confocal microscopy of mitos with EM.

      Response:

      We are concerned (and in our experience) that Electron microscopy (EM) may introduce artefacts during sample preparation. In contrast, immunofluorescence sample preparation is less susceptible to artefacts. The SORA system we used is not a conventional point-scanning confocal microscope, but is a super-resolution module based on a spinning disk confocal platform (CSU-W1; Yokogawa) using optical pixel reassignment with confocal detection. This method enhances resolution in all dimensions with resolution in our samples measured at 120nm. This has been instructive in defining a new level of changes in mitochondrial morphology upon FAK gene deletion.

      Lack of FAK expression with increased MTFR1 phosphorylation is difficult to interpret.

      Response: We do not directly show that this phosphorylation event is causal in our experiments; however, we think it important to document this change since it has been published that phosphorylation of MTFR1 has been causally linked to the mitochondrial morphology we observed in other systems (Tilokani et al., 2022).

      Need to have better support between loss of FAK and the increase in Rho signaling. Use of Rho kinase inhibitors is very limited and the context to FAK (and or Pyk2) remains unclear. Past studies have linked integrin adhesion to ECM as a linkage between FAK activation and the transient inhibition of RhoA GTP binding. Is integrin signaling and FAK involved in the cell and metabolism phenotypes in this new model?

      Response: To better support the antagonistic effect of FAK on Rho-kinase (ROCK) signalling, we included a new experiment in which the integrin-FAK signalling pathway has been disrupted by treating FAK WT cells with an agent that causes detachment from the substratum, Accutase, and growing the cells in suspension in laminin-free medium. We present ROCK activity data, as judged by phosphorylated MLC2 at serine 19 (pMLC2 S19), relating this to induced FAK phosphorylation at Y397 (a surrogate for FAK activity) that is supressed after integrin disengagement. These measurements have been compared with conditions whereby integrin-FAK signalling is activated by growing the cells on laminin coated surfaces. We observed a time-dependent decrease in pFAK(Y397) levels (normalised to total FAK) in suspended cells compared to those spread on laminin, while pMLC2(S19) levels increased in a reciprocal manner over time in detached cells relative to spread cells (S4A and B). There is therefore an inverse relationship between integrin-FAK signalling and ROCK-MLC2 activity, consistent with findings from FAK gene deletion experiments. In the former case, we do not rely on gene deletion cell clones.

      Significance

      The studies by Masalmeh provide interesting findings associating FAK expression with changes in mitochondrial morphology, energy metabolism, and glutamate uptake. According to the authors model, FAK expression is supporting a glioblastoma stem cell like phenotype in vitro and tumor growth in vivo. What remains unclear is the mechanistic connection to cell changes and whether or not these are be dependent on intrinsic FAK activity or as the Frame group has previously published, potentially FAK nuclear localization. The associations with MTFR1L phosphorylation and effects by Rho kinase inhibition are likely indirect and remind this reviewer of long-ago studies with FAK-null fibroblasts that exhibit epithelial characteristics, still express PYK2, exhibited elevated RhoA GTPase activity. Some of these phenotypes were linked to changes in RhoGEF and RhoGAP signaling with FAK and/or Pyk2. At a minimum, it would be informative to know whether Pyk2 signaling is relevant for observed phenotypes and whether the authors can further support their associations with FAK-targeted or FAK-Pyk2-targeted inhibitors or PROTACs.

      __Response: __

      Deleting the gene encoding FAK in mouse embryonic fibroblasts leads to elevated Pyk2 expression (Sieg, 2000). However, in the GBM stem cell model we used here, Pyk2 was not expressed (determined by both transcriptomics and proteomics). We have included Figure S1E to show that PYK2 expression was undetectable in FAK -/- and FAK Rx cells at the RNA level (Figure S1F). We conclude that there is no compensatory increase in Pyk2 upon FAK loss in these cells. In the transformed neural stem cell model of GBM, we do not consistently or robustly detect nuclear FAK.

      Review #2

      Masalmeh and colleagues employ a neural stem/progenitor cell-based glioma model (NPE cells) to investigate the role of Focal Adhesion Kinase (FAK) in GBM, with a focus on potential links between the regulation of morphological/adhesive and metabolic GBM cell properties. For this, the authors employ wt cells alongside newly generated FAK-KO and -reexpressing cells, as well as pharmacological interventions to probe the relevance of specific signaling pathways. The authors´ main claims are that FAK crucially modulates glioma cell morphology, cell-cell and cell-substrate interactions and motility, as well as their metabolism, and that these effects translate to changes to relevant in vivo properties such as invasion and tumor growth.

      My main issues are with the model chosen by the authors.

      As per the methods section, generation of FAK-KO and -"Rx" NPE cells entailed protracted selection/expansion processes, which may have resulted in inadvertent selection for cellular/molecular properties unrelated to the desired one (loss or gain of FAK expression) and which may have had cascading effects on NPE cells. The authors nonetheless repeatedly claim the parameters they quantify, such as mitochondrial or cytoskeletal properties or metabolic features, to have directly resulted from FAK loss or reintroduction. Examples of such causal inferences are to be found in lines 123, 134/135, 165, 181. Such causal claims are, in my view, unsupported.

      Acute perturbation of FAK expression/activity, genetically or pharmacologically, followed by a rapid assessment of the processes under investigation, would be needed to begin to assess causality, even if acute genetic perturbations may be technically challenging as sufficient gene expression reduction or restoration to physiologically relevant levels may be hard to achieve.

      Response:

      We would like to first comment on the model we used here, which we think will clarify the validity of our approach. The model is a transformed stem cell model of GBM that was published in (Gangoso et al., Cell, 2021) and is now used regularly in the GBM field. As mentioned in the response to Reviewer 1, we have added text (page 4 and 5 in the revised manuscript) and a new supplementary figure (Figure S1D) clarifying that the morphological changes we observed were consistent across multiple FAK -/- clones, showing this was not due to any inter-clonal variability. We also added images showing that the morphological changes were apparent at 48 h after nucleofecting FAK -/- cells with the FAK‑expressing vector specifically (not the empty vector), prior to starting G418 selection to enrich for FAK‑expressing cells (Figure S1C), addressing the worry that clonal variation and selection was the cause of the FAK-dependent phenotypes we observed. We believe that our model provides a type of well controlled, clean genetic cancer cell system of a type that is commonly used in cancer cell biology, allowing us to attribute phenotypes to individual proteins.

      We have also carried out a more acute treatment by using the FAK inhibitor VS4718 to perturb FAK kinase activity and assessed the effects on glycolysis and glutamine oxidation after 48h treatment (Figure S2D, E and F). We found that treating the transformed neural stem cells (parental population) with FAK inhibitor (300nM VS4718) decreases glucose incorporation into glycolysis intermediates and glutamine incorporation into TCA cycle intermediates, consistent with a role for FAK's kinase activity in maintaining glycolysis and glutamine oxidation.

      The employed pharmacological modulation of ROCK activity is the only approach that, given the presumably acute nature of the treatment, may have allowed the authors to probe the proposed functional links. The methods section of the manuscript does not however comprise details as to the duration of these treatments, which leaves open the possibility of long-term treatment having been carried out (data shown in Figure 5B refers to 72hr treatment).

      __Response: __

      We have added the duration of the treatment to the Methods section and Figure Legends, to clarify that cells were treated with ROCK inhibitors for 24h, before assessing the effects on mictochondria (Figure 4C, D, S4C and D) and glutamine oxidation (Figure 5A, and S5). For metabolic activity by AlamarBlue assay, cells were treated with ROCK inhibitors for 72h (Figure 5B).

      Even in the case of ROCK inhibitor experiments, it is however unclear if and how the effects on cell morphology and adhesion, mitochondrial organization and metabolic activity may be connected to each other and, if at all, to FAK expression.

      Given the above uncertainties due to the nature of the model and experimental approaches, it is hard to assess the reliability and thus the relevance of the findings.

      Response:

      FAK suppresses ROCK activity (as judged by pMLC2 S19, Figure 4A and B). Treating FAK -/- cells with two different ROCK inhibitors restored mesenchymal-like cell morphology, mitochondrial morphology and glutamine oxidation. As mentioned above, to strengthen our evidence for the antagonistic role of FAK in ROCK-MLC2 signalling, we have now introduced an experiment whereby integrin-FAK signalling was disrupted through treatment with a detachment agent (Accutase), and subsequently maintaining the cells in suspension in laminin-free medium. We assessed pMLC2 S19 levels (a measure of ROCK activity) relating this to FAK phosphorylation that is supressed after integrin disengagement. These results were evaluated relative to spread wild type cells growing on laminin where Integrin-FAK signalling was active (Figure S4A and B). We observed an inverse relationship between Integrin-FAK signalling and ROCK-MLC2 activity in keeping with our conclusions (Figure 4A and B).

      Experimental support for the ability of cell-substrate interaction modulation to concomitantly impact cellular metabolism and motility/invasion would be significant both in terms of advancing our understanding of glioma cell biology and of its translational potential, but the evidence being provided is at best compatible with the proposed model.

      Response: We carried out a new experiment to support the ability of cell-substrate interaction modulation to impact metabolism; specifically, we inhibited cell-substrate interactions by plating the cells on Poly-2-hydroxyethyl methacrylate (Poly 2-HEMA)-coated dishes. This suppressed FAK phosphorylation at Y397, as expected, with concomitant reduction in glutamine utilisation in the TCA cycle (Figure S3A, B and C).

      My background/expertise is in developmental and adult neurogenesis, in vivo modelling of gliomagenesis and cell fate control/reprogramming, with a focus on molecular mechanisms of differentiation and quantitative aspects of lineage dynamics; molecular details of the control of cellular metabolism, cell-cell adhesion and cytoskeletal dynamics are not core expertise of mine.

      We appreciate this reviewer's expertise are not necessarily in the cancer cell biology and genetic intervention aspects of our study. We hope that the explanations we have provided satisfy the reviewer that our conclusions are valid.

    2. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02946

      Corresponding author(s): Margaret, Frame

      Roza, Masalmeh

      [Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.

      If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We thank the reviewers for recognizing the significance of our work and for their constructive feedback and suggestions, most of which we have implemented in our revised manuscript.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      Reviewer #1

      Evidence, reproducibility and clarity

      Review of Masalmeh et al. Title: "FAK modulates glioblastoma stem cell energetics..."

      Previous studies have implicated FAK and the related tyrosine kinase PYK2 in glioblastoma growth, cell migration, and invasion. Herein, using a murine stem cell model of glioblastoma, the authors used CRISPR to inactivate FAK, FAK-null cells selected and cloned, and lentiviral re-expression of murine FAK in the FAK-null cells (termed FAK Rx) was accomplished. FAK-/- cells were shown to possess epithelial characteristics whereas FAK Rx cells expressed mesenchymal markers and increased cell migration/invasion in vitro. Comparisons between FAK-/- and FAK Rx cells showed that FAK re-expressed increased mitochondrial respiration and amino acid uptake. This was associated with FAK Rx cells exhibiting filamentous mitochondrial morphology (potentially an OXPHOS phenotype) and decreased levels of MTFR1L S235 phosphorylation (implicated in mito morphology fragmentation). Mito and epithelial cell morphology of FAK-/- cells was reversed by treatment with Rho-kinase inhibitors that also increased mito metabolism and cell viability. Last, FAK-dependent glioblastoma tumor growth was shown by comparisons of FAK-/- and FAK Rx implantation studies.

      The studies by Masalmeh provide interesting findings associating FAK expression with changes in mitochondrial morphology, energy metabolism, and glutamate uptake. According to the authors model, FAK expression is supporting a glioblastoma stem cell like phenotype in vitro and tumor growth in vivo. What remains unclear is the mechanistic connection to cell changes and whether or not these are be dependent on intrinsic FAK activity or as the Frame group has previously published, potentially FAK nuclear localization. The associations with MTFR1L phosphorylation and effects by Rho kinase inhibition are likely indirect and remind this reviewer of long-ago studies with FAK-null fibroblasts that exhibit epithelial characteristics, still express PYK2, exhibited elevated RhoA GTPase activity. Some of these phenotypes were linked to changes in RhoGEF and RhoGAP signaling with FAK and/or Pyk2. At a minimum, it would be informative to know whether Pyk2 signaling is relevant for observed phenotypes and whether the authors can further support their associations with FAK-targeted or FAK-Pyk2-targeted inhibitors or PROTACs.

      Some questions that would enhance potential impact. 1. Cell generation. Please describe the analysis of FAK-/- clones in more detail. The "low viability" phenotype needs further explanation with regard to clonal expansion and growth characteristics?

      Response:

      • We included a better description and a supplementary figure in our revised manuscript to indicate that we have examined several FAK -/- clones and confirmed that our observations were not due to clonal variation; multiple clones displayed similar morphological changes (Figure S1D). We also show that the elongated mesenchymal-like morphology was observed at 48 h after nucleofecting the cells with the FAK‑expressing vector, before beginning G418 selection to enrich for cells expressing FAK (Figure S1C). We also included experiments to acutely modulate FAK signalling (detaching and seeding cells on fibronectin) (Figure S2D, E, F and Figure S3) to exclude the possibility that the profound effects are due to protocols/selection we used for generating FAK-deleted cells.
      • Regarding the term "low viability", we have clarified in the text that there is no significant difference in cell number (Figure S1A) or 'cell viability' when it is assessed by trypan blue exclusion (a non-mitochondria-dependent read-out) (Figure S1B) between FAK-expressing FAK Rx and FAK-/- cells cultured for three days under normal conditions. Therefore, we agree the term 'cell viability' in this context could be confusing and have replace "cell viability" with "metabolic activity as measured by Alamar Blue." in Figure 1D and Figure 5B, and the corresponding text in the original manuscript. This wording more accurately reflects the data.

      Figure 1F: need further support of MET change upon FAK KO and EMT reversion.

      Response: We have added a heatmap (Figure S1E) illustrating the changes in protein expression of core-enriched EMT/MET genes products (by proteomics) after FAK gene deletion (EMT genes as defined in Howe et al., 2018) ; this strengthens the conclusion that the MET reversion morphological phenotype is accompanied by recognised MET protein changes.

      Fig. 2: Need further support if FAK effects impact glycolysis or oxidative phosphorylation in particular as implicated by the stem cell model.

      Response: We show that FAK impacts both glycolysis (Figure 2A, 2E, and 2F) and mitochondrial oxidative phosphorylation on the basis of the oxygen consumption rate (OCR) (Figure 2B, and 2D), showing both are contributing pathways to FAK-dependent energy production. We have clarified this in the text.

      Is there a combinatorial potential between FAKi and chemotherapies used for glioblastoma. Need to build upon past studies.

      Response: Yes, previous studies suggest that inhibiting FAK can sensitize GBM cells to chemotherapy (Golubovskaya et al., 2012; Ortiz-Rivera et al., 2023). We have included a paragraph in the discussion section to make sure this is clearer. Although it is not the subject of this study, we appreciate it is useful context.

      The notation of changes in glucose transporter expression should be followed up with regard to the potential that FAK-expressing cells may have different uptake of carbon sources and other amino acids. Altered uptake could be one potential explanation for increase glycolysis and glutamine flux.

      Response: We agree with the reviewer that glucose uptake could be contributing and we include data that 2 glucose transporters are indeed FAK-regulated namely Glucose transporter 1 (GLUT1, encoded by Slc2a1 gene) and Glucose transporter 3 (GLUT 3, encoded by Slc2a3 gene) (shown in Figure S2B and C).

      It would be helpful to support the confocal microscopy of mitos with EM.

      Response:

      We are concerned (and in our experience) that Electron microscopy (EM) may introduce artefacts during sample preparation. In contrast, immunofluorescence sample preparation is less susceptible to artefacts. The SORA system we used is not a conventional point-scanning confocal microscope, but is a super-resolution module based on a spinning disk confocal platform (CSU-W1; Yokogawa) using optical pixel reassignment with confocal detection. This method enhances resolution in all dimensions with resolution in our samples measured at 120nm. This has been instructive in defining a new level of changes in mitochondrial morphology upon FAK gene deletion.

      Lack of FAK expression with increased MTFR1 phosphorylation is difficult to interpret.

      Response: We do not directly show that this phosphorylation event is causal in our experiments; however, we think it important to document this change since it has been published that phosphorylation of MTFR1 has been causally linked to the mitochondrial morphology we observed in other systems (Tilokani et al., 2022).

      Need to have better support between loss of FAK and the increase in Rho signaling. Use of Rho kinase inhibitors is very limited and the context to FAK (and or Pyk2) remains unclear. Past studies have linked integrin adhesion to ECM as a linkage between FAK activation and the transient inhibition of RhoA GTP binding. Is integrin signaling and FAK involved in the cell and metabolism phenotypes in this new model?

      Response: To better support the antagonistic effect of FAK on Rho-kinase (ROCK) signalling, we included a new experiment in which the integrin-FAK signalling pathway has been disrupted by treating FAK WT cells with an agent that causes detachment from the substratum, Accutase, and growing the cells in suspension in laminin-free medium. We present ROCK activity data, as judged by phosphorylated MLC2 at serine 19 (pMLC2 S19), relating this to induced FAK phosphorylation at Y397 (a surrogate for FAK activity) that is supressed after integrin disengagement. These measurements have been compared with conditions whereby integrin-FAK signalling is activated by growing the cells on laminin coated surfaces. We observed a time-dependent decrease in pFAK(Y397) levels (normalised to total FAK) in suspended cells compared to those spread on laminin, while pMLC2(S19) levels increased in a reciprocal manner over time in detached cells relative to spread cells (S4A and B). There is therefore an inverse relationship between integrin-FAK signalling and ROCK-MLC2 activity, consistent with findings from FAK gene deletion experiments. In the former case, we do not rely on gene deletion cell clones.

      Significance

      The studies by Masalmeh provide interesting findings associating FAK expression with changes in mitochondrial morphology, energy metabolism, and glutamate uptake. According to the authors model, FAK expression is supporting a glioblastoma stem cell like phenotype in vitro and tumor growth in vivo. What remains unclear is the mechanistic connection to cell changes and whether or not these are be dependent on intrinsic FAK activity or as the Frame group has previously published, potentially FAK nuclear localization. The associations with MTFR1L phosphorylation and effects by Rho kinase inhibition are likely indirect and remind this reviewer of long-ago studies with FAK-null fibroblasts that exhibit epithelial characteristics, still express PYK2, exhibited elevated RhoA GTPase activity. Some of these phenotypes were linked to changes in RhoGEF and RhoGAP signaling with FAK and/or Pyk2. At a minimum, it would be informative to know whether Pyk2 signaling is relevant for observed phenotypes and whether the authors can further support their associations with FAK-targeted or FAK-Pyk2-targeted inhibitors or PROTACs.

      __Response: __

      Deleting the gene encoding FAK in mouse embryonic fibroblasts leads to elevated Pyk2 expression (Sieg, 2000). However, in the GBM stem cell model we used here, Pyk2 was not expressed (determined by both transcriptomics and proteomics). We have included Figure S1E to show that PYK2 expression was undetectable in FAK -/- and FAK Rx cells at the RNA level (Figure S1F). We conclude that there is no compensatory increase in Pyk2 upon FAK loss in these cells. In the transformed neural stem cell model of GBM, we do not consistently or robustly detect nuclear FAK.

      Review #2

      Masalmeh and colleagues employ a neural stem/progenitor cell-based glioma model (NPE cells) to investigate the role of Focal Adhesion Kinase (FAK) in GBM, with a focus on potential links between the regulation of morphological/adhesive and metabolic GBM cell properties. For this, the authors employ wt cells alongside newly generated FAK-KO and -reexpressing cells, as well as pharmacological interventions to probe the relevance of specific signaling pathways. The authors´ main claims are that FAK crucially modulates glioma cell morphology, cell-cell and cell-substrate interactions and motility, as well as their metabolism, and that these effects translate to changes to relevant in vivo properties such as invasion and tumor growth.

      My main issues are with the model chosen by the authors.

      As per the methods section, generation of FAK-KO and -"Rx" NPE cells entailed protracted selection/expansion processes, which may have resulted in inadvertent selection for cellular/molecular properties unrelated to the desired one (loss or gain of FAK expression) and which may have had cascading effects on NPE cells. The authors nonetheless repeatedly claim the parameters they quantify, such as mitochondrial or cytoskeletal properties or metabolic features, to have directly resulted from FAK loss or reintroduction. Examples of such causal inferences are to be found in lines 123, 134/135, 165, 181. Such causal claims are, in my view, unsupported.

      Acute perturbation of FAK expression/activity, genetically or pharmacologically, followed by a rapid assessment of the processes under investigation, would be needed to begin to assess causality, even if acute genetic perturbations may be technically challenging as sufficient gene expression reduction or restoration to physiologically relevant levels may be hard to achieve.

      Response:

      We would like to first comment on the model we used here, which we think will clarify the validity of our approach. The model is a transformed stem cell model of GBM that was published in (Gangoso et al., Cell, 2021) and is now used regularly in the GBM field. As mentioned in the response to Reviewer 1, we have added text (page 4 and 5 in the revised manuscript) and a new supplementary figure (Figure S1D) clarifying that the morphological changes we observed were consistent across multiple FAK -/- clones, showing this was not due to any inter-clonal variability. We also added images showing that the morphological changes were apparent at 48 h after nucleofecting FAK -/- cells with the FAK‑expressing vector specifically (not the empty vector), prior to starting G418 selection to enrich for FAK‑expressing cells (Figure S1C), addressing the worry that clonal variation and selection was the cause of the FAK-dependent phenotypes we observed. We believe that our model provides a type of well controlled, clean genetic cancer cell system of a type that is commonly used in cancer cell biology, allowing us to attribute phenotypes to individual proteins.

      We have also carried out a more acute treatment by using the FAK inhibitor VS4718 to perturb FAK kinase activity and assessed the effects on glycolysis and glutamine oxidation after 48h treatment (Figure S2D, E and F). We found that treating the transformed neural stem cells (parental population) with FAK inhibitor (300nM VS4718) decreases glucose incorporation into glycolysis intermediates and glutamine incorporation into TCA cycle intermediates, consistent with a role for FAK's kinase activity in maintaining glycolysis and glutamine oxidation.

      The employed pharmacological modulation of ROCK activity is the only approach that, given the presumably acute nature of the treatment, may have allowed the authors to probe the proposed functional links. The methods section of the manuscript does not however comprise details as to the duration of these treatments, which leaves open the possibility of long-term treatment having been carried out (data shown in Figure 5B refers to 72hr treatment).

      __Response: __

      We have added the duration of the treatment to the Methods section and Figure Legends, to clarify that cells were treated with ROCK inhibitors for 24h, before assessing the effects on mictochondria (Figure 4C, D, S4C and D) and glutamine oxidation (Figure 5A, and S5). For metabolic activity by AlamarBlue assay, cells were treated with ROCK inhibitors for 72h (Figure 5B).

      Even in the case of ROCK inhibitor experiments, it is however unclear if and how the effects on cell morphology and adhesion, mitochondrial organization and metabolic activity may be connected to each other and, if at all, to FAK expression.

      Given the above uncertainties due to the nature of the model and experimental approaches, it is hard to assess the reliability and thus the relevance of the findings.

      Response:

      FAK suppresses ROCK activity (as judged by pMLC2 S19, Figure 4A and B). Treating FAK -/- cells with two different ROCK inhibitors restored mesenchymal-like cell morphology, mitochondrial morphology and glutamine oxidation. As mentioned above, to strengthen our evidence for the antagonistic role of FAK in ROCK-MLC2 signalling, we have now introduced an experiment whereby integrin-FAK signalling was disrupted through treatment with a detachment agent (Accutase), and subsequently maintaining the cells in suspension in laminin-free medium. We assessed pMLC2 S19 levels (a measure of ROCK activity) relating this to FAK phosphorylation that is supressed after integrin disengagement. These results were evaluated relative to spread wild type cells growing on laminin where Integrin-FAK signalling was active (Figure S4A and B). We observed an inverse relationship between Integrin-FAK signalling and ROCK-MLC2 activity in keeping with our conclusions (Figure 4A and B).

      Experimental support for the ability of cell-substrate interaction modulation to concomitantly impact cellular metabolism and motility/invasion would be significant both in terms of advancing our understanding of glioma cell biology and of its translational potential, but the evidence being provided is at best compatible with the proposed model.

      Response: We carried out a new experiment to support the ability of cell-substrate interaction modulation to impact metabolism; specifically, we inhibited cell-substrate interactions by plating the cells on Poly-2-hydroxyethyl methacrylate (Poly 2-HEMA)-coated dishes. This suppressed FAK phosphorylation at Y397, as expected, with concomitant reduction in glutamine utilisation in the TCA cycle (Figure S3A, B and C).

      My background/expertise is in developmental and adult neurogenesis, in vivo modelling of gliomagenesis and cell fate control/reprogramming, with a focus on molecular mechanisms of differentiation and quantitative aspects of lineage dynamics; molecular details of the control of cellular metabolism, cell-cell adhesion and cytoskeletal dynamics are not core expertise of mine.

      We appreciate this reviewer's expertise are not necessarily in the cancer cell biology and genetic intervention aspects of our study. We hope that the explanations we have provided satisfy the reviewer that our conclusions are valid.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      RESPONSE TO REVIEWERS

      We thank the reviewers for their thoughtful and constructive feedback, which has been instrumental in improving the overall quality of our manuscript.

      In response, we have undertaken a substantial revision that includes new experimental data, refined analyses, and clearer presentation of our findings. Specifically, we have addressed concerns about RNAi efficiency and protein-level validation, expanded our genetic models to include loss-of-function contexts, and clarified the interpretation of mitochondrial morphology using both confocal and electron microscopy. We also incorporated new data on Cyclin E regulation and mitochondrial membrane potential to strengthen the mechanistic link between dPGC1 depletion and Yki-driven tumorigenesis. These revisions not only address the specific points raised by the reviewers but also enhance the coherence and impact of the study. We are confident that the revised manuscript presents a more robust and compelling case for the role of dPGC1 as a context-dependent tumor suppressor and that it will be of broad interest to the fields of developmental biology, cancer metabolism, and mitochondrial dynamics.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)): Sew et al. examine the master regulator of mitochondrial biogenesis, dPGC1, in the context of Drosophila wing and larval development. They primarily use confocal imaging to probe the interplay between dPGC1 and an overactive Hippo pathway, driven by overexpression of the main effector protein, Yki. In their study, they find that tumors, driven by overactivity of Yki grow larger when dPGC1 is downregulated, implicating the mitochondrial biogenesis pathway in tumor suppression. Furthermore, in the context of Yki overexpression, they find that levels of Mfn or Opa1 modulate tumor size. Lastly, they show a role of cyclin E in controlling the size of tumors formed by Yki OE + dPGC1 RNAi. The potential role of dPGC1 as a tumor suppressor is interesting because it highlights an emerging recognition of mitochondria in the aetiology of cancer. However, before publication, much of the data in this manuscript should be strengthened by a refinement in the methods/analysis and an increase in orthogonal approaches.

      We addressed concerns regarding RNAi efficiency and wing development by incorporating data from a dPGC1 mutant allele and using a ubiquitous driver for qPCR validation of transgene efficiency. We clarified the rationale for EM use. The manuscript now avoids overinterpretation of mitochondrial morphology and focuses on fusion-specific regulators. We also revised the narrative arc to maintain coherence and added loss-of-function models to support our conclusions.

      Below, we address each of the reviewer’s points in detail.

      Major comments:

      The authors indicate that for example, in lines127-28, that neither downregulating or overexpressing dPGC1 affects wing size. However, the quantification in Fig. 1C shows a significant decrease in wing size following RNAi treatment. This decrease is modest, but it is nevertheless significant. It is worth pointing out, too, that the efficiency of the RNAi in Fig. S1C suggests that the conclusions drawn are premature. While a roughly 55% drop in mRNA levels may be statistically significant, it is unclear whether this drop in transcripts corresponds to a commensurate depletion of protein. Moreover, it is unclear, in this context, how much dPGC1 may indeed be necessary to drive a relatively normal program of mitochondrial biogenesis in wing development. To obtain a clear result, it is necessary to show significant depletion of the dPGC1 protein. (Ultimately, if it is the case that dPGC1 is unnecessary for wing development and function, a more coherent line of inquiry would be to find out the reason for this rather than to pivot the story to studying tumorigenesis in larva.)

      We agree that the interpretation of the RNAi efficiency data requires clarification.

      The qPCR analysis shown in former Fig. S1C was performed using wing discs from flies expressing UAS-dPGC1-RNAi under the control of the MS1096-Gal4 driver. However, as shown in current Fig. 1C, MS1096-Gal4 is not expressed uniformly across the wing disc. Some regions remain RFP-negative, indicating that the RNAi construct is not active in all cells. As a result, the measured mRNA levels likely underestimate the true knockdown efficiency. This is because the qPCR includes mRNA from both RNAi-expressing and non-expressing cells, diluting the apparent reduction in transcript levels.

      To address this limitation and more accurately assess RNAi efficiency, we repeated the qPCR analysis using a ubiquitous driver (actin-Gal4) to ensure uniform expression of the RNAi construct. Under these conditions, we observed a more substantial knockdown, with dPGC1 mRNA levels reduced to approximately 25% of control levels (this is shown in current Fig S2). This result indicates that the RNAi line is more effective than initially suggested by the MS1096-Gal4-based analysis.

      To complement our RNAi-based analysis, we additionally used a mutant strain carrying a characterized allele of dPGC1 (dPGC11, also known as dPGC1KG08646; see FlyBase: https://flybase.org/reports/FBal0148128). This genetically distinct approach allowed us to validate and strengthen our findings regarding dPGC1 function. Flies homozygous for this allele exhibited a modest but statistically significant reduction in both wing disc and adult wing size. These results support the conclusion that dPGC1 is required for normal wing growth and development. The new data are now included in Figure 1 and referenced in the main text (lines 144-153).

      Additionally, as suggested by the reviewer, we have revised the relevant section to maintain a coherent line of inquiry. The updated text can be found in lines 163–172.

      In Figure 3H-K, it is not clear why the authors used electron microscopy to evaluate mitochondrial morphology. The very good confocal images in Figure 3C-G show a clear change in mitochondrial morphology following the knockdown of Mfn, Opa1, and Miro. While it is clear from the electron micrographs in Figure H that the mitochondria are enlarged, it is not obvious that this increase in length is a result of increased mitochondrial fusion. Indeed, if the mean form factor were used to quantify the shape, it is likely that in both conditions, the value would be close to 1, indicating more of a round object, and it not obvious whether there would be a difference between the Yki OE versus the YkI OE + dPGC1 RNAi. Therefore, from this data alone, it cannot be concluded that the YkI OE + dPGC1 RNAi condition leads to mitochondrial hyperfusion.

      Our rationale for including electron microscopy (EM) was to overcome specific limitations in imaging mitochondrial morphology within the main epithelium of the wing disc, where Yki-driven tumors arise. These tumors were generated using ap-Gal4, which drives expression specifically in the main epithelium and is not active in the peripodial membrane. This is an important distinction, as the peripodial membrane—used in Figures 3C–G—has a squamous architecture and larger cytoplasmic volume, making it ideal for high-resolution confocal imaging and for assessing the effects of manipulating dMfn, Opa1, and miro. However, because ap-Gal4 is not expressed in the peripodial membrane, this tissue could not be used to analyze mitochondrial morphology in the actual tumorous context.

      To directly evaluate mitochondria in the main epithelium, we employed EM, which provides the resolution necessary to visualize ultrastructural changes that are not easily captured by confocal microscopy in this densely packed tissue. While EM does not directly measure fusion events, it allowed us to detect changes in mitochondrial size and shape that support our broader findings.

      We acknowledge that mitochondrial enlargement alone does not definitively demonstrate hyperfusion. However, the EM data were interpreted alongside additional evidence: the upregulation of mitochondrial fusion genes (dMfn and Opa1) in Yki + dPGC1-RNAi tumors, and functional data showing that overexpression of these genes promotes fusion in the peripodial membrane. Together, these findings suggest that dPGC1 depletion enhances mitochondrial fusion in Yki-driven tumors.

      To further clarify this point, we also imaged mitochondria in the main epithelium using confocal microscopy. However, the resolution was considerably lower than that achieved with EM, limiting our ability to assess fine mitochondrial structures. We have prepared a representative figure for the reviewer (below), showing representative confocal images of wing discs from three genotypes: (A) ap-Gal4, UAS-GFP (control), (B) ap-Gal4, UAS-Yki, and (C) ap-Gal4, UAS-Yki, UAS-dPGC1-RNAi. We used anti-ATP-synthase (Abcam, ab14748, dilution 1:200), to label the mitochondria for this Figure. Despite the lower resolution, mitochondria in the Yki + dPGC1-RNAi tumors appear elongated (yellow arrows) compared to those in the other conditions, consistent with the changes observed by EM. We believe this example illustrates the limitations of confocal imaging in this tissue and reinforces the need for EM to accurately assess mitochondrial morphology in the tumorous epithelium.

      While our EM analyses reveal mitochondrial enlargement in wing discs co-expressing Yki and PGC1-RNAi, we acknowledge that these structural features alone do not conclusively demonstrate mitochondrial hyperfusion. To address this, we have revised the manuscript to avoid overinterpreting the EM data and instead emphasize the functional relevance of mitochondrial fusion regulators such as dMfn and Opa1 in promoting tumor growth.

      Taken together, the EM analysis provides structural validation in the tumorous epithelium (Fig 4), while the confocal imaging and functional manipulation of fusion genes in the peripodial membrane offer mechanistic insight (Fig 3). This integrated approach strengthens the conclusion that PGC1 depletion in a Yki-overexpressing context promotes changes in mitochondrial morphology and contributes to tumorigenesis, independent of whether these changes reflect hyperfusion.

      Figure 4. refers to changes in mitochondrial fusion and fission in tumor formation; however, the authors do not attempt to alter mitochondrial fission factors, so it is not accurate to mention a role of mitochondrial fission, in this context.

      As we did not directly manipulate fission-related factors in our experiments, we agree that it would be inappropriate to draw conclusions about the role of mitochondrial fission in this context. Our revised figure (current Fig 5) and accompanying text now focus exclusively on the effects of mitochondrial fusion and the genes directly involved in regulating this process.

      It must be noted, too, that the authors have not demonstrated that their genetic interventions have actually affected mitochondrial morphology in these experiments. As noted in the previous figure, the Yki OE + dPGC1 RNAi condition showed enlarged mitochondria, but not necessarily hyperfused organelles. Therefore, the downregulation of Mfn or Opa1 in this set of experiments may not necessarily have altered mitochondrial morphology. Perhaps suppression of Mfn or Opa1 would normalize the areas of these evidently swollen mitochondria, but this is unclear without images. Furthermore, it should be appreciated that both Opa1 and Mfn exhibit pleiotropic attributes - e.g., Opa1 not only regulates IMM fusion, but it also modulates the shape and tightness of cristae membranes, specialized sites of oxidative phosphorylation as well as sequestration of cytochrome c, the release of which influences apoptosis (Frezza et al., 2006). At least in mammalian cells, Mfn2 is thought to regulate contacts between mitochondria and endoplasmic reticulum (Naon et al., 2023), which may serve other functions than OMM fusion, such as stabilization of the MAM.

      To directly address this point, we performed EM to assess mitochondrial ultrastructure in Yki + dPGC1-RNAi wing disc tumors, with and without dMfn1 downregulation, the most upregulated mitochondrial fusion gene in this tumor context. In Yki + dPGC1-RNAi tumors, mitochondria appeared more elongated, consistent with increased fusion. Upon dMfn1 depletion, we observed a dramatic shift in mitochondrial morphology: mitochondria became larger and more rounded, with disrupted cristae and onion-like structures, indicative of compromised mitochondrial integrity and function (see current Fig. 4).

      As the reviewer rightly notes, these morphological changes are consistent with the pleiotropic roles of Mfn and Opa1, which extend beyond outer and inner membrane fusion to include regulation of cristae architecture and ER-mitochondria contacts (Frezza et al., 2006; Naon et al., 2023). We now discuss these broader roles in the revised manuscript (lines 493–497). Taken together, our EM and confocal analyses, combined with targeted genetic manipulations, provide evidence that mitochondrial morphology is indeed altered in response to dPGC1 depletion and fusion gene deregulation in the wing disc.

      Figure 5 highlights a connection between dysregulation of mitochondria and Cyclin E, which allows cells to prematurely enter S phase. The data presented here do not offer clarity on whether the enlargement of the tumors results from increase cellular proliferation and/or cell size. The role of the cell cycle adds a layer of complexity to these results, because it is thought that mitochondria undergo fragmentation during the cell cycle to promote an even distribution of the organelle population after mitosis (Taguchi et al., 2007); however, in this manuscript, the authors contend that the downregulation dPGC1 is promoting mitochondrial hyperfusion. It is unclear how and whether cellular division and proliferation would proceed at an accelerated rate in a situation with mitochondrial hyperfusion.

      To address this point, we started by analyzing whether Yki + dPGC1-RNAi tumors exhibit increased proliferation compared to tumors expressing Yki alone. We quantified mitotic activity using the phospho-Histone H3 (PH3) marker of mitotic cells and observed a significant increase in PH3-positive cells in the Yki + dPGC1-RNAi condition. These results indicate an elevated proliferation rate in these tumors and are now presented in Fig 2O–Q. In the text, can be found in lines 221-228.

      We agree with the reviewer that our findings challenge the conventional view that mitochondrial fragmentation is a prerequisite for mitosis, as we observe increased expression of gene promoting mitochondrial fusion in the context of dPGC1 downregulation alongside signs of accelerated cell cycle entry. It is important to note that we also show that the levels of the oncogene Cyclin E, a key driver of cell cycle progression and S-phase entry, were elevated in Yki + dPGC1-RNAi tumors compared to those expressing Yki alone, suggesting that the increased proliferation observed is at least in part driven by enhanced cycle activity. To further probe Cyclin E’s role, we used the CycE-05306 heterozygous mutant allele, which reduces Cyclin E levels by ~50% without affecting normal development. Notably, this partial reduction strongly suppressed tumor growth in the Yki + dPGC1-RNAi background (Fig 6), underscoring Cyclin E’s functional importance in supporting oncogenic growth in this context.

      These findings support the notion that defects in the expression of mitochondrial genes involved in mitochondrial morphology induced by dPGC1 depletion do not impair but rather coincide with accelerated cell division.

      Minor comments:

      Lines 69-72 contrast the roles of PGC1α and β. It is not clear whether the comparison is of their respective roles in cancer or in normal physiology. In either case, it is important to note that PGC1β has been shown to drive mitochondrial fusion as well as biogenesis through its control of MFN2, among other factors (Liesa et al., 2008).

      In response, we have clarified the comparison between PGC1α and PGC1β in the introduction to specify that it refers to their roles in cancer. Additionally, we now acknowledge that PGC1β has been shown to promote mitochondrial biogenesis and fusion, notably through the regulation of MFN2, as demonstrated by Liesa et al. (2008). This reference has been added to provide a more balanced and accurate representation of PGC1β’s functions. In the text it can be found in lines 77-81.

      Although this study focuses on PGC1, the authors do not seem to site the original literature from the Spiegelman lab.

      In response to the reviewer’s comment, we have added a new section in the introduction that cites key foundational studies from the Spiegelman lab. This addition can be found in the introduction in lines 68-73.

      There are 10-20 grammatical errors throughout the text.

      We apologize for this. We have carefully revised the text, and we are very confident those errors have been corrected.

      **Referee Cross-commenting**

      There is agreement among the referees that the potential role of PGC1 as a tumor suppressor is interesting and significant. However, various aspects of this work require attention prior to publication. For example, there needs to be a complete knock down of PGC1 to come to any conclusion as to its role in wing development. The methods for analyzing mitochondrial morphology need to be clarified and be consistent with standards in the field of mitochondrial dynamics. Also, the authors need to quantify their Western blots to obtain accurate assessments of protein levels. Generally, the study relies too heavily on overexpression experiments; understanding the potential role of mitochondria in regulating the Hippo pathway should include various knockdown and/or knockout models.

      Reviewer #1 (Significance (Required)):

      Overall, the authors show an interesting dampening effect of dPGC1 on growth of Yki-driven tumors. This data could be relevant for elucidating how dysregulation of the Hippo signalling pathway can underlie tumorigenesis.

      The narrative arc of the study, however, appears to lack a focused line of inquiry. Figure 1 highlights an attempt to modulate Drosophila wing size and/or structure by downregulating dPGC1, but to no effect. Although examination of the efficiency of the RNAi revealed that the transcripts were still present in significant quantities; so, the conclusion that dPGC1 is dispensable for wing formation is premature. To have clarity on this point, it would be necessary to completely knockdown the gene, preferably by showing a total loss of protein. This should be feasible for the authors, since they showed Western blotting in Figure 5A. In any event, it seems that this negative data led the authors to study the Hippo pathway in the larval stage. This transition from Figure 1 to 2 seemed somewhat arbitrary and leads to a rather disjointed sense of the main line of inquiry around dPGC1.

      It is important to note, too, that the authors highlight a role of mitochondrial dynamics in the pathway of Yki-driven tumor formation; however, they only directly evaluate mitochondrial dynamics in this context in a single assay, namely, Figure 3H-K, and this quantification is likely inaccurate because the mitochondria in the Yki OE + dPGC1 RNAi condition seem to be substantially enlarged, circular structures. It is critical to keep in mind that mitochondrial enlargement does not necessarily stem from hyperfusion. It could come from a decrease in the activity of Drp1 or result from an imbalance between mitochondrial biogenesis and mitophagy.

      As noted in our responses above, we have addressed these concerns by clarifying the limitations of our mitochondrial morphology analysis. Additionally, we have expanded the discussion (lines 498-504) to explicitly acknowledge that mitochondrial enlargement does not necessarily indicate hyperfusion. In that paragraph, we consider alternative explanations such as reduced fission or imbalances in mitochondrial biogenesis and mitophagy, and we outline the need for future studies using dynamic assays and additional markers to more precisely dissect mitochondrial remodeling in Yki-driven tumors.

      A marked limitation of this study is the overuse of rather artificial manipulations of transcriptional regulatory pathways. The study would benefit a lot from investigation of the loss of function of components of the Hippo pathway rather than just OE of Yki.

      We performed additional experiments using Warts (Wts) mutant clones to assess the role of dPGC1 in a loss-of-function context within the Hippo pathway. While our initial analyses were based on Yki overexpression, which allowed us to robustly probe the interaction between Yki and dPGC1, we agree that this approach may not fully reflect physiological conditions. By generating Wts mutant clones, which endogenously activate Yki through loss of upstream inhibition, we were able to evaluate the impact of dPGC1 depletion in a more physiologically relevant setting. These new results confirm and extend our previous findings, showing that dPGC1 limits tissue overgrowth even when Yki is activated through loss of Wts, thereby strengthening the biological relevance of our conclusions.

      These results are presented in Fig 2F-I. In the text, those results are presented in lines 181-189.

      My expertise is in mitochondrial biology, with specialization in super-resolution imaging, mitochondrial dynamics and membrane architecture. I have also worked in the interface between mitochondrial physiology and cancer. With this perspective, I think that the authors uncover a potentially interesting role of PGC1 as a tumor suppressor.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary In this manuscript the authors the investigate the role of the mitochondrial regulatory transcription factor dPGC1 in tissue growth and oncogenic transformation. They show that dPGC1 limits hyperplasia mediated by overexpression of Yki in the Drosophila wing disc, while having no effect on normal growth. dPGC1 depletion in discs overexpressing Yki results neoplastic overgrowth and hyperfused mitochondria, which was dependent on the increased expression of genes involved in promoting mitochondrial fusion. Additionally, the authors show that dPGC1 limits CycE levels post-transcriptionally in Yki tumors.

      In the revised version of our manuscript, we have clarified the relationship between our findings and prior work by Nagaraj et al., including new experiments that demonstrate the specificity of dPGC1’s role in Yki-driven growth. Specifically, we show that dPGC1 depletion does not enhance tissue overgrowth in EGFR or InR contexts, nor does it affect Yki expression or activity. Furthermore, we tested dPGC1 overexpression in Yki-overexpressing tissues and observed no significant changes in growth or mitochondrial fusion gene expression. Additional controls confirmed that Cyclin E upregulation is specific to the Yki + dPGC1 depletion condition, reinforcing the context-dependent nature of our findings.

      Each of the reviewer’s comments is addressed below.

      Major comments 1) The authors mention several times in passing in the results a manuscript from the Banerjee lab (Nagaraj et al 2012), which shows that many of the genes the authors of the present manuscript show are upregulated upon Yki overexpression + dPGC1-RNAi compared with Yki overexpression alone are in fact upregulated upon Yki overexpression alone compared with control (dMfn/marf, opa1, miro - while interestingly dPGC1 itself is not affected). Nagaraj et al further show that Yki-overexpressing discs have longer mitochondria suggesting increased fusion even in the absence of dPGC1 depletion. The findings from Nagaraj et al should be mentioned explicitly in the introduction and the relationship between this manuscript and the present work clearly outlined in the discussion.

      In the revised manuscript, we have now explicitly referenced the findings of Nagaraj et al. (2012) in the Introduction (lines 106-118), Results (lines 355-360) and Discussion (lines 466-468) sections.

      In the revised Introduction, we summarize their key observations that Yki overexpression alone upregulates mitochondrial fusion genes such as dMfn and Opa1, and leads to mitochondrial elongation, while not affecting dPGC1 expression.

      In the revised Results section, we mention that, building on that work, our study demonstrates that dPGC1 depletion further amplifies this effect, leading to enhanced mitochondrial elongation and tumor growth.

      In the revised Discussion, we now explicitly reference the findings by Nagaraj et al. (2012), which demonstrated that Yki overexpression promotes mitochondrial fusion and upregulates key fusion genes. We build upon this work by showing that dPGC1 depletion in a Yki-overexpressing background further enhances mitochondrial fusion gene expression and tumor growth. This supports a model in which dPGC1 acts as a safeguard against Yki-induced mitochondrial remodeling and oncogenesis, reinforcing its role as a context-dependent tumor suppressor.

      Importantly, we show that this effect is context-dependent and not observed in otherwise normal tissues, highlighting a sensitized mitochondrial response to Yki activation when dPGC1 is lost. These additions help delineate the novel contribution of our study in identifying dPGC1 as a critical modulator of mitochondrial dynamics and tumorigenesis downstream of Yki.

      2) Given that Yki overexpression alone induces mitochondrial fusion and that dMfn/marf and opa1 depletion suppresses Yki-induced overgrowth (Nagaraj et al), does dPGC1 overexpression also suppress Yki-induced overgrowth?

      If so, is this correlated with reduction in dMfn/marf and opa1 compared with Yki overexpression alone?

      In response, we performed additional experiments to assess whether dPGC1 overexpression influences Yki-driven overgrowth. We also analyzed the expression of mitochondrial fusion genes (dMfn and Opa1) in this context. As shown in new Fig. S8, dPGC1 overexpression in Yki-overexpressing wing discs did not significantly affect tissue growth, nor did it alter the mRNA levels of key fusion regulators, dMfn and Opa1. These findings suggest that the transcriptional upregulation of mitochondrial fusion genes observed upon dPGC1 depletion is not a general consequence of altered dPGC1 levels, but rather a specific response that emerges in the context of Yki activation. We now present and discuss these results in the revised manuscript (lines 278-285), highlighting the sensitized nature of mitochondrial remodeling in an oncogenic environment driven by Yki signaling.

      3) One important question raised by this study is: how specific is the effect of dPGC1 depletion to Yki-driven overgrowth? As Yki-driven overgrowth already have increased mitochondrial length, it is possible that Yki-expressing cells are already sensitised to the effects of dPGC1 depletion. Interestingly, Nagaraj et al show that mitochondrial morphology is not affected upon EGFR activation (hyperplasia) or upon scrib and avl depletion (neoplasia). The authors should therefore test if dPGC1 depletion can potentiate the growth of other hyperplasia drivers such as activated EGFR and InR in the wing disc.

      We tested whether the growth-suppressive effect of dPGC1 depletion was specific to Yki-driven overgrowth or could also potentiate tissue growth in other oncogenic contexts. Specifically, we downregulated dPGC1 in wing discs overexpressing either EGFR or InR. In both cases, we did not observe any enhancement of tissue overgrowth upon dPGC1 depletion, in contrast to what we observed in Yki-overexpressing discs. These results suggest that the sensitivity to dPGC1 depletion is specific to Yki-driven overgrowth and is not a general feature of hyperplastic growth induced by other oncogenes.

      These results are shown in Fig S4 and in lines 195-202.

      4) There are a few simple control experiments the authors should provide to clarify the relationship between Yki and dPGC1: - Are Yki levels affected by dPGC1 depletion?

      To address the potential regulation of Yki by dPGC1, we performed quantitative PCR (qPCR) analysis to measure the expression levels of yki and its well-established transcriptional targets—Cyclin E, Diap1, and bantam—in wing discs depleted of dPGC1. As shown in Fig. S3, we did not detect significant changes in the transcript levels of yki or its target genes, suggesting that the enhanced phenotype observed upon dPGC1 depletion is unlikely to be driven by increased Yki expression or activity. These results indicate that dPGC1 does not strongly influence Yki expression or activity. These new results are presented in lines 190-194.

      • Does dPGC1 knockdown alone modify the expression of the genes tested in Fig.3A? In other words, is this upregulation specific of the Yki-overexpression context?

      We have conducted this analysis, and the results are now presented in new Fig S7. While the trend is similar to that observed in tumors with both Yki depletion and dPGC1 depletion, the magnitude of change is smaller compared to the context of Yki overexpression. This is described in the text in lines 273-277.

      • Does dPCG1 knockdown also stabilise CycE in the absence of Yki overexpression or does the stabilisation of CycE occur only in Yki tumors?

      To address this, we examined Cyclin E levels in wing imaginal discs mutant for dPGC1 alone. Our analysis did not reveal any detectable changes in Cyclin E levels under these conditions. These findings suggest that the upregulation of Cyclin E is not a general consequence of dPGC1 loss, but rather a feature specific to the context of Yki overactivation. The corresponding data are now included in Fig S14 of the revised manuscript. In the text, it can be found in lines 442-448.

      5) Figure 3C-G: it is not clear how the authors can quantify the length of 3D structures like mitochondria from 2D TEM images (unless they have done volume reconstruction from consecutive sections) and no details are provided in the methods. The quantification of mitochondrial length has to be performed rigorously as it is a key part of the paper.

      We agree that TEM provides only 2D profiles of 3D mitochondrial structures, and that this does not allow for precise volumetric reconstruction. In our study, we measured the longest axis of mitochondria visible in thin TEM sections, which is a commonly used 2D proxy for mitochondrial length in the literature (e.g., PMID: 36367943 and PMID: 38637532). To avoid misunderstandings, we have clarified in the Material and Methods section that the reported values represent apparent mitochondrial length in 2D sections, not true 3D length. To enhance the accuracy of these estimates, we measured more than three tissues per genotype, multiple regions per tissue, several cells per region, and various fields of view per cell.

      Minor Comments:

      1) Line 51: "Mitochondria are highly dynamics organelles." should be "Mitochondria are highly dynamic organelles."

      We have corrected that mistake. Thanks!

      2) Introduction: the authors should summarise the known physiological functions of PGC1α in order to put their findings in context.

      We have added a section in the introduction (lines 66-81) summarizing the known physiological functions of PGC1α

      3) lines: 121-3: "...depletion of dPGC1...did not have a major impact on adult wing size and shape (Fig 1B, C)." There is a small but statistically significant difference so the authors should state this in the text.

      We have revised the text to acknowledge that dPGC1 depletion leads to a modest but statistically significant reduction in wing size. In addition to the original analysis, we have now included further experiments to strengthen this point. Specifically, we analyzed wings from flies homozygous for the dPGC11 allele (also known as dPGC1KG08646; see FlyBase: https://flybase.org/reports/FBal0148128) and confirmed a small but significant reduction in both wing disc and adult wing size compared to controls (this can be found in Fig. 1 and Fig. S1). These results support the conclusion that, although dPGC1 is dispensable for viability and gross morphology, it contributes to normal wing growth. These new results can be found in lines 144-153.

      4) Figure 5A (Cyclin E western blot): the authors should show molecular weight markers. In the revised version of our manuscript, we are including the molecular markers as indicated by the reviewer. These can be found in Fig S12.

      Reviewer #2 (Significance (Required)):

      The manuscript by Sew et al builds on the previous work by Nagaraj et al to explore the role of mitochondrial function in tumors driven by disruption of the Hippo pathway. In particular, the authors identify dPGC1 as a transcription factor that limits Yki-driven mitochondrial fusion and tissue growth. Interestingly, they further show that Yki/PGC1-depleted tumors are highly sensitive to Cyclin E levels, due to post-transcriptional Cyclin E increase. These results further our knowledge of how Yki drives growth and how mitochondria participate in oncogenic transformation. With appropriate revision as outlined above (for example exploring whether the mechanism proposed is Yki-specific), the manuscript will be of broad interest to developmental and cancer biologists.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript presents compelling evidence that dPGC1 acts as a context-dependent tumor suppressor in Drosophila by modulating mitochondrial dynamics and limiting Yorkie (Yki)-induced oncogenic growth. By leveraging the Drosophila wing imaginal disc as a model, the authors investigate how dPGC1 depletion exacerbates Yki-driven tissue overgrowth, mitochondrial hyperfusion, Cyclin E upregulation, and DNA damage, leading to tumorigenesis. The study provides valuable insights into the interplay between mitochondrial dynamics and cancer, with implications for understanding metabolic regulation in oncogenesis. While the findings are significant and well-aligned with the field, certain aspects of the experimental design, data presentation, and mechanistic insights require further attention to enhance clarity, reproducibility, and impact. Below, I outline my major concerns and recommendations.

      We addressed concerns about RNAi efficiency and protein-level validation with new qPCR data and mutant analysis. We provided EM and confocal evidence of mitochondrial changes. We clarified non-autonomous effects and quantified Mmp1 and F-actin and added data on miro and Opa1 manipulations. Cyclin E quantification was expanded using multiple Western replicates and a validated mutant allele, and we included new data on mitochondrial membrane potential to assess functional consequences.

      Our detailed responses to each point raised by the reviewer are provided below.

      Major Points

      1. One point is the knock-down efficiency of dPGC1 on the mRNA level, which is between 30 to >50% (Fig. S1C). This is not too strong, so the question arises how severly the protein levels are affected. If possible, an antibody staining with quantification should be performed. From these data it cannot be concluded dPGC1 is not required for normal development, half the dose could be sufficient. How do wings look like when the ap-GAL4 driver is used for dPGC1 knock-down, as this is the driver used in the subsequent experiments? Reviewer 1 also raised concerns about the potential inefficiency of the RNAi treatment in revealing a function during normal wing growth. We agree with both reviewers that the interpretation of the RNAi efficiency data requires clarification.

      The qPCR analysis shown in former Fig. S1C was performed using wing discs from flies expressing UAS-dPGC1-RNAi under the control of the MS1096-Gal4 driver. However, as shown in current Fig. 1C, MS1096-Gal4 is not expressed uniformly across the wing disc. Some regions remain RFP-negative, indicating that the RNAi construct is not active in all cells. As a result, the measured mRNA levels likely underestimate the true knockdown efficiency. This is because the qPCR includes mRNA from both RNAi-expressing and non-expressing cells, diluting the apparent reduction in transcript levels.

      To address this limitation and more accurately assess RNAi efficiency, we repeated the qPCR analysis using a ubiquitous driver (actin-Gal4) to ensure uniform expression of the RNAi construct. Under these conditions, we observed a more substantial knockdown, with dPGC1 mRNA levels reduced to approximately 25% of control levels (this is shown in current Fig S2). This result indicates that the RNAi line is more effective than initially suggested by the MS1096-Gal4-based analysis.

      To complement our RNAi-based analysis, we additionally used a mutant strain carrying a characterized allele of dPGC1 (dPGC11, also known as dPGC1KG08646; see FlyBase: https://flybase.org/reports/FBal0148128). This genetically distinct approach allowed us to validate and strengthen our findings regarding dPGC1 function. Flies homozygous for this allele exhibited a modest but statistically significant reduction in both wing disc and adult wing size. These results support the conclusion that dPGC1 is required for normal wing growth and development. The new data are now included in Figure 1 and referenced in the main text (lines 144-151).

      Unfortunately, we cannot perform antibody staining due to the unavailability of antibodies against dPGC1.

      How does the wing disc look like when dPGC1 is overepressed together with Yki?

      In response, we performed additional experiments to assess whether dPGC1 overexpression influences Yki-driven overgrowth. We also analyzed the expression of mitochondrial fusion genes (dMfn and Opa1) in this context. As shown in new Fig. S8, dPGC1 overexpression in Yki-overexpressing wing discs did not significantly affect tissue growth, nor did it alter the mRNA levels of key fusion regulators, dMfn and Opa1. These findings suggest that the transcriptional upregulation of mitochondrial fusion genes observed upon dPGC1 depletion is not a general consequence of altered dPGC1 levels, but rather a specific response that emerges in the context of Yki activation. We now present and discuss these results in the revised manuscript (lines 278-285), highlighting the sensitized nature of mitochondrial remodeling in an oncogenic environment driven by Yki signaling.

      In Fig 2D (but also in Fig. 2C) not only cells in the dorsal but also in the ventral comparmtent seem to overproliferate. Either this is a mis-conception or it is a non-autonomous effect from interfering with Yki and dPGC1 in the vertrnal compartment. In either cases, this has to be clarified.

      Ventral cells are not labelled by GFP. Fig 3D shows a tumor in which GFP-negative cells are not present, suggesting that they are not overproliferating but rather being eliminated. This phenomenon is consistent with cell competition, a well-characterized process in which transformed or tumorigenic cells outcompete and eliminate neighboring wild-type cells. We have previously described this behavior in wing disc tumors (PMID: 26853367; DOI: 10.1016/j.cub.2015.12.042), and it likely contributes to the expansion of the tumor mass by removing surrounding normal tissue also in this context.

      In Fig. 2F-H quantification of Mmp1 and F-actin is missing. Mmp1 is a JNK target, so the authors could do in addition an anti-phospho JNK antibody staining.

      In response, we have performed those quantifications. They are now included in Fig 2M, N.

      In Fig. 3: how does the mitochondrial network look like in the wing disc periopodial epithelium using the Gug>Yki+dPGC1 genotype? Is it similar to Gug>dMfn or Gug>miro?

      We attempted to perform this analysis; however, Yki overexpression under the control of Gug-GAL4 resulted in larval lethality, likely due to GAL4 activity in essential tissues such as the central nervous system. As a result, we were only able to induce transgene expression for 24 hours before lethality occurred.

      At this early point, no detectable changes in mitochondrial morphology were observed in the peripodial membrane, likely because the duration of transgene expression was insufficient to elicit phenotypic alterations in this specific tissue. Therefore, while we aimed to compare this genotype to Gug>dMfn and Gug>miro, the technical limitations prevented a conclusive analysis.

      We have prepared a representative figure for the reviewer (below), showing representative confocal images of wing discs showing mito-GFP and Dapi in the three genotypes indicated in the Fig.

      In Fig. 3I: what is really the mitochondrion? It would be good to outline the region(s) that was/were measured.

      To improve clarity, we have repeated the electron microscopy (EM) analysis and now provide representative images that more clearly illustrate mitochondrial morphology in the different genotypes analyzed. These updated images presented in Fig 4 better highlight the structural alterations observed upon genetic manipulation and help clarify the basis for our morphological assessments.

      We have extended our analysis and have assessed mitochondrial ultrastructure in Yki + dPGC1-RNAi wing disc tumors, with and without dMfn1 downregulation—the most upregulated mitochondrial fusion gene in this tumor context. In Yki + dPGC1-RNAi tumors, mitochondria appeared more elongated, consistent with increased fusion. Upon dMfn1 depletion, we observed a dramatic shift in mitochondrial morphology: mitochondria became larger and more rounded, with disrupted cristae and onion-like structures, indicative of compromised mitochondrial integrity and function (see new Fig 4).

      A quantification of RNAi and overexpression efficiencies of the different transgenes in Fig. 3 is required.

      To assess the efficiency of RNAi-mediated knockdown and transgene overexpression, we performed quantitative PCR (qPCR) using the ubiquitous Actin-Gal4 driver. While we acknowledge that this driver does not replicate the spatial specificity of the periodic membrane Gal4 driver used in the experiments shown in Figure 3 (Gug-Gal4), the latter targets a very limited number of cells within the imaginal disc, making reliable qPCR quantification unfeasible.

      Using Actin-Gal4 allows us to obtain a relative and informative measure of transgene efficiency across the different constructs. These data confirm effective knockdown and overexpression of the relevant genes and are now included in Figure S2.

      In Fig. 4: what is the phenotype when miro is over-expressed in combination with Yki? Or when it is knocked down in the ap>Yki-dPGC1 background? This was the gene tested in Fig. 3 with a clear mitochondrial phenotype

      To address whether miro contributes to Yki-mediated tumor growth, we performed the requested experiments and now include the results in the revised manuscript (see updated Results section, lines 374-377, and new Fig. S11).

      Our data show that overexpression of miro in combination with Yki does not lead to a significant increase in tissue growth or tumor-like phenotypes, in contrast to the effects observed with dMfn or Opa1 overexpression. Similarly, knockdown of miro in the ap>Yki-dPGC1-RNAi background did not suppress tumor growth, indicating that miro is not required for the enhanced proliferation observed in this context.

      These findings suggest that, although miro influences mitochondrial morphology in normal wing discs (as shown in Fig. 3), its role in tumorigenesis is distinct from that of dMfn and Opa1. We have revised the manuscript to clarify the gene-specific contributions of mitochondrial fusion regulators to Yki-driven tumorigenesis. This distinction underscores the complexity of mitochondrial dynamics and highlights that not all fusion-related genes exert the same functional impact in oncogenic settings.

      How does the mitochondrial morphology in the wing disc peripodial epithelium look like in Gug>Opa1RNAi or Gug>Opa1 discs?

      To assess the impact of Opa1 on mitochondrial morphology in the peripodial epithelium of the wing disc, we used the Gug-GAL4 driver to either overexpress or knock down Opa1. Our analysis revealed that Opa1 overexpression led to slightly elongated mitochondria, but did not result in extensive network formation, suggesting a modest enhancement of inner membrane fusion. In contrast, Opa1 knockdown caused clear mitochondrial fragmentation, closely resembling the phenotype observed upon dMfn depletion. These results shown in Fig 3 are consistent with the distinct roles of Opa1 and dMfn in regulating mitochondrial fusion: Opa1 primarily modulates inner membrane fusion and cristae architecture, while dMfn drives outer membrane fusion and network connectivity.

      The corresponding data are presented in Figure 3F, G, and quantified in Figure S9, alongside experiments manipulating other genes involved in mitochondrial dynamics.

      Why have the authors switched between the ap>Yki+dPGCRNAi and the ap>Yki+dPGC1shRNA lines? It would be important to have this series of experiments in the same backgrounds, as KD efficiencies are different (Fig. S1C).

      The primary reason for switching between the dPGC1-RNAi and dPGC1-shRNA lines was practical: the chromosomal insertion sites of the transgenes made certain genetic combinations more feasible with one line over the other. This flexibility significantly facilitated our experimental design and analysis.

      To address concerns regarding knockdown efficiency, we performed a comparative analysis using the ubiquitous actin-GAL4 driver, rather than MS1096-GAL4, which exhibits patchy and dynamic expression in the wing imaginal disc. This allowed us to obtain a more consistent and interpretable measure of mRNA downregulation for both transgenes. Our results show that both lines achieve comparable levels of knockdown, as shown in Figure S2.

      Fig. 5A: proper quantification of Western Blot signals is required. I do not agree that Cyclin E protein levels are elevated in ap>Yki or ap>Yki+dPGC1 discs. Even at the mRNA levels the increase in expression is rather weak. From these results nothing can be concluded.

      We have repeated the Western blot analysis using seven independent membranes to ensure robust quantification of Cyclin E levels in ap>Yki and ap>Yki+dPGC1-RNAi wing discs (Fig 6).

      Although the increase in Cyclin E protein levels is subtle, it is consistent across replicates and statistically significant. We have now included the quantification of these Western blot signals in the revised Figure 6, which supports the conclusion that Cyclin E levels are elevated in ap>Yki+dPGC1 discs.

      We hope this additional data addresses the reviewer’s concern and strengthens the interpretation of our results.

      Knock-down efficiencies for dap and CycE needs to be quantifiec (Fig. 5H-N). Although the rescue experiment with CycE knock down is from the phenotype convincing, it is nonetheless puzzling, as CycE is accodring to Fig. 5A+B hardly upregulated. An independent CycE RNAi line would be useful.

      We have quantified the knockdown efficiency of the dap-RNAi line, and the results are included in Figure S13.

      Regarding Cyclin E, we would like to clarify that we did not use an RNAi line in this experiment. Instead, we employed the CycE-05306 mutant allele in a heterozygous background, which is expected to reduce Cyclin E levels by approximately 50%. The CycE-05306 allele in Drosophila melanogaster is a loss-of-function allele of the Cyclin E gene. This allele carries a P-element insertion in the first intron of the CycE gene, which disrupts normal transcription and reduces Cyclin E expression. In a heterozygous background, as used in your experiments, CycE-05306/+ is expected to reduce Cyclin E levels by approximately 50%, which is typically sufficient to observe genetic interactions or sensitized phenotypes without affecting normal development. This makes it a valuable tool for studying gene dosage effects, particularly in tumor models where Cyclin E activity may be rate-limiting.

      Importantly, this partial reduction does not impair normal tissue growth, but it strongly limits tumor growth in the context of Yki overexpression combined with dPGC1 downregulation, as shown in Figure 6. This selective sensitivity highlights the functional importance of Cyclin E in supporting oncogenic growth driven by Yki and dPGC1 depletion. We believe this provides compelling evidence for Cyclin E’s role in this tumor model.

      Reviewer #3 (Significance (Required)):

      Strengths and Limitations of the Study Strengths Innovative Focus on Mitochondrial Dynamics and Oncogenesis: The study provides compelling evidence linking mitochondrial dynamics, particularly hyperfusion, to tumorigenesis in Drosophila. The identification of dPGC1 as a context-dependent tumor suppressor adds novel insights into the interplay between metabolism and oncogenesis. Comprehensive Use of Drosophila as a Model System: The study leverages the genetic tractability of Drosophila, allowing precise manipulation of mitochondrial regulators and signaling pathways. The use of wing imaginal discs as a model for tumor growth is well-established and appropriate. Integration of Morphological and Genetic Data: The manuscript combines confocal imaging, electron microscopy, and genetic tools to demonstrate the role of dPGC1 in regulating mitochondrial dynamics, Cyclin E levels, and tissue overgrowth. Relevance to Cancer Biology: The findings address key hallmarks of cancer, including deregulated metabolism, genomic instability, and cell cycle misregulation. The study's exploration of these processes in a simple model organism provides a strong basis for translating findings to mammalian systems.

      Limitations Validation of RNAi and Overexpression Efficiency: The knockdown efficiency of dPGC1 on the mRNA level is only moderate (30-50%), and protein-level validation is missing. Without this, the study cannot conclusively demonstrate the role of dPGC1 in normal development or tumorigenesis. Incomplete Mechanistic Insights: The manuscript identifies Cyclin E as a potential driver of tumor growth but does not adequately explore how mitochondrial hyperfusion leads to Cyclin E regulation (e.g., post-transcriptional mechanisms or protein stability). Inconsistencies in Experimental Backgrounds: The study uses different RNAi/shRNA lines and driver combinations inconsistently across experiments, making it difficult to compare results directly. This variability undermines the robustness of the conclusions. Limited Functional Analysis of Mitochondria: While mitochondrial morphology is well-characterized, functional assays (e.g., membrane potential or ATP production) are missing. These would confirm the impact of hyperfusion on cellular energetics and oncogenesis.

      In the revised manuscript, we have addressed each of the concerns raised.

      In addition to that, in the revised version of the manuscript, we have included new experiments to assess mitochondrial functionality in tumors co-expressing Yki and dPGC1-RNAi. Specifically, we analyzed the Mitochondrial Membrane Potential (MMP). We used TMRE staining to evaluate MMP, a key indicator of mitochondrial integrity and oxidative phosphorylation capacity. Our analysis revealed no significant differences in MMP between Yki tumors and Yki + dPGC1-RNAi tumors, suggesting that mitochondrial membrane potential is preserved despite the observed morphological abnormalities. These results are shown in Fig S6. In the text it is discussed in lines 233-243.

      Contribution to Existing Literature The study makes a significant contribution to the growing body of literature on the metabolic regulation of cancer by identifying dPGC1 as a tumor suppressor modulating mitochondrial dynamics. Previous work has established the dual roles of mammalian PGC1α in promoting or suppressing cancer depending on context. This study adds depth by demonstrating similar context-dependent effects in a simpler model organism, facilitating further exploration of the molecular mechanisms involved.

      By linking mitochondrial fusion, Yki signaling, and Cyclin E regulation, the manuscript aligns with and expands upon research on Hippo pathway regulation, cancer metabolism, and mitochondrial biology. The findings highlight the importance of integrating metabolic and signaling networks in understanding oncogenesis.

      Community Selection The current form of the manuscript is best suited for a specialized audience, particularly mitochondrial biologists, Drosophila researchers, and Hippo pathway specialists. To engage a broader community, additional work linking these findings to mammalian models or human cancer biology would be necessary.

  3. drive.google.com drive.google.com
    1. In this section, we review research thatsuggests that, whereas massing practice might promoterapid performance gains during training, distributingpractice facilitates long-term retention of that skill.

      Although massed practice may be useful for understanding material within a limited duration (short term memory), retention is not as effective using this method compared to distributive learning. This is why cramming material before a test is not the most effective way to actually retain the information learned from that short studying period, whereas distributive practice allows for breaks between practice to strengthen retention and retrieval (practice makes perfect!) We should think of studying strategies that discourage cramming in learning.

    1. or by the teacher with input from students

      I think this is something I'll be taking with me into my future classrooms because it isn't something I ever thought about before we talked about it in class. Kids and teenagers are more apt to do what their friends are doing or what their friends think is best, and if we come up with rules and norms as an entire class which includes aforementioned friends they'll feel more likely to listen and abide by them. When the rules are just from the teacher some of the more rebellious teens could feel the need to push the limit some. It could also help by bringing insight into what they may or may not understand or already abide by at home.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC- 2025-03073

      Corresponding author(s): Shaul Yogev

      1. General Statements [optional]

      We kindly thank our reviewers for their enthusiasm, thoughtful feedback, and constructive suggestions on how to strengthen our manuscript. Below, we provide a point-by-point response to reviewer comments and outline the experiments we will do to address every concern that has been raised.

      2. Description of the planned revisions

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This interesting study uses an unbiased genetic screen in C. elegans to identify SAX-1/NDR kinase as a regulator of dendritic branch elimination. Loss of SAX-1 results in an excess branching phenotype that is striking and highly penetrant. The authors identify several additional regulators of branch elimination (SAX-2, MOB-1, RABI-1, RAB-11.2) by using a candidate genetic screen aimed at factors that interact physically or genetically with SAX-1. They propose that SAX-1 acts by promoting membrane retrieval based on the nature of these interactors and the results of an imaging-based in vivo assay for endocytic puncta.

      Major comments.

      1. My biggest concern is that the phenotypes are only observed in temperature-sensitive dauer-constitutive mutant backgrounds, and not in wild-type dauers. That is, wild-type animals exiting dauer do not require SAX-1 for dendrite elimination. While this does not undermine the importance of the results, it does require more explanation. The authors write that "the requirement for sax-1... relies on specific physiological states of the dauer stage," but I do not understand what this means. Are they saying that daf-7 and daf-2 dauers are in a different "physiological state" than wild-type dauers? In what way? What is the evidence for this? A more rigorous explanation is needed. We agree that this is puzzling, and we thank the reviewer for recognizing that this does not undermine the importance of the results. There is ample evidence that daf-2 and daf-7 differ from starvation-induced dauers. For example, a recent preprint finds that the transcriptomes of these two mutants at dauer cluster much closer to each other than to starvation-induced dauers (Corchado et al. 2024). Older work has noted other differences, such as the time the dauer entry decision is made (Swanson and Riddle 1981), the synchronicity of dauer exit, the ability to force dauer entry in daf-d mutants, as well as additional dauer-unrelated phenotypes (reviewed in Karp 2018). We agree with the reviewer that this merits further clarifications and will perform the experiments suggested by the reviewer below:

      To me, the simplest genetic explanation is that daf-7 and daf-2 are partially required for branch retraction in a manner redundant with sax-1, and the ts mutants are not fully wild-type at 15C. Thus, the sax-1 requirement is revealed only in these mutant backgrounds. Can the authors examine starvation-induced dauers of daf-7 or daf-2 raised continuously at 15C?

      We will do this experiment.

      daf-7 and daf-2 ts strains can form "partial dauers" that have a dauer-like appearance but are not SDS resistant. Could the difference between partial dauers and full dauers account for the difference in sax-1-dependence? The authors could use SDS selection of the daf-7 strain at 25C to ensure they are examining full dauers.

      We tested daf-7 mutants with 1% SDS when we set up the system – they are fully dauer at 25°C and are SDS sensitive after exit. We will repeat this important control with daf-7; sax-1 double mutants.

      The Bargmann lab has created a daf-2 FLP-OUT strain (ky1095ky1087) that allows cell-type-specific removal of daf-2. Could this be used to test for a cell-autonomous role of daf-2 in IL2Q related to branch elimination?

      We can attempt this experiment. However, since IL2 promoters turn on prior to dauer, the interpretation would not be straightforward – it would be hard to exclude that a cell autonomous defect in dauer entry does not account for the IL2 dauer exit phenotype, even if branching appears normal.

      These ideas are not a list of specific experiments the authors need to complete, rather they are meant to illustrate some possible approaches to the question. Whatever approach they use, it is important for them to more rigorously explain why SAX-1 is not required for branch removal in wild-type animals.

      We completely agree. We will carry out the 15°C experiment, examine morphological characteristics and test SDS resistance. In addition, we will test neuronal markers that differ between dauers and non-dauers to determine whether the mutants are full or partial dauers at the relevant timepoints.

      The SAX-2 localization (Fig. 4) and endocytosis assay (Fig. 6) results were not clear to me from the data shown. Overall a more rigorous analysis and presentation of the data would be important to make these conclusions convincing. This may involve refining the data presentation in the figures, modifying the claims (e.g., "we propose" vs "we find"), or saving some of the data to be more fully explored in a future paper. In my view, these figures are the biggest weak point of the manuscript and also are not important for the central conclusions (which are well supported and convincing), indeed these results are barely mentioned in the Abstract or last paragraph of Introduction.

      We agree that the analysis and presentation of Figures 4 and 6 need to be improved. The presentation has already been updated, and the figures are clearer now. In the revision, we will increase sample size to provide stronger conclusions, consolidate some of the analysis and further improve presentation. While we agree with the reviewer that conclusions from these figures are not as strong as those drawn from genetic experiments, they do complement and support the conclusions of those other figures.

      • In Fig. 4D, why is SAX-2 visible throughout the entire neuron and why is the "punctum" marked with an arrow also seen in the tagRFP channel? One gets the impression that some of the puncta may be background, bleed-through, or artifacts due to cell varicosities.

      There is no bleed-through: this is most evident by looking at the brightest signals in the cell body (now labelled with an asterisk in a zoomed-out image) and noting that they do not bleed between channels. In sax-1 mutants, the SAX-2::GFP puncta are very obvious and distinguishable from the tagRFP channel. In control, SAX-2::GFP is very faint in the dendrite, so we increased the contrast to allow visualization. The reviewer is correct that under these conditions, some puncta look like the cytosolic fill. In the revision, we will re-analyze the data and will not consider these as bona-fide SAX-2 puncta, but rather cytosolic SAX-2 that accumulates due to constrictions and varicosities in the dendrite.

      • Related to both Fig. 4 and Fig. 6, where does SAX-1 localize in IL2Q in dauer and post-dauer? Does its expression or localization change during branch retraction? Does it co-localize with SAX-2 or endocytic puncta?

      We generated an endogenously tagged sax-1 with a 7xspGFP11 tag; however, this was below detection in the IL2s. For the revisions, we can test an overexpressed cDNA construct.

      **Referee cross-commenting**

      I think we all touched on similar points. I wanted to follow up on Reviewer 3's comment, "Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults." I thought this was an excellent point. It made me wonder if that might explain why the defect is only seen in daf-7 and daf-2 mutant backgrounds - maybe these strains retain partial dauer traits even after exit. Is there a specific experiment that they could do? Did you have specific characteristics of dauer morphology in mind for them to check? (Ideally something in the nervous system that can be scored quantitatively.)

      Please see response to point #1 regarding experiments we will do to confirm the “dauer state” of daf-7 and daf-7; sax-1 double mutants.

      Reviewer #1 (Significance (Required)):

      A major strength of this work is the pioneering use of a novel system to study neuronal branch retraction. C. elegans has provided a powerful model for studying how dendrite branches form, but much less attention has been paid to how excess neuronal branches are removed. The post-dauer remodeling of IL2Q neurons provides an exciting and dramatic physiological example to explore this question.

      This paper is notable for taking the first steps towards developing this innovative model. It does exactly what is needed at the outset of a new exploration - a forward genetic screen to discover the main regulators of the process. Using a combination of classical and modern genetic approaches, the authors bootstrap their way to a sizeable list of factors and a solid understanding of the properties of this system, for example that retraction of higher vs lower order dendrites show different genetic requirements.

      We thank the reviewer for recognizing the novelty and significance of our work.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors establish C. elegans IL2 neurons as a system in which to study dendrite pruning. They use the system to perform a genetic screen for pruning regulators and find an allele of sax-1. Unexpectedly sax-1 is only required for post-dauer pruning in two different genetic backgrounds that induce dauer formation, but not starvation-induced dauer formation. Sax-1/NDR kinase reduction has previously been associated with increased outgrowth and branching in other systems, so this is a new role for this protein. However, the authors show that proteins that work with Sax-1 in other systems, like sax-2/fry, also play a role in this pathway. The genetic experiments are beautiful and the findings are all clearly explained and strongly supported. The authors also examine sax-2 localization, which localizes sax-1 in other systems, and show it in puncta in dendrites that increase with dauer exit, consistent with function at the time of pruning. They also show that membrane trafficking regulators associated with NDR kinases function in the same pathway here, hinting that endocytosis may play a role during pruning as in Drosophila. The link to endocytosis was a little weak (see Major point below). Overall, this study describes a new system to study pruning and identifies NDR/fry/Rabs as regulators of pruning during dauer exit. The work is very high quality and both the imaging and genetics are extremely well done.

      We thank the reviewer for their positive assessment of the manuscript.

      Major points

      1. The only place where there were any questions about the data was the last figure (6G and I). Here they use uptake of GFP secreted from muscle as a readout of endocytosis in IL2 neurons. They nicely show that more internalized puncta accumulate as animals exit dauer. The claim that this is reduced in sax-1 mutants doesn't seem to match the images shown well. In the image there are many more puncta in the GFP channel and much more accumulation of the RFP-tagged receptor everywhere. It seems like some additional analysis of this data is important to fully capture what is going on and whether this really represents an endocytic defect. We agree and will provide additional data in Figure 6. The specific discrepancy between the image and the quantification is because we showed a single focal plane rather than a projection. This does not capture all the puncta in a neurite. The current version shows a projection, making it evident that the mutants has fewer puncta compared to the control.

      Reviewer #2 (Significance (Required)):

      Neurite pruning is important in all animals with neurons. Genetic approaches have primarily been applied to the problem using Drosophila, so identifying a new model system in which to study it is an important step. Using this system, a pathway known to function in a different context is linked to pruning. Thus the study provides new insights into both pruning and this pathway.

      We thank the reviewer for the positive assessment of our study’s significance.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      Summary: Figueroa-Delgado et al. use a C. elegans neuro plasticity model to examine how dendrites are eliminated upon recovery from the stress induced larval stage, dauer. The authors performed a mutagenesis screen to identify novel regulators of dendrite elimination and revealed some surprising results. Branch elimination mechanism varies between 2{degree sign}, 3{degree sign}, and 4{degree sign} branches. The NDR kinase, SAX-1 and it's interactors (SAX-2 and MOB-2) are required for elimination of second and third order branches but not fourth order branches. Interestingly they showed that branch elimination varies depending on the stimulus of dendrite outgrowth such that the NDR kinase is required for branch elimination after genetically inducing the dauer stage but is not required if dauers are produced through food deprivation. The authors go a step further to include a small candidate screen looking at various pathways of membrane remodeling and identify additional regulators of dendrite elimination related to membrane trafficking including RABI-1, RAB-8, RAB-10, and RAB-11.2.

      We thank the reviewer for their time and suggestions below

      Major comments:

      • While I find the data promising and exciting, several of the experiments have concerningly low sample sizes. Fig 3G, Fig 4G, Fig 5J and L, and Fig 6I all contain data sets that are fewer than 10 animals. Sample sizes should be stated specifically in the figure legends for all data represented in the graphs. We thank the reviewer for finding the data exciting. We agree that the sample sizes in some panels is low and will increase it in the revised version. Sample sizes are now specifically listed in the figure legends.

      • All statements based on data not shown should be amended to include the data as a supplemental figure or edited to omit the statement based on withheld data. We agree. Some “not shown” data are already added to the current version of the manuscript and the rest will be added to the fully revised version, or the statements will be omitted.

      • Rescue experiments (Fig 2J) should demonstrate failure to rescue from neighboring tissue types (hypodermis and muscle) to conclude cell autonomous rescue rather than a broadly acting factor. Thank you for the suggestion. We will use a hypodermal promoter and a muscle promoter driving SAX-1 cDNA expression to strengthen the claim of cell autonomy.

      • Fig 4 needs quantification of higher order branches and SAX-2 proximity to branch nodes as these are discussed in the text. We will add this quantification.

      Minor comments:

      • Fig 1C-F, It appears like the shy87 allele produces animals of significantly different body sizes. It would improve rigor to normalize the dendrite coverage to body size in the quantification. We do not see a biologically meaningful size difference between shy87 and control, it may be the specific image shown. We will confirm this by measuring animal size for the final revision.

      • Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults. This important point was also raised by Reviewer 1. We will test SDS sensitivity, morphological markers, and molecular markers to determine the dauer “state” of the mutants used in this study. The results will be included in the final revision.

      • The text references multiple transgenic lines tested in Fig 2I-J but only one line is shown. Additional lines were visually examined under a fluorescent compound microscope but not imaged or quantified. We will add this quantification to the final revision.

      • Fig 4F, Additional timepoints would enhance the sax-1 localization result and might provide insight into mechanism of action for sax-1. We will add the localization in post-dauer adults.

      • Fig 6I Control and sax-1(ky491) example images should be provided in the supplement. We will add these images to the final revision.

      **Referee cross-commenting**

      I agree that we shared many of the same concerns.

      There are several general assays for dauer characteristics that could be used here to determine if the post-dauer animals retain other characteristics of the dauer stage in addition to IL2 branches (SDS resistance, alae remodeling, pharyngeal bulb morphology, nictation behavior). The nictation behavior has been connected very nicely with IL2 neurons (Junho Lee's group). Additionally, FLP dendrites occupy the same space as the IL2 branches and outgrowth in post-dauers occurs in coordination with IL2 branch elimination - this might be another optional experiment, to check if FLP growth is impeded by persistent IL2 branches. All of these could be quantified similar to how the authors have already established with their IL2 model (FLP dendrite branches) or with a binary statistic.

      Please see responses to Reviewer 1 and 3 above for the list of experiments to determine whether the animals fail to completely enter or exit dauer.

      Reviewer #3 (Significance (Required)):

      SIGNIFICANCE ============ These results describe a new role for the NDR kinase complex in dendrite pruning that has clinical significance to our understanding of human brain development and human health concerns in which pruning is dysregulated, such as observed in the case of autism. The authors use an established neuro-plasticity, C. elegans model (Schroeder et al. 2013) which provides a tractable and reproduceable platform for discovering the mechanism of dendrite pruning. These results would influence future work in the fields of cell biology of the neuron and disease models of brain development.

      My expertise is in the field of C. elegans neuroscience and stress biology and have sufficient expertise to evaluate all aspects of this work.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #1

      • In Fig. 4C, the distinction between puncta in the primary or higher-order dendrites is not clear to me, and several puncta that I would have scored as primary are marked as higher-order.

      We apologize for a mistake in the arrowhead color and overall presentation of this figure. It has been fixed in the current version.

      • Related to this, in Fig. 4B are the two arrows meant to be white as in the top panel, or yellow as in the bottom panel?

      We thank Reviewer #1 for their observation, and we apologize for our oversight. We fixed this in the current version.

      • In Fig. 4, where in the head are we looking? It would help to show a more low-magnification view of the entire cell.

      We added zoomed-out images and indicated where the zoomed in insets are taken from. We thank the reviewer for helping us improve the clarity of the data.

      • The main sax-1 phenotype is increased SAX-2 puncta in dauer, but the branch retraction defect is in post-dauers. How is this relevant to the phenotype?

      This is a very good point. The increase in SAX-2 puncta in sax-1 mutants is stronger during dauer-exit than in dauer, consistent with this being the time when SAX-1 functions. We agree that some earlier activity of SAX-1 cannot be excluded, and we do not assume that the effect on SAX-2 completely accounts for the pruning defects. This is now acknowledged in the text. However, given that both proteins function together in pruning, and given that the effect is strongest during dauer exit, we do believe that this data is informative and worth showing.


      • The number of SAX-2 puncta in sax-1 mutants decreases almost to normal in post dauers. Is there a correlation between the number of remaining branches and the number of SAX-2 puncta? That is, do the many wild-type animals with "excess" SAX-2 puncta also fail to retract branches?

      There is no correlation. In other words, the number of SAX-2 puncta does not instruct the extent of pruning. Please note the quantifications underestimate the number of SAX-2 puncta in the mutants, since they were only done on the primary dendrite. This is necessary because the mutant and control have different arbor size, so only branch order that can be appropriately compared are primary dendrites.

      • The control post-dauer data in Fig. 4F and 4H are identical (re-used data) but the corresponding control dauer data in Fig. 4F and 4G are different. What is going on here?

      We thank the reviewer for raising this point and apologize for the oversight in data presentation. In the revised manuscript, we now show all control and experimental data integrated into a single graph, ensuring that each dataset is represented accurately to provide a comparison between dauer and post dauer recovery conditions.


      • Why are sample sizes so small for both strains in Fig. 4G compared to Fig. 4F and 4H?

      We sincerely apologize for this mistake, some of the data was erroneously grouped in the original submission. The revised version contains an updated number of neurons, presented on the same graph, and in the final revision we will further increase sample size. We apologize again for this error.

      • In Fig. 6C, why are the tagRFP (blue) puncta larger than the neurite? Aren't these meant to represent vesicles inside the surrounding neurite? One gets the impression that this is bleed-through from the GFP channel.

      Based on EM, both an endocytic punctum and the diameter of the neuron are smaller than a single pixel. The apparent difference in size in fluorescence microscopy is because the puncta are brighter (they contain more membrane) and thus appear larger. In the current version, the improved presentation of the figure contains zoomed out images that clearly show that there is no bleed-through.

      • In Fig. 6E and 6F, why are there no tagRFP (blue) puncta? Is CD8 not endocytosed at all if it lacks the nanobody sequence? One would expect the tagRFP (blue) signal to be the same in both strains and simply to lack yellow if the nanobody is not present.

      CD8 lacks clear endocytosis motifs, which is why it is advantageous for labelling neurites and testing endocytosis when paired with an endocytic signal (Lee and Luo 1999; Kozik et al. 2010). Conversely, extracellular GFP binding to a membrane GFP antibody can induce endocytosis (for example, see (Tang et al., 2020)), likely by inducing clustering, although we are not familiar with work that explored the mechanism. In the updated version we included a rare example of an mCD8 punctum.

      • The authors report a decrease in endocytic events in sax-1, but qualitatively it looks like there are vastly more puncta inside the neuron in Fig. 6H than in 6G.

      We apologize for the presentation in the original version of Figure 6. This impression was because we showed single focal planes that only captured some of the signal. In the revised version we show projections, which makes it evident that there are fewer endocytic events in the mutant.

      • In Fig. 6E and 6H, why are there so many GFP (yellow) puncta outside the neuron? What are these structures and why are they absent in the strain with the nanobody?

      These puncta are secreted or muscle-associated GFP that has not been internalized by IL2Q neurons. They are present in all strains in this figure, this can be clearly seen in the zoomed-out images that have been added to the updated figure.

      • What is the large central blue structure in Fig. 6H - is this the soma? - and why are puncta in this region not counted?

      This is indeed the soma. In the updated version this can be clearly seen in the zoom-out. The large puncta in the soma were not counted because they may arise from the fusion of an unknown number of smaller puncta, and their precise number cannot be determined at the resolution of fluorescence microscopy.

      • minor: there is text reading "40-" in the bottom panel of Fig. 6H. It is visible when printed but not on screen - adjust levels in Photoshop to reveal it.

      We thank the reviewer for catching this oversight, it is now fixed.

      Minor points:

      1. At several points the authors emphasize the relationship of neurite remodeling to stress, e.g. Abstract and Discussion: "we adapted C. elegans IL2 sensory dendrites as a model [of...] stress-mediated dendrite pruning". It seems unnecessary and potentially misleading to treat this as a neuronal stress response. First, it conflates organismal and cellular stress - there is no reason to think that IL2 neurons are under cellular stress in dauer. In fact parasitic nematodes go through dauer-like stages as part of healthy development and probably have similar remodeling of IL2. Second, dendrite pruning occurs during dauer exit, which is the opposite of a stress response - it reflects a return to favorable conditions. We agree. We modified the abstract and discussion to avoid conflating organismal stress (the alleviation of which is relevant for triggering pruning) and cellular stress. Thank you for pointing this out.

      In Fig. 1A, C. elegans is shown going directly from L1 to dauer in response to unfavorable conditions, which is incorrect. Animals proceed through L2 (in many cases actually an alternative L2d pre-dauer) and then molt into dauer (an alternative L3 stage) after completing L2.

      We updated the schematic to include the L2d stage where commitment to dauer entry or resumption to reproductive development is made.

      In Fig. 1B, please check if it is correct that hypodermis contacts the pharynx basement membrane as drawn. The schematic in the top panel makes it look like there is a single secondary branch and the quaternary branches are similar in length to the primary dendrite. The schematic in the bottom panel makes it look like the entire neuron is a small fraction of the length of the pharynx. Could these be drawn closer to scale?

      The hypodermis does contact the pharynx basement membrane. We redrew the schematic for clarity.

      Reviewer #2

      For context, it might be helpful to know whether branching of other dendrites is increased in sax-1 mutants (as expected based on phenotypes in other animals) or decreased like IL2 neurons.

      We examined the branching pattern of PVD, a polymodal nociceptive neuron (new Supplemental Figure 3). We find no significant difference between control and sax-1 or sax-2 mutants, suggesting that these genes function in the context of pruning. Recent work (Zhao et al. 2022) confirms that sax-1 is not required for PVD branching.

      Minor:

      "shy87 mutant dauers showed a minor reduction in secondary and tertiary branches compared to control (Figure 1G). These results indicate that shy87 is specifically required for the elimination of dauer-generated dendrite branches." Maybe temper the specificity claim some as the reduction in branches is definitely there.

      We agree, the claim was tempered.

      "three complimentary approaches" should be complementary

      Thank you for noticing. We fixed this.

      "In control animals, SAX-2 was mostly concentrated in the cell body (data not shown)" It might be nice to include some overview images that show the cell body for completeness.

      We added zoomed-out images to the revised figure, thank you for the suggestion.

      Reviewer #3


      Minor comments:


      • Fig 1G-H, are shy87 second and third order branch counts statistically different between dauer and post dauer adults? This comparison would strengthen the claim that these order branches fail to eliminate all together rather than undergo a partial elimination. We added this to Figure S2. The shy87 mutants show a complete failure in eliminating secondary branches (i.e. no difference between dauer and post-dauer) and a strong but incomplete defect in eliminating tertiary branches.

      • Fig 4B-E Indicate branch order in the images, this is unclear and a point that is focused on in the text. Done.

      • Discussion of Fig 1G from the text claims that shy87 is specifically required for branch elimination yet the data shows significant defects in branch outgrowth as well. This raises the question, are the branches abnormally stabilized that results in early underdevelopment and late atrophy? Authors should acknowledge alternative hypotheses. We agree and will revise the text accordingly. The difference between shy87 and control dauers, while statistically significant, is relatively minor and can only be detected by careful quantification, it is not apparent from looking at the images (in contrast for example to rab-8 and rab-10 mutants, where we acknowledge in the text that their branching defects might affect subsequent pruning.

      • Authors reference a branch elimination process but don't outline what this would entail and where their results fit in. We apologize for being unclear. Given that sax-1 and sax-2 function together, one would intuitively expect to see SAX-2 being reduced in sax-1 mutants, yet the opposite is observed. On potential explanation is that SAX-1 does not directly control SAX-2 abundance, but that clearance of SAX-2 is part of the pruning process that both proteins regulate. This would explain the enrichment of SAX-2 in sax-1 mutants. However, additional models cannot be excluded, and we acknowledge this in the revised text.

      References:

      Corchado, Johnny Cruz, Abhishiktha Godthi, Kavinila Selvarasu, and Veena Prahlad. 2024. “Robustness and Variability in Caenorhabditis Elegans Dauer Gene Expression.” Preprint, bioRxiv, August 26. https://doi.org/10.1101/2024.08.15.608164.

      Karp, Xantha. 2018. “Working with Dauer Larvae.” WormBook, August 9, 1–19. https://doi.org/10.1895/wormbook.1.180.1.

      Kozik, Patrycja, Richard W Francis, Matthew N J Seaman, and Margaret S Robinson. 2010. “A Screen for Endocytic Motifs.” Traffic (Copenhagen, Denmark) 11 (6): 843–55. https://doi.org/10.1111/j.1600-0854.2010.01056.x.

      Lee, T., and L. Luo. 1999. “Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis.” Neuron 22 (3): 451–61.

      Swanson, M. M., and D. L. Riddle. 1981. “Critical Periods in the Development of the Caenorhabditis Elegans Dauer Larva.” Developmental Biology 84 (1): 27–40. https://doi.org/10.1016/0012-1606(81)90367-5.

      Tang, Rui, Christopher W Murray, Ian L Linde, et al. n.d. “A Versatile System to Record Cell-Cell Interactions.” eLife 9: e61080. https://doi.org/10.7554/eLife.61080.

      Zhao, Ting, Liying Guan, Xuehua Ma, Baohui Chen, Mei Ding, and Wei Zou. 2022. “The Cell Cortex-Localized Protein CHDP-1 Is Required for Dendritic Development and Transport in C. Elegans Neurons.” PLOS Genetics 18 (9): e1010381. https://doi.org/10.1371/journal.pgen.1010381.


      4. Description of analyses that authors prefer not to carry out

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      This interesting study uses an unbiased genetic screen in C. elegans to identify SAX-1/NDR kinase as a regulator of dendritic branch elimination. Loss of SAX-1 results in an excess branching phenotype that is striking and highly penetrant. The authors identify several additional regulators of branch elimination (SAX-2, MOB-1, RABI-1, RAB-11.2) by using a candidate genetic screen aimed at factors that interact physically or genetically with SAX-1. They propose that SAX-1 acts by promoting membrane retrieval based on the nature of these interactors and the results of an imaging-based in vivo assay for endocytic puncta.

      Major comments.

      1. My biggest concern is that the phenotypes are only observed in temperature-sensitive dauer-constitutive mutant backgrounds, and not in wild-type dauers. That is, wild-type animals exiting dauer do not require SAX-1 for dendrite elimination.

      While this does not undermine the importance of the results, it does require more explanation. The authors write that "the requirement for sax-1... relies on specific physiological states of the dauer stage," but I do not understand what this means. Are they saying that daf-7 and daf-2 dauers are in a different "physiological state" than wild-type dauers? In what way? What is the evidence for this? A more rigorous explanation is needed.

      To me, the simplest genetic explanation is that daf-7 and daf-2 are partially required for branch retraction in a manner redundant with sax-1, and the ts mutants are not fully wild-type at 15C. Thus, the sax-1 requirement is revealed only in these mutant backgrounds. Can the authors examine starvation-induced dauers of daf-7 or daf-2 raised continuously at 15C?

      daf-7 and daf-2 ts strains can form "partial dauers" that have a dauer-like appearance but are not SDS resistant. Could the difference between partial dauers and full dauers account for the difference in sax-1-dependence? The authors could use SDS selection of the daf-7 strain at 25C to ensure they are examining full dauers.

      The Bargmann lab has created a daf-2 FLP-OUT strain (ky1095ky1087) that allows cell-type-specific removal of daf-2. Could this be used to test for a cell-autonomous role of daf-2 in IL2Q related to branch elimination?

      These ideas are not a list of specific experiments the authors need to complete, rather they are meant to illustrate some possible approaches to the question. Whatever approach they use, it is important for them to more rigorously explain why SAX-1 is not required for branch removal in wild-type animals. 2. The SAX-2 localization (Fig. 4) and endocytosis assay (Fig. 6) results were not clear to me from the data shown. Overall a more rigorous analysis and presentation of the data would be important to make these conclusions convincing. This may involve refining the data presentation in the figures, modifying the claims (e.g., "we propose" vs "we find"), or saving some of the data to be more fully explored in a future paper. In my view, these figures are the biggest weak point of the manuscript and also are not important for the central conclusions (which are well supported and convincing), indeed these results are barely mentioned in the Abstract or last paragraph of Introduction.

      • In Fig. 4, where in the head are we looking? It would help to show a more low-magnification view of the entire cell.
      • In Fig. 4D, why is SAX-2 visible throughout the entire neuron and why is the "punctum" marked with an arrow also seen in the tagRFP channel? One gets the impression that some of the puncta may be background, bleed-through, or artifacts due to cell varicosities.
      • In Fig. 4C, the distinction between puncta in the primary or higher-order dendrites is not clear to me, and several puncta that I would have scored as primary are marked as higher-order.
      • Related to this, in Fig. 4B are the two arrows meant to be white as in the top panel, or yellow as in the bottom panel?
      • The main sax-1 phenotype is increased SAX-2 puncta in dauer, but the branch retraction defect is in post-dauers. How is this relevant to the phenotype?
      • The number of SAX-2 puncta in sax-1 mutants decreases almost to normal in post dauers. Is there a correlation between the number of remaining branches and the number of SAX-2 puncta? That is, do the many wild-type animals with "excess" SAX-2 puncta also fail to retract branches?
      • The control post-dauer data in Fig. 4F and 4H are identical (re-used data) but the corresponding control dauer data in Fig. 4F and 4G are different. What is going on here?
      • Why are sample sizes so small for both strains in Fig. 4G compared to Fig. 4F and 4H?
      • In Fig. 6C, why are the tagRFP (blue) puncta larger than the neurite? Aren't these meant to represent vesicles inside the surrounding neurite? One gets the impression that this is bleed-through from the GFP channel.
      • In Fig. 6E and 6F, why are there no tagRFP (blue) puncta? Is CD8 not endocytosed at all if it lacks the nanobody sequence? One would expect the tagRFP (blue) signal to be the same in both strains and simply to lack yellow if the nanobody is not present.
      • In Fig. 6E and 6H, why are there so many GFP (yellow) puncta outside the neuron? What are these structures and why are they absent in the strain with the nanobody?
      • What is the large central blue structure in Fig. 6H - is this the soma? - and why are puncta in this region not counted?
      • The authors report a decrease in endocytic events in sax-1, but qualitatively it looks like there are vastly more puncta inside the neuron in Fig. 6H than in 6G.
      • minor: there is text reading "40-" in the bottom panel of Fig. 6H. It is visible when printed but not on screen - adjust levels in Photoshop to reveal it.
      • Related to both Fig. 4 and Fig. 6, where does SAX-1 localize in IL2Q in dauer and post-dauer? Does its expression or localization change during branch retraction? Does it co-localize with SAX-2 or endocytic puncta?

      Minor points:

      1. At several points the authors emphasize the relationship of neurite remodeling to stress, e.g. Abstract and Discussion: "we adapted C. elegans IL2 sensory dendrites as a model [of...] stress-mediated dendrite pruning". It seems unnecessary and potentially misleading to treat this as a neuronal stress response. First, it conflates organismal and cellular stress - there is no reason to think that IL2 neurons are under cellular stress in dauer. In fact parasitic nematodes go through dauer-like stages as part of healthy development and probably have similar remodeling of IL2. Second, dendrite pruning occurs during dauer exit, which is the opposite of a stress response - it reflects a return to favorable conditions.
      2. In Fig. 1A, C. elegans is shown going directly from L1 to dauer in response to unfavorable conditions, which is incorrect. Animals proceed through L2 (in many cases actually an alternative L2d pre-dauer) and then molt into dauer (an alternative L3 stage) after completing L2.
      3. In Fig. 1B, please check if it is correct that hypodermis contacts the pharynx basement membrane as drawn. The schematic in the top panel makes it look like there is a single secondary branch and the quartenary branches are similar in length to the primary dendrite. The schematic in the bottom panel makes it look like the entire neuron is a small fraction of the length of the pharynx. Could these be drawn closer to scale?

      Referee cross-commenting

      I think we all touched on similar points. I wanted to follow up on Reviewer 3's comment, "Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults." I thought this was an excellent point. It made me wonder if that might explain why the defect is only seen in daf-7 and daf-2 mutant backgrounds - maybe these strains retain partial dauer traits even after exit. Is there a specific experiment that they could do? Did you have specific characteristics of dauer morphology in mind for them to check? (Ideally something in the nervous system that can be scored quantitatively.)

      Significance

      A major strength of this work is the pioneering use of a novel system to study neuronal branch retraction. C. elegans has provided a powerful model for studying how dendrite branches form, but much less attention has been paid to how excess neuronal branches are removed. The post-dauer remodeling of IL2Q neurons provides an exciting and dramatic physiological example to explore this question.

      This paper is notable for taking the first steps towards developing this innovative model. It does exactly what is needed at the outset of a new exploration - a forward genetic screen to discover the main regulators of the process. Using a combination of classical and modern genetic approaches, the authors bootstrap their way to a sizeable list of factors and a solid understanding of the properties of this system, for example that retraction of higher vs lower order dendrites show different genetic requirements.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      I am not currently convinced by the principal interpretations and think that other explanations based on known phenomena could account for key results. Specifically the authors have not resolved whether oxidative modification to 5mC and 3mC, or chemical attack to ssDNA that is transiently exposed in the repair processing of 5mC and 3mC is the principal source of the observed genotoxicity.

      (1) Original query which still stands: As noted in the manuscript, AlkB repairs alkylation damage by direct reversal (DNA strands are not cut). In the absence of AlkB, repair of alklylation damage/modification is likely through BER or other processes involving strand excision and resulting in single stranded DNA. It has previously been shown that 3mC modification from MMS exposure is highly specific to single stranded DNA (PMID:20663718) occurring at ~20,000 times the rate as double stranded DNA. Consequently the introduction of DNMTs is expected to introduce many methylation adducts genome-wide that will generate single stranded DNA tracts when repaired in an AlkB deficient background (but not in an AlkB WT background), which are then hyper-susceptible to attack by MMS. Such ssDNA tracts are also vulnerable to generating double strand breaks, especially when they contain DNA polymerase stalling adducts such as 3mC. The generation of ssDNA during repair is similarly expected follow the H2O2 or TET based conversion of 5mC to 5hmC or 5fC neither of which can be directly repaired and depend on single strand excision for their removal. The potential importance of ssDNA generation in the experiments has not been [adequately] considered.

      We thank the reviewer for expanding on their previous comment.  We completely agree with the possibility that they raise and have added an extra paragraph in the discussion to expand on our consideration of the role of ssDNA in DNMT-induced DNA damage, which we reproduce here:

      "The observation that TET overexpression sensitizes cells expressing DNMTs to oxidative stress strongly suggests that the site of DNA damage is the modified cytosine itself.  However, we do not currently have definitive evidence supporting this.  As mentioned in the results section, the presence of unrepaired 3mC may lead to increased levels of ssDNA; it is also possible that 5mC itself may increase ssDNA levels.  Loss of alkB would be expected to increase the amount of ssDNA.  Thus DNA damage surrounding modification sites, but not specifically localised to it, might be the cause of the increased sensitivity.  These two different models make different predictions.  If modified cytosines are the source of the damage, mutations arising would be predominantly located at CG dinucleotides.  Alternatively, ssDNA exposure would result in distributed mutations that would not necessarily be located at CG sites.  The highly biased spectrum of mutations that can be screened through the Rif resistance assay does not allow us to address this currently.  However, future experiments to create mutation accumulation lines could allow us to address the question systematically on a genome-wide level. "

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their positive comments. Our manuscript is to our knowledge the first to investigate the role of VAIL (V-ATPase—ATG16L1 induced LC3 lipidation), a form of CASM (Conjugation of ATG8s to single membranes) in SARS-CoV-2 replication. We demonstrate that SARS-CoV-2 Envelope (E) induces VAIL and this contributes to viral replication, including by using a reverse genetics system to make an E mutant virus. There have been many high quality studies examining the role of canonical autophagy in SARS-CoV-2 replication and our manuscript does not argue that all or even most LC3 lipidation during infection is via VAIL. We will try to make this point more clearly in the text. We do not think this detracts from the novelty and importance of our manuscript.

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      • Figueras-Novoa et al present a short report demonstrating the induction of LC3 lipidation on single membranes by SARS-CoV-2 through a noncanonical autophagy pathway referred to as VAIL. The authors utilize elegant genetic tools to show that the induction of LC3 lipidation upon viral infection is mainly due to VAIL rather than canonical autophagy. They demonstrate that the activity of the viral E protein that can cause neutralization of acidic vesicles leads to the activation of non-canonical LC3 lipidation on single membranes. Interestingly, the authors also conclude that the impairment of VAIL leads to a reduction of viral load as a result of a defect in later stages of viral infection, although the underlying mechanism was not further explored. *

      • Overall, this is an elegant and well controlled study that provides a clear conclusion. I only have some minor comments.*

      We thank the reviewer for their assessment of our manuscript.

      In some experiments, LC3 lipidation does not appear to be fully disrupted upon VAIL inhibition (e.g. Fig.'s 1H, 3D, 4A). As other labs have shown that SARS-CoV2 blocks autophagic flux, this could be further clarified in this manuscript as both VAIL and autophagy may be co-induced upon viral infection.

      We agree with the reviewer that there is a contribution of canonical macroautophagy to the LC3B lipidation observed in SARS-CoV-2. We will extend the discussion in the manuscript to clarify this point for the readers.

      Can the authors test the induction of LC3 lipidation in cells expressing K490 mutant of ATG16L1 in ATG16L1 KO cells to compare them with ATG16L1-ATG13 double knockouts?

      The western blot in figure 3F (quantified in Figure 3G) shows LC3B lipidation in response to E expression in ATG16L1-ATG13 double knock out cells reconstituted with wild type ATG16L1 but not in cells complimented with ATG16L1 K490A mutant. We agree that the referee’s suggestion to perform these experiments in the context of infection would be informative. However in spite of numerous attempts, we have so far been unable to generate a cell clone fully devoid of ATG16L1 in a cell line that can be productively infected with SARS-CoV-2. For reasons unclear to us there appears to be a very low level of residual ATG16L1 activity despite multiple different CRISPR/Cas9 targeting attempts. The suggested complementation experiments might still be informative in the context of low level ATG16L1 expression so we will pursue this. Alternatively, as a contingency we can try to produce SARS-CoV-2 infectable cells with mutations in ATG16L1’s binding partner V1H, this interaction is required for VAIL. A further contingency could be to assess LC3B lipidation during infection and treatment with a Vps34 inhibitor, which inhibits canonical autophagy.

      Minor points: * * The difference between Fig. 1F&G is unclear and why the authors are including both analyses. Similarly figures 4G&H.

      We included both metrics to show that the decrease in LC3B lipidation in cells expressing SopF during infection is robust and observed in two separate readouts. While spot area measures the area of infected cells covered by GFP-LC3B fluorescence, spot intensity is a reading of the intensity of the area defined in an infected cell as being LC3 positive. Theoretically, these measurements could change in different ways. For example, if the same amount of lipidated LC3 were to distribute over a larger area of the cell. We prefer to keep both measurements in the manuscript.

      The authors should show boxed colocalisation of all images, including negative controls. For examples, the authors have shown boxed magnifications in only the lowest panel in Figure 2A but not the upper two panels. Figures 4E&F should include boxed examples. This serves to clarify both positive and negative colocalisation events.

      Boxed magnifications will be added to all images.

      • Reviewer #1 (Significance (Required)): *

      • Overall an elegant and well controlled study demonstrating the induction of non-canonical LC3 conjugation on single membranes (VAIL) during SARS-CoV2 infection. A further exploration of canonical autophagy (as previously published by others) in addition to VAIL would enhance this study.*

      As the reviewer noted, several excellent studies have explored canonical autophagy during SARS-CoV-2 infection, many of which we cite in our manuscript. Our focus, however, is to demonstrate that SARS-CoV-2 E induces LC3 lipidation via VAIL. We believe that exploring the diverse roles of canonical autophagy mechanisms in SARS-CoV-2 infection is beyond the scope of this study.

      *This study is of interest to researchers studying autophagy, viruses, immunology, single membrane LC3 lipidation, and lysosomes as well as potentially clinicians treating SARS-CoV2 infecteted individuals. *

      • This reviewer is experienced in autophagy research.*

      We thank the reviewer for this assessment of our manuscript.

      *Reviewer #2 (Evidence, reproducibility and clarity (Required)): *

      • Major Comments *

      • Figure 1D does not very clearly show an overlap between V1D and LC3B. Both proteins seem broadly present across the cell and there is no easily identifiable change in V1D distribution upon infection. As such the overlay may be purely stochastic. The authors should quantify the observed co-localization events across multiple cells and biological replicates and compare them to other protein(s) with a similar cellular distribution pattern.*

      We agree there is no obvious change in V1D staining on infection. The images in Figure 1D are purely intended to illustrate that LC3 and the V-ATPase can colocalise, not to demonstrate a change in V-ATPase distribution or to suggest a direct interaction. We will make this point more clearly in the text. We will also carry out analyses of the kind (see also response to the first two Minor Comments). We would be happy to provide an alternative method of visualising the V-ATPase (we could use any suitable antibody to the V-ATPase, or the bacterial effector SidK) if required. In response to reviewer 3’s comments, we will carry out a pull-down experiment to test the association of the V-ATPase and ATG16L1 during E expression, as this is a key interaction during VAIL activation.

      Based on Figure 2F the authors suggest that virus entry is unaffected by the inhibition of VAIL in early timepoints. However, according to the figure legend, the timepoint used is 7hpi, while 2D uses 24hpi. Some SARS-CoV-2 papers suggest 7-10 hours is sufficient time to release new virions (Ban-On et al., 2020). As such 7hpi can not necessarily be seen as an early time point. Did the authors test earlier ones? Also, based on this, would it be possible that the effects observed at 24hpi are actually secondary infections, meaning that the virus utilizes pathway components for virion production and a lack thereof reduces infectivity of newly formed virions? In this case it would be interesting to set up an assay that can distinguish between primary and secondary infection to study both individually more closely.

      Whereas 7 hours may be sufficient to release new virions, it is not sufficient to establish infections in other cells – this is why we chose that time point. The observation that there is no difference in the percentage of infected cells at 7 h p.i. (figure 2F) led us to suggest that viral entry is unaffected . We then confirmed this through the pseudovirus assay in Figure 2G, where no difference is found between SopF and mCherry expressing cells. For this assay, GFP-expressing, replication incompetent, lentiviral particles pseudotyped with Spike from different SARS-CoV-2 lineages were used to transduce mCherry and SopF expressing cells. A change in the percentage of GFP-positive cells would indicate an effect on viral entry, but no such change was observed in SopF-expressing cells.

      We agree with the reviewer that the effects observed at 24 hpi are likely due to a defect in subsequent rounds of infection, since no difference was observed at 7 hpi or with our pseudovirus assay. We will attempt to make this point in the text as clearly as possible.

      The authors nicely show in their study an involvement of VAIL in SARS-CoV-2 mediated LC3 lipidation. However, the observed effects are relatively moderate in several experiments, indicating that there may be another contributor to the observed phenotype. It would be nice to highlight this in the discussion and debate potential mechanisms that are causing the observed effects during infection.

      We agree with the reviewer’s analysis. We have discussed the contribution of canonical autophagy in the second paragraph of the discussion, but we will expand on this in a revised manuscript. E expression levels are moderate during infection, other structural proteins such as N and M are present in much higher amounts. Since E is the key protein in VAIL initiation, a moderate effect of VAIL inhibition in perhaps expected. Nonetheless this still plays a crucial role in the viral life cycle.

      *Minor Comments *

      • The re-localization events shown in Fig 3A should be quantified.*

      This quantification of GFP-LC3 relocalisation will be carried out and included.

      • The co-localization events displayed in Fig 4A should be quantified.*

      The quantification of V1D, E and GFP-LC3 will be carried out and included.

      For Figure 2H-K the authors perform KDs of ATG16L1 and ATG13. While the results for the two specific proteins are certainly convincing, the authors would strengthen their argument by testing additional proteins in the autophagy pathway to support their claim that VAIL but not autophagy affects protein abundance of N (OPTIONAL).

      As discussed in response to reviewer 1, we will attempt to infect ATG16L1 KO cells reconstituted with a K490A ATG16L1 mutant, which is an established tool and has been validated to be deficient in VAIL but not canonical autophagy.

      ***Referee cross-commenting** *

      • Overall I agree with the comments of my co-reviewers and I think the suggested experiments/comments are sensible. *
      • I in part already eluted to it my analysis, but I tend to agree with reviewer 3 on the limited effect VAIL seems to have on LC3b lipidation.*

      As outlined above in response to reviewer 1 and below to reviewer 3, we agree that there is a modest contribution of VAIL to overall LC3 lipidation, which correlates with a modest amount of E expression in SARS-CoV-2 infection. VAIL is clearly important for the viral life cycle, thus whatever the proportion of LC3 lipidation attributable to this pathway it must be biologically significant.

      *Reviewer #2 (Significance (Required)): *

      • While previous publications have shown interaction between SARS-CoV2 and autophagy, the authors of this manuscript demonstrate that V-ATPase-ATG16L1 induced LC3 lipidation (VAIL) is activated during infection and affects viral replication. *

      • This study provides an interesting new aspect to host-SARS_CoV-2 interactions. *

      • The manuscript is of interest for people studying virus-host cell interaction, as well as for researchers in the fields of infectious diseases, specifically SARS-CoV2, and autophagy/VAIL*.

      We thank the reviewer for their assessment of our manuscript.

      R*eviewer #3 (Evidence, reproducibility and clarity (Required)): *

      • The interaction of SARS-CoV-2 with canonical autophagy has been well documented. However, whether SARS-CoV-2 infection induces and benefits from non-canonical autophagy is unclear. In this manuscript, the authors demonstrated that SARS-CoV-2 infection induces V-ATPase-ATG16L1-induced LC3 lipidation (VAIL), a form of non-canonical autophagy in which LC3 is conjugated to single membranes. The SARS-CoV-2 envelope protein, through its ion channel activity, triggers the V-ATPase proton pump and induces VAIL during SARS-CoV-2 infection. Inhibiting VAIL during SARS-CoV-2 infection with SopF, a Salmonella effector, attenuates SARS-CoV-2 egress. *

      • While these findings are interesting and demonstrate that SARS-CoV-2 infection triggers VAIL for its own benefit, the mechanism by which VAIL promotes SARS-CoV-2 replication remains unclear. Moreover, the contribution of VAIL to LC3 lipidation during SARS-CoV-2 infection appears to be minimal, as blocking VAIL through SoPF expression only marginally reduced LC3B lipidation (Fig. 1H). Therefore, the contribution of VAIL to LC3 lipidation during SARS-CoV-2 infection is minimal.*

      We thank the reviewer for their assessment of our manuscript. As we have already alluded to in our response, we agree that only part of the LC3 lipidation observed during infection can be attributed to VAIL. There is a reproducible effect on viral replication which we have demonstrated in multiple ways, therefore the contribution of VAIL is of biological importance.

      *Comments: *

      • The authors show that the ion channel activity of E is essential for VAIL induction during SARS-CoV-2 infection. Since V-ATPase recruits the ATG16L complex to induce VAIL, and to clarify how SARS-CoV-2 infection triggers VAIL, the authors should examine whether SARS-CoV-2 infection or the expression of E induces V-ATPase-ATG16L interaction and whether this interaction is disrupted when SopF is expressed.*

      We agree with the reviewer that this would be an informative experiment. We can carry out this experiment in an E expression system, rather than infection. This is due to the difficulty of getting enough material to carry out this kind of pull-down experiment in infected cells (at the time of writing these experiments still have to be carried out in CL3).

      • Since the authors suggest that expression of SopF attenuates viral exit, one would expect that the number of N-positive cells will increase in SopF-expressing cells compared to the mCherry control cells. However, as shown in Figure 2D, this is not the case. Could the authors discuss why N-positive cells will be reduced in SopF-expressing cells when viral egress is impeded in these cells*?

      This is a reflection of multi-cycle kinetics. N is still very strongly expressed in infected cells, even after virions have egressed. SARS-CoV-2 can infect VAIL-deficient cells and expresses the same levels of N prior to subsequent rounds of infection (at 7 hours after infection for example). Egress in VAIL-deficient, SopF-expressing cells is defective. Therefore, fewer cells will be infected in subsequent rounds of infection in SopF expressing cells, resulting in fewer N-positive cells in the SopF expressing cell population (most obvious after 24 hours).

      Figure 2H. The authors show that knockdown of ATG16L1 reduces the expression of N during SARS-CoV-2 infection compared to the controls. To confirm that knockdown of ATG16L1, which is required for both canonical autophagy and VAIL, reduces N staining via VAIL, the authors should examine the impact of SopF expression on N levels in ATG16L KD cells. This experiment will confirm if the reduction in N staining in ATG16L1 KD cells is due to VAIL.

      As stated in the response to reviewer 1, we can attempt this experiment in an ATG16L1 KO system complemented with K490A ATG16L1, which is deficient in VAIL and not canonical autophagy.

      • Figure 2J. The quality of the Western blot data is poor.*

      In this western the exposure is deliberately turned up to show that minimal ATG13 was left after knock down. We will also show the full blot with less exposure – this will demonstrate high quality.

      Also, N appears as a single band in Figure 2J, but appears as double bands in Figures 2A and H. Could the authors explain this?

      An extra band can be seen in 2J for N. However, as the reviewer points out, the intensity of the lower band is fainter than in 2A or 2H. The biology of SARS-CoV-2 N is interesting and complicated, with different truncated isoforms and phosphorylation patterns observed (see for example Mears et al., 2025 PMID:39836705). We observed changes in abundance of the second band between experiments, but this did not obviously depend on VAIL. We therefore consider this to be beyond the scope of this investigation.

      *Reviewer #3 (Significance (Required)): *

      • This manuscript proposes a role for VAIL in LC3 lipidation during SARS-CoV-2 infection. While the findings are interesting, VAIL only marginally contributes to LC3 lipidation during SARS-CoV-2 infection. Therefore, the significance of VAIL to LC3B lipidation during SARS-CoV-2 infection is unclear.*

      Our experiments show unambiguously that VAIL contributes to viral replication. Therefore even if As alluded to above, we do not think a further investigation of canonical macroautophagy and SARS-CoV-2 would enhance the quality of our manuscript. We will try to make our description of the contribution of macroautophagy clearer in the revised manuscript (without providing a full literature review). We also do not think that exploring the nature of the multiple N bands on western blot is within the scope of this paper.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) The authors demonstrate that female Spodoptera littoralis moths prefer to oviposit on wellwatered tomato plants and avoid drought-stressed plants. The study then recorded the sounds produced by drought-stressed plants and found that they produce 30 ultrasonic clicks per minute. Thereafter, the authors tested the response of female S. littoralis moths to clicks with a frequency of 60 clicks per minute in an arena with and without plants and in an arena setting with two healthy plants of which one was associated with 60 clicks per minute. These experiments revealed that in the absence of a plant, the moths preferred to lay eggs on the side of the area in which the clicks could be heard, while in the presence of a plant the S. littoralis females preferred to oviposit on the plant where the clicks were not audible. In addition, the authors also tested the response of S. littoralis females in which the tympanic membrane had been pierced making the moths unable to detect the click sounds. As hypothesised, these females placed their eggs equally on both sites of the area.

      Finally, the authors explored whether the female oviposition choice might be influenced by the courtship calls of S. littoralis males which emit clicks in a range similar to a drought-stressed tomato plant. However, no effect was found of the clicks from ten males on the oviposition behaviour of the female moths, indicating that the females can distinguish between the two types of clicks. Besides these different experiments, the authors also investigated the distribution of egg clusters within a longer arena without a plant, but with a sugar-water feeder. Here it was found that the egg clusters were mostly aggregated around the feeder and the speaker producing 60 clicks per minute. Lastly, video tracking was used to observe the behaviour of the area without a plant, which demonstrated

      that the moths gradually spent more time at the arena side with the click sounds.

      We thank the reviewers for their helpful comments. We agree with the summary, but would like to note that in the control experiment (Figure 2) we used a click rate of 30 clicks per minute—a design choice driven by the editor’s feedback. We have clarified this and, to further probe the system’s dynamics, added a second experiment employing the same click rate (30 clicks per minute) with a dehydrated plant (see details below). In both experiments, females again showed a clear tendency to oviposit nearer the speaker; these findings are described in the updated manuscript.

      (2) The study addresses a very interesting question by asking whether female moths incorporate plant acoustic signals into their oviposition choice, unfortunately, I find it very difficult to judge how big the influence of the sound on the female choice really is as the manuscript does not provide any graphs showing the real numbers of eggs laid on the different plants, but instead only provides graphs with the Bayesian model fittings for each of the experiments. In addition, the numbers given in the text seem to be relatively similar with large variations e.g. Figure 1B3: 1.8 {plus minus} 1.6 vs. 1.1 {plus minus} 1.0. Furthermore, the authors do not provide access to any of the raw data or scripts of this study, which also makes it difficult to assess the potential impact of this study. Hence, I would very much like to encourage the authors to provide figures showing the measured values as boxplots including the individual data points, especially in Figure 1, and to provide access to all the raw data underlying the figures.

      We acknowledge that there are researchers who favor Bayesian graphical representation versus raw data visualization. Therefore, we have added chartplots of the raw data from Figure 1 in the supplementary section. We are aware of the duplication in presentation and apologize for this redundancy.  

      Regarding the variance and means we obtained in our experiment, we have analyzed all raw data using the statistical model presented, and if statistical significance was found despite a particular mean difference or variance, this is meaningful from a biological perspective. One can certainly discuss whether this difference has biological importance, but it should be remembered that in this experimental system, we are trying to isolate the acoustic signal from a complex system that includes multiple signals. Therefore, at no point we’ve suggested that this is a standalone factor, but rather proposed it as an informative and significant component. 

      In addition to the experiments described above, we conducted an experiment in which we counted both eggs and clusters. The results indicate that cluster counts are a reliable proxy for reproductive investment at a given location. In this experiment, we present cluster numbers alongside egg counts (Figure 2).

      Furthermore, we apologize for the technical error that prevented our uploaded data files from reaching the reviewers. We have also uploaded updated data and code.

      (3) Regarding the analysis of the results, I am also not entirely convinced that each night can be taken as an independent egg-laying event, as the amount of eggs and the place were the eggs are laid by a female moth surely depends on the previous oviposition events. While I must admit that I am not a statistician, I would suggest, from a biological point of view, that each group of moths should be treated as a replicate and not each night. I would therefore also suggest to rather analyse the sum of eggs laid over the different consecutive nights than taking the eggs laid in each night as an independent data point.

      We thank the reviewer for this question. This is a valid and point that we will address in three aspects: 

      First, regarding our statistical approach, we used a model that takes into account the sequence of nights and examines whether there is an effect of the order of nights, i.e., we used GLMMs, with the night nested within the repetition. This is equivalent to addressing this as a repeated measure and is, to our best knowledge, the common way to treat such data. 

      Second, following the reviewer's comment, we also reran the statistics of the third experiment (i.e., “sound gradient experiments”, Figure 2 and Supplementary figure 4) when only taking the first night when the female/s laid eggs to avoid the concern of dependency. This analysis revealed the same result – i.e., a significant preference for the sound stimulus. We have now updated our methods and results section to clarify this point.  

      Third, an important detail that may not have been clearly specified in the methods: at the end of each night, we cleaned the arena of counted egg clusters using a cloth with ethanol, so that on the subsequent night, we would not expect there to be evidence of previous oviposition but thus would not exclude some sort of physiological or cognitive memories. We have now updated our methods section to clarify this important procedural point. 

      (4) Furthermore, it did not become entirely clear to me why a click frequency of 60 clicks per minute was used for most experiments, while the plants only produce clicks at a range of 30 clicks per minute. Independent of the ecological relevance of these sound signals, it would be nice if the authors could provide a reason for using this frequency range. Besides this, I was also wondering about the argument that groups of plants might still produce clicks in the range of 60 clicks per minute and that the authors' tests might therefore still be reasonable. I would agree with this, but only in the case that a group of plants with these sounds would be tested. Offering the choice between two single plants while providing the sound from a group of plants is in my view not the most ecologically reasonable choice. It would be great if the authors could modify the argument in the discussion section accordingly and further explore the relevance of different frequencies and dBlevels.

      This is an excellent point. We originally increased the click rate generate a strong signal. However, it was important for us to verify that there was ecological relevance in the stimulus we implemented in the system. For this purpose, we recorded a group of dehydrated plants at a distance of ~20cm and we measured a click rate of 20 clicks per minute (i.e., 0.33 Hz) (see Methods section). Therefore, as mentioned at the beginning of this letter, in the additional experiment described in Figure 2, we reduced the click frequency to 30 clicks per minute, and at this lower rate, the effect was maintained. Increasing plant density would probably lead to a higher rate of 30 clicks per minute. 

      (5) Finally, I was wondering how transferable the findings are towards insects and Lepidopterans in general. Not all insects possess a tympanic organ and might therefore not be able to detect the plant clicks that were recorded. Moreover, I would imagine that generalist herbivorous like Spodoptera might be more inclined to use these clicks than specialists, which very much rely on certain chemical cues to find their host plants. It would be great if the authors would point more to the fact that your study only investigated a single moth species and that the results might therefore only hold true for S. littoralis and closely related species, but not necessary for other moth species such as Sphingidae or even butterflies.

      Good point. Our research uses a specific model system of one moth species and one plant species in a particular plant-insect interaction where females select host plants for their offspring. As with any model-based research that attempts to draw broader conclusions, we've taken care to distinguish between our direct findings and potential wider implications. We believe our system may represent mechanisms relevant to a wider group of herbivorous insects with hearing capabilities, particularly considering that several moth families and other insect orders can detect ultrasound. However, additional research examining more moth and plant species is necessary to determine how broadly applicable these findings are. We have made these clarifications in the text.

      Reviewer #2 (Public review):

      (6) The results are intriguing, and I think the experiments are very well designed. However, if female moths use the sounds emitted by dehydrated plants as cues to decide where to oviposit, the hypothesis would predict that they would avoid such sounds. The discussion mentions the possibility of a multi-modal moth decision-making process to explain these contradictory results, and I also believe this is a strong possibility. However, since this remains speculative, careful consideration is needed regarding how to interpret the findings based solely on the direct results presented in the results section.  

      Thank you for this insightful observation. We agree that the apparent attraction of females to dehydrated-plant sounds contradicts our initial prediction. Having observed this pattern consistently across multiple setups, we have now added a targeted choice experiment to the revised manuscript: here female moths were offered a choice between dehydrated plants broadcasting their natural ultrasonic emissions and a control. These results—detailed in the Discussion and presented in full in the Supplementary Materials (Supplementary Figure 4)—show that when only a dehydrated plant is available, moths would prefer it for oviposition, supporting our hypothesis that in the absence of a real plant, the plant’s sounds might represent a plant..

      (7) Additionally, the final results describing differences in olfactory responses to drying and hydrated plants are included, but the corresponding figures are placed in the supplementary materials. Given this, I would suggest reconsidering how to best present the hypotheses and clarify the overarching message of the results. This might involve reordering the results or re-evaluating which data should appear in the main text versus the supplementary materials

      Thank you for this suggestion. We have reorganized the manuscript and removed the olfactory response data from the current version to maintain a focused narrative on acoustic cues. We agree that a detailed investigation of multimodal interactions deserves a separate study, which we plan to pursue in future work. 

      (8) There were also areas where more detailed explanations of the experimental methods would be beneficial.

      Thank you for highlighting this point. We have expanded and clarified the Methods section to provide comprehensive detail on our experimental procedures.

      Reviewer #1 (Recommendations for the authors):

      (9) Line 1: Please include the name of the species you tested also in the title as your results might not hold true for all moth species.

      We do not fully agree with this comment. Please see comment 5.

      (10) Line 19-20: Please rephrase the sentence so that it becomes clear that the "dehydration stress" refers to the plant and not to the moths.

      Thank you for the suggestion; we have clarified the text accordingly

      (11) Line 31: Male moths might provide many different signals to the females, maybe better "male sound signals" or similar.

      Thank you for the suggestion; we have clarified the text accordingly.

      (12) Line 52-53: Maybe mention here that not all moth species have evolved these abilities.

      Thank you for the suggestion; we have clarified the text accordingly.

      (13) Line 77: add a space after 38.

      Thank you for the suggestion; we have clarified the text accordingly.

      (14) Line 88: Maybe change "secondary predators" to "natural enemies".

      Thank you for the suggestion; we have clarified the text accordingly.

      (15) Line 134: Why is "notably" in italics? I would suggest using normal spelling/formatting rules here.

      Thank you for the suggestion; we have clarified the text accordingly.

      (16) Line 140-144: If you did perform the experiment also with the more ecological relevant playback rate, why not present these findings as your main results and use the data with the higher playback frequency as additional support?

      Thank you for this suggestion. We agree that the ecologically relevant playback data are important; as described in detail at the beginning of this letter and also in comment 4, however, to preserve a clear and cohesive narrative, we have maintained the original ordering of this section. Nevertheless, the various experiments conducted in Figure 1 differ in several components from Figure 2 and the work that examined sounds in plant groups in the appendices. Therefore, we find it more appropriate to use them as supporting evidence for the main findings rather than creating a comparison between different experimental systems. For this reason, we chose to keep them as a separate description in "The ecological playback findings (Lines 140–144) remain fully described in the Results and serve to reinforce the main observations without interrupting the manuscript's flow.

      (17) Line 146: Please explain already here how you deafened the moths.

      Thank you for the suggestion; we have clarified the text accordingly.

      (18) Line 181: should it be "male moths' " ?

      Thank you for the suggestion; we have clarified the text accordingly.

      (19) Line 215: Why is "without a plant" in italics? I would suggest using normal spelling/formatting rules here.

      Thank you for the suggestion; we have clarified the text accordingly.

      (20) Line 234: I do not understand why this type of statistic was used to analyse the electroantennogram (EAG) results. Would a rather simple Student's t-test or a Wilcon rank sum test not have been sufficient? I would also like to caution you not to overinterpret the data derived from the EAG, as you combined the entire headspace into one mixture it is no longer possible to derive information on the different volatiles in the blends. The differences you observe might therefore mostly be due to the amount of emitted volatiles.

      We have reorganized the manuscript and removed the olfactory response data from the current version to maintain a focused narrative on acoustic cues (See comment 7). 

      (21) Line 268: It might be nice to add an additional reference here referring to the multimodal oviposition behaviour of the moths.

      Thank you for the suggestion; we have clarified the text accordingly.

      (22) Line 284: If possible, please add another reference here referring to the different cues used by moths during oviposition.

      Thank you for the suggestion; we have clarified the text accordingly.

      (23) Line 336: What do you mean by "closed together"?

      Thank you for the suggestion; we have clarified the text accordingly.

      (24) Line 434-436: Please see my overall comments. I do not think that you can call it ecologically relevant if the signal emitted by multiple plants is played in the context of just a single plant.

      Please see comments 1 and 4.

      (25) Line 496: Please change "stats" to statistics.

      Thank you for the suggestion; we have clarified the text accordingly.

      (26) Line 522-524: I am not sure whether simply listing their names does give full credit to the work these people did for your study. Maybe also explain how they contributed to your work.

      Thank you for the suggestion; we have clarified the text accordingly.

      Reviewer #2 (Recommendations for the authors):

      (27) L54 20-60kHz --> 20Hz-60kHz or 20kHz - 60kHz?

      OK. We have replaced it.

      (28) L124 Are the results for the condition where nothing was placed and the condition where a decoy silent resistor was placed combined in the analysis? If so, were there no significant differences between the two conditions? Comparing these with a condition presenting band-limited noise in the same frequency range as the drought-stressed sounds might also have been an effective approach to further isolate the specific role of the ultrasonic emissions.

      We have used both conditions due to technical constrains and pooled them tougher for analysis— statistical tests confirmed no significant differences between them—and this clarification has now been added to the Methods section including the results of the statistical test.

      (29) L125 (Fig. 1A), see Exp. 1 in the Methods). -> (Fig.1B. See Exp.1 in the Methods).

      Thank you for the suggestion; we have clarified the text accordingly.

      (30) L132 "The opposite choice to what was seen in the initial experiment (Fig.1B)"

      Thank you for the suggestion; we have clarified the text accordingly.

      (31) L137-143 If you are writing about results, why not describe them with figures and statistics? The current description reads like a discussion.

      These findings were not among our primary research questions; however, we believe that including them in the Results section underscores the experimental differences. In our opinion, introducing an additional figure or expanding the statistical analysis at this point would disrupt the narrative flow and risk confusing the reader.

      (32) L141 "This is higher than the rate reported for a single young plant" Are you referring to the tomato plants used in the experiments? It might be helpful to include in the main text the natural click rate emitted by tomato plants, as this information is currently only mentioned in the Methods section.

      See comment 4.  

      (33) L191 Is the main point here to convey that the plant playback effect remained significant even when the sound presentation frequency was reduced to 30 clicks per minute? The inclusion of the feeder element, however, seems to complicate the message. To simplify the results, moving the content from lines 185-202 to the supplementary materials might be a better approach. Additionally, what is the rationale for placing the sugar solution in the arena? Is it to maintain the moths' vitality during the experiment? Clarifying this in the methods section would help provide context for this experimental detail.

      In this series of experiments, we manipulated four variables—single moths, ultrasonic click rate, arena configuration (from a two-choice design to an elongated enclosure), and the response metric (total egg counts rather than cluster counts)—to evaluate moth oviposition under more ecologically realistic conditions. We demonstrate the system’s robustness and validity in a more realistic setting (by tracking individual moths, counting single eggs, etc.).  

      As noted in the text, feeders were included to preserve the moths’ natural behavior and vitality. We have further clarified this in the revised manuscript.

      (34) L215 Is the click presentation frequency 30 or 60 per minute? Since Figure 3 illustrates examples of moth movement from the experiment described in Figure 1, it might be more effective to present Figure 3 when discussing the results of Figure 1 or to include it in the supplementary materials for better clarity and organization.

      See comments 1 and 4. As mentioned in the above 

      (35) L291 Please provide a detailed explanation of the experiments and measurements for the results shown in Figure S3 (and Figure S2). If the multi-modal hypothesis discussed in the study is a key focus, it might be better to include these results in the main results section rather than in the supplementary materials.

      Thank you for this suggestion. Figure S2 was removed, see comments above. We’ve added now the context to figure S3.

      (36) L303 It might be helpful to include information about the relationship between the moth species used in this study and tomato plants somewhere in the text. This would provide an important context for understanding the ecological relevance of the experiments.

      Thank you for the suggestion; we have clarified the text accordingly.

      (37) Table 1 The significant figures in the numbers presented in the tables should be consistent.

      Thank you for the suggestion; we have clarified the text accordingly.

      (38) L341 The text mentions that experiments were conducted in a greenhouse, but does this mean the arena was placed inside the greenhouse? Also, the term "arena" is used - does this refer to a sealed rectangular case or something similar? For the sound presentation experiments, it seems that the arena cage was placed inside a soundproof room. If the arena is indeed a case-like structure, were there any specific measures taken to prevent sound scattering within the case, such as the choice of materials or structural modifications?

      Here, “arena” refers to the plastic boxes used throughout this study. In this particular experiment, we presented plants alone—reflecting ongoing debate in the literature—and used these trials as a baseline for our subsequent sound-presentation experiments, during which we measured sound intensity as described in the Methods section. All sound-playback experiments were conducted in sound-proof rooms, and acoustic levels were measured beforehand—sound on the control side fell below our system’s detection threshold. 

      (39) L373 "resister similar to the speaker" Could you explain it in more detail? I think this would depend on the type of speaker used-particularly whether it includes magnets. From an experimental perspective, presenting different sounds such as white noise from the speaker might have been a better control. Was there a specific reason for not doing so? Additionally, the study does not clearly demonstrate whether the electric and magnetic field environments on both sides of the arena were appropriately controlled. Without this information, it is difficult to evaluate whether using a resistor as a substitute was adequate.

      Thank you for this comment. We have now addressed this point in the Discussion. We acknowledge that we did not account for the magnetic field, which might have differed between the speaker and the resistor. We agree that using an alternative control, such as white noise, could have been informative, and we now mention this as a limitation in the revised Methods.

      (40) L435 60Hz? The representation of frequencies in the text is inconsistent, with some values expressed in Hz and others as "clicks per second." It would be better to standardize these units for clarity, such as using Hz throughout the manuscript.

      We agree that this is confusing. We reviewed the text and made sure that when we addressed click per second, we meant how many clicks were produced and when we addressed Hz units it was in the context of sound frequencies.  

      (41) L484 "we quantified how many times each individual crossed the center of the arena" Is this data being used in the results?

      Yes. Mentioned in the text just before Figure 3. L220

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We appreciate the constructive and supportive feedback on our manuscript. All three reviewers acknowledged the significance and novelty of our work on bacterial telomere protection. In response to their suggestions, we have conducted the requested experiments and revised the manuscript accordingly. These changes have enhanced the rigor of our study and clarified our interpretations and explanations.

      Moreover, we characterized an additional truncation mutant of TelN (TelN Δ445–631), which lacks the two C-terminal domains. Despite this deletion, the mutant retained protection activity (Supplementary Figure S4B), indicating that the remaining regions of the protein are sufficient to confer efficient protection in this assay.

      Finally, we removed three sequence alignments (previously Supplementary Figures S6A and S7), as we recognized that the high degree of sequence divergence could hinder proper alignment and potentially lead to misinterpretation.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This study addresses how the bacterial telomere protein TelN protects telomere ends against the action of the Mre11-Rad50 nuclease (MR). This protection is essential for the stability of hairpin-ended linear plasmid and chromosomes in bacteria but had not been explored before. The authors demonstrate that TelN is necessary and sufficient to block MR-dependent DNA cleavage when bound to its specific telomere sequence. By combining elegant genetics and biochemical approaches, it convincingly shows that TelN-dependent inhibition likely involves a specific interaction between TelN and the MR complex. The manuscript is well written, easy to read and focused on the relevant information. The claims and the conclusions are supported by the data. There is no over-interpretation.

      Comments: - Figure 1B, unnormalized transformation efficiency would be useful to show in SI

      The unnormalized B. subtilis transformation efficiency has now been added as new figure panel S1B.

      • Figures 2B, 2C, 3C, 3D, 4C, 5A and 5B: quantification of independent experiments should be added

      While these DNA protection experiments show a clearly reproducible pattern of DNA degradation, the exact response to TelN titration varies somewhat between experimental replicates. We initially included the quantification of remaining full-length DNA because the corresponding band is hard to discern in the gel image due to pixel saturation. However, we realize now that this may mislead readers to think that the degradation occurs always with the exact same dosage response.

      To avoid this, we have decided to remove the quantification and instead show the relevant part of the gel also at higher contrast to better visualize the loss of full-length DNA due to DNA degradation. In addition, we have included replicate experiments carried out at the same MR concentration (125 nM M₂R₂) or at higher concentration (500 nM M₂R₂) in the supplementary material. These examples demonstrate the general reproducibility of the assay.

      **Referee cross-commenting**

      Perfect for me. It seems that there is a consensus.

      Reviewer #1 (Significance (Required)):

      This pioneering study provides a very strong basis for a new understanding of telomeres in bacteria and offers fascinating evolutionary perspectives when compared to similar mechanisms active at telomeres in eukaryotic cells.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The paper is well-presented and well-written throughout. The paper shows convincingly that TelN protects hairpin DNA ends from the activity of SbcCD, presumably providing a protection mechanism for N15 phage DNA in vivo. Furthermore, this protection activity is shown not to require the catalytic (resolvase) activity of TelN, nor its poorly characterised C-terminal domain. The paper also suggests that this inhibition acts both at the level of competition for the DNA hairpin end and at the level of a direct protein:protein interaction between TelN and MR. An (acknowledged) weakness is that there is no real insight into the protein:protein interaction suggested by the experiments shown in Figure 5. Ideally, the protein:protein interaction interface would be identified and mutations in this interface would be shown to reduce hairpin protection.

      Specific comments/questions

      (1) What pathway (in vivo) leads to inactivation of linear hairpin DNA - one suspects that cleavage by SbcCD at the hairpins is probably not the full story. Presumably SbcCD cleavage facilitates further processing by other long range resection systems such as RecBCD, Exo1, RecQ/J etc. Would it be appropriate to view the hairpin as an adaption to protect against these nucleases, which then must be complemented with a mechanism to suppress SbcCD?

      The reviewer's suggestion that hairpin ends represent a first layer of adaptation against nucleolytic processing is compelling. Hairpin structures inherently resist many exonucleases due to their covalently closed nature (absence of free 3’ or 5’ ends) but remain vulnerable to MR processing (Connelly et al, 1998, 1999; Saathoff et al, 2018). This creates a scenario where effective telomere protection requires both the structural barrier provided by the hairpin and an active mechanism to suppress MR activity. We have added this perspective to the relevant paragraph in the discussion.

      (2) Section starting "Direct inhibition of MR by TelN in vitro". What is the word direct supposed to convey here? To me it suggests that the inhibition is via direct interaction of TelN with MR (rather than, for example, a result of competition for the hairpin DNA end) which is not shown here. Suggest either defining or removing the word direct. This point gains more importance considering that differentiating between inhibition mechanisms becomes a focus of later parts of the paper.

      By "direct inhibition," we meant that TelN blocks MR nuclease activity without requiring additional cofactors, as demonstrated in this minimal reaction system containing only TelN, MR complex, DNA substrate, and ATP. To avoid ambiguity, we have reworded the corresponding headline and paragraph.

      (3) Figure 2B - Why no control lane without MR? - this is a basic control to show that he degradation we are seeing in the absence of TelN is MR-dependent. Formally, as shown, the degradation could be caused by the ATP stock.


      We have now included ATP-only control lanes (without MR complex), which show no substrate degradation, confirming that ATP stocks do not contain contaminating nucleases and that the observed degradation is indeed MR-dependent. These controls are included in the supplementary data (Figure S3A) along with additional replicate experiments. Notably, the dose-dependent protection observed at low TelN concentrations (where MR activity is not fully inhibited) provides additional evidence for the specificity of the MR-TelN interaction system, as non-specific nuclease contamination would result in complete substrate degradation regardless of TelN concentration.

      (4) Why not use B. subtilis SbcCD for the species specificity experiment? Also, is it not surprising that TelN yielded zero protection against MRX given that the DNA sequence specificity experiments above suggest competition for DNA substrate is part of the inhibition mechanism?


      We agree that this would be a great addition. We attempted but were unable to purify active B. subtilis SbcCD protein despite multiple attempts. The yeast MRX experiment serves the same purpose of demonstrating species specificity and represents a more evolutionarily distant comparison, which strengthens our conclusions about bacterial-specific inhibition.

      (5) If the authors felt it appropriate, I thought there was scope for further discussion/introductory material. There are strong parallels here with mechanisms used by phage to protect themselves from the activities of RecBCD, which include both proteins that protect DNA ends like T4 gene 2, we well as proteins that bind directly to RecBCD to inactivate it like lambda Gam. As such, the work here will appeal as much to those interested in bacterial defence systems / phage:host interactions as it does to those interested in telomere biology. Especially significant is the inhibition of DNA end processing factors by lambda Gam since this protein is reported to interact with both RecBCD and SbcCD (PMID: 2531105).

      We agree that there are obvious parallels between lambda Gam and TelN as counter-defence factors. This was likely largely missed in previous work because the telomere resolution activity of TelN masked its function in counter-defence. We have added a statement on this matter at the end of the discussion.

      (6) Just a gripe really: it seems to be 'de rigeur' at the moment to re-name bacterial proteins for their human orthologues, presumably to elevate the perceived importance of the work(?), but it is not a practice I think is terribly helpful as it causes issues when searching literature. Minimally it would be great if the authors could ensure they add SbcCD as a keyword for search purposes.

      We appreciate the reviewer's concern about nomenclature inconsistencies in the literature. We have chosen MR over SbcCD as a more generic term that covers eukaryotes, archaea and lately also bacteria and will hopefully contribute to a more consistent terminology in the literature across the domains of life in the future. Our choice to use "Mre11-Rad50" (MR) for the E. coli SbcCD complex is also consistent with prominent recent publications (Käshammer et al., 2019; Gut et al., 2022), explicitly referring to the E. coli system as "Mre11-Rad50" while acknowledging the bacterial designation. To link to previous literature, we made sure that both "SbcCD" and "Mre11-Rad50" are mentioned in the abstract. And, as suggested, we have now also added “SbcCD” to our keyword list to facilitate comprehensive literature searches.

      **Referee cross-commenting**

      I have nothing to add. The reviewers' comments are all broadly positive and consistent.

      Reviewer #2 (Significance (Required):

      This is an excellent paper unveiling a phage encoded "counter-defence" mechanism designed to protect phage DNA from degradation. It will be of special interest to those studying telomere biology of phage:host interactions.



      Reviewer #3

      The authors investigate how the N15 phage protelomerase TelN protects linear chromosomes that terminate in hairpin structures (a sort of telomere). In E. coli and B. subtilis cells, removal or truncation of telN reduces transformation/survival of linear DNA, whereas complementation with full-length or a catalytically inactive TelN restores viability, consistent with TelN playing a nonenzymatic capping function.

      In vitro, TelN binds hairpin substrates with moderate affinity and protects them from the nuclease activity of the Mre11/Rad50 complex. The authors propose that TelN originated as an early, sequence specific barrier against MR mediated DNA end processing, establishing fundamental principles of telomere protection that persist from bacteria to eukaryotes.

      Major comments:

      The manuscript convincingly shows that TelN can functionally block the Mre11Rad50 (MR) nuclease on a hairpin DNA end in a sequence specific manner (suggesting a physical interaction), but it doesn't directly demonstrate this. A simple pull-down or equilibrium binding method would be useful in proving a physical interaction.

      We agree that this would be a valuable addition to the study. We have made several attempts to detect direct interaction by co-immunoprecipitation. However, without success so far. We do not have sufficient material for equilibrium binding methods (yet).__ ____ __


      The MR complex requires ATP hydrolysis for resection of DNA ends. It would be a nice addition to the manuscript if the effect of TelN of Rad50 ATPase activity was tested.


      We have tested the effect of TelN on Rad50 ATPase activity and found no significant impact under our experimental conditions, possible in line with the lack of stable interaction.

      The bar plot on Fig 3B indicates that the experiments are performed in triplicate. The statistical significance of the differences between conditions should be determined. The same general comment could be made regarding the quantification of the polyacrylamide gels - how reproducible are these values?


      We performed paired t-test analysis for the following figures and now indicate the p-values wherever significant (below 0.05): Figures 1D, 1E, 3B, 4B and S4B. We used paired t-tests to generally compare linear vs circular plasmid transformation efficiency for each condition. In Figure 4B, which included two different linear DNA constructs, we compared the two linear DNA constructs directly to each other. [Given that our experimental design included multiple control conditions with known expected outcomes to validate assay performance, rather than many independent exploratory comparisons, we report uncorrected p-values as the primary analysis. The inclusion of multiple controls with predictable outcomes reduces the likelihood of false positive interpretations.]

      As stated in response to reviewer 1, while the exact values for the DNA degradation profile vary somewhat between experiments (likely due to variations in band quantification – see also response to comment below), the general trends are robust as for example indicated by similar experiments performed with higher MR concentration (500 nM instead of 125 nM M₂R₂ concentrations for all TelN variants) demonstrating reproducibility across different conditions. For Figure 5, however, we are unable to provide additional repeat experiments due to limitations in reagent availability. Considering the robust effect seen with Ec MR controls and the presence of multiple samples in the dilution series, we are nevertheless confident about the conclusion.

      Minor comments:

      A better explanation of how the gels were quantified should be provided. Were the products included in the analysis, or was it just the decrease in the substrate band that was measured?

      As also stated above, we have removed the band quantification and instead show the bands also at different contrast settings.

      In our original approach, gel band quantification was performed using ImageQuant TL software (version 8.2.0, GE Healthcare). For each gel, individual lanes were defined using either fixed-width boundaries (95-103 pixels) or automatic edge detection, depending on the gel quality and band definition. Band volumes were calculated using rolling ball background subtraction (radius 180 pixels) with automatic band detection. Substrate degradation was assessed by measuring the integrated density (volume) of the remaining full-length (or near full-length) substrate bands under different treatment conditions. The band volume values were plotted directly to compare substrate levels across treatment groups.

      We now present the data as two gel panels: an exposure showing the full reaction profile, and another exposure focusing on the substrate bands to clearly demonstrate dose-dependent protection. Additional replicate experiments including ATP-only controls (confirming no contamination from ATP stocks) and experiments at 500 nM M₂R₂ concentrations, are provided in the supplementary data. This approach provides more direct visualization of the biological phenomenon with comprehensive control validation.

      I felt like the Results jump rather abruptly from B. subtilis chromosome assays to E. coli plasmid experiments. Maybe the addition of a few linking sentences would improve this transition.


      Upon re-reading the manuscript we agree with this assertion and have added further information to provide a smoother transition.

      A comment on the stoichiometry of TelN and genome ends during phage replication would be useful.

      Our in vitro data suggest that effective protection can be achieved at relatively low TelN:DNA ratios in vitro, consistent with the notion of formation of stable, protective nucleoprotein structures. We unfortunately do not currently have information on the copy number of TelN per cell or per hairpin end. It is not easy to obtain reliable values for these numbers. However, we can speculate that multiple TelN proteins are present due to the presence of three copies of a DNA sequence motif (binding to CTD1) in each telomeric DNA, consistent with the formation of stable, protective nucleoprotein structures.

      Reviewer #3 (Significance (Required)):

      General assessment:

      Strengths: A nice combination of genetics and biochemistry convincingly demonstrates that TelN protects linear chromosomes/replicons from MR-dependent degradation independent of its cleavage-ligase activity. It does this by binding to the hairpin DNA ends in a sequence specific fashion and the species specificity suggests a direct physical interaction, which likely inhibits the nuclease activity of the MR complex

      Limitations: The lack of characterization of the putative physical interaction between TelN and the MR complex is considered a weakness.

      Advance: The manuscript fills in a mechanistic gap between protelomerase-mediated telomere formation and maintenance by demonstrating a protective/capping role. This is the first quantitative analysis of DNA-end protection from MR nuclease activity by TelN.

      Audience: Readers interested in bacterial chromosome biology, DNA repair, the parallels to eukaryotic shelterin will be interesting to the broader telomere and genome stability communities.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      This study investigates the sex determination mechanism in the clonal ant Ooceraea biroi, focusing on a candidate complementary sex determination (CSD) locus-one of the key mechanisms supporting haplodiploid sex determination in hymenopteran insects. Using whole genome sequencing, the authors analyze diploid females and the rarely occurring diploid males of O. biroi, identifying a 46 kb candidate region that is consistently heterozygous in females and predominantly homozygous in diploid males. This region shows elevated genetic diversity, as expected under balancing selection. The study also reports the presence of an lncRNA near this heterozygous region, which, though only distantly related in sequence, resembles the ANTSR lncRNA involved in female development in the Argentine ant, Linepithema humile (Pan et al. 2024). Together, these findings suggest a potentially conserved sex determination mechanism across ant species. However, while the analyses are well conducted and the paper is clearly written, the insights are largely incremental. The central conclusion - that the sex determination locus is conserved in ants - was already proposed and experimentally supported by Pan et al. (2024), who included O. biroi among the studied species and validated the locus's functional role in the Argentine ant. The present study thus largely reiterates existing findings without providing novel conceptual or experimental advances.

      Although it is true that Pan et al., 2024 demonstrated (in Figure 4 of their paper) that the synteny of the region flanking ANTSR is conserved across aculeate Hymenoptera (including O. biroi), Reviewer 1’s claim that that paper provides experimental support for the hypothesis that the sex determination locus is conserved in ants is inaccurate. Pan et al., 2024 only performed experimental work in a single ant species (Linepithema humile) and merely compared reference genomes of multiple species to show synteny of the region, rather than functionally mapping or characterizing these regions.

      Other comments:

      The mapping is based on a very small sample size: 19 females and 16 diploid males, and these all derive from a single clonal line. This implies a rather high probability for false-positive inference. In combination with the fact that only 11 out of the 16 genotyped males are actually homozygous at the candidate locus, I think a more careful interpretation regarding the role of the mapped region in sex determination would be appropriate. The main argument supporting the role of the candidate region in sex determination is based on the putative homology with the lncRNA involved in sex determination in the Argentine ant, but this argument was made in a previous study (as mentioned above).

      Our main argument supporting the role of the candidate region in sex determination is not based on putative homology with the lncRNA in L. humile. Instead, our main argument comes from our genetic mapping (in Fig. 2), and the elevated nucleotide diversity within the identified region (Fig. 4). Additionally, we highlight that multiple genes within our mapped region are homologous to those in mapped sex determining regions in both L. humile and Vollenhovia emeryi, possibly including the lncRNA.

      In response to the Reviewer’s assertion that the mapping is based on a small sample size from a single clonal line, we want to highlight that we used all diploid males available to us. Although the primary shortcoming of a small sample size is to increase the probability of a false negative, small sample sizes can also produce false positives. We used two approaches to explore the statistical robustness of our conclusions. First, we generated a null distribution by randomly shuffling sex labels within colonies and calculating the probability of observing our CSD index values by chance (shown in Fig. 2). Second, we directly tested the association between homozygosity and sex using Fisher’s Exact Test (shown in Supplementary Fig. S2). In both cases, the association of the candidate locus with sex was statistically significant after multiple-testing correction using the Benjamini-Hochberg False Discovery Rate. These approaches are clearly described in the “CSD Index Mapping” section of the Methods.

      We also note that, because complementary sex determination loci are expected to evolve under balancing selection, our finding that the mapped region exhibits a peak of nucleotide diversity lends orthogonal support to the notion that the mapped locus is indeed a complementary sex determination locus.

      The fourth paragraph of the results and the sixth paragraph of the discussion are devoted to explaining the possible reasons why only 11/16 genotyped males are homozygous in the mapped region. The revised manuscript will include an additional sentence (in what will be lines 384-388) in this paragraph that includes the possible explanation that this locus is, in fact, a false positive, while also emphasizing that we find this possibility to be unlikely given our multiple lines of evidence.

      In response to Reviewer 1’s suggestion that we carefully interpret the role of the mapped region in sex determination, we highlight our careful wording choices, nearly always referring to the mapped locus as a “candidate sex determination locus” in the title and throughout the manuscript. For consistency, the revised manuscript version will change the second results subheading from “The O. biroi CSD locus is homologous to another ant sex determination locus but not to honeybee csd” to “O. biroi’s candidate CSD locus is homologous to another ant sex determination locus but not to honeybee csd,” and will add the word “candidate” in what will be line 320 at the beginning of the Discussion, and will change “putative” to “candidate” in what will be line 426 at the end of the Discussion.

      In the abstract, it is stated that CSD loci have been mapped in honeybees and two ant species, but we know little about their evolutionary history. But CSD candidate loci were also mapped in a wasp with multi-locus CSD (study cited in the introduction). This wasp is also parthenogenetic via central fusion automixis and produces diploid males. This is a very similar situation to the present study and should be referenced and discussed accordingly, particularly since the authors make the interesting suggestion that their ant also has multi-locus CSD and neither the wasp nor the ant has tra homologs in the CSD candidate regions. Also, is there any homology to the CSD candidate regions in the wasp species and the studied ant?

      In response to Reviewer 1’s suggestion that we reference the (Matthey-Doret et al. 2019) study in the context of diploid males being produced via losses of heterozygosity during asexual reproduction, the revised manuscript will include (in what will be lines 123-126) the highlighted portion of the following sentence: “Therefore, if O. biroi uses CSD, diploid males might result from losses of heterozygosity at sex determination loci (Fig. 1C), similar to what is thought to occur in other asexual Hymenoptera that produce diploid males (Rabeling and Kronauer 2012; Matthey-Doret et al. 2019).”

      We note, however, that in their 2019 study, Matthey-Doret et al. did not directly test the hypothesis that diploid males result from losses of heterozygosity at CSD loci during asexual reproduction, because the diploid males they used for their mapping study came from inbred crosses in a sexual population of that species.

      We address this further below, but we want to emphasize that we do not intend to argue that O. biroi has multiple CSD loci. Instead, we suggest that additional, undetected CSD loci is one possible explanation for the absence of diploid males from any clonal line other than clonal line A. In response to Reviewer 1’s suggestion that we reference the (Matthey-Doret et al. 2019) study in the context of multilocus CSD, the revised manuscript version will include the following additional sentence in the fifth paragraph of the discussion (in what will be lines 372-374): “Multi-locus CSD has been suggested to limit the extent of diploid male production in asexual species under some circumstances (Vorburger 2013; Matthey-Doret et al. 2019).”

      Regarding Reviewer 2’s question about homology between the putative CSD loci from the (Matthey-Doret et al. 2019) study and O. biroi, we note that there is no homology. The revised manuscript version will have an additional Supplementary Table (which will be the new Supplementary Table S3) that will report the results of this homology search. The revised manuscript will also include the following additional sentence in the Results, in what will be lines 172-174: “We found no homology between the genes within the O. biroi CSD index peak and any of the genes within the putative L. fabarum CSD loci (Supplementary Table S3).”

      The authors used different clonal lines of O. biroi to investigate whether heterozygosity at the mapped CSD locus is required for female development in all clonal lines of O. biroi (L187-196). However, given the described parthenogenesis mechanism in this species conserves heterozygosity, additional females that are heterozygous are not very informative here. Indeed, one would need diploid males in these other clonal lines as well (but such males have not yet been found) to make any inference regarding this locus in other lines.

      We agree that a full mapping study including diploid males from all clonal lines would be preferable, but as stated earlier in that same paragraph, we have only found diploid males from clonal line A. We stand behind our modest claim that “Females from all six clonal lines were heterozygous at the CSD index peak, consistent with its putative role as a CSD locus in all O. biroi.” In the revised manuscript version, this sentence (in what will be lines 199-201) will be changed slightly in response to a reviewer comment below: “All females from all six clonal lines (including 26 diploid females from clonal line B) were heterozygous at the CSD index peak, consistent with its putative role as a CSD locus in all O. biroi.”

      Reviewer #2 (Public review):

      The manuscript by Lacy et al. is well written, with a clear and compelling introduction that effectively conveys the significance of the study. The methods are appropriate and well-executed, and the results, both in the main text and supplementary materials, are presented in a clear and detailed manner. The authors interpret their findings with appropriate caution.

      This work makes a valuable contribution to our understanding of the evolution of complementary sex determination (CSD) in ants. In particular, it provides important evidence for the ancient origin of a non-coding locus implicated in sex determination, and shows that, remarkably, this sex locus is conserved even in an ant species with a non-canonical reproductive system that typically does not produce males. I found this to be an excellent and well-rounded study, carefully analyzed and well contextualized.

      That said, I do have a few minor comments, primarily concerning the discussion of the potential 'ghost' CSD locus. While the authors acknowledge (line 367) that they currently have no data to distinguish among the alternative hypotheses, I found the evidence for an additional CSD locus presented in the results (lines 261-302) somewhat limited and at times a bit difficult to follow. I wonder whether further clarification or supporting evidence could already be extracted from the existing data. Specifically:

      We agree with Reviewer 2 that the evidence for a second CSD locus is limited. In fact, we do not intend to advocate for there being a second locus, but we suggest that a second CSD locus is one possible explanation for the absence of diploid males outside of clonal line A. In our initial version, we intentionally conveyed this ambiguity by titling this section “O. biroi may have one or multiple sex determination loci.” However, we now see that this leads to undue emphasis on the possibility of a second locus. In the revised manuscript, we will split this into two separate sections: “Diploid male production differs across O. biroi clonal lines” and “O. biroi lacks a tra-containing CSD locus.”

      (1) Line 268: I doubt the relevance of comparing the proportion of diploid males among all males between lines A and B to infer the presence of additional CSD loci. Since the mechanisms producing these two types of males differ, it might be more appropriate to compare the proportion of diploid males among all diploid offspring. This ratio has been used in previous studies on CSD in Hymenoptera to estimate the number of sex loci (see, for example, Cook 1993, de Boer et al. 2008, 2012, Ma et al. 2013, and Chen et al., 2021). The exact method might not be applicable to clonal raider ants, but I think comparing the percentage of diploid males among the total number of (diploid) offspring produced between the two lineages might be a better argument for a difference in CSD loci number.

      We want to re-emphasize here that we do not wish to advocate for there being two CSD loci in O. biroi. Rather, we want to explain that this is one possible explanation for the apparent absence of diploid males outside of clonal line A. We hope that the modifications to the manuscript described in the previous response help to clarify this.

      Reviewer 2 is correct that comparing the number of diploid males to diploid females does not apply to clonal raider ants. This is because males are vanishingly rare among the vast numbers of females produced. We do not count how many females are produced in laboratory stock colonies, and males are sampled opportunistically. Therefore, we cannot report exact numbers. However, we will add the highlighted portion of the following sentence (in what will be lines 268-270) to the revised manuscript: “Despite the fact that we maintain more colonies of clonal line B than of clonal line A in the lab, all the diploid males we detected came from clonal line A.”

      (2) If line B indeed carries an additional CSD locus, one would expect that some females could be homozygous at the ANTSR locus but still viable, being heterozygous only at the other locus. Do the authors detect any females in line B that are homozygous at the ANTSR locus? If so, this would support the existence of an additional, functionally independent CSD locus.

      We thank the reviewer for this suggestion, and again we emphasize that we do not want to argue in favor of multiple CSD loci. We just want to introduce it as one possible explanation for the absence of diploid males outside of clonal line A.

      The 26 sequenced diploid females from clonal line B are all heterozygous at the mapped locus, and the revised manuscript will clarify this in what will be lines 199-201. Previously, only six of those diploid females were included in Supplementary Table S2, and that will be modified accordingly.

      (3) Line 281: The description of the two tra-containing CSD loci as "conserved" between Vollenhovia and the honey bee may be misleading. It suggests shared ancestry, whereas the honey bee csd gene is known to have arisen via a relatively recent gene duplication from fem/tra (10.1038/nature07052). It would be more accurate to refer to this similarity as a case of convergent evolution rather than conservation.

      In the sentence that Reviewer 2 refers to, we are representing the assertion made in the (Miyakawa and Mikheyev 2015) paper in which, regarding their mapping of a candidate CSD locus that contains two linked tra homologs, they write in the abstract: “these data support the prediction that the same CSD mechanism has indeed been conserved for over 100 million years.” In that same paper, Miyakawa and Mikheyev write in the discussion section: “As ants and bees diverged more than 100 million years ago, sex determination in honey bees and V. emeryi is probably homologous and has been conserved for at least this long.”

      As noted by Reviewer 2, this appears to conflict with a previously advanced hypothesis: that because fem and csd were found in Apis mellifera, Apis cerana, and Apis dorsata, but only fem was found in Mellipona compressipes, Bombus terrestris, and Nasonia vitripennis, that the csd gene evolved after the honeybee (Apis) lineage diverged from other bees (Hasselmann et al. 2008). However, it remains possible that the csd gene evolved after ants and bees diverged from N. vitripennis, but before the divergence of ants and bees, and then was subsequently lost in B. terrestris and M. compressipes. This view was previously put forward based on bioinformatic identification of putative orthologs of csd and fem in bumblebees and in ants [(Schmieder et al. 2012), see also (Privman et al. 2013)]. However, subsequent work disagreed and argued that the duplications of tra found in ants and in bumblebees represented convergent evolution rather than homology (Koch et al. 2014). Distinguishing between these possibilities will be aided by additional sex determination locus mapping studies and functional dissection of the underlying molecular mechanisms in diverse Aculeata.

      Distinguishing between these competing hypotheses is beyond the scope of our paper, but the revised manuscript will include additional text to incorporate some of this nuance. We will include these modified lines below (in what will be lines 287-295), with the additions highlighted:

      “A second QTL region identified in V. emeryi (V.emeryiCsdQTL1) contains two closely linked tra homologs, similar to the closely linked honeybee tra homologs, csd and fem (Miyakawa and Mikheyev 2015). This, along with the discovery of duplicated tra homologs that undergo concerted evolution in bumblebees and ants (Schmieder et al. 2012; Privman et al. 2013) has led to the hypothesis that the function of tra homologs as CSD loci is conserved with the csd-containing region of honeybees (Schmieder et al. 2012; Miyakawa and Mikheyev 2015). However, other work has suggested that tra duplications occurred independently in honeybees, bumblebees, and ants (Hasselmann et al. 2008; Koch et al. 2014), and it remains to be demonstrated that either of these tra homologs acts as a primary CSD signal in V. emeryi.”

      (4) Finally, since the authors successfully identified multiple alleles of the first CSD locus using previously sequenced haploid males, I wonder whether they also observed comparable allelic diversity at the candidate second CSD locus. This would provide useful supporting evidence for its functional relevance.

      As is already addressed in the final paragraph of the results and in Supplementary Fig. S4, there is no peak of nucleotide diversity in any of the regions homologous to V.emeryiQTL1, which is the tra-containing candidate sex determination locus (Miyakawa and Mikheyev 2015). In the revised manuscript, the relevant lines will be 307-310. We want to restate that we do not propose that there is a second candidate CSD locus in O. biroi, but we simply raise the possibility that multi-locus CSD *might* explain the absence of diploid males from clonal lines other than clonal line A (as one of several alternative possibilities).

      Overall, these are relatively minor points in the context of a strong manuscript, but I believe addressing them would improve the clarity and robustness of the authors' conclusions.

      Reviewer #3 (Public review):

      Summary:

      The sex determination mechanism governed by the complementary sex determination (CSD) locus is one of the mechanisms that support the haplodiploid sex determination system evolved in hymenopteran insects. While many ant species are believed to possess a CSD locus, it has only been specifically identified in two species. The authors analyzed diploid females and the rarely occurring diploid males of the clonal ant Ooceraea biroi and identified a 46 kb CSD candidate region that is consistently heterozygous in females and predominantly homozygous in males. This region was found to be homologous to the CSD locus reported in distantly related ants. In the Argentine ant, Linepithema humile, the CSD locus overlaps with an lncRNA (ANTSR) that is essential for female development and is associated with the heterozygous region (Pan et al. 2024). Similarly, an lncRNA is encoded near the heterozygous region within the CSD candidate region of O. biroi. Although this lncRNA shares low sequence similarity with ANTSR, its potential functional involvement in sex determination is suggested. Based on these findings, the authors propose that the heterozygous region and the adjacent lncRNA in O. biroi may trigger female development via a mechanism similar to that of L. humile. They further suggest that the molecular mechanisms of sex determination involving the CSD locus in ants have been highly conserved for approximately 112 million years. This study is one of the few to identify a CSD candidate region in ants and is particularly noteworthy as the first to do so in a parthenogenetic species.

      Strengths:

      (1) The CSD candidate region was found to be homologous to the CSD locus reported in distantly related ant species, enhancing the significance of the findings.

      (2) Identifying the CSD candidate region in a parthenogenetic species like O. biroi is a notable achievement and adds novelty to the research.

      Weaknesses

      (1) Functional validation of the lncRNA's role is lacking, and further investigation through knockout or knockdown experiments is necessary to confirm its involvement in sex determination.

      See response below.

      (2) The claim that the lncRNA is essential for female development appears to reiterate findings already proposed by Pan et al. (2024), which may reduce the novelty of the study.

      We do not claim that the lncRNA is essential for female development in O. biroi, but simply mention the possibility that, as in L. humile, it is somehow involved in sex determination. We do not have any functional evidence for this, so this is purely based on its genomic position immediately adjacent to our mapped candidate region. We agree with the reviewer that the study by Pan et al. (2024) decreases the novelty of our findings. Another way of looking at this is that our study supports and bolsters previous findings by partially replicating the results in a different species.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      L307-308 should state homozygous for either allele in THE MAJORITY of diploid males.

      This will be fixed in the revised manuscript, in what will be line 321.

      Reviewer #3 (Recommendations for the authors):

      The association between heterozygosity in the CSD candidate region and female development in O. biroi, along with the high sequence homology of this region to CSD loci identified in two distantly related ant species, is not sufficient to fully address the evolution of the CSD locus and the mechanisms of sex determination.

      Given that functional genetic tools, such as genome editing, have already been established in O. biroi, I strongly recommend that the authors investigate the role of the lncRNA through knockout or knockdown experiments and assess its impact on the sex-specific splicing pattern of the downstream tra gene.

      Although knockout experiments of the lncRNA would be illuminating, the primary signal of complementary sex determination is heterozygosity. As is clearly stated in our manuscript and that of (Pan et al. 2024), it does not appear to be heterozygosity within the lncRNA that induces female development, but rather heterozygosity in non-transcribed regions linked to the lncRNA. Therefore, future mechanistic studies of sex determination in O. biroi, L. humile, and other ants should explore how homozygosity or heterozygosity of this region impacts the sex determination cascade, rather than focusing (exclusively) on the lncRNA.

      With this in mind, we developed three sets of guide RNAs that cut only one allele within the mapped CSD locus, with the goal of producing deletions within the highly variable region within the mapped locus. This would lead to functional hemizygosity or homozygosity within this region, depending on how the cuts were repaired. We also developed several sets of PCR primers to assess the heterozygosity of the resultant animals. After injecting 1,162 eggs over several weeks and genotyping the hundreds of resultant animals with PCR, we confirmed that we could induce hemizygosity or homozygosity within this region, at least in ~1/20 of the injected embryos. Although it is possible to assess the sex-specificity of the splice isoform of tra as a proxy for sex determination phenotypes (as done by (Pan et al. 2024)), the ideal experiment would assess male phenotypic development at the pupal stage. Therefore, over several more weeks, we injected hundreds more eggs with these reagents and reared the injected embryos to the pupal stage. However, substantial mortality was observed, with only 12 injected eggs developing to the pupal stage. All of these were female, and none of them had been successfully mutated.

      In conclusion, we agree with the reviewer that functional experiments would be useful, and we made extensive attempts to conduct such experiments. However, these experiments turned out to be extremely challenging with the currently available protocols. Ultimately, we therefore decided to abandon these attempts.  

      We opted not to include these experiments in the paper itself because we cannot meaningfully interpret their results. However, we are pleased that, in this response letter, we can include a brief description for readers interested in attempting similar experiments.

      Since O. biroi reproduces parthenogenetically and most offspring develop into females, observing a shift from female- to male-specific splicing of tra upon early embryonic knockout of the lncRNA would provide much stronger evidence that this lncRNA is essential for female development. Without such functional validation, the authors' claim (lines 36-38) seems to reiterate findings already proposed by Pan et al. (2024) and, as such, lacks sufficient novelty.

      We have responded to the issue of “lack of novelty” above. But again, the actual CSD locus in both O. biroi and L. humile appears to be distinct from (but genetically linked to) the lncRNA, and we have no experimental evidence that the putative lncRNA in O. biroi is involved in sex determination at all. Because of this, and given the experimental challenges described above, we do not currently intend to pursue functional studies of the lncRNA.

      References

      Hasselmann M, Gempe T, Schiøtt M, Nunes-Silva CG, Otte M, Beye M. 2008. Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature 454:519–522.

      Koch V, Nissen I, Schmitt BD, Beye M. 2014. Independent Evolutionary Origin of fem Paralogous Genes and Complementary Sex Determination in Hymenopteran Insects. PLOS ONE 9:e91883.

      Matthey-Doret C, van der Kooi CJ, Jeffries DL, Bast J, Dennis AB, Vorburger C, Schwander T. 2019. Mapping of multiple complementary sex determination loci in a parasitoid wasp. Genome Biology and Evolution 11:2954–2962.

      Miyakawa MO, Mikheyev AS. 2015. QTL mapping of sex determination loci supports an ancient pathway in ants and honey bees. PLOS Genetics 11:e1005656.

      Pan Q, Darras H, Keller L. 2024. LncRNA gene ANTSR coordinates complementary sex determination in the Argentine ant. Science Advances 10:eadp1532.

      Privman E, Wurm Y, Keller L. 2013. Duplication and concerted evolution in a master sex determiner under balancing selection. Proceedings of the Royal Society B: Biological Sciences 280:20122968.

      Rabeling C, Kronauer DJC. 2012. Thelytokous parthenogenesis in eusocial Hymenoptera. Annual Review of Entomology 58:273–292.

      Schmieder S, Colinet D, Poirié M. 2012. Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants. Nature Communications 3:1–7.

      Vorburger C. 2013. Thelytoky and Sex Determination in the Hymenoptera: Mutual Constraints. Sexual Development 8:50–58.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this paper, Behruznia and colleagues use long-read sequencing data for 339 strains of the Mycobacterium tuberculosis complex to study genome evolution in this clonal bacterial pathogen. They use both a "classical" pangenome approach that looks at the presence and absence of genes, and a pangenome graph based on whole genomes in order to investigate structural variants in non-coding regions. The comparison of the two approaches is informative and shows that much is missed when focussing only on genes. The two main biological results of the study are that 1) the MTBC has a small pangenome with few accessory genes, and that 2) pangenome evolution is driven by genome reduction. In the revised article, the description of the data set and the methods is much improved, and the comparison of the two pangenome approaches is more consistent. I still think, however, that the discussion of genome reduction suffers from a basic flaw, namely the failure to distinguish clearly between orthologs and homologs/paralogs.

      Strengths:

      The authors put together the so-far largest data set of long-read assemblies representing most lineages of the Mycobacterium tuberculosis context, and covering a large geographic area. They sequenced and assembled genomes for strains of M. pinnipedi, L9, and La2, for which no high-quality assemblies were available previously. State-of-the-art methods are used to analyze gene presence-absence polymorphisms (Panaroo) and to construct a pangenome graph (PanGraph). Additional analysis steps are performed to address known problems with misannotated or misassembled genes.

      Weaknesses:

      The revised manuscript has gained much clarity and consistency. One previous criticism, however, has in my opinion not been properly addressed. I think the problem boils down to not clearly distinguishing between orthologs and paralogs/homologs. As this problem affects a main conclusion - the prevalence of deletions over insertions in the MTBC - it should be addressed, if not through additional analyses, then at least in the discussion.

      Insertions and deletions are now distinguished in the following way: "Accessory regions were further classified as a deletion if present in over 50% of the 192 sub-lineages or an insertion/duplication if present in less than 50% of sub-lineages." The outcome of this classification is suspicious: not a single accessory region was classified as an insertion/duplication. As a check of sanity, I'd expect at least some insertions of IS6110 to show up, which has produced lineage- or sublineage-specific insertions (Roychowdhury et al. 2015, Shitikov et al. 2019). Why, for example, wouldn't IS6110 insertions in the single L8 strain show up here?

      In a fully clonal organism, any insertion/duplication will be an insertion/duplication of an existing sequence, and thus produce a paralog. If I'm correctly understanding your methods section, paralogs are systematically excluded in the pangraph analysis. Genomic blocks are summarized at the sublineage levels as follows (l.184 ): "The DNA sequences from genomic blocks present in at least one sub-lineage but completely absent in others were extracted to look for long-term evolution patterns in the pangenome." I presume this is done using blastn, as in other steps of the analysis.

      So a sublineage-specific copy of IS6110 would be excluded here, because IS6110 is present somewhere in the genome in all sublineages. However, the appropriate category of comparison, at least for the discussion of genome reduction, is orthology rather than homology: is the same, orthologous copy of IS6110, at the same position in the genome, present or absent in other sublineages? The same considerations apply to potential sublineage-specific duplicates of PE, PPE, and Esx genes. These gene families play important roles in host-pathogen interactions, so I'd argue that the neglect of paralogs is not a finicky detail, but could be of broader biological relevance.

      Reviewer #2 (Public review):

      Summary:

      The authors attempted to investigate the pangenome of MTBC by using a selection of state-of-the-art bioinformatic tools to analyse 324 complete and 11 new genomes representing all known lineages and sublineages. The aim of their work was to describe the total diversity of the MTBC and to investigate the driving evolutionary force. By using long read and hybrid approaches for genome assembly, an important attempt was made to understand why the MTBC pangenome size was reported to vary in size by previous reports. This study provides strong evidence that the MTBC pangenome is closed and that genome reduction is the main driver of this species evolution.

      Strengths:

      A stand-out feature of this work is the inclusion of non-coding regions as opposed to only coding regions which was a focus of previous papers and analyses which investigated the MTBC pangenome. A unique feature of this work is that it highlights sublineage-specific regions of difference (RDs) that was previously unknown. Another major strength is the utilisation of long-read whole genomes sequences, in combination with short-read sequences when available. It is known that using only short reads for genome assembly has several pitfalls. The parallel approach of utilizing both Panaroo and Pangraph for pangenomic reconstruction illuminated limitations of both tools while highlighting genomic features identified by both. This is important for any future work and perhaps alludes to the need for more MTBC-specific tools to be developed. Lastly, ample statistical support in the form of Heaps law and genome fluidity calculations for each pangenome to demonstrate that they are indeed closed.

      Weaknesses:

      There are no major weaknesses in the revised version of this manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      l. 27: "lineage-specific and -independent deletions": it is still not clear to me what a lineage-independent, or convergent, deletion is supposed to be. TBD1, for instance, is not lineage-specific, but it is also not convergent: it occurred once in the common ancestor of lineages 1, 2, and 3, while convergence implies multiple parallel occurrences.

      We have changed this and in other places to more evolutionary terms, such as divergent (single event) and convergent (multiple events), or explain exactly what is meant where needed.

      l. 118: "where relevant", what does that mean?

      This was superfluous to the description and so is now removed.

      l. 178ff.: It is not clear to me what issue is addressed by this correction of the pangenome graph. Also here there seems to be some confusion regarding orthologs and paralogs. A gene or IS copy can be present at one locus but absent at another, which is not a mistake of Pangraph that would require correction. It's rather the notion of "truly absent region" which is ambiguous.

      We have changed the text to be more specific on the utility of this step. Since it is known that Panaroo mislabels some genes as being absent due to over splitting (see Ceres et al 2022 and our reclassification earlier in the paper), we wanted to see if the same occurred in Pangraph. We have modified the methods text to be more specific (line 181) and in the results included the percentage of total genes/regions affected by this correction.

      In relation to copy number, Pangraph is not syntenic in its approach; if a region is present anywhere it is labelled as present in the genome. Pangraph will look for multiple copies of that region (e.g. an IS element) but indeed we did not look for specific syntenic changes across the genomes. This would be a great analysis and something we will consider in the future; we have indicated such in the discussion (line 454).

      l. 305: "mislabelled as absent": see above, is this really 'mislabelled'?

      See answer to question above

      l. 372: "using the approach": something missing here.

      This was superfluous to the description and so is now removed.

      l. 381: the "additional analysis of paralogous blocks" (l. 381) seems to suffer from the same confusion of ortho- and paralogy described above: no new sub-lineage-specific accessory regions are found presumably because the analysis did consider any copy rather than orthologous copies.

      Paralogous copies were looked for by Pangraph, and we did not find any sub-lineage where all members had additional copies compared to other sub-lineages. Indeed, single genomes could have these, and shorter timescales could see a lot of such insertions, but we looked at longer-scale (all genomes within a sub-lineage) patterns and did not find these. These limitations are already outlined in the discussion.

      l. 415: see above. There is no diagnosis of a problem that would motivate a "correction". That's different from the correction of the Panaroo results, where fragmented annotations have been shown to be a problem.

      Of interest, the refining of regions did re-label multiple regions as being core when Pangraph labelled it as absent from some genomes was at about the same rate as the correction to Pangraph (2% of genes/regions). This indicates there is a stringency issue with pangraph where blocks are mislabelled as absent. The underlying reason or this is not clear but the correction is evidently required in this version of Pangraph.

      l. 430ff.: The issue of paralogy and that the "same" gene or region is defined in terms of homology rather than orthology should be addressed here. For me the given evidence does not support the claim that deletion is driving molecular evolution in the MTBC.

      As outlined above, indeed paralogy may be driving some elements of the overall evolutionary patterns; our analysis just did not find this. Panaroo without merged paralogs did not find paralogous genes as a main differentiating factor for any sub-lineage. Pangraph also did not find multiple copies of blocks present in all genomes in a sub-lineage. As outlined above, indeed single genomes show such patterns but we did not include single genome analyses here, and outline that as a next steps in the discussion. We have also linked to a recent pangenome paper that showed duplication is present in the pangenome of Mtbc, although not related to any specific lineage (Discussion line 485).

      l. 443 ff: "lineage-independent deletions (convergent evolution)": see above, I still think this terminology is unclear

      This has now been made clearer to be specifically about convergent and divergent evolutionary patterns.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      This paper describes technically-impressive measurements of calcium signals near synaptic ribbons in goldfish bipolar cells. The data presented provides high spatial and temporal resolution information about calcium concentrations along the ribbon at various distances from the site of entry at the plasma membrane. This is important information. Important gaps in the data presented mean that the evidence for the main conclusions is currently inadequate. 

      Strengths 

      The technical aspects of the measurements are impressive. The authors use calcium indicators bound to the ribbon and high speed line scans to resolve changes with a spatial resolution of ~250 nm and temporal resolution of less than 10 ms. These spatial and temporal scales are much closer to those relevant for vesicle release than previous measurements. 

      The use of calcium indicators with very different affinities and of different intracellular calcium buffers helps provide confirmation of key results. 

      Thank you very much for this positive evaluation of our work.

      Weaknesses 

      Multiple key points of the paper lack a statistical test or summary data from populations of cells. For example, the text states that the proximal and distal calcium kinetics in Figure 2A differ. This is not clear from the inset to Figure 2A - where the traces look like scaled versions of each other. Values for time to half-maximal peak fluorescence are given for one example cell but no statistics or summary are provided. Figure 8 shows examples from one cell with no summary data. This issue comes up in other places as well. 

      Thank you for this fair and valuable feedback. Following also the suggestion by the Editor, we have now removed the rise-time kinetic fitting results from the manuscript and only retain the bi-exponential decay time constant values. Further, we explicitly detail the issues with kinetic fitting, and state that the precise quantitative conclusions should not be drawn from the differences in kinetic parameters (pages 7 and 2728). 

      We have included the results of paired-t-tests to compare the amplitudes of proximal vs. distal calcium signals shown in Fig. 2A & B, Fig. 3C & D, Fig. 4C & D, Fig. 5A-D, and Fig. 8E&F. Because proximal and distal calcium signals were obtained from the same ribbons within 500-nm distances, as the Reviewer pointed out, “the traces look like scaled versions of each other”. For experiments where we make comparisons across cells or different calcium indicators, as shown in Fig. 3E & F, Fig.5E, and Fig. 8B&C, we have included the results of an unpaired t-test. We have also included the t-test statistics information in the respective figure legends in the revised version.

      In Figure 8, we have shown example fluorescence traces from two different cells at the bottom of the A panel, and example traces from different ribbons of RBC a in the D, and the summary data is described in B-C and E-F, with statistics provided in the figure legends.

      The rise time measurements in Figure 2 are very different for low and high affinity indicators, but no explanation is given for this difference. Similarly, the measurements of peak calcium concentration in Figure 4 are very different with the two indicators. That might suggest that the high affinity indicator is strongly saturated, which raises concerns about whether that is impacting the kinetic measurements. 

      Yes, we do believe that the high-affinity indicator is partially saturated, and therefore, the measurement with the low-affinity indicator dye is a more accurate reflection of the measured Ca<sup>2+</sup> signal. We now state this more explicitly in the text. Further, we note that the rise time values are no longer listed due to lack of statistical significance for such comparisons, as noted above.

      Reviewer #2 (Public review): 

      Summary: 

      The study introduces new tools for measuring intracellular Ca2+ concentration gradients around retinal rod bipolar cell (rbc) synaptic ribbons. This is done by comparing the Ca2+ profiles measured with mobile Ca2+ indicator dyes versus ribbon-tethered (immobile) Ca2+ indicator dyes. The Ca2+ imaging results provide a straightforward demonstration of Ca2+ gradients around the ribbon and validate their experimental strategy. This experimental work is complemented by a coherent, open-source, computational model that successfully describes changes in Ca2+ domains as a function of Ca2+ buffering. In addition, the authors try to demonstrate that there is heterogeneity among synaptic ribbons within an individual rbc terminal. 

      Strengths: 

      The study introduces a new set of tools for estimating Ca2+ concentration gradients at ribbon AZs, and the experimental results are accompanied by an open-source, computational model that nicely describes Ca2+ buffering at the rbc synaptic ribbon. In addition, the dissociated retinal preparation remains a valuable approach for studying ribbon synapses. Lastly, excellent EM. 

      Thank you very much for this positive evaluation of our work.

      Comments on revisions: 

      Specific minor comments: 

      (1) Rewrite the final sentence of the Abstract. It is difficult to understand. 

      Thank you for pointing that out. We have updated the final sentence of the Abstract.

      (2) Add a definition in the Introduction (and revisit in the Discussion) that delineates between micro- and nano-domain. A practical approach would be to round up and round down. If you round up from 0.6 um, then it is microdomain which means ~ 1 um or higher. Likewise, round down from 0.3 um to nanodomain? If you are using confocal, or even STED, the resolution for Ca imaging will be in the 100 to 300 nm range. The point of your study is that your new immobile Ca2-ribbon indicator may actually be operating on a tens of nm scale: nanophysiology. The Results are clearly written in a way that acknowledges this point but maybe make such a "definition" comment in the intro/discussion in order to: 1) demonstrate the power of the new Ca2+ indicator to resolve signals at the base of the ribbon (effectively nano), and 2) (Discussion) to acknowledge that some are achieving nanoscopic resolution (50 to 100nm?) with light microscopy (as you ref'd Neef et al., 2018 Nat Comm).  

      Thank you for the valuable comments. We have now provided this information in the introduction and discussion.  

      (3) Suggested reference: Grabner et al. 2022 (Sci Adv, Supp video 13, and Fig S5). Here rod Cav channels are shown to be expressed on both sides the ribbon, at its base, and they are within nanometers from other AZ proteins. This agrees with the conclusions from your imaging work.  

      Thank you for the valuable suggestion. We have now provided this information in the introduction and discussion.

      (4) In the Discussion, add a little more context to what is known about synaptic transmission in the outer and inner retina.. First, state that the postsynaptic receptors (for example: mGluR6-OnBCs vs KARs-OffBCs, vs. AMPAR-HCs), and possibly the synaptic cleft (ground squirrel), are known to have a significant impact on signaling in the outer retina. In the inner retina, there are many more unknowns. For example, when I think of the pioneering Palmer JPhysio study, which you sight, I think of NMDAR vs AMPAR, and uncertainty in what type postsynaptic cell was patched (GC or AC....). Once you have informed the reader that the postsynapse is known to have a significant impact on signaling, then promote your experimental work that addresses presynaptic processes: "...the new tool and results allow us to explore release heterogeneity, ribbon by ribbon in dissociated preps, which we eventually plan to use at ribbon synapses within slices......to better understand how the presynapse shapes signaling......". 

      Thank you for the valuable comments. We have now provided this information in the introduction and discussion.

      Reviewer #3 (Public review): 

      Summary: 

      In this study, the authors have developed a new Ca indicator conjugated to the peptide, which likely recognizes synaptic ribbons and have measured microdomain Ca near synaptic ribbons at retinal bipolar cells. This interesting approach allows one to measure Ca close to transmitter release sites, which may be relevant for synaptic vesicle fusion and replenishment. Though microdomain Ca at the active zone of ribbon synapses has been measured by Hudspeth and Moser, the new study uses the peptide recognizing synaptic ribbons, potentially measuring the Ca concentration relatively proximal to the release sites. 

      Strengths: 

      The study is, in principle, technically well done, and the peptide approach is technically interesting, which allows one to image Ca near the particular protein complexes. The approach is potentially applicable to other types of imaging. 

      Thank you very much for this appreciation.

      Weaknesses: 

      Peptides may not be entirely specific, and genetic approach tagging particular active zone proteins with fluorescent Ca indicator proteins may well be more specific. Although the authors are aware of this and the peptide approach is generally used for ribbon synapses, the authors should be aware of this, when interpreting the results. 

      We acknowledge the reviewer’s point and believe the peptides and genetic approaches to measure local calcium signals have their merits, each with separate advantages and disadvantages.  

      Reviewer #1 (Recommendations for the authors): 

      The revisions helped with some concerns about the original paper, but some issues were not adequately addressed. I have left two primary concerns in my public review. To summarize those: 

      The difference in kinetics of proximal and distal locations is emphasized and quantified in the paper, but the quantification consists of a fit to the average responses. This does not give an idea of whether the difference observed is significant or not. Without an estimate of the error across measurements the difference in kinetic quoted is not interpretable. 

      Thank you for this feedback. Since the kinetics information is a minor part of the manuscript, we have followed the Editor’s advice to significantly tone down the comparison of kinetic fit parameters (completely removing the rise-time comparisons), in order to put more focus on the better-documented conclusions. We also note that we did establish statistical significance of the differences in fluorescence signal amplitudes. 

      Somewhat relatedly, the difference in amplitude and kinetics of the calcium signals measured with low and high affinity indicators is quite concerning. The authors added one sentence stating that the high affinity indicator might be saturated. This is not adequate. Should we distrust the measurements using the high affinity indicator? The differences between the results using the low and high affinity indicators is in some cases large - e.g. larger than the differences cited as a key result between distal and proximal locations. This issue needs to be dealt with directly in the paper. 

      Thank you for this feedback. Yes, the measurements from high-affinity indicators cannot report the Ca2+ as accurately as low-affinity indicators. However, the value of HA indicators is in their ability to detect lowamplitude signals that lower-affinity indicators may miss due to lower signal-to-noise resolution.  We added a sentence on page 12 to further stress this point.

      Related to the point about statistics, it is not clear how to related the horizontal lines in Figure 8 to the actual measurements. It is critical for the evaluation of the conclusions from that figure to understand what is plotted and what the error bars are on the plotted data. 

      We apologize for the earlier ambiguity in Fig. 8. In this figure, we first compare proximal (panel B) and distal (panel C) calcium signals across several RBCs, labeled RBC-a through RBC-d. Each RBC contains multiple ribbons, and for each cell, we present the average calcium signals from multiple ribbons using box plots in panels B and C. In these box plots, the horizontal lines represent the average calcium signal for each cell, while the size of the error bars reflects the variability in proximal and distal calcium signals among the ribbons within that RBC.

      For example, RBC-a had five identifiable ribbons. In panels D–F, we use RBC-a to illustrate the variability in calcium signals across individual ribbons. Specifically, we distinguished proximal and distal calcium signals from five ribbons (ribbons 1–5) within RBC-a. When feasible, we acquired multiple x–t line scans at a single ribbon, shown now as individual data points, to assess variability in calcium signals recorded from the same ribbon.

      The box plots in panels E and F display the average calcium signal (horizontal lines) for each ribbon, based on multiple recordings. These plots demonstrate considerable variability between ribbons of RBC-a. Importantly, the lack of or minimal error bars for repeated measurements at the same ribbon indicates that the proximal and distal calcium signals are consistent within a ribbon. These findings emphasize that the observed variability among ribbons and among cells reflects true biological heterogeneity in local calcium domains, rather than experimental noise.

    1. Author response:

      The following is the authors’ response to the original reviews.\

      Reviewer #1(Public review):

      (1) Changes in blood volume due to brain activity are indirectly related to neuronal responses. The exact relationship is not clear, however, we do know two things for certain: (a) each measurable unit of blood volume change depends on the response of hundreds or thousands of neurons, and (b) the time course of the volume changes are slow compared to the potential time course of the underlying neuronal responses. Both of these mean that important variability in neuronal responses will be averaged out when measuring blood changes. For example, if two neighbouring neurons have opposite responses to a given stimulus, this will produce opposite changes in blood volume, which will cancel each other out in the blood volume measurement due to (a). This is important in the present study because blood volume changes are implicitly being used as a measure of coding in the underlying neuronal population. The authors need to acknowledge that this is a coarse measure of neuronal responses and that important aspects of neuronal responses may be missing from the blood volume measure.

      The reviewer is correct: we do not measure neuronal firing but use blood volume as a proxy for bulk local neuronal activity, which does not capture the richness of single neuron responses. This is why the paper focuses on large-scale spatial representations as well as cross-species comparison. For this latter purpose, fMRI responses are on par with our fUSI data, with both neuroimaging techniques showing the same weakness. We have now added this point to the discussion: 

      “Second, we used blood volume as a proxy for local neuronal activity. Thus, our signal ignores any heterogeneity that might exist at the level of local neuronal populations. However, our main findings are related to the large-scale organization of cortical responses and how they relate to those of humans. For this purpose, the functional spatial resolution of our signal, driven by the spatial resolution of neurovascular coupling, should be adapted. In addition, using hemodynamic signals provides a much better comparison with human fMRI data, where the same limitations are present.”

      (2) More importantly for the present study, however, the effect of (b) is that any rapid changes in the response of a single neuron will be cancelled out by temporal averaging. Imagine a neuron whose response is transient, consisting of rapid excitation followed by rapid inhibition. Temporal averaging of these two responses will tend to cancel out both of them. As a result, blood volume measurements will tend to smooth out any fast, dynamic responses in the underlying neuronal population. In the present study, this temporal averaging is likely to be particularly important because the authors are comparing responses to dynamic (nonstationary) stimuli with responses to more constant stimuli. To a first approximation, neuronal responses to dynamic stimuli are themselves dynamic, and responses to constant stimuli are themselves constant. Therefore, the averaging will mean that the responses to dynamic stimuli are suppressed relative to the real responses in the underlying neurons, whereas the responses to constant stimuli are more veridical. On top of this, temporal following rates tend to decrease as one ascends the auditory hierarchy, meaning that the comparison between dynamic and stationary responses will be differently affected in different brain areas. As a result, the dynamic/stationary balance is expected to change as you ascend the hierarchy, and I would expect this to directly affect the results observed in this study.

      It is not trivial to extrapolate from what we know about temporal following in the cortex to know exactly what the expected effect would be on the authors' results. As a first-pass control, I would strongly suggest incorporating into the authors' filterbank model a range of realistic temporal following rates (decreasing at higher levels), and spatially and temporally average these responses to get modelled cerebral blood flow measurements. I would want to know whether this model showed similar effects as in Figure 2. From my guess about what this model would show, I think it would not predict the effects shown by the authors in Figure 2. Nevertheless, this is an important issue to address and to provide control for.

      We understand the reviewer’s concern about potential differences in response dynamics in stationary vs non-stationary sounds. It seems that the reviewer is concerned that responses to foregrounds may be suppressed in non-primary fields because foregrounds are not stationary, and non-primary regions could struggle to track and respond to these sounds. Nevertheless, we observed the contrary, with non-primary regions overrepresenting non-stationary (dynamic) sounds, over stationary ones. For this reason, we are inclined to think that this explanation cannot falsify our findings. 

      We understand the comment that temporal following rates might differ across regions in the auditory hierarchy and agree. In fact, we do show that tuning to temporal rates differs across regions and partly explains the differences in background invariance we observe. In this regard, we think the reviewer’s suggestion is already implemented by our spectrotemporal model, which incorporates the full range of realistic temporal following rates (up to 128 Hz). The temporal averaging is done as we take the output of the model (which varies continuously through time) and average it in the same window as we used for fUSI data. When we fit this model to the ferret data, we find that voxels in non-primary regions, especially VP (tertiary auditory cortex), tend to be more tuned to low temporal rates (Figure 2F, G), and that background invariance is stronger in voxels tuned to low rates. This is, however, not true in humans, suggesting that background invariance in humans relies on different computational mechanisms. We have added a sentence to clarify this: “The model included a range of realistic temporal rates and this axis was the most informative to discriminate foregrounds from backgrounds.”

      (3) I do not agree with the equivalence that the authors draw between the statistical stationarity of sounds and their classification as foreground or background sounds. It is true that, in a common foreground/background situation - speech against a background of white noise - the foreground is non-stationary and the background is stationary. However, it is easy to come up with examples where this relationship is reversed. For example, a continuous pure tone is perfectly stationary, but will be perceived as a foreground sound if played loudly. Background music may be very non-stationary but still easily ignored as a background sound when listening to overlaid speech. Ultimately, the foreground/background distinction is a perceptual one that is not exclusively determined by physical characteristics of the sounds, and certainly not by a simple measure of stationarity. I understand that the use of foreground/background in the present study increases the likely reach of the paper, but I don't think it is appropriate to use this subjective/imprecise terminology in the results section of the paper.

      We appreciate the reviewer’s comment that the classification of our sounds into foregrounds and backgrounds is not verified by any perceptual experiments. We use those terms to be consistent with the literature (McWalter and McDermott, 2018; McWalter and McDermott, 2019), including the paper we derived this definition from (Kell et al., 2019). These terms are widely used in studies where no perceptual or behavioral experiments are included, and even when animals are anesthetized. We have clarified and justified this choice in the beginning of the Results section:

      “We used three types of stimuli: foregrounds, backgrounds, and combinations of those. We use those terms to refer to sounds differing in their stationarity, under the assumption that stationary sounds carry less information than non-stationary sounds, and are thus typically ignored.”

      We have also added a paragraph in the discussion to emphasize the limits of this definition:

      “First, this study defined foregrounds and backgrounds solely based on their acoustic stationarity, rather than perceptual judgments. This choice allowed us to isolate the contribution of acoustic factors in a simplified setting. Within this controlled framework, we show that acoustic features of foreground and background sounds drive their separation in the brain and the hierarchical extraction of foreground sound features.”

      (4) Related to the above, I think further caveats need to be acknowledged in the study. We do not know what sounds are perceived as foreground or background sounds by ferrets, or indeed whether they make this distinction reliably to the degree that humans do. Furthermore, the individual sounds used here have not been tested for their foreground/background-ness. Thus, the analysis relies on two logical jumps - first, that the stationarity of these sounds predicts their foreground/background perception in humans, and second, that this perceptual distinction is similar in ferrets and humans. I don't think it is known to what degree these jumps are justified. These issues do not directly affect the results, but I think it is essential to address these issues in the Discussion, because they are potentially major caveats to our understanding of the work.

      We agree with the reviewer that the foreground-background distinction might be different in ferrets. In anticipation of that issue, we had enriched the sound set with more ecologically relevant sounds, such as ferret and other animal vocalizations. Nevertheless, we have emphasized this limitation in addition to the limitation of our definition of foregrounds and backgrounds in the discussion: 

      “In addition, most of the sounds included in our study likely have more relevance for humans compared to ferrets (see table \ref{tbl1}). Despite including ferret vocalizations and environmental sounds that are more ecologically relevant for ferrets, it is not clear whether ferrets would behaviorally categorize foregrounds and backgrounds as humans do. Examining how ferrets naturally orient or respond to foreground and background sounds under more ecologically valid conditions, potentially with free exploration or spontaneous listening paradigms, could help address this issue.”

      Reviewer #2(Public review);

      (1) Interpretation of the cerebral blood volume signal: While the results are compelling, more caution should be exercised by the authors in framing their results, given that they are measuring an indirect measure of neural activity, this is the difference between stating "CBV in area MEG was less background invariant than in higher areas" vs. saying "MEG was less background invariant than other areas". Beyond framing, the basic properties of the CBV signal should be better explored:

      a) Cortical vasculature is highly structured (e.g. Kirst et al.( 2020) Cell). One potential explanation for the results is simply differences in vasculature and blood flow between primary and secondary areas of auditory cortex, even if fUS is sensitive to changes in blood flow, changes in capillary beds, etc (Mace et al., 2011) Nat. Methods.. This concern could be addressed by either analyzing spontaneous fluctuations in the CBV signal during silent periods or computing a signal-to-noise ratio of voxels across areas across all sound types. This is especially important given the complex 3D geometry of gyri and sulci in the ferret brain.

      We agree with the reviewers that there could be differences in vasculature across subregions of the auditory cortex and note that this point would also be valid for the published human fMRI data. Nevertheless, even if small differences in vasculature were present, it is unlikely that they would affect our analyses and results, which are designed to be independent of local vascular density. First, we normalize the signal in each voxel using the silent periods, so that the absolute strength of the raw signal, or baseline blood volume in each voxel, is factored in our analysis. Second, we only focus on reliably responsive voxels in each region and do see comparable sound-evoked responses in all regions (Figure S2). Third, our analysis mostly relies on voxel-based correlation across sounds, which is independent of the mean and variance of the voxel responses. Differences in noise, measured through test-retest reliability, can affect values of correlation, which is why we used a noise-correction procedure. After this procedure, invariance does not depend on test-retest, and differences across regions are still seen when matching for test-retest (new  Figure S7). Thus, we believe that differences in vascular architecture across regions are unlikely to affect our results. We added this point in the Methods section when discussing the noise-correction:

      “After this correction, the differences we observed between brain regions were present regardless of voxels' test-retest reliability, or noise level (Figure S7). Thus, potential differences in vasculature across regions are unlikely to affect our results.”

      b) Figure 1 leaves the reader uncertain what exactly is being encoded by the CBV signal, as temporal responses to different stimuli look very similar in the examples shown. One possibility is that the CBV is an acoustic change signal. In that case, sounds that are farther apart in acoustic space from previous sounds would elicit larger responses, which is straightforward to test. Another possibility is that the fUS signal reflects time-varying features in the acoustic signal (e.g. the low-frequency envelope). This could be addressed by cross-correlating the stimulus envelope with fUS waveform. The third possibility, which the authors argue, is that the magnitude of the fUS signal encodes the stimulus ID. A better understanding of the justification for only looking at the fUS magnitude in a short time window (2-4.8 s re: stimulus onset) would increase my confidence in the results.

      We thank the reviewer for raising that point as it highlights that the layout of Figure 1 is misleading. While Figure 1B shows an example snippet of our sound streams, Figure 1D shows the average timecourse of CBV time-locked to a change in sound (foreground or background, isolated or in a mixture). This is the average across all voxels and sounds, aiming at illustrating the dynamics for the three broad categories. In Figure 1E however, we show the cross-validated cross-correlation of CBV across sounds (and different time lags). To obtain this, we compute for each voxel the response to each sound at each time lag, thus obtaining two vectors (size: number of sounds) per lag, one per repeat. Then, we correlate all these vectors across the two repeats, obtaining one cross-correlation matrix per voxel. We finally average these matrices across all voxels. The presence of red squares with high correlations demonstrates that the signal encodes sound identity, since CBV is more similar across two repeats of the same sound (e.g., in the foreground only matrix, 0-5 s vs 0-5 s), than two different sounds (0-5 s vs. 7-12 s). We modified the figure layout as well as the legend to improve clarity.

      (2) Interpretation of the human data: The authors acknowledge in the discussion that there are several differences between fMRI and fUS. The results would be more compelling if they performed a control analysis where they downsampled the Ferret fUS data spatially and temporally to match the resolution of fMRI and demonstrated that their ferret results hold with lower spatiotemporal resolution.

      We agree with the reviewer that the use of different techniques might come in the way of cross-species comparison. We already control for the temporal aspect by using the average of stimulus-evoked activity across time (note that due to scanner noise, sounds are presented cut into small pieces in the fMRI experiments). Regarding the spatial aspect, there are several things to consider. First, both species have brains of very different sizes, a factor that is conveniently compensated for by the higher spatial resolution of fUSI compared to fMRI (0.1 vs 2 mm). Downsampling to fMRI resolution would lead to having one voxel per region per slice, which is not feasible. We also summarize results with one value per region, which is a form of downsampling that is fairer across species. Furthermore, we believe that we already established in a previous study (Landemard et al, 2021 eLife) that fUSI and fMRI data are comparable signals. We indeed could predict human fMRI responses to most sounds from ferret fUSI responses to the same identical sounds. We clarified these points in the discussion:

      “In addition, fMRI has a worse spatial resolution than fUSI (here, 2 vs. 0.1 mm voxels). However, this difference in resolution compensates for the difference in brain size between humans and ferrets. In our previous work, we showed that a large fraction of cortical responses to natural sounds could be predicted from one species to the other using these methods (Landemard et al., 2021).”

      Reviewer #3 (Public review):

      As mentioned above, interpretation of the invariance analyses using predictions from the spectrotemporal modulation encoding model hinges on the model's ability to accurately predict neural responses. Although Figure S5 suggests the encoding model was generally able to predict voxel responses accurately, the authors note in the introduction that, in human auditory cortex, this kind of tuning can explain responses in primary areas but not in non-primary areas (Norman-Haignere & McDermott, PLOS Biol. 2018). Indeed, the prediction accuracy histograms in Figure  S5C suggest a slight difference in the model's ability to predict responses in primary versus non-primary voxels. Additional analyses should be done to a) determine whether the prediction accuracies are meaningfully different across regions and b) examine whether controlling for prediction accuracy across regions (i.e., subselecting voxels across regions with matched prediction accuracy) affects the outcomes of the invariance analyses.

      The reviewer is correct: the spectrotemporal model tends to perform less well in human non-primary cortex. We believe this does not contradict our results but goes in the same direction: while there is a gradient in invariance in both ferrets and humans, this gradient is predicted by the spectrotemporal model in ferrets, but not in humans (possibly indeed because predictions are less good in human non-primary auditory cortex). Regardless of the mechanism, this result points to a difference across species. In ferrets, we found a significantly better prediction accuracy in VP (p=0.001, permutation test) and no differences between MEG and dPEG (p=0.89). In humans, prediction accuracy was slightly higher in primary compared to non-primary auditory cortex, but this effect was not significant (p=0.076). In both species, when matching prediction accuracy between regions, the gradients in invariance were preserved. We have added these analyses to the manuscript (Figure S5).

      A related concern is the procedure used to train the encoding model. From the methods, it appears that the model may have been fit using responses to both isolated and mixture sounds. If so, this raises questions about the interpretability of the invariance analyses. In particular, fitting the model to all stimuli, including mixtures, may inflate the apparent ability of the model to "explain" invariance, since it is effectively trained on the phenomenon it is later evaluated on. Put another way, if a voxel exhibits invariance, and the model is trained to predict the voxel's responses to all types of stimuli (both isolated sounds and mixtures), then the model must also show invariance to the extent it can accurately predict voxel responses, making the result somewhat circular. A more informative approach would be to train the encoding model only on responses to isolated sounds (or even better, a completely independent set of sounds), as this would help clarify whether any observed invariance is emergent from the model (i.e., truly a result of low-level tuning to spectrotemporal features) or simply reflects what it was trained to reproduce.

      We thank the reviewer for this suggestion. We have run an additional prediction using only the sounds presented in isolation, which replicates our main results (new Figure S6). We have added this control to the manuscript:

      “Results were similar if the model was fit solely on isolated sounds, excluding mixtures from the training set (Figure S6).”

      Finally, the interpretation of the foreground invariance results remains somewhat unclear. In ferrets (Figure 2I), the authors report relatively little foreground invariance, whereas in humans (Figure 5G), most participants appear to show relatively high levels of foreground invariance in primary auditory cortex (around 0.6 or greater). However, the paper does not explicitly address these apparent crossspecies differences. Moreover, the findings in ferrets seem at odds with other recent work in ferrets (Hamersky et al. 2025 J. Neurosci.), which shows that background sounds tend to dominate responses to mixtures, suggesting a prevalence of foreground invariance at the neuronal level. Although this comparison comes with the caveat that the methods differ substantially from those used in the current study, given the contrast with the findings of this paper, further discussion would nonetheless be valuable to help contextualize the current findings and clarify how they relate to prior work.

      We thank the reviewer for this point. While we found a trend for higher background invariance than foreground invariance in ferret primary auditory cortex, this difference was not significant and many voxels exhibit similar levels of background and foreground invariance (for example in Figure 2D, G). Thus, we do not think our results are inconsistent with Hamersky et al., 2025, though we agree the bias towards background sounds is not as strong in our data. This might indeed reflect differences in methodology, both in the signal that is measured (blood volume vs spikes), and the sound presentation paradigm. Our timescales are much slower and likely reflect responses post-adaptation, which might not be as true for Hamersky et al. We have added this point to the discussion, as well as a comment on the difference between ferrets and humans in foreground invariance in primary auditory cortex:

      “In ferrets, primary auditory cortex has been found to over-represent backgrounds in mixtures compared to foregrounds (Hamersky et al., 2025). In contrast, we found a slight, non-significant bias towards foregrounds in primary regions. This difference could be driven by a difference in timescales, as we looked at slower timescales in which adaptation might be more present, reducing the strength of background encoding. In humans, we found a much smaller gap between background and foreground invariance in primary auditory cortex, which was not predicted by the spectrotemporal model. Additional, more closely controlled experiments would be needed to confirm and understand this species difference.”

      Reviewer #1 (Recommendations for the authors):

      (1) In the introduction, explain the relationship between background/foreground and stationarity/non-stationarity, and thus why stationary/nonstationary stimuli could be used to probe differences in background/foreground processing.

      We have added a sentence at the beginning of the results section to justify our choice (see public review).  

      (2) Avoid use of the background/foreground terminology in Results (and probably Methods).

      For consistency with previous literature, we decided to keep this terminology, though imperfect. We further justified our choice in the beginning of the Results section (see previous point).

      (3) In the Discussion, explain what the implications of the results are for background/foreground processing, and, importantly, highlight any caveats that result from stationarity not being a direct measure of background/foreground.

      We added a paragraph in the Discussion to highlight this point choice (see public review).

      Reviewer #2 (Recommendations for the authors):

      (1) Figure 1: Showing a silent period in the examples would help in understanding the fUS signal.

      In Figure 1D, we show the average timecourse of CBV time-locked to a change in sound (foreground or background, isolated or in a mixture). This is the average across all voxels and sounds. Thus, it would not be very informative to show an equivalent plot for a silent period, as it would look flat by definition. However, we updated the layout and legend of Figure 1 to make it clearer and avoid confusion.

      (2) "Responses were not homogenous" - would make more sense to say something like "responses were not spatially distributed".

      We removed these words which were indeed not necessary: “We found that reliable soundevoked responses were confined to the central part of ventral gyrus of the auditory cortex.”

      (3) Figure 2D: The maps shown in Figure 2D are difficult to understand for the noninitiated in fUS. At a minimum, labels should be added to indicate A-P, M-L, D-V. I cannot see the white square in the primary figure. An additional graphic would be helpful here to understand the geometry of the measurement.

      We thank the reviewer for pointing out that reading these images is indeed an acquired skill. We added an annotated image of anatomy with indications of main features to guide the reader in Figure 1. We also added missing white squares. 

      (4) Figure 2F: Can the authors better justify why the summary statistic is shown for all three areas, but the individual data only compares primary vs. higher order?`

      We now show individual data for all three areas.

      (5) More methods information is needed to understand how recordings were stitched across days. Was any statistical modeling used to factor out the influence of day on overall response levels?

      We simply concatenated voxels recorded across different sessions and days. The slices were sampled randomly to avoid any systematic effect. Because different slices were sampled in different sessions, any spatial structure spanning several slices is unlikely to be artefactual. For instance, the map of average responses in Figure 2A shows a high level of continuity of spatial patterns across slices. This indicates that this pattern reflects a true underlying organization rather than session-specific noise. It also shows that the overall response levels are not affected by the day or recording session. We added a section in the Methods (“Combining different recordings”) to clarify this point:

      “The whole dataset consisted of multiple slices, each recorded in a different recording session. Slices to image on a given day were chosen at random to avoid any systematic bias. Responses were consistent across neighboring slices recorded on different sessions, as shown by the maps of average responses (Figure 2A, Figure S2) where any spatial continuity across different slices must reflect a true underlying signal in the absence of common noise.”

      Reviewer #3 (Recommendations for the authors):

      (1) Figures:

      The figures are generally very well done and visually appealing. However, I have a few suggestions and questions.

      a)  In Figure 1G, the delta CBV ranges from 0.5 to 1.5, although in subsequent figures (e.g., Figure 2D), the range is much larger (-15 to 45). Is it possible that the first figure is a proportion rather than a percentage, or is there some other explanation for the massive difference in scale? Not being very familiar with this measure, it was confusing.

      The same scale is used in both figures, the major difference being that in Figure 1D, we take the average over all voxels and sounds (for each category), which will include many nonresponsive voxels, and for responsive voxels, sounds that they do not respond a lot to. On the other hand, Figure 2D shows the response of a single, responsive voxel. Thus, the values it reaches for its preferred sounds (45%) are an extreme, which weighs only little in Figure 1D. We have changed the legend of Figure 1D to make this more explicit.

      b)  Similar to the first point, the strength of the correlations in the matrices of Figure 1E is very small (~ 0.05) compared to the test-retest reliabilities plotted in Figure 2B (~0.5). Again, I was confused by this large difference in scale.

      Two main factors explain the difference in values between Figure 1E and Figure 2B. First, in Figure 1B, each correlation is done on the average activity in a window of 0.3 s, opposed to 2.4 s in Figure 2B. More averaging leads to better SNR, which inevitably leads to higher testretest correlations. Second, in Figure 1B, the cross-correlation matrices are averaged across all responsive voxels without any criterion for reliability. On the other hand, Figure 2B show example voxels with good test-retest reliability. 

      c)  In Figure 2D, the example voxels are supposed to be shown in white. It appears that this example voxel is only shown for the non-primary voxel. Please be sure to add these voxels throughout the other panels and figures as well. 

      We fixed this mistake and added the example voxel in all panels.

      d)  Why do the invariance results (e.g., Figure 2F) for individual animals combine across dPEG and VP, while the overall results (across all animals) split things across all three regions? The results in Table 2 do, in fact, provide this data. Upon further examination of the data in Table 2, it seems like there is only a significant difference between background invariance between dPEG and VP for one of the two animals, and that this might be what drives the effect when pooling across all animals. This seems important to both show visually in the figure and to potentially discuss. There is still very clearly a difference between primary and non-primary, but whether there is a real difference between dPEG and VP seems more unclear.

      We added the values for single animals in the plot and highlighted this limitation in the text:

      “While background invariance was overall highest in VP, the differences within non-primary areas were more variable across animals (see table 2).”

      e)  Again, as in Figure 2F, the cross symbols seem like a bad choice as markers since the vertical components of the cross are suggestive of the error of the measurement. However, no error is actually plotted in these figures. I recommend using a different marker and including some measure of error in the invariance plots.

      We replaced the crosses with circles to avoid confusion. The measure of error is provided by the representation of values for single animals.

      f) The caption for Figure 4C states that each line corresponds to one animal, but does not precisely state what this line represents. Is this the median or something?

      Each line indeed represents the median across voxels for one animal. We added this information to the legend.

      g)  In Figure 5, the captions for panels D and E are swapped.

      This has now been corrected.

      (2) Discussion:

      (a) In the paragraph on methodological differences, it mentions that the fMRI voxel size is around 2 mm. This may be true in general, but given the comparison to Kell & McDermott 2019, the voxel size should reflect that used in their study (1 mm).

      The reviewer might refer to this sentence from the methods of Kell et al., 2019: “T1weighted anatomical images were collected in each participant (1-mm isotropic voxels) for alignment and cortical surface reconstruction.” However, this does not correspond to the resolution of the functional data, which is 2 mm, as mentioned a bit further in the Methods:  “In-plane resolution was 2 × 2 mm (96 × 96 matrix), and slice thickness was 2.8 mm with a 10% gap, yielding an effective voxel size of 2 × 2 × 3.08 mm.”

      (b) In the next paragraph on the control of attention, it mentions that attentional differences could play a role. However, in Kell & McDermott 2019, they manipulated attention (attend visual versus attend auditory) and found that it did not substantially affect the observed pattern invariance. I suppose it could potentially affect the degree to which an encoding model could explain the invariance. This seems important, and given that the data was already collected, it could be worth it to analyze that data.

      As the reviewer points out, Kell et al. 2019 ran an additional experiment in which they manipulated auditory vs. visual attention. However, the auditory task was just based on loudness and ensured that the participants were awake and paying attention to the stimuli, but not specifically to the foreground or background. This type of attention did not lead to changes in the observed patterns of invariance, which might have been the case for selective attention to backgrounds or foregrounds in the mixture. Given that these manipulations were not done in the ferret experiments, we chose to not include the analysis of this dataset in the scope of this paper. However, future work investigating that topic further would indeed be of interest.

      (c) The mention of "a convolutional neural network trained to recognize digits in noise" should make more obvious that this is visual recognition rather than auditory recognition.

      We clarified this sentence to make clear that the recognition is visual and not auditory: “For instance, in a convolutional neural network trained to visually recognize digits in different types of noise, when local feedback is implemented, early layers encode noise properties, while later layers represent clean signal.”

      (d) Finally, one explanation of the results in the discussion is that "primary auditory areas could be recruited to maintain background representations, enabling downstream cortical regions to use these representations to specifically suppress background information and enhance foreground representations." This "background-related information" being used to "facilitate further extraction of foregrounds" is similar to what is argued in Hicks & McDermott PNAS 2024.

      We thank the reviewer for suggesting this relevant reference and added it in this paragraph of the discussion.

      (3) Methods:

      In the "Cross-correlation matrices" section, it mentions that time-averaged responses from 2.4 to 4.8 s were used. It would be helpful to provide an explanation of why this particular time window was used. Additionally, I wondered whether one could look at adaptation type effects (e.g., that of Khalighinejad et al., 2019) or whether fUSI does not offer this kind of temporal precision?

      The effects shown in Khalighinejad et al., 2019, are indeed likely too fast to be observed with our methods. However, there are still dynamics in the fUSI signal and in its invariance (Figure S1). Each individual combination of foreground and background is presented for 4.8 s (Figure 1B). Therefore, we chose the range 2.4-4.8 s as the biggest window we could use (to improve SNR) while minimizing contamination from the previous or next sound (indeed, blood volume typically lags neuronal activity by 1.5-2 s). We added this precision to the methods.

      In the "Human analyses" section, it is very unclear which set of data was used from Kell & McDermott 2019. For example, that paper contains 4 different experiments, none of which has 7 subjects. Upon closer reading, it seems that only 7 of the 11 participants from Experiment 1 also heard the background sounds in isolation (thus enabling the foreground invariance analyses). However, they stated that there were only 3 female participants in that experiment, while you state that you used data from 7 females. It would be helpful to double-check this and to more clearly state exactly which participants (i.e., from which experiment) were used and why (e.g., why not use data from Experiment 4 in the visual task/attention condition?).

      We added a sentence to clarify which datasets were used: “Specifically, we used data from Experiment 1 which provided the closest match to our experimental conditions, and only considered the last 7 subjects that heard both the foregrounds and the backgrounds in isolation, in addition to the mixtures.” 

      It was a mistake to mention that it was all female, as the original dataset has 3 females and 8 males, of which we used 7 without any indication of their sex. Thus, we removed this mention from the text.

      In the "Statistical testing" section, why were some tests done with 1000 permutations/shuffles while others were done with 2000?

      We homogenized and used 1000 permutations/shuffles for all statistical tests.

      (4) Miscellany:

      (a) The Hamersky et al. 2023 preprint has recently been published (referenced in the public review), and so you could consider updating the reference.

      This reference has now been updated.

      (b) There are a few borderline statistical tests that could use a bit more nuance. For example (on page 4), "In primary auditory cortex (MEG), there was no significant difference between values of foreground invariance and background invariance (p = 0.063, obtained by randomly permuting the sounds' background and foreground labels, 1000 times)." This test is quite close to being significant, and this might be acknowledged.

      We emphasized the trend to nuance the interpretation of these results: “In primary auditory cortex (MEG), foreground invariance was slightly lower than background invariance, although this difference was not significant (p=0.063, obtained by randomly permuting the sounds' background and foreground labels, 1000 times).”

      (5) Potential typos:

      (a)   Should the title be "natural sound mixtures" instead of "natural sounds mixtures"?

      (b) The caption for Figure 1 says "We imaged the whole auditory through successive slices across several days." I believe this should the "the whole auditory [cortex]." c) In the first paragraph of the discussion, there is a sentence ending in "...are segregated in hemody-namic signal." I believe this should be "hemody-namic signal."

      These errors are now all corrected.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Sumary:

      This study evaluates whether species can shift geographically, temporally, or both ways in response to climate change. It also teases out the relative importance of geographic context, temperature variability, and functional traits in predicting the shifts. The study system is large occurrence datasets for dragonflies and damselflies split between two time periods and two continents. Results indicate that more species exhibited both shifts than one or the other or neither, and that geographic context and temp variability were more influential than traits. The results have implications for future analyses (e.g. incorporating habitat availability) and for choosing winner and loser species under climate change. The methodology would be useful for other taxa and study regions with strong community/citizen science and extensive occurrence data.

      We thank Reviewer 1 for their time and expertise in reviewing our study. The suggestions are very helpful and will improve the quality of our manuscript.

      Strengths:

      This is an organized and well-written paper that builds on a popular topic and moves it forward. It has the right idea and approach, and the results are useful answers to the predictions and for conservation planning (i.e. identifying climate winners and losers). There is technical proficiency and analytical rigor driven by an understanding of the data and its limitations.

      We thank Reviewer 1 for this assessment.

      Weaknesses:

      (1) The habitat classifications (Table S3) are often wrong. "Both" is overused. In North America, for example, Anax junius, Cordulia shurtleffii, Epitheca cynosura, Erythemis simplicicollis, Libellula pulchella, Pachydiplax longipennis, Pantala flavescens, Perithemis tenera, Ischnura posita, the Lestes species, and several Enallagma species are not lotic breeding. These species rarely occur let alone successfully reproduce at lotic sites. Other species are arguably "both", like Rhionaeschna multicolor which is mostly lentic. Not saying this would have altered the conclusions, but it may have exacerbated the weak trait effects.

      We thank the reviewer for their expertise on this topic. We obtained these habitat classifications from field guides and trait databases, and reviewed our primary sources to clarify the trait classifications. We reclassified the species according to the expertise of this reviewer and perform our analysis again; please see details below.

      (2) The conservative spatial resolution (100 x 100 km) limits the analysis to wide- ranging and generalist species. There's no rationale given, so not sure if this was by design or necessity, but it limits the number of analyzable species and potentially changes the inference.

      It is really helpful to have the opportunity to contextualize study design decisions like this one, and we thank the reviewer for the query. Sampling intensity is always a meaningful issue in research conducted at this scale, and we addressed it head-on in this work.

      Very small quadrats covering massive geographical areas will be critically and increasingly afflicted by sampling weaknesses, as well as creating a potentially large problem with pseudoreplication. There is no simple solution to this problem. It would be possible to create interpolated predictions of species’ distributions using Species Distribution Models, Joint Species Distribution Models, or various kinds of Occupancy Models. None of these approaches then leads to analyses that rely on directly observed patterns. Instead, they are extrapolations, and those extrapolations typically fail when tested, although they have still been tested (for example, papers by Lee-Yaw demonstrate that it is rare for SDMs to predict things well; occupancy models often perform less well than SDMs and do not capture how things change over time - Briscoe et al. 2021, Global Change Biology). The result of employing such techniques would certainly be to make all conclusions speculative, rather than directly observable. 

      Rather than employing extrapolative models, we relied on transparent techniques that are used successfully in the core macroecology literature that address spatial variation in sampling explicitly and simply. Moreover, we constructed extensive null models that show that range and phenology changes, respectively, are contrary to expectations that arise from sampling difference. 100km quadrats make for a reasonable “middle-ground” in terms of the effects of sampling, and we added a reference to the methods section to clarify this (see details below).

      (3) The objective includes a prediction about generalists vs specialists (L99-103) yet there is no further mention of this dichotomy in the abstract, methods, results, or discussion.

      Thank you for pointing this out - it is an editing error that should have been resolved prior to submission. We replaced the terms specialist and generalist with specific predictions based on traits (see details below).

      (4) Key references were overlooked or dismissed, like in the new edition of Dragonflies & Damselflies model organisms book, especially chapters 24 and 27.

      We thank Reviewer 1 for making us aware of this excellent reference. We have reviewed the text and include it as a reference, in addition to other references recommended by Reviewer 1 and other reviewers (see details below).

      Reviewer #2 (Public review):

      Summary:

      This paper explores a highly interesting question regarding how species migration success relates to phenology shifts, and it finds a positive relationship. The findings are significant, and the strength of the evidence is solid. However, there are substantial issues with the writing, presentation, and analyses that need to be addressed. First, I disagree with the conclusion that species that don't migrate are "losers" - some species might not migrate simply because they have broad climatic niches and are less sensitive to climate change. Second, the results concerning species' southern range limits could provide valuable insights. These could be used to assess whether sampling bias has influenced the results. If species are truly migrating, we should observe northward shifts in their southern range limits. However, if this is an artifact of increased sampling over time, we would expect broader distributions both north and south. Finally, Figure 1 is missed panel B, which needs to be addressed.

      We thank Reviewer 2 for their time and expertise in reviewing our study.

      It is possible that some species with broad niches may not need to migrate, although in general failing to move with climate change is considered an indicator of “climate debt”, signaling that a species may be of concern for conservation (ex. Duchenne et al. 2021, Ecology Letters). We revised the discussion to acknowledge potential differences in outcomes (please see details below).

      We used null models to test whether our results regarding range shifts were robust, and if they varied due to increased sampling over time. We found that observed northern range limit shifts are not consistent with expectations derived from changes in sampling intensity (Figure S1, S2). 

      We thank Reviewer 2 for pointing out this error in Figure 1. This conceptual figure was a challenge to construct, as it must illustrate how phenology and range shifts can occur simultaneously or uniquely to enable a hypothetic odonate to track its thermal niche over time. In a previous version of the figure, we had a second panel and we failed to remove the reference to that panel when we simplified the figure. We have updated the figure and figure caption (please see details below).

      Reviewer #3 (Public review):

      Summary:

      In their article "Range geographies, not functional traits, explain convergent range and phenology shifts under climate change," the authors rigorously investigate the temporal shifts in odonate species and their potential predictors. Specifically, they examine whether species shift their geographic ranges poleward or alter their phenology to avoid extreme conditions. Leveraging opportunistic observations of European and North American odonates, they find that species showing significant range shifts also exhibited earlier phenological shifts. Considering a broad range of potential predictors, their results reveal that geographical factors, but not functional traits, are associated with these shifts.

      We thank Reviewer 3 for their expertise and the time they spent reviewing our study. Their suggestions are very helpful and will improve the quality of our manuscript.

      Strengths:

      The article addresses an important topic in ecology and conservation that is particularly timely in the face of reports of substantial insect declines in North America and Europe over the past decades. Through data integration the authors leverage the rich natural history record for odonates, broadening the taxonomic scope of analyses of temporal trends in phenology and distribution to this taxon. The combination of phenological and range shifts in one framework presents an elegant way to reconcile previous findings improving our understanding of the drivers of biodiversity loss.

      We thank Reviewer 3 for this assessment.

      Weaknesses:

      The introduction and discussion of the article would benefit from a stronger contextualization of recent studies on biological responses to climate change and the underpinning mechanism.

      The presentation of the results (particularly in figures) should be improved to address the integrative character of the work and help readers extract the main results. While the writing of the article is generally good, particularly the captions and results contain many inconsistencies and lack important detail. With the multitude of the relationships that were tested (the influence of traits) the article needs more coherence.

      We thank Reviewer 3 for these suggestions. We revised the introduction and discussion to better contextualize species’ responses to climate change and the mechanisms behind them (see details below). We carefully reviewed all figures and captions, and made changes to improve the clarity of the text and the presentation of results (see details below).

      Reviewer #1 (Recommendations for the authors):

      Comment:

      (1) Following weakness #1 in the public review, the authors should review the habitat classifications, consult with an odonatologist, and reclassify many species from Both to Lentic and redo the analysis.

      Thank you for pointing out this disagreement among expert habitat classifications that we cited and other literature. We reclassified species’ habitat preferences based on classifications by Hof et al., a source that was consistent with your suggestions, and identified additional species as Lentic that our other references had identified as Both. We performed our analysis with this new dataset and, as you suspected, our results did not change qualitatively: species habitat preferences did not predict their range shifts.

      Hof, Christian, Martin Brändle, and Roland Brandl. "Lentic odonates have larger and more northern ranges than lotic species." Journal of Biogeography 33.1 (2006): 63-70.

      Comment:

      (2) Following weakness #2, would it be worthwhile or interesting to analyze a smaller ranging group (e.g. cut the quad size in half, 50 x 50 km) to bring in more species and potentially change the inference? Or is the paper too tightly constructed to allow this, even as a secondary piece?

      Thank you for this comment, as it highlights an important consideration for macroecological analyses, and the importance of balancing multiple factors for determining quadrat size. Issues exist with identifying drivers of range boundaries among species with narrow ranges when they are analyzed separately from wide-ranging species, and examining larger quadrats can actually help clarify drivers (Szabo, Algar, and Kerr 2009). The smaller quadrats are, the higher the likelihood that the species is actually there but was never observed, or that the quadrat only covers unsuitable habitat and the species is absent from the entire (or almost entire) quadrat. Too many absences creates issues with violating model assumptions, and creates noise that makes it difficult to identify drivers of species’ range and phenology shifts.

      Moreover, we constructed extensive null models that show that range and phenology changes, respectively, are contrary to expectations that arise from sampling difference. 100km quadrats make for a reasonable “middle-ground”, and we have included a brief explanation of this in the text: “We assigned species presences to 100×100 km quadrats, a scale that is large enough to maintain adequate sampling intensity but still relevant to conservation and policy (Soroye et al., 2020), to identify the best sampled species.”  (Lines 170-172).

      Szabo, Nora D., Adam C. Algar, and Jeremy T. Kerr. "Reconciling topographic and climatic effects on widespread and range‐restricted species richness." Global Ecology and Biogeography 18.6 (2009): 735-744.

      Comment:

      (3) Following weakness #3, are specialists the ones that "failed to shift" (L18)? If so please specify. The prediction about generalists vs specialists needs to be removed or incorporated in other parts of the paper.

      Thank you for pointing this out, we intended to suggest that species with more generalist habitat requirements might be better able to shift, but ultimately found that traits did not predict species’ shifts. We corrected our prediction regarding habitat generalists as follows: “We predicted that species able to use both lentic and lotic habitats would shift their phenologies and geographies more than those able to use just one habitat type, as generalists outperform specialists as climate and land uses change (Ball-Damerow et al., 2015, 2014; Hassall and Thompson, 2008; Powney et al., 2015; Rapacciuolo et al., 2017).” (Lines 128-132).

      Comment:

      (4) Following weakness #4, cite Pinkert et al at lines 70-73 and Rocha-Ortega et al at lines 73-77 along with https://doi.org/10.1098/rspb.2019.2645. Add Sandall et al https:// doi.org/10.1111/jbi.14457 to L69 references.

      Thank you for the excellent reference suggestions, we have added them as suggested (Lines 80, 86, 77).

      Comment:

      Other comments/suggestions:

      (1) Title: consider adding temp variability 'Range geography and temperature variability, not functional traits,...'.

      Thank you for this suggestion, we have added temperature variability to the title: “Range geography and temperature variability explain cross-continental convergence in range and phenology shifts in a model insect taxon”.

      Comment:

      (2) L125: is (northern) Mexico included in North America?

      Yes, we did include observations from Northern Mexico, and have specified this in the text: “We retained ~1,100,000 records from Canada, the United States, and Northern Mexico, comprising 76 species (Figure 2).” (Lines 174-176).

      Comment:

      (3) L128: I'd label this section 'Temperature variability' rather than 'Climate data'.

      Thank you, we agree that this is a more appropriate title for this section, and have replaced ‘Climate data’ with ‘Temperature variability’ (Line 185).

      Comment:

      (4) Table 2: why are there no estimates for the traits?

      We apologise, this information should have been included in the main body of the manuscript, but was only explained in the Table 2 caption. We have added the following explanation: “Non-significant variables, specifically all functional traits, were excluded from the final models.”. (Line 312-323).

      Comment:

      (5) Figure 2: need to identify the A-D panels.

      We apologise for this error and have clarified the differences between panels in the figure caption:

      “Figure 2: Richness of 76 odonate species sampled in North America and Europe in the historic period (1980-2002; panes A and C) and the recent period (2008-2018; panes B and D). Species richness per 100 × 100 km quadrat is shown in panes A and B, while panes C and D show species richness per 200 × 200 km quadrat. Dark red indicates high species richness, while light pink indicates low species richness.” (Lines 1002-1006).

      Comment:

      (6) L163-173: I am not familiar with this analysis but it sounds interesting and promising, I am not sure if this can be clarified further. Why the -25 to 25, and -30 to 30, doesn't the -35 to 35 cover these? And what is meant by "include only phenology shifts that could be biologically meaningful", that larger shifts would not be meaningful or tied to climate change?

      We used different cutoffs for phenology shifts to inspect for outliers that were likely to be errors, potentially do to insufficient sampling to calculate phenology. We clarified in the text as follows:

      “We retained emergence estimates between March 1st and September 1st, as well as species and quadrats that showed a difference in emergence phenology of -25 to 25 days, -30 to 30 days, or -35 to 35 days between both time periods, to include only phenology shifts that could be biologically meaningful to environmental climate change (i.e. exclude errors).” (Lines 169-173).

      Comment:

      (7) L193-200: I agree but would make a distinction between ecological vs functional traits, as other studies view geographic traits as ecological manifestations of functional biology, e.g. https://doi.org/10.1016/j.biocon.2019.07.001 and https://doi.org/10.1016/ j.biocon.2023.110098.

      Thank you for this suggestion, and for making us aware of the thinking around range geographies as ecological traits. We have specified throughout the manuscript that the ‘traits’ we are considering are ‘functional traits’, changed the methods subsection title to “Range geographies and functional traits” (Line 252), and added a brief discussion of ecological traits: “Geographic range and associated climatic characteristics are often considered ecological traits, as they are consequences of functional traits and their interactions with geographic features (Bried and Rocha-Ortega, 2023; Chichorro et al., 2019).” (Lines 256-259).

      Comment:

      (8) L203: What's the rationale for egg-laying habitat as "biologically relevant to spatial and temporal responses to climate change"? That one's not as obvious as the others and needs a sentence more. Also, I am wondering why other traits were not considered here, like color lightness and voltinism. And why not wing size instead of body size, or better yet the two combined (wing loading) as a proxy for dispersal ability?

      We agree that our rationale for using this trait should be better explained, and we have included the following explanation: “Egg laying habitat was assigned according to whether species use exophytic egg-laying habitat (i.e. eggs laid in water or on land, relatively larger in number), or endophytic egg-laying habitat (i.e. eggs laid inside plants, usually fewer in number); species using exophytic habitats are associated with greater northward range limit shifts (Angert et al., 2011).” (Lines 271-275).

      We considered traits that have been found to be important for range and phenology shifts among odonates, as well as being key traits for expectations for species responses to climate change. Flight duration and body size are correlated with dispersal ability (Powney et al. 2015). Body size is also correlated with competitive ability (Powney et al. 2015), potentially making it an important predictor of a species’ ability to establish and maintain populations in expanding range areas. Traits correlated with range shifts also include breeding habitat type (Powney et al. 2015; Bowler et al. 2021) and egg laying habitat (Angert et al. 2011). Ideally, we would have used dispersal data from mark/release/recapture studies, but it was not available for many of the species included in this study. After finding that none of the functional traits we included were related to range shifts, there was no reason to believe that a further investigation of traits would be meaningful.

      Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ. 2011. Do species’ traits predict recent shifts at expanding range edges? Ecology Letters 14:677–689. doi:10.1111/j.1461-0248.2011.01620.x

      Bowler DE, Eichenberg D, Conze K-J, Suhling F, Baumann K, Benken T, Bönsel A, Bittner T, Drews A, Günther A, Isaac NJB, Petzold F, Seyring M, Spengler T, Trockur B, Willigalla C, Bruelheide H, Jansen F, Bonn A. 2021. Winners and losers over 35 years of dragonfly and damselfly distributional change in Germany.Diversity and Distributions 27:1353–1366. doi:10.1111/ddi.13274

      Powney GD, Cham SSA, Smallshire D, Isaac NJB. 2015. Trait correlates of distribution trends in the Odonata ofBritain and Ireland. PeerJ 3:e1410. doi:10.7717/peerj.1410

      Comment:

      (9) L210: I count at least 5 migratory species in table S3, so although maybe not enough to analyze it's misleading to say "nearly all" were non-migratory, revise to "most" or "vast majority".

      Thank you for pointing this out, we have made the suggested correction (Line 277).

      Comment:

      (10) L252-254: save this for the Discussion and write a more generalized statement for results to avoid citations in the results.

      Thank you for this suggestion, we have moved this to the discussion (Lines 517-527).

      Comment:

      (11) Figures S5 & S6: these are pretty important, I'd consider elevating them to the main document as one figure with two panels.

      Thank you for this suggestion, we agree these figures should be elevated to the main text, and have made them into a panel figure (Figure 4).

      Comment:

      (12) L305-307: great point and recommendation!

      Thank you very much for this positive feedback!

      Comment:

      (13) L335-336: another place to cite https://doi.org/10.1098/rspb.2019.2645 which includes a thermal sensitivity index and would add an odonate citation behind the statement.

      Thank you for this excellent suggestion, we have added this citation (line 480). (Rocha-Ortega et al. 2020)

      Comment:

      (14) L352-353: again see also https://doi.org/10.1098/rspb.2019.2645.

      Thank you for highlighting this reference, we have added it to Line 505 as suggested.

      Comment:

      (15) L355: revise "populations that coexist" to "species that co-occur" (big difference between population and species levels and between coexistence and co-occurrence).

      Thank you very much for pointing this out, we have made the suggested change (Line 507).

      Comment:

      (16) L359-365: are the winners and losers depicted in Figures S5 & S6? If so reference the figure (which I suggest combining and promoting to the main text), if not create a table listing the analyzed species and their winner/loser status.

      We agree that this is an excellent place to bring up Figures S5 and S6 from the supplemental. We have moved them to the main document as one figure and referenced it at line 510.

      Reviewer #2 (Recommendations for the authors):

      Comment:

      (1) Line 53-55: The claim that "These relationships generalize poorly taxonomically and geographically" is valid, but the study only tests Odonata on two continents.

      Thank you for this comment – the word ‘generalize’ may imply that our study tries to find a general pattern across many groups. We have changed the language to: “However, these relationships are inconsistent across taxa and regions, and cross-continental tests have not been attempted (Angert et al., 2011; Buckley and Kingsolver, 2012; Estrada et al., 2016; MacLean and Beissinger, 2017).” (Lines 57-59).

      Comment:

      (2) Line 58-59: Is this statement only true for Odonata? It does not seem to hold for plants, for example.

      Thank you for this comment – this statement references a meta-analysis of multiple animal and plant taxa, but the evidence for the importance of range location comes from animal taxa. We have specified that we are referring to animal species to clarify (Line 60).

      Comment:

      (3) Line 87-91: This section is difficult to understand and needs clarification.

      We have clarified this section as follows: “While warm-adapted species with more equatorial distributions could expand their ranges poleward following warming (Devictor et al., 2008), they could also increase in abundance in this new range area relative to species that historically occupied those areas and are less heat-tolerant (Powney et al., 2015).” (Lines 95-121).

      Comment:

      (4) Line 99-100: Please define "generalist" and "specialist" more clearly here (e.g., based on climate niche?).

      Thank you for pointing this out, we intended to suggest that species with more generalist habitat requirements might be better able to shift, but ultimately found that traits did not predict species’ shifts. We corrected our prediction regarding habitat generalists as follows: “We predicted that species able to use both lentic and lotic habitats would shift their phenologies and geographies more than those able to use just one habitat type, as generalists outperform specialists as climate and land uses change (Ball-Damerow et al., 2015, 2014; Hassall and Thompson, 2008; Powney et al., 2015; Rapacciuolo et al., 2017).” (Lines 128-132).

      Comment:

      (5) Line 122: Replace the English letter "X" in "100x100 km" with the correct mathematical symbol.

      We have made the suggested replacement throughout the manuscript.

      Comment:

      (6) Line 148: To address sampling effects, you could check the paper: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15524. Additionally, maximum and minimum values are sensitive to extreme data points, so using 95% percentiles might be more robust.

      Thank you for sharing this paper, as it offers a valuable perspective on the study of species’ ranges. While our dataset is substantially composed of observations from adult sampling protocols, unlike the suggested paper which compares adults and juveniles, this is an interesting alternative approach.

      For our purposes it is meaningful to include outliers, as otherwise we may have missed individuals at the leading edge of range expansions. Our intent here was to detect range limits, as opposed to finding the central tendency of species distributions. This approach is widely accepted in the macroecology literature (i.e. Devictor et al., 2012, 2008; Kerr et al. 2015).

      We have included the following discussion of our approach in the methods section:

      “We followed widely accepted methods to determine species range boundaries (Devictor et al., 2012, 2008; Kerr et al., 2015), although other methods exist that are appropriate for different data types and research questions i.e. (Ni and Vellend, 2021). We assigned species presences to 100×100 km quadrats, a scale that is large enough to maintain adequate sampling intensity but still relevant to conservation and policy (Soroye et al., 2020), to identify the best sampled species.” (Lines 168-173).

      Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL,Wagner DL, Gall LF, Sikes DS, Pantoja A. 2015. Climate change impacts on bumblebees converge across continents. Science 349:177–180. doi:10.1126/science.aaa7031

      Soroye P, Newbold T, Kerr J. 2020. Climate change contributes to widespread declines among bumble bees across continents. Science 367:685–688. doi:10.1126/science.aax8591

      Devictor V, Julliard R, Couvet D, Jiguet F. 2008. Birds are tracking climate warming, but not fast enough.Proceedings of the Royal Society B: Biological Sciences 275:2743–2748. doi:10.1098/rspb.2008.0878

      Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliölä J, Herrando S, Julliard R, Kuussaari M,Lindström Å, Reif J, Roy DB, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C,

      Vermouzek Z, WallisDeVries M, Wynhoff I, Jiguet F. 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Clim Change 2:121–124. doi:10.1038/nclimate1347

      Comment:

      (7) Line 195: The species' climate niche should also be considered a product of evolution.

      Thank you for this suggestion. To address this comment and a comment from another reviewer, we changed the text to the following: “Geographic range and associated climatic characteristics are often considered ecological traits, as they are consequences of functional traits and their interactions with geographic features (Bried and Rocha-Ortega, 2023; Chichorro et al., 2019).” (Lines 256-259).

      Comment:

      (8) Line 244: This speculative statement belongs in the Discussion section.

      Thank you for this suggestion, we have moved this statement to the discussion (Lines 451-453).

      Comment:

      (9) Line 252-254: The projection of Coenagrion mercuriale's range contraction is not part of your results and should be clarified or removed.

      Following this suggestion and a similar suggestion from another reviewer, we moved this text to the discussion (Line 517-527).

      Comment:

      (10) Line 314-316: If the species can tolerate warmer temperatures better, why would they migrate?

      We apologize for the confusion, and we have reworded the section as follows: “Emerging mean conditions in areas adjacent to the ranges of southern species may offer opportunities for range expansions of these relative climate specialists, which can then tolerate climate warming in areas of range expansion better than more cool-adapted historical occupants (Day et al., 2018).” (Lines 445-448).

      Comment:

      (11) Line 334-335: Species' tolerance to temperature likely depends on their traits, which were not tested in this study. This should be noted.

      We agree, and we have removed the wording “rather than traits” from this sentence (Line 479).

      Reviewer #3 (Recommendations for the authors):

      Comment:

      (1) Title: The title is too general not specifying that your results are on odonates only, but also stressing the implicit role of climate change to a degree the tests do not support.

      Following this comment and a suggestion from another reviewer we changed the title to the following: “Range geography and temperature variability explain cross-continental convergence in range and phenology shifts in a model insect taxon”. We wanted to emphasize our use of Odonates as a model species that we used to ask broad questions, while being more specific about the climatic variable that we examined (temperature variability).

      Comment:

      (2) L32: consider including Novella-Fernandez et al. 2023 (NatCommun) which addresses this topic in Odonates.

      Thank you for suggesting this very interesting paper, we have added it as a citation (Line 31-32).

      Comment:

      (3) L35: consider including Grewe et al. 2013 (GEB) and Engelhardt et al. 2022(GCB).

      Thank you for these excellent suggestions, we have added the citations (Line 35).

      Comment:

      (4) L47: rather write 'result from' instead of 'driven by'.

      We agree this is a better characterization and have corrected the wording (Line 48-49).

      Comment:

      (5) L49-52: There has been a recent study on this topic for birds (Neate-Clegg et al., 2024 NEE). However, specifying this to insects would make it not less relevant. This review for odonates might be helpful in this regard (Pinkert et al.. 2022, Chapter: "Odonata as focal taxa for biological responses to climate change" IN Dragonflies & Damselflies: Córdoba-Aguilar et al. (2022) Model Organisms for Ecological and Evolutionary Research.

      Thank you for again suggesting excellent references, we have added them to line 52-53, as well as adding the Pinkert citation to lines 61 and 82.

      Comment:

      (6) L53-66: Combine into one paragraph about drivers. With traits first and the environment second. The natural land cover perspective may be too complicated in this context. Consider focusing on generalities of the impact of changes within species' ranges.

      As suggested we have combined these into one paragraph about drivers (Line 59).

      Comment:

      (7) L67-69: The book from before would be a much stronger reference for this claim. Kalkmann et al (2018) do not address the emphasis of global change research in insects on bees and butterflies. Also, I would highlight that most of the current work is at a national scale, rather than cross-continental.

      Thank you for this suggestion, we have added the suggested reference and included that “…recently assembled databases of odonate observations provide a rare opportunity to investigate species’ spatiotemporal responses at larger taxonomic and spatial scales, particularly as most work has been done at national scales.” (Lines 75-77).

      Comment:

      (8) L68: consider rephrasing this part to '..provide a rare opportunity to investigate spatiotemporal biotic responses at larger taxonomic and spatial scales'

      We appreciate this suggestion and really like the wording. We have changed the phrase to read as follows: “While global change research on insects often emphasizes butterfly and bee taxa, recently assembled databases of odonate observations provide a rare opportunity to investigate species’ spatiotemporal responses at larger taxonomic and spatial scales, particularly as most work has been done at national scales.” (Lines 74-77).

      Comment:

      (9) L69: This characteristic is not unique to odonates and would hamper drawing general conclusions. Honestly, I think the detailed and comprehensive data on them is the selling point.

      Thank you for this suggestion, we have edited the sentence to emphasize their use as an indicator species: “Due to their use of aquatic and terrestrial habitat across life different stages, dragonflies and damselflies are also considered indicator species for both terrestrial and aquatic insect responses to changing climates (Hassall, 2015; Pinkert et al., 2022; Šigutová et al., 2025), giving the study of these species broad relevance for conservation.” (Lines 78-81)

      Comment:

      (10) L73: Indicator for what? The first part of the sentence would suggest lesser surrogacy for responses of other taxa. Reconsider this statement. They are well- established indicators for habitat intactness and freshwater biodiversity. Darwell et al. suggested their diversity can serve as a surrogate for the diversity of both terrestrial and aquatic taxa.

      Thank you for this suggestion, we have edited the sentence to emphasize their use as an indicator species: “Due to their use of aquatic and terrestrial habitat across life different stages, dragonflies and damselflies are also considered indicator species for both terrestrial and aquatic insect responses to changing climates (Hassall, 2015; Pinkert et al., 2022; Šigutová et al., 2025), giving the study of these species broad relevance for conservation.” (Lines 78-81)

      Comment:

      (11) L76: Fritz et al., is a study on mammals, not odonates.

      Thank you for pointing out this error, the reference has been removed (Line 84-85).

      Comment:

      (12) L84: Lotic habitats are generally better connected than lentic ones. Lentic species are considered to have a greater propensity for dispersal DUE to the lower inherent spatiotemporal stability (implying lower connectivity) compared to lotic habitats.

      Thank you for your comment, we have rewritten this section as follows: “For example, differences in habitat connectivity and dispersal ability may constrain range shifts for lentic species (those species that breed in slow moving water like lakes or ponds) and lotic species (those living in fast moving-water) in different ways (Kalkman et al., 2018). More southerly lentic species may expand their range boundaries more than lotic species, as species accustomed to ephemeral lentic habitats better dispersers (Grewe et al., 2013), yet lotic species have also been found to expand their ranges more often than lentic species, potentially due to the loss of lentic habitat in some areas (Bowler et al., 2021).” (Lines 88-95).

      Comment:

      (13) L90: I would be cautious with this interpretation. If only part of the range is considered (here a country in the northern Hemisphere) southern species are moving more of their range into and northern species more of their range out of the study area in response to warming (implying northward shifts).

      We have clarified this section as follows: “While warm-adapted species with more equatorial distributions could expand their ranges poleward following warming (Devictor et al., 2008), they could also increase in abundance in this new range area relative to species that historically occupied those areas and are less heat-tolerant (Powney et al., 2015).” (Lines 95-121)

      Comment:

      (14) L117: Odonata Central contains many county centroids as occurrence records. These could be an issue for your use case. I may have overlooked the steps you took to address this, but I think this requires at least more detail and possibly further removal/checks using for instance CoordinateCleaner. The functions implemented in this package allow you to filter records based on political units to avoid exactly this source of error.

      Thank you for this suggestion, we weren’t aware of this issue with Odonata Central. We used the CoordinaterCleaner tool in R to filter all odonate records that we used in our analyses. Less than 1% of observations in our dataset were identified as having potential problems by the tool, so we would not expect this to affect our inferences. However, in future we will employ this tool when using similar datasets.

      Comment:

      (15) L119: Please add a brief explanation of why this was necessary. I am ok with something along the lines in the supplement.

      We moved this information from the supplemental to the main text as follows: “If a species was found on both continents, we only retained observations from the continent that was the most densely sampled. If we merged data for one species found on both continents, we could not perform a cross-continental comparison. However, if the same species on different continents was treated as different species, this would lead to uninterpretable outcomes (and the creation of pseudo-replication) in the context of phylogenetic analyses. In addition, species found on both continents did not have sufficient data to meet criteria for the phenology analysis.” (Lines 161-167).

      Comment:

      (16) L132: This is the letters 'X' or 'x' are not multiplier symbols! Please change to the math symbol (×), everywhere.

      Thank you for pointing out this error, we have made the correction throughout the manuscript.

      Comment:

      (17) L133: add 'main' before 'flight period'

      Thank you for this suggestion, we have made the change. (Line 190)

      Comment:

      (18) L135: I suggest using the coefficient of variation, as it is controlled for the mean. Otherwise, what you see is partly the signature of temperature and not of its variation. For me, it's very difficult to understand what this variation of the variation means and at least needs more explanation.

      Thank you very much for this suggestion, we agree that using the coefficient of variation is a better fit for the question that we’re asking. We re-ran out analyses with the coefficient of variation as the measure of climate variability: all the results reported in the manuscript are now updated for that analysis (Line 377, Table 2), and we have also updated the methods section (Line 191). The results are qualitatively the same to our previous analysis, but we agree that they are now easier to interpret.            

      Comment:

      (19) L155: Please adequately reference all R packages (state the name, and a reference for them including the authors' names, title, and version).

      Thank you for pointing out this omission, we have added reference information for the glm function in base R (Line 298) and ensured all other packages are properly referenced.

      Comment:

      (20) L207: Mention the literature sources here (again).

      We agree that they should be referenced here again, and we have done so (Lines 267-268).

      Comment:

      (21) L209: You could use the number of grid cells as a proxy for range size.

      Following this excellent suggestion, we re-analysed our data using range size, calculated as the number of quadrats occupied by a species in the historical time period, as a predictor. Range size was not significant in our models, but we believe this is the best way to analyze our data, and so have updated our methods (Lines 261-263) and results (375-378).

      Comment:

      (22) L218: It would be preferable to say 'species-level' instead of 'by-species'.

      Thank you for this suggestion, we agree that this is clearer and made the change (Line 298).

      Comment:

      (23) L219-220: this is unclear. Please rephrase.

      We have clarified as follows: “We used both species-level frequentist (GLM; glm function in R) and Bayesian (Markov Chain Monte Carlo generalized linear mixed model, MCMCglmm; Hadfield, 2010) models to improve the robustness of the results.” (Lines 298-300).

      Comment:

      (24) L224: At least for Europe there is a molecular phylogeny available, which you should preferably use (Pinkert et al. 2018, Ecography). Otherwise, I am ok with using what is available

      We apologize that the nature of the phylogeny that we used was not clear; the phylogeny that we used was built similarly to that in Pinkert et al. 2018, Ecography. It created a molecular phylogeny with a morphological/taxonomic tree as the backbone tree, so that species could only move within their named genera or families. We clarified this in the manuscript as follows:

      “We used the molecular phylogenetic tree published by the Odonate Phenotypic Database (Waller et al., 2019), which used a morphological and taxonomic phylogeny as the backbone tree, allowing species to move within their named genera or families according to molecular evidence (Waller and Svensson, 2017).” (Lines 302-305).

      Comment:

      (25) L233: You said so earlier (1st sentence of this paragraph).

      Thank you for pointing this out, we removed the repetitive sentence (Line 323).

      Comment:

      (26) L236-238: To me, it makes more sense to test this prior to fitting the phylogenetic models.

      MCMC-GLMM is considerably less familiar to most researchers than general linear models or there derivatives/descendants, such as PGLS. We report models both with and without phylogenetic relationships included for the sake of transparency, and we are happy to acknowledge that no interpretation here changes substantially relative to these decisions. However, failing to report models that included possible (if small) effects of phylogenetic relatedness might cause some readers to question what those models might have implied. For the moment, we are opting for the most transparent reporting approach here.

      Comment:

      (27) L241: Rather say directly XX of XX species in our data....

      (28) L245: Same here. Provide the actual numbers, please.

      Thank you for this suggestion, we made this change on Line 332 and Line 334.

      Comment:

      (29) L247-249: Then not necessary.

      This issue highlights a challenge in the global biology literature and around the issue of biodiversity monitoring for understanding global change impacts on species. Almost no studies have been able to report simultaneous range and phenology shifts, and the literature addresses these biotic responses to global change predominantly as distinct phenomena. Differences in numbers of species for which these observations exist, even among the extremely widely-observed odonates, seems to us to be a meaningful issue to report on. If the reviewer prefers that we abbreviate or remove this sentence, we are happy to do so.

      Comment:

      (30) L251:261: That is discussion as you interpret your results.

      Following your suggestion and the suggestion of another reviewer, we moved the following lines to the discussion section: “Species that did not shift their ranges northwards or advance their phenology included Coenagrion mercuriale, a European species that is listed as near threatened by the IUCN Red List (IUCN, 2021), and is projected to lose 68% of its range by 2035 (Jaeschke et al., 2013).” (Lines 517-527).

      Comment:

      (31) 252: Good to mention, but why is the discussion limited to C. mercurial?

      We feel that it is important to link the broad-scale results to the specific biological characteristics of individual species, and C. mercurial is an IUCN threatened species. We are happy to expand links to natural history of this group and have added the following: “This group also includes Coenagrion resolutum, a common North American damselfly (Swaegers et al., 2014), for which we could not find evidence of decline. This may be due in part to the greater area of intact habitat available in North American compared to Europe, enabling C. resolutum to maintain larger populations that are less vulnerable to stochastic climate events. Still, this and other species failing to shift in range or phenology should be assessed for population health, as this species could be carrying an unobserved extinction debt.” (Lines 527-533).

      Comment:

      (32) L264: Insert 'being' before 'consistently'.

      Thank you for the suggestion, we made this change (Line 373).

      Comment:

      (33) L271: .'. However,'.

      Thank you for pointing out this grammatical error, we have corrected it (Line 382).

      Comment:

      (34) L273: 'affected' instead of 'predicted'

      Thank you for the suggestion, we made this change (Line 383).

      Comment:

      (35) L279: 'despite pronounced recent warming' sounds not relevant in this context.

      Thank you for this suggestion, we removed this portion of the sentence (Line 408).

      Comment:

      (36) L281: Rather 'the model performance did not improve....'

      Thank you for the suggestion, we made this change (Line 409).

      Comment:

      (37) L288: Add 'but' before 'not'.

      Thank you for the suggestion, we made this change (Line 416).

      Comment:

      (38) L311-316: Reconsider the causality here. maybe rather rephrase to are associated instead. Greater dispersal ability and developmental plasticity might well lead to higher growth rates, rather than the other way around.

      We agree that plasticity/evolution at range edges is important to consider and have included it as an alternative explanation: “Adaptive evolution and plasticity may enable higher population growth rates in newly-colonized areas (Angert et al., 2020; Usui et al., 2023), but this possibility can only be directly tested with long term population trend data.” (Line 449-451).  

      Comment:

      (39) L313-316: Maybe delete the second 'should be able to'.

      This phrase has been changed in response to other reviewer comments and now reads as follows:

      “Emerging mean conditions in areas adjacent to the ranges of southern species may offer opportunities for range expansions of these relative climate specialists, which can then tolerate climate warming in areas of range expansion better than more cool-adapted historical occupants (Day et al., 2018).” (Lines 445-448).

      Comment:

      (40) L331: Limit this statement ending with 'in North American and European Odonata'.

      Thank you for this suggestion, we made this addition (Lines 475-476).

      Comment:

      (41) L346-347: There are too many of these more-research-is-needed statements in the discussion (at least three in the last paragraphs). Please consider finishing the paragraphs rather with a significance statement.

      Thank you for this suggestion, we have changed the final sentence here to the following: “The extent to which species’ traits actually determine rates of range and phenological shifts, rather than occasionally correlated with them, is worth considering further, but functional traits do not systematically drive patterns in these shifts among Odonates in North America and Europe.” (Lines 480-483).

      We also made additional changes, removing a ‘more-research is needed’ statement from the following paragraph (Line 443), as well as from line 499.

      Comment:

      (42) L349: See also Franke et al. (2022, Ecology and Evolution).

      Thank you for highlighting this excellent reference! We have added it to Line 501.

      Comment:

      (43) L363: Maybe a bit late in the text, but it is important to note that there is the third dimension 'abundance trends' or rather a common factor related to range and phenology shifts. I feel this fits better with the discussion of population growth.

      Thank you for this suggestion, we have addressed the importance of abundance trends in the following sentences: “Further mechanistic understanding of these processes requires abundance data.” (Lines 442-443); “It remains unclear if range and phenology shifts relate to trends in abundance, but our results suggest that there are clear ‘winners’ and ‘losers’ under climate change.” (Lines 509-510).

      Comment:

      (44) L375-377: This last sentence is very similar to L371-373. Please reduce the redundancy. Focus more on specifically stating the process instead of vaguely saying 'new insights into patterns' and 'suggesting processes'. Rather, deliver a strong concluding message here.

      Thank you for this suggestion, we feel that we now have a much stronger concluding message: “By considering both the seasonal and range dynamics of species, emergent and convergent climate change responses across continents become clear for this well-studied group of predatory insects.” (Lines 545-547).

      Comment:

      (45) Table 1: To me, the few estimates presented here do not justify a table. rather include them in the text. OR combine them with Table 2. Also, why not include the traits as predictors (from the range shift models) in these models as well?

      We have clarified in the text that the results displayed in Table 1 are from the analysis of the relationship between range and phenology shifts: “The effect of species’ range shifts on phenology range shifts was significant in our model investigating the relationship between these responses, indicating that species shifting their northern range limits to higher latitudes also showed stronger advances in their emergence phenology (Figure 3).” (Lines 341-344).

      As there were no significant effects in the model of phenology change drivers, we have not shown results of this model: “Emergence phenology shifts were not affected by species’ traits, range geography, nor climate variability; due to this, model results are not displayed here.” (Lines 383-384).

      Comment:

      (46) Table 2: L712-713: What does this mean? Are phenology shifts not used as a predictor of range shifts? (why then this comment?). Or do you want to say phenological shifts are not related to Southern range etc? Why do you present a phylosig here but not in Table 1? Why not include the traits as predictors (from the range shift models) in these models as well? Consider using the range size as a continuous predictor instead of 'Widespread'.

      We are glad the reviewer pointed this out to us. We did not emphasize this issue sufficiently. We DID evaluate traits as predictors both of geographical range and phenological shifts, and species-specific biological traits did not significantly affect models predicting either of those sets of responses. We state this on Lines 312-323, but we have also noted in the discussion (Lines 473-476) that the most commonly assessed traits, like body size, do not alter observed trends here. Instead, where species are found, rather than the characteristics of species, is the key determinant of their overall responses.

      Following this excellent suggestion, we re-analysed our data using range size, calculated as the number of quadrats occupied by a species in the historical time period, as a predictor. Range size was not significant in our models, but we believe this is the best way to analyze our data, and so have updated our methods (Lines 261-263) and results (375-378).

      Comment:

      (47) Figure 1: I don't see any grey points in the figure. Also, there is no A or B. If you are referring to the symbols then write cross and triangle instead and not use capital letters which usually refer to component plots of composite figures. Also, I highly recommend providing a similar figure based on your data (maybe each species as a dot for T1 and another symbol for T2). Given the small number of species, you could try to connect these points with arrows. For the set with only range shifts maybe play the T2-dots at the center of the 'Emergence' axis.

      Thank you for pointing out this error: a previous version of Figure 1 included grey points and multiple panels. We have removed this text from the figure caption to be consistent with the final version of the figure (Line 989).

      The graphical depictions of the conceptual and empirical discoveries in this paper were challenging to create. The reviewer might be suggesting effectively decomposing Figure 3 (change in range on the y axis vs change in phenology among all species into two sets of points on the same graph, where each pair of points is a before and after value for each species. This would make for a very busy figure indeed. We have modified the conceptual Figure 1 to illustrate more clearly, we believe, that species can (in principle) remain within tolerable niche spaces by shifting their activity periods in time (phenology) or in space (geographical range) or both.

      Comment:

      (48) Figure 2: Please add a legend. Also black is a poor background color. The maps appear to be stretched. Please check aspect ratios. Now here are capital letters without an explanation in the caption. From the context I assume the upper panel maps are for the data used to calculate range shifts at the bottom panel maps are for data used to calculate the phenological shifts.

      We apologise for the error in the figure caption and have clarified the differences between panels in the text, as well as changing the map background colour and fixing the aspect ratio:

      “Figure 2: Richness of 76 odonate species sampled in North America and Europe in the historic period (1980-2002; panes A and C) and the recent period (2008-2018; panes B and D). Species richness per 100 × 100 km quadrat is shown in panes A and B, while panes C and D show species richness per 200 × 200 km quadrat. Dark red indicates high species richness, while light pink indicates low species richness.” (Lines 1002-1006).

      Comment:

      (49) Figure 3: Why this citation? Of terrestrial taxa? Please explain. Consider adding some stats here, such as the r-squared value for each of the relationships.

      We have better explained the citation in the figure caption, as well as adding r-squared values:

      “Figure 3: Relationship between range shifts and emergence phenology shifts among North American and European odonate species (N = 66; model R2 = 17.08 for glm, 14.9% for MCMCglmm). For reference, the shaded area shows mean latitudinal range shifts of terrestrial taxa as reported by Lenoir et al. (2020; calculated as the yearly mean dispersal rate of 1.11 +/- 0.96 km per year over 38 years).” (Lines 679-682)

      Comment:

      (50) L801: What are these underscored references?

      This was an issue with the reference software and has been resolved.

      Comment:

      (51) Table S1: L848: Consider starting with 'Samples of 76 North American and European odonate species from between ...'. Please use a horizontal line to separate the content from the table header. Add a horizontal line below the last row. Same for all tables.

      Thank you for this suggestion, we have edited the caption for Figure S1 as suggested (Line 1124). We have also made the suggested line additions to Table S1, S2, and S3.

      Comment:

      (52) Table S3: This is confusing. In Table 1 (main text) both 'southern range' and 'widespread' are used as predictors. Please explain.

      We originally included information on species range geography, including southern versus northern range, and widespread versus not, into one categorical variable. Following additional comments we re-analysed our data using range size, calculated as the number of quadrats occupied by a species in the historical time period, as a predictor. Now the methods section text (Lines 261-263) and Table 1 report results of that variable with distribution options northern, southern, or both. 

      Comment:

      (53) Figure S5 and S6: It would be more coherent if the colors refer to the continents and the suborders are indicated by shading. I would love to see a combination of the two figures with species ordered by the phylogenetic relationship and a dot matrix indicating the traits in the main text! This could really be a good starting point for a synthesis figure.

      The reviewer presents an interesting challenge for us. We have a choice, as we understand things, to present a figure showing phylogeny and traits (as requested here), or an ordered list of species relative to effect sizes in the two main responses to global change. The latter choice centers on the discoveries of the paper, while the former would be valuable for dragonfly biology but would depict information that proved to be biologically uninformative relative to our discovery. That is to say, there is no phylogenetic trend and biological traits among species did not affect results. We have gone some way toward illustrating that issue by retaining phylogeny in the MCMC-GLMM models, but we feel that a figure illustrating phylogeny and traits would (for most readers, at least) illustrate noise, rather than signal. For this reason, we have opted to take on the previous reviewer’s suggestion for a modified, main-text Figure 4, which we include below.

      Figure 4: Distribution of Northern range limit shifts (Panel A, kilometers) and emergence phenology shift (Panel B, Julian day) of 76 European and North American odonate species between a recent time period (2008 - 2018) and a historical time period (1980 - 2002). Anisoptera (dragonflies) are shown in pink, Zygoptera (damselflies) are shown in blue.

      Change last: Figure 3: Relationship between range shifts and emergence phenology shifts among North American and European odonate species (N = 66; model R2 = 17.08 for glm, 14.9% for MCMCglmm). For reference, the shaded area shows mean latitudinal range shifts of terrestrial taxa as reported by Lenoir et al. (2020; calculated as the yearly mean dispersal rate of 1.11 +/- 0.96 km per year over 38 years).

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      (1) The bad equilibria of the model still remain a concern, as well as other features like the transient overshoots that do not match with the data. I think they could achieve more accuracy here by assigning more weight to such specific features, through adding these as separate objectives for the generator explicitly. The traces contain a five-second current steps, and one second before and one second after the training step. This means that in the RMSE, the current step amplitude will dominate as a feature, as this is simply the state for which the data trace contains most time-points. Note that this is further exacerbated by using the IV curve as an auxiliary objective. I believe a better exploration of specific response features, incorporated as independently weighted loss terms for the generator, could improve the fit. E.g. an auxiliary term could be the equilibrium before and after the current step, another term could penalise response traces that do not converge back to their initial equilibrium, etc.

      We thank the reviewer for the suggestion. We supplemented the membrane potential regression loss with errors computed for 3 intervals: pre- post- and mid- stimulation time intervals, improving the accuracy of EP-GAN for baseline membrane potential responses (Figure 2, 3, Table S2, S3). We also changed the simulation protocols for generated parameters by allowing a longer simulation time of 15 seconds, where the stimulation is applied during [5, 10] seconds and no stimulation at t = [0, 5) (pre-stimulation) and t = (10, 15] (post-stimulation). These time intervals are chosen to ensure sufficient stabilization periods before and after stimulation.  

      (2) The explanation of what the authors mean with 'inverse gradient operation' is clear now. However, this term is mathematically imprecise, as the inverse gradient does not exist because the gradient operator is not injective. The method is simply forward integration under the assumption that the derivate of the voltage is known at the grid time-points, and should be described as such.

      We thank the reviewer for the clarification on inverse gradient operation terminology. In the Methods section, we changed the term describing the inverse gradient operation to ‘forward integration’ which is a more accurate description describing the process.

      (3) I appreciate that the authors' method provides parameters of models at a minimal computational cost compared to running an evolutionary optimization for every new recording. I also believe that with some tweaking of the objective, the method could improve in accuracy. However, I share reviewer 2's concerns that the evolutionary baseline methods are not sufficiently explored, as these methods have been used to successfully fit considerably more complex response patterns. One way out of the dilemma is to show that the EP-GAN estimated parameters provide an initial guess that considerably narrows the search space for the evolutionary algorithm. In this context, the authors should also discuss the recent gradient based methods such as Deistler et al. (https://doi.org/10.1101/2024.08.21.608979) or Jones et al (https://doi.org/10.48550/arXiv.2407.04025).

      We supplemented the optimization setup for existing methods (GDE3, NSDE, DEMO, and NSGA2) by incorporating steady-state response constraints as the initial selection process. The process is similar to that of EP-GAN training data generation and DEMO parameter selection process [16] (see Results section, page 6 for detail). We also expanded the testing scenarios by evaluating all methods with respect to both small and large HH-model estimation. The small HH-model scenario estimates 47 parameters consisting of channel conductance, reversal potentials and initial conditions with the channel parameters (n = 129) frozen to default values in [41]. Large HH-model includes estimating channel parameters (i.e. 129) in addition to the 47 parameters by considering +-50% variations from their default values. For both small and large HH-model scenarios, we test total sample sizes of both 32k and 64k for all methods to evaluate their scalability with the number of simulated samples given during optimization. The results show that existing methods show good performances for small HH-model scenarios that scale with sample size consistent with literature. EP-GAN on the other hand shows overall better performance in predicting membrane potential responses on both small and large HH-model scenarios.  

      Reviewer #2 (Public review):

      Major 1: Models do not faithfully capture empirical responses. While the models generated with EPGAN reproduce the average voltage during current injections reasonably well, the dynamics of the response are generally not well captured. For example, for the neuron labeled RIM (Figure 2), the most depolarized voltage traces show an initial 'overshoot' of depolarization, i.e. they depolarize strongly within the first few hundred milliseconds but then fall back to a less depolarized membrane potential. In contrast, the empirical recording shows no such overshoot. Similarly, for the neuron labeled AFD, all empirically recorded traces slowly ramp up over time. In contrast, the simulated traces are mostly flat. Furthermore, all empirical traces return to the pre-stimulus membrane potential, but many of the simulated voltage traces remain significantly depolarized, far outside of the ranges of empirically observed membrane potentials. The authors trained an additional GAN (EPGAN Extended) to improve the fit to the resting membrane potential. Interestingly, for one neuron (AWB), this improved the response during stimulation, which now reproduced the slowly raising membrane potentials observed empirically, however, the neuron still does not reliably return to its resting membrane potential. For the other two neurons, the authors report a decrease in accuracy in comparison to EP-GAN. While such deviations may appear small in the Root mean Square Error (RMSE), they likely indicate a large mismatch between the model and the electrophysiological properties of the biological neuron. The authors added a second metric during the revision - percentages of predicted membrane potential trajectories within empirical range. I appreciate this additional analysis. As the empirical ranges across neurons are far larger than the magnitude of dynamical properties of the response ('slow ramps', etc.), this metric doesn't seem to be well suited to quantify to which degree these dynamical properties are captured by the models.

      We made improvements to the training data generation and architecture of EP-GAN to improve its overall accuracy with predicted membrane potential responses. In particular, we divided training data generation into three neuron types found in C. elegans non-spiking neurons: 1) Transient outward rectifier, 2) Outward rectifier and 3) Bistable [8, 16]. Each randomly generated training sample is categorized into one of 3 types by evaluating its steady-state currents with respect to experimental dI/dV bound constraints (See generating training data section under Methods for more detail). The process is then followed by imposing minimum-maximum constraints on simulated membrane potential responses. The setup allows generations of training samples that are of closer distribution to experimentally recorded neurons. This is further described in Section Methods page 15 in the revised manuscript.

      We also improved the EP-GAN training process by incorporating random masking of input membrane potential responses. The masking forces EP-GAN to make predictions even with missing voltage traces, improving overall accuracy and allowing EP-GAN to use membrane potential inputs with arbitrary clamping protocol (see Methods page 13 for more detail). For the training loss functions, we further supplemented the membrane potential regression loss with errors computed for 2 intervals: pre- and post-stimulation time intervals to improve EP-GAN prediction capabilities for baseline membrane potentials.

      Taken together, these modifications improved EP-GAN’s overall ability to better capture empirical membrane potential responses and we show the results in Figure 2 – 5, Table S2, S3.

      Major 2: Comparison with other approaches is potentially misleading. Throughout the manuscript, the authors claim that their approach outperforms the other approaches tested. But compare the responses of the models in the present manuscript (neurons RIM, AFD, AIY) to the ones provided for the same neurons in Naudin et al. 2022 (https://doi.org/10.1371/journal. pone.0268380). Naudin et al. present models that seem to match empirical data far more accurately than any model presented in the current study. Naudin et al. achieved this using DEMO, an algorithm that in the present manuscript is consistently shown to be among the worst of all algorithms tested. I therefore strongly disagree with the authors claim that a "Comparison of EP-GAN with existing estimation methods shows EP-GAN advantage in the accuracy of estimated parameters". This may be true in the context of the benchmark performed in the study (i.e., a condition of very limited compute resources - 18 generations with a population size of 600, compare that to 2000 generations recommended in Naudin et al.), but while EP-GAN wins under these specific conditions (and yes, here the authors convincingly show that their EP-GAN produces by far the best results!), other approaches seem to win with respect to the quality of the models they can ultimately generate.

      We thank the reviewer for the feedback regarding the comparison with existing methods. We have revised the optimization setup for existing methods (GDE3, NSDE, DEMO, and NSGA2) by incorporating steady-state response constraints as the initial selection process. The process is similar to that of EP-GAN training data generation and DEMO parameter selection process [16] (see Results section, page 6 for detail). Incorporating this process has improved the accuracy of existing methods especially for small HH-model scenarios where DEMO stood out with the best performance alongside NSGA2 (Figure 5, Table 1, 2).

      We also expanded the testing scenarios by evaluating all methods with respect to both small and large HH-model estimation. The small HH-model scenario estimates 47 parameters consisting of channel conductance, reversal potentials and initial conditions with the channel parameters (n = 129) frozen to default values in [41]. Large HH-model includes estimating channel parameters (i.e. 129) in addition to the 47 parameters by considering +-50% variations from their default values. For both small and large HH-model scenarios, we test total sample sizes of both 32k and 64k for all methods to evaluate their scalability with the number of simulated samples given during optimization. The results show that existing methods show good performances for small HH-model scenarios that scale with sample size. EP-GAN on the other hand shows overall better performance in predicting membrane potential responses on both small and large HH-model scenarios. 

      In particular, with extended membrane potential error including pre-, mid- , post-activation periods, EP-GAN (trained with 32k samples, large HH-model, 9 neurons) mean membrane potential responses error of 2.82mV was lower than that of DEMO (12.2mV, 64k samples) trained on identical setup (Table 2) and DEMO (7.78mV, using 36,000k samples, 3 neurons) applied to simpler HHmodel in [16]. With respect to DEMO performance in [16], under identical simulation protocol (i.e., no stimulation during (0, 5s), (10, 15s) and stimulation during (5, 10s)), EP-GAN predicted RIM (large HH-model) showed membrane potential accuracy on par with that of DEMO (simpler HH-model) and EP-GAN predicted AFD showed better accuracy for post-activation membrane potential response where DEMO predicted membrane potentials overshoot above the baseline (not shown in the paper).

      Major 3: As long as the quality of the models generated by the EP-GAN cannot be significantly improved, I am doubtful that it indeed can contribute to the 'ElectroPhysiome', as it seems likely that dynamics that are currently poorly captured, like slow ramps, or the ability of the neuron to return to its resting membrane potential, will critically affect network computations. If the authors want to motivate their study based on this very ambitious goal, they should illustrate that single neuron model generation with their approach is robust enough to warrant well-constrained network dynamics. Based on the currently presented results, I find the framing of the manuscript far too bold.

      We thank the reviewer for the feedback regarding the paper's scope. With revised methods, the overall quality of EP-GAN models is improved with the most significant improvements in baseline membrane potential accuracy. While high quality neuron models could be attained with existing methods given sufficient sample size, our results suggest EP-GAN can predict models with enhanced quality with significantly fewer sample size without a need for retraining, thus complementing the main drawback of evolutionary based methods. While EP-GAN still has limitations (e.g., difficulty in predicting slow ramps) that need to be addressed in the future, we believe its overall performance combined with fast inference speed and flexibility in its input data format (e.g., missing membrane potential traces) is a step forward in the large-scale neuron modeling tasks that can contribute to network models.   

      Major 4: The conclusion of the ablation study 'In addition the architecture of EP-GAN permits inference of parameters even when partial membrane potential and steady-state currents profile are given as inputs' does not seem to be justified given the voltage traces shown in Figure 3. For example, for RIM, the resting membrane potential stays around 0 mV, but all empirical traces are around -40mV. For AFD, all simulated traces have a negative slope during the depolarizing stimuli, but a positive slope in all empirically observed traces. For AIY, the shape of hyperpolarized traces is off. While it may be that by their metric neurons in the 25% category are classified as 'preserving baseline accuracy', this doesn't seem justified given the voltage traces presented in the manuscript. It appears the metric is not strict enough.

      We improved EP-GAN’s training process by incorporating random masking of input membrane potential responses. The masking forces EP-GAN to make predictions even with missing voltage traces, improving overall accuracy and allowing EP-GAN to use membrane potential inputs with arbitrary clamping protocol.

      Such input masking during training has improved the results with ablation studies where EP-GAN now retains baseline membrane potential error (3.3mV, averaged across pre-, mid-, post-activation periods) up to 50% of membrane potential inputs remaining (3.5mV) and up to 25% of steady-state currents remaining (3.5mV).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The manuscript "Drosophila Visuomotor Integration: An Integrative Model and Behavioral Evidence of Visual Efference Copy" provides an integrative model of the visuomotor control in Drosophila melanogaster. This model presents an experimentally derived model based on visually evoked wingbeat pattern recordings of three strategically selected visual stimulus types with well-established behavioral response characteristics. By testing variations of these models, the authors demonstrate that the virtual model behavior can recapitulate the recorded wing beat behavioral results and those recorded by others for these specific stimuli when presented individually. Yet, the novelty of this study and their model is that it allows predictions for natural visual scenes in which multiple visual stimuli occur simultaneously and may have opposite or enhancing effects on behavior. Testing three models that would allow interactions of these visual modalities, the authors show that using a visual efference copy signal allows visual streams to interact, replicating behavior recorded when multiple stimuli are presented simultaneously. Importantly, they validated the prediction of this model in real flies using magnetically tethered flies, e.g., presenting moving bars with varying backgrounds. In conclusion, the presented manuscript presents a commendable effort in developing and demonstrating the validity of a mixture model that allows predictions of the behavior of Drosophila in natural visual environments.

      Strengths:

      Overall, the manuscript is well-structured and clear in its presentation, and the modeling and experimental research are methodically conducted and illustrated in visually appealing and easy-to-understand figures and their captions.

      The manuscript employs a thorough, logical approach, combining computational modeling with experimental behavioral validation using magnetically tethered flies. This iterative integration of simulation and empirical behavioral evidence enhances the credibility of the findings.

      The associated code base is well documented and readily produces all figures in the document.

      Suggestions:

      However, while the experiments provide evidence for the use of a visual efference copy, the manuscript would be even more impressive if it presented specific predictions for the neural implementation or even neurophysiological data to support this model. Or, at the very least, a thorough discussion. Nonetheless, these models and validating behavioral experiments make this a valuable contribution to the field; it is well executed and addresses a significant gap in the modeling of fly behavior and holistic understanding of visuomotor behaviors.

      We appreciate the reviewer’s thoughtful comments on the strengths and weaknesses of our manuscript. We agree that biophysically realistic model reflecting the structure of neural circuits as well as physiological data from them would be invaluable. However, we are currently unable to provide physiological evidence for EC-based suppression, nor provide circuit architecture for efference copy-based suppression of the stability circuit because the neural pathway underlying this behavior remains unidentified. Extensive recordings from the HS/VS system have revealed cell-type-specific motor-related inputs during both spontaneous and loom-evoked flight turns (Fenk et al., 2021; Kim et al., 2017, 2015). These studies predicted suppression of the optomotor stability response during such turns, and our new experiments confirmed this suppression specifically during loom-evoked turns (Figures 5, 6). However, these neurons are primarily involved in the head optomotor response, not the body optomotor response. We hope to extend our current model in future studies to incorporate more cellular-level detail, as the feedforward circuits underlying stability behavior become more clearly defined.

      Here are a few points that should be addressed:

      (1) The biomechanics block (Figure 2) should be elaborated on, to explain its relevance to behavior and relation to the underlying neural mechanisms.

      We appreciate this suggestion. The mathematical representation of the biomechanics block has been developed by other groups in previous studies (Fry et al., 2003; Ristroph et al., 2010). We used exactly the same model, and its parameters were identical to those used in one of those studies (Fry et al., 2003; Ristroph et al., 2010), in which the parameters were estimated from the stabilizing response in response to magnetic “stumbling” pulses. In the previous version of the manuscript, we had a description of the biomechanics block in the Method section (see Equation 4). In response to the reviewer’s comment, we have made a few changes in Figure 2A and expanded the associated description in the main text, as follows.

      (Line 160) “To test the orientation behavior of the model, we developed an expanded model, termed “virtual fly model” hereafter. In this model, we added a biomechanics block that transforms the torque response of the fly to the actual heading change according to kinematic parameters estimated previously (Michael H Dickinson, 2005; Ristroph et al., 2010) (Figure 2A, see Equation 4 in Methods and Movie S1). The virtual fly model, featuring position and velocity blocks that are conditioned on the type of the visual pattern, can now change its body orientation, simulating the visual orientation behavior of flies in the free flight condition.”

      (2) It is unclear how the three integrative models with different strategies were chosen or what relevance they have to neural implementation. This should be explained and/or addressed.

      Thank you for this valuable comment. We selected the three models based on previous studies investigating visuomotor integration across multiple species, under conditions where multiple sensory cues are presented simultaneously.

      The addition-only model represents the simplest hypothesis, analogous to the “additive model” proposed by Tom Collett in his 1980 study (Collett, 1980). We used this model as a baseline to illustrate behavior in the absence of any efference copy mechanism. Notably, some modeling studies have proposed linear (additive) integration for multimodal sensory cues at the behavioral level (Liu et al., 2023; Van der Stoep et al., 2021). However, experimental evidence demonstrating strictly linear integration—either behaviorally or physiologically—remains limited. In our study, new data (Figure 5) show that bar-evoked and background movement-evoked locomotor responses are combined linearly, supporting the addition-only model.

      The graded efference copy model has been most clearly demonstrated in the cerebellum-like circuit of Mormyrid fish during electrosensation (Bell, 1981; Kennedy et al., 2014). In this system, the efference copy signal forms a negative image of the predicted reafferent input and undergoes plastic changes as the environment changes—an idea that inspired our modifiable efference copy model (Figure 4–figure supplement 1). The all-or-none efference copy model is exemplified in the sensory systems of smaller organisms, such as the auditory neurons of crickets during stridulation (Poulet and Hedwig, 2006). Notably, in crickets, the motor-related input is referred to as corollary discharge rather than efference copy. Typically, “efference copy” refers to a graded, subtractive motor-related signal, while “corollary discharge” denotes an all-or-none signal, both counteracting the sensory consequences of self-generated actions. In this manuscript, we use the term efference copy more broadly, encompassing both types of motor-related feedback signals (Sommer and Wurtz, 2008).

      In response to this comment, we have made the following changes in the main text to enhance its accessibility to general readers.

      (Line#268) “This integration problem has been studied across animal sensory systems, typically by analyzing motor-related signals observed in sensory neurons (Bell, 1981; Collett, 1980; Kim et al., 2017; Poulet and Hedwig, 2006). Building on the results of these studies, we developed three integrative models. The first model, termed the “addition-only model”, assumes that the outputs of the object (bar) and the background (grating) response circuits are summed to control the flight orientation (Figure 4B, see Equation 14 in Methods).”

      (Line#272) “In the second and third models, an EC is used to set priorities between different visuomotor circuits (Figure 4C,D). In particular, the EC is derived from the object-induced motor command and sent to the object response system to nullify visual input associated with the object-evoked turn (Bell, 1981; Collett, 1980; Poulet and Hedwig, 2006). These motor-related inputs fully suppress sensory processing in some systems (Poulet and Hedwig, 2006), whereas in others they selectively counteract only the undesirable components of the sensory feedback (Bell, 1981; Kennedy et al., 2014).”

      (3) There should be a discussion of how the visual efference could be represented in the biological model and an evaluation of the plausibility and alternatives.

      Thank you for this helpful comment. We have now added the following discussion to share our perspective on the circuit-level implementation of the visual efference copy in Drosophila.

      (Line#481) “Efference copy in Drosophila vision

      Under natural conditions, various visual features in the environment may concurrently activate multiple motor programs. Because these may interfere with one another, it is crucial for the central brain to coordinate between the motor signals originating from different sensory circuits. Among such coordination mechanisms, the EC mechanisms were hypothesized to counteract so-called reafferent visual input, those caused specifically by self-movement (Collett, 1980; von Holst and Mittelstaedt, 1950). Recent studies reported such EC-like signals in Drosophila visual neurons during spontaneous as well as loom-evoked flight turns (Fenk et al., 2021; Kim et al., 2017, 2015). One type of EC-like signals were identified in a group of wide-field visual motion-sensing neurons that were shown to control the neck movement for the gaze stability (Kim et al., 2017). The EC-like signals in these cells were bidirectional depending on the direction of flight turns, and their amplitudes were quantitatively tuned to those of the expected visual input across cell types. Although amplitude varies among cell types, it remains inconclusive whether it also varies within a given cell type to match the amplitude of expected visual feedback, thereby implementing the graded EC signal. A more recent study examined EC-like signal amplitude in the same visual neurons for loom-evoked turns, across events (Fenk et al., 2021). Although the result showed a strong correlation between wing response and the EC-like inputs, the authors pointed that this apparent correlation could stem from noisy measurement of all-or-none motor-related inputs.

      Thus, these studies did not completely disambiguate between graded vs. all-or-none EC signaling. Another type of EC-like signals observed in the visual circuit tuned to a moving spot exhibited characteristics consistent with all-or-none EC. That is, it entirely suppressed visual signaling, irrespective of the direction of the self-generated turn (Kim et al., 2015; Turner et al., 2022). 

      Efference-copy (EC)–like signals have been reported in several Drosophila visual circuits, yet their behavioral role remains unclear. Indirect evidence comes from a behavioral study showing that the dynamics of spontaneously generated flight turns were unaffected by unexpected background motion (Bender and Dickinson, 2006a). Likewise, our behavioral experiments showed that, during loom-evoked turns, responses to background motion are suppressed in an all-or-none manner (Figures 6 and 7). Consistent with this, motor-related inputs recorded in visual neurons exhibit nearly identical dynamics during spontaneous and loom-evoked turns (Fenk et al., 2021). Together, these behavioral and physiological parallels support the idea that a common efference-copy mechanism operates during both spontaneous and loom-evoked flight turns.

      Unlike loom-evoked turns, bar-evoked turn dynamics changed in the presence of moving backgrounds (Figure 5), a result compatible with both the addition-only and graded EC models. However, when the static background was updated just before a bar-evoked turn—thereby altering the amplitude of optic flow—the turn dynamics remained unaffected (Figures 5 and 7), clearly contradicting the addition-only model. Thus, the graded EC model is the only one consistent with both findings. If a graded EC mechanism were truly at work, however, an unexpected background change should have modified turn dynamics because of the mismatch between expected and actual visual feedback (Figure 4–figure supplement 1)—yet we detected no such effect at any time scale examined (Figure 7–figure supplement 1). This mismatch would be ignored only if the amplitude of the graded EC adapted to environmental changes almost instantaneously—a mechanism that seems improbable given the limited computational capacity of the Drosophila brain. In electric fish, for example, comparable adjustments take more than 10 minutes (Bell, 1981; Muller et al., 2019). Further investigation is needed to clarify how reorienting flies ignore optic flow generated by static backgrounds, potentially by engaging EC mechanisms not captured by the models tested in this study.

      Why would Drosophila rely on the all-or-none EC mechanism instead of the graded one for loom-evoked turns? A graded EC must be adjusted adaptively depending on the environment, as the amplitude of visual feedback varies with both the dynamics of self-generated movement and environmental conditions (e.g., empty vs. cluttered visual backgrounds) (Figure 4—figure supplement 1). Recent studies on electric fish have suggested that a large array of neurons in a multi-layer network is crucial for generating a modifiable efference copy signal matched to the current environment (Muller et al., 2019). Given their small-sized brain, flies might opt for a more economical design for suppressing unwanted visual inputs regardless of the visual environment. Circuits mediating such a type of EC were identified in the cricket auditory system during stridulation (Poulet and Hedwig, 2006), for example. Our study strongly suggests the existence of a similar circuit in the Drosophila visual system. 

      We tested the hypothesis that efference-copy (EC) signals guide action selection by suppressing specific visuomotor reflexes when multiple visual features compete. An alternative motif with a similar function is mutual inhibition between motor pathways (Edwards, 1991; Mysore and Kothari, 2020). In Drosophila, descending neurons form dense lateral connections (Braun et al., 2024), offering a substrate for such competitive interactions. Determining whether—and how—EC and mutual inhibition operate will require recordings from the neurons that ensure visual stability, which remain unidentified. Mapping these pathways and assessing how they are modulated by visual and behavioral context are important goals for future work.”

      Reviewer #2 (Public Review):

      It has been widely proposed that the neural circuit uses a copy of motor command, an efference copy, to cancel out self-generated sensory stimuli so that intended movement is not disturbed by the reafferent sensory inputs. However, how quantitatively such an efference copy suppresses sensory inputs is unknown. Here, Canelo et al. tried to demonstrate that an efference copy operates in an all-or-none manner and that its amplitude is independent of the amplitude of the sensory signal to be suppressed. Understanding the nature of such an efference copy is important because animals generally move during sensory processing, and the movement would devastatingly distort that without a proper correction. The manuscript is concise and written very clearly. However, experiments do not directly demonstrate if the animal indeed uses an efference copy in the presented visual paradigms and if such a signal is indeed non-scaled. As it is, it is not clear if the suppression of behavioral response to the visual background is due to the act of an efference copy (a copy of motor command) or due to an alternative, more global inhibitory mechanism, such as feedforward inhibition at the sensory level or attentional modulation. To directly uncover the nature of an efference copy, physiological experiments are necessary. If that is technically challenging, it requires finding a behavioral signature that unambiguously reports a (copy of) motor command and quantifying the nature of that behavior.

      We thank the reviewer for this insightful and constructive comment. We agree that our current behavioral evidence does not directly identify the underlying circuit mechanism, and that direct recordings from visual neurons modulated by an efference copy would be critical for distinguishing between potential mechanisms.

      A prerequisite for such physiological investigations would be the identification of both (1) the feedforward neurons directly involved in the optomotor response, and (2) the neurons conveying motor-related signals to the optomotor circuit. Despite efforts by several research groups, the location of the feedforward circuit mediating the optomotor response remains elusive. This limitation has prevented us from obtaining direct cellular evidence of flight turn-associated suppression of optomotor signaling.

      In light of the reviewer’s suggestion, we expanded our investigation to strengthen the behavioral evidence for efference copy (EC) mechanisms. In addition to our earlier experiments involving unexpected changes in the static background, we examined how object-evoked flight turns influence the optomotor stability reflex and vice versa (Figures 5 and 6). To quantify the interaction between different visuomotor behaviors, we systematically varied the temporal relationship between two types of visual motion—loom versus moving background, or moving bar versus moving background—and measured the resulting behavioral responses.

      Our findings support pattern- and time-specific suppressive mechanisms acting between flight turns associated with the different visual patterns. Specifically:

      The responses to a moving bar and a moving background add linearly, even when presented in close temporal proximity.

      Loom-evoked turns and the optomotor stability reflex mutually suppress each other in a time-specific manner.

      For both loom- and moving bar-evoked flight turns, changes in the static background had no measurable effect on the dynamics of the object-evoked responses.

      These results provide a detailed behavioral characterization of a suppressive interaction between distinct visuomotor responses. This, in turn, offers correlative evidence supporting the involvement of an efference copy-like mechanism acting on the visual system. While similar efference copy mechanisms have been documented in other parts of the visual system, we acknowledge that our findings do not exclude alternative explanations. In particular, it is still possible that lateral inhibition within the central brain or ventral nerve cord contributes to the suppression we observed.

      Ultimately, definitive proof will require identifying the specific neurons that convey efference copy signals and demonstrating that silencing these neurons abolishes the behavioral suppression. Until such experiments are feasible, our behavioral approach provides an important contribution toward understanding the nature of sensorimotor integration in this system.

      Reviewer #3 (Public Review):

      Summary:

      Canelo et al. used a combination of mathematical modeling and behavioral experiments to ask whether flies use an all-or-none EC model or a graded EC model (in which the turn amplitude is modulated by wide-field optic flow). Particularly, the authors focus on the bar-ground discrimination problem, which has received significant attention in flies over the last 50-60 years. First, they use a model by Poggio and Reichardt to model flight response to moving small-field bars and spots and wide-field gratings. They then simulate this model and compare simulation results to flight responses in a yaw-free tether and find generally good agreement. They then ask how flies may do bar-background discrimination (i.e. complex visual environment) and invoke different EC models and an additive model (balancing torque production due to background and bar movement). Using behavioral experiments and simulation supports the notion that flies use an all-or-none EC since flight turns are not influenced by the background optic flow. While the study is interesting, there are major issues with the conceptual framework.

      Strengths:

      They ask a significant question related to efference copies during volitional movement.

      The methods are well detailed and the data (and statistics) are presented clearly.

      The integration of behavioral experiments and mathematical modeling of flight behavior.

      The figures are overall very clear and salient.

      Weaknesses:

      Omission of saccades: While the authors ask a significant question related to the mechanism of bar-ground discrimination, they fail to integrate an essential component of the Drosophila visuomotor responses: saccades. Indeed, the Poggio and Reichardt model, which was developed almost 50 years ago, while appropriate to study body-fixed flight, has a severe limitation: it does not consider saccades. The authors identify this major issue in the Discussion by citing a recent switched, integrate-and-fire model (Mongeau & Frye, 2017). The authors admit that they "approximated" this model as a smooth pursuit movement. However, I disagree that it is an approximation; rather it is an omission of a motor program that is critical for volitional visuomotor behavior. Indeed, saccades are the main strategy by which Drosophila turn in free flight and prior to landing on an object (i.e. akin to a bar), as reported by the Dickinson group (Censi et al., van Breugel & Dickinson [not cited]). Flies appear to solve the bar-ground discrimination problem by switching between smooth movement and saccades (Mongeau & Frye, 2017; Mongeau et al., 2019 [not cited]). Thus, ignoring saccades is a major issue with the current study as it makes their model disconnected from flight behavior, which has been studied in a more natural context since the work of Poggio.

      Thank you for this helpful comment. We agree that including saccadic turns is essential and qualitatively improves the model. In the revised manuscript, we therefore expanded our bar-tracking model to incorporate an integrate-and-saccade strategy, now presented in Figure 2—figure supplement

      The manuscript now introduces this result as follows:

      (Line#190) “Finally, one important locomotion dynamics that a flying Drosophila exhibits while tracking an object is a rapid orientation change, called a “saccade” (Breugel and Dickinson, 2012; Censi et al., 2013; Heisenberg and Wolf, 1979). For example, while tracking a slowly moving bar, flies perform relatively straight flights interspersed with saccadic flight turns (Collett and Land, 1975; Mongeau and Frye, 2017). During this behavior, it has been proposed that visual circuits compute an integrated error of the bar position with respect to the frontal midline and triggers a saccadic turn toward the bar when the integrated value reaches a threshold (Frighetto and Frye, 2023; Mongeau et al., 2019; Mongeau and Frye, 2017). We expanded our bar fixation model to incorporate this behavioral strategy (Figure 2--figure supplement 2). The overall structure of the modified model is akin to the one proposed in a previous study (Mongeau and Frye, 2017), and the amplitude of a saccadic turn was determined by the sum of the position and velocity functions (Figure 2--figure supplement 2A; see Equation 13 in Methods). When simulated, our model successfully reproduced experimental observations of saccade dynamics across different object velocities (Figure 2--figure supplement 2B-D) (Mongeau and Frye, 2017). Together, our models faithfully recapitulated the results of previous behavioral observations in response to singly presented visual patterns (Collett, 1980; Götz, 1987; H. Kim et al., 2023; Maimon et al., 2008; Mongeau and Frye, 2017).”

      Apart from Figures 1 and 2, most of our data—whether from simulations or behavioral experiments—use brief visual patterns lasting 200 ms or less. These stimuli trigger a single, rapid orientation change reminiscent of a saccadic flight turn. In this part of the paper, we essentially have examined how multiple visuomotor pathways interact to determine the direction of object-evoked turns when several visual patterns occur simultaneously.

      Critically, recent work showed that a group of columnar neurons (T3) appear specialized for saccadic bar tracking through integrate-and-fire computations, supporting the notion of parallel visual circuits for saccades and smooth movement (Frighetto & Frye, 2023 [not cited]).

      Thanks for bringing up this critical issue. We have now added this paper in the following part of the manuscript.

      (Line#193) “During this behavior, it has been proposed that visual circuits compute an integrated error of the horizontal bar position with respect to the frontal midline and triggers a saccadic turn toward the bar when the integrated value reaches a threshold (Frighetto and Frye, 2023; Mongeau and Frye, 2017).”

      (Line#462) “Visual systems extract features from the environment by calculating spatiotemporal relationships of neural activities within an array of photoreceptors. In Drosophila, these calculations occur initially on a local scale in the peripheral layers of the optic lobe (Frighetto and Frye, 2023; Gruntman et al., 2018; Ketkar et al., 2020).”

      A major theme of this work is bar fixation, yet recent work showed that in the presence of proprioceptive feedback, flies do not actually center a bar (Rimniceanu & Frye, 2023). Furthermore, the same study found that yaw-free flies do not smoothly track bars but instead generate saccades. Thus prior work is in direct conflict with the work here. This is a major issue that requires more engagement by the authors.

      Thank you for your thoughtful comments and for drawing our attention to this important paper. In our experiments, bar fixation on oscillating vertical objects emerges during the “alignment” phase of the magneto-tether protocol. The pattern movement dynamics was similar those used by Rimniceanu & Frye (2023), yet the two studies differ in a key respect: Rimniceanu & Frye employed a motion-defined bar, whereas we presented a dark vertical bar against a uniform or random-dot background. The alignment success rate—defined as the proportion of trials in which the fly’s body angle is within ±25° of the target—was about 50 % (data not shown). Our alignment pattern consisted of three vertical stripes spanning ~40° horizontally; when we replaced it with a single, narrower stripe, the success rate was lowered (data not shown). These observations suggest that bar fixation in the magnetically tethered assay is less robust than in the rigid-tethered assay, although flies still orient toward highly salient vertical objects.

      We also observed that bar-evoked turns were elicited more reliably when the bar moved rapidly (45° in 200 ms) in the magneto-tether assay, although the turn magnitude was significantly smaller than the actual bar displacement (Figure 3).

      In response to the reviewer’s comment, we now added the following description in the paper regarding the bar fixation behavior, citing Rimniceanu&Frye 2023.

      (Line#239) “Another potential explanation arises from recent studies demonstrating that proprioceptive feedback provided during flight turns in a magnetically tethered assay strongly dampens the amplitude of wing and head responses (Cellini and Mongeau, 2022; Rimniceanu et al., 2023).”

      Relevance of the EC model: EC-related studies by the authors linked cancellation signals to saccades (Kim et al, 2014 & 2017). Puzzlingly, the authors applied an EC model to smooth movement, when the authors' own work showed that smooth course stabilizing flight turns do not receive cancellation signals (Fenk et al., 2021). Thus, in Fig. 4C, based on the state of the field, the efference copy signal should originate from the torque commands to initiate saccades, and not from torque to generate smooth movement. As this group previously showed, cancellation signals are quantitatively tuned to that of the expected visual input during saccades. Importantly, this tuning would be to the anticipated saccadic turn optic flow. Thus the authors' results supporting an all-or-none model appear in direct conflict with the author's previous work. Further, the addition-only model is not particularly helpful as it has been already refuted by behavioral experiments (Rimneceanu & Frye, Mongeau & Frye).

      Thank you for this constructive comment. Efference copy is best established for brief, discrete actions like flight saccades. While motor-related modulation of visual processing has been reported across short- and long-duration behaviours (Chiappe et al., 2010; Fujiwara et al., 2017; Kim et al., 2015, 2017; Maimon et al., 2010; Turner et al., 2022), only flight saccade-associated signals exhibit the temporal profile appropriate to cancel reafferent input. However, von Holst & Mittelstaedt (1950) originally formulated efference copy to explain the smooth optomotor response of hoverflies. In HS/VS recordings in previous studies, however, we could not detect membrane-potential changes tied to baseline wing-beat amplitude (data not shown), but further work is needed. 

      Note that visually evoked flight turns analyzed in this paper have relatively fast dynamics. Fenk et al. (2021) showed that HS cells carry EC-like motor signals during both loom-evoked turns and spontaneous saccades. Building on this, we tested whether object-evoked rapid turns modulate other visuomotor pathways. Although Fenk et al. also found that optomotor turns lack motor input to HS cells, the authors did not test whether the optomotor pathway suppresses other reflexes, such as loom-evoked turns. Our new behavioral data (Figure 6) show that optomotor turns indeed suppress loom-evoked turns, suggesting a potential EC signal arising from the optomotor pathway that inhibits loom-responsive visual neurons.

      In Kim et al. (2017), the authors argued that HS/VS neurons receive a “quantitatively tuned” efference copy that varies across cell types: yaw-sensitive LPTCs are strongly suppressed, roll-sensitive cells receive intermediate input, and pitch-sensitive cells receive little or none. We also showed that when the amplitude of ongoing visual drive changes, the amplitude of saccade-related potentials (SRPs) scales linearly. This proportionality does not imply a genuinely graded EC, however, because SRP amplitude could vary solely through changes in driving force (Vm – Vrest) with a fixed EC conductance. Crucially, SRPs do not fully suppress feed-forward visual signalling, arguing against an all-or-none EC mechanism.

      How, then, can the cellular and behavioural data be reconciled? Silencing HS/VS neurons—or their primary inputs, the T4/T5 neurons—does not markedly diminish the optomotor response in flight (Fenk et al., 2014; Kim et al., 2017), indicating the presence of additional, as-yet-unidentified pathways.

      Physiological recordings from other visual neurons that drive the optomotor response in flying Drosophila are therefore needed to determine how strongly they are suppressed during loom-evoked turns.

      Behavioral evidence for all-or-none EC model: The authors state "unless the stability reflex is suppressed during the flies' object evoked turns, the turns should slow down more strongly with the dense background than the sparse one". This hypothesis is based on the fact that the optomotor response magnitude is larger with a denser background, as would be predicted by an EMD model (because there are more pixels projected onto the eye). However, based on the authors' previous work, the EC should be tuned to optic flow and thus the turning velocity (or amplitude). Thus the EC need not be directly tied to the background statistics, as they claim. For instance, I think it would be important to distinguish whether a mismatch in reafferent velocity (optic flow) links to distinct turn velocities (and thus position). This would require moving the background at different velocities (co- and anti-directionally) at the onset of bar motion. Overall, there are alternative hypotheses here that need to be discussed and more fully explored (as presented by Bender & Dickinson and in work by the Maimon group).

      We appreciate the reviewer’s important suggestion. In response, we performed the recommended experiment. In Figures 5 and 6 of the revised manuscript, we now present how bar- or loom-evoked flight turns affect the response to a moving background pattern. These experiments revealed that bar-evoked turns do not suppress the optic flow response, whereas loom-evoked turns strongly suppress it. Specifically, when background motion began 100 ms after the onset of loom expansion, the response to the background was significantly suppressed. Although weak residual responses to the background motion were observed in this case, this could be due to background motion occurring outside of the suppression interval, which may correspond in duration to the duration of flight turns (Figure 6C,D). 

      The lack of suppression of the optic flow response during and after bar-evoked turns appears to suggest that the responses are added linearly (Figure 5), seemingly contradicting the lack of dynamic change when the background dot density was altered (Figure 7, Figure 7–figure supplement 1). That is, the experimental result in Figure 5 supports either an addition-only or a graded efference copy (EC) model. However, the result in Figure 7 supports an all-or-none EC model. If a graded EC were used, the amplitude of the EC should be updated almost instantaneously when the static background changes.

      Another possibility is that the optic flow during self-generated turns in a static background is extremely weak compared to the optic flow input generated by physically moving the pattern, perhaps due to the rapid nature of head movements. Indeed, detailed kinematic analysis of head movement during spontaneous saccades in blow flies revealed that the head reaches the target angle before the body completes the orientation change, making the effective speed of reafferent optic flow higher than the speed of body rotation (Hateren and Schilstra, 1999). To test these hypotheses, further experiments will be needed for bar-evoked flight turns.

      Publishing the reviewed preprint:

      (1) The Reviewed Preprint (including the full text of the preprint we reviewed, the eLife assessment, and public reviews) will typically be published in two weeks' time.

      Please let us know if you would like to provide provisional author responses to be posted at the same time (if so, please send these by email). Please do not resubmit within the next two/three weeks, as we will need to publish the first version of the Reviewed Preprint first.

      If there are any factual errors in the eLife assessment or public reviews, or other issues we should be aware of, please let us know as soon as possible.

      (2) After publication of the Reviewed Preprint, you can use the link below to submit a revised version. There is no deadline to resubmit. Before resubmitting, please ensure that you update the preprint at the preprint server to correspond with the revised version. Upon submitting a revised version, we will ask the editors and reviewers if it's appropriate to update their assessment and public reviews, which will be included alongside the revised Reviewed Preprint. At that time we will also post the recommendations to the authors and the author responses you provide with the revised version. In the author response, please respond to the public reviews (where relevant) and the recommendations to the authors.

      (3) Alternatively, you can proceed with the current version of the Reviewed Preprint (once published), without revisions, and request an eLife Version of Record. See the Author Guide for further information: https://elife-rp.msubmit.net/html/elife-rp_author_instructions.html#vor. However, most authors decide to request a Version of Record after a round of revision.

      (4) After publication of eLife's Reviewed Preprint, you also have the option to submit/publish in another journal instead: if you choose to do this, please let us know so we can update our records.

      The reviewers identified two key revisions that could improve the assessment of the paper:

      (1) Consideration of saccades within the model framework (outlined by reviewer 3).

      (2) Addition of physiology data to support the conclusions of the paper (outlined by reviewer 2). If this is not feasible within the timescale of revisions, the paper would need to be revised to clarify that the model leads to a hypothesis that would need to be tested with future physiology experiments.

      Thank you for these comments.

      Regarding revision point #1, we have added Figure 2–figure supplement 2, where we incorporated our position-velocity model (estimated in Figure 1) into the framework of the integrate-and-saccade model. A detailed description of this model is now provided in the main text (Lines 190–203).

      For revision point #2, obtaining electrophysiological evidence for efference copy remains challenging, as neither the visual neurons nor the efference-copy neuron has been identified for the wing optomotor response. As suggested by the reviewers, we have revised the title of the paper to reduce emphasis on efference copy and have noted electrophysiological recordings as a direction for future work.

      old title: A visual efference copy-based navigation algorithm in Drosophila for complex visual environments

      new title: Integrative models of visually guided steering in Drosophila

      Specific recommendations are detailed below.

      Reviewer #2 (Recommendations For The Authors):

      To directly demonstrate if an efference copy is non-scaled, the following experiments can be helpful: record from HS/VS cells and examine the relation between the amplitude of the succade-suppression signal vs. succade amplitude.

      Thanks for raising this important point. We previously carried out the suggested analysis for loom-evoked saccades in Fenk et al. (2021). There, significant correlations emerged between wing-response amplitude and saccade-related potentials (Figures 2F and 3C). However, we did not interpret the strong correlation (r ≈ 0.8) as evidence for a graded efference copy, because the amplitude of saccade-related potentials appeared to be bimodal. Upon presentation of the looming stimulus, flies either executed large evasive turns or showed minimal changes in wing-stroke amplitude. Large wing responses were accompanied by strong, saturated suppression of HS-cell membrane potential, whereas trials without wing responses produced only weak modulations—reflected in the bimodal distribution of saccade-related potential amplitudes (Figure 3C). 

      Importantly, in rigidly tethered preparations—where these potentials are typically measured—the absence of proprioceptive feedback can itself drive wingbeat amplitudes to saturation during saccades. We therefore reasoned that the lack of intermediate-sized flight saccades would naturally yield correspondingly saturated saccade-related potentials, even if a graded EC system is in play. 

      In Kim et al. (2017), we also performed a comprehensive analysis of spontaneous saccade-related potentials across all HS/VS cell types. When we later examined the relationship between saccade amplitude and the corresponding saccade-related potentials in each cell type, we could not find any statistically significant correlation (unpublished data).

      measure how much a weak visual stimulus and a strong visual stimulus are suppressed by the suppression signal. If the signal is non-scaled, visual stimuli should always be suppressed independently of their intensities.

      Thank you for this important suggestion. As mentioned in our response to the previous comment, we believe it is not feasible to record from neurons responsible for the body optomotor response at this point, as their identity remains unknown. Regarding the HS/VS cells, our previous study showed that HS cells are not always fully suppressed. The changes in saccade-related potential amplitude can be described as a linear function of the pre-saccadic visually-evoked membrane potential (Figure 7 in Kim et al., 2017). 

      As suggested by Fenk et al. 2014 (doi: 10.1016/j.cub.2014.10.042), HS cells might also be responsive to a moving bar. If that is the case, and if you present a bar and background (either sparse or dense) in a closed-loop manner to a head-fixed fly, HS cells might be sensitive only to the bar but not to the background (independently of the density).

      Thanks for pointing out this important issue. HS cells indeed respond strongly to the horizontal movement of a vertical bar, as expected given that their receptive fields are formed by the integration of local optic flow vectors. In one of our previous studies (Supplemental Figure 1 in Kim et al., 2015), we showed that the response amplitude to a single vertical bar is roughly equivalent to that elicited by a vertical grating composed of 12 bars of the same size. Therefore, we believe that HS cells are likely to contribute to the head response to a moving vertical bar. In a body-fixed flight simulator, HS cells would respond only to the bar if the bar runs in a closed loop with a static background. In this scenario, HS cells are likely to play a role in the head optomotor response.

      Note also that the role of HS cells in the wing optomotor response remains unresolved. Unilateral activation of HS cells has been shown to elicit locomotor turns in walking Drosophila (Fujiwara et al., 2017), as well as in flying individuals (unpublished data from our lab). However, a previous study also showed that strong silencing of HS/VS cells significantly reduced the head optomotor response, but not the wing optomotor response (Kim et al., 2017).

      If neurophysiology is technically challenging, an alternative way might pay attention to a head movement that exclusively follows the background (Fox et al., 2014 (doi: 10.1242/jeb.080192)). Because HS cells are thought to promote head rotation to background motion, a non-scaled suppression signal on HS cells would always suppress the head rotation independently of the background density.

      Thanks for this helpful comment. We have analyzed head movements during bar-evoked flight turns (Figure 7–figure supplement 1B) and found no significant changes across different background dot densities. We think that this might suggest that HS cells are unlikely to receive suppressive inputs during bar-evoked turns, akin to the lack of modulation during optomotor turns.

      Another way to separate a potential efference copy from other mechanisms (more global inhibition) is the directionality. A global inhibition would suppress the response to the background even if the background moves in the same direction as self-motion, but the efference copy would not.

      Thanks for this important point. In Heisenberg and Wolf, 1979, it was proposed that modulation might be bidirectional, with behavioral effects observed only for perturbations in the “unexpected” direction. In our new data on loom-evoked turns (Figure 6), the suppression appears equally strong for background motion in either direction, supporting an all-or-none suppression mechanism.

      Besides, in general, it is unclear if you think an efference copy operates both in smooth pursuits and saccades or if such a signal is only present during saccades. Your previous neurophysiological work supports the latter. Are your behavioral results consistent with the previous saccade suppression idea, or do you propose a new type of efference copy that also operates in smooth pursuits?

      Thanks for raising this important point. von Holst and Mittelstaedt (1950) originally introduced the concept of efference copy to explain the smooth optomotor response. We previously analyzed electrophysiological recordings from HS cells for membrane-potential changes associated with slow deviations in wing-steering angle but found none. However, this negative result does not entirely rule out modulation of visual processing during smooth flight turns, given the slow drift in membrane potential observed in most whole-cell recordings.

      In this study, We examined only the interactions among visuomotor pathways during these rapid flight turns as the dynamics of visually evoked turns are almost as rapid as spontaneous saccades. Our data reveal that interactions between distinct visuomotor reflexes are more diverse than previously appreciated.

      Minor comments:

      Line 108, 109: match the description between here and the labels in Fig. 1F.

      Thank you for indicating this issue. We have defined the general equation to obtain the position and velocity components in the main text lines 108,109, but due to a slight asymmetry in the data (Fig. 1E) we used the approach indicated in Fig. 1F. and explained in lines 113-117.

      Fig.1 F: If the position-dependent component is due to fatigue, the tuning curve's shape is likely changed (shrunk or extended) depending on the stimulus speed. How can you generalize the tuning curve shown here? Does the result hold even if the stimulus speed/contrast/spatial frequency is changed?

      We appreciate this indication. We believed that fatigue may be the reason why the wing response to the grating stimulus showed that significant decay (Fig. 1E). As you mention, the stimulus speed would increase the amplitude of the fly’s response up to a saturation point. We addressed this in our model by multiplying the derived value by the angular velocity of the grating.

      Regarding the contrast, and spatial frequency we did not test it experimentally, instead, we simulated our model for changing visual feedback (Fig. 4A, B), which can be seen as increasing/decreasing contrast of a grating. An increase in the contrast would increase the response of the fly to the grating and so will contribute to dampening the response to the foreground object (Fig. 4C).

      Line 233-255: Here, the description sounds like you will consider several parallel objects (e.g., two stripes) in the visual field instead of the combination of the figure and background (which is referred to in the following paragraph).

      Thank you for pointing it out. Indeed it was slightly ambiguous. We have addressed this by explaining the specific situation of a combination of an object and the background in lines 231-233.

      Figure 6C: you kept the foreground visual field between sparse and dense random dot backgrounds to keep the bar's saliency. Is it sure that this does not influence the difference in the fly's response to these two backgrounds (in Figure 6B)?

      This is a good point that we have also discussed internally. We also carried out similar experiments with a fully covered background and found no significant differences (Figure 7–figure supplement 1).

      Reviewer #3 (Recommendations For The Authors):

      Identify and analyze flight saccade dynamics in the raw trajectories (e.g., Fig. 3B). There should be some since the bar is near the 'sweet spot' for triggering saccades (see Mongeau & Frye, 2017).

      Thank you for bringing up this interesting point. In previous work, it was reported that the fly fixated on a vertical bar through saccadic turns rather than smooth-tracking (Mongeau & Frye, 2017). When the bar width was thin (<15 deg) there was barely one saccade per second (Mongeau & Frye, 2017, Fig. 4). In our magno tether essay (Fig. 3A, B) the object width was 11.25 degrees, and the object moved for a short time window, and so the fly only generated the saccade related to the onset of the object. It could not be considered as a saccade some small turns of a few degrees that are likely related to small perturbations in comparison to those previously reported (Mongeau & Frye, 2017). Additionally, in our protocol (Fig. 3A) from onset time (‘go’ mark), only a single object moved, within an empty background, so in principle there is no trigger for a switch to a smooth movement. We addressed this in lines x-x.

      Consider updating the Poggio model with flight saccades (switched, integrate-and-fire).

      We appreciate this suggestion. Following previous work (Mongeau et al., 2017), we expanded our model to include a saccade mechanism: the torque produced by the summed position- and velocity-dependent components is now replaced by an integrate-and-fire saccade (Figure 2—figure supplement 2). We optimized the saccade interval and amplitude so that both vary linearly with stimulus amplitude and faithfully reproduce the kinematic properties reported previously (Mongeau et al., 2017).  

      Please engage more with the literature, especially work that directly conflicts with your conclusions (see above). Also, highly relevant work by Bender & Dickinson was not sufficiently discussed. Spot results presented in Fig. 3 should be contextualized in light of the work of Mongeau et al., 2019, who performed similar experiments and identified a switch in saccade valence.

      We appreciate your pointing out the relevant previous work. We have added references to the following papers and tried to describe the relationship between our data and previous ones.

      Bender & Dickinson 2006

      (Line#162) “This simulation experiment is reminiscent of the magnetically tethered flight assay, where a flying fly remains fixed at a position but is free to rotate around its yaw axis (Bender and Dickinson, 2006b; Cellini et al., 2022; G. Kim et al., 2023; Mongeau and Frye, 2017).”

      (Line#218) “We tested the predictions of our models with flies flying in an environment similar to that used in the simulation (Figure 3A). A fly was tethered to a short steel pin positioned vertically at the center of a vertically oriented magnetic field, allowing it to rotate around its yaw axis with minimal friction (Bender and Dickinson, 2006b; Cellini et al., 2022; G. Kim et al., 2023).”

      (Line#238) “To determine if our assay imposes additional friction compared to other assays used in previous studies, we analyzed the dynamics of spontaneous saccades during the “freeze” phase (Figure 3–figure supplement 1A). We found their duration and amplitude to be within the range reported previously (Bender and Dickinson, 2006b; Mongeau and Frye, 2017) (Figure 3–figure supplement 1B-D). 

      Mongeau et al., 2019

      (Line#196) “During this behavior, it has been proposed that visual circuits compute an integrated error of the bar position with respect to the frontal midline and triggers a saccadic turn toward the bar when the integrated value reaches a threshold (Frighetto and Frye, 2023; Mongeau et al., 2019; Mongeau and Frye, 2017). We expanded our bar fixation model to incorporate this behavioral strategy (Figure 2–figure supplement 2).”

      This paper shows that the dynamics of saccadic flight turns elicited by a rotating bar or spot determine whether flies display attraction or aversion. In that study, the visual stimulus—a bar or spot—rotated slowly at a constant 75 deg s⁻¹. By contrast, in our Figure 3 the object moves much faster, driving the neural “integrator” to saturation and triggering an almost immediate flight turn. In Mongeau et al. (2019), saccades occur at variable times and their amplitudes and directions are more stochastic, again reflecting the slower stimulus speed. Because these differences all arise from the disparity in object speed, we did not cite Mongeau et al. (2019) in Figure 3 or the associated text.

      In addition to the two papers cited above, we have incorporated several relevant studies on the Drosophila visuomotor control identified through the reviewers’ insightful comments. Examples include:

      Frighetto G, Frye MA. 2023 (Line#195, 464)

      Rimniceanu et al., 2023 (Line#241)

      Cellini & Mongeau 2020 (Line#91)

      Cellini & Mongeau 2022 (Line#241)

      Cellini et al., 2022 (LIne#91, 162, 218)

      Many citations are not in the proper format (e.g. using numbers rather than authors' last name).

      Thank you for letting us know. We have changed the remaining citations to the proper format.

    1. Reviewer #2 (Public review):

      Summary:

      Shahbazi et al. trained recurrent neural networks (RNNs) to simulate human upper limb movement during adaptation to a force field perturbation. They demonstrated that throughout adaptation, the pattern of motor commands to the muscles of the simulated arm changed, allowing the perturbed movements to regain their typical, perturbation-free straight-line paths. After this initial learning block (FF1), the network encountered null-fields to wash out the adaptation, before re-experiencing the force in a second learning block (FF2). Upon re-exposure, the network learned faster than during initial learning, consistent with the savings observed in behavioral studies of adaptation. They also found that as the number of hidden units in the RNN increased, so did the probability of exhibiting savings. The authors concluded that these results propose a neural basis for savings that is independent of context and strategic processes.

      Strengths:

      The paper addresses an important and controversial topic in motor adaptation: the mechanism underlying motor memory. The RNN simulation reproduces behavioral hallmarks of adaptation, and it provides a useful illustration of the pattern of muscle activity underlying human-like movements under both normal and perturbing conditions. While the savings effect produced by the network, though significant, appears somewhat small, the simulation demonstrating an increase in savings with a greater number of hidden units is particularly intriguing.

      Weaknesses:

      (1) To be transparent, savings in motor adaptation have been a primary focus of my own research. Some core findings presented in this paper are at odds with the ideas I and others have previously put forward. While I don't want to impose my agenda on the authors of this paper, I do think the authors should address these issues.

      a) The authors acknowledge the ongoing debate in the literature regarding the mechanisms underlying savings, particularly whether it stems from explicit or implicit learning processes. However, it remains unclear how the current work addresses this debate. There is already a considerable body of research, particularly in visuomotor adaptation, demonstrating that savings is predominantly driven by explicit strategies. For example, when people are asked to report their strategy, they recall a strategy that was useful during the first learning block (Morehead et al. 2015). Furthermore, savings are abolished under experimental manipulations designed to eliminate strategic contributions (e.g., Haith et al., 2015; Huberdeau et al., 2019; Avraham et al., 2021). The authors briefly state that their findings support the hypothesis that a neural basis of memory retention underlying savings can be independent of cognitive or strategic learning components, and that savings can be characterized as implicit. While these statements may be true, it is not clear how this work substantiates these claims.<br /> b) Our research has also demonstrated that if implicit adaptation is completely washed out after the initial learning block, it not only fails to exhibit savings but is actually attenuated relative to the first learning block (Avraham et al., 2021). This phenomenon of attenuation upon relearning can also be seen in other studies of visuomotor adaptation (e.g., Leow et al., 2020; Yin and Wei, 2020; Hamel et al., 2021; Hamel et al., 2022; Wang and Ivry, 2023; Hadjiosif et al., 2023). More recently, we have shown that this attenuation is due to anterograde interference arising from the experience with the washout block experience (Avraham and Ivry, 2025). We illustrated that the implicit system is highly susceptible to interference; it doesn't require exposure to salient opposite errors and can occur even following prolonged exposure to veridical feedback. The central thesis of this paper, namely that implicit savings can emerge through RNNs, is at odds with these empirical results. The authors should address this discrepancy.

      (2) This brings me to the question about neural correlates: The results are linked to activity in the primary motor cortex. How does that align with the well-established role of the cerebellum in implicit motor adaptation? And with the studies showing that savings are due to explicit strategies, which are generally associated with prefrontal regions?

      (3) The analysis on the complexity of the neural network (i.e., the number of hidden units) and its relationship to savings is very interesting. It makes sense to me that more complex networks would show more savings. I'm not sure I follow the author's explanation, but my understanding is that increased network complexity makes it more difficult to override the formed memory through interference (e.g., from the experience with NF2). Also, the results indicate that a network with 32 units led to a less-than-chance level of networks exhibiting savings (Figure 3b). What behavioral output does this configuration produce? Could this behavior manifest as attenuation upon relearning? Furthermore, if one were to examine an even smaller, simpler network (perhaps one more closely reflecting cerebellar circuits), would such a model predict attenuation rather than savings?

      (4) The authors emphasize that their network did not receive any explicit contextual signals related to the presence or absence of the force field (FF), thus operating in a 'context-free' manner. From my understanding, some existing models of context's role in motor memories (e.g., Oh and Schweighofer, 2019; Heald et al., 2021) propose that memory-related changes can be observed even without explicit contextual information, as contextual changes can be inferred from sudden or significant environmental shifts (e.g., the introduction or removal of perturbations). Given this, could the observed savings in the current simulation be explained by some form of contextual retrieval, inferred by the network from the re-presentation of the perturbation in FF2?

      (5) If there is residual hidden unit activity related to the FF at the end of the NF2 phase, how does the simulated movement revert back to baseline? Are there any differences in the movement trajectory, beyond just lateral deviation, between NF1 and NF2? The authors state that "changes in the preparatory hidden unit activity did not result in substantive changes in the motor commands (Figure 5b), which emphasizes that the uniform shift resides in the null space of motor output." However, Figure 5b appears to show visible changes in hidden unit activity. Don't these changes reflect a pattern of muscle activity that is the basis for behavior? These changes are indeed small, but it seems that so is the effect size for savings (Figure 3a). Could this suggest that there is not, in fact, a complete washout of initial learning during NF2 within the network?

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      *The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community. *

      Thank you for your positive feedback.

      *There are several single-cell methodologies all claim to co-profile chromatin modifications and gene expression from the same individual cell, such as CoTECH, Paired-tag and others. Although T-ChIC employs pA-Mnase and IVT to obtain these modalities from single cells which are different, could the author provide some direct comparisons among all these technologies to see whether T-ChIC outperforms? *

      In a separate technical manuscript describing the application of T-ChIC in mouse cells (Zeller, Blotenburg et al 2024, bioRxiv, 2024.05. 09.593364), we have provided a direct comparison of data quality between T-ChIC and other single-cell methods for chromatin-RNA co-profiling (Please refer to Fig. 1C,D and Fig. S1D, E, of the preprint). We show that compared to other methods, T-ChIC is able to better preserve the expected biological relationship between the histone modifications and gene expression in single cells.

      *In current study, T-ChIC profiled H3K27me3 and H3K4me1 modifications, these data look great. How about other histone modifications (eg H3K9me3 and H3K36me3) and transcription factors? *

      While we haven't profiled these other modifications using T-ChIC in Zebrafish, we have previously published high quality data on these histone modifications using the sortChIC method, on which T-ChIC is based (Zeller, Yeung et al 2023). In our comparison, we find that histone modification profiles between T-ChIC and sortChIC are very similar (Fig. S1C in Zeller, Blotenburg et al 2024). Therefore the method is expected to work as well for the other histone marks.

      *T-ChIC can detect full length transcription from the same single cells, but in FigS3, the authors still used other published single cell transcriptomics to annotate the cell types, this seems unnecessary? *

      We used the published scRNA-seq dataset with a larger number of cells to homogenize our cell type labels with these datasets, but we also cross-referenced our cluster-specific marker genes with ZFIN and homogenized the cell type labels with ZFIN ontology. This way our annotation is in line with previous datasets but not biased by it. Due the relatively smaller size of our data, we didn't expect to identify unique, rare cell types, but our full-length total RNA assay helps us identify non-coding RNAs such as miRNA previously undetected in scRNA assays, which we have now highlighted in new figure S1c .

      *Throughout the manuscript, the authors found some interesting dynamics between chromatin state and gene expression during embryogenesis, independent approaches should be used to validate these findings, such as IHC staining or RNA ISH? *

      We appreciate that the ISH staining could be useful to validate the expression pattern of genes identified in this study. But to validate the relationships between the histone marks and gene expression, we need to combine these stainings with functional genomics experiments, such as PRC2-related knockouts. Due to their complexity, such experiments are beyond the scope of this manuscript (see also reply to reviewer #3, comment #4 for details).

      *In Fig2 and FigS4, the authors showed H3K27me3 cis spreading during development, this looks really interesting. Is this zebrafish specific? H3K27me3 ChIP-seq or CutTag data from mouse and/or human embryos should be reanalyzed and used to compare. The authors could speculate some possible mechanisms to explain this spreading pattern? *

      Thanks for the suggestion. In this revision, we have reanalysed a dataset of mouse ChIP-seq of H3K27me3 during mouse embryonic development by Xiang et al (Nature Genetics 2019) and find similar evidence of spreading of H3K27me3 signal from their pre-marked promoter regions at E5.5 epiblast upon differentiation (new Figure S4i). This observation, combined with the fact that the mechanism of pre-marking of promoters by PRC1-PRC2 interaction seems to be conserved between the two species (see (Hickey et al., 2022), (Mei et al., 2021) & (Chen et al., 2021)), suggests that the dynamics of H3K27me3 pattern establishment is conserved across vertebrates. But we think a high-resolution profiling via a method like T-ChIC would be more useful to demonstrate the dynamics of signal spreading during mouse embryonic development in the future. We have discussed this further in our revised manuscript.

      Reviewer #1 (Significance (Required)):

      *The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community. *

      Thank you very much for your supportive remarks.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      *Joint analysis of multiple modalities in single cells will provide a comprehensive view of cell fate states. In this manuscript, Bhardwaj et al developed a single-cell multi-omics assay, T-ChIC, to simultaneously capture histone modifications and full-length transcriptome and applied the method on early embryos of zebrafish. The authors observed a decoupled relationship between the chromatin modifications and gene expression at early developmental stages. The correlation becomes stronger as development proceeds, as genes are silenced by the cis-spreading of the repressive marker H3k27me3. Overall, the work is well performed, and the results are meaningful and interesting to readers in the epigenomic and embryonic development fields. There are some concerns before the manuscript is considered for publication. *

      We thank the reviewer for appreciating the quality of our study.

      *Major concerns: *

        • A major point of this study is to understand embryo development, especially gastrulation, with the power of scMulti-Omics assay. However, the current analysis didn't focus on deciphering the biology of gastrulation, i.e., lineage-specific pioneer factors that help to reform the chromatin landscape. The majority of the data analysis is based on the temporal dimension, but not the cell-type-specific dimension, which reduces the value of the single-cell assay. *

      We focused on the lineage-specific transcription factor activity during gastrulation in Figure 4 and S8 of the manuscript and discovered several interesting regulators active at this stage. During our analysis of the temporal dimension for the rest of the manuscript, we also classified the cells by their germ layer and "latent" developmental time by taking the full advantage of the single-cell nature of our data. Additionally, we have now added the cell-type-specific H3K27-demethylation results for 24hpf in response to your comment below. We hope that these results, together with our openly available dataset would demonstrate the advantage of the single-cell aspect of our dataset.

      1. *The cis-spreading of H3K27me3 with developmental time is interesting. Considering H3k27me3 could mark bivalent regions, especially in pluripotent cells, there must be some regions that have lost H3k27me3 signals during development. Therefore, it's confusing that the authors didn't find these regions (30% spreading, 70% stable). The authors should explain and discuss this issue. *

      Indeed we see that ~30% of the bins enriched in the pluripotent stage spread, while 70% do not seem to spread. In line with earlier observations(Hickey et al., 2022; Vastenhouw et al., 2010), we find that H3K27me3 is almost absent in the zygote and is still being accumulated until 24hpf and beyond. Therefore the majority of the sites in the genome still seem to be in the process of gaining H3K27me3 until 24hpf, explaining why we see mostly "spreading" and "stable" states. Considering most of these sites are at promoters and show signs of bivalency, we think that these sites are marked for activation or silencing at later stages. We have discussed this in the manuscript ("discussion"). However, in response to this and earlier comment, we went back and searched for genes that show H3K27-demethylation in the most mature cell types (at 24 hpf) in our data, and found a subset of genes that show K27 demethylation after acquiring them earlier. Interestingly, most of the top genes in this list are well-known as developmentally important for their corresponding cell types. We have added this new result and discussed it further in the manuscript (Fig. 2d,e, , Supplementary table 3).

      *Minors: *

        • The authors cited two scMulti-omics studies in the introduction, but there have been lots of single-cell multi-omics studies published recently. The authors should cite and consider them. *

      We have cited more single-cell chromatin and multiome studies focussed on early embryogenesis in the introduction now.

      *2. T-ChIC seems to have been presented in a previous paper (ref 15). Therefore, Fig. 1a is unnecessary to show. *

      Figure 1a. shows a summary of our Zebrafish TChIC workflow, which contains the unique sample multiplexing and sorting strategy to reduce batch effects, which was not applied in the original TChIC workflow. We have now clarified this in "Results".

      1. *It's better to show the percentage of cell numbers (30% vs 70%) for each heatmap in Figure 2C. *

      We have added the numbers to the corresponding legends.

      1. *Please double-check the citation of Fig. S4C, which may not relate to the conclusion of signal differences between lineages. *

      The citation seems to be correct (Fig. S4C supplements Fig. 2C, but shows mesodermal lineage cells) but the description of the legend was a bit misleading. We have clarified this now.

      *5. Figure 4C has not been cited or mentioned in the main text. Please check. *

      Thanks for pointing it out. We have cited it in Results now.

      Reviewer #2 (Significance (Required)):

      *Strengths: This work utilized a new single-cell multi-omics method and generated abundant epigenomics and transcriptomics datasets for cells covering multiple key developmental stages of zebrafish. *

      *Limitations: The data analysis was superficial and mainly focused on the correspondence between the two modalities. The discussion of developmental biology was limited. *

      *Advance: The zebrafish single-cell datasets are valuable. The T-ChIC method is new and interesting. *

      *The audience will be specialized and from basic research fields, such as developmental biology, epigenomics, bioinformatics, etc. *

      *I'm more specialized in the direction of single-cell epigenomics, gene regulation, 3D genomics, etc. *

      Thank you for your remarks.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      *This manuscript introduces T‑ChIC, a single‑cell multi‑omics workflow that jointly profiles full‑length transcripts and histone modifications (H3K27me3 and H3K4me1) and applies it to early zebrafish embryos (4-24 hpf). The study convincingly demonstrates that chromatin-transcription coupling strengthens during gastrulation and somitogenesis, that promoter‑anchored H3K27me3 spreads in cis to enforce developmental gene silencing, and that integrating TF chromatin status with expression can predict lineage‑specific activators and repressors. *

      *Major concerns *

      1. *Independent biological replicates are absent, so the authors should process at least one additional clutch of embryos for key stages (e.g., 6 hpf and 12 hpf) with T‑ChIC and demonstrate that the resulting data match the current dataset. *

      Thanks for pointing this out. We had, in fact, performed T-ChIC experiments in four rounds of biological replicates (independent clutch of embryos) and merged the data to create our resource. Although not all timepoints were profiled in each replicate, two timepoints (10 and 24hpf) are present in all four, and the celltype composition of these replicates from these 2 timepoints are very similar. We have added new plots in figure S2f and added (new) supplementary table (#1) to highlight the presence of biological replicates.

      2. *The TF‑activity regression model uses an arbitrary R² {greater than or equal to} 0.6 threshold; cross‑validated R² distributions, permutation‑based FDR control, and effect‑size confidence intervals are needed to justify this cut‑off. *

      Thank you for this suggestion. We did use 10-fold cross validation during training and obtained the R2 values of TF motifs from the independent test set as an unbiased estimate. However, the cutoff of R2 > 0.6 to select the TFs for classification was indeed arbitrary. In the revised version, we now report the FDR-adjusted p-values for these R2 estimates based on permutation tests, and select TFs with a cutoff of padj supplementary table #4 to include the p-values for all tested TFs. However, we see that our arbitrary cutoff of 0.6 was in fact, too stringent, and we can classify many more TFs based on the FDR cutoffs. We also updated our reported numbers in Fig. 4c to reflect this. Moreover, supplementary table #4 contains the complete list of TFs used in the analysis to allow others to choose their own cutoff.

      3. *Predicted TF functions lack empirical support, making it essential to test representative activators (e.g., Tbx16) and repressors (e.g., Zbtb16a) via CRISPRi or morpholino knock‑down and to measure target‑gene expression and H3K4me1 changes. *

      We agree that independent validation of the functions of our predicted TFs on target gene activity would be important. During this revision, we analysed recently published scRNA-seq data of Saunders et al. (2023) (Saunders et al., 2023), which includes CRISPR-mediated F0 knockouts of a couple of our predicted TFs, but the scRNAseq was performed at later stages (24hpf onward) compared to our H3K4me1 analysis (which was 4-12 hpf). Therefore, we saw off-target genes being affected in lineages where these TFs are clearly not expressed (attached Fig 1). We therefore didn't include these results in the manuscript. In future, we aim to systematically test the TFs predicted in our study with CRISPRi or similar experiments.

      4. *The study does not prove that H3K27me3 spreading causes silencing; embryos treated with an Ezh2 inhibitor or prc2 mutants should be re‑profiled by T‑ChIC to show loss of spreading along with gene re‑expression. *

      We appreciate the suggestion that indeed PRC2-disruption followed by T-ChIC or other forms of validation would be needed to confirm whether the H3K27me3 spreading is indeed causally linked to the silencing of the identified target genes. But performing this validation is complicated because of multiple reasons: 1) due to the EZH2 contribution from maternal RNA and the contradicting effects of various EZH2 zygotic mutations (depending on where the mutation occurs), the only properly validated PRC2-related mutant seems to be the maternal-zygotic mutant MZezh2, which requires germ cell transplantation (see Rougeot et al. 2019 (Rougeot et al., 2019)) , and San et al. 2019 (San et al., 2019) for details). The use of inhibitors have been described in other studies (den Broeder et al., 2020; Huang et al., 2021), but they do not show a validation of the H3K27me3 loss or a similar phenotype as the MZezh2 mutants, and can present unwanted side effects and toxicity at a high dose, affecting gene expression results. Moreover, in an attempt to validate, we performed our own trials with the EZH2 inhibitor (GSK123) and saw that this time window might be too short to see the effect within 24hpf (attached Fig. 2). Therefore, this validation is a more complex endeavor beyond the scope of this study. Nevertheless, our further analysis of H3K27me3 de-methylation on developmentally important genes (new Fig. 2e-f, Sup. table 3) adds more confidence that the polycomb repression plays an important role, and provides enough ground for future follow up studies.

      *Minor concerns *

      1. *Repressive chromatin coverage is limited, so profiling an additional silencing mark such as H3K9me3 or DNA methylation would clarify cooperation with H3K27me3 during development. *

      We agree that H3K27me3 alone would not be sufficient to fully understand the repressive chromatin state. Extension to other chromatin marks and DNA methylation would be the focus of our follow up works.

      *2. Computational transparency is incomplete; a supplementary table listing all trimming, mapping, and peak‑calling parameters (cutadapt, STAR/hisat2, MACS2, histoneHMM, etc.) should be provided. *

      As mentioned in the manuscript, we provide an open-source pre-processing pipeline "scChICflow" to perform all these steps (github.com/bhardwaj-lab/scChICflow). We have now also provided the configuration files on our zenodo repository (see below), which can simply be plugged into this pipeline together with the fastq files from GEO to obtain the processed dataset that we describe in the manuscript. Additionally, we have also clarified the peak calling and post-processing steps in the manuscript now.

      *3. Data‑ and code‑availability statements lack detail; the exact GEO accession release date, loom‑file contents, and a DOI‑tagged Zenodo archive of analysis scripts should be added. *

      We have now publicly released the .h5ad files with raw counts, normalized counts, and complete gene and cell-level metadata, along with signal tracks (bigwigs) and peaks on GEO. Additionally, we now also released the source datasets and notebooks (.Rmarkdown format) on Zenodo that can be used to replicate the figures in the manuscript, and updated our statements on "Data and code availability".

      *4. Minor editorial issues remain, such as replacing "critical" with "crucial" in the Abstract, adding software version numbers to figure legends, and correcting the SAMtools reference. *

      Thank you for spotting them. We have fixed these issues.

      Reviewer #3 (Significance (Required)):

      The method is technically innovative and the biological insights are valuable; however, several issues-mainly concerning experimental design, statistical rigor, and functional validation-must be addressed to solidify the conclusions.

      Thank you for your comments. We hope to have addressed your concerns in this revised version of our manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary

      In this study, Takagi and colleagues demonstrate that changes in axonal arborization of the segmental wave motor command neurons are sufficient to change behavioral motor output.

      The authors identify the Wnt receptors DFz2 and DFz4 and the ligand Wnt4 as modulators of stereotypic segmental arborization patterns of segmental wave neurons along the anterior-posterior body axis. Based on both embryonic expression pattern analysis and genetic manipulation of the signaling components in wave neurons (receptors) and the neuropil (Wnt4) the authors convincingly demonstrate that Wnt4 acts as a repulsive ligand for DFz2 that restricts posterior axon guidance of both anterior and posterior wave neurons. They also provide the first evidence that Wnt4 potentially acts as an attractive ligand for Df4 to promote the posterior extension of p-wave neurons. Interestingly, artificial optogenetic activation of all wave neurons that normally induces backward locomotion due to the activity of anterior wave neurons, fails to induce backward locomotion in a DFz2 knockdown condition with altered axonal extensions of all wave neurons towards posterior segments. In addition, the authors now observe enhanced fast-forward locomotion, a feature normally induced by posterior wave neurons. Consistent with these findings, they observe that the natural response to an anterior tactile stimulus is similarly altered in DFz2 knockdown animals. The animals respond with less backward movement and increased fast forward motion. These results suggest that alterations in the innervation pattern of wave motor command neurons are sufficient to switch behavioral response programs.

      Strengths

      The authors convincingly demonstrate the importance of Wnt signaling for anteriorposterior axon guidance of a single class of motor command neurons in the larval CNS. The demonstration that alteration of the expression level of a single axon guidance receptor is sufficient to not only alter the innervation pattern but to significantly modify the behavioral response program of the animal provides a potential entry point to understanding behavioral adaptations during evolution.

      Weaknesses

      While the authors demonstrate an alteration of the behavioral response to a natural tactile stimulus the observed effects, a reduction of backward motion and increased fast-foward locomotion, currently cannot be directly correlated to the morphological alterations observed in the single-neuron analyses. The authors do not report any loss of innervation in the "normal" target region but only a small additional innervation of more posterior regions. An analysis of synaptic connectivity and/or a more detailed morphological analysis that is supported by a larger number of analyzed neurons both in control and experimental animals would further strengthen the confidence of the study. As the authors suggest an alteration of the command circuitry, a direct observation of the downstream activation pattern in response to selective optogenetic stimulation of anterior wave neurons would further strengthen their claims (analogous to Takagi et al., 2017, Figure 4).

      We sincerely thank the reviewer for their insightful comments, which were instrumental in improving our manuscript. In response to the reviewers’ suggestion, we have now studied Brp expression and demonstrate that the ectopically extending Wave axons in the posterior region do contain synapses (new Figure 2). This finding supports the idea that these axons are functionally connected to ectopic downstream circuits. 

      Additionally, we have increased the number of analyzed Wave clones in Figure 1F-J (WT and DFz2 KD) and new Figure 3C-G (WT; formerly Figure 2C-G) to strengthen the morphological analyses. We fully agree with the reviewer that “direct observation of the downstream activation pattern in response to selective optogenetic stimulation” would further reinforce our conclusions. However, this was not feasible in the current study since we found that the Wave-Gal4 driver used in this study, which drives expression during embryonic stages, does not drive sufficiently strong expression in the larvae to enable selective optogenetic stimulation (please see below for details). 

      Reviewer #2 (Public Review):

      Summary:

      The authors previously demonstrated that anterior-located a-Wave neurons (neuromeres A1-A3) extend axons anteriorly to connect to circuits inducing backward locomotion, while p-Wave axon (neuromeres A4-A7) project posteriorly to promote forward locomotion in Drosophila larvae. In the manuscript, the authors aim to determine the molecular mechanisms involved in wiring the segmentally homologous Wave neurons distinctively and thus are functionally different in modulating forward or backward locomotion. The genetic screen focused on Wnt/Fz-signaling due to its known anterior-to-posterior guidance roles in mammals and nematodes.

      Strengths:

      Knock-down (KD) DFz2 with two independent RNAi-lines caused ectopic posterior axon and dendrite extension for all a- and p-Wave neurons, with a-Wave axon extending into regions where p-Wave axons normally project. Both behavioral assays (optogenetic stimulation of all Wave neurons or tactile stimuli on heads using a von Frey filament) show that backward movement is reduced or absent and that the speed of evoked fast-forward locomotion is increased. This demonstrates that altered projections of Wave do alter behavior and the DFz2 KD phenotype is consistent with the potential aberrant wiring of a-Wave neurons to forward locomotion-promoting circuits instead of to backward locomotion-promoting circuits.

      The main conclusion, that Wnt/Fz-signaling is essential for the guidance of Wave neurons and in diversifying their protection pattern in a segment-specific manner, is further supported by the results showing that DFz2 gain of function causes shortening of a-Wave but not p-Wave axon extensions towards the posterior end and that KD of DFz4 causes axonal shortening only in A6-p-Wave neurons but does not affect dendrites or processes of other Wave neurons. A role for ligand Wnt4 is demonstrated by results indicating that WNT4 mutants' posterior extension of aWave axons was elongated similar to DFz2 KD animals and p-Wave axon extension towards the posterior end was shortened similar to DFz2 KD animals. Finally, a DWnt4 gradient decreasing from the posterior (A8) to the anterior end (A2), similar to that described in other species, is supported by analyses of DWnt4 gene expression (using Wnt4 Trojan-Gal4) and protein expression (using antibodies). In contrast, DFz2 receptor levels seemed to decrease from the anterior (A2) to the posterior end (A5/6). Together the results support the conclusion that opposing Wnt/Fz ligand-receptor gradients contribute to the diversification of Wave neurons in a location-dependent manner and that DFz2 and DFz4 have opposing effects on axon extension.

      Weaknesses:

      Wave axon and dendrite projections are not exclusively determined by Wnt4, DFz2, and DFz4, and are likely to involve other Fz receptors, Wt ligands, and other types of receptor-ligand signaling pathways. This is in part supported by the fact that Wnt4 loss of function also resulted in phenotypes that do not mimic DFz2 KD or DFz4 KD (Figures 3D, E, and F) and that other Fz/Wnt mutants caused wave neuron phenotypes (Figure 1-supplement 2, D+E). This is not a weakness per se, since it doesn't affect the main conclusion of the manuscript. However, the description and analyses of the data in particular for Figure 1-supplement 2 D should be clarified in the legend. The number within the bars and the asterisks are not defined. It's presumed they refer to numbers of animals assessed and the asterisk next to DFz2 and DFz4 indicate statistically significant differences. However, only one p-value is provided in the legend. It is also unclear if p-values for the other mutants have not been determined or are non-significant. At least for mutants like Corin, which also exhibit altered axon projections, the p-values should be provided.

      We appreciate this reviewer’s careful attention to detail and intellectual curiosity. We apologize for the confusions caused by the statistical reporting in Figure 1 – figure supplement 2D. The numbers shown in the bars represent the number of neurons (i.e. Wave neurons from left or right hemisphere). As mentioned in Materials and Methods section, we applied Chi-square test followed by Haberman's adjusted residual analysis to determine the statistical significance of each RNAi group. The p-value provided in the figure legend corresponds to the Chi-square test. P-values for Haberman's adjusted residual analysis were calculated for all RNAi groups and groups without the asterisk are not statistically significant. We have clarified these points in the corresponding figure legend.

      Figure 4 D, F. The gradient for Wnt4 was determined by comparison of expression levels of other segments to A8 but the gradient for DFz2 was by comparison to A2 and the data supports opposing gradients. However, for DFz2 (Figure 4, F) it seems that the gradient is bi-directional with the lowest being in A5 and increasing towards A2 as well as A8. Analysis should be performed in reference to A8 as well to determine if it is indeed bi-directional. While such a finding would not affect the interpretation of aWave neurons, it may impact conclusions about p-Wave neuron projections.

      We thank the reviewer for highlighting this interesting possibility. In response, we performed an additional analysis of the DFz2 gradient by comparing the signal from each neuromere to that from A8 (new Figure 5—figure supplement 3). This analysis confirmed that the gradient is indeed bidirectional. We revised the description of DFz2 expression accordingly in the revision. We believe this finding does not affect our main conclusions since only the anterior gradient is relevant for a-Wave axon guidance. 

      As discussed above, the DFz2 KD phenotypes are consistent with the potential aberrant wiring of a-Wave neurons to forward locomotion-promoting circuits instead of to backward locomotion-promoting circuits. However, since the axon and dendrites of a-Wave and p-Wave are affected the actual dendritic and axonal contributions for the altered behavior remain elusive. The authors certainly considered a potential contribution of altered dendrite projection of a-Wave neurons to the phenotype and their conclusion that altered axonal projections are involved is supported by the optogenetic experiment "bypassing" sensory input (albeit it seems unlikely that all Wave neurons are activated simultaneously when perceiving natural stimuli).However, the author should also consider that altered perception and projection of pWave neuron may directly (e.g. extended P-wave axon projections increase forward locomotion input thereby overriding backward locomotion) or indirectly (e.g. feedback loops between forward and backward circuits) contribute to the altered behavioral phenotypes in both assays. It is probably noteworthy that the more complex behavioral alterations observed with mechanical stimulation are likely to also be caused by altered dendritic projections.

      We fully agree with the reviewer’s thoughtful interpretation. We have now included these important possibilities in the revised Discussion section. Specifically, we acknowledge that while the DFz2 knockdown phenotypes are consistent with aberrant wiring of a-Wave neurons to forward locomotion-promoting circuits, the contributions of both axonal and dendritic alterations remain unclear. We also recognize that altered perception and projection of p-Wave neurons may directly or indirectly contribute to the observed behavioral phenotypes, particularly in response to mechanical stimulation.

      Presynaptic varicosities of a-Wave neurons in DFz2 KD animals are indicated by orange arrows in Figure 1. However, no presynaptic markers have been used to confirm actual ectopic synaptic connections. At least the authors should more clearly define what parameters they used to "visually" define potential presynaptic varicosities. Some arrows seem to point to more "globular structures" but for several others, it's unclear what they are pointing at.

      As mentioned in our response to Reviewer #1, we have now performed Brp immunostaining to confirm the presence of ectopic synaptic connections (new Figure 2). This analysis supports the interpretation that the presynaptic varicosities observed in DFz2 knockdown animals represent actual synaptic sites. We also clarified in the figure legend the visual criteria used to identify potential presynaptic varicosities.

      Reviewing Editor (Recommendations For The Authors):

      There are a few major concerns that we recommend the authors address:

      (1) Neuroanatomy: The point aberrant synaptic connectivity of a-Wave neurons following Dfz2 knockdown could be substantiated. This could be done by using a presynaptic marker and showing ectopic posterior presynaptic sites ( and/or reduced anterior presynaptic sites) in a-wave neurons.

      As mentioned in our response to the public review, we now have used Brp as a presynaptic marker to quantify the number and distribution of presynaptic sites along the normal and ectopic a-Wave axons (new Figure 2). We show that ectopic posterior Wave axons do contain presynaptic sites.  

      (2) Gradient calculations: As detailed in the reviews below, the Dfz2 gradient looks like it may be bidirectional. Changing the way the gradient is calculated might help address this point.

      As mentioned in our response above, we now have recalculated the gradient by comparing the DFz2 signal to A8 and show that it indeed is bidirectional (new Figure 5—figure supplement 2; formerly Figure 4—figure supplement 2).

      (3)  Statistics and sample sizes: As detailed in the reviews, some of the statistical reporting could be improved. Further, increasing sample sizes could help bolster confidence in the data as well.

      As mentioned above, we have added a description on the sample size, asterisks, and p-values in Figure 1 – figure supplement 2 legend. We also increased sample sizes of single Wave neurons in control and DFz2 knock-down animals (Figure 1F-J (WT and DFz2 KD) and new Figure 3C-G (WT; formerly Figure 2C-G)).

      (4) It would help to include some discussion of the potential contributions of altered p-wave neurons to the observed phenotypes.

      As described above, we have added in the Discussion potential contributions of altered p-wave neurons to the observed phenotypes. 

      Reviewer #1 (Recommendations For The Authors):

      (1) In the current model the authors assume that posterior elongation of a-wave neuron connectivity (axonal projections) induces a loss of connectivity to their natural targets, as backward motion is no longer induced, and a gain of connectivity to posterior wave neuron targets. Is this at the cost of innervation of p-wave neurons, e.g. did these neurons now lose connectivity to their natural targets as well? Therefore, it would be very interesting if the authors would test the behavioral responses to tactile stimuli in the posterior parts of the animal - does the response pattern change?

      This is indeed an interesting possibility that p-Wave function is altered upon DFz2 knock-down and hence behavioral response to posterior touch is changed. However, it is technically challenging to test this with tactile stimuli, due to the difficulty of (1) distinguishing between normal and fast-forward locomotion and (2) delivering a posterior touch stimulus while the larva is moving forward, which is the default behavior of the larvae on an agar plate.

      As highlighted above, the authors should provide additional evidence that the circuit response to a-wave neurons is changed after a DFz2 knockdown. The authors should monitor the activation wave in response to optogenetic activation of anterior wave neurons - analogous to the data provided in Figure 4 of their 2017 paper. If this response is now switched for a-wave activation but not p-wave activation it would greatly support their claims and this data would be less ambiguous compared to the behavioral locomotion data.

      As described in our response to the public review, we attempted this approach but found that the in vitro optogenetics experiment is unfortunately not feasible due to relatively weak expression of R60G09-GAL4 in the larvae. Local activation of control aWave induced fictive backward locomotion only at low frequencies, making comparison with the experimental a-Wave very difficult.  The MB120B-spGAL4 used in our 2017 study could not be employed in this study as it does not drive expression during the embryonic stages and thus cannot be used to knock down DFz2 during development. 

      (2) Related to this point. Why would the normal "backward" circuitry of a-wave neurons be functionally suppressed in Dfz2 knockdowns? Do the authors observe reduced synaptic connectivity in these segments? Vesicle clustering of synaptotagmin or other presynaptic markers could be used as a first. As the innervation pattern is only extended by approximately one segment, it is surprising that the changes are so significant.

      We agree that these are important and interesting points, which remain to be explored in the future study. As described above, we have performed Brp immunostaining and showed that the posterior ectopic axons of a-Wave do contain synapses (new Figure 2). We also found a slight decrease in the number of synapses in the anterior region, which could partially contribute to the weaker activation of downstream neurons responsible for eliciting backward locomotion. Another possibility is that backward suppression occurs through lateral interaction among downstream circuits. Since forward and backward locomotion do not occur simultaneously, it is likely that the circuits driving these two behaviors are mutually inhibitory. Upon DFz2 knock down in a-Wave, downstream neurons inducing fastforward locomotion may become more strongly activated than those inducing backward locomotion, resulting in inhibition of the latter via a “winner-take-all” mechanism. Since these discussions are highly speculative, we chose not to include them in the revised manuscript.  

      (3) The low number of neurons analyzed per segment is of slight concern. This is particularly the case for the control data set used in Figure 1 and Figure 2. As stated, the same datasets are used for both figures. However, at most 6 neurons were analyzed (and for two segments only 3). The control morphology may be more variable than indicated by this data.

      As mentioned above, we now have dissected 50 larvae each for the control and experimental groups, obtained seven and six clones respectively, and included these data in the revised manuscript. We apologize that the sample sizes are still relatively small but hope the reviewer understands the inherently low “hit rate” of the stochastic labelling method.

      It is somewhat curious that in Figure 1- Supplement 3 the authors report the same number of control clones per segment as in Figure 1/2 - is this simply a coincidence? And if this is an independent dataset why did the author use new controls here but not for Figure 2? It is clear that it is very difficult to generate this data but increasing the n-number beyond 3-6 per segment would significantly increase the confidence in the presented data.

      We apologize for the confusion. The data in Figure 1 – figure supplement 3 represent the innervation pattern of dendrites, not axons. We have corrected the figure caption accordingly. These data were obtained from the same samples used to analyze axonal innervation, as shown in the original version of Figure 1F-J.

      (2) The name of the RNAi lines should be indicated in Figure 1 and Figure Supplement 3 to facilitate reading - at least the precise names should be given in both figure legends.

      We have added these labels in the revised figure legends as requested.

      (3) In Figure 4E again the control numbers of Figure 1 for the A2-wave axon are reused. This does not seem appropriate as now a different Gal4 driver is used and a different method to induce individual neuronal clones. Both components may induce significant variability in expression or arborization. As only 3 clones for the wnt4 mutant condition are analyzed (and compared to 5 control clones), this data does not allow for strong conclusions. The authors clearly state the reuse and different methods in the legend of Figure 4 F/G but should also highlight it for the E panel.

      Here, we assume that the reviewer is referring to the former Figure 3 (now Figure 4). We have added a note in the legend that the control data, obtained using a different method, were reused in this panel.

      (4) The expression levels of DWnt4 and DFz2 were analyzed at the end of embryogenesis. At what developmental stage does the axonal extension of wave neurons take place? Is the gradient maintained throughout the first larval stages?

      Based upon the lateral view of Wave neurons in Figure 1—figure supplement 1D, we think that the axonal extension is already established by approximately 20 hr after egg laying. Previously, we performed Wnt4<sup>MI03717-Trojan-GAL4</sup> > GFP.nls immunostaining in the third instar larva and observed a similar gradient of GFP signals towards the posterior end of the ventral nerve cord (VNC). We have included this data in the revised manuscript (new Figure 5—figure supplement 1).

      (5) The authors state that either 2nd or 3rd instar larvae were used for the optogenetic experiments. This may induce unnecessary variation in their assay and should be avoided. As natural variance exists in larvae regarding forward stride duration, the comparison of "on" state forward stride duration between control and experimental genotype is potentially not the best measurement of effect size. What is the difference between OFF and ON stage within the control and experimental genotype? In both cases stride duration decreases but there may not be a significant difference between the delta of the two genotypes. Thus, the observed effect may in part be due to "slower" animals in the control pool. The authors should discuss this more carefully.

      We thank the reviewer for bringing up this critical issue. Indeed, the stride durations of larvae between the control and DFz2 knock-down are slightly different in the OFF condition, although this is not statistically significant. In addition, the effect size of Wave activation on mean stride duration is -0.14 (s) in control while -0.21 (s) in DFz2 knock-down, which we interpret as DFz2 knock-down resulting in stronger fastforward locomotion upon Wave activation. We have incorporated this note in the corresponding figure legends (new Figure 6; formerly Figure 5).

      (6) While the study clearly provides convincing evidence for their model, the authors should tune down their conclusions in the discussion a little bit and highlight that parts of their discussion are speculative.

      We have revised the discussion as suggested.

      Reviewer #2 (Recommendations For The Authors):

      Albeit the optogenetic behavioral experiments strongly support that the altered axonal projection affect normal locomotion, simultaneous labeling of Wave neurons in DFz2 KD animals with presynaptic markers would strengthen the conclusion of ectopic connection of the extended axon with other circuits.

      Please see our response to your public review.

      Figure 1 K+L, Figure 2H, I, Figure 3 F+G: many of the individual data points are not visible in the Whisker plot- changing their color would be useful to visualize them better.

      We have changed the outline width of the box plots to make the individual data points visible.

      Figure 1-Supplement 2: In addition to the comments in the public review- a) the asterisk font size changes in the different panels, e.g. it is much smaller in G', b) font size in some graphs/legends should be increased - in particular in E the hyphenated letters in the genotypes are so small rendering them almost illegible.

      We have unified the font size to make them readable in the figure. We thank the reviewer for the suggestions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This is an exploratory study that doesn't explore quite enough. Critically, the authors make a point of mentioning that neuronal firing properties vary across cell types, but only use baseline firing rate as a proxy metric for cell type. This leaves several important explorations on the table, not limited to the following:”

      1a: “Do waveform shape features, which can also be informative of cell type, predict the effect of stimulation?”

      To address this question, we modeled our approach to cell type classification after Peyrache et al. 2012. More specifically, we extracted two features from the mean unit waveforms—the valley-to-peak time (VP) and the peak half-width (PHW). These features were then used to classify units into two distinct clusters (k-means, clusters = 2, based on a strong prior from existing literature), representing putative excitatory and inhibitory neurons. Our approach recapitulated many of the same observations in Peyrache et al. 2012, namely (1) identification of two clusters (low PHW/VP: inhibitory, high PHW/VP: excitatory), (2) an ~80/20 ratio of excitatory/inhibitory neurons, and (3) greater baseline firing rates in the inhibitory vs. excitatory neurons. However, we did not observe a preferential modulation of one cell type compared to another (see newly created Figure 4). A description of this analysis and its takeaways has been incorporated into the manuscript.

      Change to Text:

      Created Figure 4 (Separation of presumed excitatory and inhibitory neurons by waveform morphology).

      Caption: (A) Two metrics were calculated using the averaged waveforms for each detected unit: the valley-to-peak width (VP) and peak half-width (PHW). (B) Scatterplot of the relationship between VP and PHW; note that units with identical metrics are overlaid. Using k-means clustering, we identified two distinct response clusters, representing presumed excitatory (E, blue) and inhibitory (I, red) neurons. The units from which the example waveforms were taken are outlined in black. Probability distributions for each metric are shown along the axes. (C) Total number of units within each cluster, separated by region. (D) Comparison of baseline firing rates, separated by cluster. (E) Percent of modulated units in each cluster. * p < 0.05, NS = not significant.

      Added a description of clustering methodology to lines 132-137: “We calculated two metrics from the averaged waveform from each detected unit: the valley-to-peak-width (VP) and the peak half-width (PHW) (Figure 4A); previously, these two properties of waveform morphology have been used to discriminate pyramidal cells (excitatory) from interneurons (inhibitory) in human intracranial recordings (Peyrache et al., 2012). Next, we performed k-means clustering (n = 2 clusters) on the waveform metrics, in line with previous approaches to cell type classification.

      Added a section in the Results titled “Theta Burst Stimulation Modulates Excitatory and Inhibitory Neurons Equally”. Lines 370-378: “Using k-means clustering, we grouped neurons into two distinct clusters based on waveform morphology, representing neurons that were presumed to be excitatory (E) and inhibitory (I) (Figure 4B). Inhibitory (fast-spiking) neurons exhibited shorter waveform VP and PHW, compared with excitatory (regular-spiking) neurons (I cluster centroid: VP = 0.50ms, PHW = 0.51ms; E cluster centroid: VP = 0.32ms, PHW = 0.31ms), and greater baseline firing rates (U(N<sub>I</sub> = 23, N<<sub>E</sub> = 133) = 1074.50, p = 0.023) (Figure 4D). Although we observed a much greater proportion of excitatory vs. inhibitory neurons (E: 85.3%, I: 14.7%), stimulation appeared to affect excitatory and inhibitory neurons equally, suggesting that one cell type is not preferentially activated over another (Figure 4E).

      Modified discussion of the effects of stimulation on different cell types. Lines 475-483: “…To test these hypotheses directly, we clustered neurons into presumed excitatory and inhibitory neurons based on waveform morphology. In doing so, we observed ~85% excitatory and ~15% inhibitory neurons, which is very similar what has been reported previously in human intracranial recordings (Cowan et al. 2024, Peyrache et al., 2012). Interestingly, stimulation appeared to modulate approximately the same proportion of neurons for each cell type (~30%), despite the differently-sized groups. Recent reports, however, have suggested that the extent to which electrical fields entrain neuronal spiking, particularly with respect to phase-locking, may be specific to distinct classes of cells (Lee et al., 2024).”

      1b:  “Is the autocorrelation of spike timing, which can be informative about temporal dynamics, altered by stimulation? This is especially interesting if theta-burst stimulation either entrains theta-rhythmic spiking or is more modulatory of endogenously theta-modulated units.”

      The reviewer is correct in suggesting that rate-modulation represents only one of many possible ways by which exogenous theta burst stimulation may influence neuronal activity. Indeed, intracranial theta burst stimulation has previously been shown to evoke theta-frequency oscillatory responses in local field potentials (Solomon et al. 2021), and other forms of stimulation (i.e., transcranial alternating current stimulation) may modulate the rhythm, rather than the rate, of neuronal spiking (Krause et al. 2019).

      To investigate whether stimulation altered rhythmicity in neuronal firing, we contrasted the spike timing autocorrelograms, as suggested. More specifically, we computed the pairwise differences in spike timing for each trial, separating spikes into the same pre-, during-, and post-stimulation epochs described in the manuscript (bin size = 5 ms, max lag = 250 ms), grouped neurons by whether they were modulated, and then contrasted the differences in the latencies of the peak normalized autocorrelation value between epochs. Only neurons with a firing rate of ≥ 1 Hz (n = 70/203, 34.5%) were included in this analysis since sparse firing resulted in noisy autocorrelation estimates. Subsequent statistical testing of the peak latency differences between pre-/during- and pre-/post-stimulation did not reveal any group-level differences (Mann-Whitney U tests, p > 0.05). Thus, we were not able to identify neuronal responses suggestive of altered rhythmicity (see Figure S5). A description of this analysis and its takeaways has been incorporated into the manuscript.

      Of note, there are two elements of the data that constrain our ability to detect modulation in the rhythm of firing. First, the baseline activity recorded across neurons modulated by stimulation was relatively low (i.e., median firing rate = 1.77 Hz). Second, stimulation often resulted in a suppression, rather than an enhancement, of firing rate. Taken together, the sparse firing afforded limited opportunity to characterize changes to subtle patterns of spiking. 

      Change to Text:

      Created Figure S5 (Analysis of modulation in spiking rhythmicity)

      Caption: (A) Representative autocorrelograms ACG) for a single neuron. The pairwise differences in spike timing were computed for each trial and epoch (bin size = 5 ms, max lag = 250 ms), then smoothed with a Gaussian kernel. The peak in the normalized ACG across trials was computed for each epoch. (B) Kernel density estimate of the peak ACG lag, separated by epoch. (C) The peak ACG lags were split by whether the neuron was modulated (Mod) or unaffected by stimulation (NS = not significant) for each of the two contrasts: pre- vs. during-stim (left) and pre- vs. post-stim (right).

      Details about the autocorrelation methodology have been incorporated. Lines 166-172: “To investigate whether stimulation altered rhythmicity in neuronal firing, we analyzed the spike timing autocorrelograms. More specifically, we computed the pairwise differences in spike timing for each trial (bin size = 5 ms, max lag = 250 ms) and then contrasted the differences in the latencies of the peak normalized autocorrelation value between epochs (pre-, during-, post-stimulation). Only neurons with a firing rate of ≥ 1 Hz (n = 70/203, 34.5%) were included in this analysis since sparse firing resulted in noisy autocorrelation estimates.

      The results from contrasting the autocorrelograms are now mentioned briefly. Lines 297-298: “Stimulation, however, did not appear to alter the rhythmicity in neuronal firing, as measured by spiking autocorrelograms (Figure S5).”

      1c: “The authors reference the relevance of spike-field synchrony (30-55 Hz) in animal work, but ignore it here. Does spike-field synchrony (comparing the image presentation to post-stimulation) change in this frequency range? This does not seem beyond the scope of investigation here.”

      We agree that a further characterization of spike-field and spike-phase relationships may provide rich insights into more complex regional and interregional dynamics that may be altered by stimulation. Given that many metrics are biased by sample size (e.g., number of spikes), which can vary considerably, computing the pairwise phase consistency (PPC) between spikes and LFP is a preferred metric (Vinck et al. 2010). Although PPC is unbiased, its variance nonetheless increases considerably with low spike counts; pooling spike counts across trials, however, decouples the temporal relationship between spiking and the LFP phase for each trial, confounding results and yielding an unstable estimate.

      To determine whether such an analysis is indeed possible, we calculated the percentage of stimulation trials with ≥ 10 spikes in both the 1s pre- and post-stimulation epochs (a relatively low threshold for inclusion). Only a very small proportion of the total number of trials across all neurons met this criterion (2.5%). Thus, because of the sparse spiking in our data, we are unable to reliably characterize spike-field or spike-phase modulation in detected neurons.

      Change to Text:

      In the manuscript, we have added a description of why our data is not well-suited to investigate these relationships.

      Lines 532-538: “The present study did not investigate interactions between spiking activity and local field potentials because neuronal spiking was sparse at baseline and often further suppressed by stimulation; only a very small proportion of the total number of trials across all neurons exhibited ≥ 10 spikes in both the 1s pre- and post-stimulation epochs (~2.5%). Although certain metrics are not biased by sample size (e.g., pairwise phase consistency), low spike counts can dramatically affect variance and, therefore, result in unstable estimates (Vinck et al., 2011).

      1d: “How does multi-unit activity respond to stimulation? At this somewhat low count of neurons (total n=156 included) it would be valuable to provide input on multi-unit responses to stimulation as well.”

      We thank the reviewer for this suggestion. We have incorporated an analysis of multiunit activity (MUA), which similarly identifies robust modulation via permutation-based statistical testing and characterizes the different profiles of responses (i.e., increased vs. decreased MUA threshold crossings pre- vs. post-stimulation).

      Change to Text:

      Created Figure S8 (Analysis of multiunit activity response to stimulation)

      Caption: (A) Example trace of multiunit activity (MUA) in one channel during a single stimulation trial. Threshold crossings are highlighted with a pink dot overlaid on the MUA signal with a corresponding hash below. (B) The percentage of channels with significantly modulated MUA, separated by the direction of effect. (C) The percentage of channels with significantly modulated MUA, separated by direction effect and region. Inc (red; post > pre) vs. Dec (blue; post < pre). HIP = hippocampus, OFC = orbitofrontal cortex, AMY = amygdala, ACC = anterior cingulate cortex. *** p < 0.001, NS = not significant.

      Details about the MUA methodology have been incorporated. Lines 174-180: “Finally, we measured modulation in multiunit activity (MUA) by filtering the microleectrode signals in a 300-3,000 Hz window and counting the number of threshold crossings. Thresholds were determined on a per-channel basis and defined as -3.5 times the root mean square of the signal during the baseline period; activity during stimulation was excluded since stimulation artifact is difficult to separate from MUA in the absence of spike sorting.

      MUA results are now incorporated. Lines 365-367: “Additional characterization of MUA revealed a dominant signature of increased activity post- vs. pre-stimulation, in line with these trends observed at the single-neuron level (Figure S8).”

      1e: “Several intracranial studies have implicated proximity to white matter in determining the effects of stimulation on LFPs; do the authors see an effect of white matter proximity here?”

      We thank the reviewer for the interesting question. Subsequent characterization revealed only small differences in the proximity of stimulation contacts to white matter (range 1.5-8.0 mm), likely because the chosen target (i.e., basolateral amygdala) has several nearby white matter structures (e.g., stria terminalis). Nonetheless, we performed a linear regression between the proximity to white matter and the stimulation-induced effect on behavior (stimulation vs. no-stimulation d’ difference), the results of which indicate no clear association (p > 0.05; see Figure S9). Critically, this is not to suggest that white matter proximity has no interaction with the reported behavioral effects, but rather, that we could not identify such an association within our data.

      Change to Text:

      Created Figure S9 (The effect of stimulation proximity to white matter and distance to recorded neurons).

      Caption: (A) Kernel density estimate of the Euclidean distance from stimulation contacts to nearest WM structure (in mm); hash marks represent individual observations. (B) The change in memory performance (Δd’) was linearly regressed onto the distance from the stimulated contacts to white matter.

      The following has been added to lines 405-426: “Proximity to white matter has been shown to influence the effects of stimulation on behavior and the strength of evoked responses (Mankin et al., 2021; Mohan et al., 2020; Paulk et al., 2022). Across all stimulated contacts, we observed only small differences in the proximity of stimulation contacts to white matter (median = 4.5 mm, range = 1.5-8.0 mm), likely because the chosen target (i.e., basolateral amygdala) has several nearby white matter structures (e.g., stria terminalis). Nonetheless, we performed a linear regression between the proximity to white matter and the stimulation-induced effect on behavior (stimulation vs. no-stimulation d’ difference), the results of which indicate no clear association (p > 0.05; see Figure S9).

      Comment 2: “It is a little confusing to interpret stimulation-induced modulation of neuronal spiking in the absence of stimulation-induced change in behavior. How do the authors findings tell us anything about the neural mechanisms of stimulation-modulated memory if memory isn't altered? In line with point #1, I would suggest a deeper dive into behavior (e.g. reaction time? Or focus on individual sessions that do change in Figure 4A?) to make a stronger statement connecting the neural results to behavioral relevance.”

      We agree that the connection between the observed stimulation-induced neuronal modulation and effects on behavior is unclear and has proven challenging to elucidate. Per the reviewer’s suggestion, we further focused our analyses on the neuronal modulation effects in the individual sessions that resulted in a robust change in memory performance (stimulation vs. no-stimulation d’ difference threshold of ± 0.5, based on a moderate effect size for Cohen’s d); both a positive and negative threshold were used to capture robust changes in memory performance associated with firing rate modulation, whether enhancement or suppression. To this end, we contrasted the proportion of modulated neurons in the sessions where stimulation resulted in a robust behavioral change (Δd’) with those that did not (~d’). We did not observe a difference in the proportions between groups when collapsed across all sampled regions, or when separately evaluated (Fisher’s exact tests, p > 0.05; see Figure 5C).

      Given that this approach did not further clarify the connection between our neural and behavioral results, we believe it is most appropriate to deemphasize claims in the manuscript regarding the potential insights for behavioral modulation (e.g., memory enhancement), and have done so.

      Change to Text:

      Toned down reference to the memory-related effects of stimulation in the abstract by removing the following lines from the abstract: “Previously, we demonstrated that intracranial theta burst stimulation (TBS) of the basolateral amygdala (BLA) can enhance declarative memory, likely by modulating hippocampal-dependent memory consolidation…” and “…and motivate future neuromodulatory therapies that aim to recapitulate specific patterns of activity implicated in cognition and memory.”

      Changed Figure 4 to Figure 5

      Created Figure 5C (Interaction between behavioral effects and neuronal modulation)(C)  Change in recognition memory performance was split into two categories using a d’ difference threshold of ± 0.5: responder (positive or negative; Δd’, pink) and non-responder (~d’, grey). Individual d’ scores are shown (left) with points colored by outcome category; dotted lines demarcate category boundaries, and the grey-shaded region represents negligible change. The number of sessions within each outcome category (middle) and the proportion of modulated units as a function of outcome category, separated by region (right). NS = not significant.

      The description of the behavioral results has been updated. Lines 394-403: “At the level of individual sessions, we observed enhanced memory (Δd’ > +0.5) in 36.7%, impaired memory (Δd’ < -0.5) in 20.0%, and negligible change (-0.5 ≤ Δd’ ≤ 0.5) in 43.3% when comparing performance between the stim and no-stim conditions; a threshold of Δd’ ± 0.5 was chosen for this classification based on the defined range of a “medium effect” for Cohen’s d. To test our hypothesis that neuronal modulation would be associated with changes in memory performance, we combined the sessions that resulted in either memory enhancement or impairment and contrasted the proportion of modulated units across regions sampled. We did not, however, observe a meaningful difference in the proportion of modulated units when grouped by behavioral outcome (all contrasts p > 0.05) (Figure 5C).

      Lines 213-214 and 394-397 have been edited to reflect a change in the d’ threshold used for categorizing behavioral results (from Δd’ ± 0.2 to Δd’ ± 0.5).

      Comment 3: “It is not clear to me why the assessment of firing rates after image onset and after stim offset is limited to one second - this choice should be more theoretically justified, particularly for regions that spike as sparsely as these.”

      We thank the reviewer for this question and acknowledge that no clear justification was provided for this decision in the manuscript. Our decision to limit each of the analysis epochs to 1s was chosen for two reasons. First, the maximum possible length of the during-stimulation epoch was 1 s (stim on for 1 s). Although the pre- and post-stimulation epochs could be extended without issue, we were concerned that variable time windows could introduce a bias, for instance, resulting in different variances between epochs. Second, we anticipated, both from empirical observations and prior literature, that the neural response following stimulation or task features (e.g., image onset/offset) was likely to be transient, rather than sustained for a period of many seconds. By keeping the windows short, we ensured that our approach to detecting modulation (i.e., contrasting trial-wise spike counts between each pair of epochs) captured the intended effect rather than random noise. We have incorporated a discussion of this rationale in the Peri-Stimulation Modulation Analyses section.

      Change to Text:

      Lines 156-158 have been added: “Each epoch was constrained to 1 s to ensure that subsequent firing rate contrasts were unbiased and to capture potential transient effects (e.g., image onset/offset).”

      Comment 4: “This work coincides with another example of human intracranial stimulation investigating the effect on firing rates (doi: https://doi.org/10.1101/2024.11.28.625915). Given how incredibly rare this type of work is, I think the authors should discuss how their work converges with this work (or doesn't).”

      Thank you for bringing this highly relevant work to our attention. We were unaware of this recent preprint and have incorporated a discussion of its main findings into the manuscript.

      Change to Text:

      New citations: van der Plas et al. 2024 (bioRxiv), Cowan et al. 2024 (bioRxiv)

      The discussion of related studies has been updated. Lines 447-457: “Few studies, however, have characterized the impact of electrical stimulation via macroelectrodes on the spiking activity of human cortical neurons, none of which involve intracranial theta burst stimulation. One study reported a long-lasting reduction in neural excitability among parietal neurons, with variable onset time and recovery following continuous transcranial TBS in non-human primates (Romero et al., 2022). In a similar vein, it was recently shown that human neurons are largely suppressed by single-pulse electrical stimulation (Cowan et al., 2024; Plas et al., 2024). Other emerging evidence suggests that transcranial direct current stimulation may entrain the rhythm rather than rate of neuronal spiking (Krause et al., 2019) and that stimulation-evoked modulation of spiking may meaningfully impact behavioral performance on cognitive tasks (Fehring et al., 2024).”

      Comment 5: “What information does the pseudo-population analysis add? It's not totally clear to me.”

      We recognize the need to further contextualize the motivation for the exploratory pseudo-population analysis and appreciate the reviewer for bringing the lack of detail to our attention. In brief, the analysis allowed us to observe trends in activity across populations of neurons, which, in principle, are not visible by characterizing modulation solely in discrete neurons. Additional details have been incorporated into the manuscript, as suggested.

      Change to Text:

      Additional justification has been incorporated in the description of the methodology. Lines 185-187: “…This approach enables the identification of dominant patterns of coordinated neural activity that may not be apparent when examining individual neurons in isolation.”, lines 192-194: “…By collapsing across subjects into a common pseudo-population, this analysis provides a mesoscale view of how stimulation modulates shared activity patterns across anatomically distributed neural populations.”

      A summary interpretation has been added to the paragraph describing the results. Lines 326-328: “Taken together, these analyses reveal global structure in the state space of responses to BLA stimulation within hippocampal circuits.”

      Reviewer #2 (Public review):

      Comment 1 “Authors suggest that the units modulated by stimulation are largely distinct from those responsive to image offset during trials without stimulation. The subpopulation that responds strongly also tends to have a higher baseline of firing rate. It's important to add that the chosen modulation index is more likely to be significant in neurons with higher firing rates.”

      This is an important point that was not previously addressed in our manuscript. We suspect there are likely two factors at play worth considering with respect to our chosen nonparametric modulation index: neurons with lower activity require smaller changes in spike counts to be significantly modulated (easier to flip ranks), and neurons with higher activity empirically exhibit greater absolute shifts in the number of spikes. Our further use of permutation testing, while mitigating false positives, may also somewhat constrain the ability to detect modulation in sparsely active neurons. Nonetheless, given that many trials entailed few or no spikes, we believe this approach is preferable to alternatives that may be more susceptible to noise (e.g., percent change in trial-averaged firing rate from baseline).

      To better understand the tradeoffs with detection probability, we performed a sensitivity analysis. We generated synthetic data with different baseline firing rates (0.1-5.0 Hz) and effect sizes (± 0.1-0.7 Hz) and simulated the likelihood of detection with our given modulation index across neurons. The results of the simulation support the notion that the probability of detecting modulation is lower for sparsely active neurons (Figure S8C). Further discussion of this consideration for the chosen modulation index, as well as details regarding the sensitivity analysis, have been incorporated into the manuscript.

      Change to Text:

      Created Figure S7C (Detection probability analysis)

      Caption: The same permutation-based analyses reported in the manuscript were repeated under different control conditions… (C) Visualization of the predicted probability of detecting modulation across synthetic neurons with variable firing rates and modulation effect sizes; FR = firing rate.

      Lines 223-224 have been added to the Methods section titled “Firing Rate Control Analyses”: “We performed a series of control analyses to test whether our approach to firing rate detection was robust…”

      A description of the simulation has been incorporated into the same section as above. Lines 234-237: “Finally, to better understand the tradeoffs with our statistical approach, we generated synthetic data with different baseline firing rates (0.1-5.0 Hz) and effect sizes (± 0.1-0.7 Hz), then simulated the likelihood of detecting modulation across variable conditions (Figure S7C).”

      The description of the results from the control analyses has been updated. Lines 330-339: “Finally, we performed three supplementary analyses to evaluate the robustness of our approach to detecting firing rate modulation: a sensitivity analysis assessing the proportion of modulated units at different firing rate thresholds for inclusion/exclusion, a data dropout analysis designed to control for the possibility that non-physiological stimulation artifacts may preclude the detection of temporally adjacent spiking, and a synthetic detection probability analysis. These results recapitulate our observation that units with higher baseline firing are most likely to exhibit modulation (though the probability of detecting modulation is lower for sparsely active neurons) and suggest that suppression in firing rate is not solely attributable to amplifier saturation following stimulation (Figure S7).

      Comment 2: “Readers can benefit from understanding with more details the locations chosen for stimulation - in light of previous studies that found differences between effects based on proximity to white matter (For example - PMID 32446925, Mohan et al, Brain Stimul. 2020 and PMID 33279717 Mankin et al Brain Stimul. 2021).”

      This has been addressed in the above response to Reviewer’s 1 comment 1.1e.

      Change to Text:

      See changes related to Reviewer 1 comment 1.1e.

      Comment 3: “Missing information in the manuscript…”

      3a: “Images of stimulation anatomical locations for all subjects included in this study. Ideally information about the impedance of the contacts to be able to calculate the actual current used.”

      As requested, we have provided an image from the coronal T1 MRI sequence, which highlights the position of the stimulated contacts for each of the 16 patients. Though we did not measure the impedances directly, the stimulation was current-controlled, which ensured that the desired current and charge density were consistent regardless of the tissue or electrode impedance.

      Change to Text:

      Created Figure S1 (Anatomical location of stimulated electrodes).

      Caption: A coronal slice from the T1-weighted MRI scan is shown for each patient who participated in the study (n = 16). Electrode contacts within the same plane of the image are shown with blue circles, and the bipolar pair of stimulated contacts within the basolateral amygdala is highlighted in red.

      Lines 144-145 have been edited to reflect that the delivered stimulation was current-controlled: “Specifically, we administered current-controlled, charge-balanced, …”

      3b: “The studied population is epilepsy patients, and the manuscript lacks description of their condition, proximity to electrodes included in the study to pathological areas, and the number of units from each patient/hemisphere.”

      We agree that additional information regarding patient demographics, experimental details, and clinical characteristics would further contextualize this unique patient population. A new table has been included, which contains the following information: patient ID, sex, age, # experimental session, # SEEG leads (and # microelectrodes), # detected units (L vs. R hemisphere), and suspected seizure onset zone.

      Change to Text:

      Created Table S1 (Patient demographics and clinical characteristics).

      Lines 258-259 have been added: “…(see Table S1 for patient demographics).”

      3c: “I haven't seen any comments on code availability (calculating modulation indices and statistics) and data sharing.”

      For clarification, a section titled Resource Availability is already appended to the end of the manuscript following the Conclusion, which describes the data and code availability.

      Change to Text:

      None

      3d: “Small comment - Figure legend 3E - Define gray markers (non-modulated units?)”

      Thank you for highlighting this omission. We have updated the relevant figure caption.

      Change to Text:

      The following has been added to the Figure 3 caption: “…whereas units without a significant change in activity are shown in grey.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      When you search for something, you need to maintain some representation (a "template") of that target in your mind/brain. Otherwise, how would you know what you were looking for? If your phone is in a shocking pink case, you can guide your attention to pink things based on a target template that includes the attribute 'pink'. That guidance should get you to the phone pretty effectively if it is in view. Most real-world searches are more complicated. If you are looking for the toaster, you will make use of your knowledge of where toasters can be. Thus, if you are asked to find a toaster, you might first activate a template of a kitchen or a kitchen counter. You might worry about pulling up the toaster template only after you are reasonably sure you have restricted your attention to a sensible part of the scene.

      Zhou and Geng are looking for evidence of this early stage of guidance by information about the surrounding scene in a search task. They train Os to associate four faces with four places. Then, with Os in the scanner, they show one face - the target for a subsequent search. After an 8 sec delay, they show a search display where the face is placed on the associated scene 75% of the time. Thus, attending to the associated scene is a good idea. The questions of interest are "When can the experimenters decode which face Os saw from fMRI recording?" "When can the experimenters decode the associated scene?" and "Where in the brain can the experimenters see evidence of this decoding? The answer is that the face but not the scene can be read out during the face's initial presentation. The key finding is that the scene can be read out (imperfectly but above chance) during the subsequent delay when Os are looking at just a fixation point. Apparently, seeing the face conjures up the scene in the mind's eye.

      This is a solid and believable result. The only issue, for me, is whether it is telling us anything specifically about search. Suppose you trained Os on the face-scene pairing but never did anything connected to the search. If you presented the face, would you not see evidence of recall of the associated scene? Maybe you would see the activation of the scene in different areas and you could identify some areas as search specific. I don't think anything like that was discussed here.

      You might also expect this result to be asymmetric. The idea is that the big scene gives the search information about the little face. The face should activate the larger useful scene more than the scene should activate the more incidental face, if the task was reversed. That might be true if the finding is related to a search where the scene context is presumed to be the useful attention guiding stimulus. You might not expect an asymmetry if Os were just learning an association.

      It is clear in this study that the face and the scene have been associated and that this can be seen in the fMRI data. It is also clear that a valid scene background speeds the behavioral response in the search task. The linkage between these two results is not entirely clear but perhaps future research will shed more light.

      It is also possible that I missed the clear evidence of the search-specific nature of the activation by the scene during the delay period. If so, I apologize and suggest that the point be underlined for readers like me.

      We have added text related to this issue, particularly in the discussion (page 19, line 6), and have also added citations of studies in humans and non-human primates showing a causal relationship between preparatory activity in prefrontal and visual cortex and visual search performance (page 6, line 16).

      Reviewer #2 (Public review):

      Summary:

      This work is one of the best instances of a well-controlled experiment and theoretically impactful findings within the literature on templates guiding attentional selection. I am a fan of the work that comes out of this lab and this particular manuscript is an excellent example as to why that is the case. Here, the authors use fMRI (employing MVPA) to test whether during the preparatory search period, a search template is invoked within the corresponding sensory regions, in the absence of physical stimulation. By associating faces with scenes, a strong association was created between two types of stimuli that recruit very specific neural processing regions - FFA for faces and PPA for scenes. The critical results showed that scene information that was associated with a particular cue could be decoded from PPA during the delay period. This result strongly supports the invoking of a very specific attentional template.

      Strengths:

      There is so much to be impressed with in this report. The writing of the manuscript is incredibly clear. The experimental design is clever and innovative. The analysis is sophisticated and also innovative. The results are solid and convincing.

      Weaknesses:

      I only have a few weaknesses to point out.<br /> This point is not so much of a weakness, but a further test of the hypothesis put forward by the authors. The delay period was long - 8 seconds. It would be interesting to split the delay period into the first 4seconds and the last 4seconds and run the same decoding analyses. The hypothesis here is that semantic associations take time to evolve, and it would be great to show that decoding gets stronger in the second delay period as opposed to the period right after the cue. I don't think this is necessary for publication, but I think it would be a stronger test of the template hypothesis.

      We conducted the suggested analysis, and we did not find clear evidence of differences in decoding scene information between the earlier and later portions of the delay period. This may be due to insufficient power when the data are divided, individual differences in when preparatory activation is the strongest, or truly no difference in activation over the delay period. More details of this analysis can be found in the supplementary materials (page 12, line 16; Figure S1).

      Type in the abstract "curing" vs "during."

      Fixed.

      It is hard to know what to do with significant results in ROIs that are not motivated by specific hypotheses. However, for Figure 3, what are the explanations for ROIs that show significant differences above and beyond the direct hypotheses set out by the authors?

      We added reasoning for the other a priori ROIs in the introduction (page 4, line 26). There is substantial evidence suggesting that frontoparietal areas are involved in cognitive control, attentional control, and working memory. The ROIs we selected from frontal and parietal cortex are based on parcels within resting state networks defined by the s17-network atlases (Schaefer et al., 2018). The IFJ was defined by the HCP-MMP1 (Glasser et al., 2016). These regions are commonly used in studies of attention and cognitive control, and the exact ROIs selected are described in the section on “Regions of interest (ROI) definition”. While we have the strongest hypothesis for IFJ based on relatively recent work from the Desimone lab, the other ROIs in lateral frontal cortex and parietal cortex, are also well documented in similar studies, although the exact computation being done by these regions during tasks can be hard to differentiate with fMRI.\

      Reviewer #3 (Public review):

      The manuscript contains a carefully designed fMRI study, using MVPA pattern analysis to investigate which high-level associate cortices contain target-related information to guide visual search. A special focus is hereby on so-called 'target-associated' information, that has previously been shown to help in guiding attention during visual search. For this purpose the author trained their participants and made them learn specific target-associations, in order to then test which brain regions may contain neural representations of those learnt associations. They found that at least some of the associations tested were encoded in prefrontal cortex during the cue and delay period.

      The manuscript is very carefully prepared. As far as I can see, the statistical analyses are all sound and the results integrate well with previous findings.

      I have no strong objections against the presented results and their interpretation.

      Reviewer #1 (Recommendations for the authors):

      One bit of trivia. In the abstract, you should define IFJ on its first appearance in the text. You get to that a bit later.

      Fixed.

      Reviewer #2 (Recommendations for the authors):

      I really don't have much to suggest, as I thought that this was a clearly written report that offered a clever paradigm and data that supported the conclusions. My only suggestion would be to split the delay period activity and test whether the strength of the template evolves over time. Even though fMRI is not the best tool for this, still you would predict stronger decoding in the second half of the delay period

      Please see above for our response to the same comment.

      Reviewer #3 (Recommendations for the authors):

      I would just like to point out some minor aspects that might be worth improving before publishing this work.

      Abstract: While in general, the writing is clear and concise, I felt that the abstract of the manuscript was particularly hard to follow, probably because the authors at some point re-arranged individual sentences. For example, they write in line 12 about 'the preparatory period', but explain only in the following sentence that the preparatory period ensues 'before search begins'. This made it a bit hard to follow the overall logic and I think could easily be fixed. 

      We have addressed this comment and updated the abstract.

      Also in the abstract: 'The CONTENTS of the template typically CONTAIN...' sounds weird, no? Also, 'information is used to modulate sensory processing in preparation for guiding attention during search' sounds like a very over-complicated description of attentional facilitation. I'm not convinced either whether the sequence is correct here. Is the information really used to (first) modulate sensory processing (which is a sort of definition of attention in itself) to (then) prepare the guidance of attention in visual search?

      We have addressed this comment and updated the abstract.

      The sentence in line 7, 'However, many behavioral studies have shown that target-associated information is used to guide attention,...' (and the following sentence) assumes that the reader is somewhat familiar with the term 'target-associations'. I'm afraid that, for a naive reader, this term may only become fully understandable once the idea is introduced a bit later when mentioning that participants of the study were trained on face-scene pairings. I think it could help to give some very short explanation of 'target-associations' already when it is first mentioned. The term 'statistically co-occurring object pairs', for example, could be of great help here.

      Thank you for the suggestion. We have added it to the abstract.

      page 2, line 22: 'prefrotnal'

      Fixed.

      page 2, line 24/25: 'information ... can SUPPLANT (?) ... information'. (That's also a somewhat unfortunate repetition of 'information')

      Fixed.

      page 4, line 23-25: 'Working memory representations in lateral prefrontal and parietal regions are engaged in cognitive control computations that ARE (?) task non-specific but essential to their functioning'

      Fixed.

      page 7, line 1: maybe a comma before 'suggesting'?

      Fixed.

      page 7, line 14-16: Something seems wrong with this sentence: 'The distractor face was a race-gender match, which we previously FOUND MADE (?) target discrimination difficult enough to make the scene useful for guiding attention'

      We have addressed this comment and rewritten this part (now on page 7, line 18).

      Results / Discussion sections:

      In several figures, like in Fig3A, the three different IFJ regions, are grouped separately from the other frontal areas, which makes sense given the special role IFJ plays for representing task-related templates. However, IFJ is still part of PFC. I think it would be more correct to group the other frontal areas (like FEF vLPFC etc.) as 'Other Frontal' or even 'Other PFC'.

      We have made the changes based on the reviewer’s suggestion.

      In some of the Figures, e.g. Fig 3 and 5, I had the impression that the activation patterns of some conditions in vLPFC were rather close to the location of IFJ, which is just a bit posterior. I think I remember that functional localisers of IFJ can actually vary quite a bit in localisation (see e.g. in the Baldauf/Desimone paper). Also, I think it has been shown in the context of other regions, like the human FEF that its position when defined by localisation tasks is not always nicely and fully congruent with the respective labels in an atlas like the Glasser atlas. It might help to take this in consideration when discussing the results, particularly since the term vLPFC is a rather vague collection of several brain parcels and not a parcel name in the Glasser atlas. Some people might even argue that vLPFC in the broad sense contains IFJ, similar to how 'Frontal' contains IFJ (see above). How strong of a point do the authors want to make about activation in IFJ versus in vlPFC?

      We have now added text discussing the inability to truly differentiate between subregions of IFJ and other parts of vLPFC in the methods section on ROIs (page 25, line 13) and in the discussion (page 18, line 25). However, one might think that it is even more surprising given the likely imprecision of ROI boundaries that we see distinct patterns between the subregions of IFG defined by Glasser HCP-MMP1 and the other vLPFC regions defined by the 17-network atlases. We do not wish to overstate the precision of IFJ regions, but note the ROI results within the context of the larger literature. We are sure that our findings will have to be reinterpreted when newer methods allow for better localization of functional subregions of the vLPFC in individuals.

      Given that the authors nicely explain in the introduction how important templates are in visual search, and given that FEF has such an important role in serially guiding saccades through visual search templates, I think it would be worth discussing the finding that FEF did not hold representation of these targets. Of course, this could be in part due to the specific task at hand, but it may still be interesting to note in the Discussion section that here FEF, although important for some top-down attention signals, did not keep representations of the 'search' templates. Is it because there is no spatial component to the task at hand (like proposed in Bedini 2021)?

      We have now added text directly addressing this point and citing the Bedini et al. paper in the discussion (page 18, line 18). Besides our current findings, the relationship between IFJ and FEF is really interesting and will hopefully be investigated more in the future.

      Page 18, line 5: 'we the(N) associated...'

      Fixed.

    1. Resubmitting Essays and Late Work Resubmitting Essays 1-3 That's right! You can resubmit Essays 1-3 for a different grade. I will provide feedback on assignments and essays that you can then use to improve your understanding of the content, writing ability, or critical thinking about the text. Essay resubmits are usually due by Week 17, but more information will be provided within the module and assignment page. Late Work I will expect that you will strive to complete each assignment by the due date. But I recognize that you are juggling a lot and there may be days when completing coursework is not your top priority. If you anticipate the need for an extension, please send me a message in advance (as much as possible) of the due date so I am aware of your situation. Propose an alternative due date that you feel is reasonable (I advise no more than 48-hours to ensure you do not get behind). I will reply with an agreed upon due date to support your success. Receiving an extension/late points on discussion boards or social annotations will not be permitted. The very nature of discussions is to have a conversation around/about the content that is interactive and timely. For an asyncherous class (like this class), it's important to have "due by dates" so everyone has time to plan and participate. If students are interacting on discussion boards or social annotations past the due by dates, there is a chance that students (and I) will miss the awesome things you want to share because we will be focused on the next discussion or assignments. We want to read and engage with people in this class. Please make every effort to participate and engage in the weekly discussions.

      I think everything stated in this section is very fair, especially because I also work 30-40 hours a week. The rule about not getting extensions on discussion boards or social annotations makes sense and will help us to participate and get the most out of learning. I also like how we can give an alternative due date as long as it is reasonable because it gives us flexibility for our other classes and also for work and things outside of school.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this study by Li et al., the authors re-investigated the role of cDC1 for atherosclerosis progression using the ApoE model. First, the authors confirmed the accumulation of cDC1 in atherosclerotic lesions in mice and humans. Then, in order to examine the functional relevance of this cell type, the authors developed a new mouse model to selectively target cDC1. Specifically, they inserted the Cre recombinase directly after the start codon of the endogenous XCR1 gene, thereby avoiding off-target activity. Following validation of this model, the authors crossed it with ApoE-deficient mice and found a striking reduction of aortic lesions (numbers and size) following a high-fat diet. The authors further characterized the impact of cDC1 depletion on lesional T cells and their activation state. Also, they provide in-depth transcriptomic analyses of lesional in comparison to splenic and nodal cDC1. These results imply cellular interactions between lesion T cells and cDC1. Finally, the authors show that the chemokine XCL1, which is produced by activated CD8 T cells (and NK cells), plays a key role in the interaction with XCR1-expressing cDC1 and particularly in the atherosclerotic disease progression.<br /> Strengths:

      The surprising results on XCL1 represent a very important gain in knowledge. The role of cDC1 is clarified with a new genetic mouse model.

      Thank you

      Weaknesses:

      My criticism is limited to the analysis of the scRNAseq data of the cDC1. I think it would be important to match these data with published data sets on cDC1. In particular, the data set by Sophie Janssen's group on splenic cDC1 might be helpful here (PMID: 37172103; https://www.single-cell.be/spleen_cDC_homeostatic_maturation/datasets/cdc1). It would be good to assign a cluster based on the categories used there (early/late, immature/mature, at least for splenic DC).

      Thank you very much for your help. Using the scRNA seq data of Xcr1<sup>+</sup> cDC1 sorted from ApoE<sup>–/–</sup> mice, we re-annotated the populations, following the methodology proposed by Sophie Janssen's group. These results are presented in Figure S9 and Figure S10 and described in detail in the Results and Discussion section.

      Please refer to the Results section from line 264 to 284: “Using the scRNA seq data of Xcr1<sup>+</sup> cDC1 sorted from hyperlipidemic mice, we annotated the 10 populations as shown in Figure S9A, following the methodology from a previous study [41]. Ccr7<sup>+</sup> mature cDC1s (Cluster 3, 7 and 9) and Ccr7- immature cDC1s (remaining clusters) were identified across cDC1 cells sorted from aorta, spleen and lymph nodes (Figure S9B). Further stratification based on marker genes reveals that Cluster 10 is the pre-cDC1, with high expression level of CD62L (Sell) and low expression level of CD8a (Figure S9C). Cluster 6 and 8 are the proliferating cDC1s, which express high level of cell cycling genes Stmn1 and Top2a (Figure S9D). Cluster 1 and 4 are early immature cDC1s, and cluster 2 and 5 are late immature cDC1s, according to the expression pattern of Itgae, Nr4a2 (Figure S9E). Cluster 9 cells are early mature cDC1s, with elevated expression of Cxcl9 and Cxcl10 (Figure S9F). Cluster 3 and 7 as late mature cDC1s, characterized by the expression of Cd63 and Fscn1 (Figure S9G). As shown in Figure 5C and Figure S9, the 10 populations displayed a major difference of aortic cDC1 cells that lack in pre-cDC1s (cluster 10) and mature cells (cluster 3, 7 and 9). Interestingly, in hyperlipidemic mice splenic cDC1 possess only Cluster 3 as the late mature cells while the lymph node cDC1 cells have two late mature populations namely Cluster 3 and Cluster 7. In further analysis, we also compared splenic cDC1 cells from HFD mice to those from ND mice. As shown in Figure S10, HFD appears to impact early immature cDC1-1 cells (Cluster 1) and increases the abundance of late immature cDC1 cells (Cluster 2 and 5), regardless of the fact that all 10 populations are present in two origins of samples. We also found that Tnfaip3 and Serinc3 are among the most upregulated genes, while Apol7c and Tifab are downregulated in splenic cDC1 cells sorted from HFD mice”.  

      Please refer to the Discussion section from line 380 to 385: “Based on the maturation analysis of the cDC1 scRNA seq data [41], our findings suggest that the aortic cDC1 cells display a major difference from those of spleen and lymph nodes by lacking the mature clusters, whereas lymph node cDC1 cells contain an additional Fabp5<sup>+</sup> S100a4<sup>+</sup> late mature Cluster. Our results also suggest that hyperlipidemia contributes to alteration in early immature cDC1 and in the abundance of late immature cDC1 cells, which was associated with dramatic change in gene expression of Tnfaip3, Serinc3, Apol7c and Tifab”.

      Reviewer #2 (Public review):

      This study investigates the role of cDC1 in atherosclerosis progression using Xcr1Cre-Gfp Rosa26LSL-DTA ApoE-/- mice. The authors demonstrate that selective depletion of cDC1 reduces atherosclerotic lesions in hyperlipidemic mice. While cDC1 depletion did not alter macrophage populations, it suppressed T cell activation (both CD4+ and CD8+ subsets) within aortic plaques. Further, targeting the chemokine Xcl1 (ligand of Xcr1) effectively inhibits atherosclerosis. The manuscript is well-written, and the data are clearly presented. However, several points require clarification:

      (1) In Figure 1C (upper plot), it is not clear what the Xcr1 single-positive region in the aortic root represents, or whether this is caused by unspecific staining. So I wonder whether Xcr1 single-positive staining can reliably represent cDC1. For accurate cDC1 gating in Figure 1E, Xcr1+CD11c+ co-staining should be used instead.

      The observed false-positive signal in the wavy structures within immunofluorescence Figure 1C (upper panel) results from the strong autofluorescence of elastic fibers, a major vascular wall component (alongside collagen). This intrinsic property of elastic fibers is a well-documented confounder in immunofluorescence studies [A, B].

      In contrast, immunohistochemistry (IHC) employs an enzymatic chromogenic reaction (HRP with DAB substrate) that generates a brown precipitate exclusively at antigen-antibody binding sites. Importantly, vascular elastic fibers lack endogenous enzymatic activity capable of catalyzing the DAB reaction, thereby preventing this source of false positivity in IHC.

      Given that Xcr1 is exclusively expressed on conventional type 1 dendritic cells [C], and considering that IHC lacks the multiplexing capability inherent to immunofluorescence for antigen co-localization, single-positive Xcr1 staining reliably identifies cDC1s in IHC results.

      [A] König, K et al. “Multiphoton autofluorescence imaging of intratissue elastic fibers.” Biomaterials vol. 26,5 (2005): 495-500. doi:10.1016/j.biomaterials.2004.02.059

      [B] Andreasson, Anne-Christine et al. “Confocal scanning laser microscopy measurements of atherosclerotic lesions in mice aorta. A fast evaluation method for volume determinations.” Atherosclerosis vol. 179,1 (2005): 35-42. doi:10.1016/j.atherosclerosis.2004.10.040

      [C] Dorner, Brigitte G et al. “Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells.” Immunity vol. 31,5 (2009): 823-33. doi:10.1016/j.immuni.2009.08.027

      (2) Figure 4D suggests that cDC1 depletion does not affect CD4+/CD8+ T cells. However, only the proportion of these subsets within total T cells is shown. To fully interpret effects, the authors should provide:

      (a) Absolute numbers of total T cells in aortas.

      (b) Absolute counts of CD4+ and CD8+ T cells.

      Thanks for your suggestions. We agree that assessing both proportions and absolute numbers in Figure 4 provides a more complete picture of the effects of cDC1 depletion on T cell populations. Furthermore, we also add the absolute count of cDC1 cells and total T cells, and CD44 MFI (mean fluorescence intensity) in CD4<sup>+</sup> and CD8<sup>+</sup> T cells in Figure 4, and supplemented corresponding textual descriptions in the revised manuscript.

      Please refer to the Results section from line 183 to 187: “Subsequently, we assessed T cell phenotype in the two groups of mice. While neither the frequencies nor absolute counts of aortic CD4<sup>+</sup> and CD8<sup>+</sup> T cells differed significantly between two groups of mice (Figure 4D-F), CD69 frequency and CD44 MFI (Mean Fluorescence Intensity), the T cell activation markers, were significantly reduced in both CD4<sup>+</sup> and CD8<sup>+</sup> T cells from Xcr1<sup>+</sup> cDC1 depleted mice compared to controls (Figure 4G and H)”.

      (3) How does T cell activation mechanistically influence atherosclerosis progression? Why was CD69 selected as the sole activation marker? Were other markers (e.g., KLRG1, ICOS, CD44) examined to confirm activation status?

      We sincerely appreciate these insightful comments. As extensively documented in the literature, activated effector T cells (both CD4+ and CD8+) critically promote plaque inflammation and instability through their production of pro-inflammatory cytokines (particularly IFN-γ and TNF-α), which drive endothelial activation, exacerbate macrophage inflammatory responses, and impair smooth muscle cell function [A].

      In our study, we specifically investigated the role of cDC1 cells in atherosclerosis progression. Our key findings demonstrate that cDC1 depletion attenuates T cell activation (as shown by reduced CD69/CD44 expression) and that this reduction in activation is functionally linked to the observed decrease in atherosclerosis burden in our model. 

      Regarding CD44 as an activation marker, we performed quantitative analyses of CD44 mean fluorescence intensity (MFI) in aortic T cells (Figure 4). Importantly, the MFI of CD44 was significantly lower on both CD4+ and CD8+ T cells from Xcr1<sup>Cre-Gfp</sup> Rosa26<sup>LSL-DTA</sup> ApoE<sup>–/–</sup> mice compared to the control ApoE<sup>–/–</sup> mice (data shown below), which is consistent with the result of CD69 in Figure 4. We added the related description in the Result section.

      Please refer to the Results section from line 185 to 187 “CD69 frequency and CD44 MFI (Mean Fluorescence Intensity), the T cell activation markers, were significantly reduced in both CD4+ and CD8+ T cells from Xcr1+ cDC1 depleted mice compared to controls (Figure 4G and H)”.

      Similarly, MFI of CD44 was significantly lower on both CD4<sup>+</sup> and CD8<sup>+</sup> T cells from Xcl1<sup>–/–</sup> ApoE<sup>–/–</sup> mice compared to the control ApoE<sup>–/–</sup> mice (data shown below), which is consistent with the result of CD69 in Figure 7. We also added the related description in the Result section.

      Please refer to the Results section from line 308 to 309 “Crucially, CD69<sup>+</sup> frequency and CD44 MFI remained comparable in both aortic CD4<sup>+</sup> and CD8<sup>+</sup> T cells between two groups (Figure 7D-F).”

      [A] Hansson, Göran K, and Andreas Hermansson. “The immune system in atherosclerosis.” Nature immunology vol. 12,3 (2011): 204-12. doi:10.1038/ni.2001

      (4) Figure 7B: Beyond cDC1/2 proportions within cDCs, please report absolute counts of: Total cDCs, cDC1, and cDC2 subsets. Figure 7D: In addition to CD4+/CD8+ T cell proportions, the following should be included:

      (a) Total T cell numbers in aortas

      (b) Absolute counts of CD4+ and CD8+ T cells.

      Thanks for your suggestions. We have now included in Figure 7 the absolute counts of cDC, cDC1, and cDC2 cells, along with CD4<sup>+</sup> and CD8<sup>+</sup> T cells in aortic tissues. Additionally, we provide the corresponding CD44 mean fluorescence intensity (MFI) measurements for both CD4<sup>+</sup> and CD8<sup>+</sup> T cell populations. We added the related description in the Result section.

      Please refer to the Results section from line 303 to 311: “The flow cytometric results illustrated that both frequencies and absolute counts of Xcr1<sup>+</sup> cDC1 cells in the aorta were significantly reduced, but cDCs and cDC2 cells from Xcl1<sup>–/–</sup> ApoE<sup>–/–</sup> were comparable with that from ApoE<sup>–/–</sup> (Figure 7A-C). Moreover, in both lymph node and spleen, the absolute numbers of pDC, cDC1 and cDC2 from Xcl1<sup>–/–</sup> ApoE<sup>–/–</sup> were comparable with that from ApoE<sup>–/–</sup> (Figure S11). Crucially, CD69<sup>+</sup> frequency and CD44 MFI remained comparable in both aortic CD4<sup>+</sup> and CD8<sup>+</sup> T cells between two groups (Figure 7D-F). However, aortic CD8<sup>+</sup> T cells exhibited reduced frequency and absolute count, while CD4<sup>+</sup> T cells showed increased frequency but unchanged counts in Xcl1<sup>–/–</sup> ApoE<sup>–/–</sup> mouse versus controls (Figure 7G and H).”

      (5) cDC1 depletion reduced CD69+CD4+ and CD69+CD8+ T cells, whereas Xcl1 depletion decreased Xcr1+ cDC1 cells without altering activated T cells. How do the authors explain these different results? This discrepancy needs explanation.

      We sincerely appreciate your professional and insightful comments regarding the mechanistic relationship between cDC1 depletion and T cell activation. Direct cDC1 depletion in the Xcr1<sup>Cre-Gfp</sup> Rosa26<sup>LSL-DTA</sup> ApoE<sup>–/–</sup> micmodel removes both recruited and tissue-resident cDC1s, eliminating their multifunctional roles in antigen presentation, co-stimulation and cytokine secretion essential for T cell activation. In contrast, Xcl1 depletion reduces, but does not eliminate cDC1 migration into plaques. Furthermore, alternative chemokine axes (e.g., CCL5/CCR5, CXCL9/CXCR3, BCL9/BCL9L) may partially rescue cDC1 recruitment [13, 68, 69], and non-cDC1 APCs (e.g., monocytes, cDC2s) may compensate for T cell activation [55, 70]. We emphasize that Xcl1 depletion specifically failed to alter T cell activation in hyperlipidemic ApoE<sup>–/–</sup> mice. However, its impact may differ in other pathophysiological contexts due to compensatory mechanisms. We thank you again for highlighting this nuance, which strengthens our mechanistic interpretation. We have added these points to the discussion section and included new references.

      Please refer to the Discussion section from line 407 to 413: “Notably, while complete ablation of Xcr1<sup>+</sup> cDC1s impaired T cell activation, reduction of Xcr1<sup>+</sup> cDC1 recruitment via Xcl1 deletion did not significantly compromise this process. This discrepancy may arise through compensatory mechanisms: alternative chemokine axes (e.g., CCL5/CCR5, CXCL9/CXCR3, BCL9/BCL9L) may partially rescue Xcr1<sup>+</sup> cDC1 homing [13, 68, 69], while non-cDC1 antigen-presenting cells (e.g., monocytes, cDC2s) may sustain T cell activation [55, 70]. Furthermore, tissue-specific microenvironment factors could potentially modulate its role in other diseases.”. [13] Eisenbarth, S C. “Dendritic cell subsets in T cell programming: location dictates function.” Nature reviews. Immunology vol. 19,2 (2019): 89-103. doi:10.1038/s41577-018-0088-1 [55] Brewitz, Anna et al. “CD8+ T Cells Orchestrate pDC-XCR1+ Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming.” Immunity vol. 46,2 (2017): 205-219. doi:10.1016/j.immuni.2017.01.003 [68] de Oliveira, Carine Ervolino et al. “CCR5-Dependent Homing of T Regulatory Cells to the Tumor Microenvironment Contributes to Skin Squamous Cell Carcinoma Development.” Molecular cancer therapeutics vol. 16,12 (2017): 2871-2880. doi:10.1158/1535-7163.MCT-17-0341.[69] He F, Wu Z, Liu C, Zhu Y, Zhou Y, Tian E, et al. Targeting BCL9/BCL9L enhances antigen presentation by promoting conventional type 1 dendritic cell (cDC1) activation and tumor infiltration. Signal Transduct Target Ther. 2024;9(1):139. Epub 2024/05/30. doi: 10.1038/s41392-024-01838-9. PubMed PMID: 38811552; PubMed Central PMCID: PMCPMC11137111.[70] Böttcher, Jan P et al. “Functional classification of memory CD8(+) T cells by CX3CR1 expression.” Nature communications vol. 6 8306. 25 Sep. 2015, doi:10.1038/ncomms9306.

      Reviewer #1 (Recommendations for the authors):

      (1) Line 32 - The authors might want to add that the mouse model leads to a "constitutive" depletion of cDC1.

      Thanks for your advice, we have revised the sentence as follows.

      Please refer to the Results section from line 31 to 33: “we established Xcr1<sup>Cre-Gfp</sup> Rosa26<sup>LSL-DTA</sup> ApoE<sup>–/–</sup> mice, a novel and complex genetic model, in which cDC1 was constitutively depleted in vivo during atherosclerosis development”.

      (2) Line 187-188: The authors claim that T cell activation was "inhibited" if cDC1 was depleted. The data shows that the T cells were less activated, but there is no indication of any kind of inhibition; this should be corrected.

      Thanks for your advice, we have revised the sentence as follows.

      Please refer to the Results section from line 183 to 187: “Subsequently, we assessed T cell phenotype in the two groups of mice. While neither the frequencies nor absolute counts of aortic CD4<sup>+</sup> and CD8<sup>+</sup> T cells differed significantly between two groups of mice (Figure 4D-F), CD69 frequency and CD44 MFI (Mean Fluorescence Intensity), the T cell activation markers, were significantly reduced in both CD4<sup>+</sup> and CD8<sup>+</sup> T cells from Xcr1<sup>+</sup> cDC1 depleted mice compared to controls (Figure 4G and H)”.

      (3) Why are some splenic DC clusters absent in LNs and vice versa? This is not obvious to this reviewer and should at least be discussed.

      We appreciate the insightful question regarding the absence of certain splenic DC clusters in LNs. This phenomenon in Figure 5 aligns with the 'division of labor' paradigm in dendritic cell biology: tissue microenvironments evolve specialized DC subsets to address local immunological challenges. The absence of universal clusters reflects functional adaptation, not technical artifacts. We acknowledge that this tissue-specific heterogeneity warrants further discussion and have expanded our analysis to address this point in the discussion part of our manuscript.

      Please refer to the Discussion section from line 375 to 385: “This pronounced tissue-specific compartmentalization of Xcr1<sup>+</sup> cDC1 subsets may related to multiple mechanisms including developmental imprinting that instructs precursor differentiation into transcriptionally distinct subpopulations [62], and microenvironmental filtering through organ-specific chemokine axes (e.g., CCL2/CCR2 in spleen) selectively recruits receptor-matched subsets [63, 64]. This spatial specialization optimizes pathogen surveillance for local immunological challenges. Based on the maturation analysis of the cDC1 scRNA seq data [41], our findings suggest that the aortic cDC1 cells display a major difference from those of spleen and lymph nodes by lacking the mature clusters, whereas lymph node cDC1 cells contain an additional Fabp5<sup>+</sup> S100a4<sup>+</sup> late mature Cluster. Our results also suggest that hyperlipidemia contributes to alteration in early immature cDC1 and in the abundance of late immature cDC1 cells, which was associated with dramatic change in gene expression of Tnfaip3, Serinc3, Apol7c and Tifab”.

      [62]. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell. 2019;178(6):1509-25 e19. Epub 2019/09/07. doi: 10.1016/j.cell.2019.08.009. PubMed PMID: 31491389.

      [63]. Bosmans LA, van Tiel CM, Aarts S, Willemsen L, Baardman J, van Os BW, et al. Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages' transition into a pro-inflammatory state. Cardiovasc Res. 2023;119(5):1146-60. Epub 2022/05/20. doi: 10.1093/cvr/cvac084. PubMed PMID: 35587037; PubMed Central PMCID: PMCPMC10202633.

      [64]. Mildner A, Schonheit J, Giladi A, David E, Lara-Astiaso D, Lorenzo-Vivas E, et al. Genomic Characterization of Murine Monocytes Reveals C/EBPbeta Transcription Factor Dependence of Ly6C(-) Cells. Immunity. 2017;46(5):849-62 e7. Epub 2017/05/18. doi: 10.1016/j.immuni.2017.04.018. PubMed PMID: 28514690.

      [41]. Bosteels V, Marechal S, De Nolf C, Rennen S, Maelfait J, Tavernier SJ, et al. LXR signaling controls homeostatic dendritic cell maturation. Sci Immunol. 2023;8(83):eadd3955. Epub 2023/05/12. doi: 10.1126/sciimmunol.add3955. PubMed PMID: 37172103.

      (4) The authors should discuss how XCL1 could impact lesional cDC1 and T cell abundance. Notably, preDCs do not express XCR1, and T cells express XCL1 following TCR activation. Is there a recruitment or local proliferation defect of cDC1 in the absence of XCL1? Could there also be a role for NK cells as a potential source of XCL1?

      We appreciate your insightful questions regarding the differential effects of Xcl1 on cDC1s and T cells. Xcl1 primarily mediates the recruitment of mature cDC1s. Our data demonstrate that Xcl1 deletion significantly reduces aortic cDC1 abundance, which correlates with a concomitant decrease in CD8<sup>+</sup> T cell numbers within the aorta. These findings strongly suggest that the Xcl1-Xcr1 axis plays a regulatory role in T cell accumulation in aortic plaques.

      Consistent with prior studies [A, B], cDC1 recruitment can occur in the absence of Xcl1 which echoes our findings that cDC1 cells were still found in Xcl1 knockout aortic plaque but in lower abundance. It is very true that further studies are required to address how the Xcl1 dependent and independent cDC1 cells activate T cells and if they possess capability of proliferation in tissue differentially. We have added these points in discussion section.

      Please refer to the Discussion section from line 407 to 415: “Notably, while complete ablation of Xcr1<sup>+</sup> cDC1s impaired T cell activation, reduction of Xcr1<sup>+</sup> cDC1 recruitment via Xcl1 deletion did not significantly compromise this process. This discrepancy may arise through compensatory mechanisms: alternative chemokine axes (e.g., CCL5/CCR5, CXCL9/CXCR3, BCL9/BCL9L) may partially rescue Xcr1<sup>+</sup> cDC1 homing [13, 68, 69], while non-cDC1 antigen-presenting cells (e.g., monocytes, cDC2s) may sustain T cell activation [55, 70]. Furthermore, tissue-specific microenvironment factors could potentially modulate its role in other diseases. In summary, our findings identify Xcl1 as a potential therapeutic target for atherosclerosis therapy, though its cellular origins and regulation of lesional Xcr1<sup>+</sup> cDC1 and T cells dynamics require further studies”.

      In literatures, Xcl1 are expressed in NK cells and subsects of T cells, and NK cells can be a potential source of Xcl1 during atherosclerosis which deserve further investigations [A, C, D].

      [A] Böttcher, Jan P et al. “NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control.” Cell vol. 172,5 (2018): 1022-1037.e14. doi:10.1016/j.cell.2018.01.004

      [B] He, Fenglian et al. “Targeting BCL9/BCL9L enhances antigen presentation by promoting conventional type 1 dendritic cell (cDC1) activation and tumor infiltration.” Signal transduction and targeted therapy vol. 9,1 139. 29 May. 2024, doi:10.1038/s41392-024-01838-9

      [C] Woo, Yeon Duk et al. “The invariant natural killer T cell-mediated chemokine X-C motif chemokine ligand 1-X-C motif chemokine receptor 1 axis promotes allergic airway hyperresponsiveness by recruiting CD103+ dendritic cells.” The Journal of allergy and clinical immunology vol. 142,6 (2018): 1781-1792.e12. doi:10.1016/j.jaci.2017.12.1005

      [D] Winkels, Holger et al. “Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry.” Circulation research vol. 122,12 (2018): 1675-1688. doi:10.1161/CIRCRESAHA.117.312513

      Reviewer #2 (Recommendations for the authors):

      There is a logical error in line 298. I suggest revising to: "Collectively, these data suggest that Xcl1 promotes atherosclerosis by recruiting Xcr1+ cDC1 cells, which subsequently drive T cell activation in lesions."

      Thanks for your advice. Since Xcl1 deficiency reduced both the frequencies and absolute counts of Xcr1+ cDC1 and CD8+ T cells in lesions without affecting T cell activation, we revised the sentence as you suggested.

      Please refer to the Results section from line 314 to 315: “Collectively, these data suggest that Xcl1 promotes atherosclerosis by recruiting Xcr1<sup>+</sup> cDC1 cells, and facilitating CD8<sup>+</sup> T cell accumulation in lesions”.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The authors developed a sequence-based method to predict drug-interacting residues in IDP, based on their recent work, to predict the transverse relaxation rates (R2) of IDP trained on 45 IDP sequences and their corresponding R2 values. The discovery is that the IDPs interact with drugs mostly using aromatic residues that are easy to understand, as most drugs contain aromatic rings. They validated the method using several case studies, and the predictions are in accordance with chemical shift perturbations and MD simulations. The location of the predicted residues serves as a starting point for ligand optimization.

      Strengths:

      This work provides the first sequence-based prediction method to identify potential drug-interacting residues in IDP. The validity of the method is supported by case studies. It is easy to use, and no time-consuming MD simulations and NMR studies are needed.

      Weaknesses:

      The method does not depend on the information of binding compounds, which may give general features of IDP-drug binding. However, due to the size and chemical structures of the compounds (for example, how many aromatic rings), the number of interacting residues varies, which is not considered in this work. Lacking specific information may restrict its application in compound optimization, aiming to derive specific and potent binding compounds.

      We fully recognize that different compounds may have different interaction propensity profiles along the IDP sequence. In future studies, we will investigate compound-specific parameter values. The limiting factor is training data, but such data are beginning to be available.

      Reviewer #2 (Public review):

      Summary:

      In this work, the authors introduce DIRseq, a fast, sequence-based method that predicts drug-interacting residues (DIRs) in IDPs without requiring structural or drug information. DIRseq builds on the authors' prior work looking at NMR relaxation rates, and presumes that those residues that show enhanced R2 values are the residues that will interact with drugs, allowing these residues to be nominated from the sequence directly. By making small modifications to their prior tool, DIRseq enables the prediction of residues seen to interact with small molecules in vivo.

      Strengths:

      The preprint is well written and easy to follow

      Weaknesses:

      (1) The DIRseq method is based on SeqDYN, which itself is a simple (which I do not mean as a negative - simple is good!) statistical predictor for R2 relaxation rates. The challenge here is that R2 rates cover a range of timescales, so the physical intuition as to what exactly elevated R2 values mean is not necessarily consistent with "drug interacting". Presumably, the authors are not using the helix boost component of SeqDYN here (it would be good to explicitly state this). This is not necessarily a weakness, but I think it would behove the authors to compare a few alternative models before settling on the DIRseq method, given the somewhat ad hoc modifications to SeqDYN to get DIRseq.

      Actually, the factors that elevate R2 are well-established. These are local interactions and residual secondary structures (if any). The basic assumption of our method is that intra-IDP interactions that elevate R2 convert to IDP-drug interactions. This assumption was supported by our initial observation that the drug interaction propensity profiles predicted using the original SeqDYN parameters already showed good agreement with CSP profiles. We only made relatively small adjustments to the parameters to improve the agreement. Indeed we did not apply the helix boost portion of SeqDYN to DIRseq, and will state as such. We will also compare DIRseq with several alternative models.

      Specifically, the authors previously showed good correlation between the stickiness parameter of Tesei et al and the inferred "q" parameter for SeqDYN; as such, I am left wondering if comparable accuracy would be obtained simply by taking the stickiness parameters directly and using these to predict "drug interacting residues", at which point I'd argue we're not really predicting "drug interacting residues" as much as we're predicting "sticky" residues, using the stickiness parameters. It would, I think, be worth the authors comparing the predictive power obtained from DIRseq with the predictive power obtained by using the lambda coefficients from Tesei et al in the model, local density of aromatic residues, local hydrophobicity (note that Tesei at al have tabulated a large set of hydrophobicity scores!) and the raw SeqDYN predictions. In the absence of lots of data to compare against, this is another way to convince readers that DIRseq offers reasonable predictive power.

      We will compare predictions of these various parameter sets, and summarize the results in a table.

      (2) Second, the DIRseq is essentially SeqDYN with some changes to it, but those changes appear somewhat ad hoc. I recognize that there is very limited data, but the tweaking of parameters based on physical intuition feels a bit stochastic in developing a method; presumably (while not explicitly spelt out) those tweaks were chosen to give better agreement with the very limited experimental data (otherwise why make the changes?), which does raise the question of if the DIRseq implementation of SeqDYN is rather over-parameterized to the (very limited) data available now? I want to be clear, the authors should not be critiqued for attempting to develop a model despite a paucity of data, and I'm not necessarily saying this is a problem, but I think it would be really important for the authors to acknowledge to the reader the fact that with such limited data it's possible the model is over-fit to specific sequences studied previously, and generalization will be seen as more data are collected.

      We have explained the rationale for the parameter tweaks, which were limited to q values for four amino-acid types, i.e., to deemphasize hydrophobic interactions and slightly enhance electrostatic interactions (p. 4-5). We will add that these tweaks were motivated by observations from MD simulations of drug interactions with a-syn (ref 20). As already noted in the response to the preceding comment, we will also present results for the original parameter values as well as for when the four q values are changed one at a time.

      (3) Third, perhaps my biggest concern here is that - implicit in the author's assumptions - is that all "drugs" interact with IDPs in the same way and all drugs are "small" (motivating the change in correlation length). Prescribing a specific lengthscale and chemistry to all drugs seems broadly inconsistent with a world in which we presume drugs offer some degree of specificity. While it is perhaps not unexpected that aromatic-rich small molecules tend to interact with aromatic residues, the logical conclusion from this work, if one assumes DIRseq has utility, is that all IDRs bind drugs with similar chemical biases. This, at the very least, deserves some discussion.

      The reviewer raises a very important point. In Discussion, we will add that it is important to further develop DIRseq to include drug-specific parameters when data for training become available.

      (4) Fourth, the authors make some general claims in the introduction regarding the state of the art, which appear to lack sufficient data to be made. I don't necessarily disagree with the author's points, but I'm not sure the claims (as stated) can be made absent strong data to support them. For example, the authors state: "Although an IDP can be locked into a specific conformation by a drug molecule in rare cases, the prevailing scenario is that the protein remains disordered upon drug binding." But is this true? The authors should provide evidence to support this assertion, both examples in which this happens, and evidence to support the idea that it's the "prevailing view" and specific examples where these types of interactions have been biophysically characterized.

      We will cite several studies showing that IDPs remain disordered upon drug binding.

      Similarly, they go on to say:

      "Consequently, the IDP-drug complex typically samples a vast conformational space, and the drug molecule only exhibits preferences, rather than exclusiveness, for interacting with subsets of residues." But again, where is the data to support this assertion? I don't necessarily disagree, but we need specific empirical studies to justify declarative claims like this; otherwise, we propagate lore into the scientific literature. The use of "typically" here is a strong claim, implying most IDP complexes behave in a certain way, yet how can the authors make such a claim? 

      Here again we will add citations to support the statement.

      Finally, they continue to claim:

      "Such drug interacting residues (DIRs), akin to binding pockets in structured proteins, are key to optimizing compounds and elucidating the mechanism of action." But again, is this a fact or a hypothesis? If the latter, it must be stated as such; if the former, we need data and evidence to support the claim. 

      We will add citations to both compound optimization and mechanism of action.

    1. Reviewer #2 (Public Review):

      Summary:

      This paper describes a new approach to detecting directed causal interactions between two genes without directly perturbing either gene. To check whether gene X influences gene Z, a reporter gene (Y) is engineered into the cell in such a way that (1) Y is under the same transcriptional control as X, and (2) Y does not influence Z. Then, under the null hypothesis that X does not affect Z, the authors derive an equation that describes the relationship between the covariance of X and Z and the covariance of Y and Z. Violation of this relationship can then be used to detect causality.

      The authors benchmark their approach experimentally in several synthetic circuits. In 4 positive control circuits, X is a TetR-YFP fusion protein that represses Z, which is an RFP reporter. The proposed approach detected the repression interaction in 2 of the 4 positive control circuits. The authors constructed 16 negative control circuit designs in which X was again TetR-YFP, but where Z was either a constitutively expressed reporter, or simply the cellular growth rate. The proposed method detected a causal effect in two of the 16 negative controls, which the authors argue is perhaps not a false positive, but due to an unexpected causal effect. Overall, the data support the potential value of the proposed approach.

      Strengths:

      The idea of a "no-causality control" in the context of detected directed gene interactions is a valuable conceptual advance that could potentially see play in a variety of settings where perturbation-based causality detection experiments are made difficult by practical considerations.

      By proving their mathematical result in the context of a continuous-time Markov chain, the authors use a more realistic model of the cell than, for instance, a set of deterministic ordinary differential equations.

      The authors have improved the clarity and completeness of their proof compared to a previous version of the manuscript.

      Limitations:

      The authors themselves clearly outline the primary limitations of the study: The experimental benchmark is a proof of principle, and limited to synthetic circuits involving a handful of genes expressed on plasmids in E. coli. As acknowledged in the Discussion, negative controls were chosen based on the absence of known interactions, rather than perturbation experiments. Further work is needed to establish that this technique applies to other organisms and to biological networks involving a wider variety of genes and cellular functions. It seems to me that this paper's objective is not to delineate the technique's practical domain of validity, but rather to motivate this future work, and I think it succeeds in that.

      Might your new "Proposed additional tests" subsection be better housed under Discussion rather than Results?

      I may have missed this, but it doesn't look like you ran simulation benchmarks of your bootstrap-based test for checking whether the normalized covariances are equal. It would be useful to see in simulations how the true and false positive rates of that test vary with the usual suspects like sample size and noise strengths.

      It looks like you estimated the uncertainty for eta_xz and eta_yz separately. Can you get the joint distribution? If you can do that, my intuition is you might be able to improve the power of the test (and maybe detect positive control #3?). For instance, if you can get your bootstraps for eta_xz and eta_yz together, could you just use a paired t-test to check for equality of means?

      The proof is a lot better, and it's great that you nailed down the requirement on the decay of beta, but the proof is still confusing in some places:

      On pg 29, it says "That is, dividing the right equation in Eq. 5.8 with alpha, we write the ..." but the next equation doesn't obviously have anything to do with Eq. 5.8, and instead (I think) it comes from Eq 5.5. This could be clarified.

      Later on page 29, you write "We now evoke the requirement that the averages xt and yt are stationary", but then you just repeat Eq. 5.11 and set it to zero. Clearly you needed the limit condition to set Eq. 5.11 to zero, but it's not clear what you're using stationarity for. I mean, if you needed stationarity for 5.11 presumably you would have referenced it at that step.

      It could be helpful for readers if you could spell out the practical implications of the theorem's assumptions (other than the no-causality requirement) by discussing examples of setups where it would or wouldn't hold.

    1. Reviewer #2 (Public review):

      This is a revised version of a paper I reviewed previously.

      Again, the purpose of the paper is to suggest that common metrics, such as friction or any given physical property of the surface, are probably inadequate to predict the perception of the surface or its discriminability. Instead, the authors propose a very interesting and original idea that, instead, frictional instabilities are related to fine touch perception (title).

      Overall, the authors have put much effort into improving the manuscript, enhancing clarity, and avoiding overstatements. And I feel the narrative is indeed much improved and less ambiguous.

      However, the authors have systematically avoided addressing the main comment of all reviewers: the link made between the mock finger passive experiment and the active human psychophysics is incorrect and should not be done, because its interpretation could be flawed.<br /> - First, this link is very weak (the correlation of 6 datapoints is barely significant).<br /> - Second, the real and mock fingers have very different properties (think about moisture, compliance, roughness,...).<br /> - Third, the comparison is made between a passive and well-controlled experiment and an active exploration. Yet, the comparison metrics (number of events) are clearly dependent on exploration procedures.

      In your response to my comments:<br /> "We have made changes throughout the manuscript to acknowledge that our findings are correlative, clarifying this throughout, and incorporating into the discussion how our work may enable biomechanical measurements and tactile decision making models"

      The authors admit that the analysis is flawed, yet they did not remove it. If they cannot demonstrate that the mock finger and the human finger behave the same way during the perceptual experiment, then they should remove Fig2 that combines apples and oranges. OR, they should look at the active exploration data and compute the same metrics on that data.

      "This "weird choice" is the central innovation of this paper. This choice was necessary because we demonstrated that the common usage of friction coefficient is fundamentally flawed: we see that friction coefficient suggests that surface which are more different would feel more similar - indeed the most distinctive surfaces would be two surfaces that are identical, which is clearly spurious. "

      They did not "demonstrate" such a flaw. Again, the difference in friction is between the mock finger trials. At the very least, the authors should verify that it is true of the active human experiment.

      "To fully implement this, a decision-making model is necessary because, as a counter example, a participant could have generated 10 swipes of SFW and 1 swipe of a Sp, but the Sp may have been the most important event for making a tactile decision. This type of scenario is not compatible with the analysis suggested - and similar counterpoints can be made for other types of seemingly straightforward analysis."

      The suggested analyses are straightforward and would be much more valuable than the data from the mock finger, even with the potential variability stated above.

      "We recognize that, with all factors being equal, this sample size is on the smaller end"

      Yet, the authors did not collect additional data to confirm their findings.

    1. The title of the article makes a simple striking claim about the state of the scientific literature with a numerical estimate of the proportion of “fake” articles. Yet, by contrast to this title, in the text of the article, Heathers is highly critical of his own work.

      James’ peer review of Heathers’ article

      James Heathers often mentions the limitations of his research thus “peer-reviewing” his own article to the extent that he admits that this work is “incomplete”, “unsystematic” and “far flung”.

      This work is too incomplete to support responsible meta-analysis, and research that could more accurately define this figure does not exist yet. ~1 in 7 papers being fake represents an existential threat to the scientific enterprise.”

      While this is highly unsystematic, it produced a substantially higher figure. Correspondents reliably estimated 1-5% of all papers contain fabricated data, and 2-10% contain falsified results.”

      These values are too disparate to meta-analyze responsibly, and support only the briefest form of numerical summary: n=12 papers return n=16 individual estimates; these have a median of 13.95%, and 9 out of 16 of these estimates are between 13.4% and 16.9%. Given this, a rough approximation is that for any given corpus of papers, 1 in 7 (i.e. 14.3%) contain errors consistent with faking in at least one identifiable element.”

      “The accumulation of papers collected here is, frankly, haphazard. It does not represent a mature body of literature. The papers use different methods of analyzing figures, data, or other features of scientific publications. They do not distinguish well between papers that have small problematic elements which are fake, or fake in their entirety. They analyze both small and large corpora of papers, which are in different areas of study and in journals of different scientific quality – and this greatly changes base rates;…”

      “As a consequence, it would be prudent to immediately reproduce the result presented here as a formal systematic review. It is possible further figures are available after an exhaustive search, and also that pre registered analytical assumptions would modify the estimations presented.”

      Heathers has also in an interview published in Retraction Watch (Chawla 2024) acknowledged pitfalls in this article such as:

      “Heathers said he decided to conduct his study as a meta-analysis because his figures are “far flung.””

      “They are a little bit from everywhere; it’s wildly nonsystematic as a piece of work,” he said.”

      “Heathers acknowledged those limitations but argued that he had to conduct the analysis with the data that exist. “If we waited for the resources necessary to be able to do really big systematic treatments of a problem like this within a specific area, I think we’d be waiting far too long,” he said. “This is crucially underfunded.”

      Built in opposition to Fanelli 2009, but it’s illogical

      Heathers states in the abstract that his article is “in opposition” to Fanelli’s 2009 PloS One article (Fanelli 2009), yet that opposition is illogical and artificially constructed since there is no contradiction between 2% of scientists self-reporting having taking part in fabrication or falsification and an eventual much higher proportion of “fake scientific outputs”. Like most of what is wrong with Heather’s article, this is in fact acknowledged by the author who notes that the 2% figure “leaves us with no estimate of how much scientific output is fake” (bias in self-reporting, possibility of prolific authors, etc).

      Fanelli 2009 is not cited in the way JH says it is cited

      Whilst the opposition discussed above is illogical, it could be that the 2% figure is mis-cited by others as representing an estimate of fake scientific outputs thus probably underestimating the extent of fraud. Heathers suggests that this may indeed be the case, but also contradicts himself about how (Fanelli 2009), or the 2% figure coming from that publication, is typically used.

      In one sentence, he writes that “the figure is overwhelmingly the salient cited fact in its 1513 citations” and that “this generally appears as some variant ofabout 2% of scientists admitted to have fabricated, falsified or modified data or results at least once” (Frank et al. 2023)

      whilst and in another sentence, he writes that “the typical phraseology used to express it – e.g. “the most serious types of misconduct, fabrication and falsification (i.e., data fraud), are relatively rare” (George 2016).

      Those two sentences cited by Heathers are fundamentally different, the first one accurately reports that the 2% figure relates to individuals self-reporting, whilst the second one appears to relate to the prevalence of misconducts in the literature itself. How Fanelli 2009 is cited in the literature is an empirical question that can be studied by looking at citation contexts beyond the two examples given by Heathers. Given that a central justification for Heathers’ piece appears to be the misuse of this 2% figure, we sought to test whether this was the case.

      A first surprise was that whilst the sentence attributed to (George 2016) can indeed be found in that publication (in the abstract), first it is not in a sentence citing (Fanelli 2009) nor the 2% figure, and, second, it is quoted selectively omitting a part of the sentence that nuances it considerably: “The evidence on prevalence is unreliable and fraught with definitional problems and with study design issues. Nevertheless, the evidence taken as a whole seems to suggest that cases of the most serious types of misconduct, fabrication and falsification (i.e., data fraud), are relatively rare but that other types of questionable research practices are quite common.” (Fanelli 2009) is discussed extensively by (George 2016), and some of the caveats, e.g. on self-reporting, are highlighted.

      To go beyond those two examples, we constructed a comprehensive corpus of citation contexts, defined as the textual environment surrounding a paper's citation, including several words or sentences before and after the citation (see Methods section below). 737 citation contexts could be analysed. Out of those, the vast majority (533, or 72%) did not cite the 2% figure. Instead, they often referred to this article as a general reference together with other articles to make a broad point, or, focused on other numbers in particular those related to questionable research practices (Bordignon, Said, and Levy 2024). The 28% (204) citation contexts that did mention the 2% figure did so accurately in the majority of cases: 83% (170) of those did mention that it was self-reporting by scientists whilst 17% (34) of those, or 5% of the total citation contexts analysed were either ambiguous or misleading in that they suggested or claimed that the 2% figure related to scientific outputs.

      Although the analysis above does not include all citation contexts, it is possible to conclude unambiguously that the 2% figure is not overwhelmingly the salient cited fact in relation to Fanelli 2009, and that when it is cited it is often accurately, i.e. as representing self-reporting by scientists. Whilst an exhaustive analysis is beyond the scope of this peer review, it is not uncommon to find in this corpus citations contexts that have an alarming tone about the seriousness of the problem of FFPs, e.g. “…a meta-analysis (Fanelli 2009) suggest that the few cases that do surface represent only the tip of a large iceberg." [DOI: 10.1177/0022034510384627]

      Thus, the rationale for Heathers’ study appears to be misguided. The supposed lack of attention for the very serious problem of FFPs is not due to a minimisation of the situation fueled by a misinterpretation of Fanelli 2009. Importantly, even if that was the case, an attempt to draw attention by claiming that 1 in 7 papers are fake, a claim which according to the author himself is not grounded in solid facts, is not how the scientific literature should be used.

      Methods for the construction of the corpus of citation contexts

      We used Semantic Scholar, an academic database encompassing over 200 million scholarly documents from diverse sources including publishers, data providers, and web crawlers. Using the specific paper identifier for Fanelli's 2009 publication (d9db67acc223c9bd9b8c1d4969dc105409c6dfef), we queried the Semantic Scholar API to retrieve available citation contexts. Citation contexts were extracted from the "contexts" field within the JSON response pages, (see technical specifications).

      The query looks like this: semanticscholar.org

      The broad coverage of Semantic Scholar does not imply that citation contexts are always retrieved. The Semantic Scholar API provided citation contexts for only 48% of the 1452 documents citing the paper. To get more, we identified open access papers among the remaining 52% citing papers, retrieved their PDF location and downloaded the files. We used Unpaywall API, which is a database to be queried with a DOI in order to get open access information about a document. The query looks like this.

      We downloaded 266 PDF files and converted them to text format using an online bulk PDF-to-text converter. These files were then processed using TXM, a specialized textual analysis tool. We used its concordancer function to identify the term "Fanelli" as a pivot term and check the reference being the good one (the 2009 paper in PlosOne). We did manual cleaning and appended the citation contexts to the previous corpus.

      Through this comprehensive methodology, we ultimately identified 824 citation contexts, representing 54% (784) of all documents citing Fanelli's 2009 paper. This corpus comprised 48% of contexts retrieved from Semantic Scholar and an additional 6% obtained through semi-manual extraction from open access documents. 87 of those contexts were excluded from the analysis for a range of reasons including: context too short to conclude, language neither English nor French (shared languages of the authors of this review), duplicate documents (e.g. preprints), etc, leaving us with 737 contexts. They were first classified manually in two categories, those mentioning the 2% figure and those which did not. Then, for the first category, they were further classified manually in two categories depending on whether the figure was appropriately assigned to self-reporting of researchers or rather misleadingly suggesting that the 2% applied to research outputs.

      Contributions

      Investigation: FB collected the citation contexts.<br /> Data curation and formal analysis: RL and MS<br /> Writing – review & editing: RL, MS and FB

      References

      Bordignon, Frederique, Maha Said, and Raphael Levy. 2024. “Citation Contexts of [How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data, DOI: 10.1371/Journal.Pone.0005738].” Zenodo. https://doi.org/10.5281/zenodo.14417422.

      Chawla, Dalmeet Singh. 2024. “1 in 7 Scientific Papers Is Fake, Suggests Study That Author Calls ‘Wildly Nonsystematic.’” Retraction Watch (blog). September 24, 2024. https://retractionwatch.com/2024/09/24/1-in-7-scientific-papers-is-fake-suggests-study-that-author-calls-wildly-nonsystematic/.

      Fanelli, Daniele. 2009. “How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data.” PLOS ONE 4 (5): e5738. https://doi.org/10.1371/journal.pone.0005738.

      Frank, Fabrice, Nans Florens, Gideon Meyerowitz-Katz, Jérôme Barriere, Éric Billy, Véronique Saada, Alexander Samuel, Jacques Robert, and Lonni Besançon. 2023. “Raising Concerns on Questionable Ethics Approvals - a Case Study of 456 Trials from the Institut Hospitalo-Universitaire Méditerranée Infection.” Research Integrity and Peer Review 8 (1): 9. https://doi.org/10.1186/s41073-023-00134-4.

      George, Stephen L. 2016. “Research Misconduct and Data Fraud in Clinical Trials: Prevalence and Causal Factors.” International Journal of Clinical Oncology 21 (1): 15–21. https://doi.org/10.1007/s10147-015-0887-3.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment

      This valuable study revisits the effects of substitution model selection on phylogenetics by comparing reversible and non-reversible DNA substitution models. The authors provide evidence that 1) non time-reversible models sometimes perform better than general time-reversible models when inferring phylogenetic trees out of simulated viral genome sequence data sets, and that 2) non time-reversible models can fit the real data better than the reversible substitution models commonly used in phylogenetics, a finding consistent with previous work. However, the methods are incomplete in supporting the main conclusion of the manuscript, that is that non time-reversible models should be incorporated in the model selection process for these data sets.

      The non-reversible models should be incorporated in the selection model process not because the significantly perform better but only because the do not perform worse than the reversible models and that true biochemical processes of nucleotide substitution does support the science of non-reversibility.

      Reviewer #1 (Public Review):

      The study by Sianga-Mete et al revisits the effects of substitution model selection on phylogenetics by comparing reversible and non-reversible DNA substitution models. This topic is not new, previous works already showed that non-reversible, and also covarion, substitution models can fit the real data better than the reversible substitution models commonly used in phylogenetics. In this regard, the results of the present study are not surprising. Specific comments are shown below.

      True

      It is well known that non-reversible models can fit the real data better than the commonly used reversible substitution models, see for example,

      https://academic.oup.com/sysbio/article/71/5/1110/6525257

      https://onlinelibrary.wiley.com/doi/10.1111/jeb.14147?af=R

      The manuscript indicates that the results (better fitting of non-reversible models compared to reversible models) are surprising but I do not think so, I think the results would be surprising if the reversible models provide a better fitting.

      I think the introduction of the manuscript should be increased with more information about non-reversible models and the diverse previous studies that already evaluated them. Also I think the manuscript should indicate that the results are not surprising, or more clearly justify why they are surprising.

      The surprise in the findings is in NREV12 performing better than NREV6 for double stranded DNA viruses as it was expected that NREV6 would perform better given the biochemical processes discussed in the introduction.

      In the introduction and/or discussion I missed a discussion about the recent works on the influence of substitution model selection on phylogenetic tree reconstruction. Some works indicated that substitution model selection is not necessary for phylogenetic tree reconstruction,

      https://academic.oup.com/mbe/article/37/7/2110/5810088

      https://www.nature.com/articles/s41467-019-08822-w

      https://academic.oup.com/mbe/article/35/9/2307/5040133

      While others indicated that substitution model selection is recommended for phylogenetic tree reconstruction,

      https://www.sciencedirect.com/science/article/pii/S0378111923001774

      https://academic.oup.com/sysbio/article/53/2/278/1690801

      https://academic.oup.com/mbe/article/33/1/255/2579471

      The results of the present study seem to support this second view. I think this study could be improved by providing a discussion about this aspect, including the specific contribution of this study to that.

      In our conclusion we have stated that:

      The lack of available data regarding the proportions of viral life cycles during which genomes exist in single and double stranded states makes it difficult to rationally predict the situations where the use of models such as GTR, NREV6 and NREV12 might be most justified: particularly in light of the poor over-all performance of NREV6 and GTR relative to NREV12 with respect to describing mutational processes in viral genome sequence datasets. We therefore recommend case-by-case assessments of NREV12 vs NREV6 vs GTR model fit when deciding whether it is appropriate to consider the application of non-reversible models for phylogenetic inference and/or phylogenetic model-based analyses such as those intended to test for evidence of natural section or the existence of molecular clocks.

      The real data was downloaded from Los Alamos HIV database. I am wondering if there were any criterion for selecting the sequences or if just all the sequences of the database for every studied virus category were analysed. Also, was any quality filter applied? How gaps and ambiguous nucleotides were considered? Notice that these aspects could affect the fitting of the models with the data.

      We selected varying number of sequences of the database for every studied virus type. Using the software aliview we did quality filter by re-aligning the sequences per virus type.

      How the non-reversible model and the data are compared considering the non-reversible substitution process? In particular, given an input MSA, how to know if the nucleotide substitution goes from state x to state y or from state y to state x in the real data if there is not a reference (i.e., wild type) sequence? All the sequences are mutants and one may not have a reference to identify the direction of the mutation, which is required for the non-reversible model. Maybe one could consider that the most abundant state is the wild type state but that may not be the case in reality. I think this is a main problem for the practical application of non-reversible substitution models in phylogenetics.

      True

      Reviewer #1 (Recommendations for the authors):

      The reversible and non-reversible models used in this study assume that all the sites evolve under the same substitution matrix, which can be unrealistic. This aspect could be mentioned.

      Done

      The manuscript indicates that "a phylogenetic tree was inferred from an alignment of real sequences (Avian Leukosis virus) with an average sequence identity (API) of ~90%.". I was wondering under which substitution model that phylogenetic tree reconstruction was performed? could the use of that model bias posterior results in terms of favoring results based on such a model?

      We have stated that the GTR+G model was used to reconstruct the tree. The use of the GTR+G model could yes bias the posterior results as we have stated in the paper too.

      I was wondering which specific R function was used to calculate the weighted Robinson-Foulds metric. I think this should be included in the manuscript.

      We stated that We used the weighted Robinson-Foulds metric (wRF; implemented in the R phangorn package (Schliep, 2011)⁠)

      Despite a minority, several datasets fitted better with a reversible model than with a non-reversible model. I think that should be clearly indicated. In addition, in my opinion the AIC does not enough penalizes the number of parameters of the models and favors the non-reversible models over the reversible models, but this is only my opinion based on the definition of AIC and it is not supported. Thus, I think the comparison between phylogenetic trees reconstructed under different substitution models was a good idea (but see also my second major comment).

      Noted

      When comparing phylogenetic trees I was wondering if one should consider the effect of the estimation method and quality of the studied data? For example, should bootstrap values be estimated for all the ancestral nodes and only ancestral nodes with high support be evaluated in the comparison among trees?

      Yes the estimation method and quality of the studied data should be considered. When using RF unlike wRF this will not matter but for weighted RF it does. When building the trees, using RaxML only high support nodes are added to the tree.

      In Figure 3, I do not see (by eye) significant differences among the models. I see in the legend that the statistical evaluation was based on a t test but I am not much convinced. Maybe it is only my view. Exactly, which pairs of datasets are evaluated with the t test? Next, I would expect that the influence of the substitution model on the phylogenetic tree reconstruction is higher at large levels of nucleotide diversity because with more substitution events there is more information to see the effects of the model. However, the t test seems to show that differences are only at low levels of nucleotide diversity (and large DNR), what could be the cause of this?

      The paired T-tests compares the wRF distances of the inferred tree real tree and the trees simulated using the GTR model verses the wRF distances of the inferred true tree from the trees simulated using the NREV12 model.

      The reason why the influence of the NREV12 model on the tree reconstructed is not significantly higher at large levels of nucleotide diversity could be because at a certain level the DNR are simply unrealistic.

      Can the user perform substitution model selection (i.e., AIC) among reversible and non-reversible substitution models with IQTREE? If yes, then doing that should be the recommendation from this study, correct?

      But, can DNR be estimated from a real dataset? DNR seems to be the key factor (Figure 3) for the phylogenetic analysis under a proper model.

      Substitution model selection can be performed among reversible and non-reversible using both HyPhy and IQTREE. And we have recommended that model tests should be done as a first step before tree building. Estimating DNR from real datasets requires a substation rate matrix of a non-reversible.

      The manuscript has many text errors (including typos and incorrect citations). For example, many citations in page 20 show "Error! Reference source not found.". I think authors should double check the manuscript before submitting. Also, some text is not formally written. For example, "G represents gamma-distributed rates", rates of what? The text should be clear for readers that are not familiar with the topic (i.e., G represents gamma-distributed substitution rates among sites). In general, I recommend a detailed revision of the whole text of the manuscript.

      Done

      Reviewer #2 (Public Review):

      The authors evaluate whether non time reversible models fit better data presenting strand-specific substitution biases than time reversible models. Specifically, the authors consider what they call NREV6 and NREV12 as candidate non time-reversible models. On the one hand, they show that AIC tends to select NREV12 more often than GTR on real virus data sets. On the other hand, they show using simulated data that NREV12 leads to inferred trees that are closer to the true generating tree when the data incorporates a certain degree of non time-reversibility.

      Based on these two experimental results, the authors conclude that "We show that non-reversible models such as NREV12 should be evaluated during the model selection phase of phylogenetic analyses involving viral genomic sequences". This is a valuable finding, and I agree that this is potentially good practice.

      However, I miss an experiment that links the two findings to support the conclusion: in particular, an experiment that solves the following question: does the best-fit model also lead to better tree topologies?

      By NREV12 leading to inferred trees that are closer to the true generating tree as compared to GTR, it then shows that the best-fit model in this case being NREV12 leads to better tree topologies.

      On simulated data, the significance of the difference between GTR and NREV12 inferences is evaluated using a paired t test. I miss a rationale or a reference to support that a paired t test is suitable to measure the significance of the differences of the wRF distance. Also, the results show that on average NREV12 performs better than GTR, but a pairwise comparison would be more informative: for how many sequence alignments does NREV12 perform better than GTR?

      We have used the popular paired t-test as it is the most widely used when comparing means values between two matched samples where the difference of each mean pair is normally distributed. And the wRF distances do match the guidelines above.

      The paired t-test contains the pairwise comparison and the boxplots side by side show the pairwise wRF comparisions.

      Reviewer #2 (Recommendations for the authors):

      The authors reference Baele et al., 2010 for describing NREV6 and NREV12. I suggest using the same name used in the referenced paper: GNR-SYM and GNR respectively. Although I do not think there is a standard name for these models, I would use a previously used one.

      We have built studies based on the names NREV6 and NREV12. We would like to keep the naming as standard for our studies.

      GTR and NREV12 models are already described in many other papers. I do not see the need to include such an extensive description. Also, a reference should be included to the discrete Gamma rate categories [1]

      We included the extensive description to enable other readers who are not super familiar with these models better understanding since we have given the models our own naming different from those used in other papers.

      We have added referencing for the discrete gamma rate as recommended. (Yang, 1994)

      To evaluate the exhaustiveness and correctness of the results, I would recommend publishing as supplementary material the simulated data sets or the scripts for generating the data set, the scripts or command lines for the analysis, and the versions of the software used (e.g., IQTREE). Also, to strongly support the main conclusion of the manuscript, I suggest adding to the simulations section results the RF-distances of the best-fit selected model under AIC, AICc, and BIC as well.

      We can go ahead and submit all the needed datasets. The simulated data RF-Distances results are available and will be submitted. We cannot however add them to the main document as this will create very long data tables.

      In some instances, it is mentioned that the selection criterion used is AIC, while in others, AIC-c is referenced. Even in the table captions, both terms are mixed. It should be made clearer which criterion is being employed, as AIC is not suitable for addressing the overparameterization of evolutionary models, given that it does not account for the sample size. A previous pre-print of this article [2] does not mention AIC-c, but also explicitly includes the formulas for AIC that do not take the sample size into account, and reports the same results as this manuscript, what indicates that AIC and not AIC-c was used here. This should be clarified. It is recommended to use AIC-c instead of AIC, especially if the sample size to model parameters ratio is low [3]. Two things may be appointed here: some authors consider tree branch lengths as model free parameters and others do not. In this paper it is not specified how the model parameters are counted. AIC tends to select more parameterized models than AIC-c, and overparameterization can lead to different tree inferences, as evidenced in Hoff et al., 2016. Therefore, it is expected that NREV12 is more frequently selected than NREV6 and GTR.

      In my opinion, a pairwise comparison between GTR and NREV12 performance is of great interest here, and the whiskers plots are not useful. Scatterplots would display the results better.

      Boxplots are meant to offer a simplified view of the results as the paired t-tests does all of the comparisons. We shall provide the scatter plots as supplementary information so that readers can get full detailed plots as recommended.

      Some references are missing.

      Missing references added

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would like to thank the reviewers for taking the time to review our manuscript and for providing valuable comments on how to improve it. We are pleased to see that both reviewers recognize the novelty and importance of our study, its conceptual advance and potential clinical significance. They also noted the novelty and value of our functional mechanistic approach using epigenetic editing. Below, we provide a point-by-point response to their questions and points raised. The changes introduced in response to their feedback are highlighted in yellow in the revised manuscript file.

      Point-by-point description of the revisions

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      Summary This study by Prada et al. aimed to explore DNA methylation and gene expression in primary EpCAMhigh/PDPNlow cells, consisting of for (probably) the largest part of AT2 cells, to understand the molecular mechanisms behind the impaired regeneration of alveolar epithelial progenitor cells in COPD. They found that higher or lower promoter methylation in COPD-associated cells was inversely correlated with changes in gene expression, with interferon signaling emerging as one of the most upregulated pathways in COPD. IRF9 was identified as the master regulator of interferon signaling in COPD. Targeted DNA demethylation of IRF9 in an A549 cell line resulted in a robust activation of its downstream target genes, including OAS1, OAS3, PSMB8, PSMB9, MX2 and IRF7, demonstrating that demethylation of IRF9 is sufficient to activate the IFN signaling pathway, validating IRF9 as a master regulator of IFN signaling in (alveolar) epithelial cells.

      Major comments:

      • To remove airways (and blood vessels) completely from the lung tissue is difficult, if not impossible. This means that the assumption that the sorted EpCAMpos/PDPNlow cells primarily consisted of AT2 cells remains valid only if a quantitative analysis is conducted on the proportion of HT2-280pos cells in all samples in cytospins to exclude any significant contamination from bronchial epithelial cells. If authors cannot demonstrate >95% pure HT-280-positive cells, then the key conclusions suggesting that the epigenetic regulation of the IFN pathway might be crucial in AT2 progenitor cell regeneration could also potentially apply to bronchial progenitor cells. In addition, if >95% purity cannot be demonstrated, the data should be adjusted to account for differences in cell type composition.

      __Response: __

      We thank the reviewer for raising this important point. Although, as pointed out by the reviewer, we cannot guarantee that our sorted cells do not contain a minor contamination from respiratory / terminal bronchial cells, we carefully selected donors, tissue regions, and sorting strategy to ensure the highest possible enrichment of AT2 cells, as we explain below. We have now expanded the methods and results section and covered this point in the manuscript discussion.

      • The lung tissue pieces we received were distal, as evidenced by the presence of pleura. We collected representative tissue pieces for histology to validate sample quality. Our protocol includes a dissection of all visible airways and vessels using a dissecting microscope, which were cryopreserved separately from distal parenchyma. Hence, the starting material for tissue dissociation was depleted from airways and vessels. The importance of vessel/airway removal for enrichment of distal alveolar cells was established by Tata's group (PMID: 35712012).
      • We selected the AT2 sorting protocol (EpCAMpos/PDPNlow) based on previous publications that used tissue from both healthy and COPD lungs to separate AT2 cells from AT1 and airway basal cells, as AT1 and basal cells are both PDPNhigh (PMID: 22033268, PMID: 23117565; PMID: 35078977). This protocol was favoured due to the lack of information about HT2-280 expression and distribution in COPD lungs.
      • The sort quality for each sample was assessed by the FACS analysis (back sorting) of the sorted cells, where we observed 95-97% purity (EpCAMpos/PDPNlow, __ 1G __shown below). In addition, we validated the sorting protocol and high AT2 enrichment from both no COPD and COPD tissues by immunostaining the FACS-sorted cells with HT2-280, an AT2 marker widely used in the field (strategy suggested by the reviewer) and observed that close to 100% of cells were positive for this marker (__Fig. 1H __shown below). However, we could not do it retrospectively for those patients, where we didn't have enough material. Sorting primary AT2 from small tissue pieces is challenging, and we need at least 20.000 cells to obtain high-quality methylation & RNA-seq data.
      • AT2 marker genes (ABCA3, LPCAT1, LAMP3 and the surfactant genes SFTPA2, SFTPB and SFTPC) were among the top highly expressed genes in our RNA-seq data and were not significantly changed in COPD (please see expression data in __ S2A__ in the manuscript, and below for convenience), as well as Table 6, providing further evidence that the sorted cells carry a strong AT2 transcriptional signature. Fig. 1G* FACS plot examples showing the analysis of sorted AT2 cells (back sorting) from control (blue) and COPD (green) donors displayed over total cell lung suspensions (grey) H Representative IF staining of HT2-280 expression in sorted AT2 cells from no COPD (top) and COPD (bottom) donors. Nuclei (blue) were stained with DAPI, scale bars=20µm __Fig. S2A __Normalized read counts from RNA-seq data for AT2-specific genes in sorted AT2 cells from each donor (dots). Data points represent normalised counts from no COPD (blue), COPD I (light green) and COPD II-IV (dark green). Group median is shown as a black bar. *

      • In agreement with a previous study which profiled bulk AT2 using expression arrays (PMID: 23117565), we also observed upregulation of IFN signaling pathway in COPD AT2s. The enrichment of IFNα/β signature was also observed in COPD in the inflammatory AT2 cluster (iAT2) in a recent scRNA-seq study (PMID: 36108172). As part of the revision, we compared the IFN gene signature identified in our bulk AT2 RNA-seq with a recent scRNA-seq study (published after the submission of our manuscript, PMID: 39147413) that profiled EpCAMpos cells from COPD and non-smoker donor lungs. We observed an upregulation of our IFN signature genes in AT2 in COPD (mostly in AT2c and rbAT2 subsets), suggesting that similar signatures were observed in COPD AT2s in this dataset as well (please see __ S4E-F__ below). ____Figure S4E Expression values for the indicated genes of the IFN pathway from an external scRNA-seq dataset of AT2 cells from COPD patients and healthy controls (Hu et al, 2024). Y-axis shows log-normalized gene expression levels. F. Combined gene set score of the genes shown in (E) in different subsets of AT2 cells from Hu et al, 2024. The IFN signature genes were identified in our integrative analysis of TWGBS and RNA-seq in sorted AT2 cells.

      • We have also carefully examined DNA methylation profiles across all samples. The density plots of our T-WGBS DNA methylation data are very similar among the individual samples in all 3 groups, indicating that the sorted cells consist mostly of a single cell type, as there are no obvious intermediate (25-75%) methylation peaks, as observed in cell mixtures ( 2A and the panel below). No reference DNA methylation profiles are available for respiratory or terminal bronchial cells; hence, we cannot compare how epigenetically different these cells would be from AT2 nor perform a deconvolution for potential minor contamination with distal airway cells. *Figure: DNA methylation density plots of sorted EpCAMpos/PDPNneg cells from no COPD (blue, n=3), COPD I (light green, n=3) and COPD II-IV (dark green, n=5) showing a homogeneous methylation pattern and low abundance at intermediate (25%-75%) methylation values across all profiled samples, indicating that the sorted cells were mostly of a single cell type. *

      • We have now added a sentence to the limitations section of the discussion to cover that point specifically. CHANGES IN THE MANUSCRIPT:

      AT2 cells were isolated by fluorescence-activated cell sorting (FACS) from cryopreserved distal lung parenchyma, depleted of visible airways and vessels of three no COPD controls, three COPD I and five COPD II-IV patients as previously described (24, 52, 53)

      The isolated cells were positive for HT2-280, a known AT2 marker (54)*, as confirmed by immunofluorescence (Fig. 1H), validating the identity and high enrichment of the isolated AT2 populations. ** *

      *Known AT2-specific genes, including ABCA3, LAMP3 and surfactant genes (SFTPA2, SFTPB and SFTPC) were among the top highly expressed genes and were not significantly changed in COPD AT2s (Fig. S2A, Table 6), further confirming the AT2-characteristic transcriptional signature of our isolated cells. *

      However, 5-AZA is a global demethylating agent, and the observed effects may not be direct. To validate the epigenetic regulation of central AT2 pathways further, we took advantage of locus-specific epigenetic editing technology *(73). We focused on the IFN pathway because it was the most significantly enriched Gene Ontology (GO) term in our integrative analysis of TWGBS and RNA-seq data. Several IFN pathway members had associated hypomethylated DMRs within promoter-proximal regions and concomitant increased gene expression (Fig. 4C and S2C). Additionally, we confirmed the elevated expression of IFN-related genes with associated DMRs identified in our study in AT2 cells and AT2 cell subclusters from a recently published scRNA-seq cohort (74) (Fig. S4E-F). *

      We observed upregulation of multiple IFN genes in AT2 in COPD, consistent with a previous expression array study (24). IFNα/β signaling was also enriched in COPD patients in the inflammatory AT2 cluster (iAT2) in a recent scRNA-seq study (84) and our INF signature genes were also upregulated in AT2c and AT2rb subsets in COPD, identified by another scRNA-seq study recently (74)*. ** *

      Finally, despite careful removal of airways from distal lung tissue using a dissecting microscope, we cannot exclude the presence of some terminal/respiratory bronchiole cells in our FACS-isolated EpCAMpos/PDPNlow population. Recent scRNA-seq studies provided an unprecedented resolution and identified several epithelial subpopulations and transitional cells residing in the terminal/respiratory bronchioles and alveoli, including respiratory airway secretory cells (93), terminal airway-enriched secretory cells (28), terminal bronchiole-specific alveolar type-0 (AT0) (70), and emphysema-specific AT2 cells (74). These cells may contribute to alveolar repair in healthy and COPD lungs; however, with our bulk DNA methylation and RNA-seq study, we are unable to resolve all these subpopulations. Future development of single-cell methylation and non-reference-based algorithms for DNA methylation deconvolution will enable deeper epigenetic phenotyping of specific AT2 and bronchiolar cell subsets.

      (Methods) Validation of IFN gene upregulation in a published scRNA-seq dataset

      scRNA-seq data from (74), generously provided by M. Köningshoff, were processed using the default Seurat workflow (117). Expression of IFN-related genes was extracted and plotted as log-normalised gene expression levels in AT2 cells from control and COPD donors. Seurat's AddModuleScore() function was used to compute a gene set score for a custom IFN program using the genes listed in __Fig. S4E __and to analyse the IFN gene set scores in AT2 cell subclusters identified in (74). Briefly, average gene expression scores were computed for the gene set of interest, and the expression of control features (randomly selected) was subtracted as described in (118).

      Fig. S4E and F: E. Expression values for the indicated genes of the IFN pathway from an external scRNA-seq dataset of AT2 cells from COPD patients and healthy controls (74). Y-axis shows log-normalized gene expression levels. F. Combined gene set score of the genes shown in (E) in different subsets of AT2 cells from (74). The IFN signature genes were identified in our integrative analysis of TWGBS and RNA-seq in sorted AT2 cells.

      • The overrepresentation of several keratins (KRT5, KRT14, KRT16, KRT17), mucins (MUC12, MUC13, MUC16, MUC20) and the transcription factor FoxJ1 is now attributed by the authors to a possible dysregulation of AT2 identity and differentiation in COPD (lines 282 - 284) where they cite refs 28, 69, 70. Authors try to support this with IF double stains for KRT5 and HT-280 to identify co-expression of KRT5 and HT2-280 in lung tissue (Figure S2H). However, the evidence for the co-expression of both markers could be presented more convincingly.

      __Response: __

      We found the potential co-expression of airway and alveolar markers in COPD lungs interesting and hence included it in the original manuscript. The initial discovery came from our bulk RNA-seq data, where we observed upregulation of several genes typically found in more proximal airways in COPD (mentioned above by the reviewer). Of note, some of them (e.g., FoxJ1) are expressed at very low levels. Following reviewer's comments, to validate possible colocalization of AT2 and airway markers on protein level, we performed further IF analysis. We took Z-stack images to demonstrate the co-localization of HT2-280 and Krt5 more convincingly and co-stained the same tissue regions with SCGB3A2 (a TASC/distal airway cell marker, PMID 36796082). Even though these are rare events, we were able to reproduce the existence of HT2-280/Krt5 positive, SCGB3A2 negative cells in the alveoli of COPD patients on the protein level (__Fig. S2H __and panels below). Although interesting, we decided to keep this finding in the supplement and did not include it in the discussion to focus the story on the epigenetic regulation of the IFN pathway, which is the main discovery of our study. We will investigate this observation in future studies.

      Figure S2H and here: Examples of HT2-280/Krt5 double positive cells. Top, immunofluorescence staining of the alveolar region of a COPD II donor showing the existence of AT2 cells (HT2-280 positive (red), which are SCGB3A2 negative (green, left) but KRT5 positive (green, right). In conclusion, double-positive HT2-280/KRT5 cells are rare but present in the alveoli of COPD patients. Magnification: 20x. Scale bar: 50 µm. Bottom, Z-stack images highlighting HT2-280 (red) and KRT5 (green) double-positive cells at 63x magnification. Scale bar: 5 µm.

      CHANGES IN THE MANUSCRIPT:

      In addition, we observed an upregulation of several keratins (KRT5, KRT14, KRT16, KRT17) and mucins (MUC12, MUC13, MUC16, MUC20), suggesting a potential dysregulation of alveolar epithelial cell differentiation programs in COPD (Table 6, Fig. S2F). Immunofluorescence staining confirmed the presence of KRT5-positive cells in the distal lung in COPD and identified cells positive for both KRT5 and HT2-280 (Fig. S2H). Collectively, these results indicate a dysregulation of stemness and identity in the alveolar epithelial cells in COPD.

      Fig. S2H legend: The zoomed-in panel (right corner, bottom) demonstrates the presence of rare HT2-280/KRT5 double-positive cells in the alveoli of COPD patients.* Slides were counterstained with DAPI, scale bars = 50µm, 20µm or 5µm, as displayed in images. *

      • Double staining for KRT5 and HT2-280 did highlight the proximity of both cell types in lung tissue, underscoring the challenge of removing airways (including the smaller and terminal bronchi) from the tissue. In addition, HT-280/KRT5 co-expression is not consistent with recent studies from refs 28, 69, 70 where other markers for distal airway cell transition, such as SCGB3A2 and BPIFB1, have been demonstrated, which were not investigated in this study.

      Response:

      We provided a general overview of the different signatures observed in our data, but we could not validate every deregulated pathway or gene. We include the relevant tables detailing all differentially expressed genes and differentially methylated regions to enable and encourage the community to follow up on the data in subsequent studies.

      As demonstrated above, we detect the co-occurrence of HT2-280/KRT5 staining on the protein level in the same cells in the alveoli of COPD patients. We would like to emphasize that alveolar epithelial cell identity in CODP lungs has not been investigated in detail on the protein or RNA level, and HT2-280/KRT5 co-expression/co-localization has not been directly tested in the studies mentioned by the reviewer since, among other reasons, the gene encoding HT2-280 has not been identified. Notably, a recent study (published after the submission of our manuscript) focusing on enriched epithelial cells from the distal lungs of COPD patients (PMID 35078977), identified an emphysema-specific AT2 subtype co-expressing the AT2 marker SFTPC and distal airway cell transition marker SCGB3A2, indicating that disease-specific AT2 populations with possible co-occurrence of AT2 and airway markers exist. In our dataset, SCGB3A2 was not deregulated (log2 fold change=0.22, adj p-value= 0.47), as shown in Table 6, and the HT2-280/Krt5 positive cells were negative for SCGB3A2 in our IF staining (see above).

      BPIFB1 is one of the antimicrobial peptides genes with an associated DMR and is significantly upregulated in COPD cells in our study (log2 fold change=1.17, adj p-value=0.0016), as shown in the supplementary figure Fig S4C and here below for convenience.

      Figure S4C Fold-change in gene expression of BPIFB1 in AT2 cells in COPD (RNA-seq) and A549 cells treated with 0.5µM AZA (RT-qPCR) compared to control samples. Left, RNA-seq data from AT2 cells (no COPD, blue, n=3; COPD II-IV, green, n=5). Right, A549 treated with AZA (orange, n=3) compared to control DMSO-treated cells (grey, n=3). The group median is shown as a black bar.

      • The small (and not evenly divided) sample size of both COPD and non-COPD specimens may lead to a higher risk for false positive results as adjustments for multiple testing typically rely on the number of comparisons, and small sample sizes may not provide enough data points to adequately control for this.

      __Response: __

      We acknowledge the problem of testing for multiple traits with relatively small numbers of samples. The availability of donor tissue, especially from non-COPD and COPD-I donors, was limited, and we applied very strict donor matching and quality control criteria for sample inclusion to avoid additional variability and confounding factors. The importance of strict quality control in selecting appropriate control samples was highlighted in our previous study (PMID: 33630765), where we demonstrated that approximately 50% of distal lung tissue from cancer patients with normal spirometry has pathological changes. Hence, we believe that the quality of the tissue was paramount to the reliability of the data. Strict quality control and sample matching for multiple parameters, including age, BMI, smoking status and smoking history (critical for DNA methylation studies), and cancer type (for background tissue), is a key strength of our approach, but it inevitably limited our sample size.

      First, all samples were cryopreserved and then processed in parallel in groups of 1 non-COPD and 2-3 COPD samples. This process included tissue dissociation, FACS sorting, back sorting (always), and immunofluorescence staining (when enough material was available). Cell pellets were stored at -80{degree sign}C until the entire cohort was ready for sequencing. This was done to limit the potential variation introduced by processing and sorting. RNA and DNA isolations were performed in parallel for all the sorted cell pellets, which were then sequenced as a single batch.

      During data analysis, we applied stringent cutoffs for DMR detection to reduce the risk of false positives due to multiple comparisons and a small sample size. Specifically, we filtered for regions with at least 10% methylation difference and containing at least 3 CpGs. Additionally, we applied a non-parametric Wilcoxon test using average DMR methylation levels to remove potentially false-positive regions, as the t-statistic is not well suited for non-normally distributed values, as expected at very low/high (close to 0% / 100%) methylation levels. A significance level of 0.1 has been used. Therefore, we are confident that the rigorous analysis and strict criteria applied in this study allowed us to detect trustworthy DMRs that we could further functionally validate using epigenetic editing. All the details of the DMR analysis are provided in the methods section. To address this point and limitation, we have added the following paragraphs in the discussion section of the manuscript:

      CHANGE IN THE MANUSCRIPT:

      *The strengths of our study include the use of purified human alveolar type 2 epithelial progenitor cells from a well-matched and carefully validated cohort of human samples, including mild and severe COPD patients, providing high relevance to human COPD. *

      However, we acknowledge several limitations of our study that warrant further investigation. First, the sample size was small. The use of strict quality criteria for donor selection limited the available samples, particularly for the ex-smoker control group. This resulted in an unequal distribution of COPD and control samples. This impacts the power of statistical analysis, particularly in the WGBS analysis, where millions of regions genome-wide are tested. Nevertheless, the clear negative correlation between promoter methylation and corresponding gene expression highlights the robustness of the DMR selection. Additionally, we were able to experimentally validate interferon-associated DMRs using epigenetic editing, highlighting the power of integrated epigenetic profiling in identifying disease-relevant regulators.

      __Minor suggestions for improvement __

      __Introduction __ • In general, refer to the actual experimental studies rather than review papers where appropriate.

      Response:

      We have now carefully checked all the references and amended them to refer to experimental studies when required.

      • Clearly specify whether a study was conducted in mice or humans, as this distinction is crucial for understanding the relevance of the findings to COPD.

      __Response: __

      All our experiments were performed with human lung cells and tissues. No mouse samples were used. As suggested, we have now clearly stated that our study was performed using human tissue samples and cells in different parts of the manuscript, including the discussion, where we now explicitly highlight the strengths and limitations of our study.

      CHANGES IN THE MANUSCRIPT:

      ...we generated whole-genome DNA methylation and transcriptome maps of sorted human primary alveolar type 2 cells (AT2) at different disease stages.

      However, the regulatory circuits that drive aberrant gene expression programs in human AT2 cells in COPD are poorly understood

      Therefore, we set out to profile DNA methylation of human AT2 cells at single CpG-resolution across COPD stages.

      ...*suggesting that aberrant epigenetic changes may drive COPD phenotypes in human AT2. *

      To identify genome-wide DNA methylation changes associated with COPD in purified human AT2 cells...

      The similarity of the methylation and gene expression profiles in the PCAs suggested that epigenetic and transcriptomic changes in human AT2 cells during COPD might be interrelated ...

      *In this work, we demonstrate that genome-wide DNA methylation changes occurring in human AT2 cells may drive COPD pathology by dysregulating key pathways that control inflammation, viral immunity and AT2 regeneration. *

      *Using high-resolution epigenetic profiling, we uncovered widespread alterations of the DNA methylation landscape in human AT2 cells in COPD that were associated with global gene expression changes. *

      *Currently, it is unclear how cigarette smoking leads to changes in DNA methylation patterns in human AT2 *

      The strengths of our study include the use of purified human alveolar epithelial progenitor cells from a well-matched and carefully validated cohort of human samples, including mild and severe COPD patients, providing high relevance to human COPD.

      __Methods __ • Line 473, here is meant 3 ex-smoker controls instead of smoker controls?

      __Response: __

      All donors (no COPD and COPD) used in our study are ex-smokers. Matching the samples with regard to smoking status and history is critical for epigenetic studies, as cigarette smoke profoundly affects DNA methylation genome-wide (PMID: 38199042, PMID: 27651444). This has now been clarified in the revised manuscript.

      CHANGE IN THE MANUSCRIPT____:

      Of note, we included only ex-smokers in our profiling to avoid acute smoking-induced inflammation as a confounding factor (50)*. *

      Importantly, we matched the smoking status and smoking history of all donors, which is key in epigenetic studies, as cigarette smoking profoundly impacts the DNA methylation landscape of tissues (96).

      In total, 3 ex-smoker controls (no COPD), 3 mild COPD donors ex-smokers (GOLD I, COPD I) and 5 moderate-to-severe COPD donors ex-smokers (GOLD II-IV, COPD II-IV) were profiled (Fig. 1A-C, Table 1)

      __Discussion __ • A list of limitation should be added to the discussion. One is the use of the alveolar cell line A549, which produces mucus, a characteristic more commonly associated with bronchial epithelial cells. (ref 43)l530:

      __Response: __

      The profiling was performed using purified primary human alveolar epithelial progenitor cells. For technical reasons, A549 cells were only used for validation of the results using epigenetic editing. The A549 phenotype depends on the growth medium used, in our case, Ham's F-12 medium, which is recommended for long-term A549 culture and promotes multilamellar body formation and differentiation toward an AT2-like phenotype (PMID: 27792742)__. __We are developing epigenetic editing technology for use in primary lung cells; however, the approach currently relies on the high efficiency of transient transfections, which cannot yet be achieved with primary adult AT2 cells. We were positively surprised by how well the methylation data obtained from patient AT2s translated into mechanistic insights when using A549 cells, despite being a cancer cell line. This suggests that the fundamental mechanisms of epigenetic regulation of IRF9 and the IFN signaling pathway are conserved between A549 and primary AT2 cells.

      • Another limitation to consider is that cells were isolated primarily from individuals with lung cancer, except for patients with COPD stage IV. In particular as COPD stage II and IV samples were taken together. And discuss the small and unevenly divided sample size

      __Response: __

      We thank the reviewer for bringing up this important point, which we carefully considered when designing our study. To match our samples across the cohort, all the no-COPD, COPD I, and two of the COPD II-IV samples were obtained from cancer resections. In addition to other characteristics, like age, BMI and smoking status, we also matched the donors by cancer type (all profiled donors had squamous cell carcinoma). We collected lung tissue as far away from the carcinoma as possible and sent representative pieces for histological analysis by an experienced lung pathologist to confirm the absence of visible tumours. In addition, to ensure that our data represents COPD-relevant signatures, we intentionally included samples from three COPD donors undergoing lung resections (without a cancer background) in the profiling.

      Following the reviewer's suggestion, to investigate the potential impact of non-cancer samples on driving the observed differences, we carefully checked the PCAs for both DNA methylation and RNA-seq. We could not identify a clear separation of no-cancer COPD samples from the cancer COPD samples (or other cancer samples) in any examined PCs, indicating no cofounding effect of cancer background in the samples. We observed that one sample contributing to PC2 is a non-cancer sample, but this was a rather sample-specific effect, as the other two non-cancer samples clustered together with the other severe COPD samples with a cancer background. Notably, in our DNA methylation data, we do not observe typical features of cancer methylomes, like global loss of DNA methylation or aberrant methylation of CpG islands (e.g., in tumour suppressor genes) (see Fig 2A), further suggesting that we do not "pick up" confounding cancer signatures in our data.

      Following the comments from both reviewers, to clarify that point, we added the information about cancer and non-cancer samples to the PCA figures for DNA methylation (new Fig. 2B) and RNA-seq (new Fig. 3A) data in the revised manuscript, as shown below

      CHANGE IN THE MANUSCRIPT____:

      COPD samples from donors with a cancer background clustered together with the COPD samples from lung resections, confirming that we detected COPD-relevant signatures (Fig. 2B).

      Fig.2B* Principal component analysis (PCA) of methylation levels at CpG sites with > 4-fold coverage in all samples. COPD I and COPD II-IV samples are represented in light and dark green triangles, respectively, and no COPD samples as blue circles. COPD samples without a cancer background are displayed with a black contour. The percentage indicates the proportion of variance explained by each component. *

      Unsupervised principal component analysis (PCA) on the top 500 variable genes revealed a clear influence of the COPD phenotype in separating no COPD and COPD II-IV samples, as previously observed with the DNA methylation analysis, irrespective of the cancer background of COPD samples (Fig.3A, Fig. S2B).

      *Principal component analysis (PCA) of 500 most variable genes in RNA-seq analysis. PCA 1 and 2 are shown in Fig.3A, PCA 1 and 4 in Fig.S2B. COPD I and COPD II-IV samples are represented in light and dark green triangles, respectively, and no COPD samples as blue circles. COPD samples without a cancer background are displayed with a black contour. The percentage indicates the proportion of variance explained by each component. *

      __Response: __

      We thank the reviewer for suggestions on how to improve the discussion of our manuscript. We have now added a strength/limitation section to our discussion and included the points suggested by both reviewers.

      CHANGE IN THE MANUSCRIPT____:

      The strengths of our study include the use of purified human alveolar epithelial progenitor cells from a well-matched and carefully validated cohort of human samples, including mild and severe COPD patients, providing high relevance to human COPD. Importantly, we matched the smoking status and smoking history of all donors, which is key in epigenetic studies, as cigarette smoking profoundly impacts the DNA methylation landscape of tissues (96). With the first genome-wide high-resolution methylation profiles of isolated cells across COPD stages, we offer novel insights into the epigenetic regulation of gene expression in epithelial progenitor cells in COPD, expanding our understanding of how alterations in regulatory regions and specific genes could contribute to disease development. We identified IRF9 as a key IFN transcription factor regulated by DNA methylation. Notably, by targeting IRF9 through epigenetic modifications, we modulated the activity of the IFN pathway, which plays a crucial role in the immune response and lung tissue regeneration. Epigenetic editing techniques could offer a novel therapeutic strategy for COPD by downregulating IFN pathway activation and promoting the regeneration of epithelial progenitor cells in the lungs. Further preclinical and clinical studies are needed to validate the efficacy and safety of epigenetic editing approaches in COPD treatment (33)*. *

      *However, we acknowledge several limitations to our study that warrant further investigation. First is the small sample size and replication difficulty due to the lack of available data, common challenges for studies working with sparse human material and hard-to-purify cell populations. The use of strict quality criteria in donor selection limited the available samples, especially for the ex-smoker control group, leading to an unequal distribution of COPD and control samples. Overall, this impacts the power of statistical analysis, especially in the WGBS analysis, where millions of regions genome-wide are tested. Nevertheless, the clear negative correlation of promoter methylation to the corresponding gene expression highlights the robustness of the DMR selection. Furthermore, we could experimentally validate interferon-associated DMRs using epigenetic editing, highlighting the power of integrated epigenetic profiling for the discovery of disease-relevant regulators. *

      Overall, we detected a higher number of correlated DMR-DEG associations using our simple promoter-proximal linkage compared to the GeneHancer approach. Assigning enhancers to their target genes with high confidence is a complex and challenging task. Enhancers are often located far from the genes they regulate and can interact with their target genes through three-dimensional chromatin loops. Furthermore, enhancers can operate in a highly context-dependent manner, with the same enhancer regulating different genes depending on the cell type, developmental stage, or environmental signals. Determining which enhancer is active under specific conditions remains a hurdle in the field, especially since the AT2-specific chromatin profiles of enhancer marks are not yet available.

      In addition, while WGBS provides unprecedented resolution and high coverage of the DNA methylation sites across the genome, it does not allow distinguishing 5-methylcytosine from 5-hydroxymethylcytosine. Therefore, we cannot exclude that some methylated sites we detected are 5-hydroxymethylated. However, as 5-hydroxymethylcytosine is present at very low levels in the lung tissue (97)*, its effect is likely marginal. *

      Finally, despite careful removal of airways from distal lung tissue using a dissecting microscope, we cannot exclude the presence of some terminal/respiratory bronchiole cells in our FACS-isolated EpCAMpos/PDPNlow population. Recent scRNA-seq studies provided an unprecedented resolution and identified several epithelial subpopulations and transitional cells residing in the terminal/respiratory bronchioles and alveoli, including respiratory airway secretory cells (93), terminal airway-enriched secretory cells (28), terminal bronchiole-specific alveolar type-0 (AT0) (70), and emphysema-specific AT2 cells (74). These cells may contribute to alveolar repair in healthy and COPD lungs; however, with our bulk DNA methylation and RNA-seq study, we are unable to resolve all these subpopulations. Future development of single-cell methylation and non-reference-based algorithms for DNA methylation deconvolution will enable deeper epigenetic phenotyping of specific AT2 and bronchiolar cell subsets.

      __References __ • Check references. For instance, there is no reference in the text to ref 43.

      • Align format of references

      __Response: __

      We thank the reviewer for spotting this inconsistency. We have carefully checked and aligned the format of all references. The (old) reference 43 is now mentioned in the discussion part.

      __Reviewer #1 (Significance (Required)): __

      The strength of this study lies in its focus on the molecular mechanisms underlying the impaired regeneration of epithelial progenitor cells in COPD. The discovery of IRF9, which regulates IFN signaling and is prominently upregulated in COPD, together with the convincing validation of the epigenetic control of the IFN pathway by targeted DNA demethylation of the IRF9 gene, adds significant value to the COPD research field.

      Main limitations of the study are the relatively small sample size of both COPD and non-COPD specimens and the claim that the sorted EpCAMpos/PDPNlow cells primarily consisted of AT2 cells.

      __- Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. __

      The nature and significance of the advance in epigenetic editing of IRF9 in COPD can be described as both conceptual and potentially clinical:

      Conceptual Advance: The epigenetic editing of IRF9 enhances our understanding of the molecular mechanisms underlying COPD pathogenesis. By targeting IRF9 through epigenetic modifications, researchers were able to modulate the activity of the IFN pathway, which plays a crucial role in the immune response and lung tissue regeneration. This approach offers insights into the epigenetic regulation of gene expression in epithelial progenitor cells in COPD and expands our understanding of how alterations in specific gene methylation could contribute to disease progression.

      Clinical Significance: The potential clinical significance of epigenetic editing of IRF9 lies in its implications for COPD therapy. If successful, epigenetic editing techniques could offer a novel therapeutic strategy for COPD by downregulating IFN pathway activation and promoting regeneration of epithelial progenitor cells in the lungs. Obviously, further preclinical and clinical studies are needed to validate the efficacy and safety of epigenetic editing approaches in COPD treatment.

      __Response: __We thank the reviewer for recognising the importance of our study, its conceptual advance and potential clinical significance. We are pleased to see that the reviewer highlights the promise of epigenetic editing in both furthering our basic understanding of molecular mechanisms of chronic diseases and its future potential as a therapeutic strategy.

      __- Place the work in the context of the existing literature (provide references, where appropriate). __ Few experimental papers have been published on epigenetic editing in lung diseases, with limited research available beyond the study referenced in citation 43. Song J, Cano-Rodriquez D, Winkle M, Gjaltema RA, Goubert D, Jurkowski TP, Heijink IH, Rots MG, Hylkema MN. Targeted epigenetic editing of SPDEF reduces mucus production in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2017 Mar 1;312(3):L334-L347. doi: 10.1152/ajplung.00059.2016. Epub 2016 Dec 23. PMID: 28011616.

      Response:

      We thank the reviewer for recognising the uniqueness and novelty of our study and the lack of research on the functional understanding of DNA methylation in the context of lung and lung diseases.

      - State what audience might be interested in and influenced by the reported findings.

      This study is of broad interest to researchers investigating the pathogenesis and treatment of COPD.

      __- Define your field of expertise with a few keywords to help the authors contextualize your point of view. __

      Expertise in: Lung pathology, Immunology, COPD, Epigenetics

      - Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. Less expertise in: Epigenetic Editing

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      __Summary: __

      This study aim to understand the molecular mechanisms underlying dysfunction in AT2 cells in COPD, by profiling bulk genome wide DNA methylation using Tagmentation-based whole-genome bisulfite sequencing (T-WGBS) and RNA sequencing in selectively sorted primary AT2 cells. The study stands out in it's sequencing breadth and use of an incredibly difficult cell population, and has the potential to add substantially to our mechanistic understanding of epigenetic contributions to COPD. A further highlight is the concluding aspect of the study where the authors undertook targeted modification of specific CpG methylation, provided direct, site-specific evidence for transcriptional regulation by CpG methylation.

      Response:

      We thank the reviewer for recognizing the conceptual and methodological advance of our study and for noting the value of our functional mechanistic approach.

      __Major comments: __

      The authors clearly show that there is DNA methylation alteration in AT2 cells from COPD individuals that links functional to gene expression at some level. However, I think the statement "to identify genome-wide changes associated with COPD development and progression..." and similar other references to disease development understanding is not accurate given the DNA methylation primary comparison is between control and moderate to severe COPD, with no temporal detail or evidence that they drive progression rather than are a result of COPD development. The paragraph starting on line 186 where this is a addressed to some extent is quite vague and doesn't really provide confidence that DNAm dysregulation occurs at an early stage in this context. This can be addressed by changing the focus/style of the text.

      __Response: __

      Thank you for raising this point. We agree with the reviewer that our cross-sectional study describes the association of methylation changes with either COPD I or more established disease (COPD II-IV) and that the observed changes may be either the driver or a result of COPD development. This has been clarified in the revised manuscript, and we removed the statements about disease initiation and progression. This is an important point; hence, we added an extra line to the discussion to make that clear.

      __CHANGE IN THE MANUSCRIPT____: __

      Therefore, we set out to profile DNA methylation of human AT2 cells at single CpG-resolution across COPD stages to identify epigenetic changes associated with disease and combine this with RNA-seq expression profiles.

      To identify epigenetic changes associated with COPD, we collected lung tissue from patients with different stages of COPD,

      ....to identify methylation changes associated with mild disease, we included TWGBS data from AT2 isolated from COPD I patients (n=3) in the analysis.

      Currently, we do not know whether the identified DNA methylation changes are the cause or the consequence of the disease process and not much is known about the correlation of DNA methylation with disease severity.

      *However, our study is cross-sectional, our cohort included only 3 COPD I donors, and we did not have any follow-up data on the patients, so future large-scale profiling of mild disease (or even pre-COPD cohorts) in an extended patient cohort will be crucial for a better understanding of early disease and its progression trajectories. *

      __Results comments and suggestions: __

      For the integrated analysis, there is a focus on DMRs in promoters with very little analysis on other regions. The paragraph starting on line 317 describes some analysis on enhancers but is very brief, doesn't include information on how many/which DMRs were included, making it hard to interpret the impact of the 147 DMRs and 93 genes identified - is this nearly all DMRs and genes analysed or very few? A comparison to the promoter analysis would be of interest. Especially as the targeted region followed up with lovely functional assessment in the last sections is a gene body DMR, not a promoter DMR.

      __Response: __

      We thank the reviewer for pointing out the importance of changes in enhancers. We agree that extending the enhancer analysis is very interesting. However, assigning enhancers to their target genes with high confidence is a complex and challenging task. Enhancers are often located far from the gene they regulate, sometimes spanning hundreds of kilobases. They can interact with their target genes through three-dimensional chromatin loops, potentially bypassing nearby genes to activate more distant ones, making it difficult to confidently link specific enhancers to their target genes. Furthermore, enhancers can operate in a highly context-dependent manner. The same enhancer can regulate different genes depending on the cell type, developmental stage, or environmental signals. Another challenge is that enhancers often work in clusters or "enhancer landscapes," where multiple enhancers contribute to the regulation of a single gene. Disentangling the contribution of individual enhancers within such clusters and determining which enhancer is active under specific conditions remains an ongoing hurdle in the field, especially since the AT2-specific chromatin profiles of enhancer marks are not yet available.

      One approach we tried to account for more distal regulatory regions was to assign DMRs to the nearest gene with a maximum distance of up to 100 kb using GREAT (Genomic Regions Enrichment of Annotations Tool) and simultaneously perform gene enrichment analysis of the associated genes. The old Figure S1C (now S1D) shows the top 10 enriched terms of either hyper- or hypomethylated DMRs, and Table 4 shows the full list of enriched terms. However, in this analysis, we did not integrate the results of the RNA-seq analysis. To demonstrate that we can correlate methylation with gene expression associations in this analysis, we then took a closer look at the WNT/b-catenin pathway, which contains 147 DMRs associated with 93 genes from the respective pathway (old Figure S3D, now S3G). Here, we showed that distal DMRs up to 100 kb away from the TSS show a high correlation with gene expression. We are including the two figures below for convenience:

      *Left panels, functional annotation of genes located next to hypermethylated (top) and hypomethylated (bottom) DMRs using GREAT. Hits were sorted according to the binominal adjusted p-value and the top 10 hits are shown. The adjusted p-value is indicated by the color code and the number of DMR associated genes is indicated by the node size. Right panel, scatter plot showing distal DMR-DEG pairs associated with Wnt-signaling. Pairs were extracted from GREAT analysis (hypermethylated, DMR-DEG distance Following the reviewer's suggestion, we have now extended the enhancer analysis using the GeneHancer database, the most comprehensive, integrated resource of enhancer/promoter-gene associations. We used the GeneHancer version 5.14, which annotates 392,372 regulatory genomic elements (GeneHancer element) on the hg19 reference genome. Of the 25,028 DMRs, 18,289 DMRs (73% of all DMRs) coincided with at least one GeneHancer element, resulting in 19,661 DMR-GeneHancer associations. Next, we extracted the GeneHancer elements associated with protein-coding or long-non-coding RNAs genes, which left us with 2,144 DMR-GeneHancer associations. Next, we used only high-scoring gene GeneHancer associations ("Elite"), leaving 1,485 DMR-GeneHancer associations. Of those, we selected the GeneHancer elements, which are linked to genes differentially expressed in our RNA-seq analysis resulting in a final table of 376 DMR-GeneHancer associations (Table 9 DMR_DEG_GeneHancer, Tab 2). Similar to the promoter-proximal analysis, we analysed the correlation of expression and methylation changes of the DMR-GeneHancer associations, demonstrating a high number of negatively and positively correlated events (Fig.S3D). Finally, we performed the gene enrichment analysis for positively and negatively correlating genes. We detected significant GO term enrichments only for negatively correlating genes (Fig.S3E and Table 10_Enrichment_results, Tab2).

      CHANGE IN THE MANUSCRIPT

      To harness the full resolution of our whole-genome DNA methylation data, we extended the analysis beyond promoter-proximal regions and assessed how epigenetic changes in distal regulatory regions (enhancers) may relate to transcriptional differences in COPD. As the assignment of enhancer elements to the corresponding genes is challenging, we tried two different approaches. First, we used the GeneHancer database (72) to link DMRs to regulatory genomic elements (GeneHancer element). Of the 25,028 DMRs, 18,289 DMRs (73%) coincided with at least one GeneHancer element. Of those 2,144 DMR-GeneHancer associations were linked either to protein-coding or lncRNA genes. Next, we filtered for high-scoring gene GeneHancer associations ("Elite"), leaving 1,485 DMR-GeneHancer Elite associations. Of those, we selected the GeneHancer elements, which are linked to genes differentially expressed in our RNA-seq analysis, resulting in 376 DMR-GeneHancer associations (Table 9). Similar to the promoter-proximal analysis, we assessed the correlation of expression and methylation changes of the DMR-GeneHancer associations, demonstrating a high proportion of negatively and positively correlated events (Fig. S3E). Finally, we performed gene enrichment analysis for positively and negatively correlated genes. We detected significant GO term enrichments for negatively correlating genes only (Fig. S3F and Table 10), with the most pronounced term "regulation of tumor necrosis factor". In an alternative approach, we linked proximal and distal (within 100 kb from TSS) DMRs to the next gene using GREAT (57) (Fig S1C, Table 4) *and calculated Spearman correlation between DMRs and associated DEGs__. 147 DMRs were associated with high correlation rates with 93 genes from the WNT/β-catenin pathway (Fig. S3G)__, suggesting that DNA methylation may also drive the expression of genes of the WNT/β-catenin family. *

      Figure S3E and F: E. Spearman correlation between gene expression and DMR methylation of DMRs assigned to gene regulatory elements using the GeneHancer database. F. GO-Term over-representation analysis of DEGs negatively correlated to DMRs in gene regulatory elements. The adjusted p-value is indicated by the color code and the percentage number of associated DEGs is indicated by the node size.

      (Methods) For enhancer analysis, the GeneHancer database version 5.14, which annotates 392,372 regulatory genomic elements (GeneHancer element) on the hg19 reference genome, was used (72). Of the 25,028 DMRs 18,289 DMRs coincided with at least one GeneHancer element, resulting in 19,661 DMR-GeneHancer associations. Next, the GeneHancer elements were filtered for association with protein-coding or long-non-coding RNAs genes and high-scoring gene GeneHancer associations ("Elite"), leaving 1,485 DMR-GeneHancer associations. Of those, the GeneHancer elements were selected, which are linked to differentially expressed genes in COPD resulting in a final table of 376 DMR-GeneHancer associations. Similar to the promoter-proximal analysis, the Spearman correlation of expression and methylation changes of the DMR-GeneHancer associations was assessed. GO gene enrichment analysis for positively and negatively correlating genes was done using Metascape (111).

      A comparison to the promoter analysis would be of interest.

      Response:

      We detected more highly correlated (|correlation coefficient| > 0.5) DMR-DEG associations using our simple promoter proximal linkage (n=643) in comparison with the GeneHancer approach comprising annotated enhancer elements (n=327/2,144). Gene enrichment results pointed to the interferon pathway, which we could confirm using epigenetic editing. This pathway was not present in the GeneHancer analysis, indicating that regulation of the IFN pathway may be controlled by proximal elements.

      CHANGE IN THE MANUSCRIPT____:

      Overall, we detected a higher number of correlated DMR-DEG associations using our simple promoter-proximal linkage compared to the GeneHancer approach. Assigning enhancers to their target genes with high confidence is a complex and challenging task. Enhancers are often located far from the genes they regulate and can interact with their target genes through three-dimensional chromatin loops. Furthermore, enhancers can operate in a highly context-dependent manner, with the same enhancer regulating different genes depending on the cell type, developmental stage, or environmental signals. Determining which enhancer is active under specific conditions remains a hurdle in the field, especially since the AT2-specific chromatin profiles of enhancer marks are not yet available.

      Especially as the targeted region followed up with lovely functional assessment in the last sections is a gene body DMR, not a promoter DMR.

      Response:

      We thank the reviewer for bringing up that point. To clarify, we defined the promoter regions for the analysis as regions located {plus minus} 6 kb (upstream and downstream) from the transcriptional start site (TSS). Since the term "promoter" often refers to the region upstream of the transcriptional start site, its use may have been misleading. For clarity, we changed the text correspondingly to __promoter proximal methylation __and explained in the methods how the regions for analysis were defined.

      __CHANGE IN THE MANUSCRIPT____: __

      "DMR association per gene promoter" was changed to "Gene promoter proximal DMRs"

      Fig. S3B: "DMR in promoter" was changed to "promoter proximal DMR(s)"

      "by DNA methylation changes in promoters" was changed to "by DNA methylation changes in promoter proximity"

      "regulated by promoter methylation" was changed to "regulated by promoter-proximal methylation"

      "analysis of the promoter DMRs" was changed to "analysis of the promoter-proximal DMRs"

      "between promoter methylation" was changed to "between promoter proximal methylation"

      Cytoscape was used to analyse negatively or positively correlated DMR DEG pairs. ClueGO (v2.5.6) analysis was conducted using all DEG associated with a promoter proximal DMR (+/- 6 kb from TSS) and the Spearman correlation coefficient 0.5 (112).

      • Lines 299-301 - I'm not sure the graph in Fig S3A support the conclusion that there was a preferential negative relationship between DNAm and gene expression. Looks like there are a substantial number of cases where a positive relationship is observed and this needs to be acknowledged.

      Response:

      In this part, we refer to Fig S3C. In the left panel, downregulated genes clearly show higher counts for the hypermethylated DMRs, whereas the hypomethylated DMRs are enriched at upregulated genes (right panel), indicating a preference for negative correlation: lower methylation, higher gene expression. If there were no preference, we would expect a 50:50 ratio of hypo- and hypermethylated DMRs, and we observed a 77:23 ratio. Nevertheless, we agree that there is a substantial number of cases (n=151) with a high positive correlation, which we now highlight in the text. For clarity, we also modified the figure legend to indicate that a stacked histogram is represented in the panel.

      __CHANGE IN THE MANUSCRIPT____: __

      L303: Interestingly, 23.5% of the identified DMR DEG pairs (n=151) showed a positive correlation between gene expression and DNA methylation.

      *Figure legend in Fig. S3C was changed to: C Stacked histogram showing location of hyper- and hypomethylated DMRs relative to the TSS of DEGs in downregulated (left) and upregulated (right) genes. *

      • Line 307 - what are the "analysed DEGs"? Are they the methylation associated genes?

      Response:

      Those are the DEGs we identified in RNA-seq analysis. To clarify, we changed the text to "identified DEGs".

      __CHANGE IN THE MANUSCRIPT____: __

      • "analysed DEGs" was changed to "identified DEGs"*

      • Line 307-309 - "Among the analyzed DEGs, 76.5% (492) displayed a negative correlation (16.8% of the total DEGs), indicating a possible direct regulation by DNA methylation, while 23.5% (151) showed a positive correlation between gene expression and DNA methylation" - are the authors suggesting the positive correlation doesn't indicate direct regulation?

      __Response: __

      Thank you for highlighting this point. We did not intend to suggest that negative correlation indicates direct regulation, while positive correlation suggests a lack thereof. To clarify that point, we have reformulated this sentence.

      __CHANGE IN THE MANUSCRIPT____: __

      Among the identified DEGs, 76.5% (n=492) displayed a negative correlation (16.8% of the total DEGs), consistent with a repressive role of promoter DNA methylation. Interestingly, 23.5% of the identified DEG (n=151) showed a positive correlation between gene expression and DNA methylation.

      • Line 313 - why did the authors focus on only negatively correlated genes to identify their top dysregulated pathway of IFN signalling? Why not do pathway analysis on the DNAm associated genes separately to identify DNAm associated pathways?

      Response:

      We have also performed a pathway enrichment analysis using the positively correlated genes but did not identify any significantly enriched pathways/process/terms. When we examined the top hit of the gene set enrichment analysis, the interferon signaling pathway, we observed only negatively correlated DMR gene associations (Fig. 5B). Therefore, we decided to use only the negatively correlated DMRs, as using all correlated genes would give a higher background and dilute our results.

      CHANGE IN THE MANUSCRIPT____:

      Cytoscape was used to analyse negatively or positively correlated DMR DEG pairs. ClueGO (v2.5.6) analysis was conducted using all DEG associated with a promoter proximal DMR (+/- 6 kb from TSS) and the Spearman correlation coefficient 0.5 (113).

      • A comparison of the gene expression data with previous data in AT2 cell/single cell data would strengthen the gene expression section.

      __Response: __

      We compared our gene expression signatures with the study of Fujino et al., who profiled sorted AT2 cells (EpCAMhighPDPNlow) from COPD/controls using expression arrays (PMID: 23117565). Consistent with our study, the authors also observed the upregulation of interferon signalling (among other pathways) in COPD AT2s. However, no raw data was available in the published manuscript for a more in-depth analysis.

      Several recent scRNA-seq studies identified transcriptional signatures of COPD and control cells (e.g., PMIDs: 36108172, 35078977, 36796082, 39147413__). However, most studies did not match the smoking status of the control and COPD donors and looked at the whole lung tissue, with limited power to detect gene expression changes in distal alveolar cells. It is difficult to directly compare our data to the gene expression data from non-smokers vs COPD patients, as cigarette smoking profoundly remodels the epigenome and transcriptional signatures of cells. In addition, differences in technologies and depth of sequencing make such comparisons challenging. However, one study (PMID: 36108172) performed scRNA-seq analysis on 3 non-smokers, 4 ex-smokers and 7 COPD ex-smoker lungs. Despite relatively limited coverage of epithelial cells in the dataset (We also compared the main AT2 IFN signature identified in the integration of our DNA methylation in promoter-proximal regions and RNA-seq with a recent study (published after the submission of our manuscript, PMID: 39147413) that profiled EpCAMpos cells from COPD and control lungs (non-smokers) using scRNA-seq. We observed an upregulation of our IFN signature genes in AT2 in COPD (specifically in AT2-c and rbAT2 subsets), suggesting that similar signatures were observed in this dataset as well. However, ex-smokers were not included in this study, making direct comparisons difficult. We have now included the panels shown below as __Figure S4E and S4F:

      Figure S4E and F: Expression values for the indicated genes of the IFN pathway from an external scRNA-seq dataset of AT2 cells from COPD patients and healthy controls (74). Y-axis shows log-normalized gene expression levels. F. Combined gene set score of the genes shown in (E) in different subsets of AT2 cells from (74)*. The IFN signature genes were identified in our integrative analysis of TWGBS and RNA-seq in sorted AT2 cells. *

      CHANGES IN THE MANUSCRIPT:

      However, 5-AZA is a global demethylating agent, and the observed effects may not be direct. To validate the epigenetic regulation of central AT2 pathways further, we took advantage of locus-specific epigenetic editing technology (73). We focused on the IFN pathway because it was the most significantly enriched Gene Ontology (GO) term in our integrative analysis of TWGBS and RNA-seq data. Several IFN pathway members had associated hypomethylated DMRs within promoter-proximal regions and concomitant increased gene expression (Fig. 4C and Fig.S2C). Additionally, we confirmed the elevated expression of IFN-related genes with associated DMRs identified in our study in AT2 cells and AT2 cell subclusters from a recently published scRNA-seq cohort (74)* (Fig. S4E-F). *

      (Methods) Validation of IFN gene upregulation in a published scRNA-seq dataset

      scRNA-seq data from (74), generously provided by M. Köningshoff, were processed using the default Seurat workflow (117). Expression of IFN-related genes was extracted and plotted as log-normalised gene expression levels in AT2 cells from control and COPD donors. Seurat's AddModuleScore() function was used to compute a gene set score for a custom IFN program using the genes listed in __Fig. S4E __and to analyse the IFN gene set scores in AT2 cell subclusters identified in (74). Briefly, average gene expression scores were computed for the gene set of interest, and the expression of control features (randomly selected) was subtracted as described in (118).

      Fig. S4 E and F. E. Expression values for the indicated genes of the IFN pathway from an external scRNA-seq dataset of AT2 cells from COPD patients and healthy controls (74). Y-axis shows log-normalized gene expression levels. F. Combined gene set score of the genes shown in (E) in different subsets of AT2 cells from (74). The IFN signature genes were identified in our integrative analysis of TWGBS and RNA-seq in sorted AT2 cells. __ __

      • The paragraph starting on line 173 feels a little redundant when we know there is RNA available to test if the differential DNAm links to altered gene expression - this selected of example regions/genes would be better placed after the gene expression has been reported, at which point you could say whether the linked genes displayed altered transcription.

      Response:

      The current structure (with DNA methylation, followed by RNA-seq and integration) is intentional and serves several important purposes. As this is the first genome-wide high-resolution COPD DNA methylation study of AT2, we aimed to describe the methylation landscape independently of gene expression (noting the limitation of current understanding of how DNA methylation regulates expression). This early focus on DMRs lays clear groundwork by highlighting potential regulatory elements and pathways that could be disrupted, independent of or even before corroborative transcriptional data. Additionally, positioning these examples early in the narrative helps to frame subsequent gene expression analyses. Once RNA data are introduced later, the reader can directly compare the methylation patterns with transcriptional outcomes, thereby enhancing the overall story. In other words, by first showcasing disease-relevant methylation changes, we underscore a hypothesis that these epigenetic modifications are functionally meaningful. The later integration of gene expression data then serves as a confirmatory or complementary layer, rather than the sole basis for inferring biological significance. This is important as we still do not fully understand the function of DNA methylation outside promoters, and its role is also important for splicing, 3D genome organisation, non-coding RNA regulation, enhancer regulation, etc.

      • Similarly, the TF enrichment analysis is great but maybe would have added value to be done on DNA regions later shown to be linked to differential expression - was there different enrichment at DNA regions that are vs are not associated with altered expression? And could you test in vitro whether changing methylation of DNA (maybe a blunt too like 5-aza would be ok) alters TF binding (cut+run/ChIP?). Furthermore, it would be interesting to understand the TF sensitivity analysis within the context of positive versus negative DNA methylation:gene expression correlations.

      Response:

      As suggested by the reviewer, we now performed the TF enrichment analysis using the DMRs with a high correlation (|correlation coefficient|>0.5) between methylation and expression (Figure S3D) and expanded the method section to include TF analysis. We observed ETS domain motifs enriched at hypomethylated regions. They prefer unmethylated DNA (MethylMinus) and are therefore expected to bind with higher affinity to the respective DMRs in COPD. We agree with the reviewer that further verifying altered TF binding using cut&run or ChIP assays would be very interesting, but it is out of the scope of this manuscript. Such analysis is technically very challenging to perform with low numbers of primary AT2 cells and will be the focus of our follow-up mechanistic studies.

      CHANGE IN THE MANUSCRIPT____:

      Additionally, motif analysis of DMRs that were highly correlated (|Spearman correlation coefficient| > 0.5) with DEGs revealed a prominent enrichment of the cognate motif for ETS family transcription factors, such as ELF5, SPIB, ELF1 and ELF2 at hypomethylated DMRs (Fig. S3D). Interestingly, SPIB was shown to facilitate the recruitment of IRF7, activating interferon signaling (71)*, and our WGBS data uncovers SPIB motifs at hypomethylated DMRs, which aligns with its binding preferences at unmethylated DNA (methyl minus, Fig. S3D). *

      Figure S3D: Enrichment of methylation-sensitive binding motifs at hypo- (right) and hypermethylated (left) DMRs, using DMRs with a high correlation (|Spearman correlation coefficient| > 0.5) between methylation and gene expression. Methylation-sensitive motifs were derived from Yin et al (64). Transcription factors, whose binding affinity is impaired upon methylation of their DNA binding motif, are shown in red (Methyl Minus), and transcription factors, whose binding affinity upon CpG methylation is increased, are shown in blue (Methyl Plus).

      (Methods) To obtain information about methylation-dependent binding for transcription factor motifs which are enriched at DMRs, the results of a recent SELEX study (64)* were integrated into the analysis. They categorised transcription factors based on the binding affinity of their corresponding DNA motif to methylated or unmethylated motifs. Those whose affinity was impaired by methylation were categorised as MethylMinus, while those whose affinity increased were categorised as MethylPlus. A motif database of 1,787 binding motifs with associated methylation dependency was constructed. The log odds detection threshold was calculated for the HOMER motif search as follows. Bases with a probability > 0.7 got a score of log(base probability/0.25); otherwise, the score was set to 0. The final threshold was calculated as the sum of the scores of all bases in the motif. Motif enrichment analysis was carried out against a sampled background of 50,000 random regions with matching GC content using the findMotifsGenome.pl script of the HOMER software suite, omitting CG correction and setting the generated SELEX motifs as the motif database. *

      __Methods: __ • The authors should include more detail of the TWGBS rather than directing the reader to a previous publication. Also DNA concentration post bisulfite conversion would be a useful metric to provide.

      __Response: __

      Following the suggestion, we have now expanded the details of TWGBS in the methods part of the manuscript. Due to limited space, we did not include a detailed protocol but instead referred to a published step-by-step protocol (55). Of note, we do not measure DNA concentration post-bisulfite conversion but consistently use the starting input of 30 ng of genomic DNA across all samples.

      __CHANGE IN THE MANUSCRIPT____: __

      (Methods): 15 pg of unmethylated DNA phage lambda was spiked in as a control for bisulfite conversion. Tagmentation was performed in TAPS buffer using an in-house purified Tn5 assembled with load adapter oligos (55) at 55 {degree sign}C for 8 min. Tagmentation was followed by purification using AMPure beads, oligo replacement and gap repair as described (55). Bisulfite treatment was performed using EZ DNA Methylation kit (Zymo) following the manufacturer's protocol.

      *The T-WGBS library preparations were performed for all donors in parallel and sequenced in a single batch to minimize batch effects and technical variability. *

      • Differential DNA methylation analysis: It is stated that DNA regions had to contain 3 CpG sites but was this within a defined DNA size range?

      Response:

      The maximum distance between individual CpGs within DMR was set to 300 bp. To clarify, we added that information to the methods part.

      __CHANGE IN THE MANUSCRIPT____: __

      *"regions with at least 10% methylation difference and containing at least 3 CpGs with a maximum distance of 300 bp between them. *

      • Refence genome only provided for RNAseq not TWGBS?

      __Response: __We used hg19 as the reference genome. The information on the reference genome for DNA methylation analysis was provided in the methods L574 (original manuscript_: "The reads were aligned to the transformed strands of the hg19 reference genome using BWA MEM")

      • The tables do not appear in the PDF and I struggled to tally to the "Dataset" files provided if that is what they were referring to?

      Response:

      Full tables (uploaded as Datasets in the manuscript central due to their size) were uploaded together with the manuscript files. They are quite large and will not convert to pdf, so they may not have been included in the merged pdf file. We assume that they should be available to the reviewers with the other files and will clarify that with the editorial staff in the resubmission cover letter.

      • For the gene expression analysis, can it be made clearer that a full analysis was done on COPD I samples. It is a little confusing to the reader as this was not done for DNAm so might be assumed the same targeted analysis on only genes found to be differentially expressed between control and COPD II-IV, but that cannot be the case as an overlap of COPD1 vs COPD II-IV genes if provided. For this overlap, do genes show the same effect direction?

      __Response: __

      To clarify, for the RNA-seq analysis, we performed DEG analysis for no-COPD versus COPD II-IV, as well as no-COPD versus COPD I. We then took all differentially expressed genes (presented in the Venn diagram) and plotted them for all samples as a heatmap. To split the genes into groups displaying similar effect directions, we applied a clustering approach and identified 3 main signatures. Cluster 3 primarily comprises genes unique to COPD I samples, which are associated with the adaptive immune system and hemostasis (Fig. 4E). In the other two clusters, we mainly observe a transitioning pattern from control to severe COPD samples, correlating with the FEV1 values of the patients. This has now been clarified in the manuscript.

      • Replication is difficult on these studies as the samples are so difficult to come by. Also limited by sample size for the same reason. It doesn't mean the study is not worth doing and the data are still valuable. However, it may be pertinent to include technical validation of a few regions of interest, acknowledge the limitation (along side strengths) in the discussion, and perhaps provide actual p value rather than blanket Response:

      We thank the reviewer for acknowledging the replication challenges for studies working with sparse human material and hard-to-purify cell populations. Following the reviewer's suggestion, we have now included a strengths and limitations section in the discussion where we summarised the points highlighted by both reviewers.

      Regarding technical validation, we would like to note that the whole genome bisulfite sequencing (WGBS) technology, as well as the tagmentation-based WGBS (T-WGBS), have been validated in the past few years in several publications (e.g., PMID: 24071908) and shown to yield reliable DNA methylation quantification in comparison to other technologies (PMID: 27347756). For us, technical validation using alternative methods (e.g. bisulfite sequencing or pyrosequencing) is difficult as it requires significantly more input DNA than the low-input T-WGBS we have performed and obtaining sufficient amounts of material from primary human AT2 cells (especially from severe COPD) is not possible with the size of tissue we can access. However, while establishing the T-WGBS for this project, we initially validated our approach using Mass Array, a sequencing-independent method. For this, we performed T-WGBS on the commercially available smoker and COPD lung fibroblasts and selected 9 regions with different methylation levels for validation using a Mass Array. We obtained an excellent correlation between both methods, providing technical validation of T-WGBS and our analysis workflow. This validation was published in our earlier manuscript (PMID: 37143403), but we provided the data below for convenience.

      Scatter plots showing correlation of average methylation obtained with T-WGBS and Mass Array from COPD and smoker fibroblasts. Each dot represents one region with varying methylation levels. The blue diagonal represents the linear regression. Shaded areas are confidence intervals of the correlation coefficient at 95%. Correlation coefficients and P values were calculated by the Pearson correlation method.

      To enable further validation and follow-up by the community, we included the full list of DMRs, associated p-values and additional information for DNA methylation analysis (DMR width, n.CpGs, MethylDiff, etc) in Table 3 (Table_3_wgbs_dmr_info.xlsx) and the information about DEGs from RNA-seq in Table 6 (Table_6_RNAseq_DEG_info.xlsx).

      • It isn't clear to me if DNA and RNA are from the same cells? The results say "cells matching those used for T-WGBS" but the methods suggest separate extractions so not the same cells? If they are not the same cells a comment on the implications of this should be included in the discussion for example, potentially some differences in cell type composition, storage time etc.

      Response:

      Lung tissue samples were freshly cryopreserved, and H&E slides derived from exemplary pieces of the tissue analyzed. Once we had a group of at least 3 samples comprising one non-COPD and 2 COPD samples, we processed them in parallel to limit sorting variation between control and disease samples. The sorted cells were counted, aliquoted and pelleted at 4{degree sign}C before flash freezing and storing at -80{degree sign}C. The storage time of the cell pellets varied between the donors. RNA and DNA were isolated from cell pellets collected from the same FACS sorting experiment; therefore, we do not expect differences in cell type composition. In addition, RNA and DNA isolation were performed for all sorted pellets in parallel. All library preparations for TWGBS and RNA-seq were performed for all donors in parallel and sequenced in a single batch to minimise batch effects and technical variability. This has now been clarified in the methods part of the manuscript.

      __CHANGE IN THE MANUSCRIPT____: __

      To minimize potential technical bias, samples from no COPD and COPD donors were processed in parallel in groups of 3 (one no COPD and 2 COPD samples).

      RNA and genomic DNA for RNA-seq and TWGBS were isolated from identical aliquots of sorted cell pellets.

      Genomic DNA was extracted from 1-2x104 sorted alveolar epithelial cells isolated from cryopreserved lung parenchyma from 11 different donors in parallel using QIAamp Micro Kit

      The TWGBS library preparations were performed for all donors in parallel and sequenced in a single batch to minimize batch effects and technical variability.* *

      RNA was isolated from flash-frozen pellets of 2x104 sorted AT2 cells from 11 different donors in parallel.

      The RNA-seq library preparation for all donors was performed in parallel and all samples were sequenced in a single batch to minimize batch effects and technical variability.

      • Line 193 the authors say "Since DMRs were overrepresented at cis-regulatory sites...." - "cis" needs to be defined. If you link DNAm regions to gene via "closest gene" does this not automatically mean you're outputs will be cis? Just needs better definition/explanation.

      Response:

      The term "cis‐regulatory sites" in our manuscript is intended to denote regulatory elements-such as enhancers, promoters, and other nearby control regions-that reside on the same chromosome and close to the genes they regulate. While it's true that linking a DMR to its closest gene captures a cis association, our phrasing emphasises that the DMRs are enriched specifically at these functional regulatory elements (Fig. 2E) rather than being randomly distributed. This usage aligns with established conventions in the field. To avoid any misunderstandings, we have now changed the term to gene regulatory sites.

      __CHANGE IN THE MANUSCRIPT____: __

      *We changed the "cis-regulatory sites" to "gene regulatory sites" *

      __Minor comments: __

      Line 157: "we identified site-specific differences....". Change to region specific?

      Response:

      This has now been corrected as suggested.

      Line 102-103: needs a reference for the statement "Alterations in DNA methylation patterns have been implicated......"

      Response:

      Following the reviewer's suggestion, we added the relevant references (34-36) to this statement.

      Line 266 - what does "strong dysregulation" mean? Large fold change, very significant?

      Response:

      We removed the word "strong" from this sentence.

      Lines 423-425 - statement needs a reference

      Response:

      Following the reviewer's suggestion, we added the relevant reference to this statement.

      Line 428 - word missing between "epigenetic , we"?

      Response:

      This has now been corrected. The text reads: "Through treatment with a demethylating drug and targeted epigenetic editing, we demonstrated the ability to modulate..."

      Prior studies are well references, text and figures are clear and accurate.

      __Reviewer #2 (Significance (Required)): __

      This study has several strengths:

      1) Sample collection and characterisation. AT2 cells are incredibly hard to come by and the authors should be commended to generating the samples. However, proximity to cancer is always a potential issue, especially in epigenetic studies. Is it feasible to include any analysis to show the samples derived from those with cancer don't drive the changes observed? Even a high level PCA or an edit of fig 2A with non-cancer in a different colour in supplemental - looks like there is one outlier, is that a non-cancer? Or a correlation of change in beta between control and cancer/COPD and control and non-cancer:COPD (for want a better phrase!). just an indicator that the non-cancer COPD samples are not driving differences.

      Response:

      We thank the reviewer for highlighting the value of generating data from hard-to-work-with AT2 populations and bringing up the important point of cancer proximity, which we considered very carefully when designing our study. To match our samples across the cohort, all the no-COPD, COPD I, and two of the COPD II-IV distal lung samples were obtained from cancer resections. In addition to other characteristics, like age, BMI and smoking status, we also matched the donors by cancer type (all profiled donors had squamous cell carcinoma). We collected lung tissue as far away from the carcinoma as possible and sent representative pieces for histological analysis by an experienced lung pathologist to confirm the absence of visible tumours. In addition, to ensure that our data represents COPD-relevant signatures, we intentionally included samples from three COPD donors undergoing lung resections (without a cancer background) in the profiling.

      Following the reviewer's suggestion, to investigate the potential impact of non-cancer samples on driving the observed differences, we carefully checked the PCAs for both DNA methylation and RNA-seq. We could not identify a clear separation of no-cancer COPD samples from the cancer COPD samples (or other cancer samples) in any examined PCs, indicating no cofounding effect of cancer samples. We observed that one sample contributing to PC2 is a non-cancer sample, but this was a rather sample-specific effect, as the other two non-cancer samples clustered together with the other severe COPD samples with a cancer background. Notably, in our DNA methylation data, we do not observe typical features of cancer methylomes, like global loss of DNA methylation or aberrant methylation of CpG islands (e.g., in tumour suppressor genes) (see Fig. 2A), further suggesting that we do not "pick up" confounding cancer signatures in our data.

      Following the comments from both reviewers, to clarify that point, we added the information about cancer and non-cancer samples to the PCA figures for DNA methylation (new Fig. 2B) and RNA-seq (new Fig. 3A) data in the revised manuscript, as shown below

      CHANGE IN THE MANUSCRIPT____:

      COPD samples from donors with a cancer background clustered together with the COPD samples from lung resections, confirming that we detected COPD-relevant signatures (Fig. 2B).

      Fig. 2B.* Principal component analysis (PCA) of methylation levels at CpG sites with > 4-fold coverage in all samples. COPD I and COPD II-IV samples are represented in light and dark green triangles, respectively, and no COPD samples as blue circles. COPD samples without a cancer background are displayed with a black contour. The percentage indicates the proportion of variance explained by each component. *

      Unsupervised principal component analysis (PCA) on the top 500 variable genes revealed a clear influence of the COPD phenotype in separating no COPD and COPD II-IV samples, as previously observed with the DNA methylation analysis, irrespective of the cancer background of COPD samples (Fig.3A, Fig. S2B).

      *Principal component analysis (PCA) of 500 most variable genes in RNA-seq analysis. PCA 1 and 2 are shown in Fig.3A, PCA 1 and 4 in Fig.S2B. COPD I and COPD II-IV samples are represented in light and dark green triangles, respectively, and no COPD samples as blue circles. COPD samples without a cancer background are displayed with a black contour. The percentage indicates the proportion of variance explained by each component. *

      2) This is the first time DNAm has been profiled in AT2 cells. It is incredibly difficult, valuable and novel data that will increase the fields capability technically, their understanding of functional mechanisms and potential translation considerably. It's audience will be primarily translational respiratory however the fundamental science aspect of gene expression regulation by DNA methylation with have wider reach across developmental and disease science.

      Response:

      We thank the reviewer for recognising the uniqueness and novelty of our study and highlighting the value and potential impact of our datasets for the lung field.

      3) the functional analysis using targeted CRISPR-Cas9 is very well done and adds impact.

      Response:

      We thank the reviewer for recognising the strengths and added value of the functional analysis using epigenetic editing.

      __Potential weaknesses/areas for development __

      I feel the main weakness is the in the section integrating DNA methylation and gene expression. The rationale for a focus on various aspects, for example inversely related DNAm/gene expression pairs, the IFN pathway and IRF9, are not clear. Also further understanding of the differences between DNAm associated genes and non-DNAm associated genes could be expanded, at the pathway level, TF regulation level, effect size level (are DNAm associated changes to gene expression larger, enriched for earlier differential expression)

      Response:

      Our rationale for focusing on the inversely related DNAm/gene expression pairs in promoter proximal is purely data-driven, as they represent the biggest group in our data (Fig. 4A-B). Among those negatively correlated genes, we observed the strongest enrichment for the IFN pathway (Fig. C), making it an obvious, data-driven target for further studies. The negative correlation of expression and methylation for IFN pathway genes could be validated in 5-AZA assays in A549 cells (Fig. 5A). Next, we made an interaction network analysis showing IRF9 and STAT2 as master regulators (Fig. 5B) of the negatively correlated IFN genes. As IRF9 itself displayed a negative correlation between DNA methylation and expression (Fig. 5C), we used the associated DMR for further epigenetic editing (Fig. 5D-E). We performed the additional requested analyses of the enhancer-associated changes and genes, as described above. We fully agree with the reviewer that our data sets are a great resource and can be further used to elaborate on other relationships of DNA methylation and RNA expression or other pathways, but this is out of the scope of this study. To enable further studies by the research community, we provide all necessary information about DMRs and DEGs in the associated supplementary tables and the raw data through the EGA, as well as the CRISPRa editing assay.

      The authors could comment on potential masking of differences between 5hmC and mC and the implications it may have

      Response:

      We thank the reviewer for bringing up this important point. Indeed, bisulfite sequencing cannot differentiate between methylated and hydroxymethylated cytosines; hence, some of the methylated sites may be hydroxymethylated. However, the overall levels of hydromethylation in differentiated adult tissues are very low (except for the brain), orders of magnitude lower compared to DNA methylation. Following the reviewer's suggestion, we have added a sentence in the limitation section of the discussion to clarify that point.

      __CHANGE IN THE MANUSCRIPT: __

      In addition, while WGBS provides unprecedented resolution and high coverage of the DNA methylation sites across the genome, it does not allow distinguishing 5-methylcytosine from 5-hydroxymethylcytosine. Therefore, we cannot exclude that some methylated sites we detected are 5-hydroxymethylated. However, the 5-hydroxymethylcytosine is present at very low levels in the lung tissue (97)*. ** *

      Furthermore, while the rationale for looking at DMRs is clear, especially given the sample number, I am interested to understand what proportion of the assayed CpGs "fit" within the cut off stipulations of the DMR analysis - that is, is their potentially COPD effects at sparse CpG regions/individual CpG sites that are not being identified. A comment on this would be useful and seems the strength of profiling genome wide. I'm happy genome wide is beneficial it just feels a little circular that the authors have chosen whole genome to avoid the bias of the Illumina array and a focus on promotors, but have primarily reported promoter DNAm. This caught my attention again in the discussion where the authors state that cis-regulatory regions were also identified in their fibroblast data .....is this finding a factor of the analysis performed? (also a comparison of regions Identified in AT2 cells versus fibroblasts would be really interesting for a future paper)

      Response:

      We decided to focus our analysis on regions rather than individual CpG sites when looking at differential methylation, as DNA methylation is spatially correlated, and methylation changes in larger regions are more likely to have a biological function. Extending the analysis to single CpG sites would require a higher number of samples for a reliable analysis compared to the DMR analysis (as mentioned by the reviewer).

      Of note, we addressed the platform comparison between Illumina array technology and WGBS in our previous fibroblast study (PMID: 37143403), where we compared our WGBS data with the published 450k array data of COPD parenchymal fibroblasts (Clifford et al., 2018). We observed only a marginal overlap between the CpGs from our DMRs and the CpGs probes available on the array (which was due to the differences in technologies used and the limited coverage of the 450K array in comparison to our genome-wide approach, in which we covered 18 million CpGs). Out of the 6279 DMRs identified in our fibroblast study, only 1509 DMRs overlapped with at least one CpG probe on the 450K array, and after removing low-quality CpGs from the array data, only 1419 DMRs were left. This comparison highlighted the increased resolution of the WGBS compared to Illumina arrays.

      The reason why we focused on promoter proximal DMRs are the following: 1) the assignment of the enhancer elements in AT2 to the corresponding gene is still too inaccurate in the absence of AT2 specific enhancer chromatin maps 2) regulation at enhancers by DNA methylation might be more complex and might change (increase or attenuate) binding affinities of certain transcription factors (Fig.2H), which might lead to gene expression changes or 3) methylation changes might be an indirect effect of differential TF binding PMID: 22170606). However, we agree with the reviewer that despite these limitations, expanding the analysis beyond promoters adds value to the manuscript; hence, as described above, we expanded the analysis of non-promoter regions, including enhancers, in the revised manuscript.

      We thank the reviewer for the suggestion to compare the regions identified in AT2 cells and fibroblasts in a future paper.

      My expertise:Respiratory, cell biology, epigenetics.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      This study aim to understand the molecular mechanisms underlying dysfunction in AT2 cells in COPD, by profiling bulk genome wide DNA methylation using Tagmentation-based whole-genome bisulfite sequencing (T-WGBS) and RNA sequencing in selectively sorted primary AT2 cells. The study stands out in it's sequencing breadth and use of an incredibly difficult cell population, and has the potential to add substantially to our mechanistic understanding of epigenetic contributions to COPD. A further highlight is the concluding aspect of the study where the authors undertook targeted modification of specific CpG methylation, provided direct, site-specific evidence for transcriptional regulation by CpG methylation.

      Major comments:

      The authors clearly show that there is DNA methylation alteration in AT2 cells from COPD individuals that links functional to gene expression at some level. However, I think the statement "to identify genome-wide changes associated with COPD development and progression..." and similar other references to disease development understanding is not accurate given the DNA methylation primary comparison is between control and moderate to severe COPD, with no temporal detail or evidence that they drive progression rather than are a result of COPD development. The paragraph starting on line 186 where this is a addressed to some extent is quite vague and doesn't really provide confidence that DNAm dysregulation occurs at an early stage in this context. This can be addressed by changing the focus/style of the text.

      Results comments and suggestions:

      For the integrated analysis, there is a focus on DMRs in promoters with very little analysis on other regions. The paragraph starting on line 317 describes some analysis on enhancers but is very brief, doesn't include information on how many/which DMRs were included, making it hard to interpret the impact of the 147 DMRs and 93 genes identified - is this nearly all DMRs and genes analysed or very few? A comparison to the promoter analysis would be of interest. Especially as the targeted region followed up with lovely functional assessment in the last sections is a gene body DMR, not a promoter DMR.

      • Lines 299-301 - I'm not sure the graph in Fig S3A support the conclusion that there was a preferential negative relationship between DNAm and gene expression. Looks like there are a substantial number of cases where a positive relationship is observed and this needs to be acknowledged.

      • Line 307 - what are the "analysed DEGs"? Are they the methylation associated genes?

      • Line 307-309 - "Among the analyzed DEGs, 76.5% (492) displayed a negative correlation (16.8% of the total DEGs), indicating a possible direct regulation by DNA methylation, while 23.5% (151) showed a positive correlation between gene expression and DNA methylation" - are the authors suggesting the positive correlation doesn't indicate direct regulation?

      • Line 313 - why did the authors focus on only negatively correlated genes to identify their top dysregulated pathway of IFN signalling? Why not do pathway analysis on the DNAm associated genes separately to identify DNAm associated pathways?

      • A comparison of the gene expression data with previous data in AT2 cell/single cell data would strengthen the gene expression section.

      • The paragraph starting on line 173 feels a little redundant when we know there is RNA available to test if the differential DNAm links to altered gene expression - this selected of example regions/genes would be better placed after the gene expression has been reported, at which point you could say whether the linked genes displayed altered transcription.

      • Similarly, the TF enrichment analysis is great but maybe would have added value to be done on DNA regions later shown to be linked to differential expression - was there different enrichment at DNA regions that are vs are not associated with altered expression? And could you test in vitro whether changing methylation of DNA (maybe a blunt too like 5-aza would be ok) alters TF binding (cut+run/ChIP?). Furthermore it would be interesting to understand the TF sensitivity analysis within the context of positive versus negative DNA methylation:gene expression correlations.

      Methods:

      • The authors should include more detail of the TWGBS rather than directing the reader to a previous publication. Also DNA concentration post bisuphite conversion would be a useful metric to provide.

      • Differential DNA methylation analysis: It is stated that DNA regions had to contain 3 CpG sites but was this within a defined DNA size range?

      • Refence genome only provided for RNAseq not TWGBS?

      • The tables do not appear in the PDF and I struggled to tally to the "Dataset" files provided if that is what they were referring to?

      • For the gene expression analysis, can it be made clearer that a full analysis was done on COPD I samples. It is a little confusing to the reader as this was not done for DNAm so might be assumed the same targeted analysis on only genes found to be differentially expressed between control and COPD II-IV, but that cannot be the case as an overlap of COPD1 vs COPD II-IV genes if provided. For this overlap, do genes show the same effect direction?

      • Replication is difficult on these studies as the samples are so difficult to come by. Also limited by sample size for the same reason. It doesn't mean the study is not worth doing and the data are still valuable. However, it may be pertinent to include technical validation of a few regions of interest, acknowledge the limitation (along side strengths) in the discussion, and perhaps provide actual p value rather than blanket < p 0.1, seems very lenient but may all be super significant (this may already be in the tables I wasn't able to find).

      • It isn't clear to me if DNA and RNA are from the same cells? The results say "cells matching those used for T-WGBS" but the methods suggest separate extractions so not the same cells? If they are not the same cells a comment on the implications of this should be included in the discussion for example, potentially some differences in cell type composition, storage time etc.

      • Line 193 the authors say "Since DMRs were overrepresented at cis-regulatory sites...." - "cis" needs to be defined. If you link DNAm regions to gene via "closest gene" does this not automatically mean you're outputs will be cis? Just needs better definition/explanation.

      Minor comments:

      • Line 157: "we identified site-specific differences....". Change to region specific?

      • Line 102-103: needs a reference for the statement "Alterations in DNA methylation patterns have been implicated......"

      • Line 266 - what does "strong dysregulation" mean? Large fold change, very significant?

      • Lines 423-425 - statement needs a reference

      • Line 428 - word missing between "epigenetic , we"?

      • Prior studies are well references, text and figures are clear and accurate.

      Significance

      This study has several strengths:

      1) Sample collection and characterisation. AT2 cells are incredibly hard to come by and the authors should be commended to generating the samples. However, proximity to cancer is always a potential issue, especially in epigenetic studies. Is it feasible to include any analysis to show the samples derived from those with cancer don't drive the changes observed? Even a high level PCA or an edit of fig 2A with non-cancer in a different colour in supplemental - looks like there is one outlier, is that a non-cancer? Or a correlation of change in beta between control and cancer/COPD and control and non-cancer:COPD (for want a better phrase!). just an indicator that the non-cancer COPD samples are not driving differences.

      2) This is the first time DNAm has been profiled in AT2 cells. It is incredibly difficult, valuable and novel data that will increase the fields capability technically, their understanding of functional mechanisms and potential translation considerably. It's audience will be primarily translational respiratory however the fundamental science aspect of gene expression regulation by DNA methylation with have wider reach across developmental and disease science.

      3) the functional analysis using targeted CRISPR-Cas9 is very well done and adds impact.

      Potential weaknesses/areas for development:

      I feel the main weakness is the in the section integrating DNA methylation and gene expression. The rationale for a focus on various aspects, for example inversely related DNAm/gene expression pairs, the IFN pathway and IRF9, are not clear. Also further understanding of the differences between DNAm associated genes and non-DNAm associated genes could be expanded, at the pathway level, TF regulation level, effect size level (are DNAm associated changes to gene expression larger, enriched for earlier differential expression) The authors could comment on potential masking of differences between 5hmC and mC and the implications it may have

      Furthermore, while the rationale for looking at DMRs is clear, especially given the sample number, I am interested to understand what proportion of the assayed CpGs "fit" within the cut off stipulations of the DMR analysis - that is, is their potentially COPD effects at sparse CpG regions/individual CpG sites that are not being identified. A comment on this would be useful and seems the strength of profiling genome wide. I'm happy genomewide is beneficial it just feels a little circular that the authors have chosen whole genome to avoid the bias of the Illumina array and a focus on promotors, but have primarily reported promoter DNAm. This caught my attention again in the discussion where the authors state that cis-regulatory regions were also identified in their fibroblast data ..... is this finding a factor of the analysis performed? (also a comparison of regions Id'ed in AT2 cells versus fibroblasts would be really interesting for a future paper)

      My expertise: Respiratory, cell biology, epigenetics.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      In this manuscript, Gruber et al perform serial EM sections of the antennal lobe and reconstruct the neurites innervating two types of glomeruli one that is narrowly tuned to geosmin and one that is broadly tuned to other odours. They quantify and describe various aspects of the innervations of olfactory sensory neurons (OSNs), uniglomerlular projection neurons (uPNs), and the multiglomerular Local interneurons (LNs) and PNs (mPNs). They find that narrowly tuned glomeruli had stronger connectivity from OSNs to PNs and LNs, and considerably more connections between sister OSNs and sister PNs than the broadly tuned glomeruli. They also had less connectivity with the contralateral glomeruli. These observations are suggestive of strong feed-forward information flow with minimal presynaptic inhibition in narrowly tuned glomeruli, which might be ecologically relevant, for example, while making quick decisions such as avoiding a geosmin-laden landing site. In contrast, information flow in more broadly tuned glomeruli show much more lateralisation of connectivity to the contralateral glomerulus, as well as to other ipsilateral glomeruli. 

      The data are well presented, the manuscript clearly written, and the results will be useful to the olfaction community. I wonder, given the hemibrain and FAFB datasets exist, whether the authors have considered verifying whether the trends they observe in connectivity hold across three brains? Is it stereotypic? 

      We appreciate the reviewer’s positive view of our study and their thoughtful and relevant comment on the issue of individual variation. We agree in that this is a very important question and notice that it was also asked for by the second Reviewer. It reflects both our limited understanding of the range of individual variation in synaptic connectivity—whether in flies, humans, or other species—and the challenge of determining which of the differences observed in our study are stereotypical features of each glomerulus type. Undoubtedly this criticism addresses a crucial problem of practically all connectome studies so far and for which there is no immediate solution. This type of studies requires so much time, efforts and money that increasing the number of samples is seldom feasible. The Reviewer wonders if we could compare our data with that made available by two of the largest connectome studies of Drosophila. This appeared to us to be a very good idea and we have tried to follow the advice but, unfortunately, it was impracticable because of the reasons we explain below. The hemibrain data cannot be used for this purpose because it does not contain the full glomerulus DA2 (Schlegel et al., 2021). A different problem hindered us from using the FAFB dataset, the other dataset mentioned by the Reviewer. In this case the three glomeruli were sectioned and reconstructed but the dataset lacks an annotated list of all synaptic connections corresponding to each glomerulus. Such annotation (a compendium of all synaptic connections inside each glomerulus informing for each connection which type of neuron provides the presynaptic site and which the postsynaptic site) is essential for direct comparison with our data. It is important to keep in mind that the current analytical tools available for the use of these datasets (e.g., NeuPrint, FlyWire and CATMAID) do not offer the ability to extract data on synapses exclusively from the glomerular volume of DA2 or DL5. In this case, it certainly is theoretically possible to obtain the data by doing ourselves the annotation. However, such a study will demand so much time, efforts and financial resources, which we believe would not be justified solely to increase the number of individuals from one to two. Instead, our manuscript includes a comparison of the OSN connectivity in VA1v and DL5 using the hemibrain dataset published by Schlegel et al. (2021) (see revised manuscript: lines 311–315; 431–434; 558–562; 602–606).

      Beyond the opinion, that we share in full with the Reviewer, that a comparison including three flies will be better than a comparison made with one glomerulus of each type we are still challenged by the question of which -if any- of the differences are stereotypic. The clarification of what are stereotypical differences between particular glomeruli in features as those discussed in our study and what is simply differences within the normal range of individual variation is basically a statistical problem. A first attempt at a comprehensive comparison focusing on intra- and inter-individual variability was recently made by comparing two connectome datasets from two different Drosophila individuals (Dorkenwald et al., 2024; Schlegel et al., 2024). At present, it is still unclear how many samples are needed to make a statistically robust comparison of olfactory synaptic circuits in adult flies—perhaps 3, 6, or even 18 individuals?  

      Reviewer #2 (Public Review):

      The chemoreceptor proteins expressed by olfactory sensory neurons differ in their selectivity such that glomeruli vary in the breadth of volatile chemicals to which they respond. Prior work assessing the relationship between tuning breadth and the demographics of principal neuron types that innervate a glomerulus demonstrated that narrowly tuned glomeruli are innervated more projection neurons (output neurons) and fewer local interneurons relative to more broadly tuned glomeruli. The present study used high-resolution electron microscopy to determine which synaptic relationships between principal cell types also vary with glomerulus tuning breadth using a narrowly tuned glomerulus (DA2) and a broadly tuned glomerulus (DL5). The strength of this study lies in the comprehensive, synapse-level resolution of the approach. Furthermore, the authors implement a very elegant approach of using a 2-photon microscope to score the upper and lower bounds of each glomerulus, thus defining the bounds of their restricted regions of interest. There were several interesting differences including greater axo-axonic afferent synapses and dendrodentric output neuron synapses in the narrowly tuned glomerulus, and greater synapses upon sensory afferents from multiglomerular neurons and output neuron autapses in the broadly tuned glomerulus.     The study is limited by a few factors. There was a technical need to group all local interneurons, centrifugal neurons, and multiglomerular projection neurons into one category ("multiglomerular neurons") which complicates any interpretations as even multiglomerular projection neurons are very diverse. Additionally, there were as many differences between the two narrowly tuned glomeruli as there were comparing the narrowly and broadly tuned glomeruli. Architecture differences may therefore not reflect differences in tuning breadth, but rather the ecological significance of the odors detected by cognate sensory afferents. Finally, some synaptic relationships are described as differing and others as being the same between glomeruli, but with only one sample from each glomerulus, it is difficult to determine when measures differ when there is no measure of inter-animal variability. If these caveats are kept in mind, this work reveals some very interesting potential differences in circuit architecture associated with glomerular tuning breadth.

      This work establishes specific hypotheses about network function within the olfactory system that can be pursued using targeted physiological approaches. It also identifies key traits that can be explored using other high-resolution EM datasets and other glomeruli that vary in their tuning selectivity. Finally, the laser "branding" technique used in this study establishes a reduced-cost procedure for obtaining smaller EM datasets from targeted volumes of interest by leveraging the ability to transgenically label brain regions in Drosophila.

      CLASSIFICATION OF NEURONAL TYPES

      We agree that grouping diverse types of interneurons into a single category (referred to as MGNs) limits the ability to make interpretations about synaptic similarities and differences between specific neuronal types. This was, however, an unavoidable compromise resulting from our decision to generate a comprehensive, synapse-level reconstruction of the restricted regions encompassing the DA2 and DL5 glomeruli. As both reviewers have noted, this approach offers significant value and we hope the Editor will also recognize that this limitation does not prevent readers from gaining important and novel insights into the synaptic circuitry of these two glomeruli.  

      Similar to the approach taken by Tobin at al. (2017) we prioritized producing a densely reconstructed neuropile, in which no synapses were omitted (Tobin et al., 2017). The downside of this method is that not all synaptic connections could be reliably assigned to specific neuronal types, with about 12% remaining unassigned." We anticipate that future research, supported by advances in semi-automated tracing methods, improved imaging technologies, and increased personnel resources, will allow not only for the generation of more complete connectomes of the entire brain (Scheffer et al., 2020; Zheng et al., 2018), but also, for the accurate reconstruction and classification of individual synapses—even in highly complex regions such as the olfactory glomeruli. We also expect that a second complete connectome of a male Drosophila will soon become available, which will provide valuable opportunities for comparisons across individuals and between male and female brains in future studies.

      INTERGLOMERULAR DIFFERENCES

      Thank you for this insightful comment. It is indeed true that despite both DA2 and VA1v being narrowly tuned glomeruli, they exhibit considerable differences in specific connectivity features (e.g., relative synaptic strengths above certain thresholds) and that those differences can be as pronounced as those observed between DA2 and the broadly tuned DL5. For this reason, comparing each individual glomerulus to every other is not a practical or informative approach. To derive robust interpretations, we focused instead on whether two glomeruli that share a particular functional characteristic—namely, being narrowly tuned for single odorants—also share connectivity patterns that distinguish them from a broadly tuned reference glomerulus.

      Our results support this. Furthermore, additional connectomics data reinforce our conclusions.

      For example, OSN-OSN connectivity is stronger in the two narrowly tuned glomeruli (DA2 and VA1v) relative to the broadly tuned glomerulus (DL5). While these pairwise differences alone are not conclusive, the finding that the two narrowly tuned glomeruli studied here share features that distinguish them from the broadly tuned glomerulus supports our interpretation. We found further support for this idea in the data reported by Schlegel et al. (2021) further. In that dataset, other narrowly tuned glomeruli (DA1, DL3, and DL4) also exhibit stronger OSNOSN connectivity than other broadly tuned glomeruli (DM1 or DM4).

      We do not deny that there are many differences between any given pair of glomeruli, regardless of whether they are narrowly or broadly tunned. Instead, we propose that our findings on circuit features indicate that most of the observed differences actually grouped the two narrowly tuned glomeruli together relative to the broadly tuned glomerulus. A more concise summary is now provided in the newly added Figure 8. We also added explanatory lines of text in the beginning of the chapter ‘specific features of narrowly tuned glomerular circuits. 

      ECOLOGICAL SIGNIFICANCE

      This is an interesting point. However, it is difficult to disentangle the "ecological significance" of processed odorants from the "tuning breadth" of a glomerulus. In the Drosophila olfactory system, glomerular circuits that respond to ecologically important odorants—such as those involved in reproduction or danger—tend to be more narrowly tuned. Moreover, while we refer to odorants with specific ecological significance as those linked to survival or reproductive behaviors, defining the significance of an odorant with precision is inherently challenging, as it can vary depending on context and environmental conditions.

      What both circuits share is their narrow tuning breadth. We therefore propose that the common circuit features of VA1v and DA2, highlighted in this study, are functionally related to the fact that each circuit processes single odorants. Consequently, their specificity is most likely determined at the level of the receptor. 

      INDIVIDUAL VARIABILITY

      We agree that accounting for inter-animal variability would strengthen the study. However, we are confident that even a modest statistically sound assessment of this variability would require a larger sample size, certainly more than just two or three flies, which is presently not feasible.

      We refer the reviewer to our response to Reviewer #1 regarding this important issue.

      Initial insights into variability between flies have been provided through comparative analyses of the two most comprehensive female Drosophila melanogaster connectomes—the FAFB and hemibrain datasets (Schlegel et al., 2024). For more detailed quantitative comparisons regarding inter-animal variability, please refer to our response to the second major point raised by Reviewer #2. As highlighted by Schlegel et al. (2024), making definitive statements about the stereotypy of neuron numbers, unitary cell-cell connections (edges), or synaptic strengths (weights) remains a complex challenge."

      While appreciating the rigour of this work we were surprised to notice the omission of a comparison of their observations with the two other existing datasets. This would not only have addressed the technical limitation of this particular study - the inability to identify specific neuron types due to imaging a small part of the brain - but would also have shed light on inter-animal variability 

      We strongly recommend that the authors do make this comparison - the datasets are currently extremely user friendly and so we don't estimate the replication of their key findings will be too onerous. This will be particularly important to resolve the issue of having to classify all multiglomerular local interneurons and multiglomerular projection neurons - broadly into "MGN. Such a comparison will dramatically strengthen this study that poses very interesting questions, but in its current form, has this striking shortcoming. 

      INDIVIDUAL VARIABILITY AS EXPRESSED HERE:

      Earlier on we were of the same opinion that the Reviewer express here but, unfortunately, it was not possible to follow his advice. As far as it was possible, we have compared some of our results to the values of the two datasets that the Reviewer refers to, but the absence of glomerulus DA2 in one of the datasets and the absence of synapse annotation for all the relevant glomeruli in the other dataset prevented us from making a full comparison. Moreover, believe that the problem of individual variation most probably cannot be solved by increasing the comparison with one or two more flies.

      Reviewer #1 (Recommendations for The Authors): 

      The lines 270 - 282 confused me in the backdrop of Figure 3B. 

      The concern may stem from our inclusion of a comparison between the uPNs of glomerulus DA2 and the single uPN of glomerulus DL5 in the statistical analysis presented in Figure 3. This comparison was included to ensure a comprehensive representation of the data, highlighting the variability across all major cell groups. We have clarified this rationale in the revised manuscript (see lines 274-282).

      Reviewer #2 (Recommendations for The Authors): 

      I commend the authors for taking such a thorough approach to advance an interesting topic in olfaction. The following suggestions are intended to strengthen this study: 

      Major points: 

      A color-blind-friendly palette should be used for all figures. Currently, five of seven figures use red and green, and in particular, Figure 5 will be uninterpretable for red/green color-blind readers. 

      We are thankful for this important comment. We changed the color palette as suggested by the reviewer, and replaced Red with Magenta and changed the figure legend accordingly.

      This level of analysis is extremely resource and time-consuming, so even obtaining this information at this resolution is an impressive achievement. However, this study would be well served by strategically supplementing the analysis of this dataset with information from other publicly available connectomics datasets. For instance, some interpretations are limited because there is information from only a single DL5 and DA2 glomerulus. Any claims in which one glomerulus has more, less, or the same of a metric must be tempered because without replicates, there are no measures of inter-animal variability. As an example, on lines 386-387 the authors state "The relative synaptic strength between MGN>uPN was stronger in DA2 (12%) than DL5 (10%)". It is difficult to assess whether this represents a difference that is outside of the range of inter-animal variability inherent to the olfactory system. Taking select measures from the Hemibrain and FAFB (via FlyWire) datasets could help strengthen these claims. 

      We fully agree with the Reviewer’s opinion that since our data is from one glomerulus of each type “It is difficult to assess whether this represents a difference that is outside of the range of inter-animal variability inherent to the olfactory system.” This is a weakness of practically all connectome studies based on electron microscopy in both Drosophila and other animals We cannot be sure that measurements from the Hemibrain and FAFB datasets could help strengthen our claims, because the magnitude of the range of individual variation is presently not known and most probably solving this problem will require more than one or two more flies. In any case, it is not possible to follow this advice and compare our data with that of the hemibrain because the DA2 was not included in that study. We ask the Reviewer to read our more detailed explanation in our response to Reviewer 1.

      In the particular case commented by the Reviewer above, the relative difference in synaptic strength exceeds 20%. Whether such a difference has functional relevance remains an open question but Schlegel et al. (2024) support our interpretation. They showed that synaptic weights with differences larger than 20% tend to be consistent across individuals, with strong correlations within and between animals (Pearson’s R = 0.97 and R = 0.8; Fig. 4).

      Grouping all local interneurons, centrifugal neurons response and multiglomerular PNs into one category limits the ability to make interpretations about similarities or differences in the synaptic relationships involving MGNs. The authors could get an estimate of the number of multiglomerular PNs in DL5, VA1v, and DA2 from Hemibrain and FlyWire platforms to get a better sense of differences between glomeruli in the MGN category. 

      We agree in that grouping a variety of interneurons into a single category (called MGNs) limits the ability to make interpretations about similarities or differences in the synaptic relationships involving different neurons. This was the unavoidable price to be paid once we decided to register a “comprehensive, synapse-level resolution” map of these two glomeruli. It appears to us that both reviewers have clearly recognized the intrinsic value of this approach and we hope that the Editor will share this opinion. 

      Consistent with the assumptions of Tobin et al., (2017) our hypothesis on LN connectivity differences is based on the fact that they are the most numerous and broadly arborizing neurons of the class that we call multiglomerular neurons in the AL (Chou et al., 2010; Lin et al., 2012; Tanaka et al., 2012). Recent connectome studies confirm this feature across all glomeruli (Bates et al., 2020; Horne et al., 2018; Scheffer et al., 2020; Schlegel et al., 2021; Zheng et al., 2018).  

      In response to the reviewer’s question, we conducted a case-specific reanalysis of the data from Horne (2018), which provides comprehensive connectivity information for the VA1v glomerulus. This allowed us to quantify the proportional contributions of LNs (n = 56) and mPNs (n = 13) to all MGN connections (MGN-MGN, MGN>OSN, MGN>uPN, uPN>MGN, OSN>MGN).

      Our analysis showed that 84% of MGN output originates from LNs. 57% of the input to MGN comes from LNs and 43% from mPNs, largely due to strong OSN>mPN input. Thus, for the filtered MGN connections relevant to distinguishing narrowly from broadly tuned circuits (e.g., MGN>OSN, uPN>MGN; see Fig. 8), LNs are the dominant contributors in VA1v. (These data are not included in the resubmitted manuscript.) This supports our interpretation that the LN are responsible for the majority of MGN connections underlying the observed differences between glomeruli.

      For instance, prior work has reported fewer local interneurons innervating DA2, but in this study there was an unexpected result that there was greater MGN innervation density and synapse # for DA2 relative to DL5 This discrepancy could be due to differences in the number of multiglomerular PNs innervating each glomerulus, which would be obscured when these PNs are combined with local interneurons in the MGN category. 

      "We agree that the greater MGN innervation density in DA2 in our study could reflect a stronger contribution from mPNs. However, innervation density alone does not indicate how many mPNs actually innervate DA2 or DL5. Alternatively, increased innervation and/or synaptic frequency of local interneurons (LNs) could also account for this observation. In our view, neuron number does not necessarily correlate with branching complexity or synaptic density. 

      For example, the dendritic length of the single uPN in glomerulus DL5 is approximately equal to the combined dendritic length of the multiple uPNs of the DA2. Similarly, Tobin et al. (2017) reported that when comparing uPNs in glomerulus DM6 between the left and right brain hemispheres, they found variability in cell number but not in dendritic length. More recently, the FAFB and hemibrain datasets showed a similar pattern in another neuronal type. A substantial variation in cell number was observed for Kenyon cells between the two Drosophila individuals, but this cell type consistently makes and receives, in both individuals, similar presynapses and post-synapses (Schlegel et al., 2024).

      On line 33 the authors cannot claim that DA2-OSNs experience less presynaptic inhibition based on the data in this study. Even without the limitations of the MGN category (described above), presynaptic inhibition depends on more than just the number of synapses, rather it is affected by GABA B receptor expression levels and the second messenger components downstream of this receptor. Physiological experiments are needed to justify this claim, so I recommend adjusting accordingly.

      We agree with the Reviewer and have adjusted the text on line 33 and in the main body of the text by referring to this finding as “presynaptic input”, which is what we have quantified, instead of “less presynaptic inhibition”.

      Figures 5 and 6 seek to distill the wealth of information from this study into broad takehome points for the reader, while still providing a good amount of detail. I think a final more concise graphic summary (similar to the graphical abstract or Figure 6 of Grabe et al 2016) depicting the most critical differences between glomeruli would further clarify the broad findings of this study. 

      We appreciate this comment and we have added a “graphic summary” as the Reviewer proposed. We made a new figure that becomes Figure 8 and summarizes our results and highlights differences between narrowly and broadly tuned glomeruli in a more concise graphical abstract format.

      Minor points: 

      Much of the manuscript provides details about synapse fractions or % synapses for a given synaptic relationship. Please ensure that it is clear which principal cell types are being described, as it can be easy to get lost.  - Should line 284 say "...than DL5 as it has been reported that DA2 is innervated by fewer LNs..."?

      We appreciate the reviewer’s comment and we have corrected this sentence that now reads as follows: (see text: beginning at line 290).  

      Taisz et al.  has been published, so the citation should be updated. 

      We have updated the corresponding citation.  

      On line 233, the authors ascribe the small electron-dense vesicles as likely housing sNPF released by MGNs. However, Carlsson et al. (2010) demonstrated that sNPF is released by OSNs, which was further functionally characterized by Root et al. (2011) and Ko et al. (2014). In terms of MGNs that release neuropeptides, Carlsson et al. 2010 demonstrated that local interneurons immunolabel for tachykinin, myoinhibitory peptide, and allatostatin-A, while two extrinsic neurons release SIFamide. In theory, aminergic neurons could also have small electron-dense vesicles, but this can be variable. 

      The Reviewer is completely right in his criticism. The MGN certainly contain neurons that have been reported to contain neuropeptides other than sNPF. We have corrected this sentence and it now reads as follows (page7, line 236): “Interestingly, besides the abundant clear small vesicles..

      On line 636, the Berck and Schlegel studies demonstrated that panglomerular local interneurons synapse upon OSN, but not that they induce presynaptic inhibition (which was demonstrated in the studies cited in the next sentence). I recommend adjusting this sentence.

      We agree and we have corrected the text following the Reviewers advice. It now reads as follows (page 19. Line 663): “We also observed that OSNs received less MGN feedback.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Recommendation For the Authors):

      Thanks to the authors for addressing my suggestions. I think these modifications have improved the clarity of the data and the overall presentation of the manuscript. The methods are now more clearly explained, and the additional details help make the results easier to interpret. Where addressing the comment wasn't feasible, the authors gave reasonable explanations. Overall, the revisions strengthen the paper, and I have no further concerns.

      Thank you for your recommendations, which have significantly improved our paper.

      Reviewer #2 (Recommendation For the Authors):

      The additional work conducted by the authors is greatly appreciated. All concerns (and beyond) have been thoroughly addressed by the authors and I am thankful for their consideration and attention to detail. Only one possible issue with the revisions is described below for consideration:

      Regarding the CFU counts and/or axis labels in Figure S3B, some of the listed "CFU per 1 mL" values (in both the figure itself and File S2B) are extraordinarily high. For example, the greatest CFU for PA14 observed in Figure 4E is ~1x10^9. However, PA14 at 0 ug/mL Ceftazidime reaches nearly 1x10^16 in Figure S3B. From what I can tell, this should be beyond the capacity of bacteria in this space by several orders of magnitude. (E.g., a cubic centimeter [~1 mL] is ~1x10^12 cubic micrometers. At their smallest dimensions and volume, a maximum of ~1x10^13 cells could theoretically fit in this space assuming no liquid and perfect organization.) Similarly, both "AMM" and "AMM (+PA14)" consistently reach CFUs between 1x10^12 and 1x10^14 in this assay. Are the authors confident in the values and/or depiction of CFUs for this figure? It seems like this could be a labeling or dilutioncounting issue.

      Thank you for your positive remarks on our revised manuscript and for your constructive comments that have strengthened our work.

      We agree with the concern regarding the CFU counts in Figure S3B. The very high values (>10<sup>12</sup>CFU) reflect a technical enumeration artifact that, due to the nature of the assay, cannot be fully avoided. The origin of these inflated counts is described in more detail below:

      Following competition assays between Pseudomonas aeruginosa and Stenotrophomonas maltophilia in liquid culture with antibiotics, we enumerate survivors for each species by colony forming unit (CFU) counts. Because two different bacterial species must be quantified from mixed cultures, we use a gentamicin resistance marker carried by one species at a time.

      Each condition is therefore enumerated twice, as we alternate which species harbors the gentamicin cassette.

      During coculture in antibiotics and minimal medium, clinical isolates of P. aeruginosa and S. maltophilia, like those used here, can transiently increase their tolerance to antibiotics, including aminoglycosides. This reduces the effectiveness of gentamicin selection at the plating step necessary for CFU enumeration. For the data presented in Figure S3B, in a subset of highOD₆₀₀ conditions in the competition assay, this tolerance produces artificially inflated CFU values that exceed the biological carrying capacity during the CFU enumeration step.

      We evaluated alternative enumeration strategies (e.g., fluorescent protein markers with a nonselective medium), but these proved unsuitable for these strains due to differences in growth rates and media compatibility, introducing other large biases. Given these constraints, selective plating remains the only feasible approach for this work, and the associated artifact cannot be eliminated entirely.

      Importantly, transient resistance (tolerance), although common, is not a universal occurrence (e.g., we did not observe it when we performed the experiments shown in Figure 4E). When it does arise, it occurs reproducibly under the same experimental high-OD<sub>600</sub> conditions and does not obscure any of the relative comparisons that underpin our conclusions.

      For transparency, we have retained the measured values in Figure S3B and we note in the legend that counts above ~10<sup>12</sup> CFU represent a technical overestimation due to transient gentamicin tolerance. Counts below 10<sup>12</sup> CFU are accurately enumerated.

      Reviewer #3 (Recommendation For the Authors):

      All concerns have been satisfied and the manuscript is ready for publishing.

      Thank you for your recommendations, which have significantly improved our paper.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      The study would benefit from presenting raw data in some cases, such as MIC values and SDS-PAGE gels, by clarifying the number of independent experiments used, as well as further clarification on statistical significance for some of the data.

      All original data used to generate Fig. 1, Fig. 4E, Fig. S3 and Fig. S4A are presented in File S2. Tab (A) is dedicated to data used for Fig. 1 and Fig. S4A, while tabs (B) and (C) show the data used for Fig. 4E and S3, respectively. This information is indicated in the legends of the relevant figures.

      All experiments in this study were performed in three independent (biological) experiments (with the exception of the complementation data shown in Fig. S1 and Fig. S5, which were performed in two independent (biological) experiments). The number of biological and technical replicates for each experiment is stated in the figure legends, as well as in the “Statistical analysis of experimental data” part of the “Materials and Methods” section of the paper. Specifically, for antibiotic MIC assays we have not performed statistical analyses as per recommended practice. The reason for this is stated in the following section from the “Statistical analysis of experimental data” part of the “Materials and Methods” section of the paper (lines 699-711 of the revised manuscript):

      “Antibiotic MIC values were determined in biological triplicate, except for MIC values recorded for dsbA complementation experiments in our E. coli K-12 inducible system that were carried out in duplicate. All ETEST MICs were determined as a single technical replicate, and all BMD MICs were determined in technical triplicate. All recorded MIC values are displayed in the relevant graphs; for MIC assays where three or more biological experiments were performed, the bars indicate the median value, while for assays where two biological experiments were performed the bars indicate the most conservative of the two values (i.e., for increasing trends, the value representing the smallest increase and for decreasing trends, the value representing the smallest decrease). We note that in line with recommended practice, our MIC results were not averaged. This should be avoided because of the quantized nature of MIC assays, which only inform on bacterial survival for specific antibiotic concentrations and do not provide information for antibiotic concentrations that lie in-between the tested values.”

      Reviewer #2 (Public review):

      While Figure 5E demonstrates a protective effect of DsbA-dependent β-lactamase, the omission of CFU data for S. maltophilia makes it difficult to assess the applicability of the polymicrobial strategy. Since S. maltophilia is pre-cultured prior to the addition of P. aeruginosa and antibiotics, it is unclear whether the protective effect is dependent on high S. maltophilia CFU. It is also unclear what the fate of the S. maltophilia dsbA dsbL mutant is under these conditions. If DsbA-deficient S. maltophilia CFU is not impacted, then this treatment will result in the eradication of only one of the pathogens of interest. If the mutant is lost during treatment, then it is not clear whether the loss of protection is due specifically to the production of non-functional β-lactamase or simply the absence of S. maltophilia.

      We have simultaneously tracked the abundance of P. aeruginosa and S. maltophilia strains in our cross-protection experiment for select antibiotic concentrations. To be able to perform this experiment, we had to label two extremely-drug-resistant strains of S. maltophilia with an antibiotic resistance marker that allowed us to quantify them in mixtures with P. aeruginosa. Our results can be found in Fig. S3 of our revised manuscript and, in a nutshell, show that ceftazidime treatment leads to eradication of both P. aeruginosa and S. maltophilia when disulfide bond formation is impaired in S. maltophilia.

      The following text was added to address the questions of the reviewer:

      “Due to the naturally different growth rates of these two species (S. maltophilia grows much slower than P. aeruginosa) especially in laboratory conditions, the protocol we followed [1] requires S. maltophilia to be grown for 6 hours prior to co-culturing it with P. aeruginosa. To ensure that at this point in the experiment our two S. maltophilia strains, with and without dsbA, had grown comparatively to each other, we determined their cell densities (Fig. S3A). We found that S. maltophilia AMM dsbA dsbL had grown at a similar level as the wild-type strain, and both were at a higher cell density [~10<sup>7</sup> colony forming units (CFUs)] compared to the P. aeruginosa PA14 inoculum (5 x 10<sup>4</sup> CFUs)” (lines 353-361 of the revised manuscript).

      “To ensure that ceftazidime treatment leads to eradication of both P. aeruginosa and S. maltophilia when disulfide bond formation is impaired in S. maltophilia, we monitored the abundance of both strains in each synthetic community for select antibiotic concentrations (Fig. S3B). In this experiment we largely observed the same trends as in Fig. 4E. At low antibiotic concentrations, for example 4 μg/mL of ceftazidime, S. maltophilia AMM is fully resistant and thrives, thus outcompeting P. aeruginosa PA14 (dark pink and dark blue bars in Fig. S3B). The same can also be seen in Fig. 4E, whereby decreased P. aeruginosa PA14 CFUs are recorded. By contrast S. maltophilia AMM dsbA dsbL already displays decreased growth at 4 μg/mL of ceftazidime because of its non-functional L1-1 enzyme, allowing comparatively higher growth of P. aeruginosa (light pink and light blue bars in Fig. S3B). Despite the competition between the two strains, P. aeruginosa PA14 benefits from S. maltophilia AMM’s high hydrolytic activity against ceftazidime, which allows it to survive and grow in high antibiotic concentrations even though it is not resistant (see 128 μg/mL; dark pink and dark blue bars in Fig. S3B). In stark opposition, without its disulfide bond in S. maltophilia AMM dsbA dsbL, L1-1 cannot confer resistance to ceftazidime, resulting in killing of S. maltophilia AMM dsbA dsbL and, consequently, also of P. aeruginosa PA14 (see 128 μg/mL; light pink and light blue bars in Fig. S3B).

      The data presented here show that, at least under laboratory conditions, targeting protein homeostasis pathways in specific recalcitrant pathogens has the potential to not only alter their own antibiotic resistance profiles (Fig. 3 and 4A-D), but also to influence the antibiotic susceptibility profiles of other bacteria that co-occur in the same conditions (Fig. 5). Admittedly, the conditions in a living host are too complex to draw direct conclusions from this experiment. That said, our results show promise for infections, where pathogen interactions affect treatment outcomes, and whereby their inhibition might facilitate treatment” (lines 381406 of the revised manuscript).

      The alleged clinical relevance and immediate, theoretical application of this approach should be properly contextualized. At multiple junctures, the authors state or suggest that interactions between S. maltophilia and P. aeruginosa are known to occur in disease or have known clinical relevance related to treatment failure and disease states. For instance, the citations provided for S. maltophilia protection of P. aeruginosa in the CF lung environment both describe simplified laboratory experiments rather than clinical or in vivo observations. Similarly, the citations provided for both the role of S. maltophilia in treatment failure and CF disease severity do not support either claim. The role of S. maltophilia in CF is currently unsettled, with more recent work reporting conflicting results that support S. maltophilia as a marker, rather than cause, of severe disease. These citations also do not support the suggestion that S. maltophilia specifically contributes to treatment failure. While it is reasonable to pursue these ideas as a hypothesis or potential concern, there is no evidence provided that these specific interactions occur in vivo or that they have clinical relevance.

      Thank you for your comment. You are entirely correct. We have amended the test throughout our revised manuscript to avoid overstating the role of S. maltophilia in CF infections and to reference additional relevant works in the literature. Please find below representative examples of such passages:

      “On the other hand, CF microbiomes are increasingly found to encompass S. maltophilia [2-4], a globally distributed opportunistic pathogen that causes serious nosocomial respiratory and bloodstream infections [5-7]. S. maltophilia is one of the most prevalent emerging pathogens [6] and it is intrinsically resistant to almost all antibiotics, including β-lactams like penicillins, cephalosporins and carbapenems, as well as macrolides, fluoroquinolones, aminoglycosides, chloramphenicol, tetracyclines and colistin. As a result, the standard treatment option for lung infections, i.e., broad-spectrum β-lactam antibiotic therapy, is rarely successful in countering S. maltophilia [7,8], creating a definitive need for approaches that will be effective in eliminating both pathogens” (lines 33-41 of the revised manuscript).

      “Of the organisms studied in this work, S. maltophilia deserves further discussion because of its unique intrinsic resistance profile. The prognosis of CF patients with S. maltophilia lung carriage is still debated [4,9-16], largely because studies with extensive and well-controlled patient cohorts are lacking. This notwithstanding, the therapeutic options against this pathogen are currently limited to one non-β-lactam antibiotic-adjuvant combination, , which is not always effective, trimethoprim-sulfamethoxazole [17-20], and a few last-line β-lactam drugs, like the fifth-generation cephalosporin cefiderocol and the combination aztreonam-avibactam. Resistance to commonly used antibiotics causes many problems during treatment and, as a result, infections that harbor S. maltophilia have high case fatality rates [7]. This is not limited to CF patients, as S. maltophilia is a major cause of death in children with bacteremia [5]” (lines 440-450 of the revised manuscript).

      Reviewer #3 (Public review):

      The impact of the work can be strengthened by demonstrating increased efficacy of antibiotics in mice models or wound models for Pseudomonas infections. Worm models are relevant, but still distant from investigations in animal models.

      Thank you for this comment. We appreciate the sentiment, and we would have liked to be able to perform experiments in a murine model of infection. There are several reasons that made this not possible, and as a result we used G. mellonella as an informative preliminary in vivo infection model. The DSB proteins have been shown to play a central role in bacterial virulence. Because of this our P. aeruginosa and S. maltophilia mutant strains are not efficient in establishing an infection, even in a wound model. This could be overcome had we been able to use the chemical inhibitor of the DSB system in vivo, however this also is not possible This is due to the fact that the chemical compound that we use to inhibit the function of DsbA acts on DsbB. Inhibition of DsbB blocks the re-oxidation of DsbA and leads to its accumulation in its inactive reduced form. However, the action of the inhibitor can be bypassed through reoxidation and re-activation of DsbA by small-molecule oxidants such as L-cystine, which are abundant in rich growth media or animal tissues. This makes the inhibitor only suitable for in vitro assays that can be performed in minimal media, where the presence of small-molecule oxidants can be strictly avoided, but entirely unsuitable for an insect or a vertebrate animal model.

      Reviewer #1 (Recommendation For the Authors):

      (1) The analysis of the role of DsbA in the assembly of cysteine-containing β-lactamases is a significant finding. However, in addition to showing the MIC fold difference, I think, it would be important to show the raw data for the actual MIC values obtained for each β-lactamase enzyme/antibiotic combination and in both strains (+ and - dsbA).

      Also, can the authors clarify whether these experiments were conducted on 3 independent samples (there seems to be some contradicting information in the paper and the supplementary figures). If possible, I would also recommend showing in the figure whether the MIC differences observed were statistically significant.

      All original data used to generate Fig. 1, Fig. 4E, Fig. S3 and Fig. S4A are presented in File S2. Tab (A) is dedicated to data used for Fig. 1 and Fig. S4A, while tabs (B) and (C) show the data used for Fig. 4E and S3, respectively. This information is indicated in the legends of the relevant figures.

      All experiments in this study were performed in three independent (biological) experiments (with the exception of the complementation data shown in Fig. S1 and Fig. S5, which were performed in two independent (biological) experiments). The number of biological and technical replicates for each experiment is stated in the figure legends, as well as in the “Statistical analysis of experimental data” part of the “Materials and Methods” section of the paper. Specifically, for antibiotic MIC assays we have not performed statistical analyses as per recommended practice. The reason for this is stated in the following section from the “Statistical analysis of experimental data” part of the “Materials and Methods” section of the paper (lines 699-711 of the revised manuscript):

      “Antibiotic MIC values were determined in biological triplicate, except for MIC values recorded for dsbA complementation experiments in our E. coli K-12 inducible system that were carried out in duplicate. All ETEST MICs were determined as a single technical replicate, and all BMD MICs were determined in technical triplicate. All recorded MIC values are displayed in the relevant graphs; for MIC assays where three or more biological experiments were performed, the bars indicate the median value, while for assays where two biological experiments were performed the bars indicate the most conservative of the two values (i.e., for increasing trends, the value representing the smallest increase and for decreasing trends, the value representing the smallest decrease). We note that in line with recommended practice, our MIC results were not averaged. This should be avoided because of the quantized nature of MIC assays, which only inform on bacterial survival for specific antibiotic concentrations and do not provide information for antibiotic concentrations that lie in-between the tested values.”

      (2) For Figure 2A, can the authors provide the full Westerns and ideally the SDS-PAGE gel corresponding to the Westerns where the Β-lactamases and the control DNA-K were detected.

      Thank you for this comment. Full immunoblots and SDS PAGE analysis of the immunoblot samples for total protein content are shown in File S3 of our revised manuscript.

      (3) For the enzymatic assays, was the concentration of enzyme used "normalised " based on the amount detected in the westerns where possible or was only the total amount of protein considered. When similar amounts of enzyme were added, was the activity still compromised?

      The β-lactam hydrolysis assay was normalized based on the weight of the cell pellets (wet cell pellet mass) of the tested strains. This means, that for each enzyme expressed in cells with and without DsbA, strains were normalized to the same weight to volume ratio, and thus strains expressing the same enzyme were only compared to each other.

      Because enzyme degradation in the absence of DsbA is a key factor underlying the effects we describe for most of the tested β-lactamases (see Fig. 2A and S4A; no protein band is detected for 5 of the 7 enzymes in the dsbA mutant), it was not possible to normalize our samples based on enzyme levels detected by immunoblot. Normalization based on enzyme amounts would be feasible had we purified each β-lactamase after expression in the two different strain backgrounds (+/- dsbA) assuming sufficient protein amounts could be isolated from the dsbA mutant strain. Nonetheless, we feel that such a comparison would be misleading, since enzyme degradation likely plays the biggest role in the lack of activity observed for most of these enzymes in the absence of DsbA.

      (4) Not sure whether Fig 3 is very informative. Perhaps it could be redesigned to better encapsulate the findings in this manuscript (combine figurer 3 and 6 into one). I would also include the chemical structure of the inhibitors used and perhaps include how they block the system by binding to DsbB.

      Thank you for this comment. Fig. 3 was combined with Fig. 6 of the submitted manuscript. The new model figure is Fig. 5 in our revised manuscript.

      The inhibitor compound used in our study has been extensively characterized in a previous publication [21]. Considering that this inhibitor is not the main focus of our paper, we have avoided showing its chemical structure in any of the main display items. That said, its structure can be found in File S5 of our revised manuscript, which contains the quality control information on this compound. As suggested, we included the following sentence to describe the mode of action of this inhibitor: “Compound 36 was previously shown to inhibit disulfide bond formation in P. aeruginosa via covalently binding onto one of the four essential cysteine residues of DsbB in the DsbA-DsbB complex [21]” (lines 309-311 of the revised manuscript).

      (5) Figure 4: Similar to my comment above showing in the figure whether the differences observed in Figure 4, particularly A-C, are statistically significant (i.e. galleria survival difference in the presence and absence of dsbA) would be beneficial.

      As mentioned in our answer to comment 1 above, we have not performed statistical analyses for antibiotic MIC assays because, in line with recommended practice, our MIC results were not averaged (Fig. 3A,B,D,E of our revised manuscript). This should be avoided because of the quantized nature of MIC assays, which only inform on bacterial survival for specific antibiotic concentrations and do not provide information for antibiotic concentrations that lie in-between the tested values. Statistical analysis of G. mellonella survival data (Fig. 3C,F of our revised manuscript) was performed and is described fully in the legend of Fig. 3, as well as in the “Statistical analysis of experimental data” part of the “Materials and Methods” section of the paper (lines 729-738 of the revised manuscript). Finally, the statistical analyses for the most important comparisons in panels (C) and (F) of Fig. 3 are also marked directly on the figure.

      (6) Were the authors able to test the redox state of DsbA upon addition of the DsbB inhibitor to further demonstrate that the effects observed were indeed due to the obstruction of the Dsb machinery and not due to off target effects.

      Thank you for the opportunity to clarify this. In previous work from our lab, we have used a DSB system inhibitor termed “compound 12” in [22] with activity against DsbB proteins from Enterobacteria. In our previous study [23] we, indeed, tested the redox state of DsbA in the presence of this inhibitor compound. We could not perform the same experiment here with “compound 36” from [21], because we do not have an antibody against the DsbA protein of S. maltophilia. That said, we have carried out experiments that confirm that our results are due to specific inhibition of the DSB system and not because of off-target effects. In particular, we show that the gentamicin MIC values of S. maltophilia AMM remain unchanged in the presence of the inhibitor and treatment of S. maltophilia AMM dsbA dsbL with the compound does not affects its colistin MIC value (Fig. S2E and lines 317-320 of the revised manuscript).

      (7) Given the remarkable effects shown by the DsbB inhibitor, did the authors use this compound to assess whether inhibition of the Dsb system with small molecules would block cross-resistance in S. maltophilia - P. aeruginosa mixed communities (Fig 5D).

      Unfortunately, this was not possible. The decrease in the ceftazidime MIC value of S. maltophilia AMM in the presence of the DSB inhibitor compound is more modest than the effects we observed when the dsbA dsbL mutant is used (compare Fig. 4D (left) with Fig.4A of the revised manuscript). This means that in the presence of the DSB inhibitor there are still sufficient amounts of functional β-lactamase present and we expect that they would contribute to cross-protection of P. aeruginosa. While the use of the DSB inhibitor does have a drastic impact on the colistin resistance profile of S. maltophilia AMM (Fig. 4D of the revised manuscript), unlike β-lactamases, which act as common goods, MCR enzymes act solely on the lipopolysaccharide of their producer and do not contribute to bacterial interactions, precluding the use of colistin for a cross-protection experiment.

      Reviewer #2 (Recommendation For the Authors):

      (1) The acronym used for synthetic cystic fibrosis sputum medium (lines 523, 531, 535, 601, and 603) is defined in the manuscript as 'SCF', but the common formulation is 'SCFM', including in the provided citation. Suggest changing to SCFM for consistency.

      Thank you for this comment. This has been amended throughout our revised manuscript.

      (2) In Figure 1, while the legend states that "No changes in MIC values are observed for strains harboring the empty vector control (pDM1)[...]" (lines 729-30), the median of ceftazidime in the pDM1 control appears to indicate a 2-fold decrease in MIC. This would not seem to significantly impact the other results since the MIC decreases observed for other conditions are all 3-fold or greater, but this should be addressed and/or explained in the text.

      You are correct. Thank you for the opportunity to clarify this. Generally, since MIC assays have a degree of variability, we have only followed decreases in MIC values that are greater than 2fold. Generally, for most of our controls, the recorded MIC fold changes are below 2-fold. The only exception to this is the ceftazidime MIC drop of the empty-vector control, showing a 2fold change, which we do not consider significant.

      To ensure that this is clear in our text and figure legends the following changes were made:

      The clause “only differences larger than 2-fold were considered” was added to the text (lines 110-111 of the revised manuscript).

      We amended the legend of Fig. 1 accordingly: “No changes in MIC values are observed for the aminoglycoside antibiotic gentamicin (white bars) confirming that absence of DsbA does not compromise the general ability of this strain to resist antibiotic stress. Minor changes in MIC values (≤ 2-fold) are observed for strains harboring the empty vector control (pDM1) or those expressing the class A β-lactamases L2-1 and LUT-1, which contain two or more cysteines (Table S1), but no disulfide bonds (top row)”.

      (3) Similarly, in Fig S1E, there appears to be only partial complementation for BPS-1m. Do the authors hypothesize that this observation is related to a folding defect, rather than degradation of protein, as described for BPS-1m for Figure 2?

      Thank you for the opportunity to clarify this. You are correct that we only achieve partial complementation for the E. coli strain expressing the BPS-1m enzyme from the Burkholderia complex. Despite the fact that the gene for this enzyme was codon optimized, we observed that its expression in E. coli is sub-optimal and incurs fitness effects. In fact, to record the data presented in our manuscript the E. coli strains had to be transformed anew every time. Considering that the related enzyme BPS-6 does not present any of these challenges, we attribute the partial complementation to technical difficulties with the expression of the bps-1m gene in E. coli. 

      We clarified this by adding the following clause to our manuscript: “we only achieve partial complementation for the dsbA mutant expressing BPS-1m, which we attribute to the fact that expression of this enzyme in E. coli is sub-optimal” (lines 132-134 of the revised manuscript).

      (4) Lines 204-206: "[...]we deleted the principal dsbA gene, dsbA1 (pathogenic bacteria often encode multiple DsbA analogues [24,25]), in several multidrug-resistant (MDR) P. aeruginosa clinical strains (Table S2)". That multiple DsbA analogues are often encoded is good information to provide, but it was unclear from quickly looking at the citations whether Pa is counted among these. Is it expected that all oxidative protein folding in Pa functions through DsbA1? Conveying this information, if possible, may make the impact of the results in this model clearer.

      Thank you for this comment. To address it we added the following text to our manuscript:

      “To determine whether the effects on β-lactam MICs observed in our inducible system (Fig. 1 and [23]) can be reproduced in the presence of other resistance determinants in a natural context with endogenous enzyme expression levels, we deleted the principal dsbA gene, dsbA1, in several multidrug-resistant (MDR) P. aeruginosa clinical strains (Table S2). Pathogenic bacteria often encode multiple DsbA analogues [24,25] and P. aeruginosa is no exception. It encodes two DsbAs, but DsbA1 has been found to catalyze the vast majority of the oxidative protein folding reactions taking place in its cell envelope [26]” (lines 172-178 of the revised manuscript).

      (5) Regarding the clinical Pa isolates G4R7 and G6R7, have the authors performed any phenotypic testing on these strains to identify differences that might explain the substantial difference in piperacillin MIC? I.e., can these isolates be distinguished by growth rate, genetic markers or expression levels, early or late infection, mucoidy, etc. This is not essential for the current work, but could weigh on the efficacy of this treatment strategy for AIM1expressing clinical isolates. (E.g., the G4R7 dsbA1 strain exhibits a piperacillin MIC still ~2fold higher than WT G6R7).

      Thank you for the opportunity to clarify this. For clinical strains used in our study, we have evaluated their antibiotic resistance profiles, but we have not performed any additional phenotypic characterization. There are many reasons that contribute to differences in antibiotic resistance, starting simply from β-lactamase expression levels and extending to organismal effects, like the ones mentioned by the reviewer. Such characterization would fall outside the scope of our paper, especially since we sensitize our tested P. aeruginosa clinical isolates for the majority of the β-lactams antibiotics tested. 

      We acknowledged this by adding the following sentence to our revised manuscript: 

      “Despite the fact that P. aeruginosa G4R7 dsbA1 was not sensitized for piperacillintazobactam, possibly due to the high level of piperacillin-tazobactam resistance of the parent clinical strain, our results across these two isolates show promise for DsbA as a target against β-lactam resistance in P. aeruginosa” (lines 191-194 of the revised manuscript).

      (6) Lines 180-2: "This shows that without their disulfide bonds, these proteins are unstable and are ultimately degraded by other cell envelope proteostasis components [33]". While it is clear that protein is significantly lost in all cases except for BPS-1m in 2A, the dsbA pDM1bla constructs in 2B appear to all retain non-trivial (>10-fold) nitrocefin hydrolysis activity compared to the dsbA pDM1 control. This does not impact the other results in 2B, but it would seem that a loss-of-function folding defect, as described subsequently for BPS-1m, is also part of the explanation for the observed MIC decreases, and this was not necessarily clear from the quoted passage. This could simply be clarified in the final sentence - that both mechanisms are potentially in play - if the authors agree with that interpretation.

      You are correct, thank you for your comment. We amended the text in our revised manuscript as follows: 

      The data presented so far (Fig. 1 and 2) demonstrate that disulfide bond formation is essential for the biogenesis (stability and/or protein folding) and, in turn, activity of an expanded set of clinically important β-lactamases, including enzymes that currently lack inhibitor options” (lines 158-161 of the revised manuscript).

      (7) While it is clear from Figure S2 that the various dsb mutants do not have a general growth defect or collateral sensitivity to another antibiotic, it does not appear that there is an analogous control for the DSB inhibitor demonstrating no growth/toxic effects at the concentration used. This could be provided similarly to Figure S2, using gentamicin as a control antibiotic.

      We have carried out experiments that confirm that our results are due to specific inhibition of the DSB system and not because of off-target effects. In particular, we show that the gentamicin MIC values of S. maltophilia AMM remain unchanged in the presence of the inhibitor and treatment of S. maltophilia AMM dsbA dsbL with the compound does not affects its colistin MIC value (Fig. S2E and lines 317-320 of the revised manuscript).

      (8) Complementation is appropriately provided for experiments with E. coli, but are not provided for P. aeruginosa or S. maltophilia. It should be straightforward to complement in Pa, but is also probably less critical considering the evidence from E. coli. However, since the Sm mutant is a gene cluster with two genes, it would seem more imperative to complement this strain. This reviewer is not familiar enough with Sm to know if complementation is routine or feasible with this organism; if not, the controls for the DSB inhibitor should at least be provided.

      As mentioned in our response to comment 7 above, we have carried out experiments that confirm that our DSB inhibitor results are due to specific inhibition of the DSB system and not because of off-target effects.

      Moreover, in response to this comment, we have further demonstrated that our results are due to the specific interaction of DsbA with β-lactamase enzymes by complementing dsbA deletions in representative clinical strains of multidrug-resistant Pseudomonas aeruginosa and extremely-drug-resistant Stenotrophomonas maltophilia. We would like to note here that gene complementation in clinical isolates remains very rare in the literature due to their high levels of resistance and limited genetic tractability. Most of the few complementation examples reported for these two organisms are limited to strains that, although pathogenic, are commonly used in the lab, or to complementation efforts in non-clinical strain systems (for example use of P. aeruginosa PA14 for complementation, instead of the focal clinical isolate).

      We tested three different complementation strategies, two of which ended up being unsuccessful. After approximately 9 months of work, we succeeded in complementing a representative clinical strain for each organism (P. aeruginosa CDC #769 dsbA1 and S. maltophilia AMM dsbA dsbL) by inserting the dsbA1 gene from P. aeruginosa PAO1 into the Tn7 site on the chromosome. Both clinical strains show full complementation for every antibiotic tested; our complementation results can be found in Fig. S2B,D of the revised manuscript.

      The following text was added for P. aeruginosa clinical isolates:

      We have demonstrated the specific interaction of DsbA with the tested β-lactamase enzymes in our E. coli K-12 inducible system using gentamicin controls (Fig. 1 and File S2A) and gene complementation (Fig. S1). To confirm the specificity of this interaction in P. aeruginosa, we performed representative control experiments in one of our clinical strains, P. aeruginosa CDC #769. We first tested the general ability of P. aeruginosa CDC #769 dsbA1 to resist antibiotic stress by recording MIC values against gentamicin, and found it unchanged compared to its parent (Fig. S2A). Gene complementation in clinical isolates is especially challenging and rarely attempted due to the high levels of resistance and lack of genetic tractability in these strains. Despite these challenges, to further ensure the specificity of the interaction of DsbA with tested β-lactamases in P. aeruginosa, we have complemented dsbA1 from P. aeruginosa PAO1 into P. aeruginosa CDC #769 dsbA1. We found that complementation of dsbA1 restores MICs to wild-type values for both tested β-lactam compounds (Fig. S2B) further demonstrating that our results in P. aeruginosa clinical strains are not confounded by off-target effects” (lines 226-239 of the revised manuscript).

      The following text was added for S. maltophilia clinical isolates: 

      “Since the dsbA and dsbL are organized in a gene cluster in S. maltophilia, we wanted to ensure that our results reported above were exclusively due to disruption of disulfide bond formation in this organism. First, we recorded gentamicin MIC values for S. maltophilia AMM dsbA dsbL and found them to be unchanged compared to the gentamicin MICs of the parent strain (Fig. S2C). This confirms that disruption of disulfide bond formation does not compromise the general ability of this organism to resist antibiotic stress. Next, we complemented S. maltophilia AMM dsbA dsbL. The specific oxidative roles and exact regulation of DsbA and DsbL in S. maltophilia remain unknown. For this reason and considering that genetic manipulation of extremely-drug-resistant organisms is challenging, we used our genetic construct optimized for complementing P. aeruginosa CDC #769 dsbA1 with dsbA1 from P. aeruginosa PAO1 (Fig. S2B) to also complement S. maltophilia AMM dsbA dsbL. We based this approach on the fact that DsbA proteins from one species have been commonly shown to be functional in other species [27-30]. Indeed, we found that complementation of S. maltophilia AMM dsbA dsbL with P. aeruginosa PAO1 dsbA1 restores MICs to wild-type values for both ceftazidime and colistin (Fig. S2D), conclusively demonstrating that our results in S. maltophilia are not confounded by off-target effects” (lines 282-297 of the revised manuscript).

      (9) In Figure 5E, the growth inhibition and loss of Pa CFU in 4 ug/mL ceftazidime for the Sm co-culture condition, which is subsequently lost in the Sm dsbA dsbL co-culture, does not appear to be discussed. As Pa is shown to grow fine in monoculture at this concentration, this result should be discussed in relation to the co-culture dynamics. Is it expected or observed that WT Sm is out-competing Pa under this condition and growing to a high CFU/mL? This would seem to have parallels to citation 49.

      As requested by this reviewer (see comment 10 below), we simultaneously tracked the abundance of P. aeruginosa and S. maltophilia strains in our cross-protection experiment. During this process we probed the abundances of the two organisms at 4 µg/mL of ceftazidime. Our results can be seen in Fig. S3B of the revised manuscript. The reviewer is correct and these effects are due to competition between P. aeruginosa and S. maltophilia with the latter being able to reach very high CFUs in this antibiotic concentration. 

      The following text on co-culture dynamics was added to our revised manuscript: 

      At low antibiotic concentrations, for example 4 μg/mL of ceftazidime, S. maltophilia AMM is fully resistant and thrives, thus outcompeting P. aeruginosa PA14 (dark pink and dark blue bars in Fig. S3B). The same can also be seen in Fig. 4E, whereby decreased P. aeruginosa PA14 CFUs are recorded. By contrast S. maltophilia AMM dsbA dsbL already displays decreased growth at 4 μg/mL of ceftazidime because of its non-functional L1-1 enzyme, allowing comparatively higher growth of P. aeruginosa (light pink and light blue bars in Fig. S3B)” (lines 384-390 of the revised manuscript).

      (10) The data presented in Figure 5E would be augmented by the inclusion of, for at least a few representative cases, the Sm CFUs relative to the Pa CFUs. In describing the protective effects of Sm on Pa for imipenem treatment, the authors of citation 12 note that the effect was dependent on Sm cell density. This raises the immediate question of whether the protection observed in this work is similarly dependent on cell density of Sm. It is unclear if the authors expect Sm to persist under these conditions, and it seems Sm CFU should be expected to be relatively high considering it is pre-incubated for 6 hours prior to the assay. What is the physiological state of these cells, and how are they affected by ceftazidime? While many other variables are likely relevant to the translation of this protection, the relative abundance and localization of Sm and Pa commonly observed in CF patients, as well as the effective concentration of antibiotic observed in vivo, is likely worth consideration.

      As mentioned in our response to comment 9 above, we have simultaneously tracked the abundance of P. aeruginosa and S. maltophilia strains in our cross-protection experiment for select antibiotic concentrations. To be able to perform this experiment, we had to label two extremely-drug-resistant strains of S. maltophilia with an antibiotic resistance marker that allowed us to quantify them in mixtures with P. aeruginosa. Our results can be found in Fig. S3 of our revised manuscript and, in a nutshell, show that ceftazidime treatment leads to eradication of both P. aeruginosa and S. maltophilia when disulfide bond formation is impaired in S. maltophilia.

      The following text was added to address the questions of the reviewer:

      “Due to the naturally different growth rates of these two species (S. maltophilia grows much slower than P. aeruginosa) especially in laboratory conditions, the protocol we followed [1] requires S. maltophilia to be grown for 6 hours prior to co-culturing it with P. aeruginosa. To ensure that at this point in the experiment our two S. maltophilia strains, with and without dsbA, had grown comparatively to each other, we determined their cell densities (Fig. S3A). We found that S. maltophilia AMM dsbA dsbL had grown at a similar level as the wild-type strain, and both were at a higher cell density [~10<sup>7</sup> colony forming units (CFUs)] compared to the P.aeruginosa PA14 inoculum (5 x 10<sup>4</sup> CFUs)” (lines 353-361 of the revised manuscript).

      “To ensure that ceftazidime treatment leads to eradication of both P. aeruginosa and S. maltophilia when disulfide bond formation is impaired in S. maltophilia, we monitored the abundance of both strains in each synthetic community for select antibiotic concentrations (Fig. S3B). In this experiment we largely observed the same trends as in Fig. 4E. At low antibiotic concentrations, for example 4 μg/mL of ceftazidime, S. maltophilia AMM is fully resistant and thrives, thus outcompeting P. aeruginosa PA14 (dark pink and dark blue bars in Fig. S3B). The same can also be seen in Fig. 4E, whereby decreased P. aeruginosa PA14 CFUs are recorded. By contrast S. maltophilia AMM dsbA dsbL already displays decreased growth at 4 μg/mL of ceftazidime because of its non-functional L1-1 enzyme, allowing comparatively higher growth of P. aeruginosa (light pink and light blue bars in Fig. S3B). Despite the competition between the two strains, P. aeruginosa PA14 benefits from S. maltophilia AMM’s high hydrolytic activity against ceftazidime, which allows it to survive and grow in high antibiotic concentrations even though it is not resistant (see 128 μg/mL; dark pink and dark blue bars in Fig. S3B). In stark opposition, without its disulfide bond in S. maltophilia AMM dsbA dsbL, L1-1 cannot confer resistance to ceftazidime, resulting in killing of S. maltophilia AMM dsbA dsbL and, consequently, also of P. aeruginosa PA14 (see 128 μg/mL; light pink and light blue bars in Fig. S3B).

      The data presented here show that, at least under laboratory conditions, targeting protein homeostasis pathways in specific recalcitrant pathogens has the potential to not only alter their own antibiotic resistance profiles (Fig. 3 and 4A-D), but also to influence the antibiotic susceptibility profiles of other bacteria that co-occur in the same conditions (Fig. 5). Admittedly, the conditions in a living host are too complex to draw direct conclusions from this experiment. That said, our results show promise for infections, where pathogen interactions affect treatment outcomes, and whereby their inhibition might facilitate treatment” (lines 381406 of the revised manuscript).

      (11) Regarding the role of microbial interactions in CF and other disease/infection contexts, the authors should temper their descriptions in accordance with citations provided. As an example, lines 96-99: "For example, in the CF lung, highly drug-resistant S. maltophilia strains actively protect susceptible P. aeruginosa from β-lactam antibiotics [12], and ultimately facilitate the evolution of β-lactam resistance in P. aeruginosa [14]."

      Neither citation provided here attests to Sm protection of Pa "in the CF lung". Both papers use a simplified in vitro co-culture model to assess Sm protection of Pa from antibiotics and the evolution of Pa antibiotic resistance in the presence or absence of Sm, respectively. In the latter case, it should also be noted that while the authors observed somewhat faster Pa resistance evolution in one co-culture condition, they did not observe it in the other, and that resistance evolution in general was observed regardless of co-culture condition. There are also statements in the ultimate and penultimate paragraphs of the Discussion section that repeat these points. The authors could re-frame this aspect of their investigation as part of a working hypothesis related to potential interactions of these pathogens, and should appropriately caveat what is and is not known from in vitro and in vivo/clinical work.

      Thank you for your comment. You are entirely correct. We have amended the test throughout our revised manuscript to avoid overstating these finding and to be clear about the fact that they originate from experimental studies. Please find below representative examples of such passages:

      “In particular, some antibiotic resistance proteins, like β-lactamases, which decrease the quantities of active drug present, function akin to common goods, since their benefits are not limited to the pathogen that produces them but can be shared with the rest of the bacterial community. This means that their activity enables pathogen cross-resistance when multiple species are present [1,31], something that was demonstrated in recent work investigating the interactions between pathogens that naturally co-exist in CF infections. More specifically, it was shown that in laboratory co-culture conditions, highly drug-resistant S. maltophilia strains actively protect susceptible P. aeruginosa from β-lactam antibiotics [1]. Moreover, this crossprotection was found to facilitate, at least under specific conditions, the evolution of β-lactam resistance in P. aeruginosa [32]” (lines 47-57 of the revised manuscript).

      “The antibiotic resistance mechanisms of S. maltophilia impact the antibiotic tolerance profiles of other organisms that are found in the same infection environment. S. maltophilia hydrolyses all β-lactam drugs through the action of its L1 and L2 β-lactamases [7,8]. In doing so, it has been experimentally shown to protect other pathogens that are, in principle, susceptible to treatment, such as P. aeruginosa [1]. This protection, in turn, allows active growth of otherwise treatable P. aeruginosa in the presence of complex β-lactams, like imipenem [1], and, at least in some conditions, increases the rate of resistance evolution of P. aeruginosa against these antibiotics [32]” (lines 332-340 of the revised manuscript).

      (12) Regarding the role of S. maltophilia in CF disease, the authors should either discuss clinical associations more completely or note the conflicting data on its role in disease. As an example, lines 84-87: "As a result, the standard treatment option, i.e., broad-spectrum βlactam antibiotic therapy, constitutes a severe risk for CF patients carrying both P. aeruginosa and S. maltophilia [10,11], creating an urgent need for antimicrobial approaches that will be effective in eliminating both pathogens."

      It is unclear how this treatment results in a "severe risk" for CF patients colonized by both Sm and Pa. Citation 10 suggests an association between anti-pseudomonal antibiotic use and increased prevalence of Sm, but neither citation supports a worsening clinical outcome from this treatment. Citation 10 further notes that clinical scores between Sm-positive and control cohorts could not be distinguished statistically. Citation 11 is a review that makes note of this conflicting data regarding Sm, including reference to a more recent (at the time) result using multivariate analysis showing no independent affect of Sm on survival.

      The above point similarly applies to other statements in the manuscript, for example at lines 266-267: "Considering the contribution of S. maltophilia strains to treatment failure in CF lung infections [8,10,11][...]" As well as lines 79-80: "Pulmonary exacerbations and severe disease states are also associated with the presence of S. maltophilia [8]"

      Again, the provided citations do not support the implication that Sm specifically 'contributes to treatment failure in CF lung infections' or that Sm is specifically associated with severe disease states. In addition to the previously discussed citations, citation 8 describes broad "pulmotypes" composed of 10 species/genera that could be associated with particular clinical (e.g., exacerbation) or treatment (e.g., antibiotic therapy) characteristics, but these cannot, without further analysis, be associated with, or causally linked to, a specific pathogen. While pulmotype 2 in citation 8 was associated with a more severe clinical state and appeared to have the highest relative abundance of Sm compared to other pulmotypes, Sm was not identified (Figure 4A) as an independent factor that distinguishes between moderate and severe disease, unlike Pa and some anaerobes (4F-H). The authors also observed that decreasing relative abundance of Pa, in particuar, is correlated with subsequent exacerbation, but did not correlate this with the presence of any other species or genera. Again, this should be re-framed with the appropriate caveat that this is a hypothesis with possible clinical significance.

      Several suggested papers are included below on Sm association with clinical characteristics to incorporate into the manuscript if the authors choose to do so:

      https://doi.org/10.1177/14782715221088909

      https://doi.org/10.1016/j.prrv.2010.07.003

      https://doi.org/10.1016/j.jcf.2013.05.009 https://doi.org/10.1002/ppul.23943

      https://doi.org/10.1002/14651858.CD005405.pub2

      https://doi.org/10.1164/rccm.2109078 http://dx.doi.org/10.1136/thx.2003.017707

      https://erj.ersjournals.com/content/23/1/98.short

      Thank you for your comment. You are entirely correct. We have amended the test throughout our revised manuscript to avoid overstating the role of S. maltophilia in CF infections and to reference additional relevant works in the literature. Please find below representative examples of such passages:

      “On the other hand, CF microbiomes are increasingly found to encompass S. maltophilia [2-4], a globally distributed opportunistic pathogen that causes serious nosocomial respiratory and bloodstream infections [5-7]. S. maltophilia is one of the most prevalent emerging pathogens [6] and it is intrinsically resistant to almost all antibiotics, including β-lactams like penicillins, cephalosporins and carbapenems, as well as macrolides, fluoroquinolones, aminoglycosides, chloramphenicol, tetracyclines and colistin. As a result, the standard treatment option for lung infections, i.e., broad-spectrum β-lactam antibiotic therapy, is rarely successful in countering S. maltophilia [7,8], creating a definitive need for approaches that will be effective in eliminating both pathogens” (lines 33-41 of the revised manuscript).

      “Of the organisms studied in this work, S. maltophilia deserves further discussion because of its unique intrinsic resistance profile. The prognosis of CF patients with S. maltophilia lung carriage is still debated [4,9-16], largely because studies with extensive and well-controlled patient cohorts are lacking. This notwithstanding, the therapeutic options against this pathogen are currently limited to one non-β-lactam antibiotic-adjuvant combination, , which is not always effective, trimethoprim-sulfamethoxazole [17-20], and a few last-line β-lactam drugs, like the fifth-generation cephalosporin cefiderocol and the combination aztreonam-avibactam. Resistance to commonly used antibiotics causes many problems during treatment and, as a result, infections that harbor S. maltophilia have high case fatality rates [7]. This is not limited to CF patients, as S. maltophilia is a major cause of death in children with bacteremia [5]” (lines 440-450 of the revised manuscript).

      Reviewer #3 (Recommendation For the Authors):

      (1) The referencing of supplemental figures does not follow a sequential order. For example, Figure S2 appears in the text before S1. The sequential ordering of figure numbers improves the readability and can be considered while editing the manuscript for revision.

      Thank you for this comment. This is amended in our revised manuscript and supplemental figures and files are cited in order.

      (2 )It will be useful to provide a brief description of ambler classes since these are important to study design (for a broader audience).

      Thank you for this suggestion. This has been added and can be found in lines 91-101 of the revised manuscript.

      (3) The rationale for using K12 strain for E. coli should be provided. It appears that is a model system that is well established in their lab, but a scientific rationale can be listed. Maybe this strain does not have any lactamases in its genome other than the one being expressed as compared to pathogenic E. coli?

      Thank you for this suggestion. This has been added and can be found in lines 104-106 of the revised manuscript.

      (4) The reviewers used worm model to test their observations, which is relevant. Given the significant implications of their work in overcoming resistance to clinically used antibiotics and availability of already generated dsbA mutants in clinical strains, it will be useful to investigate survival in animal models or at least wound models of Pseudomonas infections. The reviewer does not deem this necessary, but it will significantly increase the impact of their seminal work.

      Thank you for this comment. We appreciate the sentiment, and we would have liked to be able to perform experiments in a murine model of infection. There are several reasons that made this not possible, and as a result we used G. mellonella as an informative preliminary in vivo infection model. The DSB proteins have been shown to play a central role in bacterial virulence. Because of this our P. aeruginosa and S. maltophilia mutant strains are not efficient in establishing an infection, even in a wound model. This could be overcome had we been able to use the chemical inhibitor of the DSB system in vivo, however this also is not possible This is due to the fact that the chemical compound that we use to inhibit the function of DsbA acts on DsbB. Inhibition of DsbB blocks the re-oxidation of DsbA and leads to its accumulation in its inactive reduced form. However, the action of the inhibitor can be bypassed through reoxidation and re-activation of DsbA by small-molecule oxidants such as L-cystine, which are abundant in rich growth media or animal tissues. This makes the inhibitor only suitable for in vitro assays that can be performed in minimal media, where the presence of small-molecule oxidants can be strictly avoided, but entirely unsuitable for an insect or a vertebrate animal model.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Dixit, Noe, and Weikl apply coarse-grained and all-atom molecular dynamics to determine the response of the mechanosensitive proteins Piezo 1 and Piezo 2 proteins to tension. Cryo-EM structures in micelles show a high curvature of the protein whereas structures in lipid bilayers show lower curvature. Is the zero-stress state of the protein closer to the micelle structure or the bilayer structure? Moreover, while the tension sensitivity of channel function can be inferred from the experiment, molecular details are not clearly available. How much does the protein's height and effective area change in response to tension? With these in hand, a quantitative model of its function follows that can be related to the properties of the membrane and the effect of external forces. 

      Simulations indicate that in a bilayer the protein relaxes from the highly curved cryo-EM dome (Figure 1). 

      Under applied tension, the dome flattens (Figure 2) including the underlying lipid bilayer. The shape of the system is a combination of the membrane mechanical and protein conformational energies (Equation 1). The membrane's mechanical energy is well-characterized. It requires only the curvature and bending modulus as inputs. They determine membrane curvature and the local area metric (Equation 4) by averaging the height on a grid and computing second derivatives (Equations 7, 8) consistent with known differential geometric formulas. 

      The bending energy can be limited to the nano dome but this implies that the noise in the membrane energy is significant. Where there is noise outside the dome there is noise inside the dome. At the least, they could characterize the noisy energy due to inadequate averaging of membrane shape. 

      My concern for this paper is that they are significantly overestimating the membrane deformation energy based on their numerical scheme, which in turn leads to a much stiffer model of the protein itself.

      We agree that “thermal noise” is intrinsic to MD simulations, as in “real” systems, leading to thermally excited shape fluctuations of membranes and conformational fluctuations of proteins. However, for our coarse-grained simulations, the thermally excited membrane shape fluctuations can be averaged out quite well, and the resulting average shapes are smooth, see e.g. the shapes and lines of the contour plots in Fig. 1 and 2. For our atomistic simulations, the averaged shapes are not as smooth, see Fig. 3a and the lines of the contour plots in Fig. 3b. Therefore, we do not report bending energies for the nanodome shapes determined from atomistic simulations, because bending energy calculations are sensitive to remaining “noise” on small scales (due to the scale invariance of the bending energy), in contrast to calculations of excess areas, which we state now on lines 620ff.

      For our coarse-grained simulations, we now corroborate our bending energy calculations based on averaged 3d shapes by comparing to bending energy values obtained from highly smoothened 2d mean curvature profiles (see Fig. 1c for mean curvature profiles in tensionless membranes). We discuss this in detail from line 323 on, starting with:

      “To corroborate our bending energy calculations for these averaged three-dimensional nanodome shapes, we note that essentially identical bending energies can be obtained from the highly smoothened mean curvatures M of the two-dimensional membrane profiles. …”

      Two things would address this: 

      (1) Report the membrane energy under different graining schemes (e.g., report schemes up to double the discretization grain). 

      There are two graining schemes in the modeling, and we have followed the reviewer’s recommendation regarding the second scheme. In the first, more central graining scheme, we use quadratic membrane patches with a sidelength of about 2 nm to determine membrane midplane shapes and lipid densities of each simulation conformation. This graining scheme has also been previously employed in Hu, Lipowsky, Weikl, PNAS 38, 15283 (2013) to determine the shape and thermal roughness of coarse-grained membranes. A sidelength of 2 nm is necessary to have sufficiently many lipid headgroups in the upper and lower leaflet in the membrane patches for estimating the local height of these leaflets, and the local membrane midplane height as average of these leaflet heights (see subsection “Membrane shape of simulation conformation” in the Methods section for details).  However, we strongly believe that doubling the sidelength of membrane patches in this discretization is not an option, because a discretization length of 4 nm is too coarse to resolve the membrane deformations in the nanodome, see e.g. the profiles in Fig. 1b. Moreover, any “noise” from this discretization is rather completely smoothened out in the averaging process used in the analysis of the membrane shapes, at least for the coarse-grained simulations. This averaging process requires rotations of membrane conformations to align the protein orientations of the conformations (see subsection “Average membrane shapes and lipid densities” for details). Because of these rotations, the original discretization is “lost” in the averaging, and a continuous membrane shape is generated. To calculate the excess areas and bending energies for this smooth, continuous membrane shape, we use a discretization of the Monge plane into a square lattice with lattice parameter 1 nm. As a response to the referee’s suggestion, we now report that the results for the excess area do not change significantly when doubling this lattice parameter to 2 nm. On line 597, we write:

      “For a lattice constant of a=2 nm, we obtain extrapolated values of the excess area Delta A from the coarse-grained simulations that are 2 to 3% lower than the values for a=1 nm, which is a small compared to statistical uncertainties with relative errors of around 10%.”

      On lines 614ff, we now state that the bending energy results are about 10% to 13% lower for a=2 nm, likely because of the lower resolution of the curvature in the nanodome compared to a=1 nm, rather than incomplete averaging and remaining roughness of the coarse-grained nanodome shapes.

      (2) For a Gaussian bump with sigma=6 nm I obtained a bending energy of 0.6 kappa, so certainly in the ballpark with what they are reporting but significantly lower (compared to 2 kappa, Figure 5 lower left). It would be simpler to use the Gaussian approximation to their curves in Figure 3 - and I would argue more accurate, especially since they have not reported the variation of the membrane energy with respect to the discretization size and so I cannot judge the dependence of the energy on discretization. I view reporting the variation of the membrane energy with respect to discretization as being essential for the analysis if their goal is to provide a quantitative estimate for the force of Piezo. The Helfrich energy computed from an analytical model with a membrane shape closely resembling the simulated shapes would be very helpful. According to my intuition, finite-difference estimates of curvatures will tend to be overestimates of the true membrane deformation energy because white noise tends to lead to high curvature at short-length scales, which is strongly penalized by the bending energy. 

      Instead of Gaussian bumps, we now calculate the membrane bending energy also from the two-dimensional, continuous mean curvature profiles (see Fig. 1c). These mean curvature profiles are highly smoothened (see figure caption for details). Nonetheless, we obtain essentially the same bending energies as in our discrete calculations of averaged, smoothened threedimensional membrane shapes, see new text on lines 326ff. We believe that this agreement corroborates our bending energy calculations. We still focus on values obtained for threedimensional membrane shapes, because of incomplete rotational symmetry. The three-dimensional membrane shapes exhibit variations with the three-fold symmetry of the Piezo proteins, see Figure 2a and b.

      We agree that the bending energy of thermally rough membranes depends on the discretization scheme, because the discretization length of any discretization scheme leads to a cut-off length for fluctuation modes in a Fourier analysis. But again, we average out the thermal noise, for reasons given in the Results section, and analyse smooth membrane shapes.  

      The fitting of the system deformation to the inverse time appears to be incredibly ad hoc ... Nor is it clear that the quantified model will be substantially changed without extrapolation. The authors should either justify the extrapolation more clearly (sorry if I missed it!) or also report the unextrapolated numbers alongside the extrapolated ones. 

      We report the values of the excess area and bending energy in the different time intervals of our analysis as data points in Fig. 4 with supplement. We find it important to report the time dependence of these quantities, because the intended equilibration of the membrane shapes in our simulations is not “complete” within a certain time window of the simulations. So, just “cutting” the first 20 and 50% of the simulation trajectories, and analysing the remaining parts as “equilibrated” does not seem to be a reasonable choice here, at least for the membrane properties, i.e. for the excess area and bending energy. We agree that the linear extrapolation used in our analysis is a matter of choice. At least for the coarse-grained simulations, the extrapolated values of excess areas and bending energies are rather close to the values obtained in the last time windows (see Figure 4). 

      In summary, this paper uses molecular dynamics simulations to quantify the force of the Piezo 1 and Piezo 2 proteins on a lipid bilayer using simulations under controlled tension, observing the membrane deformation, and using that data to infer protein mechanics. While much of the physical mechanism was previously known, the study itself is a valuable quantification. I identified one issue in the membrane deformation energy analysis that has large quantitative repercussions for the extracted model. 

      Reviewer #2 (Public review): 

      Summary: 

      In this study, the authors suggest that the structure of Piezo2 in a tensionless simulation is flatter compared to the electron microscopy structure. This is an interesting observation and highlights the fact that the membrane environment is important for Piezo2 curvature. Additionally, the authors calculate the excess area of Piezo2 and Piezo1, suggesting that it is significantly smaller compared to the area calculated using the EM structure or simulations with restrained Piezo2. Finally, the authors propose an elastic model for Piezo proteins. Those are very important findings, which would be of interest to the mechanobiology field. 

      Whilst I like the suggestion that the membrane environment will change Piezo2 flatness, could this be happening because of the lower resolution of the MARTINI simulations? In other words, would it be possible that MARTINI is not able to model such curvature due to its lower resolution? 

      Related to my comment above, the authors say that they only restrained the secondary structure using an elastic network model. Whilst I understand why they did this, Piezo proteins are relatively large. How can the authors know that this type of elastic network model restrains, combined with the fact that MARTINI simulations are perhaps not very accurate in predicting protein conformations, can accurately represent the changes that happen within the Piezo channel during membrane tension? 

      These questions regarding the reliability of the Martini model are very reasonable and are the reason why we include also results from atomistic simulations, at least for Piezo 2, and compare the results. In the Martini model, secondary structure constraints are standard. In addition, constraints on the tertiary structure (e.g. via an elastic network model) are also typically used in simulations of soluble, globular proteins. However, such tertiary constraints would make it impossible to simulate the tension-induced flattening of the Piezo proteins. So instead, as we write on lines 427ff, “we relied on the capabilities of the Martini coarse-grained force field for modeling membrane systems with TM helix assemblies (Sharma and Juffer, 2013; Chavent et al., 2014; Majumder and Straub, 2021).” In these refences, Martini simulations were used to study the assembly of transmembrane helices, leading to agreement with experimentally observed structures. As we state in our article, our atomistic simulations corroborate the Martini simulations, with the caveats that are now more extensively discussed in the new last paragraph of the Discussion section starting on line 362.

      Modelling or Piezo1, seems to be based on homology to Piezo2. However, the authors need to further evaluate their model, e.g. how it compares with an Alphafold model. 

      We understand the question, but see it beyond the scope of our article, also because of the computational demand of the simulations. The question is: Do coarse-grained simulations of Piezo1 based on an Alphafold model as starting structure lead to different results? It is important to note that we only model the rather flexible 12 TM helices at the outer ends of the Piezo 1 monomers via homology modeling to the Piezo 2 structure, which includes these TM helices. For the inner 26 TM helices, including the channel, we use the high-quality cryo-EM structure of Piezo 1. Alphafold may be an alternative for modeling the outer 12 helices, but we don’t think this would lead to statistically significant differences in simulations – e.g. because of the observed overall agreement of membrane shapes in all our Piezo 1 and Piezo 2 simulation systems.

      To calculate the tension-induced flattening of the Piezo channel, the authors "divide all simulation trajectories into 5 equal intervals and determine the nanodome shape in each interval by averaging over the conformations of all independent simulation runs in this interval.". However, probably the change in the flattening of Piezo channel happens very quickly during the simulations, possibly within the same interval. Is this the case? and if yes does this affect their calculations? 

      Unfortunately, the flattening is not sufficiently quick, so is not complete within the first time windows, see data points in Figure 4. We therefore report the time dependence with the plots in Figure 4 and extrapolate, see also our response above to reviewer 1.

      Finally, the authors use a specific lipid composition, which is asymmetric. Is it possible that the asymmetry of the membrane causes some of the changes in the curvature that they observe? Perhaps more controls, e.g. with a symmetric POPC bilayer are needed to identify whether membrane asymmetry plays a role in the membrane curvature they observe. 

      Because of the rather high computational demands, such controls are beyond our scope. We don’t expect statistically significant differences for symmetric POPC/cholesterol bilayers. On lines 229ff, we now state:

      “Our modelling assumes that any spontaneous curvature from asymmetries in the lipid composition is small compared to the curvature of the nanodome and, thus, negligible, which is plausible for the rather slight lipid asymmetry of our simulated membranes (see Methods).”

      Reviewer #3 (Public review): 

      Strengths: 

      This work focuses on a problem of deep significance: quantifying the structure-tension relationship and underlying mechanism for the mechanosensitive Piezo 1 and 2 channels. This objective presents a few technical challenges for molecular dynamics simulations, due to the relatively large size of each membrane-protein system. Nonetheless, the technical approach chosen is based on the methodology that is, in principle, established and widely accessible. Therefore, another group of practitioners would likely be able to reproduce these findings with reasonable effort. 

      Weaknesses: 

      The two main results of this paper are (1) that both channels exhibit a flatter structure compared to cryo-EM measurements, and (2) their estimated force vs. displacement relationship. Although the former correlates at least quantitatively with prior experimental work, the latter relies exclusively on simulation results and model parameters. 

      Below is a summary of the key points we recommend addressing in a revised version of the manuscript: 

      (1) The authors should report and discuss controls for the membrane energy calculations, specifically by increasing the density of the discretization graining. We also suggest validating the bending modulus used in the energy calculations for the specific lipid mixture employed in the study. 

      We have addressed both points, see our response to the reviewer’s comments for further details.

      (2) The authors should consider and discuss the potential limitations of the coarse-grained simulation force field and clarify how atomistic simulations validate the reported results, with a more detailed explanation of the potential interdependencies between the two. 

      We now discuss the caveats in the comparison of coarse-grained and atomistic simulations in more detail in a new paragraph starting on line 362.

      (3) The authors should provide further clarification on other points raised in the reviewers' comments, for instance, the potential role of membrane asymmetry. 

      We have done this – see above. We now further explain on lines 437ff why we use an asymmetric membrane. On lines 230ff, we discuss that any spontaneous membrane curvature due to lipid asymmetry is likely small compared to the nanodome curvature and, thus, negligible.

      Reviewer #1 (Recommendations for the authors): 

      (1) Report discretization dependence of the membrane energy (up to double the density of the current discretization graining). 

      We have added several text pieces in the paragraph “Excess area and bending energy” starting on line 583 in which we state how the results depend on the lattice constant a of the calculations.

      (2) Evaluate an analytical energy of a membrane bump with a shape similar to the simulation. This would be free of all sampling and discretization artifacts and would thus be an excellent lower bound of the energy. 

      We have done this for the curvature profile in Figure 1c and corresponding curvature profiles of the shape profiles in Figure 2d, see next text on lines 326ff.

      Minor: 

      (1)  The lipid density (Figure 1 right, 2c, 3c) is not interesting nor is it referred to. It can be dropped. 

      We think the lipid density maps are important for two reasons: First, they show the protein shape obtained after averaging conformations, as low-lipid-density regions. Second, the lipid densities are used in the calculation of the bending energies, to limit the bending energy calculations to the membrane in the nanodome, see Eq. 9. We therefore prefer to keep them.

      (2) Figure 7 is attractive but not used in a meaningful way. I suggest inserting the protein graphic from Figure 7 into Figure 1 with the 4-helix bundles numbered alongside the structure. Figure 7 could then be dropped. 

      Figure 7 is a figure of the Methods section. We need it to illustrate and explain aspects of the setup (numbering of helices, missing loops) and analysis (numbering scheme of 4-TM helix units).

      (3) Some editing of the use of the English language would be helpful. "Exemplary" is a bit of a funny word choice, it implies that the conformation is excellent, and not simply representative. I'd suggest "Representative conformation". 

      We agree and have replaced “exemplary” by “representative”.

      (4) Typos: 

      Equation 4 - Missing parentheses before squared operator inside the square root. 

      We have corrected this mistake.

      Reviewer #2 (Recommendations for the authors): 

      This study focuses mainly on Piezo2; the authors do not perform any atomistic simulations of Piezo1, and the coarse-grained simulations for Piezo1 are shorter. As a result, their analysis for Piezo2 seems more complete. It would be good if the authors did similar studies with Piezo1 as with Piezo2. 

      We agree that atomistic simulations of Piezo 1 would be interesting, too. However, because the atomistic simulations are particularly demanding, this is beyond our scope.

      Reviewer #3 (Recommendations for the authors): 

      (1) At line 63, a very large tension from the previous work by De Vecchis et al is reported (68 mN/m). The authors are sampling values up to about 21 mN/m, which is considerably smaller. However, these values greatly exceed what typical lipid membranes can sustain (about 10 mN/m) before rupturing. When mentioning these large tensions, the authors should emphasize that these values are not physiologically significant, because they would rupture most plasma membranes. That said, their use in simulation could be justified to magnify the structural changes compared to experiments. 

      We agree that our largest membrane tension values are unphysiological. However, we see a main novelty and relevance of our simulations in the fact that we obtain a response of the nanodome in the physiological range of membrane tensions, see e.g. the 3<sup>rd</sup> sentence of the abstract. Yes, we include simulations at tensions of 21 mN/m, but most of our simulated tension values are in the range from 0 to 10 mN/m (see e.g. Fig. 3e), in contrast to previous simulation studies.   

      (2) At line 78 and in the Methods, only the reference paper is for the CHARMM protein force field, but not for the lipid force field. 

      We have added the reference Klauda et al., 2010 for the CHARMM36 lipid force field in both spots.

      (3) (Line 83) Acknowledging that the authors needed to use the structure from micelles (because it has atomic resolution), how closely do their relaxed Piezo structures compare with the lowerresolution data from the MacKinnon and Patapoutian papers? 

      There are no structures reported in these papers to compare with, only a clear flattening as stated.  

      (4) (Line 99) The authors chose a slightly asymmetric lipid membrane composition to capture some specific plasma-membrane features. However, they do not discuss which features are described by this particular composition, which doesn't include different acyl-chain unsaturations between leaflets. Further, they do not seem to comment on whether there is enrichment of certain lipid species coupled to curvature, or whether there is any "scrambling" occurring when the dome section and the planar membrane are stitched together in the preparation phase (Figure 8). 

      Enrichment of lipids in contact with the protein is addressed in the reference Buyan et al., 2020, based on Martini simulations with Piezo 1. We have a different focus, but still wanted to keep an asymmetric membrane as in essentially all previous simulation studies as now stated also on lines 439ff, to mimic the native Piezo membrane environment. There is no apparent “scrambling” in the setup of our membrane systems. We also did not explore any coupling between curvature and lipid composition, but will publish the simulation trajectories to enable such studies.  

      (5) (Caption of Figure 2). Please comment briefly in the text why the tensionless simulation required a longer simulation run (e.g. larger fluctuations?) 

      We added as explanation on line 500 as explanation: “ … to explore the role of the long-range shape fluctuations in tensionless membranes for the relaxation into equilibrium”. The relaxation time of membrane shape fluctuations strongly increases with the wave length, which is only limited by the simulation box size in the absence of tensions. However, also for 8 microsecond trajectories, we do not observe complete equilibriation and therefore decided to extrapolate the excess area and bending energy values obtained for different time intervals of the trajectories.

      (6) (Caption of Figure 3). Please clarify in the Methods how the atomistic simulations were initialized were they taken from independent CG simulation snapshots? If not, the use of the adjective "independent" would be questionable given the very short atomistic simulation time length. 

      We now added that the production simulations started from the same structure. On lines 386, we now discuss the starting structure of the atomistic simulations in more detail.

      (7) (Line 202). The approach of discretizing the bilayer shape is reasonable, but no justification was provided for the 1-nm grid spacing. In my opinion, there should be a supporting figure showing how the bending energy varies with the grid spacing. 

      We now report also the effect of a 2-nm grid spacing on the results, see new text passages on page 18, and provide an explanation for the smaller 1-nm grid spacing on lines 587ff, where we write:

      “This lattice constant [a = 1 nm] is chosen to be smaller than the bin width of about 2nm used in determining the membrane shape of the simulation conformations, to take into account that the averaging of these membrane shapes can lead to a higher resolution compared to the 2 nm resolution of the individual membrane shapes.”

      (8) (Line 211). The choice by the authors to use a mixed lipid composition complicates the task of defining a reasonable bending modulus. Experimentally and in atomistic simulations, lipids with one saturated tail (like POPC or SOPC) are much stiffer when they are mixed with cholesterol (https://doi.org/10.1529/biophysj.105.067652, https://doi.org/10.1103/PhysRevE.80.021931, https://doi.org/10.1093/pnasnexus/pgad269). On the other hand, MARTINI seems to predict a slight *softening* for POPC mixed with cholesterol (https://doi.org/10.1038/s41467-023-43892-x). Further complicating this matter, mixtures of phospholipids with different preferred curvatures are predicted to be softer than pure bilayers (e.g. https://doi.org/10.1021/acs.jpcb.3c08117), but asymmetric bilayers are stiffer than symmetric ones in some circumstances (https://doi.org/10.1016/j.bpj.2019.11.3398). 

      This issue can be quite thorny: therefore, my recommendation would be to either: (a) directly compute k for their lipid composition, which is straightforward when using large CG bilayers (as was done in Fowler et al, 2016), but it would also require more advanced methods for the atomistic ones; (b) use a reasonable *experimental* value for k, based on a similar enough lipid composition. 

      We now justify in somewhat more detail why we use an asymmetric membrane, but agree that his complicates the bending energy estimates. We only aim to estimate the bending energy in the Martini 2.2 force field, because our elasticity model is based on and, thus, limited to results obtained with this force field. We have included the two further references using the Martini 2.2 force field suggested by the reviewer on line 213, and discuss now in more detail how the bending rigidity estimate enters and affects the modeling, see lines 226ff.  

      (9) (Line 224). Does this closing statement imply that all experimental work from ex-vivo samples describe Piezo states under some small but measurable tension? 

      We compare here to the cryo-EM structure in detergent micelles. So, there is no membrane tension, there may be a surface tension of the micelle, but we assume here that Piezo proteins are essentially force free in detergent micelles. Membrane embedding, in contrast, leads to strong forces on Piezo proteins already in the absence of membrane tension, because of the membrane bending energy.

      (10) (Line 304). The Discussion concludes with a reasonable point, albeit on a down note: could the authors elaborate on what kind of experimental approach may be able to verify their modeling results? 

      Very good question, but this is somewhat beyond our expertise. We don’t have a clear recommendation – it is complicated. What can be verified is the flattening, i.e. the height and curvature of the nanodome in lower-resolution experiments. We see our results in line with these experiments, see Introduction. 

      (11) (Line 331). The very title of the Majumder and Straub paper addresses the problem of excessive binding strength between protein beads in the MARTINI force field, which should be mentioned. Figure 3(d) shows that the atomistic systems have larger excess areas than the CG ones. This could be related to MARTINI's "stickiness", or just statistical sampling. Characterizing the grid spacing (see point 7 above) might help illuminate this. 

      We discuss now the larger excess area values of the atomistic simulations on lines 381ff.  

      (12) (Lines 367, 375). Are the harmonic restraints absolute position restraints or additional bonds?

      Note also that the schedule at which the restraints are released (10-ns intervals) is relatively quick. Does the membrane have enough time to equilibrate the number of lipids in each leaflet? 

      These are standard, absolute position restraints. The 10-ns intervals may be too short to fully equilibrate the numbers of lipids, we have not explored this. The main point in the setup was to have a reasonable TM helix embedding with a smooth membrane, without any rupturing. This turned out to be tricky, with the procedures illustrated in Figure 8 as solution. If the membrane is smooth, the lipid numbers quickly equilibrate either in the final relaxation or in the initial nanoseconds of the production runs.

      (13) (Line 387) The use of an isotropic barostat for equilibration further impedes the system's ability to relax its structure. I feel that the authors should validate more strongly their protocol to rule out the possibility that incomplete equilibration could bias dynamics towards flatter membranes, which is one of the main results of this paper. 

      We don’t see how choices in the initial relaxation steps could have affected our results, at least for the coarse-grained simulations. There is more and more flattening throughout all simulation trajectories, see e.g. the extrapolations in Figure 4. All initial simulation structures are significantly less flattened than the final structures in the production runs.

      (14) (Line 403). What is the protocol for reducing the membrane size for atomistic simulation? This is even more important to mention than for CG simulations. 

      We just cut lipids beyond the intended box size of the atomistic simulations. As a technical point, we now have also added on line 507 how PIP2 lipids were converted.

      (15) (Line 423). The CHARMM force field requires a cut-off distance of 12 Å for van der Waals forces, with a force-based continuous switching scheme. The authors should briefly comment on this deviation and its possible impact on membrane properties. Quick test simulations of very small atomistic bilayers with the chosen composition could be used as a comparison. 

      We don’t expect any relevant effect on membrane properties within the statistical accuracies of the quantities of interest here (i.e. excess areas).

      (16) (Equation 4). There are some mismatched parentheses: please check. 

      We have corrected this mistake.

      (17) (Equations 7-8). Why did the authors use finite-differences derivatives of z(x,y) instead of using cubic splines and the corresponding analytical derivatives? 

      In our experience, second derivatives of standard cubic splines can be problematic. The continuous membrane shapes we obtain in our analysis are averages of such splines. We find standard finite differences more reliable, and therefore discretize these shapes. Already for the 2d membrane profiles of Figure 1b and 2d, calculating curvatures from interpolations using splines is problematic.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      This is a very insightful work showing how to disentangle one of the most complex transcriptional networks in yeast (S. cerevisiae) by combining single-cell dynamics, dynamical-systems modeling, Bayesian-style inference, and genetic perturbations. The authors tackle a problem that has eluded quantitative resolution for over two decades-how yeast regulates its seven primary glucose importer genes (HXT1-HXT7) in response to both steady and temporally changing extracellular [glucose]. Their integrated experimental-theoretical approach delivers the most satisfying mechanistic and quantitative explanation to date, and I enthusiastically recommend this manuscript for publication.

      Yeast relies on seven passive hexose transporters (Hxt1-Hxt7) to import glucose, its preferred sugar; deleting all seven abolishes growth on glucose. The underlying regulatory network is exceptionally intricate, reflecting yeast's evolutionary priority for glucose. Two membrane sensors-Snf3 (high affinity) and Rgt2 (low affinity)-detect extracellular glucose and thereby inactivate two co-repressors, Mth1 and Std1, which modulate the DNA-binding factor Rgt1. Concurrently, intracellular glucose activates the SNF1 kinase, phosphorylating and exporting the repressor Mig1, while Mth1/Std1 also govern the transcription and stability of Mig2, another DNA-binding repressor. Together, Rgt1, Mig1, and Mig2 integrate these inputs to control HXT promoter activity (Fig. 2A). Importantly, Mth1 and Std1 do not directly bind to DNA and this complication - the protein-protein interaction that one cannot get from DNA sequence - is just one source of difficulty that the authors overcame.

      To map the network's behavior, the authors used microfluidic "cages" housing single cells expressing GFP-tagged HXTs, monitoring fluorescence under three constant glucose levels-low (0.01%), medium (0.1%), and high (1%) (Fig. 1B-C). The authors confirm that steady-state Hxt abundances rank by transporter affinity. But the more important and surprising discovery is that when the cells were subjected to gradual glucose up-shifts and down-shifts, they discovered that some transporters transiently spike only when [glucose] rises and others only when [glucose] falls (Fig. 1C and Fig. S1F). This discovery establishes that the HXT network not only "senses" the absolute external [glucose] concentration but also the direction of the temporal change in external [glucose].

      To understand how the regulatory network yields such intricate temporal changes in HXT expression, the authors first focused on the medium-affinity transporter, Hxt4. Targeted knockouts of Mig1/Mig2 versus Mth1/Std1 confirmed that Hxt4 dynamics arise from differential repressor kinetics. To formalize these findings, the authors built an ODE model grounded in literature-based constraints (pg. 13 of the Supplement) with explicit separation of repressor timescales. They rigorously fit the model to wild-type and knockout time series-exploring parameter sensitivity in depth (Fig. S5).

      The authors discovered that their model and experiments converged on a push-pull mechanism: fast-acting Mig1/Mig2 dominate during glucose up-shifts, while slower Mth1/Std1 govern down-shifts, determining whether each HXT gene is repressed or de-repressed (i.e., "who gets there first"). Extending this analysis across all seven HXTs via approximate Bayesian computation revealed the most likely repressor-promoter interactions for each transporter, reducing a vast parameter space to unique or small sets of plausible regulatory schemes. The authors thus revealed what could be happening and which regulations are improbable - a more nuanced and comprehensive view than giving just one outcome for each HXT.

      Overall, this work represents a role model - textbook-worthy - for quantitative systems biology. Beyond the rigor and novelty of its findings, the authors explain complex mathematical concepts with clarity, and the narrative flows logically from experiment to model to inference. This study provides a definitive mechanistic resolution of the HXT network and establishes a broadly applicable framework for dissecting dynamic and complex gene circuits.

      Major points:

      I don't recommend any new experiments or modeling; the major claims are already well supported by the data and models. Below are comments and questions intended to improve clarity and facilitate the reader's understanding. Please feel free to disregard any that you find not sensible or beyond the scope of the current work.

      1. Preconditioning (Fig. 1B-C): What medium were cells in immediately before t = 0? Were they in log-phase or stationary-phase growth just prior to the glucose addition?
      2. Transporter ranking in medium glucose: In the medium [glucose] regime, why is a low-affinity Hxt the second-most highly expressed, rather than the next-highest-affinity transporter? Could co-expression of multiple affinities (e.g., as a bet-hedging strategy) be advantageous? The Discussion section already mentions bet-hedging but I think you could further discuss ideas such as evolutionarily trained "Pavlovian" response or what the 2nd-ranking says about what the yeast anticipates as an upcoming change in the environment.
      3. Defining low/medium/high regimes: Low = 0.01%, Medium = 0.1%, and High = 1%. This is indeed in line with the standard classification of [glucose] in the literature regarding HXTs. But how might your results change at intermediate concentrations - those between these three levels. Using the model, could you comment on whether HXT expression dynamics "sharply" change as a function of either the [glucose]/time or the final concentration of [glucose] after the ramping-up phase?
      4. Rate-affinity trade-off (Lines 18-20): Give a brief explanation of the rate-affinity trade-off. Why does higher affinity necessarily entail a lower maximal transport rate (Vₘₐₓ) for passive transporters? Perhaps you can give an intuitive explanation backed by mass-action kinetics (e.g., to attain a higher affinity, the glucose-binding pocket on Hxt cannot be flipping rapidly back-and-forth between facing cytoplasm and extracellular space -- the binding pocket must allow sufficient time for molecule to find and bind it).
      5. Single-transporter expression (Lines 39-40): It's unclear to me why cells would express only the "optimal" Hxt and suppress all others. For instance, a bet-hedging strategy might favor simultaneous expression of multiple affinities. Consider revising these lines or adding a brief explanation. Related to above is a subtle point I think that was glossed over: there must be a fitness cost associated with making too many copies of Hxtn. After all, why not make as many transporters as possible? Is the cell operating near the upper limit of Hxt abundance, beyond which there's a fitness cost? Is there a pareto-optimal-type front in the space of expression level and another axis? I think this could go into the Discussion section.
      6. Hxt5 exception (Fig. 1B): Although Hxt5 follows a distinct regulatory scheme, it is most highly expressed at medium [glucose] (0.1%), consistent with its affinity like the other Hxts. I think you could mention this in lines 51-58.
      7. Glucose-ramp details (Fig. 1C; Lines 66-67): You state that [glucose] rises from 0 to 1 % over 15 min and reaches 1 % at t = 3 h. However, the actual ramp slope ([glucose]/time) and when the [glucose] starts to increase from zero aren't specified. The Hxt5-GFP behavior and differing Hxt6/7 levels at t = 0 vs. t = 20 h suggest the ramp may begin later than t = 0. Please clarify these details in the caption and main text, and consider adding a [glucose] vs. time schematic above the panel in Fig. 1C (like in Fig. 1B).
      8. Pre-t < 0 incubation (Fig. 1C): Related to point 1, how long were the cells incubated in pyruvate (or other medium) before t < 0? The Hxt6-GFP level at t = 20 h does not match that at t = 0; what is the timescale for Hxt6-GFP and Hxt7-GFP decay to steady state after glucose removal?
      9. Hxt-GFP localization: Does the reported Hxt#-GFP level include fluorescence from both the plasma membrane and internal compartments (e.g., vacuole)? Clarifying which pools of fluorescence are quantified would help interpretation, even if they don't change the main conclusions are unchanged.
      10. Predominantly transcriptional" wording (Lines 90-92): The phrase "...the regulation is predominantly transcriptional" should specify that it refers to the induction of HXT4 transcription during glucose down-ramping, rather than the subsequent decrease in Hxt4-GFP. The experiments do not rule out post-translational regulation (e.g., endocytosis) once glucose levels fall below a threshold.
      11. Glucose "protection" of Hxt4 (Lines 121-122): The statement "we allowed glucose to protect Hxt4 from degradation" is unclear. First, Hxt4-GFP likely degrades at a different rate than free GFP-you could estimate its half-life from Fig. S3. Second, please explain precisely what "protection" means in the model or experiment.
      12. Quantifying repressor kinetics (Lines 158-162): The push-pull mechanism is compelling, but it would be helpful to report the quantitative separation of timescales-e.g., how much faster do Mig1/Mig2 respond compared to Mth1/Std1? Including fold-difference would strengthen this explanation.
      13. Mechanism of repressor regulation (Lines 197-213): Be clearer about whether and how changes in extracellular glucose alter the expression levels of Mth1, Std1, Mig1, and Mig2, as opposed to modulating say, how Mth1 and Std1 bind to Rgt2 protein. I think you could be clearer here about which regulatory steps (transcriptional, post-translational, or binding-affinity changes) are assumed in the model and supported by the data.

      Minor points:

      1. Abstract: Original: "...how an HXT for a medium-affinity transporter can be made to respond like the HXTs for the other transporters." Suggestion: "...how the gene-expression regulation of a medium-affinity HXT can be rewired to respond like that of any other HXT." (You might also generalize beyond "medium-affinity" if the converse holds.)
      2. Lines 64-66: Please emphasize that the "synthetic complete medium" used for pre-conditioning contains no glucose.
      3. Line 143: The phrase "low expression of the std1\Delta strain in glucose" is ambiguous-low expression of which gene or reporter? Please specify.
      4. Line 240: Change "should weakened" to "should weaken."
      5. Fig. S9 caption (typo) Change "Rtg1 sites are..." to "Rgt1 sites are...."

      Hyun Youk.

      Referee cross-commenting

      I agree with the other reviewers' comments. The other reviewers noticed important points I have missed. But like them, I'm still supportive of the work being published with < 1 month spent on revision. I still don't recommend any further experiments or modeling.

      Significance

      This is a very insightful work showing how to disentangle one of the most complex transcriptional networks in yeast (S. cerevisiae) by combining single-cell dynamics, dynamical-systems modeling, Bayesian-style inference, and genetic perturbations. The authors tackle a problem that has eluded quantitative resolution for over two decades-how yeast regulates its seven primary glucose importer genes (HXT1-HXT7) in response to both steady and temporally changing extracellular [glucose]. Their integrated experimental-theoretical approach delivers the most satisfying mechanistic and quantitative explanation to date, and I enthusiastically recommend this manuscript for publication via Review Commons.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-03083 Corresponding author(s): David Fay General Statements [optional] This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We greatly appreciate the input of the four reviewers, all of whom carried out a careful reading of our manuscript, provided useful suggestions for improvements, and were enthusiastic about the study including its thoroughness and utility to the field. Because the reviewers required no additional experiments, we were able to address their comments in writing.

      However, in response to a comment from reviewer #4 we decided to add an additional new biological finding to our study given that our functional validation of proximity labeling targets was not extensive. Namely, we now show that a missense mutation affecting BCC-1, one of the top NEKL-MLT interactors identified by our proximity labeling screen, is a causative mutation (together with catp-1) in a strain isolated through a forward genetic screen for suppressors of nekl molting defects (new Fig 9C). This finding, combined with our genetic enhancer tests, further strengthens the functional relevance of proteins identified though our proximity labeling approach and highlights the synergy of proteomics combined with classical genetics.

      Positive statements from reviewers include: Reviewer #1: Overall, this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner.

      Reviewer #2: The key conclusions are convincing, and the work is rigorous. The work provides a clear roadmap to reproducing the data. The experiments are adequately replicated, and statistical analysis is adequate... In many papers, TurboID seems very trivial but this paper clearly highlights the limitations and will be an invaluable resource for labs that want to get proximity labeling established in their labs.

      Reviewer #3: Overall, the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. ...This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system.

      Reviewer #4: Fay et al. present a solid, clear and comprehensive BioID-based proteomics study that takes into account and discusses decisive aspects for the (re)production and analysis of high-quality TurboID-based mass spectrometry data. Claims and conclusions are generally well and sufficiently supported by the presented data and illustrated with figures (throughout the text as well as with plenty of supplementary data)... Basic consideration and thoughts for the experimental design and MS data analysis are given in detail and can serve as another guideline for future studies.

      Based on these reviews and comments, we believe that our manuscript is suitable for publication in a high-impact journal. 1. Point-by-point description of the revisions This section is mandatory. Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript.

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      *Proximity labeling has become a powerful tool for defining protein interaction networks and has been utilized in a growing number of multicellular model systems. However, while such an approach can efficiently generate a list of potential interactors, knowledge of the most appropriate controls and standardized metrics to judge the quality of the data are lacking. The study by Fay systematically investigates these questions using the C. elegans NIMA kinase family members NEKL-2 and NEKL-2 and their known binding partners MLT-2, MLT-3 and MLT-4. The authors perform eight TurboID experiments each with multiple NEKL and MLT proteins and explore general metrics for assessing experimental outcomes as well as how each of the individual metrics correlates with one another. They also compare technical and biological replicates, explore strategies for identifying false positives and investigate a number of variations in the experimental approach, such as the use of N- versus C-terminal tags, depletion of endogenous biotinylated proteins, combining auxin-inducible degradation, and the use of gene ontology analysis to identify physiological interactors. Finally, the authors validate their findings by demonstrating that a number of the candidate identified functionally interact with NEKL-2 or components of the WASH complex. *

      Overall this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner. I really like this study (particularly because I plan to do a proximity labeling study of my own), but I did come away less than impressed with some of the analysis. This is a data-dense manuscript, and it appears to me that the authors tried to cover so much ground that in some cases very little insight was provided. For instance, the authors promote the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). However the authors do not provide any analysis to indicate one approach is better than the other. Likewise the combined use of auxin-induced degradation and proximity labeling is explored but there is very little to take away from these experiments. Despite these issues, I am very enthusiastic about the study as a whole. Below I list major and minor concerns.

      Major concerns * 1. My biggest issue with the manuscript is that a lot is made of the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). The authors perform experiments using DIA and DDA approaches but do not directly compare the outcomes. As a result there is really no way to know if one approach is better than the other. I would suggest the authors either perform the necessary analysis to compare the two approaches or tone down their promotion of DIA.* We agree and have scaled back any statements comparing DDA to DIA as our manuscript did not address this directly. We also now point out this caveat in our closing thoughts section, while referencing other studies that compared the two (lines 926-929). Our main point was to convey that DIA worked well for our proximity labeling studies but has seen little use by the model organism field. Surprising (to us), DIA was also considerably less expensive than DDA options.

      2. Line 75, The authors promote the use of data-independent acquisition (DIA) without defining what this approach is and how it differs from the more conventional data-dependent acquisition. As a non-mass spectroscopist, I found myself with lots of question concerning DIA, what it is and how it differs from DDA. I think it would really be helpful to expand the description of DIA and its comparison with DDA in the introduction. As non-mass-spectroscopists ourselves, we understand the reviewer's point. Because the paper is quite long, we were trying to avoid non-essential information. We have now added some information to explain some of the key differences between DDA and DIA. We have also included references for readers who may want to learn more. (lines 77-80)

      Minor concerns: * Line 92 typo. I believe the authors meant to say NEKL-2-MLT-2-MLT-4. * Corrected. (line 95)

      Line169. Is exogenous the correct word to use here? It suggests that you are talking about non-worm proteins, but I know you are not. Corrected. Changed to "Moreover, the detection of biotinylated proteins may be difficult if the bait-TurboID fusion is expressed at low levels..." (line 181).

      Line 177 typo (D) should be (C). Corrected. (line 1122)

      Figure 1C: Lucky Charms may sue you for infringement of their trademarked marshmallow treats. Thank you for picking up on this. The authors accept full responsibility for any resulting lawsuits.

      Figure 1D. The NEKL-2::TurboID band is indicated with a green triangle in the figure but the figure legend states that green triangles indicate mNG::TurboID control. I know this triangle is a shade off the triangle that indicates mNG::TurboID but it's really hard to see the difference. All of the differently colored triangles in panel F are unnecessary. I would either just pick one color for all non-control bait proteins or better yet, only use a triangle to point to bands that are not obvious. For instance I don't need the triangles that point to NEKL-2 -3 and -4 fusion proteins. These are just distracting. We understand the reviewer's point. We colored the triangles to match the colors used for the proteins in the figures. We have now added "bright green triangles with white outlines" (Fig 1 legend) to indicate the Pdpy-7::mNG::TurboID control" and changed triangles in the corresponding figures. Although we would be fine with removing or changing the triangles, we think that they may aid somewhat with clarity.

      Line: 316: Conceivably, another factor that could contribute to the counterintuitive upregulation of some proteins in the N2 samples is related to the fusion proteins that are being expressed in the TurboID lines. A partially functional bait protein (one with a level of activity similar to nekl-2(fd81) that may not result in an obvious phenotype) could directly or indirectly affect gene expression leading to lower levels of a subset of proteins in the TurboID samples. The same could be said for fusion proteins with a gain-of-function effect. This is an interesting idea, and we tested this possibility by looking for consistent overlap between N2-up proteins between biological replates of individual bait proteins. We now include a representative Venn diagram in S3C Fig to highlight this comparison. In summary, although we cannot rule out this possibility, our analysis did not support the widespread occurrence of this effect in our study. We also made certain that our statement regarding N2 up proteins was not too definitive. (lines 285-288)

      *Fig 3 B-E. I am a little confused how the data in these graphs is normalized. For instance, I would have expected that for NEKL-3 in panel B, that the normalized (log2) intensity value in N2 be set at 0 as it is for NEKL-2. Maybe I just don't have enough information on how these plots were generated. * The difference is that in the N2 sample, NEKL-3 was detected but NEKL-2 was not. The numbers themselves are assigned by the Spectronaut software used to quantify the DIA results but are not meaningful beyond indicating relative amounts (intensity values) of a given protein within an individual biological experiment. We've added some lines to the figure legend to make this clearer. (lines 1165-1169)

      *Figure 6C legend is not correct. * Corrected. (line 1214)

      Line 575: Figure reference should be Fig. S5G. The authors should check to make sure all references to supplemental figures include correct panel information. Corrected. (line 464) In addition, we have now gone through the manuscript and added panel numbers references where applicable. Note that the addition of a new supplemental file has shifted the numbering.

      Line 576. The authors reference a study by Artan and colleagues and report a weak correlation between their study and that of Artan. They reference figure S4 but it should be Fig S5H. Apologies and many thanks to the reviewer for catching these errors. (line 464)

      Line 652. The authors note that numerous proteins were present at substantially reduced levels in the mNG::TurboID samples and suggest that sticky proteins may have been outcompeted or otherwise excluded from beads incubated with the mNG::TurboID lysates. Why would sticky proteins only be a problem in these samples? The reasoning is not clear to me. The idea was that in the sample with very high levels of biotinylated proteins (mNG::TurboID), the surface of the beads might become saturated with high-affinity biotinylated proteins. This could prevent or out complete the binding of random proteins that are not biotinylated but nevertheless have some affinity to the beads ("sticky" proteins). We have reworded this section to make this clearer. (lines 546-550)

      Line 745: The term "bait overlaps" is a bit vague. Ultimately, I figured out what it meant but it was not immediately obvious. We have changed this to "overlap between baits" and made this section clearer. (line 624-628)

      *S7B Fig. Why is actin missing from the eluate? * In S7B we refer to the purified eluate as the "eluate", which may have caused some confusion. In other sections of the manuscript, we refer to the bead-bound proteins as the "purified eluate" (Figs 1 and 5). For the purified eluate a portion of the streptavidin beads are boiled in sample buffer to elute the bound proteins before running a western. Actin would not be expected in these samples because it's (presumably) not biotinylated in our samples and doesn't detectably bind the beads. This result was seen in all relevant westerns in S1 Data. For consistency, however, we've gone through all our files to make sure we consistently use the term "purified eluate" versus "eluate", which is less specific.

      L*ine 873: The authors state the extent of overlap in GO terms between the various experiments and provide percentages. I tried to extract this information from Figure 8C and came up with different values. For instance, in the case of Molecular Function, they state that they observed a 54% overlap between NEKL-2 and NEKL-3 but in the Venn diagram in Figure 8C I see that the NEKL-2 and NEKL-3 experiments had 71 (25+46) GO terms in common. Out of 98 GO terms for NEKL-2 or 104 for NEKL-3 the percentage I got is closer to 72. Am I analyzing this correctly? * Thanks for checking this. We believe our method for calculating the percent overlap is correct. In the case of NEKL-2/NEKL-3 overlap for Molecular Function, there are 131 total unique terms, of which 71 overlap, giving a 54% overlap. In the case of NEKL-2/NEKL-3 overlap for Biological Process, however, we made an error in arithmetic (415 unique, 239 overlap), such that the correct percentage is 58%, which we have corrected in the text.

      *Reviewer #1 (Significance (Required)): *

      *Overall this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner. I really like this study (particularly because I plan to do a proximity labeling study of my own), but I did come away less than impressed with some of the analysis. This is a data-dense manuscript, and it appears to me that the authors tried to cover so much ground that in some cases very little insight was provided. For instance, the authors promote the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). However the authors do not provide any analysis to indicate one approach is better than the other. Likewise the combined use of auxin-induced degradation and proximity labeling is explored but there is very little to take away from these experiments. Despite these issues, I am very enthusiastic about the study as a whole. *

      *Reviewer #2 (Evidence, reproducibility and clarity (Required)): *

      *This study expanded the use of data-independent acquisition-mass spectrometry (DIA-MS) in TurboID proximity-labeling proteomics to identify novel interactors of NEKL-2, NEKL-3, MLT-2, MLT-3, and MLT-4 complexes in C. elegans. The authors described several useful metrics to evaluate the quality of TurboID experiments, such as using the percentage of upregulated genes, the percentage of proteins present only in bait-TurboID experiments as compared to N2 controls, and the percentage of endogenously biotinylated carboxylases as internal controls. Further, the authors introduced methodological variability across 23 TurboID experiments and evaluated any improvement to the resulting data, such as N-terminally tagging bait proteins with TurboID, depleting endogenous carboxylases, and auxin-inducible degradation of known complex members. Finally, this study identified the kinase folding chaperone CDC-37 and the WASH complex component DDL-2 as novel interactors with the NEKL-MLT complexes through an RNAi-based enhancer approach following their identification by TurboID. *

      Major comments: * The key conclusions are convincing, and the work is rigorous. The work provides a clear roadmap to reproducing the data. The experiments are adequately replicated, and statistical analysis is adequate. We only have minor comments.*

      Minor comments: * •In the western blot in Fig 1 why does the mNG::Turbo have two bands? * Thank you for point this out. To our knowledge this is a breakdown product that was especially prevalent in replicate 3 (also see S1 Data), which we chose to shown because all the NEKL-MLTs were clearly visible in this western. The expected size of the mNeonGreen::TurboID (including linker and tags) is ~68 kDa and our blots are roughly consistent those of Artan et al., (2001). This lower band was not evident in Exp 8. We have now included a statement in the figure legend to indicate that the upper band is the full-length protein whereas the lower band is likely to be a breakdown product (lines 1141-1142).

      •Fig 2B is difficult to parse as a reader. Columns labeled "Upreg," "Downreg," "TurboID only," "N2 only," "Filter-1," "Filter-2," and "Epi %" could be moved to Supplemental. Fold change vs N2 could be represented as a bar chart, allowing for trends between fold change and the metrics Upreg %, Turbo %, and Carboxylase % to be seen more clearly. Further, rows headed "Carboxylase depletion," "DDA," and "Auxin treated" could be presented as separate panels to better match the distinct points made in the text. After serious consideration we have made several changes including the addition of S2 Fig, which may provide readers with a better visual representation of the bait and prey fold changes observed in all our experiments. However, we feel that the detailed data embedded in Fig 2 is the most concise and accurate means by which to convey our full results and is key to our methodological conclusions. As such we did not want to relegate this information to a supplemental table. We note that this figure was not found to be problematic by other reviewers, although we do understand the points made by this reviewer.

      •Line 179: in vivo should be italicized Because journals differ in their stylistic practices, we are currently waiting before doing our final formatting. We did keep our use of Latin phrases consistently non-italicized in the draft.

      •Lines 215-217: The comparison between Western blot expression levels and prior fluorescent reporter levels is unclear. Could be reformatted to make it clearer that relative expression of the different NEKL-MLTs in this study is consistent with prior data. We reformatted this sentence to improve clarity. (lines 205-207)

      *•Lines 267-268: The final line of the passage is unclear and can be removed. * This sentence has been removed.

      •Lines 311-313: This study is able to use the recovery of bait and known interactor proteins as internal controls to determine the quality of each experiment, but this may not always be the case for other users' experiments. The authors should comment on how Upreg %, a value influenced by many factors, can actually be used as a quality check when a bait protein has no known interactors. We have added language to highlight this point. (lines 344-348)

      *•Line 702: There is a [new REF] that should be removed * As described above, we have now included this finding on bcc-1 as part of this manuscript (Fig 9C).

      •The approach used mixed stage animals, but some genes oscillate or are transiently expressed. Please discuss cost-benefit of mixed stage vs syncing. This is an important point. We have added a discussion on the benefits and drawbacks of using mixed stages to the discussion. (lines 901-911)

      *•Authors were working on hypodermally expressed proteins. It would be valuable to discuss what tissues are amenable to TurboID. Ie are the cases where there are few cells (anchor cell, glial sockets, etc) that it will be extremely challenging to perform this technique * We agree that certain tissues/proteins will not be amenable to proximity labeling. We believe that we have addressed this point together with the above comment throughout the manuscript and now on lines 936-940.

      •Authors mention approaches such as nanobodies, split Turbo. Based on their experiences it would be valuable to add Discussion on strengths and weaknesses of these approaches to guide folks considering TurboID and DIA-MS experiments in C. elegans Because we have not tested these methods, we feel that we cannot provide a great deal of insight into these alternate approaches. We mention and reference these methods in the introduction so that readers are aware of them.

      *Reviewer #2 (Significance (Required)): *

      •Advance in technique: This study expands the use cases of data-independent acquisition MS method (DIA-MS) in C. elegans, which fragments all ions independent of the initial MS1 data. The benefits of this approach include better reproducibility across technical replicates and better recovery of low abundance peptides, which are critical for advancing our ability to capture weak and transient interactions.

      •The use of DIA-MS in this study has improved our understanding of the partners of these NEKL-MLTs in membrane trafficking, molting, and cell adhesion within the epidermis.

      •In many papers, TurboID seems very trivial but this paper clearly highlights the limitations and will be an invaluable resource for labs that want to get proximity labeling established in their labs.

      *Reviewer #3 (Evidence, reproducibility and clarity (Required)): *

      *Summary: *

      Fay and colleagues perform a series of proximity labeling experiments in C. elegans followed by thorough and rational analysis of the resulting biotinylated proteins identified by LC-MS/MS. The overall goals of the study are to evaluate different techniques and provide practical guidance on how to achieve success. The major takeaways are that integration of data-independent acquisition (DIA) along with comparison of endogenously tagged TurboID alleles to soluble TurboID expressed in the same tissue results in improved detection of bona-fide interactors and reduced numbers of false-positives.

      *Major comments: *

      Overall the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. I have no major concerns with the manuscript and focus primarily on improving the accessibility of this important contribution to the scientific community. As such, I suggest that the authors:

      1) Provide more explanation of and rationale for using DIA. This is not yet a standard technique and most basic biomedical scientists will be unaware of the jargon. As I expect many labs in the C. elegans community and beyond will be interested in the guidance provided in this manuscript, the introduction offers a great opportunity to bring the reader up to speed, as opposed to sending them to the complicated proteomics analysis literature. We have added some additional context (lines 77-80) as well as new references. We note that getting into the technical differences between DIA and DDA, beyond what we briefly mention, would take a substantial amount of space, may not be of interest to many readers, and can be found through standard internet and (sigh) AI-based searches.

      *2) Provide a better overview of the various protocols tested (Experiments 1-8). Maybe at the beginning of the results, and maybe with an accompanying schematic. As currently written, it is difficult to figure out details regarding how the experiments vary and why. * We have now added a short paragraph to better inform the reader at the front end regarding the major experiments. (lines 139-146).

      3) As to be expected, expression of TurboID tags at endogenous levels via low abundance proteins in a complex multicellular system results in somewhat weak signals that flirt with the limit of detection. Perhaps by combining tagged alleles within the same complex (NEKL-3/MLT-3 or NEKL-2/MLT-2/MLT-4) the signals could be boosted? Tandem tags, either on one end or multiple ends of proteins might help as well. As the authors point out, a benefit of tagging the two NEKL-MLT complexes is that there are strong loss-of-function phenotypes (lethal molting defects) to help evaluate whether a tagging strategy results in a non-functional complex. THESE EXPERIMENTS ARE OPTIONAL and might simply be discussed at the authors discretion. These are interesting ideas that we have now incorporated into our discussion. (lines 936-940)

      *Minor Comments: *

      *1) Figure 3A is cropped on the right. * Thank you for catching this. Corrected.

      *2) Better define [new REF] on line 702. * We have added new results (Fig 9C), obviating the need for this reference.

      ***Referee cross-comments** *

      Overall, I am in agreement with, and supportive of, the other reviewers' comments.

      *Reviewer #3 (Significance (Required)): *

      *Significance: *

      Proximity labeling is often proposed as a technique to determine interaction networks of proteins in vivo, but in practice it remains challenging for most labs to execute a successful experiment, especially within the context of multicellular model organisms. Fay and colleagues provide a much needed roadmap for how to best approach proximity labeling experiments in C. elegans that will likely apply to other model systems.

      They establish a rigorous approach by choosing to endogenously tag components of two essential NEKL-MLT complexes required for C. elegans molting. These complexes are relatively low abundance as they are only expressed in a single cell type, the hyp7 epidermal syncytium. In addition, as inactivation of any member of the complexes results in molting defects, they have a powerful selection for functional tags. Thus, they have set a high bar for themselves in order to discern whether a given variation on the experimental approach results in improved detection of interactors and fewer false positives.

      *Potential areas for improvement include lowering the expression level of the skin-specific soluble TurboID used to determine non-specific biotinylation events. This control results in much higher levels of biotinylation compared to the TurboID-tagged NEKL-MLT alleles and likely affects their analysis, which they openly admit. In addition, to reduce the high level of background biotinylation signals generated by endogenous carboxylases, they adopt a depletion strategy pioneered by other researchers but this does not offer major improvements in detection of specific signals. The source of these conflicting results remains to be determined. It is also curious that auxin-inducible degradation of components of the NEKL-MLT complexes did not robustly alter the resulting biotinylating capacity of other members. This approach should be evaluated in subsequent studies. Finally, as mentioned in Major Comment #3 (above), it would be interesting to see if combining TurboID tags within the same complex might improve signal-to-background ratios. *

      This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system. I am a cell biologist that uses a variety of genetic, molecular and biochemical approaches, mostly centered around C. elegans. I have used LC/MS-MS in our studies but have relatively little expertise in evaluating all aspects of proteomic pipelines.

      *Reviewer #4 (Evidence, reproducibility and clarity (Required)): *

      *Fay et al. describe an extensive proximity labeling BioID study in C. elegans with TurboID and DIA-LCMS analysis. They chose the NEKL-2/3 kinases and their known interactors MLT-2/3/4 as TurboID-fused bait proteins (C- and partially N-terminal fusions encoded from CRISPR-mediated genome edited genes). With eight biological replicates (and three to four technical replicates each) and with the unmodified wildtype or mNeonGreen-TurboID expressing worms as controls, a comprehensive dataset was generated. Although starting from quite different abundances of the bait-fusions within the cell lysates all bait proteins and known complex-binding partners were convincingly enriched with capturing streptavidin beads after only one hour of incubation with the lysate. This confirms the general applicability of TurboID-BioID approach in C. elegans. The BioID method typically gives rise to large proteomics datasets (up to more than thousand proteins identified after biotin capture) with several tens to hundreds enriched proteins (against negative control strains) as potential proteins that localize proximal to the bait-TurboID protein. However, substantial variations of candidates between biological replicates are frequently observed in BioID experiments. The authors scrutinized their dataset towards indicative metrics, filters and cutoffs in order to separate high-confidence from low-confidence candidates. With the workflow applied the authors melt down the number of candidates to 15 proteins that were grouped in four functional groups reasonably associated to NEKL-MLT function. *

      Successful BioID experiments depend on reliable enrichment quantification with mass spectrometry using control cell lines that require a carefully bait-tailored design. Those must adequately express TurboID controls matching the abundance of the bait-TurboID fusion protein and its biotinylation activity. After affinity capture, sample preparation and LCMS data acquisition there is no silver bullet towards the identification true bait neighbors. Fay et al. elaborately describe their considerations and workflow towards high-confidence candidates. The workflow considered (i) data analysis with Volcano plots to account for statistical reproducibility of biological replicates against negative controls, (ii) fraction of proteins only detected in the positive or negative controls thus evading the fold-enrichment quantification approach, (iii) evaluation of variations in carboxylase enrichment as a measure for variations in the general biotin capture quality between experiments, (iv) an assessment of technical reproducibility with scatter plots and Venn diagrams, (v) exclusion of potentially false positives, e.g. promiscuously biotinylated non-proximal proteins, through comparisons with control worms expressing a non-localized mNeonGreen-TurboID fusion protein, (vi) batch effects, (vii) the impact of endogenous biotinylated carboxylases through depletion, (viii) gene ontology analysis of enriched proteins, (ix) weighing data according to the quality of individual experiments according to the afore mentioned metrics, and finally (x) genetic interaction studies to functionally associate high-confidence candidates with the bait.

      *Major comments: *

      Fay et al. present a solid, clear and comprehensive BioID-based proteomics study that takes into account and discusses decisive aspects for the (re)production and analysis of high-quality TurboID-based mass spectrometry data. Claims and conclusions are generally well and sufficiently supported by the presented data and illustrated with figures (throughout the text as well as with plenty of supplementary data). However, although the authors claim to seek for substrates of the kinase complex they drew no further attention to the phosphorylation status of the captured proteins. Haven't the MS data been analyzed in this respect? Information regarding this issue would enhance the manuscript. Data generation and method description appear reproducible for readers. Also, the statistical analyses appear adequate. The authors should also consider to deposit their MS raw and analysis data in a public repository (e.g. PRIDE) for future reviewing processes and as reference data for readers and followers. Our raw MS data have been deposited by the Arkansas Proteomics Facility. I have followed up to ensure that they are publicly available.

      *Minor comments: *

      The authors should combine supplementary data files to reduce the number of single files readers have to deal with. We have combined these files as suggested.

      The authors should avoid the term "upregulation" or "increased biotinylation" when capture enrichment is meant. We agree with reviewer's point. We now use the terms enriched versus reduced or up versus down, depending on the context, and clearly define these terms. These changes have been incorporated throughout the manuscript.

      *Reviewer #4 (Significance (Required)): *

      The manuscript presents a robust BioID proteomics screening for co-localizing proteins of NEKL-2/3 kinases and their known interactors MLT-2/3/4. The ongoing validation of their functional interactions and whether the protein candidates reflect phosphorylation substrates or else remains elusive and is announced for upcoming manuscripts. The knowledge gain in terms of molecular mechanisms with NEKL-2/3 MLT-2/3/4 involvement in C. elegans is therefore limited to a table of - promising - interacting candidates that have to be studied further. Information about the phosphorylation status of the captured proteins from the MS data are not given. However, knowing the protein candidates will be of interest for groups working with these complexes (or the identified potentially interacting proteins) either in C. elegans or any other organism. Also, in-depth proteomics screenings with novel approaches such as BioID have to be established for individual organisms. For C. elegans there is only one prior BioID publication (Holzer et al. 2022). Many of the aspects discussed here have also been addressed earlier for BioIDs in other organisms and are not principally new. However, the presented study can be of conceptual interest for labs delving into or entangled with the BioID method in C. elegans or other organisms. The study addresses especially proteomics groups working on protein-protein interactions using proximity labeling/MS approaches. Basic consideration and thoughts for the experimental design and MS data analysis are given in detail and can serve as another guideline for future studies.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review)

      As this code was developed for use with a 4096 electrode array, it is important to be aware of double-counting neurons across the many electrodes. I understand that there are ways within the code to ensure that this does not happen, but care must be taken in two key areas. Firstly, action potentials traveling down axons will exhibit a triphasic waveform that is different from the biphasic waveform that appears near the cell body, but these two signals will still be from the same neuron (for example, see Litke et al., 2004 "What does the eye tell the brain: Development of a System for the Large-Scale Recording of Retinal Output Activity"; figure 14). I did not see anything that would directly address this situation, so it might be something for you to consider in updated versions of the code.

      Thank you for this comment. We have added a routine to the SpikeMAP to remove highly correlated spikes detected within a given spatial radius of each other. The following was added to the main text (line 149):

      “As an additional verification step, SpikeMAP allows the computation of spike-count correlations between putative neurons located within a user-defined radius. Signals that exceed a defined threshold of correlation can be rejected as they likely reflect the same underlying cell.”

      Secondly, spike shapes are known to change when firing rates are high, like in bursting neurons (Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsáki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141-149 (2001)). I did not see this addressed in the present version of the manuscript.

      We have added a routine to SpikeMAP that computes population spike rates to verify stationarity over time. We have also added a routine to identify putative bursting neurons through a Hartigan statistical dip test applied to the inter-spike distribution of individual cells.

      We added the following (line 204):

      “Further, SpikeMAP contains a routine to perform a Hartigan statistical dip test on the inter-spike distribution of individual cells to detect putative bursting neurons.”

      Another area for possible improvement would be to build on the excellent validation experiments you have already conducted with parvalbumin interneurons. Although it would take more work, similar experiments could be conducted for somatostatin and vasoactive intestinal peptide neurons against a background of excitatory neurons. These may have different spike profiles, but your success in distinguishing them can only be known if you validate against ground truth, like you did for the PV interneurons.

      We have added the following (line 326):

      “future work could include different inhibitory interneurons such as somatostatin (SOM) and vasoactive intestinal polypeptide (VIP) neurons to improve the classification of inhibitory cell types. Another avenue could involve applying SpikeMAP on artificially generated spike data (Buccino & Einevoll 2021; Laquitaine et al., 2024).”

      Reviewer #2 (Public review)

      Summary:

      While I find that the paper is nicely written and easy to follow, I find that the algorithmic part of the paper is not really new and should have been more carefully compared to existing solutions. While the GT recordings to assess the possibilities of a spike sorting tool to distinguish properly between excitatory and inhibitory neurons are interesting, spikeMAP does not seem to bring anything new to state-of-the-art solutions, and/or, at least, it would deserve to be properly benchmarked. I would suggest that the authors perform a more intensive comparison with existing spike sorters.

      Thank you for your insightful comment. A full comparison between SpikeMAP and related methods is provided in Table. 1. As can be seen, SpikeMAP is the only method listed that performs E/I sorting on large-scale multielectrodes. Nonetheless, several aspects of SpikeMAP included in the spike sorting pipeline do overlap with existing methods, as these constitute necessary steps prior to performing E/I identification. These steps are not novel to the current work, nor do they constitute rigid options that cannot be substituted by the user. Rather, we aim to offer SpikeMAP users the option to combine E/I identification with preliminary steps performed either through our software or through another package of their choosing. For instance, preliminary spike sorting could be done through Kilosort before importing the spike data into SpikeMAP for E/I identification. To allow greater flexibility, we have now modularized our suite so that E/I identification can be performed as a stand-alone module. We have clarified the text accordingly (line 317):

      “While SpikeMAP is the only known method to enable the identification of putative excitatory and inhibitory neurons on high-density multielectrode arrays (Table 1), several aspects of SpikeMAP included in the spike sorting pipeline (Figure 1) overlap with existing methods, as these constitute required steps prior to performing E/I identification. To enable users the ability to integrate SpikeMAP with existing toolboxes, we provide a modularized suite of protocols so that E/I identification can be performed separately from preliminary spike sorting steps. In this way, a user could carry out spike sorting through Kilosort or another package before importing their data to SpikeMAP for E/I identification.”

      Weaknesses:

      (1) The global workflow of spikeMAP, described in Figure 1, seems to be very similar to that of Hilgen et al. 2020 (10.1016/j.celrep.2017.02.038). Therefore, the first question is what is the rationale of reinventing the wheel, and not using tools that are doing something very similar (as mentioned by the authors themselves). I have a hard time, in general, believing that spikeMAP has something particularly special, given its Methods, compared to state-of-the-art spike sorters.

      The paper by Hilgen et al. is reported in Table 1. As seen, while this paper employs optogenetics, it does not target inhibitory (e.g., PV) cells. We have added the following clarification (line 82):

      “Despite evidence showing differences in action potential kinetics for distinct cell-types as well as the use of optogenetics (Hilgen et al., 2017), there exists no large-scale validation efforts, to our knowledge, showing that extracellular waveforms can be used to reliably distinguish cell-types.”

      This is why, at the very least, the title of the paper is misleading, because it lets the reader think that the core of the paper will be about a new spike sorting pipeline. If this is the main message the authors want to convey, then I think that numerous validations/benchmarks are missing to assess first how good spikeMAP is, with reference to spike sorting in general, before deciding if this is indeed the right tool to discriminate excitatory vs inhibitory cells. The GT validation, while interesting, is not enough to entirely validate the paper. The details are a bit too scarce for me, or would deserve to be better explained (see other comments after).

      We thank the reviewer for this comment, and have amended the title as follows:

      “SpikeMAP: An unsupervised pipeline for the identification of cortical excitatory and inhibitory neurons in high-density multielectrode arrays with ground-truth validation”

      (2) Regarding the putative location of the spikes, it has been shown that the center of mass, while easy to compute, is not the most accurate solution [Scopin et al, 2024, 10.1016/j.jneumeth.2024.110297]. For example, it has an intrinsic bias for finding positions within the boundaries of the electrodes, while some other methods, such as monopolar triangulation or grid-based convolution,n might have better performances. Can the authors comment on the choice of the Center of Mass as a unique way to triangulate the sources?

      We agree with the reviewer that the center-of-mass algorithm carries limitations that are addressed by other methods. To address this issue, we have included two additional protocols in SpikeMAP to perform monopolar triangulation and grid-based convolution, offering additional options for users of the package. The text has been clarified as follows (line 429):

      “In addition to center-of-mass triangulation, SpikeMAP includes protocols to perform monopolar triangulation and grid-based convolution, offering additional options to estimate putative soma locations based on waveform amplitudes.”

      (3) Still in Figure 1, I am not sure I really see the point of Spline Interpolation. I see the point of such a smoothing, but the authors should demonstrate that it has a key impact on the distinction of Excitatory vs. Inhibitory cells. What is special about the value of 90kHz for a signal recorded at 18kHz? What is the gain with spline enhancement compared to without? Does such a value depend on the sampling rate, or is it a global optimum found by the authors?

      We clarified the text as follows (line 183):

      “While we found that a resolution of 90 kHZ provided a reasonable estimate of spike waveforms, this value can be adjusted as a parameter in SpikeMAP.”

      (4) Figure 2 is not really clear, especially panel B. The choice of the time scale for the B panel might not be the most appropriate, and the legend filtered/unfiltered with a dot is not clear to me in Bii.

      We apologize for the rendering issues in the Figures that occurred during conversion into PDF format. We have now ensured that all figures are properly displayed.

      In panel E, the authors are making two clusters with PCA projections on single waveforms. Does this mean that the PCA is only applied to the main waveforms, i.e. the ones obtained where the amplitudes are peaking the most? This is not really clear from the methods, but if this is the case, then this approach is a bit simplistic and does not really match state-of-the-art solutions. Spike waveforms are quite often, especially with such high-density arrays, covering multiple channels at once, and thus the extracellular patterns triggered by the single units on the MEA are spatio-temporal motifs occurring on several channels. This is why, in modern spike sorters, the information in a local neighbourhood is often kept to be projected, via PCA, on the lower-dimensional space before clustering. Information on a single channel only might not be informative enough to disambiguate sources. Can the authors comment on that, and what is the exact spatial resolution of the 3Brain device? The way the authors are performing the SVD should be clarified in the methods section. Is it on a single channel, and/or on multiple channels in a local neighbourhood?

      We agree with the reviewer that it would be useful to have the option of performing PCA on several channels at once, since spikes can occur at several channels at the same time. We have now added a routine to SpikeMAP that allows users to define a radius around individual channels prior to performing PCA. The text was clarified as follows (line 131):

      “The SpikeMAP suite also offers a routine to select a radius around individual channels in order to enter groups of adjacent channels in PCA.”

      (5) About the isolation of the single units, here again, I think the manuscript lacks some technical details. The authors are saying that they are using a k-means cluster analysis with k=2. This means that the authors are explicitly looking for 2 clusters per electrode? If so, this is a really strong assumption that should not be held in the context of spike sorting, because, since it is a blind source separation technique, one can not pre-determine in advance how many sources are present in the vicinity of a given electrode. While the illustration in Figure 2E is ok, there is no guarantee that one can not find more clusters, so why this choice of k=2? Again, this is why most modern spike sorting pipelines do not rely on k-means, to avoid any hard-coded number of clusters. Can the authors comment on that?

      We clarified the text as follows (line 135):

      “In SpikeMAP, the optimal number of k-means clusters can be chosen by a Calinski-Harabasz criterion (Calinski and Harabasz, 1974) or pre-selected by the user.”

      (6) I'm surprised by the linear decay of the maximal amplitude as a function of the distance from the soma, as shown in Figure 2H. Is it really what should be expected? Based on the properties of the extracellular media, shouldn't we expect a power law for the decay of the amplitude? This is strange that up to 100um away from the soma, the max amplitude only dropped from 260 to 240 uV. Can the authors comment on that? It would be interesting to plot that for all neurons recorded, in a normed manner V/max(V) as function of distances, to see what the curve looks like.

      We added Supplemental Figure 1 showing the drop in voltage over all putative somas (N=1,950) of one recording, after excluding somas with an increase voltage away from electrode peak and computing normed values V/max(V). We see a distribution of slopes as well as intercepts across somas, showing some variability across recordings sites. As the reviewer suggests, it is possible that a power-law describes these data better than a linear function, and this would need to be investigated further by quantitatively comparing the fit of these functions.

      (7) In Figure 3A, it seems that the total number of cells is rather low for such a large number of electrodes. What are the quality criteria that are used to keep these cells? Did the authors exclude some cells from the analysis, and if yes, what are the quality criteria that are used to keep cells? If no criteria are used (because none are mentioned in the Methods), then how come so few cells are detected, and can the authors convince us that these neurons are indeed "clean" units (RPVs, SNRs, ...)?

      The reviewer is correct to point out that a number of stringent criteria were employed to exclude some putative cells. We now outline these criteria directly in the text (line 161):

      “ At different steps in the process, conditions for rejecting spikes can be tailored by applying: (1) a stringent threshold to filtered voltages; (2) a minimal cut-off on the signal-to-noise ratio of voltages (see Supplemental Figure 2); (3) an LDA for cluster separability; (4) a minimal spike rate to putative neurons; (5) a Hartigan statistical dip test to detect spike bursting; (6) a decrease in voltage away from putative somas; and (7) a maximum spike-count correlation for nearby channels. Together, these criteria allow SpikeMAP users the ability to precisely control parameters relevant to automated spike sorting.”

      Further, we provide SNRs of individual channels (Supplemental Figure 2), and added to the SpikeMAP software the ability to apply a minimal criterion based on SNR.

      (8) Still in Figure 3A, it looks like there is a bias to find inhibitory cells at the borders, since they do not appear to be uniformly distributed over the MEA. Can the authors comment on that? What would be the explanation for such a behaviour? It would be interesting to see some macroscopic quantities on Excitatory/Inhibitory cells, such as mean firing rates, averaged SNRs... Because again, in Figure 3C, it is not clear to me that the firing rates of inhibitory cells are higher than Excitatory ones, whilst they should be in theory.

      We have added figures showing the distribution of E and I firing rates across a population of N=1,950 putative cells (Supplemental Figure 3). Firing rates of inhibitory neurons are marginally higher than excitatory neurons, and both E and I follow an approximately exponential distribution of rates.

      Reviewer may be right that there are more I neurons at borders in Fig.3B because injections were done in medial prefrontal cortex, so this may reflect an experimental artefact related to a high probability of activating I neurons in locations where the opsin was activated. We added a sentence to the text to clarify this point (line 201):

      “It is possible that the spatial location of putative I cells reflects the site of injection of the opsin in medial prefrontal cortex.”

      (9) For Figure 3 in general, I would have performed an exhaustive comparison of putative cells found by spikeMAP and other sorters. More precisely, I think that to prove the point that spikeMAP is indeed bringing something new to the field of spike sorting, the authors should have compared the performances of various spike sorters to discriminate Exc vs Inh cells based on their ground truth recordings. For example, either using Kilosort [Pachitariu et al, 2024, 10.1038/s41592-024-02232-7], or some other sorters that might be working with such large high-density data [Yger et al, 2018, 10.7554/eLife.34518].

      The reviewer is correct to point out that our the spike-sorting portion of our pipeline shares similarities with related approaches. Other aspects, however, are unique to SpikeMAP. We have clarified the text accordingly:

      “In sum, SpikeMAP provides an end-to-end pipeline to perform spike-sorting on high-density multielectrode arrays. Some elements of this pipeline are similar to related approaches (Table 1), including the use of voltage filtering, PCA, and k-means clustering. Other elements are novel, including the use of spline interpolation, LDA, and the ability to identify putative excitatory and inhibitory cells.”

      (10) Figure 4 has a big issue, and I guess the panels A and B should be redrawn. I don't understand what the red rectangle is displaying.

      Again, we apologize for the rendering issues in the Figures that occurred during conversion into PDF format. We have now ensured that all figures are properly displayed.

      (11) I understand that Figure 4 is only one example, but I have a hard time understanding from the manuscript how many slices/mices were used to obtain the GT data? I guess the manuscript could be enhanced by turning the data into an open-access dataset, but then some clarification is needed. How many flashes/animals/slices are we talking about? Maybe this should be illustrated in Figure 4, if this figure is devoted to the introduction of the GT data.

      Details of the open access data are now provided in Supplemental Table 1. We also clarified Figure 5B:

      “Quantification of change in firing rate following optogenetic stimulation. Average firing rates are taken over four recordings obtained from 3 mice.”

      (12) While there is no doubt that GT data as the ones recorded here by the authors are the most interesting data from a validation point of view, the pretty low yield of such experiments should not discourage the use of artificially generated recordings such as the ones made in [Buccino et al, 2020, 10.1007/s12021-020-09467-7] or even recently in [Laquitaine et al, 2024, 10.1101/2024.12.04.626805v1]. In these papers, the authors have putative waveforms/firing rate patterns for excitatory and inhibitory cells, and thus, the authors could test how good they are in discriminating the two subtypes.

      We agree with the reviewer that it would be worthwhile for future work to apply SpikeMAP to artificially generated spike trains, and have added the following (line 328):

      “Another avenue could involve applying SpikeMAP on artificially generated spike data (Buccino & Einevoll 2021; Laquitaine et al., 2024).”

      Reviewer #1 (Recommendations for the authors):

      (1) Line 154 seems to include a parenthetical expression left over from editing: "sensitive to noise (contamination? Better than noise?) generated by the signal of proximal units." See also line 186: "use (reliance?) of light-sensitive" and line 245: "In the absence of synaptic blockers (right?)," and line 270: "the size of the data prevents manual intervention (curation?)." Check carefully for all parentheses like that, which should be removed.

      Thank you for pointing this out. We have revised the text and removed parenthetical expressions left over from editing.

      (2) In lines 285-286, you state that: "k-mean clustering of spike waveform properties best differentiated the two principal classes of cells..." But I could not find where you compared k-means clustering to other methods. I think you just argued that k-means seemed to work well, but not better than, another method. If that is so, then you should probably rephrase those lines.

      The reviewer is correct that direct comparisons are not performed here, hence we removed this sentence.

      (3) Methods section, E/I classification, lines 396-405: You give us figures on what fraction was E and I (PV subtype) (94.75% and 5.25%), but there is more that you could have said. First of all, what is the expected fraction of parvalbumin-sensitive interneurons in the cortex - is it near 5%?

      We clarified the text as follows (line 444): “This number is close to the expected percentage of PV interneurons in cortex (4-6%) (Markram et al. 2004).”

      Second, how would these percentages change if you altered the threshold from 3 s.d. to something lower, like 2 s.d.? Giving us some idea of how the threshold affects the fraction of PV interneurons could give us an idea of whether this method agrees with our expectations or not.

      While SpikeMAP offers the flexibility to set the voltage threshold manually, we opted for a stringent threshold to demonstrate the capabilities of the software. As seen in Figure 2D, at 2 and 3 s.d., the signal is largely accounted for by Gaussian noise, while deviation from noise arises around 4 s.d. We clarified the text as follows (line 120):

      “At a threshold of -3 , the signal could be largely accounted for by Gaussian noise, while a separation between signal and noise began around a threshold of -4 ”

      Third, did the inhibitory neurons identified by this optogenetic method also have narrow spike widths at half amplitude? Could you do a scatterplot of all the spike widths and inter-peak distances that had color-coded dots for E and I based on your optogenetic method?

      We have added a scatterplot (Supplemental Figure 5).

      (4) Can you compare your methods with others now widely in use, like, for example, Spiking Circus or Kilosort? You do that in Table 1 in terms of features, but not in terms of performance. For example, you could have applied Kilosort4 to your data from the 4096 electrode array and seen how often it sorted the same neurons that SpikeMAP did. I realize this could not give you a comparison of how many were E/I, but it could tell you how close your numbers of neurons agreed with their numbers. Were your numbers within 5% of each other? This would be helpful for groups who are already using Kilosort4.

      As mentioned ealier, packages listed in Table 1 do not provide an identification of putative E/I neurons on high-density electrode arrays. To facilitation the integration of SpikeMAP with other spike sorting packages, our suite now provides a stand-alone module to perform E/I identification. This is now mentioned in the text (see earlier comment).

      Reviewer #2 (Recommendations for the authors):

      I would encourage the authors to decide what the paper is about: is it about a new sorting method (and if yes, more tests/benchmarks are needed to explain the pros and the cons of the pipelines, and the Methods need to be expanded). Or is it about the new data for Ground Truth validation, and again, if yes, then maybe explain more what they are, how many slices/mice/cells, ... Maybe also consider making the data available online as an open dataset.

      We agree with the reviewer that the paper is best slated toward ground truth validation of E/I identification. We now specify how many slices/mice/cells etc. (see Supplemental Table 1) and make the data available online as open source.

    1. Author response:

      (1) Explore the temporal component of neural responses (instead of collapsing responses to a single number, i.e., the average response over 4s), and determine which of the three models can recapitulate the observed dynamics.

      (2) Expand the polar plot visualization to show all three slopes (changes in responses across all three successive concentrations) instead of only two slopes.

      (3) Attempt to collect and analyze, from published papers, data of: (a) first-order neuron responses to odors to determine the role of first-order inhibition towards generating non-monotonic responses, and (b) PN responses in Drosophila to properly compare with corresponding first-order neuron responses.

      (4) Further discuss: (a) why the brain may need to encode absolute concentration, (b) the distinction between non-monotonic responses and cross-over responses, and (c) potential limitations of the primacy model.

      (5) Expand the divisive normalization model by evaluating different values of k and R, and study the effects of divisive normalization on tufted cells.

      (6) Add discussion of other potential inhibitory mechanisms that could contribute towards the observed effects.

      Reviewer #1:

      The article starts from the premise that animals need to know the absolute concentration of an odor over many log units, but the need for this isn't obvious. The introduction cites an analogy to vision and audition. These are cases where we know for a fact that the absolute intensity of the stimulus is not relevant. Instead, sensory perception relies on processing small differences in intensity across space or time. And to maintain that sensitivity to small differences, the system discards the stimulus baseline. Humans are notoriously bad at judging the absolute light level. That information gets discarded even before light reaches the retina, namely through contraction of the pupil. Similarly, it seems plausible that a behavior like olfactory tracking relies on sensing small gradients across time (when weaving back and forth across the track) or space (across nostrils). It is important that the system function over many log units of concentration (e.g., far and close to a source) but not that it accurately represents what that current concentration is [see e.g., Wachowiak et al, 2025 Recalibrating Olfactory Neuroscience..].

      We thank the Reviewer for the insightful input and agree that gradients across time and space are important for various olfactory behaviors, such as tracking. At the same time, we think that absolute concentration is also needed for two reasons. First, in order to extract changes in concentration, the absolute concentration needs to be normalized out; i.e., change needs to be encoded with respect to some baseline, which is what divisive normalization computes. Second, while it is true that representing the exact number of odor molecules present is not important, this number directly relates to distance from the odor source, which does provide ethological value (e.g., is the tiger 100m or 1000m away?). Indeed, our decoding experiments focused on discriminating relative, and not on absolute, concentrations by classifying between each pair of concentrations (i.e., relative distances), which is effectively an assessment of the gradient. In our revision, we will make all of these points clearer.

      Still, many experiments in olfactory research have delivered square pulses of odor at concentrations spanning many log units, rather than the sorts of stimuli an animal might encounter during tracking. Even within that framework, though, it doesn't seem mysterious anymore how odor identity and odor concentration are represented differently. For example, Stopfer et al 2003 showed that the population response of locust PNs traces a dynamic trajectory. Trajectories for a given odor form a manifold, within which trajectories for different concentrations are distinct by their excursions on the manifold. To see this, one must recognize that the PN responds to an odor pulse with a time-varying firing rate, that different PNs have different dynamics, and that the dynamics can change with concentration. This is also well recognized in the mammalian systems. Much has been written about the topic of dynamic coding of identity and intensity - see the reviews of Laurent (2002) and Uchida (2014).

      Given the above comments on the dynamics of odor responses in first- and second-order neurons, it seems insufficient to capture the response of a neuron with a single number. Even if one somehow had to use a single number, the mean firing rate during the odor pulse may not be the best choice. For example, the rodent mitral cells fire in rhythm with the animal's sniffing cycle, and certain odors will just shift the phase of the rhythm without changing the total number of spikes (see e.g., Fantana et al, 2008). During olfactory search or tracking, the sub-second movements of the animal in the odor landscape get superposed on the sniffing cycle. Given all this, it seems unlikely that the total number of spikes from a neuron in a 4-second period is going to be a relevant variable for neural processing downstream.

      To our knowledge, it is not well understood how downstream brain regions read out mitral cell responses to guide olfactory behavior. The olfactory bulb projects to more than a dozen brain regions, and different regions could decode signals in different ways. We focused on the mean response because it is a simple, natural construct.

      The datasets we analyzed may not include all relevant timing information; for example, the mouse data is from calcium imaging studies that did not track sniff timing. Nonetheless, we plan to address this comment within our framework by binning time into smaller-sized windows (e.g., 0-0.2s, 0.2-0.4s, etc.) and repeating our analysis for each of these windows. Specifically, we will determine how each normalization method fares in recapitulating statistics of the population responses of each window, beyond simply assessing the population mean.

      Much of the analysis focuses on the mean activity of the entire population. Why is this an interesting quantity? Apparently, the mean stays similar because some neurons increase and others decrease their firing rate. It would be more revealing, perhaps, to show the distribution of firing rates at different concentrations and see how that distribution is predicted by different models of normalization. This could provide a stronger test than just the mean.

      We agree that mean activity is only one measure to summarize a rich data set and will perform the suggested analysis.

      The question "if concentration information is discarded in second-order neurons, which exclusively transmit odor information to the rest of the brain, how does the brain support olfactory behaviors, such as tracking and navigation?" is really not an open question anymore. For example, reference 23 reports in the abstract that "Odorant concentration had no systematic effect on spike counts, indicating that rate cannot encode intensity. Instead, odor intensity can be encoded by temporal features of the population response. We found a subpopulation of rapid, largely concentration-invariant responses was followed by another population of responses whose latencies systematically decreased at higher concentrations."

      Primacy coding does provide one plausible mechanism to decode concentration. Our manuscript demonstrated how such a code could emerge in second-order neurons with the help of divisive normalization, though it does require maintaining at least partial rank invariance across concentrations, which may not be robust. We also showed how concentration could be decoded via spike rates, even if average rates are constant, which provides an alternative hypothesis to that of ref 23.

      Further, ref 23 only considers the piriform cortex, which, as mentioned above, is one of many targets of the olfactory bulb, and it remains unclear what the decoding mechanisms are of each of these targets. In addition, work from the same authors of ref 23 found multiple potential decoding strategies in the piriform cortex itself, including changes in firing rate (see Fig. 2E of ref. 23 - Bolding & Franks, 2017; as well as Fig. 4 in Roland et al., 2017).

      It would be useful to state early in the manuscript what kinds of stimuli are being considered and how the response of a neuron is summarized by one number. There are many alternative ways to treat both stimuli and responses.

      We will add this explanation to the manuscript.

      "The change in response across consecutive concentration levels may not be robust due to experimental noise and the somewhat limited range of concentrations sampled": Yes, a number of the curves just look like "no response". It would help the reader to show some examples of raw data, e.g. the time course of one neuron's firing rate to 4 concentrations, and for the authors to illustrate how they compress those responses into single numbers.

      We agree and will add this information to the manuscript.

      "We then calculated the angle between these two slopes for each neuron and plotted a polar histogram of these angles." The methods suggest that this angle is the arctan of the ratio of the two slopes in the response curve. A ratio of 2 would result from a slope change from 0.0001 to 0.0002 (i.e., virtually no change in slope) or from 1 to 2 (a huge change). Those are completely different response curves. Is it reasonable to lump them into the same bin of the polar plot? This seems an unusual way to illustrate the diversity of response curve shapes.

      We agree that the two changes in the reviewer’s example will be categorized in the same quadrant in our analysis. We did not focus on the absolute changes because our analysis covers many log ratios of concentrations. Instead, we focused on the relative shapes of the concentration response curves, and more specifically, the direction of the change (i.e., the sign of the slope). We will better motivate this style of analysis in the revision. Moreover, in response to comments by Reviewer 2, we will compare response shapes between all three successive levels of concentration changes, as opposed to only two levels.

      The Drosophila OSN data are passed through normalization models and then compared to locust PN data. This seems dangerous, as flies and locusts are separated by about 300 M years of evolution, and we don't know that fly PNs act like locust PNs. Their antennal lobe anatomy differs in many ways, as does the olfactory physiology. To draw any conclusions about a change in neural representation, it would be preferable to have OSN and PN data from the same species.

      We are in the process of requesting PN response data in Drosophila from groups that have collected such data and will repeat the analysis once we get access to the data.

      One conclusion is that divisive normalization could account for some of the change in responses from receptors to 2nd order neurons. This seems to be well appreciated already [e.g., Olsen 2010, Papadopoulou 2011, minireview in Hong & Wilson 2013].

      While we agree that these manuscripts do study the effects of divisive normalization in insects and fish, here we show that this computation also generalizes to rodents. In addition, these previous studies do not focus on divisive normalization’s role towards concentration encoding/decoding, which is our focus. We will clarify this difference in the revision.

      Another claim is that subtractive normalization cannot perform that function. What model was used for subtractive normalization is unclear (there is an error in the Methods). It would be interesting if there were a categorical difference between divisive and subtractive normalization.

      We apologize for the mistake in the subtractive normalization equation and will correct it. Thank you for catching it.

      Looking closer at the divisive normalization model, it really has two components: (a) the "lateral inhibition" by which a neuron gets suppressed if other neurons fire (here scaled by the parameter k) , and (b) a nonlinear sigmoid transformation (determined by the parameters n and sigma). Both lateral inhibition and nonlinearity are known to contribute to decorrelation in a neural population (e.g., Pitkow 2012). The "intraglomerular gain control" contains only the nonlinearity. The "subtractive normalization" we don't know. But if one wanted to put divisive and subtractive inhibition on the same footing, one should add a sigmoid nonlinearity in both cases.

      Our intent was not to place all the methods on the “same footing” but rather to isolate the two primary components of normalization methods – non-linearity and lateral inhibition – and determine which of these, and in which combination, could generate the desired effects. Divisive normalization incorporates both components, whereas intraglomerular gain control and subtractive normalization only incorporate one of these components. We will clarify this reasoning in the revision.

      The response models could be made more realistic in other ways. For example, in both locusts and fish, the 2nd order neurons get inputs from multiple receptor types; presumably, that will affect their response functions. Also, lateral inhibition can take quite different forms. In locusts, the inhibitory neurons seem to collect from many glomeruli. But in rats, the inhibition by short axon cells may originate from just a few sparse glomeruli, and those might be different for every mitral cell (Fantana 2008).

      We thank the Reviewer for the input. Instead of fixing k for all second-order neurons, we will apply different k values for different neurons. We will also systematically vary the percentage of neurons used for the divisive normalization calculation in the denominator, and determine the regime under which the effects experimentally observed are reproducible. This approach takes into account the scenario that inter-glomerular inhibitory interactions are sparse.

      There are questions raised by the following statements: "traded-off energy for faster and finer concentration discrimination" and "an additional type of second-order neuron (tufted cells) that has evolved in land vertebrates and that outperforms mitral cells in concentration encoding" and later "These results suggest a trade-off between concentration decoding and normalization processes, which prevent saturation and reduce energy consumption.". Are the tufted cells inferior to the mitral cells in any respect? Do they suffer from saturation at high concentration? And do they then fail in their postulated role for odor tracking? If not, then what was the evolutionary driver for normalization in the mitral cell pathway? Certainly not lower energy consumption (50,000 mitral cells = 1% of rod photoreceptors, each of which consumes way more energy than a mitral cell).

      The question of what mitral cells are “good for”, compared to tufted cells, remains unclear in our view. We speculate that mitral cells provide superior context-dependent processing and are better for determining stimuli-reward contingencies, but this remains far from settled experimentally.

      We believe the mitral cell pathway evolved earlier than tufted cells, since the former appear akin to projection neurons in insects. Nonetheless, we agree that differences in energy consumption are unlikely to be the primary distinguishing factor, and in the revision, we will drop this argument.

      Reviewer #2:

      The main premise that divisive normalization generates this diversity of dose-response curves in the second-order neurons is a little problematic. … The analysis in [Figure 3] indicates that divisive normalization does what it is supposed to do, i.e., compresses concentration information and not alter the rank-order of neurons or the combinatorial patterns. Changes in the combinations of neurons activated with intensity arise directly from the fact that the first-order neurons did not have monotonic responses with odor intensity (i.e., crossovers). This was the necessary condition, and not the divisive normalization for changes in the combinatorial code. There seems to be a confusion/urge to attribute all coding properties found in the second-order neurons to 'divisive normalization.' If the input from sensory neurons is monotonic (i.e., no crossovers), then divisive normalization did not change the rank order, and the same combinations of neurons are activated in a similar fashion (same vector direction or combinatorial profile) to encode for different odor intensities. Concentration invariance is achieved, and concentration information is lost. However, when the first-order neurons are non-monotonic (i.e., with crossovers), that causes the second-order neurons to have different rank orders with different concentrations. Divisive normalization compresses information about concentrations, and rank-order differences preserve information about the odor concentration. Does this not mean that the non-monotonicity of sensory neuron response is vital for robustly maintaining information about odor concentration? Naturally, the question that arises is whether many of the important features of the second-order neuron's response simply seem to follow the input. Or is my understanding of the figures and the write-up flawed, and are there more ways in which divisive normalization contributes to reshaping the second-order neural response? This must be clarified. Lastly, the tufted cells in the mouse OB are also driven by this sensory input with crossovers. How does the OB circuit convert the input with crossovers into one that is monotonic with concentration? I think that is an important question that this computational effort could clarify.

      It appears that there is confusion about the definitions of “non-monotonicity” and “crossovers”.  These are two independent concepts – one does not necessarily lead to the other. Non-monotonicity concerns the response of a single neuron to different concentration levels. A neuron’s response is considered non-monotonic if its response goes up then down, or down then up, across increasing concentrations. A “cross-over” is defined based on the responses of multiple neurons. A cross-over occurs when the response of one neuron is lower than another neuron at one concentration, but higher than the other at a different concentration. For example, the responses of both neurons could increase monotonically with increasing concentration, but one neuron might start lower and grow faster, hence creating a cross-over. We will clarify this in the manuscript, which we believe will resolve the questions raised above.

      The way the decoding results and analysis are presented does not add a lot of information to what has already been presented. For example, based on the differences in rank-order with concentration, I would expect the combinatorial code to be different. Hence, a very simple classifier based on cosine or correlation distance would work well. However, since divisive normalization (DN) is applied, I would expect a simple classification scheme that uses the Euclidean distance metric to work equally as well after DN. Is this the case?

      Yes, we used a simple classification scheme, logistic regression with a linear kernel, which is essentially a Euclidean distance-based classification. This scheme works better for tufted cells because they are more monotonic; i.e., if neuron A and B both increase their responsiveness with concentration, then Euclidean distance would be fine. But if neuron A’s response amplitude goes up and neuron B’s response goes down – as often happens for mitral cells – then Euclidean distance does not work as well. We will add intuition about this in the manuscript.

      Leave-one-trial/sample-out seems too conservative. How robust are the combinatorial patterns across trials? Would just one or two training trials suffice for creating templates for robust classification? Based on my prior experience (https://elifesciences.org/reviewed-preprints/89330https://elifesciences.org/reviewed-preprints/89330), I do expect that the combinatorial patterns would be more robust to adaptation and hence also allow robust recognition of odor intensity across repeated encounters.

      As suggested, we will compute the correlation coefficient of the similarity of neural responses for each odor (across trials). We will repeat this analysis for both mitral and tufted cells. To determine the effect of adaptation, we will compute correlation coefficients of responses between the 1st and 2nd trials vs the 1st and final trial.

      Lastly, in the simulated data, since the affinity of the first-order sensory neurons to odorants is expected to be constant across concentration, and "Jaccard similarity between the sets of highest-affinity neurons for each pair of concentration levels was > 0.96," why would the rank-order change across concentration? DN should not alter the rank order.

      We agree that divisive normalization should not alter the rank order, but the rank order may change in first-order neurons, which carries through to second-order neurons. This confusion may be related to the one mentioned above re: cross-overs vs non-monotonicity. Moreover, in the simulated data (Fig. 4D-H), the Jaccard similarity was calculated based on only the 50 neurons with the highest affinity, not the entire population of neurons. As shown in Fig. 4H, most of the rank-order change happens in the remaining 150 neurons.

      Note that in response to a comment by Reviewer 3, we will change the presentation of Fig. 4H in the revision.

      If the set of early responders does change, how will the decoder need to change, and what precise predictions can be made that can be tested experimentally? The lack of exploration of this aspect of the results seems like a missed opportunity.

      In the Discussion, we wrote about how downstream circuits will need to learn which set of neurons are to be associated with each distinct concentration level. We will expand upon this point and include experimentally testable predictions.

      Based on the methods, for Figures 1 and 2, it appears the responses across time, trials, and odorants were averaged to get a single data point per neuron for each concentration. Would this averaging not severely dilute trends in the data? The one that particularly concerns me is the averaging across different odorants. If you do odor-by-odor analysis, is the flattening of second-order neural responses still observable? Because some odorants activate more globally and some locally, I would expect a wide variety of dose-response relationships that vary with odor identity (more compressed in second-order neurons, of course). It would be good to show some representative neural responses and show how the extracted values for each neuron are a faithful/good representation of its response variation across intensities.

      It appears there is some confusion here; we will clarify in the text and figure captions that we did not average across different odors in our analysis. We will also add figure panels showing some representative neural responses as suggested by the Reviewer.

      A lot of neurons seem to have responses that flat line closer to zero (both firing rate and dF/F in Figure 1). Are these responsive neurons? The mean dF/F also seems to hover not significantly above zero. Hence, I was wondering if the number of neurons is reducing the trend in the data significantly.

      Yes, if a neuron responds to at least one concentration level in at least 50% of the trials, it is considered responsive. So it is possible that some neurons respond to one concentration level and otherwise flatline near zero.  We will highlight a few example neurons to visualize this scenario.

      I did not fully understand the need to show the increase in the odor response across concentrations as a polar plot. I see potential issues with the same. For example, the following dose-response trend at four intensities (C4 being the highest concentration and C1 the lowest): response at C3 > response at C1 and response at C4 > response at C2. But response at C3 < response at C2. Hence, it will be in the top right segment of the polar plot. However, the responses are not monotonic with concentrations. So, I am not convinced that the polar plot is the right way to characterize the dose-response curves. Just my 2 cents.

      Your 2 cents are valuable! Thank you for raising this point. Instead of computing two slopes (C1-C3 and C2-C4), we will expand our analysis to include all three slopes (C1-C2, C2-C3, C3-C4). Consequently, there are 2^3 = 8 different response shapes, and we will list them and quantify the fraction of the responses that fall into each shape category.

      In many analyses, simulated data were used (Figures 3 and 4). However, there is no comparison of how well the simulated data fit the experimental data. For example, the Simulated 1st order neuron in Figure 3D does not show a change in rank-order for the first-order neuron. In Figure 3E, temporal response patterns in second-order neurons look unrealistic. Some objective comparison of simulated and experimental data would help bolster confidence in these results.

      We believe the Reviewer is referring to Figs. 4D and 4E, since Fig. 3D does not show a first-order neuron simulation, and there is no Fig 3E. In Fig. 4D there is no change of rank order because the simulation is for a single odor and single concentration level, and the change of rank-order (i.e., cross-overs) as we define occurs between concentration levels. We will clarify this in the manuscript.

      Reviewer #3:

      While the authors focus on concentration-dependent increases in first-order neuron activity, reflecting the majority of observed responses, recent work from the Imai group shows that odorants can also lead to direct first-order neuron inhibition (i.e., reduction in spontaneous activity), and within this subset, increasing odorant concentration tends to increase the degree of inhibition. Some discussion of these findings and how they may complement divisive normalization to contribute to the diverse second-order neuron concentration-dependence would be of interest and help expand the context of the current results.

      We thank the Reviewer for the suggestion. We will request datasets of first-order neuron responses from the groups who acquired them. We will analyze this data to determine the role of inhibition or antagonistic binding and quantify what percentage of first-order neurons respond less strongly with larger concentrations.

      Related to the above point, odorant-evoked inhibition of second-order neurons is widespread in mammalian mitral cells and significantly contributes to the flattened concentration-dependence of mitral cells at the population level. Such responses are clearly seen in Figure 1D. Some discussion of how odorant-evoked mitral cell inhibition may complement divisive normalization, and likewise relate to comparatively lower levels of odorant-evoked inhibition among tufted cells, would further expand the context of the current results. Toward this end, replication of analyses in Figures 1D and E following exclusion of mitral cell inhibitory responses would provide insight into the contribution of such inhibition to the flattening of the mitral cell population concentration dependence.

      We will perform the analysis suggested, specifically, we will set the negative mitral cell responses to 0 and assess whether the population mean remains flat.

      The idea of concentration-dependent crossover responses across the first-order population being required for divisive normalization to generate individually diverse concentration response functions across the second-order population is notable. The intuition of the crossover responses is that first-order neurons that respond most sensitively to any particular odorant (i.e., at the lowest concentration) respond with overall lower activity at higher concentrations than other first-order neurons less sensitively tuned to the odorant. Whether this is a consistent, generalizable property of odorant binding and first-order neuron responsiveness is not addressed by the authors, however. Biologically, one mechanism that may support such crossover events is intraglomerular presynaptic/feedback inhibition, which would be expected to increase with increasing first-order neuron activation such that the most-sensitively responding first-order neurons would also recruit the strongest inhibition as concentration increases, enabling other first-order neurons to begin to respond more strongly. Discussion of this and/or other biological mechanisms (e.g., first-order neuron depolarization block) supporting such crossover responses would strengthen these results.

      We thank the reviewer for providing additional mechanisms to consider. As suggested, we will add discussion of these alternatives to divisive normalization.

      It is unclear to what degree the latency analysis considered in Figures 4D-H works with the overall framework of divisive normalization, which in Figure 3 we see depends on first-order neuron crossover in concentration response functions. Figure 4D suggests that all first-order neurons respond with the same response amplitude (R in eq. 3), even though this is supposed to be pulled from a distribution. It's possible that Figure 4D is plotting normalized response functions to highlight the difference in latency, but this is not clear from the plot or caption. If response amplitudes are all the same, and the response curves are, as plotted in Figure 4D, identical except for their time to half-max, then it seems somewhat trivial that the resulting second-order neuron activation will follow the same latency ranking, regardless of whether divisive normalization exists or not. However, there is some small jitter in these rankings across concentrations (Figure 4G), suggesting there is some randomness to the simulations. It would be helpful if this were clarified (e.g., by showing a non-normalized Figure 4D, with different response amplitudes), and more broadly, it would be extremely helpful in evaluating the latency coding within the broader framework proposed if the authors clarified whether the simulated first-order neuron response timecourses, when factoring in potentially different amplitudes (R) and averaging across the entire response window, reproduces the concentration response crossovers observed experimentally. In summary, in the present manuscript, it remains unclear if concentration crossovers are captured in the latency simulations, and if not, the authors do not clearly address what impact such variation in response amplitudes across concentrations may have on the latency results. It is further unclear to what degree divisive normalization is necessary for the second-order neurons to establish and maintain their latency ranks across concentrations, or to exhibit concentration-dependent changes in latency.

      As suggested by the Reviewer, we will add another simulation scenario where the response amplitudes (R) are different for different neurons. For each concentration, we will then average each neuron’s response across the entire response window and determine if the simulation reproduces the cross-overs as observed experimentally.

      How the authors get from Figure 4G to 4H is not clear. Figure 4G shows second-order neuron response latencies across all latencies, with ordering based on their sorted latency to low concentration. This shows that very few neurons appear to change latency ranks going from low to high concentration, with a change in rank appearing as any deviation in a monotonically increasing trend. Focusing on the high concentration points, there appear to be 2 latency ranks switched in the first 10 responding neurons (reflecting the 1 downward dip in the points around neuron 8), rather than the 7 stated in the text. Across the first 50 responding neurons, I see only ~14 potential switches (reflecting the ~7 downward dips in the points around neurons 8, 20, 32, 33, 41, 44, 50), rather than the 32 stated in the text. It is possible that the unaccounted rank changes reflect fairly minute differences in latencies that are not visible in the plot in Figure 4G. This may be clarified by plotting each neuron's latency at low concentration vs. high concentration (i.e., similar to Figure 4H, but plotting absolute latency, not latency rank) to allow assessment of the absolute changes. If such minute differences are not driving latency rank changes in Fig. 4G, then a trend much closer to the unity line would be expected in Figure 4H. Instead, however, there are many massive deviations from unity, even within the first 50 responding neurons plotted in Figure 4G. These deviations include a jump in latency rank from 2 at low concentration to ~48 at high concentration. Such a jump is simply not seen in Figure 4G.

      We apologize that Fig. 4H was a poor choice for visualization. What is plotted in Fig. 4H is the sorted identity of neurons under low and high concentrations, and points on the y=x line indicate that the two corresponding neurons have the same rank under the two concentrations. We will replace this panel with a more intuitive visualization, where the x and y axes are the ranks of the neurons; and deviation from the y=x line indicates how different the ranks are of a neuron to the two concentrations.

      In the text, the authors state that "Odor identity can be encoded by the set of highest-affinity neurons (which remains invariant across concentrations)." Presumably, this is a restatement of the primacy model and refers to invariance in latency rank (since the authors have not shown that the highest-affinity neurons have invariant response amplitudes across concentration). To what degree this statement holds given the results in Figure 4H, however, which appear to show that some neurons with the earliest latency rank at low concentration jump to much later latency ranks at high concentration, remains unclear. Such changes in latency rank for only a few of the first responding neurons may be negligible for classifying odor identity among a small handful of odorants, but not among 1-2 orders of magnitude more odors, which may feasibly occur in a natural setting. Collectively, these issues with the execution and presentation of the latency analysis make it unclear how robust the latency results are.

      The original primacy model states that the latency of a neuron decreases with increasing concentration, while the ranks of neurons remain unaltered. Our results, on the other hand, suggest that the ranks do at least partially change across concentrations. This leads to two possible decoding mechanisms. First, if the top K responding neurons remain invariant across concentrations (even if their individual ranks change within the top K), then the brain could learn to associate a population of K neurons with a response latency; lower response latency means higher concentration. Second, if the top K responding neurons do not remain invariant across concentrations, then the brain would need to learn to associate a different set of neurons with each concentration level. The latter imposes additional constraints on the robustness of the primacy model and the corresponding read-out mechanism. We will include more discussion of these possibilities in the revision.

      Analysis in Figures 4A-C shows that concentration can be decoded from first-order neurons, second-order neurons, or first-order neurons with divisive normalization imposed (i.e., simulating second-order responses). This does not say that divisive normalization is necessary to encode concentration, however. Therefore, for the authors to say that divisive normalization is "a potential mechanism for generating odor-specific subsets of second-order neurons whose combinatorial activity or whose response latencies represent concentration information" seems too strong a conclusion. Divisive normalization is not generating the concentration information, since that can be decoded just as well from the first-order neurons. Rather, divisive normalization can account for the different population patterns in concentration response functions between first- and second-order neurons without discarding concentration-dependent information.

      We agree that the word “generating” is faulty. We thank the reviewer for their more precise wording, which we will adopt.

      Performing the same polar histogram analysis of tufted vs. mitral cell concentration response functions (Figure 5B) provides a compelling new visualization of how these two cell types differ in their concentration variance. The projected importance of tufted cells to navigation, emerging directly through the inverse relationship between average concentration and distance (Figure 5C), is not surprising, and is largely a conceptual analysis rather than new quantitative analysis per se, but nevertheless, this is an important point to make. Another important consideration absent from this section, however, is whether and how divisive normalization may impact tufted cell activity. Previous work from the authors, as well as from Schoppa, Shipley, and Westbrook labs, has compellingly demonstrated that a major circuit mediating divisive normalization of mitral cells (GABA/DAergic short-axon cells) directly targets external tufted cells, and is thus very likely to also influence projection tufted cells. Such analysis would additionally provide substantially more justification for the Discussion statement "we analyzed an additional type of second-order neuron (tufted cells)", which at present instead reflects fairly minimal analysis.

      We agree that tufted cells are subject to divisive normalization as well, albeit probably to a less degree than mitral cells. To determine the effect of this, we will alter the strength (and degree of sparseness of interglomerular interactions) of divisive normalization and determine if there is a regime where response features of tufted cells match those observed experimentally.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This manuscript investigates beta burst dynamics in the primate motor cortex during movement and recovery from stroke. The authors differentiate between "global" beta bursts, which are synchronous across cortical and often subcortical regions, and more spatially confined "local" bursts. Global bursts are associated with reduced spiking variability, slower movements, and are more frequent after stroke, while local bursts increase during recovery and grasp execution. The study provides compelling evidence that beta bursts with different spatial and temporal characteristics may play distinct roles in motor control and recovery.

      We thank the reviewer for their assessment that the manuscript proves compelling evidence for distinct roles of local and global beta bursts on motor control and recovery.  

      Strengths:

      The major strength of this paper lies in its conceptual advance: the identification and characterization of distinct global and local beta bursts in the primate motor cortex. This distinction builds upon and considerably extends previous work on the heterogeneity of beta bursts. The paper is methodologically rigorous, using simultaneous cortical and subcortical recordings, detailed behavioral tracking, and thorough analyses of spikeLFP interactions. The use of stroke models and neurotypical animals provides converging evidence for the functional dissociation between burst types. The observation that local bursts increase with motor recovery and occur during grasping is particularly novel and may prove valuable for developing biomarkers of motor function.

      We thank the reviewer for recognizing the strengths of this manuscript. 

      Weaknesses:

      There are several conceptual and methodological limitations that should be addressed. First, the burst detection method relies on an amplitude threshold (median + 1 SD), which is susceptible to false positives and variability (Langford & Wilson, 2025). The classification into global or local bursts then depends on the number of co-bursting channels, compounding the arbitrariness. Second, the imposition of a minimum of three co-bursting cortical channels may bias against the detection of truly local bursts. 

      We thank the reviewer for bringing up these methodological details. We plan to conduct a follow-up analysis using alternative burst detection methods to verify that the paper’s main results hold when using different burst detection methodologies. We anticipate this will improve confidence in our results. 

      Third, the classification is entirely cortical; subcortical activity is considered post hoc rather than integrated into the classification, despite the key role of subcortical-cortical synchrony in motor control. 

      We thank the reviewer for this comment. First, because the different animals had subcortical recording sites in different locations, we hesitate to use subcortical activity in the classification of bursts since we were not sure we would be identifying the same burst-phenomenon (e.g. thalamo-cortical bursts vs. capsule-cortical bursts may differ). Second, we believe that having a cortical-only criteria allows the designation of local vs. global bursts to be more widely applied in preparations that only have access to cortical data (e.g. surface ECoG recordings, EEG, Utah array recordings). Thus, in this study we chose to analyze the subcortical data post-hoc (after burst detection and classification) to support our “global” vs. “local” designation of burst types 

      Fourth, the apparent dissociation between global and local bursts raises important questions about their spatial distribution across areas like M1 and PMv, which are not thoroughly analyzed. 

      We thank the reviewer for this comment. In our study’s stroke animals, we chose to study PMv due to its role in compensating for damage to M1, thus we hesitate to make any comparisons between PMv (which was recorded in stroke animals) and M1 (recorded in healthy unimpaired animals). Furthermore, animals are doing different tasks (e.g. reaching vs. reaching and grasping) which may also influence the spatial distribution. We agree that future work should certainly investigate the spatial distribution of global vs. local beta bursts across areas of sensorimotor cortex and subcortex, and that this comparison would be best done in healthy animals with both reaching and grasping behaviors.  

      Finally, while the authors interpret local bursts during grasping as novel, similar findings have been reported (e.g., Szul et al., 2023; Rayson et al., 2023), and a deeper discussion of these precedents would strengthen the argument.

      Thank you for these references! We will review them and incorporate them into our discussion of our results. 

      Impact:

      This work is likely to have a substantial impact on the field of motor systems neuroscience. The distinction between global and local beta bursts offers a promising framework for understanding the dual roles of beta in motor inhibition and sensorimotor computation. The findings are relevant not only for basic research but also for translational efforts in stroke rehabilitation and neuromodulation, particularly given the emerging interest in beta burst-based biomarkers and stimulation targets. The dataset and analytical framework will be useful to researchers investigating beta dynamics, spike-field relationships, and recovery from neural injury.

      We thank the reviewers for their assessment that our work will likely have a substantial impact on the field of motor systems neuroscience. 

      Reviewer #2 (Public review):

      Summary:

      The paper by Khanna et al. describes global vs local beta synchrony between a cortical premotor area (PMv) and subcortical structures during motor tasks in the non-human primate, specifically investigating the progression following M1 injury. They found that increases in global beta synchrony between PMv and subcortical structures during the sub-acute phase of injury, and that global synchrony was associated with relatively slower motor movements. As recovery progressed, they report a shift from global synchrony to local synchrony and a subsequent reduction in the movement time. The authors suggest that global changes in subcortical and cortical beta synchrony may generally underpin a variety of movement disorders, including Parkinson's disease, and that shifting from global to local (or reducing global synchrony) might improve functional outcomes.

      Strengths:

      Ischemic insults and other acquired brain injuries have a significant public health impact. While there is a large body of clinical and basic science studies describing the behavioral, neurophysiological, and mechanistic outcomes of such injury, there is a significant lack studies looking at longitudinal, behaviorally-related neurophysiological measures following cortical injury, so any information has outsized contribution to understanding how brain injury disrupts underlying neural activity and how this may contribute to injury presentation and recovery.

      A significant percentage of pre-clinical stroke studies tend to focus on peri-infarct or other cortical structures and their role in recovery. The addition of subcortical recordings allows for the investigation of the role of thalamo-basal gangliar-cortical loops that may be contributing to the degree of impairment or to the recovery process is important for the field. Here, there are longitudinal (up to 3 months post-injury) recordings in the ventral premotor area (PMv) and either the internal capsule or sensorimotor thalamus that can be synchronized with phases of behavioral recovery.

      The methods are well described and can act as a framework for assessing synchrony across other data sets with similar recording locations. Limitations in methodology, recordings, and behavior were noted.

      We thank the reviewer for their comments on the strengths of this paper.  

      Weaknesses:

      A major limitation of this paper is that it is a set of case studies rather than a welldesigned, well-controlled study of beta synchrony following motor cortex injury. While non-human primate neurophysiological studies are almost always limited by extremely low animal numbers, they are made up for by the fact that they can acquire significant numbers of units or channels, and in the case of normal behavior, can obtain many behavioral trials over months of individual sessions. Here, there were two NHPs used, but they had different subcortical implant locations (thalamus vs internal capsule). They had different injury outcomes, with one showing a typical recovery curve following injury while one had complications and worsening behavior before ultimately recovering. Further, there were significant differences in the ability to record at different times, with one NHP having poor recordings early in the recovery process while one had poor recordings late in the process. Due to the injury, the authors report sessions in which they were not able to record many trials (~10). Assuming that recovery after a cortical injury is an evolving process, breaking analysis into "Early" and "Late" phases reduces the interpretation of where these shifts occur relative to recovery on the task, especially given different thresholds for recovery were used between animals. Because of this, despite a careful analysis of the data and an extensive discussion, the conclusions derived are not particularly compelling. To overcome this, the authors present data from neurotypical NHPs, but with electrodes in M1 rather than PMv, doing a completely different task with no grasping component, again making accurate conclusions about the results difficult. Even with low numbers, the study would have been much stronger if there were within-animal longitudinal data prior to and after the injury on the same task, so the impact of M1 injury could be better assessed.

      We thank the reviewer for these comments. Below we address some of these in more detail: 

      Different subcortical implant locations: We would like to clarify that the subcortical recordings were only used to confirm that global beta bursts (as characterized by cortical recordings alone) did indeed occur on subcortical sites coincidentally with cortical site more frequently than local beta bursts. Neither the beta burst categories nor the beta bursts themselves were influenced by the subcortical recordings.  

      Different injury outcomes: There is difficulty in creating strokes that result in identical deficits across animal as we and others have noted in previous work[1.3]. As a field, we are still understanding what factors give rise to variability in recovery curves. For example, one recent study noted that biological sex is a factor in predicting differences in recovery rates[4], and another noted that baseline white matter hyperintensities is also predictive of post-stroke recovery [5]. Overall, our methodology that creates structurally-consistent lesions can still result in very different functional outcomes depending on a variety of factors. Given this state of the field, we have done our best to match the recovery curves between our two animals, especially the initial recovery curves before Monkey H’s secondary decline. 

      Differences in ability to record at different times: We note this as a strength. One concern with these studies that induce stroke at the same time as implanting electrode arrays is that it is well appreciated that single-unit neuron yield right after array implantation is low and then improves in the following weeks [6]. There is always that concern that having more units later in recovery may drive results, but in this case, since one animal showed the opposite trend we are more confident that results are not driven by increases in unit-yield. We also note that we broadly see similar unit quality metrics in the early and late stages in both animals (Fig. S7).  

      Breaking continuous recovery curve into early and late: We note that this division was only made for one main analysis in the paper (Fig. 5CD): assessment of mean firing and variance of single-unit firing rates.  Without this split our analyses would be underpowered and inconclusive, thus we would not be able to provide any comment on how firing rates change, even coarsely, with recovery. 

      Presentation of data from M1 of healthy animals doing a different task: We agree that the strongest data would be longitudinally recorded from the same animals/brain areas pre-stroke and then post-stroke. However, we also view our inclusion of separate healthy animals doing a different task as evidence that our global vs. local segregation of beta bursts generalizes beyond the reach-to-grasp task to reaching-only tasks.  

      Overall, we appreciate the reviewer pointing out these notes about our data. In some cases we do not think these notes are concerning, in others, we acknowledge that have done the best we can given the state of the neurophysiology stroke recovery field. 

      It is unclear to what extent the subpial aspiration used is a stroke model. While it is much more difficult to perform a pure ischemic motor injury using electrocoagulatory methods in animal models that do not have a lissencephalic cortex, the suction ablation method that the authors use leads to different outcomes than an ischemic injury alone. For instance, in rat models, ischemic vs suction ablation leads to very different electrophysiological profiles and differences in underlying anatomical reorganization (see Carmichael and Chesselet, 2002), even if the behavioral outcomes were similar. There is a concern that the effects shown may be an artifact of the lesion model rather than informing underlying mechanisms of recovery.

      We thank the reviewer for bringing this up. 

      Clarification of our stroke model methodology: We wish to highlight that when we create stroke, we first do surface vessel occlusion as the first step. This is designed to match true ischemic injury. After a waiting period, the injured tissue is then aspiration to reduce the effects of edema and secondary mass effect in the model. 

      Carmichael and Chesselet 2002: The rodent work cited did show differential effects of a suction ablation method (without any surface vessel occlusion first) versus an ischemic method. The effects observed in this work were in the first 5 days following stroke. In our case, we started recording on day 7 and examined recovery over extended periods (weeks to months). 

      Effects of acute insult on rehabilitation: From a rehabilitation perspective, it remains unclear how the acute insult affects outcomes weeks and months later. One line of evidence to suggest that the manner that the acute insult occurs may not matter for rehabilitation is the observation that one therapeutic approach (vagus nerve stimulation) has been found to successfully improve rehabilitation outcomes in a range of injury models (intracranial hemorrhage, stroke, spinal cord injury). We agree that additional work is required in this area.

      Human stroke data shows similar results reported: Lastly, we note that neurophysiology performed in humans with clinical strokes supports the results we seek here (e.g.[7], see discussion section for full elaboration) suggesting that our stroke model methodology is similar enough to clinical stroke to result in similar results. 

      The injury model leads to seemingly mild impairments in grasp (but not reach), with rapid and complete recovery occurring within 2-3 weeks from the time of injury. Because of the rapid recovery, relating the physiological processes of recovery to beta synchronization becomes challenging to interpret - Are the global bursts the result of the loss of M1 input to subcortical structures? Are they due to the lack of M1 targets, so there is a more distributed response? Is this due to other post-injury sub-acute mechanisms? How specific is this response - is it limited to peri-infarct areas (and to what extent is the PMv electrode truly in peri-infarct cortex), or would this synchrony be seen anywhere in the sensorimotor networks? Are the local bursts present because global synchrony wanes over time as a function of post-injury homeostatic mechanisms, or is local beta synchrony increasing as new motor plans are refined and reinforced during task re-acquisition? How coupled are they related to recovery - if it is motor plan refinement, the shift from global to local seemingly should lag the recovery?  

      We think these are all wonderful questions that could be addressed in follow-up studies! 

      While the study has significant limitations in design that reduce the impact of the results, it should act as a useful baseline/pilot data set in which to build a more complete picture of the role of subcortical-cortical beta synchrony following cortical injury.

      We agree that this is a study that should be treated as a starting point for further investigation. 

      Reviewer #3 (Public review):

      Summary:

      Khanna et al. use a well-conceived and well-executed set of experiments and analyses primarily to document the interaction between neural oscillations in the beta range (here, 13-30 Hz) and recovery of function in an animal model of stroke. Specifically, they show that cortical "beta bursts", or short-term increases in beta power, correlate strikingly with the timeline of behavioral recovery as quantified with a reach-to-grasp task. A key distinction is made between global beta bursts (here, those that synchronize between cortical and subcortical areas) and local bursts (which appear on only a few electrodes). This distinction of global vs. local is shown to be relevant to task performance and movement speed, among other quantities of interest.

      A secondary results section explores the relationship between beta bursts and neuronal firing during the grasp portion of the behavioral task. These results are valuable to include, though mostly unsurprising, with global beta in particular associated with lower mean and variance in spike rates.

      Last, a partial recapitulation of the primary results is offered with a neurologically intact (uninjured) animal. No major contradictions are found with the primary results.

      Highlights of the Discussion section include a thoughtful review of atypical movements executed by individuals with Parkinson's disease or stroke survivors, placing the current results in an appropriate clinical context. Potential physiological mechanisms that could account for the observed results are also discussed effectively.

      Strengths:

      Overall, this is a very interesting paper. The ultimate impact will be enhanced by the authors' choice to analyze beta bursts, which remain a relatively under-explored aspect of neural coding.

      The reach-and-grasp task was also a well-considered choice; the combination of a relatively simple movement (reaching towards a target in the same location each time) and a more complex movement (a skilled object-manipulation grasp) provides an internal control of sorts for data analysis. In addition, the task's two sub-movements provide a differential in terms of their likelihood to be affected by the stroke-like injury: proximal muscles (controlling reach) are likely to be less affected by stroke, while distal muscles (controlling grasp) are highly likely to be affected. Lastly, the requirement of the task to execute an object lift maximizes its difficulty and also the potential translational impact of the results on human injury.

      The above comments about the task exemplify a strength that is more generally evident: a welcome awareness of clinical relevance, which is in evidence several times throughout the Results and Discussion.

      Weaknesses:

      The study's weaknesses are mostly minor and, for the most part, correctable.

      One concern that may not be correctable in this study: the results about the spatial extent of beta activity seem constrained by relatively poor-quality data. It seems half or more of the electrodes are marked as too noisy to provide useful data in Figure 3. If this reflects the wider reality for all analyses, as mentioned, it may not be correctable for the present study. In that case, perhaps some of the experiments or analyses can be revisited or expanded for a future study, when better electrode yields are available.

      We thank the reviewer for their comments. We note that we have chosen to be particularly conservative with which channels we considered noise-free and acceptable for analysis as our animals were not head-posted (see methods: “On each day, trials were manually inspected alongside camera data for any movement or chewing artifacts (note that animals were not head-posted) and were discarded from neural data analysis if there were any artifacts”). After re-visiting our analysis, we note that the data shown in Fig. 3 (spatial distribution of local bursts) is not representative from a data quality perspective – this data was from a session that had a particularly large number of channels discarded due to artifacts. We plan to correct this to show a more representative figure. 

      Other concerns:

      In some places, there is a lack of clarity in the presentation of the results. This is not serious but should be addressed to aid readers' comprehension.

      We thank the reviewer for this comment and for their numerous suggestions in the notes to the authors. We plan to address as many of these as we can to improve clarity and comprehension.  

      Lastly, given the central role of beta oscillations within the study, it would be better for completeness to include even a brief exploration of sustained beta power (rather than bursts), and the modulation of sustained beta (or lack thereof) in the study's areas of concern: behavioral recovery, task performance, etc.

      We thank the reviewer for this suggestion – we plan to include this in our revisions.  

      References cited in response to public reviewer comments: 

      (1) Ganguly, K., Khanna, P., Morecraft, R. J. & Lin, D. J. Modulation of neural co-firing to enhance network transmission and improve motor function after stroke. Neuron 110, 2363–2385 (2022).

      (2) Khanna, P. et al. Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. Cell 184, 912-930.e20 (2021).

      (3) Darling, W. G. et al. Sensorimotor Cortex Injury Effects on Recovery of Contralesional Dexterous Movements in Macaca mulatta. Exp Neurol 281, 37–52 (2016).

      (4) Bottenfield, K. R. et al. Sex differences in recovery of motor function in a rhesus monkey model of cortical injury. Biology of Sex Differences 12, 54 (2021).

      (5) Schwarz, A. et al. Association that Neuroimaging and Clinical Measures Have with Change in Arm Impairment in a Phase 3 Stroke Recovery Trial. Ann Neurol 97, 709– 719 (2025).

      (6) Gulati, T. et al. Robust Neuroprosthetic Control from the Stroke Perilesional Cortex. J. Neurosci. 35, 8653–8661 (2015).

      (7) Silberstein, P. et al. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128, 1277–1291 (2005).

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity):

      In Arabidopsis, DNA demethylation is catalyzed by a family of DNA glycosylases including DME, ROS1, DML2, and DML3. DME activity in the central cell leads to the hypomethylation of maternal alleles in endosperm. While ROS1, DML2, and DML3 function in vegetative tissues to prevent spreading DNA methylation from TE boundaries, their function in the endosperm was unclear.<br /> Using whole genome methylome analysis, the authors showed that ROS1 prevents hypermethylation of paternal alleles in the endosperm thus promotes epigenetic symmetry between maternal and paternal genomes.<br /> The approach and experimental desighs are appropriate, and the key conclusions are adequately supported by the results.<br /> However, there is not sufficient evidence to support the claim that DME demethylates the maternal allele at ROS1-dependent biallelically-demethylated regions. To clarify the issue, the authors could analyze if there is an overlap between DMRs identified in ros1 endosperm and those identified in dme endosperm using published data. If there is any, the authors could show a genome browser example of DMR including dme data.

      Response: Thank you for your insight on our work. To address your concern and further test our model that DME prevents methylation of the maternal allele at regions where ROS1 is prevents methylation of the paternal allele, we turned to the allele-specific bisulfite-sequencing data published in Ibarra et al 2012. These data were from endosperm isolated at 7-8 DAP from aborting seeds of dme-2 +/- (Col-gl) plants pollinated by L_er_. Our analysis of these data is now included in Figures 6 and 7 and Supplemental Figures 13-17. We show that when the loss-of-function allele dme-2 is inherited maternally, average methylation of the maternal allele increases at ROS1-dependent regions (in the revised version of the paper now referred to as ROS1 paternal, DME maternal regions) from less than 10% CG methylation to approximately 40% CG methylation (Fig. 6D), consistent with our previous analysis using the non-allelic Hsieh et al 2009 data (now moved to Supplemental Figure 15). These results thus provide additional evidence that DME removes maternal allele methylation at regions where ROS1 removes paternal allele methylation (compare Fig. 6B and 6D). We included relevant genome browser examples in Figure 7E and Supplemental Figure 14. In the revised version, the relationship between ROS1 and DME is further expanded upon in the text.

      Reviewer #1 (Significance):

      Endosperm is a tissue unique to flowering plants. Though it is an ephemeral tissue, the endosperm plays essential roles for seed development and germination. The endosperm is also the site genomic imprinting occurs, and it has a distinct epigenomic landscape. This work provides a new insight that ROS1 may antagonize imprinted gene expression in the endosperm. However, it was not shown whether imprinted gene expression is indeed affected in ros1, or whether the ros1 mutation has phenotypic consequences. These results would be useful to discuss the evolution and significance of genomic imprinting.

      Response: We agree that the biological significance of ROS1-mediated paternal allele demethylation is presently unknown. We performed RNA-seq on wild-type and ros1 3C and 6C endosperm nuclei, but these data were unfortunately not of high enough quality to include in the manuscript. In the Discussion we suggest that disrupting ROS1-mediated paternal allele demethylation might lead to a gain of imprinting over evolutionary time. In future work we are planning to address potential relationships to gene imprinting using a molecular, RNA-sequencing approach as well as an evolutionary comparative approach. As expected, given the expectation that imprinted genes are associated with a parent-of-origin specific epigenetic mark, we did not find any relationship between known imprinted genes and ROS1-dependent regions that are biallelically-demethylated regions in wild-type endosperm (see lines 362-372).

      Reviewer #2 (Evidence, reproducibility and clarity):

      SUMMARY

      Hemenway and Gehring present evidence that the paternal genome in Arabidopsis endosperm is demethylated at several hundred loci by the DNA glycosylase/lyase ROS1. The evidence is primarily based on analysis of DNA methylation of ros1 mutants and of hybrid crosses where each parental genome can be differentiated by SNPs. I have some comments/questions/concerns, two of them potentially serious, but I think Hemenway and Gehring can address them through additional analyses of data that they already have available and a bit of clarification in writing.

      Response: Thank you for your thoughtful review of this study. Your insight and suggestions have helped add clarity to the paper.

      MAJOR COMMENTS:

      1. Could the excess methylation in ros1-3 relative to ros1-7 shown in Figures 1A and 1C be explained by a second mutation in the ros1-3 background that elevates methylation at some loci? Any mutation that increased RdDM at these loci, for example could have this effect. This could confound the identification and interpretation of biallelicly demethylated loci.

      Response: We propose a simpler explanation for the additional hypermethylation observed in ros1-3: ros1-3 is a loss-of-function (null) allele whereas ros1-7 is likely a hypomorphic allele. For clarity, we have added a diagram of all of the alleles used in this study as Supplemental Figure 1B. The ros1-3 allele was first described in Penterman et al, PNAS, 2007. It is a T-DNA insertion allele that was isolated in the Ws accession and then backcrossed 6 times to Col-0, greatly minimizing the risk of unlinked secondary mutations being present. There is no genetic evidence that there is another T-DNA insertion in this line. The ros1-7 allele was described in Williams et al, Plos Genet, 2015. It was isolated from the Arabidopsis Col-0 TILLING population and is missense mutation (E956K) in a residue in the glycosylase domain that is conserved among the four DNA glycosylases. It is known that ROS1 transcripts are produced from the ros1-7 allele (Williams et al 2015). We observe less hypermethylation in the ros1-7 background compared to the ros1-3 background, and thus propose that the ros1-7 allele is a hypomorphic allele of ROS1. The use of two independent ros1 mutant alleles for initial endosperm methylation profiling strengthens the findings of our study. Importantly, regions that are hypermethylated in ros1-3 are also hypermethylated in ros1-7, but to a lesser extent, and vice versa (Fig 1D, Supplemental Figs. 3 and 4).

      We also use a third allele in this study, ros1-1, which is a nonsense allele in the C24 accession. Notably, we find that the regions are demethylated on both maternal and paternal alleles in wild-type C24 gain DNA methylation primarily on the paternal allele in ros1-1 endosperm (Figure 4C,D and Supplemental Figure 10). This is discussed further in response to your second point.

      Given these lines of evidence, a gain-of-function mutation in a methylation pathway, like RdDM, in the ros1-3 background is an unlikely explanation for increased hypermethylation compared to ros1-7. The use of three independent ros1 alleles for methylation profiling, all of which lead to the same conclusions, is a major strength of our study.

      1. It appears that the main focus of the manuscript, the existence of loci that are paternally demethylated by ROS1, is supported by a set of 274 DMRs. This is a small number relative to the size of the genome and raises suspicions of rare false positives. Even the most stringent p-values that DMR-finding tools report do not guarantee that the DMRs are actually reproducible in an independent experiment. Demonstrating overlap between these 274 DMRs and an independently defined set using a different WT control and different ros1 allele would suffice to remove this concern. It appears that authors already have the needed raw data with ros1-1 and ros1-7 alleles.

      Response: First, we should clarify that paternal demethylation by ROS1 is supported by more than the 274 DMRs. All ros1 CG hyperDMRs show an increase in paternal allele methylation in ros1 (Fig. 4B,D). The 274 DMRs are a distinct subset defined as having less methylation on the maternal allele than the paternal allele in ros1 endosperm and where there is no maternal allele hypomethylation in wild-type endosperm (refer to Fig. 5B).

      We agree with your sentiments about DMR-finders and we are cautious of relying exclusively on DMR calls when making conclusions. We verify the nature of identified DMRs using metaplots and weighted average comparisons throughout the paper, which we think increases confidence in the conclusions and goes beyond a simple DMR-calling approach.

      We argue that we have replicated the major conclusion of the paper, that ROS1 prevents paternal allele hypermethylation at target regions in the endosperm, in the following ways:

      1. In the dataset without allelic-specific methylation information (Figures 1-3), we found that both ros1-3 and ros1-7 CG hyperDMRs have a limited capacity for hypermethylation in the endosperm relative to leaf or sperm (Table 1, Fig 3, Supplemental Fig. 4). In the allele-specific dataset, ros1-3 CG hyperDMRs were revealed to have particularly low maternal mCG relative to paternal mCG in ros1 mutant endosperm (Fig 4A-B, Supplemental Fig. 10).
      2. We found that ros1-3 and ros1-1 hyperDMRs, which we identified using non-allelic data, are biased for paternal allele hypermethylation in the endosperm of F1 hybrids (Fig 4B,D). The replicability of the paternal bias in hypermethylation in both ros1-3 in the Col-0 ecotype and ros1-1 in the C24 ecotype is a critical result, and we have moved the ros1-1 hyperDMR plots from the supplement to main figure 4C-D in the revised version of the manuscript as a result of your comment.
      3. The 274 DMRs identified as “biallelically-demethylated, ROS1-dependent” are by definition replicated between reciprocal cross directions. (Note that we now refer to these regions as ROS1 paternal, DME maternal regions in the revision.) Regions in this category had to be called as maternally-hypomethylated in both ros1-1 x ros1-3 and ros1-3 x ros1-1 endosperm. These regions also had to not be identified as maternally-hypomethylated in both C24 x Col-0 and Col-0 x C24. We hope this is clarified for readers by Table 1, which we have included based on your suggestion in comment #3, as well as other clarifying edits we made in this section of the paper.comparisons between maternal and paternal methylation in endosperm, DMRs defined by comparison between mutants and wildtype, and more. These need clearer descriptions of which sets are being referred to throughout the main text and in figure legends. A table summarizing them might help (not in the supplement). Use of consistent and precisely defined terms would help. Stating the number of DMRs along with the name for each set would help a lot, even though this would make for some redundancy. (The number of DMRs in each set not only helps with interpretation but also act as a sort of ID). The reason I put this as a major concern is because the text and figures are difficult to understand, and it is currently hard to evaluate both the results and the authors' conclusions from those results.

      Response: Thank you for your feedback and suggestions. We have edited the main text so that only one descriptive name is used for each DMR type throughout the paper. We have also renamed regions for greater clarity. The previous “ROS1-independent, maternally demethylated regions” are now referred to as “DME maternal regions”. The previous “ROS1-_independent, biallelically-demethylated regions” are now referred to as “_ROS1 paternal, DME maternal regions”. These changes provide greater clarity and also emphasize the role of DME at regions that are paternally hypermethylated in ros1. We have added Table 1 to summarize the DMR classes of interest.

      MINOR COMMENTS

      1. The sRNA results in Figure 2B are difficult to interpret because they do not reveal anything about the number of TEs that have siRNAs overlapping them or their flanks. While the magnitude of some of the highest endosperm sRNA peaks is higher than the embryo peaks, that could be explained by a small number of TEs with large numbers of sRNAs. To make this result more interpretable, we also need some information about how many TEs have a significant number of sRNAs associated with them in endosperm and embryo in each region (e.g., middle, 5', 3', and flanks of TEs). What a "significant number of sRNAs" is would be up to the authors to decide based on the distribution of sRNA counts they observe for TEs. Perhaps the top quartile of TEs? Combined with the same analysis done in parallel with non-ROS1 target TEs, this would reveal whether there is any evidence for ROS1 counteracting sRNA-driven methylation spread from TEs.

      Response: Thank you for the suggestion. We now present these data and the data for individual TEs underlying the metaplots in Supplemental Figure 7. As suggested by the reviewer, ROS1 TEs do not have uniformly higher levels of sRNA in their flanks in the endosperm compared to the embryo. We have modified our interpretations accordingly.

      1. The statement "we are likely underestimating the true degree of differential methylation among genotypes" should be validated and partially quantified using a methylation metaplot like Figure 2A, but substitute DMRs for TEs. Related to that, Figure 1B needs an indicator of scale in bp.

      Response: We have now included a methylation metaplot over ros1-3 hyperDMRs and ros1-7 hyperDMRs as Supplemental Figure 3 These plots show that indeed there is additional hypermethylation in DMR-proximal regions. We have added a scale bar to Figure 1B and other browser examples in the paper.

      1. The statement "Over half of ROS1 target regions identified in the ros1-3 mutant endosperm were within 1 kb or intersecting a TE (Fig. 1D)" is hard to interpret without some kind of ROS1 non-target regions or whole-genome control comparison. How different are the numbers in Fig. 1D from a random expectation?

      Response: We have now included a control for random regions in Figure 1E. We define these as regions where there was sufficient methylation data coverage and a low enough methylation level in wild-type to detect hypermethylation if it existed.

      1. The sentence at line 262 is confusing. Is the comparison between dme mutant and ros1 mutant or between different types of regions? And it appears that the comparison value is missing in the "3-5% CG methylation gain..." e.g., "3-5% CG methylation vs 10-20%" or something like that.

      Response: This section has been re-written as we now focus on allele-specific dme endosperm methylation data for our comparisons.

      1. The dme mutant data in Figure 5C appear to be key to the model in Figure 7. The relative impact of the dme mutant in the two types of regions should be quantified.

      Response: Thank you for this comment. To further probe our model that DME prevents hypermethylation of the maternal allele at regions where ROS1 is preventing hypermethylation of the paternal allele, we turned to the allele-specific bisulfite-sequencing data published in Ibarra et al 2012 (see also response to reviewer #1). Using these data, we show that when the loss-of-function allele dme-2 is inherited maternally, ROS1 paternal, DME maternal regions (previous referred to as ROS1-_dependent, biallelically-demethylated regions) are CG hypermethylated on the maternal allele (Figure 6D). Thus, these results both replicate the observations made with the Hsieh et al 2009 data, and provide additional evidence that _DME prevents maternal allele hypermethylation at regions were ROS1 is preventing paternal allele hypermethylation. These results have replaced the Hsieh et al 2009 results in Figure 6, and we have moved the analysis of Hsieh et al 2009 data to Supplemental Figure 15.

      1. Looks like sRNA methods are missing.

      Response: Thank you for identifying this. We previously included the reference for the analyzed dataset we used and the method for plotting under an unclear section header. These methods are now in the section “Analysis of average methylation and 24-nt sRNA patterns for features of interest”, and we have added additional reference to the specific dataset we used.

      1. Supplemental Figure 1 is hard to interpret since it only list gene IDs, not gene names.

      Response: As suggested, we have added gene names to this figure.

      The last comments are suggestions for increasing the impact of this study:

      1. Figure 2A and 3B suggest that ROS1 target TEs show demethylation in their flanks but not in the TE themselves. This is an interesting result. If it is true, more DMRs would be expected in the ROS1 target flanks than in the ROS1 target TEs. Reporting how many ROS1 target TEs have DMRs in them and what proportion have DMRs in their flanking 1-Kb regions would answer this question. Given the significance of this result, it also deserves a bit more context: Is the magnitude of increased methylation flanking TEs in ros1 mutant endosperm different than in ros1 mutant leaves or other tissue? Does methylation in TE flanks behave the way in dme mutant endosperm?

      Response: We define “ROS1 target TEs” (now referred to more simply as ROS1 TEs) as TEs within 1kb or intersecting a ros1-3 hyperDMR. Consistent with your interpretation, 80% of the TEs in this category do not have a DMR overlapping them, instead they have a TE within 1kb. We now mention this in the text on line 150.

      The total level of DNA methylation at ROS1 TEs is lower in the endosperm than in leaf, as DNA methylation levels are overall lower in endosperm than in leaf. The magnitude of increased methylation flanking TEs in ros1 mutant endosperm is not different between the two tissues. This is observable in Supplemental Fig. 5 in the revised version of the paper, and we report this result in the revised text. In the revision we also present methylation profiles of DME TEs in WT and ros1 endosperm (Fig. 7B-D). DME TEs are hypomethylated in both the body and flanks in WT and ros1.

      1. The idea of biallelic demethylation has been theoretically suggested in maize to explain weak overlap between endosperm DMRs and imprinting (Gent et al 2022). If that were true in Arabidopsis, then ROS1 target, biallelicly demethylated loci would be less likely to have imprinted expression than maternally demethylated loci. This prediction could be tested using available data in Arabidopsis.

      Response: Indeed, as you hypothesize, there are no known imprinted genes (Pignatta et al 2014) associated with biallelically-demethylated, ROS1-dependent regions (now referred to as ROS1 paternal, DME maternal regions). Expectedly, there are imprinted genes associated with maternally-demethylated regions (now referred to as DME regions). 23 imprinted genes identified in the Pignatta et al 2014 study are within 1 kb or intersecting a DME region. This is discussed on lines 364-374.

      1. There is currently no evidence for biological significance of biallelicly demethylated loci. Knowing where they are in the genome might give some hints. A figure like Fig. 1D but specifically showing the biallelicly demethylated DMRs would be valuable.

      Response: This is now included in Figure 7A.

      1. It is hard to make the comparisons between genotypes and parental genomes in Figure 6 and know what they mean. Maybe a different way of displaying the data would help. Or maybe even a different labeling system could make it a little more accessible.

      Response: We have revised this figure (now Fig. 8) in the following ways, which we believe address your comments and clarify the main conclusions:

      Figure 8C is now a boxplot comparing methylation of the paternal allele of ROS1 paternal, DME maternal regions (previously referred to as biallelically-demethylated, ROS1-dependent regions) across endosperm ROS1 genotypes. This plot shows increased methylation of paternal alleles when the paternal parent is a ros1 mutant, regardless of whether the resultant F1 endosperm is homozygous or heterozygous for ros1 (columns 3, 4, 6).

      Figure 8B remains as a scatterplot, where we can observe significant correlation between individual ROS1 paternal, DME maternal regions in homozygous ros1 endosperm and heterozygous ros1/+ endosperm. Note that paternal allele methylation is higher in homozygous ros1 endosperm for most regions.

      Reviewer #2 (Significance):

      Demethylation of the maternal genome in endosperm has been the subject of much research because it can result in genomic imprinting of gene expression. The enzymes responsible, DNA glycosylases/lyases, also demethylate DNA in other cell types as well, where DNA methylation is not confined to one parental genome (biallelic or biparental as opposed to uniparental demethylation). To the best of my knowledge, the extent or even existence of biallelelic demethylation in endosperm has not been studied until now (except for a superficial look in a bioRxiv preprint, https://www.biorxiv.org/content/10.1101/2024.07.31.606038v1). Hemenway and Gehring have carried out a thoughtful and detailed analysis of the topic in Arabidopsis at least as far as it depends on the DNA glycosylase ROS1.

      A limitation is that the study design would miss biallelic demethylation by any of the other three DNA glycosylases in Arabidopsis. A second limitation is that there is no clear biological significance, just some conjecture about evolution. Nonetheless, given the novelty of the topic, biological significance may follow.

      The audience for biallelic DNA demethylation in Arabidopsis endosperm is certainly in the "specialized" category, but its relevance to the larger topic of gene regulation in endosperm will attract a larger audience.

      Response: With regard to the other demethylases, note that we also profiled methylation in ros1 dml2 dml3 triple mutant endosperm. We did not find evidence for many DMRs that were present in the triple mutant that were not present in the ros1 single mutant. We do not rule out a function for DML2 or DML3 in the endosperm, but this is not observed at the level of bulk endosperm.

      The reviewer is correct that we have shown a molecular phenotype (paternal allele hypermethylation) and not a developmental or morphological phenotype. A function that occurs in one parent but not the other is, to us, exciting. Our thoughts about how this finding might relate to imprinting are indeed speculative, but not wildly so.

      Reviewer #3 (Evidence, reproducibility and clarity):

      DNA demethylases play a key role in DNA methylation patterning during flowering plant reproduction. The demethylase DME, in particular, is critical for proper endosperm development. While the function of DME in endosperm development has been explored, the contributions of the other demethylases in the same family, ROS1, DML2 and DML3 in Arabidopsis, have not yet been investigated. In vegetative tissues, ROS1 prevents hypermethylation of some loci. In this work, Hemenway and Gehring explore whether ROS1, DML2 and DML3 also affect DNA methylation patterns in endosperm. Using EM-seq of sorted endosperm nuclei, they show that loss of ROS1 indeed causes hypermethylation of a number of loci, particularly the flanks of methylated transposons, while loss of DML2 and DML3 has minimal additional effect. By obtaining allele-specific EM-seq data through crosses of Col and C24, the authors show that ros1 endosperm hypermethylation is mostly restricted to the paternal allele. The authors propose that at some sites, ROS1 helps bring down paternal methylation levels to match maternal methylation levels, which are typically reduced in endosperm due to DME activity in the female gametophyte prior to fertilization. In a ros1 mutant with paternal hypermethylation, these sites become differentially methylated on the maternal and paternal alleles, resembling imprinted loci. This work convincingly establishes a function for ROS1 in DNA methylation patterning in endosperm. However, I struggled with the clarity of the writing and reasoning in a few places, and would suggest clarification of a few points and additional analyses below.

      Response: Thank you for your thoughtful review of our paper. Your questions and suggestions have been invaluable in revising the work.

      I think making a few simple changes to streamline nomenclature would improve readability. For example, in the section starting on line 129, the same set of genomic features are called ROS1 target-proximal TEs, TEs that are near a ROS1 target region, and ROS1 target-associated TE regions. Also for example in line 254 "regions that are maternally-demethylated in wild-type endosperm, and are not dependent on ROS1 for proper demethylation" - are these the same as the "ROS1-independent, maternally-demethylated" regions in Fig. 5a? Given how complex these terms are, being consistent throughout the manuscript really helps the reader.

      Response: We edited the text and figures so that only one descriptive name is used for each DMR class or region throughout the paper. Thank you for this feedback; these edits have made the paper much clearer.

      Is there any notable effect of ros1 on gene expression in endosperm? Endosperm is a terminal tissue, so maintaining DNA methylation boundaries as ROS1 does in vegetative tissues seems less important. It begs the question of why ROS1 is doing this in endosperm, is it just because it's there, or is there an endosperm-specific function? Exploring effects on imprinting would be particularly interesting (does loss of ROS1 'create' imprinted loci at these newly asymmetrically methylated sites?) but probably beyond the scope of the present work.

      Response: We agree, the question of the functional consequence of ROS1 activity in the endosperm is something we are keen to address in future work. We performed RNA-seq on wild-type and ros1 3C and 6C endosperm nuclei, but these data were unfortunately not of high enough quality to include in the manuscript. We are in particular interested in this question you have proposed – if loss of ROS1 can ‘create’ imprinted loci. We are planning to address this both using a molecular, RNA-sequencing approach as well as an evolutionary comparative approach. This is an important and exciting future direction.

      Is DME expressed in sperm, or is expression of DME affected in ros1 sperm or endosperm? One other explanation for ros1 hypermethylation occurring primarily on the paternal allele is that, potentially, DME can substitute for ROS1 in the central cell where DME is already very active, but not in sperm cells. Related, how well expressed is ROS1 vs. DME in sperm cells?

      Response: This is an important series of questions, and something we are very interested in as well. Studies of Arabidopsis pollen have shown that both ROS1 and DME, while they prevent some hypermethylation in sperm, are more active in the vegetative nucleus of pollen than in sperm. ROS1 is expressed at a low level in the microspore and bicellular pollen and DME is expressed at a low level throughout pollen development. We have included Supplemental Fig. 17 with available expression data to make this point in the paper. Likely, any effects of loss of ROS1 or DME on sperm DNA methylation are inherited from precursor cells (Ibarra et al 2012, Calarco et al 2012, Khouider et al 2021). Your proposal that perhaps DME can sub in for ROS1 in the central cell but not in sperm is intriguing. Unfortunately there’s not enough data in the central cell to convincingly address this at this time.

      To investigate the relationship between DME and ROS1 in the male germline, we used the bisulfite-sequencing data generated in sperm cells in Khouider et al 2021. We calculated average DNA methylation levels in dme/+, ros1, dme/+;ros1, and wild-type Col-0 sperm cells at ROS1 paternal, DME maternal regions, shown in Supplemental Fig. 18A. We observed little increase in mCG methylation in dme/+ sperm relative to wild-type Col-0 sperm. This is consistent with your proposed model that DME is unable to demethylate these regions outside of the female germline. As expected, there is increased mCG in ROS1 paternal, DME maternal regions in ros1-3 mutant sperm relative to wild-type Col-0 sperm. DME maternal regions are highly methylated in wild-type Col-0 sperm.

      Fig 2b shows that ROS1 target-associated TEs are enriched for sRNAs in endosperm relative to embryo, whereas the reverse is true for non-ROS1-assoc TEs. Since TEs are not always well annotated and some may be missing from this analysis, what about trying the reverse analysis - are regions enriched for 24nt sRNAs in endosperm significantly hypermethylated in ros1 endosperm? All regions or only some?

      Response: We performed an analysis to address your inquiry and observed a low magnitude increase in DNA methylation in ros1 mutant endosperm at regions defined by Erdmann et al as more sRNA producing in the endosperm relative to the embryo (endosperm DSRs). Endosperm DSRs are generally lowly methylated in wild-type endosperm, as was observed originally in Erdmann et al 2017. Small increases in DNA methylation are observed at endosperm DSRs in all sequence contexts in ros1 endosperm. Overall, this is consistent with ROS1 targets being a subset of sRNA-producing regions in the endosperm. This analysis is now included in Supplemental Fig. 7C.

      What is the relationship between previously-defined DME targets and ROS1 targets identified in this paper? DME tends to target small euchromatic TE bodies, whereas Fig. 3 suggests that ROS1 helps prevent methylation spreading on the outer edges of the TEs, rather than in the TE body. Do all DME targets tend to be adjacent to or flanked by ROS1 target sites? Or are the TEs affected by DME (in body) and by ROS1 (at edges) largely nonoverlapping? Fig. 5a suggests that the ROS1-dependent, biallelically-demethylated sites are both DME and ROS1 targets, but how often do these really appear to overlap? More than by chance?

      Response: We have sought to address your comments through a series of analyses that we have included in Fig. 7 and Supplemental Fig. 16. We found that ROS1 paternal, DME maternal regions (formerly referred to as ROS1-dependent, biallelically-demethylated regions) and DME maternal regions (formerly referred to as ROS1-independent, maternally-demethylated regions) do not occupy the same genomic regions. However, we do observe some evidence for ROS1 activity in flanking regions of DME targets (Fig. 6A, Fig. 7B-D). To look at TEs specifically, as you suggest, we first identified TEs that were within 1kb or intersecting a DME maternal region. Based on our characterization of these regions, we assume these to be DME-targeted TEs. We then performed ends analysis to see if there was evidence of ROS1 activity at the ends of these TEs. Indeed, at a global level there is a slight hypermethylation of the paternal allele in a ros1 mutant at the end of these DME TEs (Fig. 7B). To better visualize how many DME TEs are showing ROS1 activity at their ends, we then plotted the difference between the median ros1-3 methylation and median Col-0 values in the non-allelic endosperm for each TE in a clustered heatmap (Fig. 7C). The parent-of-origin data does not have enough coverage for clustering in this way, so we used the non-allelic data. A small fraction of “DME TEs” gain methylation in the ros1 mutant endosperm relative to wild-type (Fig. 7C-D).

      Are the TEs whose boundaries are demethylated by ROS1 more likely to be expressed in vegetative or endosperm tissues than TEs not affected by loss of ROS1? Expressed TEs likely produce more sRNAs, which would increase RdDM in a way that might need to be more actively countered by ROS1 than transcriptionally silent or evolutionarily older TEs.

      Response: This is an interesting line of inquiry, although perhaps out of the scope of our present study. It has been shown that TEs demethylated by ROS1 are targeted by the RdDM pathway in Arabidopsis vegetative tissue (Tang et al 2016). Using data from Erdmann et al 2017, we looked at 24 nt sRNAs at ROS1-TEs in the endosperm and embryo (Supplemental Fig. 7). sRNA production at ROS1 TE-flanking regions is observed in both embryo and endosperm, but clearly not all ROS1 TEs produce 24 nt sRNA production in the seed. Future work comparing sRNA profiles in a ros1 mutant to those of wild-type could inform our understanding of TE spreading in a ros1 mutant, as would a comprehensive analysis of TE expression, again in both a ros1 mutant and in wild-type. It’s unclear to us if the endosperm would be the most informative or useful tissue to perform such analyses in.

      Fig6 - as noted in the text, one way to test whether demethylation by ROS1 occurs before or after fertilization is to provide functional ROS1 through only one parent via reciprocal WT x ros-1 crosses, so that the endosperm always has ROS1 but either sperm or central cell does not, and see if this can rescue the paternal hypermethylation. If ROS1 acts prior to fertilization, then paternal ROS1 will rescue ros1 hypermethylation, but maternal ROS1 won't. If after fertilization, then either maternally or paternally supplied ROS1 will rescue the hypermethylation phenotype (assuming both are well expressed). Thus, to distinguish the two, it is sufficient to test whether maternally supplied ROS1 in an otherwise mutant background can rescue the hypermethylation phenotype, which is what is shown in Fig. 6. However, I think it's also important to show that paternally supplied ROS1 can also rescue the hypermethylation phenotype, which is not currently shown. The plots showing no effect on maternal mCG aren't as informative, since maternal methylation levels are mostly unaffected by ros1 anyway. Instead of comparing pairs of samples in a scatterplot, it might be clearer to show paternal mCG across all four comparisons (WT x WT, WT x ros1, ros1 x WT, and ros1 x ros1) side by side in a heatmap, using clustering to group similar behavior.

      Response: We have revised this figure, now Fig. 8, in the following ways, which we believe addresses your comments and clarify the main conclusions (see same response to reviewer 2 for point 14):

      Figure 8B remains as a scatterplot, where we observe significant correlation between individual ROS1 paternal, DME maternal regions in homozygous ros1 endosperm and heterozygous ros1/+ endosperm. Note that paternal allele methylation is higher in homozygous ros1 endosperm for most regions.

      Figure 8C is now a boxplot comparing methylation of the paternal allele of ROS1 paternal, DME maternal regions (previously referred to as biallelically-demethylated, ROS1-dependent regions) across endosperm ROS1 genotypes. This plot shows increased methylation of paternal alleles when the paternal parent is a ros1 mutant, regardless of whether the resultant F1 endosperm is homozygous or heterozygous for ros1 (columns 3, 4, 6).

      I would also suggest including a little more information in the main plots rather than only in the figure legends. For example, in Fig 2 including a label of 'ROS1-associated TE' for the two plots on the left, and 'TEs not associated with ROS1' on the right. Or for example in Fig. 3a indicating 'ros1-3 CG hyperDMRs' somewhere on the plot. This would just help make the figures easier to read at a glance. Please add common gene names to figures, instead just the ATG gene ID (Fig. S1a).

      Response: Thank you for this feedback, we have made the suggested edits and additional edits of a similar nature.

      Minor:<br /> - Fig. 1E is referenced in the text before Fig. 1D<br /> - Fig. S4 and S5 - there are more lines in the plot than the 6 genotypes listed in the legend, do these represent different replicates? If so that should be noted in the legend<br /> - Fig. 1B has no color legend for the different methylation sequence contexts (looks like same as 1A,C but should indicate either in plot or legend)<br /> - Line 42 should be "correspond to TE ends"<br /> - Line 93 "Based on previous studies..." should have references to those studies<br /> - When referring to the protein (rather than the genetic locus or mutant), ROS1 should not be italicized - for example line 130<br /> - Line 150 "we conclude that the loss"<br /> - Should add a y=x line to scatterplots, like those in Fig. 6<br /> - In fig. 1d, it's hard to evaluate the significance of the overlap of ROS1 targets with genes and TEs. Comparing these numbers to a control where the ROS1 targets have been randomly shuffled would help.

      Response: We have made edits and additions where requested.

      Reviewer #3 (Significance):

      In this work, Hemenway and Gehring explore whether ROS1, DML2 and DML3 also affect DNA methylation patterns in endosperm. Using EM-seq of sorted endosperm nuclei, they show that loss of ROS1 indeed causes hypermethylation of a number of loci, particularly the flanks of methylated transposons, while loss of DML2 and DML3 has minimal additional effect. By obtaining allele-specific EM-seq data through crosses of Col and C24, the authors show that ros1 endosperm hypermethylation is mostly restricted to the paternal allele. The authors propose that at some sites, ROS1 helps bring down paternal methylation levels to match maternal methylation levels, which are typically reduced in endosperm due to DME activity in the female gametophyte prior to fertilization. In a ros1 mutant with paternal hypermethylation, these sites become differentially methylated on the maternal and paternal alleles, resembling imprinted loci. This work convincingly establishes a function for ROS1 in DNA methylation patterning in endosperm. However, I struggled with the clarity of the writing and reasoning in a few places, and would suggest clarification of a few points and additional analyses.

      Response: Thank you for your comments. We have worked on streamlining the text and analysis.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      DNA demethylases play a key role in DNA methylation patterning during flowering plant reproduction. The demethylase DME, in particular, is critical for proper endosperm development. While the function of DME in endosperm development has been explored, the contributions of the other demethylases in the same family, ROS1, DML2 and DML3 in Arabidopsis, have not yet been investigated. In vegetative tissues, ROS1 prevents hypermethylation of some loci. In this work, Hemenway and Gehring explore whether ROS1, DML2 and DML3 also affect DNA methylation patterns in endosperm. Using EM-seq of sorted endosperm nuclei, they show that loss of ROS1 indeed causes hypermethylation of a number of loci, particularly the flanks of methylated transposons, while loss of DML2 and DML3 has minimal additional effect. By obtaining allele-specific EM-seq data through crosses of Col and C24, the authors show that ros1 endosperm hypermethylation is mostly restricted to the paternal allele. The authors propose that at some sites, ROS1 helps bring down paternal methylation levels to match maternal methylation levels, which are typically reduced in endosperm due to DME activity in the female gametophyte prior to fertilization. In a ros1 mutant with paternal hypermethylation, these sites become differentially methylated on the maternal and paternal alleles, resembling imprinted loci. This work convincingly establishes a function for ROS1 in DNA methylation patterning in endosperm. However, I struggled with the clarity of the writing and reasoning in a few places, and would suggest clarification of a few points and additional analyses below.

      I think making a few simple changes to streamline nomenclature would improve readability. For example, in the section starting on line 129, the same set of genomic features are called ROS1 target-proximal TEs, TEs that are near a ROS1 target region, and ROS1 target-associated TE regions. Also for example in line 254 "regions that are maternally-demethylated in wild-type endosperm, and are not dependent on ROS1 for proper demethylation" - are these the same as the "ROS1-independent, maternally-demethylated" regions in Fig. 5a? Given how complex these terms are, being consistent throughout the manuscript really helps the reader.

      Is there any notable effect of ros1 on gene expression in endosperm? Endosperm is a terminal tissue, so maintaining DNA methylation boundaries as ROS1 does in vegetative tissues seems less important. It begs the question of why ROS1 is doing this in endosperm, is it just because it's there, or is there an endosperm-specific function? Exploring effects on imprinting would be particularly interesting (does loss of ROS1 'create' imprinted loci at these newly asymmetrically methylated sites?) but probably beyond the scope of the present work.

      Is DME expressed in sperm, or is expression of DME affected in ros1 sperm or endosperm? One other explanation for ros1 hypermethylation occurring primarily on the paternal allele is that, potentially, DME can substitute for ROS1 in the central cell where DME is already very active, but not in sperm cells. Related, how well expressed is ROS1 vs. DME in sperm cells?

      Fig 2b shows that ROS1 target-associated TEs are enriched for sRNAs in endosperm relative to embryo, whereas the reverse is true for non-ROS1-assoc TEs. Since TEs are not always well annotated and some may be missing from this analysis, what about trying the reverse analysis - are regions enriched for 24nt sRNAs in endosperm significantly hypermethylated in ros1 endosperm? All regions or only some?

      What is the relationship between previously-defined DME targets and ROS1 targets identified in this paper? DME tends to target small euchromatic TE bodies, whereas Fig. 3 suggests that ROS1 helps prevent methylation spreading on the outer edges of the TEs, rather than in the TE body. Do all DME targets tend to be adjacent to or flanked by ROS1 target sites? Or are the TEs affected by DME (in body) and by ROS1 (at edges) largely nonoverlapping? Fig. 5a suggests that the ROS1-dependent, biallelically-demethylated sites are both DME and ROS1 targets, but how often do these really appear to overlap? More than by chance?

      Are the TEs whose boundaries are demethylated by ROS1 more likely to be expressed in vegetative or endosperm tissues than TEs not affected by loss of ROS1? Expressed TEs likely produce more sRNAs, which would increase RdDM in a way that might need to be more actively countered by ROS1 than transcriptionally silent or evolutionarily older TEs.

      Fig6 - as noted in the text, one way to test whether demethylation by ROS1 occurs before or after fertilization is to provide functional ROS1 through only one parent via reciprocal WT x ros-1 crosses, so that the endosperm always has ROS1 but either sperm or central cell does not, and see if this can rescue the paternal hypermethylation. If ROS1 acts prior to fertilization, then paternal ROS1 will rescue ros1 hypermethylation, but maternal ROS1 won't. If after fertilization, then either maternally or paternally supplied ROS1 will rescue the hypermethylation phenotype (assuming both are well expressed). Thus, to distinguish the two, it is sufficient to test whether maternally supplied ROS1 in an otherwise mutant background can rescue the hypermethylation phenotype, which is what is shown in Fig. 6. However, I think it's also important to show that paternally supplied ROS1 can also rescue the hypermethylation phenotype, which is not currently shown. The plots showing no effect on maternal mCG aren't as informative, since maternal methylation levels are mostly unaffected by ros1 anyway. Instead of comparing pairs of samples in a scatterplot, it might be clearer to show paternal mCG across all four comparisons (WT x WT, WT x ros1, ros1 x WT, and ros1 x ros1) side by side in a heatmap, using clustering to group similar behavior.

      I would also suggest including a little more information in the main plots rather than only in the figure legends. For example, in Fig 2 including a label of 'ROS1-associated TE' for the two plots on the left, and 'TEs not associated with ROS1' on the right. Or for example in Fig. 3a indicating 'ros1-3 CG hyperDMRs' somewhere on the plot. This would just help make the figures easier to read at a glance. Please add common gene names to figures, instead just the ATG gene ID (Fig. S1a).

      Minor:

      • Fig. 1E is referenced in the text before Fig. 1D
      • Fig. S4 and S5 - there are more lines in the plot than the 6 genotypes listed in the legend, do these represent different replicates? If so that should be noted in the legend
      • Fig. 1B has no color legend for the different methylation sequence contexts (looks like same as 1A,C but should indicate either in plot or legend)
      • Line 42 should be "correspond to TE ends"
      • Line 93 "Based on previous studies..." should have references to those studies
      • When referring to the protein (rather than the genetic locus or mutant), ROS1 should not be italicized - for example line 130
      • Line 150 "we conclude that the loss"
      • Should add a y=x line to scatterplots, like those in Fig. 6
      • In fig. 1d, it's hard to evaluate the significance of the overlap of ROS1 targets with genes and TEs. Comparing these numbers to a control where the ROS1 targets have been randomly shuffled would help.

      Significance

      In this work, Hemenway and Gehring explore whether ROS1, DML2 and DML3 also affect DNA methylation patterns in endosperm. Using EM-seq of sorted endosperm nuclei, they show that loss of ROS1 indeed causes hypermethylation of a number of loci, particularly the flanks of methylated transposons, while loss of DML2 and DML3 has minimal additional effect. By obtaining allele-specific EM-seq data through crosses of Col and C24, the authors show that ros1 endosperm hypermethylation is mostly restricted to the paternal allele. The authors propose that at some sites, ROS1 helps bring down paternal methylation levels to match maternal methylation levels, which are typically reduced in endosperm due to DME activity in the female gametophyte prior to fertilization. In a ros1 mutant with paternal hypermethylation, these sites become differentially methylated on the maternal and paternal alleles, resembling imprinted loci. This work convincingly establishes a function for ROS1 in DNA methylation patterning in endosperm. However, I struggled with the clarity of the writing and reasoning in a few places, and would suggest clarification of a few points and additional analyses

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary

      Hemenway and Gehring present evidence that the paternal genome in Arabidopsis endosperm is demethylated at several hundred loci by the DNA glycosylase/lyase ROS1. The evidence is primarily based on analysis of DNA methylation of ros1 mutants and of hybrid crosses where each parental genome can be differentiated by SNPs. I have some comments/questions/concerns, two of them potentially serious, but I think Hemenway and Gehring can address them through additional analyses of data that they already have available and a bit of clarification in writing.

      Major comments:

      1. Could the excess methylation in ros1-3 relative to ros1-7 shown in Figures 1A and 1C be explained by a second mutation in the ros1-3 background that elevates methylation at some loci? Any mutation that increased RdDM at these loci, for example could have this effect. This could confound the identification and interpretation of biallelicly demethylated loci.
      2. It appears that the main focus of the manuscript, the existence of loci that are paternally demethylated by ROS1, is supported by a set of 274 DMRs. This is a small number relative to the size of the genome and raises suspicions of rare false positives. Even the most stringent p-values that DMR-finding tools report do not guarantee that the DMRs are actually reproducible in an independent experiment. Demonstrating overlap between these 274 DMRs and an independently defined set using a different WT control and different ros1 allele would suffice to remove this concern. It appears that authors already have the needed raw data with ros1-1 and ros1-7 alleles.
      3. Because of the multiple sets of DMRs identified and used throughout the paper, it is hard to follow which one is which. There are DMRs defined solely by one sequence context, DMRs defined by all three contexts merged, DMRs defined by comparisons between maternal and paternal methylation in endosperm, DMRs defined by comparison between mutants and wildtype, and more. These need clearer descriptions of which sets are being referred to throughout the main text and in figure legends. A table summarizing them might help (not in the supplement). Use of consistent and precisely defined terms would help. Stating the number of DMRs along with the name for each set would help a lot, even though this would make for some redundancy. (The number of DMRs in each set not only helps with interpretation but also act as a sort of ID). The reason I put this as a major concern is because the text and figures are difficult to understand, and it is currently hard to evaluate both the results and the authors' conclusions from those results.

      Minor comments

      1. The sRNA results in Figure 2B are difficult to interpret because they do not reveal anything about the number of TEs that have siRNAs overlapping them or their flanks. While the magnitude of some of the highest endosperm sRNA peaks is higher than the embryo peaks, that could be explained by a small number of TEs with large numbers of sRNAs. To make this result more interpretable, we also need some information about how many TEs have a significant number of sRNAs associated with them in endosperm and embryo in each region (e.g., middle, 5', 3', and flanks of TEs). What a "significant number of sRNAs" is would be up to the authors to decide based on the distribution of sRNA counts they observe for TEs. Perhaps the top quartile of TEs? Combined with the same analysis done in parallel with non-ROS1 target TEs, this would reveal whether there is any evidence for ROS1 counteracting sRNA-driven methylation spread from TEs.
      2. The statement "we are likely underestimating the true degree of differential methylation among genotypes" should be validated and partially quantified using a methylation metaplot like Figure 2A, but substitute DMRs for TEs. Related to that, Figure 1B needs an indicator of scale in bp.
      3. The statement "Over half of ROS1 target regions identified in the ros1-3 mutant endosperm were within 1 kb or intersecting a TE (Fig. 1D)" is hard to interpret without some kind of ROS1 non-target regions or whole-genome control comparison. How different are the numbers in Fig. 1D from a random expectation?
      4. The sentence at line 262 is confusing. Is the comparison between dme mutant and ros1 mutant or between different types of regions? And it appears that the comparison value is missing in the "3-5% CG methylation gain..." e.g., "3-5% CG methylation vs 10-20%" or something like that.
      5. The dme mutant data in Figure 5C appear to be key to the model in Figure 7. The relative impact of the dme mutant in the two types of regions should be quantified.
      6. Looks like sRNA methods are missing.
      7. Supplemental Figure 1 is hard to interpret since it only list gene IDs, not gene names.

      The last comments are suggestions for increasing the impact of this study:<br /> 11. Figure 2A and 3B suggest that ROS1 target TEs show demethylation in their flanks but not in the TE themselves. This is an interesting result. If it is true, more DMRs would be expected in the ROS1 target flanks than in the ROS1 target TEs. Reporting how many ROS1 target TEs have DMRs in them and what proportion have DMRs in their flanking 1-Kb regions would answer this question. Given the significance of this result, it also deserves a bit more context: Is the magnitude of increased methylation flanking TEs in ros1 mutant endosperm different than in ros1 mutant leaves or other tissue? Does methylation in TE flanks behave the way in dme mutant endosperm?<br /> 12. The idea of biallelic demethylation has been theoretically suggested in maize to explain weak overlap between endosperm DMRs and imprinting (Gent et al 2022). If that were true in Arabidopsis, then ROS1 target, biallelicly demethylated loci would be less likely to have imprinted expression than maternally demethylated loci. This prediction could be tested using available data in Arabidopsis.<br /> 13. There is currently no evidence for biological significance of biallelicly demethylated loci. Knowing where they are in the genome might give some hints. A figure like Fig. 1D but specifically showing the biallelicly demethylated DMRs would be valuable.<br /> 14. It is hard to make the comparisons between genotypes and parental genomes in Figure 6 and know what they mean. Maybe a different way of displaying the data would help. Or maybe even a different labeling system could make it a little more accessible.

      Significance

      Demethylation of the maternal genome in endosperm has been the subject of much research because it can result in genomic imprinting of gene expression. The enzymes responsible, DNA glycosylases/lyases, also demethylate DNA in other cell types as well, where DNA methylation is not confined to one parental genome (biallelic or biparental as opposed to uniparental demethylation). To the best of my knowledge, the extent or even existence of biallelelic demethylation in endosperm has not been studied until now (except for a superficial look in a bioRxiv preprint, https://www.biorxiv.org/content/10.1101/2024.07.31.606038v1). Hemenway and Gehring have carried out a thoughtful and detailed analysis of the topic in Arabidopsis at least as far as it depends on the DNA glycosylase ROS1.

      A limitation is that the study design would miss biallelic demethylation by any of the other three DNA glycosylases in Arabidopsis. A second limitation is that there is no clear biological significance, just some conjecture about evolution. Nonetheless, given the novelty of the topic, biological significance may follow.

      The audience for biallelic DNA demethylation in Arabidopsis endosperm is certainly in the "specialized" category, but its relevance to the larger topic of gene regulation in endosperm will attract a larger audience.

    1. In other words, AI will not enable the creation of quality translations for people who previously lacked that ability. That part still requires a human feel for the linguistic and cultural elements of the translation. But for those who are just looking to get a rough but passable translation (say, for research) it should work most of the time. And for those who would love to create quality translations but face huge opportunity costs and zero financial incentives, AI could lead to new possibilities.The deeper risk is not that AI will replace historians or translators, but that it will convince us we never needed them in the first place. A tool that outputs polished, confident language with no sense of ambiguity or context is appealing to people who think facts will save us. But there is a vast difference between facts and truths. If we come to treat them as interchangeable, we cede interpretation to the machines and narrative power to those who design them. So maybe Microsoft was right after all, just not in the way they think. Historians and translators may be the first to go not because their work is easy to automate, but because the interpretive element of their labor has always been invisible or, when made visible, dismissed as odious human bias. AI will replace them only in the minds of people who never understood what they were doing in the first place. Which, given how things are going, may be enough.

      If you believe in the Fact you are more likely to heuristic your way toward that polished language as a signal of plausibility

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Ozcan et al., presents compelling evidence demonstrating the latent potential of glial precursors of the adult cerebral cortex for neuronal reprogramming. The findings substantially advance our understanding of the potential of endogenous cells in the adult brain to be reprogrammed. Moreover, they describe a molecular cocktail that directs reprogramming toward corticospinal neurons (CSN).

      Strengths:

      Experimentally, the work is compelling and beautifully designed, with no major caveats. The main conclusions are fully supported by the experiments. The work provides a characterization of endogenous progenitors, genetic strategies to isolate them, and proof of concept of exploiting these progenitors' potential to produce a specific desired neuronal type with "a la carte" combination of transcription factors.

      Weaknesses:

      Some issues need to be addressed or clarified before publication. The manuscript requires editing. It is dense and rich in details while in other parts there are a few mistakes.

      We thank the reviewer for their excellent summary and for their extremely positive review of our paper. We are pleased that the experimental design and conclusions were judged to be wellsupported.

      We have revised the paper to enhance clarity, include additional relevant citations, and refine terminology in some sections of the original version.

      We appreciate the reviewer’s thoughtful review and agree that these revisions enhance the paper.

      Reviewer #2 (Public Review):

      Summary:

      Here the authors show a novel direct neuronal reprogramming model using a very pure culture system of oligodendrocyte progenitor cells and demonstrate hallmarks of corticospinal neurons to be induced when using Neurogenin2, a dominant-negative form of Olig2 in combination with the CSN master regulator Fezf2.

      Strengths:

      This is a major achievement as the specification of reprogrammed neurons towards adequate neuronal subtypes is crucial for repair and still largely missing. The work is carefully done and the comparison of the neurons induced only by Neurogenin 2 versus the NVOF cocktail is very interesting and convincingly demonstrates a further subtype specification by the cocktail.

      Weaknesses:

      As carefully as it is done in vitro, the identity of projection neurons can best be assessed in vivo. If this is not possible, it could be interesting to co-culture different brain regions and see if these neurons reprogrammed with the cocktail, indeed preferentially send out axons to innervate a co-cultured spinal cord versus other brain region tissue.

      We appreciate the reviewer’s positive evaluation of our work and their recognition of its significance in advancing neuronal subtype specification through directed differentiation of endogenous progenitors. 

      We agree with the reviewer’s suggestion that a very interesting future stage of this work would be to investigate the projection neuron identity in vivo. We aim to pursue follow-up studies to investigate in vivo integration and connectivity of such neurons generated by directed differentiation from endogenous SOX6+/NG2+ cortical progenitors. As the reviewer insightfully suggests, co-culturing different brain regions with these neurons could offer an alternative strategy to partially assess potential preferential connectivity into cultured spinal cord vs. alternate tissue.

      We agree with the reviewer that future investigation in vivo will further strengthen the implications of this work.

      Reviewer #3 (Public Review):

      Summary:

      Ozkan, Padmanabhan, and colleagues aim to develop a lineage reprogramming strategy towards generating subcerebral projection neurons from endogenous glia with the specificity needed for disease modelling and brain repair. They set out by targeting specifically Sox6-positive NG2 glia. This choice is motivated by the authors' observation that the early postnatal forebrain of Sox6 knockout mice displays marked ectopic expression of the proneural transcription factor (TF) Neurog2, suggesting a latent neurogenic program may be derepressed in NG2 cells, which normally express Sox6. Cultured NG2 glia transfected with a construct ("NVOF") encoding Neurog2, the corticofugal neuron-specifying TF Fezf2, and a constitutive repressor form of Olig2 are efficiently reprogrammed to neurons. These acquire complex morphologies resembling those of mature endogenous neurons and are characterized by fewer abnormalities when compared to neurons induced by Neurog2 alone. NVOF-induced neurons, as a population, also express a narrower range of cortical neuron subtype-specific markers, suggesting narrowed subtype specification, a potential step forward for Neurog2-driven neuronal reprogramming. Comparison of NVOF- and Neurog2-induced neurons to endogenous subcerebral projection neurons (SCPN) also indicates Fezf2 may aid Neurog2 in directing the generation of SCPN-like neurons at the expense of other cortical neuronal subtypes.

      Strengths:

      The report describes a novel, highly homogeneous in vitro system amenable to efficient reprogramming. The authors provide evidence that Fezf2 shapes the outcome of Neurog2-driven reprogramming towards a subcerebral projection neuron identity, consistent with its known developmental roles. Also, the use of the modified RNA for transient expression of Neurog2 is very elegant.

      Weaknesses:

      The molecular characterization of NVOF-induced neurons is carried out at the bulk level, therefore not allowing to fully assess heterogeneity among NVOF-induced neurons. The suggestion of a latent neurogenic potential in postnatal cortical glia is only partially supported by the data from the Sox6 knockout. Finally, some of the many exciting implications of the study remain untested.

      Discussion:

      The study has many exciting implications that could be further tested. For example, an ultimate proof of the subcerebral projection neuron identity would be to graft NVOF cells into neonatal mice and study their projections. Another important implication is that Sox6-deficient NG2 glia may not only express Neurog2 but activate a more complete neurogenic programme, a possibility that remains untested here.

      Also, is the subcerebral projection neuron dependent on the starting cell population? Could other NG2 glia, not expressing Sox6, also be co-axed by the NVOF cocktail into subcerebral projection neurons? And if not, do they express other (Sox) transcription factors that render them more amenable to reprogramming into other cortical neuron subtypes? The authors state that SOX6-positive NG2 glia are a quiescent progenitor population. Given that NG2 glia is believed to undergo proliferation as a whole, are Sox6-positive NG2 glia an exception from this rule? Finally, the authors seem to imply that subcerebral projection neurons and Sox6-positive NG2 glia are lineage-related. However, direct evidence for this conjecture seems missing.

      We appreciate the reviewer’s thoughtful and detailed review of this work. We especially appreciate the positive evaluation of the work and the highlighting of multiple strengths of our approach, including the role of Fezf2 in refining neuronal subtype identity and the use of modified RNA to enable transient expression of Neurog2.

      We acknowledge the reviewer’s comment that single-cell transcriptomic analysis would indeed provide a more granular view of likely heterogeneity. This current study focuses on investigating the feasibility of directed differentiation of corticospinal-like neurons from endogenous progenitors. Future work employing single-cell sequencing could indeed help delineate the heterogeneity of neurons generated by directed differentiation, and potentially contribute toward identification of potential molecular roadblocks in different subsets.

      Regarding the suggestion that SOX6-deficient NG2+ progenitors might activate a broader neurogenic program, we agree that this is an intriguing possibility. We are currently conducting indepth investigation of the loss of SOX6 function in NG2+ progenitors, and we aim to submit this quite distinct work for separate publication.

      The reviewer raises an important point about whether SOX6+/NG2+ progenitors and subcerebral projection neurons are indeed normally lineage-related. In the current work, we utilized postnatal cortical SOX6+/NG2+ progenitors that are thought to be largely derived from EMX1+ and GSH2+ ventricular zone neural progenitors. Our unpublished data from the separate study noted above indicate that SOX6 is expressed by both these lineages in vivo. Since subcerebral projection neurons are derived from EMX1+ ventricular zone progenitors (SOX6-expressing), at least some of the SOX6+/NG2+ progenitors are expected to share a lineage relationship with subcerebral projection neurons. While our data strongly suggest such a link, we agree that direct lineagetracing could be pursued in future work. 

      Finally, we agree with the reviewer’s suggestion that in vivo transplantation to assess the identity and connectivity of neurons generated by directed differentiation would be very interesting, and is a natural next phase of this work. We aim to pursue such work in future investigations.

      We again thank the reviewer for their insightful comments.

      Reviewer #1 (Recommendations For The Authors): 

      The most important clarification for me concerns the initial description of the progenitors. I think there is a mistake with the transgenic line NG2. The dsRed mouse used in Figure 1 C is not described until later in the results describing Figure 2. This was confusing. Moreover, perhaps this is a reason why I get confused and do not understand how the authors conclude that SOX6+ cells are a subset of NG2positive cells. Panel C shows the opposite. Please correct the description and show the quantification of data in panel 1C.

      We thank the reviewer for their thoughtful review and for highlighting this important point. We appreciate the reviewer pointing out the benefit of further clarity regarding the NG2.DsRed transgenic mouse description in Figure 1C. We have revised the text to clarify the use of the transgenic line and ensure that the DsRed mouse is properly introduced. Additionally, we have further clarified the description explaining the basis for concluding that SOX6+ cells are a subset of NG2+ cells and further integrate this conclusion with the data presented.

      During cell sorting from the cortices of NG2.DsRed mice, we observe two distinct populations of NG2-DsRed+ cells based on fluorescence intensity in FACS: NG2-DsRed “bright” and NG2-DsRed “dim” populations. The NG2-DsRed “dim” population consists of a heterogenous mix of NESTIN+ progenitors, GFAP+ astrocytes/progenitors, a subset of NG2+ cells, and other unidentified cells. In contrast, the DsRed “bright” population includes a broader group of progenitors that also give rise to oligodendrocytes (please see Zhu, Bergles, and Nishiyama 2008), along with pericytes. 

      Previous studies have shown that, while dorsal/pallial VZ progenitors express SOX6 during embryonic development, SOX6 expression becomes restricted to interneurons postnatally (these do not express NG2 proteoglycan; Azim et al., 2009) and to the broader group of NG2+ progenitors that also give rise to oligodendrocytes. The ICC image in Fig. 1C shows bright NG2+ cells in the cortex, many of which express SOX6. Thus, we conclude that SOX6+ cells constitute a subset of NG2-DsRed+ cells. 

      In a similar line, the work is beautiful, but the manuscript can gain a lot from shortening and some more editing. for example:

      (1) In the abstract, the word inappropriate should be removed. It seems to me that is an unnecessary subjective qualification - it is hardly possible that in biology we found repression of something inappropriate.

      We have removed the word “inappropriate”.

      (2) FACS-purify these genetically accessible....establish a pure culture. Genetically accessible is nice, and I understand that it conveys that they can be traced in the mouse, but everything is genetically accessible with the right tool, and perhaps it is more informative to explain which gene or report is used for the isolation. These cells are not accessible in humans. Also, I consider it best to remove pure- the culture is pure (purified by FACS) cells.

      We have revised the text to specify the gene/reporter used for isolation instead of using "genetically accessible", and we removed "pure", since FACS purification is already explicitly mentioned.

      (3) In the initial paragraph in the results: "They are exposed to the same morphogen gradients throughout embryonic development, and thus, compared to distant cell types, have similar epigenomic and transcription landscapes." This is proven in the cited publication, but the way is stated here seems a bit of an unnecessary overstatement. The hypothesis stated after this paragraph is as good as it is with or without this argument.

      We have revised the text and simplified the statement. We agree that the hypothesis remains clear and well-supported without this emphasis.

      (4) In the result sections, "two distinct populations of DsREd-positive cells were identified based on fluorescence intensity"- I know it is correct, but when reading the percentages, I was confused because those percentages divided the population into three fractions. What the authors do not explain is that they discard the intermediate-expressing population.

      We appreciate the reviewer highlighting this inadvertent point of confusion. We erred by discussing only the two populations of central interest to us (DsRed-bright and DsRed-dim), and did not explicitly mention the DsRed-negative population. We have now clarified the text to include all three cell populations and their percentages of the total cells in all three populations (in the original manuscript and still now, ~75-78% were DsRed-negative). We have also further clarified that only DsRed-Bright cells (identified as progenitors) were used for all subsequent experiments.

      These examples illustrate the type of editing that would be appreciated but which is entirely up to the authors.

      We thank the reviewer for their thoughtful suggestions toward improving clarity and precision. We have incorporated these recommendations, along with suggestions from the other two reviewers, in the revised paper.

      Reviewer #2 (Recommendations For The Authors):

      (1)  The authors start their results section by showing in situ Hybridization for Ngn2 in control and Sox6KO mice. These control sections do not look convincing, as there is not even some signal in the adult VZSVZ region and virtually no background. Please show sections where some positive signal can also be detected in the control sections.

      We agree with the reviewer that making direct comparisons in ISH experiments is an important point. In our ISH experiments, to ensure consistency and appropriate comparisons, we process WT and KO sections together and stop the signal development simultaneously. We could have extended the development time to enhance WT signal to a detectable level, but that would have led to excessive background and over-saturated signal in the KO sections.

      To address the reviewer’s point, we have added a new supplementary figure with an additional pair of WT and KO sections, along with reference data from the Allen Brain Atlas. The WT section shows faint Neurog2 expression in the dentate gyrus region of the hippocampus, while the KO section confirms very substantial upregulation of Neurog2 in the absence of SOX6 function. These additional data enhance the clarity and depth of our results.

      Please see the following link for the Allen Brain Atlas ISH data demonstrating that Neurog2 expression in the postnatal (P4) SVZ/SGZ is inherently low. (https://developingmouse.brainmap.org/experiment/show/100093831). 

      (2) As a hallmark of projection neurons is where they send their axons, it would be important to include a biological assay for this. Of course, in vivo experiments would be great, but if this is not possible, the authors could co-culture sections from the late embryonic cortex, striatum, and spinal cord to see if the reprogrammed neurons preferentially extend their axons towards one of these targets (as normally developing neurons would, see e.g. Bolz et al., 1990).

      We agree with the reviewer’s suggestion that a very interesting future stage of this work would be to investigate the projection neuron identity including connectivity in vivo. We aim to pursue follow-up studies to investigate in vivo integration and connectivity of such neurons generated by directed differentiation from endogenous SOX6+/NG2+ cortical progenitors. As the reviewer insightfully suggests, co-culturing different brain regions with these neurons could offer an alternative strategy to partially assess potential preferential connectivity into cultured spinal cord vs. alternate tissue. This area of investigation is of substantial interest to our lab, and we aim to pursue it in the coming years– it is a very large undertaking by either approach.

      (3) However, if the loss of Sox6 is sufficient for Ngn2 to be upregulated, why did the authors not pursue this approach in their reprogramming experiments? Are these endogenous levels sufficient for reprogramming? Please add some OPC cultures from WT and KO mice to explore their conversion to neurons and possibly combine them with Olig2VP16 and Fezf2.

      We thank the reviewer for this insightful comment and for raising this broader area of inquiry regarding whether SOX6 might be down-regulated to enhance induction of neurogenesis. We are writing a separate manuscript regarding function of SOX6 in these progenitors during normal or molecularly manipulated development. We investigate function of SOX6 using both whole body null mice and a series of conditional null mice. We aim to post that work as a preprint and submit it for review and publication in the coming months. Beyond that work, the potential strategy of downregulating SOX6 function while simultaneously upregulating other molecular controls to refine directed neuronal differentiation is also of substantial interest to us, and we aim to pursue this in follow-up work. Though these are both interesting questions/topics, we respectfully submit that these broad areas of parallel, complex, and future investigation would substantially expand the scope of work in this paper, so we aim to address them in separate studies.

      (4) Please indicate independent biological replicates as individual data points in all histograms, i.e. also in Figure 2K, Figure 4I, S2H.

      We have updated the figure legends indicating the biological replicates, and explained the broad media optimization that was used successfully in all further experiments.

      (5) GFP labelling in Figures S2K-N is not convincing - too high background. Please optimize.

      We have redesigned this figure and now present it as a new supplementary figure, with GFP pseudocolored in gray and enlarged subpanels for improved visualization of cell morphology.

      Reviewer #3 (Recommendations For The Authors):

      This is an extremely well-written manuscript with very exciting implications. Obviously, not all can be tested here. Some of the suggestions are relatively easy and may be worth testing right away, others may require more extensive study in the future. In my view, completing some of the points below could make this paper a landmark study.

      I start with the key questions:

      (1) Do grafted NVOF cells give rise to subcerebral projection neurons in vivo?

      We agree with the reviewer’s suggestion that a very interesting future stage of this work would be to investigate the projection neuron identity including connectivity in vivo. As noted above in response to Reviewer 2, we aim to pursue follow-up studies to investigate in vivo integration and connectivity of such neurons generated by directed differentiation from endogenous SOX6+/NG2+ cortical progenitors. This question is of substantial interest to us, and we aim to pursue it in the coming years– as the reviewer notes, this is a very large undertaking, and beyond the scope of this paper.

      (2) What is the fate of the Sox6 deficient NG2 glia that express Neurog2? One could isolate these cells and subject them to scRNA sequencing to see how far neurogenesis proceeds without addition of exogenous factors.

      We thank the reviewer for this insightful question. As noted in our response to Reviewer 2, we are writing a separate manuscript regarding function of SOX6 in these progenitors during normal or molecularly manipulated development. We investigate function of SOX6 using both whole body null mice and a series of conditional null mice. We aim to post that work as a preprint and submit it for review and publication in the coming months, likely in early summer. We respectfully submit that this broad area of parallel, complex investigation would substantially expand the scope of work in this paper and make this paper too complex and multi-directional, so we aim to publish them as separate papers for the benefit of clarity for readers.

      (3) Obviously, what happens to Sox6-deficient (or non-deficient cells) when forced to express NVOF? In this context, it might be fair to cite Felske et al (PLoS Biol, 2023) who report Neurog2 and Fezf2-induced reprogramming in the postnatal brain. In their model, these authors did not distinguish between converted astrocytes and NG2 glia. Thus, some of the reprogrammed cells may comprise the SOX6positive cells described here.

      We thank the reviewer for highlighting for us that we inadvertently omitted referencing the important paper by Felske et al., 2023. We have now included this citation. 

      We thank the reviewer for raising this broader area of inquiry regarding whether SOX6 might be down-regulated to enhance induction of neurogenesis. Beyond the work noted above regarding function of SOX6 in these progenitors during normal or molecularly manipulated development, the potential strategy of downregulating SOX6 function while simultaneously upregulating other molecular controls to refine directed neuronal differentiation is of substantial interest to us, and we aim to pursue this in follow-up work. We again respectfully submit that this area of complex, future investigation should be addressed in future studies.

      Very interesting unaddressed questions include:

      (1) Are Sox6+ NG glia of dorsal origin? This is implied but not shown. One could use Emx1Cre lines to assess this. Are Sox6+ glia and subcerebral projection neurons clonally related? This may be more challenging. In this context, it might be again fair to refer to Herrero-Navarro et al (Science Advances 2021) who show that glia lineage related to nearby neurons gives rise to induced neurons with regional specificity.

      The reviewer raises an important question regarding the competence of SOX6+/NG2+ progenitors from distinct origins to generate corticospinal-like neurons by directed differentiation. In ongoing unpublished work, we have identified SOX6 expression by NG2+ progenitors of the three lineages derived from ventricular zone progenitors that express either Emx1, Gsh2, or Nkx2.1 transcription factors. The EMX1+ lineage-derived SOX6+/NG2+ progenitors are directly lineage related to cortical projection neurons. As the reviewer suggests, future experiments could explore potential differences in competence between these three populations.

      We again thank the reviewer for highlighting for us that we also inadvertently omitted referencing the exciting study by Herrero-Navarro that addresses the question of regional heterogeneity within astrocytes and the differential reprogramming potential related to their origins. We have now cited this paper in the manuscript.

      (2) Do other NG2 glia not give rise to subcerebral projection neurons when challenged with NVOF? Thus, how important is Sox6 expression really?

      The question of the specific competence of dorsal/cortical SOX6+/NG2+ progenitors to differentiate into corticospinal-like neurons, and the strategy of downregulating SOX6 function while simultaneously upregulating other molecular controls to direct neuronal differentiation, are both of great interest to us. In pilot experiments, we observed reduced competence of ventrallyderived SOX6+/NG2+ progenitors to generate similar neurons. We plan to pursue the SOX6 manipulation in follow up work.

      (3) Do Sox6+ NG2 glia proliferate like other NG2 glia and thereby represent a replenishable pool of progenitors?

      Yes; as noted in the text shortly after Figure 1, and as presented in Figure S3l-L, these progenitors proliferate robustly in response to the mitogens PDGF-A and FGF2.

      (4) How heterogenous are the NVOF-induced neurons? The bulk highlights the overall specificity, but does not tell whether all cells make it equally well.

      We agree with the reviewer that this is an interesting question. ICC analysis (Fig. 4G-4H) presents the variation in the levels of a few functionally important proteins in the population of NVOFinduced neurons. This could be due to any or all of at least three potential possibilities: 1) potential diversity in the population of purified SOX6+/NG2+ progenitors; 2) technical variability in the amount of NVOF plasmid delivered to individual progenitors during transfection; and/or 3) natural stochastic TF-level variations generating closely-related neuron types, that also occurs during normal development. Future experiments could explore these questions.

    1. Reviewer #1 (Public review):

      In this updated and improved manuscript, the authors investigate the role of Aurora Kinase A (AurA) in trained immunity, following a broader drug screening aimed at finding inhibitors of training. They show AurA is important for trained immunity by looking at the different aspects and layers of training using broad omics screening, followed up by a more detailed investigation of specific mechanisms. The authors finalised the investigation with an in vivo MC-38 cancer model where AurA inhibition reduces beta-glucan's antitumour effects.

      Strengths:

      The experimental methods are generally well-described. I appreciate the authors' broad approach to studying different key aspects of trained immunity (from comprehensive transcriptome/chromatin accessibility measurements to detailed mechanistic experiments). Approaching the hypothesis from many different angles inspires confidence in the results. Furthermore, the large drug-screening panel is a valuable tool as these drugs are readily available for translational drug-repurposing research.

      In response to the rebuttal, I would like to compliment and thank the authors for the large amount of work they have done to improve this manuscript. They have removed most of my previous concerns and confusions, and explained some of their approaches in a way that I now agree with them - a great learning opportunity for me as well.

      Weaknesses:

      (1) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (2) The authors have removed most of my concerns. Regarding the use of unpaired tests because that is what is often done in the literature: I still don't agree with this, nor do I think that 'common practice' is a solid argument to justify the approach. However, we can agree to disagree, as I know indeed that many people argue over when paired tests are appropriate in these types of experiments. I appreciate that n=2 for sequencing experiments is justifiable in the way these analyses are used as exploratory screening methods with later experimental validation. I also want to thank the authors for reporting biological replicates where relevant and (I should have mentioned this in my original review also) I appreciate they validate some findings in a separate cell line - many papers neglect this important step.

      (3) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (4) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (5) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (6) The authors have adequately responded to my comments and updated the manuscript accordingly. They have actually gone above and beyond.

      (7) I would like to thank the authors for highlighting this information and taking away my confusion. The authors have adequately responded to my comments and updated the manuscript accordingly.

      (8) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (9) I still think adding the 'alisertib alone' control would be of great added value, but I can see how it is unreasonable to ask the authors to redo those experiments.

      (10) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (11) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (12) I thank the authors for their work to repeat this experiment with my suggestions included. I am convinced by this nice data. I would recommend that the authors put the data from New Figure 4 also in the manuscript as it adds value to the manuscript (unless I just missed it, I don't see it in Figure 6 or the supplement). Not every reader may look at the reviewer comments/rebuttal documents.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer#1 (Public review):

      This work regards the role of Aurora Kinase A (AurA) in trained immunity. The authors claim that AurA is essential to the induction of trained immunity. The paper starts with a series of experiments showing the effects of suppressing AurA on beta-glucan-trained immunity. This is followed by an account of how AurA inhibition changes the epigenetic and metabolic reprogramming that are characteristic of trained immunity. The authors then zoom in on specific metabolic and epigenetic processes (regulation of S-adenosylmethionine metabolism & histone methylation). Finally, an inhibitor of AurA is used to reduce beta-glucan's anti-tumour effects in a subcutaneous MC-38 model.

      Strengths:<br /> With the exception of my confusion around the methods used for relative gene expression measurements, the experimental methods are generally well-described. I appreciate the authors' broad approach to studying different key aspects of trained immunity (from comprehensive transcriptome/chromatin accessibility measurements to detailed mechanistic experiments). Approaching the hypothesis from many different angles inspires confidence in the results (although not completely - see weaknesses section). Furthermore, the large drug-screening panel is a valuable tool as these drugs are readily available for translational drug-repurposing research.

      We thank the reviewer for the positive and encouraging comments.

      Weaknesses:

      (1) The manuscript contains factual inaccuracies such as:

      (a) Intro: the claim that trained cells display a shift from OXPHOS to glycolysis based on the paper by Cheng et al. in 2014; this was later shown to be dependent on the dose of stimulation and actually both glycolysis and OXPHOS are generally upregulated in trained cells (pmid 32320649).

      We appreciate the reviewer for pointing out this inaccuracy, and we have revised our statement to ensure accurate and updated description in manuscript. We are aware that trained immunity involves different metabolic pathways, including both glycolysis and oxidative phosphorylation [1, 2]. We also detected Oxygen Consumption Rate (please see response to comment 8 of reviewer#1) but observed no obvious increase of oxygen consumption in trained BMDMs in our experiment setting. As the reviewer pointed out, it might be dependent on the dose of stimulation.

      (b) Discussion: Trained immunity was first described as such in 2011, not decades ago.

      We are sorry for the inaccurate description, and we have corrected the statement in our revised manuscript as “Although the concept of ‘trained immunity’ has been proposed since 2011, the detailed mechanisms that regulate trained immunity are still not completely understood.”

      (2) The authors approach their hypothesis from different angles, which inspires a degree of confidence in the results. However, the statistical methods and reporting are underwhelming.

      (a) Graphs depict mean +/- SEM, whereas mean +/- SD is almost always more informative. (b) The use of 1-tailed tests is dubious in this scenario. Furthermore, in many experiments/figures the case could be made that the comparisons should be considered paired (the responses of cells from the same animal are inherently not independent due to their shared genetic background and, up until cell isolation, the same host factors like serum composition/microbiome/systemic inflammation etc). (c) It could be explained a little more clearly how multiple testing correction was done and why specific tests were chosen in each instance.

      We sincerely thank the reviewer for this thoughtful comment. (a) The data from animal experiments in which trained immunity was induced in vivo are presented as mean ± SD, while the statistical results from cell-based experiments are presented as mean ± SEM in the revised manuscript. (b) We have replaced one-tailed test with two-tailed test (see Figure 3J in revised manuscript, with updated P value label). We agree that cells derived from the same animal and subjected to different treatment conditions may be deemed paired data. We reanalyzed our data using paired statistical tests. While this led to a slight reduction in statistical significance for some comparisons, the overall trends remained consistent, and our biological interpretation remains unchanged. For in vitro experiments unpaired statistical tests are commonly used in literature [3, 4]. Thus, we still used unpaired test results here. (c) We have provided a detailed description of how multiple comparisons were performed in revised figure legends.

      (d) Most experiments are done with n = 3, some experiments are done with n = 5. This is not a lot. While I don't think power analyses should be required for simple in vitro experiments, I would be wary of drawing conclusions based on n = 3. It is also not indicated if the data points were acquired in independent experiments. ATAC-seq/RNA-seq was, judging by the figures, done on only 2 mice per group. No power calculations were done for the in vivo tumor model.

      We are sorry for the confusion in our description in figure legends. For the in vivo experiment, we determined the sample size (n=5, n refers to number of mice used as biological replicates) by referring to the animal numbers used for similar experiments in literatures. And according to a reported resource equation approach for calculating sample size in animal studies [5], n=5-7 is suitable for most of our mouse experiments. The in vitro cell assay was performed at least three independent experiments (BMs isolated from different mice), and each experiment was independently replicated at least three times and points represents biological replicates in our revised manuscript. In Figure 1A, 5 biological replicates of these experiments are presented to carefully determine a working concentration of alisertib that would not significantly affect the viability of trained macrophages, and that was subsequently used in all related cell-based experiments. As for seq data, we acknowledge the reviewer's concern regarding the small sample size (n=2) in our RNA-seq/ATAC-seq experiment. We consider the sequencing experiment mainly as an exploratory/screening approach, and performed rigorous quality control and normalization of the sequencing data to ensure the reliability of our findings. For RNA-seq data analysis, we referred to the DESeq2 manual, which specifies that its statistical framework is based on the Negative Binomial Distribution and is capable of robustly inferring differential gene expression with a minimum of two replicates per group. Therefore, the inclusion of two replicates per group was deemed sufficient for our analysis. Nevertheless, the genomic and transcriptome sequencing data were used primarily for preliminary screening, where the candidates have been extensively validated through additional experiments. For example, we conducted ChIP followed by qPCR for detecting active histone modification enrichment in Il6 and Tnf region to further verify the increased accessibility of trained immunity-induced inflammatory genes.

      (e) Furthermore, the data spread in many experiments (particularly BMDM experiments) is extremely small. I wonder if these are true biological replicates, meaning each point represents BMDMs from a different animal? (disclaimer: I work with human materials where the spread is of course always much larger than in animal experiments, so I might be misjudging this.).

      Thanks for your comments. In our initially submitted manuscript, some of the statistical results were presented as the representative data (technical replicates) from one of three independent biological replicates (including BMDMs experiments showing the suppression and rescue experiments of trained immunity under different inhibitors or activators, see original Figure 1B-C, Figure 5D, and Figure 5H, also related to Figure 1B-C, Figure 5D, and Figure 5H respectively in our revised manuscript) while other experimental data are biological replicates including CCK8 experiment, metabolic assay and ChIP-qPCR. In response to your valuable suggestion, we have revised the manuscript to present all statistical results as biological replicates from three independent experiments (presented as mean ± SEM), and we have provided all the original data for the statistical analysis results (please see Appendix 2 in resubmit system).

      (3) Maybe the authors are reserving this for a separate paper, but it would be fantastic if the authors would report the outcomes of the entire drug screening instead of only a selected few. The field would benefit from this as it would save needless repeat experiments. The list of drugs contains several known inhibitors of training (e.g. mTOR inhibitors) so there must have been more 'hits' than the reported 8 Aurora inhibitors.

      Thank you for your suggestion and we have briefly reported the outcomes of the entire drug screening in the revised manuscript. The targets of our epigenetic drug library are primarily categorized into several major classes, including Aurora kinase family, histone methyltransferase and demethylase (HMTs and KDMs), acetyltransferase and deacetylase (HDACs and SIRTs), JAK-STAT kinase family, AKT/mTOR/HIF, PARP family, and BRD family (see New Figure 1, related to Figure 1-figure supplement 1B in revised manuscript). Notably, previous studies have reported that inhibition of mTOR-HIF1α signaling axis suppressed trained immunity[6]. Our screening results also indicated that most inhibitors targeting mTOR-HIF1α signaling exhibit an inhibitory effect on trained immunity. Additionally, cyproheptadine, a specific inhibitor for SETD7, which was required for trained immunity as previously reported [7], was also identified in our screening.

      JAK-STAT signaling is closely linked to the interferon signaling pathway, and certain JAK kinase inhibitors also target SYK and TYK kinases. A previous drug library screening study has reported that SYK inhibitors suppressed trained immunity [8]. Consistently, our screening results reveal that most JAK kinase inhibitors exhibit suppressive effects on trained immunity.

      BRD (Bromodomain) and Aurora are well-established kinase families in the field of oncology. Compared to BRD, the clinical applications of the Aurora kinase inhibitor are still at early stage. In previous studies using inflammatory arthritis models where trained immunity was established, both adaptive and innate immune cells exhibited upregulated expression of AurA [9, 10]. Our study provides further evidence supporting an essential role of AurA in trained immunity, showing that AurA inhibition leads to the suppression of trained immunity.

      (4) Relating to the drug screen and subsequent experiments: it is unclear to me in supplementary figure 1B which concentrations belong to secondary screens #1/#2 - the methods mention 5 µM for the primary screen and "0.2 and 1 µM" for secondary screens, is it in this order or in order of descending concentration?

      Thank you for your comments and we are sorry for unclear labelled results in original manuscript (related to Figure 1-supplement 1C). We performed secondary drug screen at two concentrations, and drug concentrations corresponding to secondary screen#1 and #2 are 0.2 and 1 μM respectively. It was just in this order, but not in an order of descending concentration.

      (a) It is unclear if the drug screen was performed with technical replicates or not - the supplementary figure 1B suggests no replicates and quite a large spread (in some cases lower concentration works better?)

      Thank you for your question. The drug screen was performed without technical replicates for initial screening purpose, and we need to verify any hit in the following experiment individually. Yes, we observed that lower concentration works better in some cases. We speculate that it might be due to the fact that the drug's effect correlates positively with its concentration only within a specific range. But in our primary screening, we simply choose one concentration for all the drugs. This is a limitation for our screening, and we acknowledge this limitation in our discussion part.

      (5) The methods for (presumably) qPCR for measuring gene expression in Figure 1C are missing. Which reference gene was used and is this a suitably stable gene?

      We are sorry for this omission. The mRNA expression of Il6 and Tnf in trained BMDMs was analyzed by a quantitative real-time PCR via a DDCt method, and the result was normalized to untrained BMDMs with Actb (β-actin) as a reference gene, a well-documented gene with stable expression in macrophages. We have supplemented the description for measuring gene expression in Material and Methods in our revised manuscript.

      (6) From the complete unedited blot image of Figure 1D it appears that the p-Aurora and total Aurora are not from the same gel (discordant number of lanes and positioning). This could be alright if there are no/only slight technical errors, but I find it misleading as it is presented as if the actin (loading control to account for aforementioned technical errors!) counts for the entire figure.

      We are very sorry for this omission. In the original data, p-Aurora and total Aurora were from different gels. In this experiment the membrane stripping/reprobing after p-Aurora antibody did not work well, so we couldn’t get all results from one gel, and we had to run another gel using the same samples to blot with anti-aurora antibody and used β-tubulin as loading control for total AurA (please see New Figure 2A, also related to original Figure 1D). We have provided the source data for β-tubulin from the same membrane of total AurA (please see Figure 1-source data). To avoid any potential misleading, we have repeated this experiment and updated this Figure (please see New Figure 2B, also related to Figure 1D in revised manuscript) with phospho-AurA, total AurA and β-actin from the same gel. The bands for phospho AurA (T288) were obtained using a new antibody (Invitrogen, 44-1210G) and we have revised this information in Material and Methods. We have provided data of three biological replicates to confirm the experiment result also see New Figure 2B, related to Figure 1D in revised manuscript, and the raw data have been added in source data for Figure 1)

      (7) Figure 2: This figure highlights results that are by far not the strongest ones - I think the 'top hits' deserve some more glory. A small explanation on why the highlighted results were selected would have been fitting.

      We appreciate the valuable suggestion. Figure 2 (see also Figure 2 in revised manuscript) presented information on the chromatin landscape affected by AurA inhibition to confirm that AurA inhibition impaired key gene activation involved in pro-inflammatory macrophage activation by β-glucan. In Figure 2B we highlighted a few classical GO terms downregulated including “regulation of growth”, “myeloid leukocyte activation” and “MAPK cascade” (see also Figure 2B in revised manuscript), among which “regulation of growth” is known function of Aurora A, just to show that alisertib indeed inhibited Aurora A function in vivo as expected. “Myeloid leukocyte activation” and “MAPK cascade” were to show the impaired pro-inflammatory gene accessibility. We highlighted KEGG terms downregulated like “JAK-STAT signaling pathway”, “TNF signaling pathway” and “NF-kappa B signaling pathway” in Figure 2F (see also Figure 2F in revised manuscript), as these pathways are highly relevant to trained immunity. Meanwhile, KEGG terms “FOXO signaling pathway” (see also Figure 2G in revised manuscript) was highlighted to confirm the anti-inflammation effect of alisertib in trained BMDMs, which was further illustrated in Figure 5 (see also Figure 5 in revised manuscript, illustrating FOXO3 acts downstream of AurA). Some top hits in Figure 2B like “positive regulation of cell adhesion”, and “pathway of neurodegeneration” and "ubiquitin mediated proteolysis" in Figure 2F and 2G, is not directly related to trained immunity, thus we did not highlight them, but may provide some potential information for future investigation on other functions of Aurora A.

      (8) Figure 3 incl supplement: the carbon tracing experiments show more glucose-carbon going into TCA cycle (suggesting upregulated oxidative metabolism), but no mito stress test was performed on the seahorse.

      We appreciate this question raised by the reviewer. We previously performed seahorse XF analyze to measure oxygen consumption rate (OCR) in β-glucan-trained BMDMs. The results showed no obvious increase in oxidative phosphorylation (OXPHOS) indicated by OCR under β-glucan stimulation (related to Figure 3-figure supplement 1 A) although the carbon tracing experiments showed more glucose-carbon going into TCA cycle. We speculate that the observed discrepancy between increased glucose incorporation into TCA cycle and unchanged OXPHOS may reflect a characteristic metabolic reprogramming induced by trained immunity. The increased incorporation of glucose-derived carbon into the TCA cycle likely serves a biosynthetic purpose—supplying intermediates for anabolic processes—rather than augmenting mitochondrial respiration[6]. Moreover, the unchanged OXPHOS may be attributed to a reduced reliance on fatty acid oxidation- “catabolism”, with glucose-derived acetyl-CoA becoming the predominant substrate. Thus, while overall OXPHOS remains stable, the glucose contribution to the TCA cycle increases. This is in line with reports showing that trained immunity promotes fatty acid synthesis- “anabolism”[11]. Alternatively, the partial decoupling of the TCA cycle from OXPHOS could result from the diversion of intermediates such as fumarate out of the cycle. Oxygen consumption rate (OCR) after a mito stress test upon sequential addition of oligomycin (Oligo, 1 μM), FCCP (1 mM), and Rotenone/antimycin (R/A, 0.5 μM), in BMDMs with different treatment for 24 h. β-glucan, 50 μg/mL; alisertib, 1 μM.

      (9) Inconsistent use of an 'alisertib-alone' control in addition to 'medium', 'b-glucan', 'b-glucan + alisertib'. This control would be of great added value in many cases, in my opinion.

      Thank you for your comment. We appreciate that including “alisertib-alone” group throughout all the experiments may further solidify the results. We set the aim of the current study to investigate the role of Aurora kinase A in trained immunity. Therefore, in most settings, we did not include the group of alisertib only without β-glucan stimulation.

      (10) Figure 4A: looking at the unedited blot images, the blot for H3K36me3 appears in its original orientation, whereas other images appear horizontally mirrored. Please note, I don't think there is any malicious intent but this is quite sloppy and the authors should explain why/how this happened (are they different gels and the loading sequence was reversed?)

      Thank you for pointing out this error. After checking the original data, we found that we indeed misassembled the orientation of several blots in original data submitted. We went through the assembling process and figured out that the orientation of blots in original data was assembled according to the loading sequences, but not saved correctly, so that the orientations in Figure 4A were not consistent with the unedited blot image. We are sorry for this careless mistake, and we have double checked to make sure all the blots are correctly assembled in the revised manuscript. We also provided three replicates of for the Western blot results showing the level of H3K36me3 in trained BMDMs was inhibited by alisertib (as seen in New Figure 7 at recommendation 2 of reviewer#2).

      (11) For many figures, for example prominently figure 5, the text describes 'beta-glucan training' whereas the figures actually depict acute stimulation with beta-glucan. While this is partially a semantic issue (technically, the stimulation is 'the training-phase' of the experiment), this could confuse the reader.

      Thanks for the reviewer’s suggestion and we have reorganized our language to ensure clarity and avoid any inconsistencies that might lead to misunderstanding.

      (12) Figure 6: Cytokines, especially IL-6 and IL-1β, can be excreted by tumour cells and have pro-tumoral functions. This is not likely in the context of the other results in this case, but since there is flow cytometry data from the tumour material it would have been nice to see also intracellular cytokine staining to pinpoint the source of these cytokines.

      Thanks for the reviewer’s suggestion. In Figure 6, we performed assay in mouse tumor model and found that trained immunity upregulated cytokines level like IL-6 in tumor tissue, which was downregulated by alisertib administration. In order to rule out the possibility that the detected cytokines such as IL-6 was from tumor cells, we performed intracellular cytokine staining of single cells isolated from tumor tissues (please see New Figure 4). The result showed that only a small fraction of non-immune cells (CD45<sup>-</sup> population) expressed IL-6 (0.37% ± 0.11%), whereas a significantly higher proportion of IL-6-positive cells was observed among CD45<sup>+</sup> population (deemed as immune cells, 13.66% ± 1.82%), myeloid cells (CD45<sup>+</sup>CD11b<sup>+</sup>, 15.60% ± 2.19%), and in particular, macrophages (CD45<sup>+</sup>CD11b<sup>+</sup>F4/80<sup>+</sup>37.24% ± 3.04%). These findings strongly suggest that immune cells, especially macrophages, are the predominant source of IL-6 cytokine within the tumor microenvironment. Moreover, we also detected higher IL-6 positive population in myeloid cells and macrophages (please see Figure 6I in revised manuscript).

      Reviewer#2 (Public review):

      Summary:

      This manuscript investigates the inhibition of Aurora A and its impact on β-glucan-induced trained immunity via the FOXO3/GNMT pathway. The study demonstrates that inhibition of Aurora A leads to overconsumption of SAM, which subsequently impairs the epigenetic reprogramming of H3K4me3 and H3K36me3, effectively abolishing the training effect.

      Strengths:

      The authors identify the role of Aurora A through small molecule screening and validation using a variety of molecular and biochemical approaches. Overall, the findings are interesting and shed light on the previously underexplored role of Aurora A in the induction of β-glucan-driven epigenetic change.

      We thank the reviewer for the positive and encouraging comments.

      Weaknesses:

      Given the established role of histone methylations, such as H3K4me3, in trained immunity, it is not surprising that depletion of the methyl donor SAM impairs the training response. Nonetheless, this study provides solid evidence supporting the role of Aurora A in β-glucan-induced trained immunity in murine macrophages. The part of in vivo trained immunity antitumor effect is insufficient to support the final claim as using Alisertib could inhibits Aurora A other cell types other than myeloid cells.

      We appreciate the question raised by the reviewer. Though SAM generally acts as a methyl donor, whether the epigenetic reprogram in trained immunity is directly linked to SAM metabolism was not formally tested previously. In our study, we provided evidence suggesting the necessity of SAM maintenance in supporting trained immunity. As for in vivo tumor model, we agree that alisertib may inhibits Aurora A in many cell types besides myeloid cells. To further address the reviewer’s concern, we have performed the suggested bone marrow transplantation experiment (trained mice as donor and naïve mice as recipient) to verify the contribution of myeloid cell-mediated trained immunity for antitumor effect (please see New Figure 8, also related to Figure 6C, 6D and Figure 6-figure supplement 1B and 1C in revised manuscript).

      Reviewer #1 (Recommendations for the authors):

      Some examples of spelling errors and other mistakes (by far not a complete list):

      (a) Introduction, second sentence: reads as if Candida albicans (which should be italicised and capitalised properly) and BCG are microbial polysaccharide components.

      (b) Methods: ECAR is ExtraCellular Acidification Rate, not 'Extracellular Acid Ratio'

      (c) Figure 2C: β-glucan is misspelled in the graph title.

      (d) TNFα has been renamed to 'TNF' for a long time now.

      (e) Inconsistent use of Tnf and Tfnα (the correct gene symbol is Tnf) (NB: this field does not allow me to italicise gene symbols)

      (f) Figure supplement 1B: 'secdonary'

      (g) Caption of figure 4: "Turkey's multiple-comparison test"

      (h) etc

      I would ask the authors that they please go over the entire manuscript very carefully to correct such errors.

      We apologize for these errors and careless mistakes. We greatly appreciate your suggestions, and have carefully proofread the revised manuscript to make sure no further mistakes.

      Please also address the points I raised in the public review about statistical approaches. Even more important than the relatively low 'n' is my question about biological replicates. Please clarify what you mean by 'biological replicate'.If you are able to repeat at least the in vitro experiments (if this is too much work pick the most important ones) a few more times this would really strengthen the results.

      Thank you for your comment. Our biological replicates refer to independently repeated experiments using bone marrow cells isolated from different mice, and n represents the number of mice used. We repeated each experiment at least three times using BMDMs isolated from different mice (n =3, biological replicates). Specifically, we repeated several in vitro experiments showing inhibition of AurA upregulated GNMT in trained BMDMs and showing transcription factor FOXO3 acted as a key protein in AurA-mediated GNMT expression to control trained immunity as well as showing mTOR agonist rescued trained immunity inhibited by alisertib (see New Figure 5, related to Figure 5B-C, Figure 5H in revised manuscript). Additionally, we have provided data with three biological replicates to show the β-glucan induced phosphorylation of AurA (see comment 6 of reviewer#1) and changes of histone modification marker under AurA inhibition and GNMT deficiency (see recommendation 2 of reviewer#2). We also repeated in vivo tumor model to analysis intratumor cytokines (see recommendation 12 of reviewer#1).

      Finally: the authors report 'no funders' during submission, but the manuscript contains funding details. Please modify this in the eLife submission system if possible.

      Thank you for your kind reminder and we have modified funding information in the submission system.

      Reviewer #2 (Recommendations for the authors):

      (1) I have the following methodological and interpretative comments for consideration:

      Aurora A has been previously implicated in M1 macrophage differentiation and NF-κB signaling. What is the effect of Aurora A inhibition on basal LPS stimulation? Considering that β-glucan + Ali also skews macrophage priming towards an M2 phenotype, as shown in Fig. 2E, further clarification on this point would strengthen the study.

      Thanks for your suggestion. Previous study showed AurA was upregulated in LPS-stimulated macrophages and the inhibition of AurA downregulated M1 markers of LPS-stimulated macrophages through NF-κB pathway but did not affect IL-4-induced M2 macrophage polarization [12]. Consistently, we also found that AurA inhibition downregulated inflammatory response upon basal LPS stimulation as shown by decreased IL-6 level (see New Figure 6). In original Figure 2E (also related to Figure 2E in revised manuscript), we showed an increased accessibility of Mrc1 and Chil3 under “β-glucan +Ali” before re-challenge, both of which are typical M2 macrophage markers. Motif analysis showed that AurA inhibition would upregulate genes controlled by PPARγ (STAT6 was not predicted). Different from STAT6, a classical transcriptional factor in controlling M2 polarization (M2a) dependent on IL-4 or IL-13, PPARγ mediates M2 polarization toward M2c and mainly controls cellular metabolism on anti-inflammation independent on IL-4 or IL-13. Thus, we speculate that inhibition of AurA might promote non-classical M2 polarization, and the details warrant future investigation.

      (2) In Figure 4A, it looks like that H3K27me3 is also significantly upregulated by β-glucan and inhibited by Ali. How many biological replicates were performed for these experiments? It would be beneficial to include densitometric analyses to visualize differences across multiple Western blot experiments for better reproducibility and quantitative assessment. In addition, what is the effect of treatment of Ali alone on the epigenetic profiling of macrophages?

      We are sorry for this confusion. Each experiment was performed with at least three independent biological replicates. In original Figure 4-figure supplement 1 (also related to Figure 4-figure supplementary 1 in the revised manuscript), we presented the densitometric analysis results from three independent Western blot experiments, which showed that β-glucan did not affect H3K27me3 levels under our experimental conditions. Three biological replicates data for histone modification were shown as follows (New Figure 7, as related to Figure 4-figure supplement 1 in revised manuscript). We appreciate that assay for “Ali alone” in macrophages may add more value to the findings. We set the aim of the current study to investigate the role of Aurora kinase A in trained immunity, and we know that alisertib itself would not induce or suppress trained immunity. Therefore, in most settings, we did not test the effect of Alisertib alone without β-glucan stimulation.

      (3) The IL-6 and TNF concentrations exhibit considerable variability (Fig. 3K and Fig. 5H), ranging from below 10 pg/mL to 500-1000 pg/mL. Please specify the number of replicates for these experiments and provide more detail on how variability was managed. Including this information would enhance the robustness of the conclusions.

      Thank you for your comment. These experiments were replicated as least three times using BMDMs isolated from different mice. The observed variations in cytokines concentration may be attributed to factors such as differences in cell density, variability among individual mice, and the passage number of the MC38 cells used for supernatant collection. We have prepared new batch of BMDMs and repeated the experiment and provided consistent results in the revised manuscript (please see Figure 5H in revised manuscript). Data for biological replicates have been provided (please see Appendix 2 in resubmit system).

      (4) The impact of Aurora A inhibition on β-glucan-induced anti-tumor responses appears complex. Specifically, GNMT expression is significantly upregulated in F4/80- cells, with stronger effects compared to F4/80+ cells as seen in Fig. 6D. To discern whether this is due to the abolishment of trained immunity in myeloid cells or an effect of Ali on tumor cells which inhibit tumor growth, I suggest performing bone marrow transplantation. Transplant naïve or trained donor BM into naïve recipients, followed by MC38 tumor transplantation, to clarify the mechanistic contribution of trained immunity versus off-target effects.

      Thanks for your valuable suggestion. Following your suggestion, we have performed bone marrow transplantation to clarify that alisertib acts on the BM cells to inhibit anti-tumor effect induced by trained immunity (see New Figure 8, related to Figure 6C-D in revised manuscript). As the results shown below, transplantation of trained BM cells conferred antitumor activity in recipient mice, while transplantation of trained BM cells with alisertib treatment lost such activity, further demonstrating that alisertib inhibited AurA in trained BM cells to impair their antitumor activity.

      References

      (1) Ferreira, A.V., et al., Metabolic Regulation in the Induction of Trained Immunity. Semin Immunopathol, 2024. 46(3-4): p. 7.

      (2) Keating, S.T., et al., Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. J Mol Med (Berl), 2020. 98(6): p. 819-831.

      (3) Cui, L., et al., N(6)-methyladenosine modification-tuned lipid metabolism controls skin immune homeostasis via regulating neutrophil chemotaxis. Sci Adv, 2024. 10(40): p. eadp5332.

      (4) Yu, W., et al., One-Carbon Metabolism Supports S-Adenosylmethionine and Histone Methylation to Drive Inflammatory Macrophages. Mol Cell, 2019. 75(6): p. 1147-1160 e5.

      (5) Arifin, W.N. and W.M. Zahiruddin, Sample Size Calculation in Animal Studies Using Resource Equation Approach. Malays J Med Sci, 2017. 24(5): p. 101-105.

      (6) Cheng, S.C., et al., mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014. 345(6204): p. 1250684.

      (7) Keating, S.T., et al., The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by β-Glucan. Cell Rep, 2020. 31(3): p. 107548.

      (8) John, S.P., et al., Small-molecule screening identifies Syk kinase inhibition and rutaecarpine as modulators of macrophage training and SARS-CoV-2 infection. Cell Rep, 2022. 41(1): p. 111441.

      (9) Glant, T.T., et al., Differentially expressed epigenome modifiers, including aurora kinases A and B, in immune cells in rheumatoid arthritis in humans and mouse models. Arthritis Rheum, 2013. 65(7): p. 1725-35.

      (10) Jeljeli, M.M. and I.E. Adamopoulos, Innate immune memory in inflammatory arthritis. Nat Rev Rheumatol, 2023. 19(10): p. 627-639

      (11) Ferreira, A.V., et al., Fatty acid desaturation and lipoxygenase pathways support trained immunity. Nat Commun, 2023. 14(1): p. 7385.

      (12) Ding, L., et al., Aurora kinase a regulates m1 macrophage polarization and plays a role in experimental autoimmune encephalomyelitis. Inflammation, 2015. 38(2): p. 800-11.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      The paper is well written and the figures well laid out. The methods are easy to follow, and the rational and logic for each experiment easy to follow. The introduction sets the scene well, and the discussion is appropriate. The summary sentences throughout the text help the reader.

      The authors have done a lot of work addressing my previous concerns and those of the other Reviewers.

      We are pleased that the revised manuscript satisfactorily addresses the previous concerns of the reviewer.

      Reviewer #2 (Public review):

      Summary

      Le Roy et al quantify wing morphology and wing kinematics across twenty eight and eight hoverfly species, respectively; the aim is to identify how weight support during hovering is ensured across body sizes. Wing shape and relative wing size vary non-trivially with body mass, but wing kinematics are reported to be size-invariant. On the basis of these results, it is concluded that weight support is achieved solely through size-specific variations in wing morphology, and that these changes enabled hoverflies to decrease in size. Adjusting wing morphology may be preferable compared to the alternative strategy of altering wing kinematics, because kinematics may be subject to stronger evolutionary and ecological constraints, dictated by the highly specialised flight and ecology of the hoverflies.

      Strengths

      The study deploys a vast array of challenging techniques, including flight experiments, morphometrics, phylogenetic analyses, and numerical simulations; it so illustrates both the power and beauty of an integrative approach to animal biomechanics. The question is well motivated, the methods appropriately designed, and the discussion elegantly places the results in broad biomechanical, ecological, and evolutionary context.

      We thank the reviewer for appreciating the strengths of our study.

      Weaknesses

      (1) In assessing evolutionary allometry, it is key to pinpoint the variation expected from changes in size alone. The null hypothesis for wing morphology is well-defined (isometry), but the equivalent predictions for kinematic parameters, although specified, are insufficiently justified, and directly contradict classic scaling theory. A detailed justification of the "kinematic similarity" assumption, or a change in the null hypothesis, would substantially strengthen the paper, and clarify its evolutionary implications.

      We agree with the reviewer that a clearly articulated null hypothesis is crucial for interpreting scaling relationships. In fact, when carefully reviewing our manuscript, we realized that we nowhere did so, and which might have led to a misinterpretation of this. In the revised manuscript, we therefore now explicitly state our newly defined null hypotheses (lines 120–125, 340-352), and how we tested these (lines 359-360).

      In fact, we define two alternative null hypotheses: (1) weight support is maintained across sizes using allometric scaling of wing morphology only, and thus wingbeat kinematics are kept constant (kinematic similarity); (2) weight support is maintained across sizes using allometric scaling of wingbeat kinematics, while wing morphology scales isometrically (morphological similarity).

      According to the first null hypothesis, the second-moment-of-area of the wing should scale linearly with body mass, resulting in negative allometry of S<sub>2</sub> relative to body mass (S<sub>2</sub>∼m<sup>1</sup> <m<sup>4/3</sup>). According to the second null hypothesis, the product of wingbeat frequency and amplitude should scale with mass under negative allometry (ω∼ƒ A<sub>ϕ</sub>∼m<sup>-1/6</sup>). We test these alternative null hypotheses using Phylogenetic Generalized Least Square (PGLS) regressions of the morphology and kinematics metrics against the body mass.

      Furthermore, in our revised manuscript, we now also better explain the use of "kinematic similarity" assumption as a theoretical scenario, that is physically, biomechanically nor physiological sustainable across sizes, but that we merely use to define our null hypotheses (lines 340-351). This is made particularly explicit in a new subsection named “Theoretical considerations” (lines 448–461). Note that our second null hypothesis is thus not that hoverflies fly under "kinematic similarity", but that wingbeat kinematics scales under negative allometry (ω∼ƒ A<sub>ϕ</sub>∼m<sup>-1/6</sup>), which we assume is in line with the classic scaling theory that the reviewer refers to.

      We sincerely thank the reviewer for making us aware that we did not explicitly state our null hypotheses, and that introducing these new null hypotheses removed the confusion about the assumptions in our study.

      (2) By relating the aerodynamic output force to wing morphology and kinematics, it is concluded that smaller hoverflies will find it more challenging to support their body mass--a scaling argument that provides the framework for this work. This hypothesis appears to stand in direct contrast to classic scaling theory, where the gravitational force is thought to present a bigger challenge for larger animals, due to their disadvantageous surface-to-volume ratios. The same problem ought to occur in hoverflies, for wing kinematics must ultimately be the result of the energy injected by the flight engine: muscle. Much like in terrestrial animals, equivalent weight support in flying animals thus requires a positive allometry of muscle force output. In other words, if a large hoverfly is able to generate the wing kinematics that suffice to support body weight, an isometrically smaller hoverfly should be, too (but not vice versa). Clarifying the relation between the scaling of muscle mechanical input, wing kinematics, and weight support would help resolve the conflict between these two contrasting hypotheses, and considerably strengthen the biomechanical motivation and evolutionary interpretation.

      We agree with the reviewer that, due to disadvantageous surface-to-volume ratios, larger animals are more challenged to maintain weight-support, and that this is also the case for hovering hoverflies. In the current manuscript, we do not aim to challenge this universal scaling law of muscle force with body mass.

      Instead, we here focus merely on how the flight propulsion system (wing morphology and kinematics) scale with size, and how this allows hovering hoverflies to maintain weight support. We also fully agree with the reviewer that in theory, “if a large hoverfly is able to generate the wing kinematics that suffice to support body weight, an isometrically smaller hoverfly should be, too”. This aligns in fact with our second null hypothesis where wingbeat frequency should scale as ƒ∼m<sup>-1/6</sup>, to maintain weight support under morphological isometry.

      In our study, we show that this null hypothesis is rejected (lines 511-517, and line 525), and thus hoverflies primarily adjust their wing morphology to maintain in-hovering weight-support across sizes, and wingbeat kinematics is in fact highly conserved. Why this specific flight kinematics is so strongly conserved is not known, and thus a key topic in the discussion section of our manuscript.

      We agree with the reviewer that muscle physiology might be an important driver for this conserved kinematics, but also aerodynamic efficiency and maneuverability could be key aspects here. In our revised manuscript, we now discuss these three aspects in more detail (lines 762-775). Also, we here now also mention that we aim to address this outstanding question in future studies, by including muscle physiology in our animal flight studies, and by studying the aerodynamics and maneuver kinematic of hoverflies in more detail. 

      Moreover, in our revised introduction section, we now also mention explicitly that the capability for maintaining in-flight weight-support scales inversely with animal size, due to the negative isometric scaling of muscle force with body mass (line 52-56). Furthermore, we removed all statements that might suggest the opposite. We hope that these adjustments helped resolve the apparent conflict between our null hypotheses and general muscle scaling laws.

      Finally, in the Discussion section (lines 770-775), we now more explicitly acknowledge that wing motion is ultimately driven by the flight motor musculature, and that a full biomechanical interpretation must consider the scaling of muscle mechanical input alongside wing kinematics and morphology. While we decided to keep the focus primarily on aerodynamic constraints in this study, we agree that future work integrating both aerodynamic and physiological scaling will be essential to fully resolve these contrasting perspectives.

      (3) One main conclusion-- that miniaturization is enabled by changes in wing morphology--is insufficiently supported by the evidence. Is it miniaturization or "gigantism" that is enabled by (or drives) the non-trivial changes in wing morphology? To clarify this question, the isolated treatment of constraints on the musculoskeletal system vs the "flapping-wing based propulsion" system needs to be replaced by an integrated analysis: the propulsion of the wings, is, after all, due to muscle action. Revisiting the scaling predictions by assessing what the engine (muscle) can impart onto the system (wings) will clarify whether non-trivial adaptations in wing shape or kinematics are necessary for smaller or larger hovering insects (if at all!).

      In many ways, this work provides a blueprint for work in evolutionary biomechanics; the breadth of both the methods and the discussion reflects outstanding scholarship.

      In response to the first review round, we have removed all references to “miniaturization,” as our data does not allow us to infer evolutionary trajectories of body size (i.e., whether lineages have become smaller or larger over time). We now frame our conclusion more conservatively: that changes in wing morphology enable small hoverflies to maintain weight support despite the aerodynamic disadvantages imposed by isometric scaling.

      We fully agree that an integrated biomechanical framework, explicitly linking muscle mechanical output with wing kinematics and morphology, would significantly strengthen the study. However, we believe that performing an integrated analysis assessing the scaling of muscle input into the wing is beyond the current scope, which focuses specifically on the aerodynamic consequences of morphological and kinematic variation (see reply above).

      Reviewer #3 (Public review):

      This paper addresses an important question about how changes in wing morphology vs. wing kinematics change with body size across an important group of high-performance insects, the hoverflies. The biomechanics and morphology convincingly support the conclusions that there is no significant correlation between wing kinematics and size across the eight specific species analyzed in depth and that instead wing morphology changes allometrically. The morphological analysis is enhanced with phylogenetically appropriate tests across a larger data set incorporating museum specimens.

      The authors have made very extensive revisions that have significantly improved the manuscript and brought the strength of conclusions in line with the excellent data. Most significantly, they have expanded their morphological analysis to include museum specimens and removed the conclusions about evolutionary drivers of miniaturization. As a result, the conclusion about morphological changes scaling with body size rather than kinematic properties is strongly supported and very nicely presented with a strong complementary set of data. I only have minor textual edits for them to consider.

      We thank the reviewer for this positive feedback. We are pleased to hear that the revised manuscript is satisfactory.

      Reviewer #2 (Recommendations For The Authors):

      My main remaining qualm remains the null hypothesis for the scaling of kinematic parameters - all weaknesses come back to this point. I appreciate that the authors now specify an expectation, but they offer no justification. This is a problem, because the expectation dictates the interpretation of the results and is thus crucial to some of the key claims (including one in the paper title!): the choice made by the authors indeed implies that hovering is harder for small hoverflies, so that the reported changes in size-specific wing morphology are to be interpreted as an adaptation that enables miniaturization. However, why is this choice appropriate over alternatives that would predict the exact opposite, namely that hovering is harder for larger hoverflies?

      In my original review, I suggested that the authors may address this key question by considering the scaling of muscle mechanical output, and provided a quick sketch of what such an argument would look like, both in classic textbook scaling theory, and in the framework of more recent alternative approaches. The authors have decided against an implementation of this suggestion, providing various version of the following justification in their reply: "our study focuses precisely on this constraint on the wing-based propulsion system, and not on the muscular motor system." I am puzzled by this distinction, which also appears in the paper: muscle is the engine responsible for wing propulsion. How can one be assessed independent of the other? The fact that the two must be linked goes straight to the heart of the difficulty in determining the null hypotheses for the allometry of kinematic and dynamic parameters: they must come from assertions on how muscle mechanical output is expected to vary with size, and so couple muscle mechanical output to the geometry of the wing-based propulsion system. What if not muscle output dictates wing kinematics?

      I fully agree with the authors that null hypotheses on kinematic parameters are debatable. But then the authors should debate their choice, and at least assess the plausibility of its implications (note that the idea of "similarity" in scaling does not translate to equal or invariant, but is tied closely to dimensional analysis - so one cannot just proclaim that kinematic similarity implies no change in kinematic parameters). I briefly return to the same line of argument I laid out in the initial review to provide such an assessment:

      Conservation of energy implies:

      W = 1/2 I ω2

      where I is the mass moment of inertia and W is the muscle work output. Under isometry, I ∝m5/3, the authors posit ω ∝m0, and it follows at once that they predict W ∝m5/3. That is, the "kinematic similarity" hypothesis presented in the paper implies that larger animals can do substantially more work per unit body mass than small animals (unless the author have an argument why wing angular velocity is independent of muscle work capacity, and I cannot think of one). This increase in work output is in contradiction with the textbook prediction, going all the way back to Borelli and Hill: isogeometric and isophysiological animals ought to have a constant mass-specific work output. So why, according to the authors, is this an incorrect expectation, ie how do they justify the assumption ω ∝m0 and its implication W ∝m5/3? How can larger animals do more mass-specific work, or, equivalently, what stops smaller animals from delivering the same mass-specific work? If non-trivial adaptations such as larger relative muscle mass enable larger animals to do more work, how does this fit within the interpretation suggested by the authors that the aerodynamics of hovering require changes in small animals?

      A justification of the kinematic similarity hypothesis, alongside answers to the above questions, is necessary, not only to establish a relation to classic scaling theory, but also because a key claim of the paper hinges on the assumed scaling relationship: that changes in wing morphology enable hovering in small hoverflies. If I were to believe Borelli, Hill and virtually all biomechanics textbooks, the opposite should be the case: combing constant mass-specific work output with eq. 1, one retrieves F∝m2/3, so that weight support presents a bigger challenge for larger animals; the allometry of wing morphology should then be seen as an adaptation that enables hovering in larger hoverflies - the exact opposite of the interpretation offered by the authors.

      Now, as it so happens, I disagree with classic scaling theory on this point, and instead believe that there are good reasons to assume that muscle work output varies non-trivially with size. The authors can find a summary of the argument for this disagreement in the initial review, or in any of the following references:

      Labonte, D. A theory of physiological similarity for muscle-driven motion. PNAS, 2023, 120, e2221217120

      Labonte, D.; Bishop, P.; Dick, T. & Clemente, C. J. Dynamics similarity and the peculiar allometry of maximum running speed. Nat Comms., 2024, 15, 2181

      Labonte, D. & Holt, N. Beyond power limits: the kinetic energy capacity of skeletal muscle. J Exp Bio, 2024, 227, jeb247150

      Polet, D. & Labonte, D. Optimal gearing of musculoskeletal systems. Integr Org Biol, 2024, 64, 987-10062024

      I am asking neither that the authors agree with the above references nor that they cite them. But I do expect that they critically discuss and justify their definition of kinematic similarity, its relation to expectation from classic scaling theory, and the implications for their claim that hovering is harder for small animals. I do note that the notion of "physiological similarity" introduced in the above references predicts a size-invariant angular velocity for small animals, that small animals should be able to do less mass-specific work, and that average muscle force output can grow with positive allometry even for isogeometric systems. These predictions appear to be consistent with the data presented by the authors.

      We agree with the reviewer that our null hypothesis was not clearly articulated in our previous version of the manuscript, and that this might have led to a misinterpretation of the merits and limitations of our study. In the revised manuscript, we therefore now explicitly introduce our null hypotheses in the Introduction (lines 120–125), we define these in the Methods section (lines 340–360), test these in the Results section (lines 511–517), and reflect on the results in the Discussion (lines 602–610). We thank the reviewer for pointing out this unclarity in our manuscript, because revising it clarified the study significantly. See our replies in the “Public Review” section for details.

      Minor points

      L56: This is somewhat incomplete and simplistic; to just give one alternative option, weight support with equivalent muscle effort could also be ensured by a change in gearing (see eg Biewener's work). It is doubtful whether weight support is a strong selective force, as any animal that can move will be able to support its weight. The impact of scaling on dynamics is thus arguably more relevant.

      We thank the reviewer for pointing out that our original sentence may be too simplistic. We now briefly mention alternative mechanisms (suggested by the reviewer) to provide more nuance (line 56-58).

      L58: I am not aware of any evidence that smaller animals have reduced the musculature dedicated to locomotion beyond what is expected from isometry; please provide a reference for this claim or remove it.

      We removed that claim.

      The authors use both isometry and geometric similarity. As they also talk about muscle, solely geometric similarity (or isogeometry) may be preferable, to avoid confusion with isometric muscle contractions.

      To avoid confusion, we now use “geometric similarity” wherever the use of isometry might be ambiguous.

      L86: negative allometry only makes sense if there is a justified expectation for isometry - I suggest to change to "The assumed increase in wingbeat frequency in smaller animals" or similar, or to clarify the kinematic similarity hypothesis.

      We edited the sentence as suggested.

      L320: This assertion is somewhat misleading. Musculoskeletal systems are unlikely to be selected for static weight support. Instead, they need to allow movement. Where movement is possible, weight support is trivially possible, and so weight support should rarely, if ever, be a relevant constraint. At most, the negative consequence of isometry on weight support would be that a larger fraction of the muscle mass needs to be active in larger animals to support the weight.

      We fully agree with the reviewer that musculoskeletal systems are unlikely not selected for static loads, as the ability to move dynamically in the real world is crucial for survival. That said, we here look at hovering flight, which is far from static. In fact, hovering flight is among the energetic most costly movement patterns found in nature, due to the required high-frequency wingbeat motions (Dudley 2002). Rapid maneuvers are of course more power demanding, but hovering is a good proxy for this. For example, in fruit flies maximum force production in rapid evasive maneuvers are only two times the force produced during hovering (Muijres et al., 2014).

      We agree with the reviewer that it is important to explicitly mention the differences in functional demands on the motor system in hovering and maneuvering flight, and thus we now do so in both the introduction and discussion sections (lines 116-118 and 762-765, respectively).

      Dudley, Robert. The biomechanics of insect flight: form, function, evolution. Princeton university press, 2002.Muijres, F. T., et al. "Flies evade looming targets by executing rapid visually directed banked turns." Science 344.6180 (2014): 172-177.

      Reviewer #3 (Recommendations For The Authors):

      Throughout, check use of "constrains" vs. "constraints"

      Thank you for pointing this out. We have corrected these errors.

      Line 52 do you mean lift instead of thrust?

      We agree with the reviewer that the use of “thrust” might be confusing in the context of hovering flight, and thus we replaced “flapping-wing-based aerodynamic thrust-producing system” with the “flapping-wing-based propulsion system”. This way, we no longer use the word thrust in this context, and only use lift as the upward-directed force required for weight-support.

      Line 60 "face also constrains" wording

      Corrected.

      Line 79 Viscous forces only "dominate" at Re<1 and so this statement only refers to very very small insects which I suspect are far below the scale of the hoverflies considered (likely Re ~100) although maybe not for the smallest 3 mg ones?

      Indeed, viscous forces do not “dominate” force production at the Reynolds numbers of our flying insects. We thank the reviewer for pointing out this incorrect statement, which we corrected in the revised manuscript.

      Line 85 again thrust doesn't seem to be right

      Agreed. See reply 3.2.

      533 "maximized" should probably be "increased"

      We now use “increased”.

      Line 705-710 The new study by Darveau might help resolve this a bit because of the reliability of this relationship across and between orders. Darveau, C.-A. (2024). Insect Flight Energetics And the Evolution of Size, Form, And Function. Integrative And Comparative Biology icae028.

      We thank the reviewer for this highly relevant reference, which was unfortunately not included in the original manuscript. In connection with this work, we now further discuss the relationship between wing size allometry and deviations from the expected scaling of wingbeat frequency (lines 730-735).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This Tanzanian study focused on the relationship between human genetic ancestry, Mycobacterium tuberculosis complex (MTBC) diversity, and tuberculosis (TB) disease severity. The authors analyzed the genetic ancestry of 1,444 TB patients and genotyped the corresponding MTBC strains isolated from the same individuals. They found that the study participants predominantly possess Bantu-speaking genetic ancestry, with minimal European and Asian ancestry. The MTBC strains identified were diverse and largely resulted from introductions from South or Central Asia. Unfortunately, no associations were identified between human genetic ancestry, the MTBC strains, or TB severity. The authors suggest that social and environmental factors are more likely to contribute to TB severity in this setting.

      Strengths:

      In comparison to other studies investigating the role of human genetics in TB phenotypes, this study is relatively large, with more than 1,400 participants.

      The matched human-MTBC strain collection is valuable and offers the opportunity to address questions about human-bacterium co-evolution.

      Weaknesses:

      Although the authors had genome-wide genotyping and whole genome sequencing data, they only compared the associations between human ancestry and MTBC strains. Given the large sample size, they had the opportunity to conduct a genome-wide association study similar to that of Muller et al. (https://doi.org/10.1016/j.ygeno.2021.04.024).

      Thank you very much for taking the time to carefully review our manuscript and for your suggestions and comments. In another published study using the same cohort (https://doi.org/10.1101/2023.05.11.23289848), we performed a genome-wide association analysis between the genome-wide SNPS of the host and the genome-wide SNPs from the paired MTBC strains. In the current work we were interested in testing specifically if host ancestry and pathogen genotype family, as well as their interaction, were associated with differences in disease severity, a clinical phenotype with direct consequences for both host and pathogen fitness. The study of Müller et al, referred to by the reviewer, investigates whether MTBC families of strains causing disease in two patient cohorts (South Africa and Ghana) were associated with particular human SNPS assessed genome-wide. In that study, clinical phenotypes were not assessed and human ancestries, in a much broader sense than the ones used in our current study, were used as covariates. To leverage the genome-wide information and the clinical variables collected in our study, we have now added a genome-wide association analysis of all the human SNPs with disease severity measures while adjusting for co-variates (age, sex,  smoking, cough duration, socioeconomic status, history of previous TB, malnutrition, education level, and drug resistance status) and for human population stratification . Yet, no significant statistical associations were detected (L243-249).

      The authors tested whether human genetic ancestry is associated with TB severity. However, the basis for this hypothesis is unclear. The studies cited as examples all focused on progression to active TB (from a latent infection state), which should not be conflated with disease severity. It is difficult to ascertain whether the role of genetic ancestry in disease severity would be detectable through this study design, as some participants might simply have been sicker for longer before being diagnosed (despite the inquiry about cough duration). This delay in diagnosis would not be influenced solely by human genetics, which is the conclusion of the study.

      Evidence that mortality and natural recovery from TB vary by disease presentation spectrum come from studies carried out before the introduction of anti-TB chemotherapy. Patients with mild disease presentation, as measured by radiology at the time of diagnosis had higher odds of recovering naturally compared to those with advanced disease (doi: 10.5588/ijtld.23.0254, doi: 10.1164/arrd.1960.81.6.839). Given the deleterious effects of an MTBC infection leading to symptomatic disease on human fitness, we hypothesized that natural selection has acted on human traits underlying TB disease severity. If those traits are heritable one would expect to find underlying genetic variation in human populations. In addition, because certain MTBC genotype families and human populations have co-existed since a least a few centuries to a few millennia, we hypothesized that some of that genetic variation could be related to human ancestry. We have added more details to the introduction to make our rational clearer (L118-127).  In our patient cohort, we observed a large variation in disease severity using as approximations; TB-Score, X-Ray score and bacterial burden in sputa (Ct-value as determined with GeneXpert). However, the reviewer is absolutely correct in that patients in our study are being diagnosed at different stages of disease confounding our analysis. This is a limitation of our study which cannot be fully accounted for by including cough duration, as we also acknowledged in the manuscript (L343-346).

      Additionally, the study only included participants who attended the TB clinic.

      Yes, this is related to the previous point, our study only considers patients that felt ill enough to visit the TB clinic potentially not including patients that had less severe disease as acknowledged.

      Including healthy controls from the general population would have provided an interesting comparison to see if ancestry proportions differ.

      We agree that it would be interesting to compare the ancestries of healthy controls to the ancestries of TB patients from the same population. However, that would be especially informative with respect to TB susceptibility and would not necessarily be informing disease severity traits and its underlying genetics. The similarities between the ancestry proportions of our cohort with those of neighboring countries such as Kenya, Malawi and Mozambique publicly available genomic data, suggests that there would be no major differences between TB patients and healthy controls.

      Although the authors suggest that social and environmental factors contribute to TB severity, only age, smoking, and HIV status were characterised in the study.

      Based on the comments of both reviewers, we added the following additional variables as covariates in the regression models: the socioeconomic status representing the ratio between the household income and the number of individuals in the household, malnutrition, the education level and whether it was a relapse/reinfection or a new case.

      Reviewer #2 (Public review):

      Summary:

      This manuscript reports the results of an observational study conducted in Dar es Salaam, Tanzania, investigating potential associations between genetic variation in M. tuberculosis and human host vs. disease severity. The headline finding is that no such associations were found, either for host / bacillary genetics as main effects or for interactions between them.

      Strengths:

      Strengths of the study include its large size and rigorous approaches to classification of genetic diversity for host and bacillus.

      Weaknesses:

      (1) There are some limitations of the disease severity read-outs employed: X-ray scores and Xpert cycle thresholds from sputum analysis can only take account of pulmonary disease. CXR is an insensitive approach to assessing 'lung damage', especially when converted to a binary measure. What was the basis for selection of Ralph score of 71 to dichotomise patients? If outcome measures were analysed as continuous variables, would this have been more sensitive in capturing associations of interest?

      Thank you very much for taking the time to carefully review our manuscript and for your suggestions and comments.  

      We recruited active TB patients with pulmonary TB disease that were sputum smear-positive and GeneXpert-positive. In this study we aimed at obtaining paired samples from both the patient and the strain, and in the current analysis we aimed at testing if human ancestry and its interaction with the strain genotype could explain differences in disease severity. It is often difficult to obtain microbiological cultures from extra-pulmonary cases and including those cases would have not been possible at the scale of this cohort. We believe as well that extra-pulmonary TB is of less relevance for the question we are addressing because in exclusively extrapulmonary cases, disease severity is not linked with bacterial transmission. However, extra-pulmonary TB can be extremely severe, and it would be very interesting to explore the potential role of human genetic variation underlying extra-pulmonary TB in future studies.

      As to the insensitivity of CXR to measure lung damage, we would argue that it depends on what is being assed. As a rationale for the Ralph score, its inventors argue that as in other grading methods, the proportion of affected lung and or cavitation is important to assess severity. It has been described as a “validated method for grading CXR severity in adults with smear-positive pulmonary TB that correlates with baseline clinical and microbiological severity and response to treatment, and is suitable for use in clinical trials” (https://thorax.bmj.com/content/thoraxjnl/65/10/863.full.pdf). While the validation of the score is convincing in that study, and the score has been used in several TB studies and trials, the low proportion of HIV co-infections might have been a limitation. Indeed, as shown in our previous publication, in our cohort of patients, chest X-ray scores were significantly lower in HIV infected TB patients https://doi.org/10.1371/journal.ppat.1010893. In the current analysis, regression analyses performed for the CXR severity and for the other severity measures did not include HIV co-infected patients.

      We obtained the same pattern of results using a continuous outcome. However, an assumption of linear regression was violated. The residuals were not normally distributed stemming from the bimodal distribution of the scores in our dataset. The threshold of 71 for the Ralph score has been used by others in previous studies; in its original description it has been suggested as the optimal cut-off point for predicting a positive sputum smear status after two months, which in turn has been shown to predict unfavorable outcomes (https://doi.org/10.1136/thx.2010.136242). Another study showed that a Ralph score higher than 71 was significantly associated with a longer duration of symptoms, higher clinical scores and a lower BMI (doi: 10.5603/ARM.2018.0032).

      (2) There is quite a lot of missing data, especially for TB scores - could this have introduced bias? This issue should be mentioned in the discussion.

      While we have a TB-score available for each patient, the chest X-ray score is missing for many patients. However, this is random and due both to the absence of an X-ray picture or to the bad quality of X-ray pictures that the radiologists could not assess. When stating that there is a lot of missing data for the TB scores, we assume that the reviewer was referring to the “missing N” columns in Table 1. There, the number of observations missing in each of the disease severity measures actually relates to the explanatory variables (i.e MTBC genotype and human ancestries). This table includes all patients that either had a bacterial genome available or a human genome/genotype (N = 1904). As an example for the TB-score as outcome variable, for 1471 patients the MTBC genotype was determined while it was missing for 433 patients. On the other hand for X-ray scores, 177 had a severe X-ray score, 849 a mild one and for 878 patients, there was no X-ray score available.  As for the Ct-value, despite the fact that the patients were recruited based on positive GeneXpert by the clinical team, these results were not always available to us.

      (3) The analysis adjusted for age, sex, HIV status, age, smoking and cough duration - but not for socio-economic status. This will likely be a major determinant of disease severity. Was adjustment made for previous TB (i.e. new vs repeat episode) and drug-sensitivity of the isolate? Cough duration will effectively be a correlate/consequence of more severe disease - thus likely highly collinear with disease severity read-outs - not a true confounder. How does removal of this variable from the model affect results? Data on socioeconomic status should be added to models, or if not possible then lack of such data should be noted as a limitation.

      Out of the 1904 patients that have either human or bacterial genomic data available, 48 were relapses (2.5%). The mean of the disease severity measures suggest that relapses have a higher CXR score but the TB-score and Ct-values did not differ. Based on the comments of both reviewers, we added the following additional variables as covariates to the regression models: the socioeconomic status representing the ratio between the household income and the number of individuals in the household, malnutrition examined by a doctor, the education level, and whether it was a relapse/reinfection or a new case and if the causative strain had any resistance to any anti-TB drugs. The results did not change. Cough duration could also be a consequence of more severe disease, as pointed out by the reviewer. We present now the results excluding cough duration as a variable from the model, however this also did not affect the results.

      (4) Recruitment at hospitals may have led to selection bias due to exclusion of less severe, community cases. The authors already acknowledge this limitation in the Discussion however.

      (5) Introduction: References refer to disease susceptibility, but the authors should also consider the influences of host/pathogen genetics on host response - both in vitro (PMIDs 11237411, 15322056) and in vivo (PMID 23853590). The last of these studies encompassed a broader range of ethnic variation than the current study, and showed associations between host ancestry and immune response - null results from the current study may reflect the relative genetic homogeneity of the population studied.

      We thank the reviewer for these suggestions which we have added to the introduction. 

      Reviewer #1 (Recommendations for the authors):

      Minor Comments:

      (1) The authors should be careful when using the term "Bantu" as opposed to "Bantu-speaking". (i.e. referring to the language group). The term is considered offensive in some settings.

      We thanks the reviewer for this important concern, we have revised throughout the manuscript.

      (2) There are several "(Error! Reference source not found)" phrases in the place of references throughout the document.

      We thank the reviewer for pointing this out, this has been corrected in the revised version.

      (3) Please correct line 365: "... sequencing (WGS) the patient...." to "... sequencing (WGS) of the patient...."

      (4) The figures in the supplementary PDF are not numbered and some are cut-off (I think it is Supplementary Figure S2).

      This has been corrected in the revised version.

      Reviewer #2 (Recommendations for the authors):

      Typographical errors

      (1) There are multiple instances where references have not pulled through to the text, e.g. line 126 (Error! Reference source not found.)

      We thank the reviewer for pointing this out, this has been corrected in the revised version.

      (2) Line 239: have been show - have been shown?

      Thank you, this mistake has been corrected in the revised version.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      This is a new and important system that can efficiently train mice to perform a variety of cognitive tasks in a flexible manner. It is innovative and opens the door to important experiments in the neurobiology of learning and memory. 

      Strengths: 

      Strengths include: high n's, a robust system, task flexibility, comparison of manual-like training vs constant training, circadian analysis, comparison of varying cue types, long-term measurement, and machine teaching. 

      Weaknesses: 

      I find no major problems with this report. 

      Minor weaknesses: 

      (1)  Line 219: Water consumption per day remained the same, but number of trails triggered was more as training continued. First, is this related to manual-type training? Also, I'm trying to understand this result quantitatively, since it seems counter-intuitive: I would assume that with more trials, more water would be consumed since accuracy should go up over training (so more water per average trial). Am I understanding this right? Can the authors give more detail or understanding to how more trials can be triggered but no more water is consumed despite training? 

      Thanks for the comment. We would like to clarify the phenomenon described in Line 219: As the training advanced, the number of trials triggered by mice per day decreased (rather than increased as you mentioned in the comment) gradually for both manual and autonomous groups of mice (Fig. 2H left). The performance, as you mentioned, improved over time (Fig. 2D and 2E), leading to an increased probability of obtaining water and thus relatively stable daily water intake (Fig. 2H middle). We believe the stable daily intake is the minimum amount of water required by the mice under circumstance of autonomous behavioral training. To make the statement more clearly, we indicated the corresponding figure numbers in the text.

      Results “… As shown in Fig. 2H, autonomous training yielded significantly higher number of trial/day (980 ± 25 vs. 611 ± 26, Fig. 2H left) and more volume of water consumption/day (1.65 ± 0.06 vs. 0.97 ± 0.03 ml, Fig. 2H middle), which resulted in monotonic increase of body weight that was even comparable to the free water group (Fig.2H right). In contrast, the body weight in manual training group experienced a sharp drop at the beginning of training and was constantly lower than autonomous group throughout the training stage (Fig. 2H right).”

      (2) Figure 2J: The X-axis should have some label: at least "training type". Ideally, a legend with colors can be included, although I see the colors elsewhere in the figure. If a legend cannot be added, then the color scheme should be explained in the caption.

      Thanks for the suggestion. The labels with corresponding colors for x-axis have been added for Fig. 2J.

      (3) Figure 2K: What is the purple line? I encourage a legend here. The same legend could apply to 2J.

      Thanks for the suggestion. The legend has been added for Fig. 2K.

      (4) Supplementary Figure S2 D: I do not think the phrase "relying on" is correct. Instead, I think "predicted by" or "correlating with" might be better. 

      We thank the reviewer for the valuable suggestion. The phrase has been changed to ‘predicted by’ for better suitability.

      Figure S2 “(D), percentage of trials significantly predicted by different regressors during task learning. …”

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript by Yu et al. describes a novel approach for collecting complex and different cognitive phenotypes in individually housed mice in their home cage. The authors report a simple yet elegant design that they developed for assessing a variety of complex and novel behavioral paradigms autonomously in mice. 

      Strengths: 

      The data are strong, the arguments are convincing, and I think the manuscript will be highly cited given the complexity of behavioral phenotypes one can collect using this relatively inexpensive ($100/box) and high throughput procedure (without the need for human interaction). Additionally, the authors include a machine learning algorithm to correct for erroneous strategies that mice develop which is incredibly elegant and important for this approach as mice will develop odd strategies when given complete freedom. 

      Weaknesses:

      (1) A limitation of this approach is that it requires mice to be individually housed for days to months. This should be discussed in depth. 

      Thank you for raising this important point. We agree that the requirement for individual housing of mice during the training period is a limitation of our approach, and we appreciate the opportunity to discuss this in more depth. In the manuscript, we add a section to the Discussion to address this limitation, including the potential impact of individual housing on the mice, the rationale for individual housing in our study, and efforts or alternatives made to mitigate the effects of individual housing.

      Discussion “… Firstly, our experiments were confined to single-housed mice, which is known to influence murine behavior and physiology, potentially affecting social interaction and stress levels [76]. In our study, individual housing was necessary to ensure precise behavioral tracking, eliminate competitive interactions during task performance, and maintain consistent training schedules without disruptions from cage-mate disturbances. However, the potential of group-housed training has been explored with technologies such as RFID [28,29,32–34] to distinguish individual mice, which potentially improving the training efficiency and facilitating research of social behaviors [77]. Notably, it has shown that simultaneous training of group-housed mice, without individual differentiation, can still achieve criterion performance [25].”

      (2) A major issue with continuous self-paced tasks such as the autonomous d2AFC used by the authors is that the inter-trial intervals can vary significantly. Mice may do a few trials, lose interest, and disengage from the task for several hours. This is problematic for data analysis that relies on trial duration to be similar between trials (e.g., reinforcement learning algorithms). It would be useful to see the task engagement of the mice across a 24-hour cycle (e.g., trials started, trials finished across a 24-hour period) and approaches for overcoming this issue of varying inter-trial intervals. 

      Thank you for your insightful comment regarding the variability in inter-trial intervals and its potential impact on data analysis. We agree that this is an important consideration for continuous self-paced tasks.

      In our original manuscript, we have showed the general task engagement across 24-hour cycle (Fig. 2K), which revealed two peaks of engagements during the dark cycle with relatively fewer trials during the light cycle. To facilitate analyses requiring consistent trial durations, we defined trial blocks as sequences between two no-response trials. Notably, approximately 66.6% of trials occurred within blocks of >5 consecutive trials (Fig. 2L), which may be particularly suitable for such analyses.

      In the revised manuscript, we also added the analysis of the histogram of inter-trial-interval for both the autonomous and manual training paradigms in HABITS (Fig. S2H), which shows that around 55.2% and 77.5% of the intervals are less than 2 seconds in autonomous and manual training, respectively.

      Results “… We found more than two-third of the trials was done in >5-trial blocks (Fig. 2L left) which resulted in more than 55% of the trials were with inter-trial-interval less than 2 seconds (Fig. S2H).”

      Regarding the approaches to mitigate the issue of varying inter-trial interval, we observed that manual training (i.e., manually transferring to HABITS for ~2 hr/day) in Fig. S2H resulted in more trials with short inter-trial-interval, suggesting that constrained access time promotes task engagement and reduces interval variability. Fig. 2L also indicated that the averaged correct rate increased and the earlylick rate decreased as the length of block increased. This approach could be valuable for studies where consistent trial timing is critical. In the context of our study, we could actually introduce a light, for example, to serve as the cue that prompt the animals to engage during a fixed time duration in a day.

      Discussion “… In contrast, the self-paced nature of autonomous training may permit greater variability in attentional engagement 83 and inter-trial-intervals, which could be problematic for data analysis relaying on consistent intervals and/or engagements. Future studies should explore how controlled contextual constraints enhance learning efficiency and whether incorporating such measures into HABITS could optimize its performance.”

      (3) Movies - it would be beneficial for the authors to add commentary to the video (hit, miss trials). It was interesting watching the mice but not clear whether they were doing the task correctly or not. 

      Thanks for the reminder. We have added subtitles to both of the videos. Since the supplementary video1 was not recorded with sound, the correctness of the trials was hard to judge. We replaced the video with another one with clear sound recordings, and the subtitles were commented in detail.

      (4) The strength of this paper (from my perspective) is the potential utility it has for other investigators trying to get mice to do behavioral tasks. However, not enough information was provided about the construction of the boxes, interface, and code for running the boxes. If the authors are not willing to provide this information through eLife, GitHub, or their own website then my evaluation of the impact and significance of this paper would go down significantly. 

      Thanks for this important comment. We would like to clarify that the construction methods, GUI, code for our system, PCB and CAD files (newly uploaded) have already been made publicly available on https://github.com/Yaoyao-Hao/HABITS. Additionally, we have open-sourced all the codes and raw data for all training protocols (https://doi.org/10.6084/m9.figshare.27192897). We will continue to maintain these resources in the future.

      Minor concerns: 

      (5) Learning rate is confusing for Figure 3 results as it actually refers to trials to reach the criterion, and not the actual rate of learning (e.g., slope).

      Thanks for pointing this out. The ‘learning rate’ which refers to trial number to reach criterion has been changed to ‘the number of trials to reach criterion’.

      Reviewer #3 (Public review): 

      Summary: 

      In this set of experiments, the authors describe a novel research tool for studying complex cognitive tasks in mice, the HABITS automated training apparatus, and a novel "machine teaching" approach they use to accelerate training by algorithmically providing trials to animals that provide the most information about the current rule state for a given task. 

      Strengths: 

      There is much to be celebrated in an inexpensively constructed, replicable training environment that can be used with mice, which have rapidly become the model species of choice for understanding the roles of distinct circuits and genetic factors in cognition. Lingering challenges in developing and testing cognitive tasks in mice remain, however, and these are often chalked up to cognitive limitations in the species. The authors' findings, however, suggest that instead, we may need to work creatively to meet mice where they live. In some cases, it may be that mice may require durations of training far longer than laboratories are able to invest with manual training (up to over 100k trials, over months of daily testing) but the tasks are achievable. The "machine teaching" approach further suggests that this duration could be substantially reduced by algorithmically optimizing each trial presented during training to maximize learning. 

      Weaknesses: 

      (1) Cognitive training and testing in rodent models fill a number of roles. Sometimes, investigators are interested in within-subjects questions - querying a specific circuit, genetically defined neuron population, or molecule/drug candidate, by interrogating or manipulating its function in a highly trained animal. In this scenario, a cohort of highly trained animals that have been trained via a method that aims to make their behavior as similar as possible is a strength. 

      However, often investigators are interested in between-subjects questions - querying a source of individual differences that can have long-term and/or developmental impacts, such as sex differences or gene variants. This is likely to often be the case in mouse models especially, because of their genetic tractability. In scenarios where investigators have examined cognitive processes between subjects in mice who vary across these sources of individual difference, the process of learning a task has been repeatedly shown to be different. The authors do not appear to have considered individual differences except perhaps as an obstacle to be overcome. 

      The authors have perhaps shown that their main focus is highly-controlled within-subjects questions, as their dataset is almost exclusively made up of several hundred young adult male mice, with the exception of 6 females in a supplemental figure. It is notable that these female mice do appear to learn the two-alternative forced-choice task somewhat more rapidly than the males in their cohort.

      Thank you for your insightful comments and for highlighting the importance of considering both within-subject and between-subject questions in cognitive training and testing in rodent models. We acknowledge that our study primarily focused on highly controlled within-subject questions. However, the datasets we provided did show preliminary evidences for the ‘between-subject’ questions. Key observations include:

      The large variability in learning rates among mice observed in Fig. 2I;

      The overall learning rate difference between male and female subjects (Fig. 2D vs. Fig. S2G);

      The varying nocturnal behavioral patterns (Fig. 2K), etc.

      We recognize the value of exploring between-subjects differences in mouse model and discussed more details in the Discussion part.

      Discussion “Our study was designed to standardize behavior for the precise interrogation of neural mechanisms, specifically addressing within-subject questions. However, investigators are often interested in between-subject differences—such as sex differences or genetic variants—which can have long-term behavioral and cognitive implications [72,74]. This is particularly relevant in mouse models due to their genetic tractability [75]. Although our primary focus was not on between-subject differences, the dataset we generated provides preliminary evidence for such investigations. Several behavioral readouts revealed individual variability among mice, including large disparities in learning rates across individuals (Fig. 2I), differences in overall learning rates between male and female subjects (Fig. 2D vs. Fig. S2G), variations in nocturnal behavioral patterns (Fig. 2K), etc.”

      (2) Considering the implications for mice modeling relevant genetic variants, it is unclear to what extent the training protocols and especially the algorithmic machine teaching approach would be able to inform investigators about the differences between their groups during training. For investigators examining genetic models, it is unclear whether this extensive training experience would mitigate the ability to observe cognitive differences, or select the animals best able to overcome them - eliminating the animals of interest. Likewise, the algorithmic approach aims to mitigate features of training such as side biases, but it is worth noting that the strategic uses of side biases in mice, as in primates, can benefit learning, rather than side biases solely being a problem. However, the investigators may be able to highlight variables selected by the algorithm that are associated with individual strategies in performing their tasks, and this would be a significant contribution.

      Thank you for the insightful comments. We acknowledge that the extensive training experience, particularly through the algorithmic machine teaching approach, could potentially influence the ability to observe cognitive differences between groups of mice with relevant genetic variants. However, our study design and findings suggest that this approach can still provide valuable insights into individual differences and strategies used by the animals during training. First, the behavioral readout (including learning rate, engagement pattern, etc.) as mentioned above, could tell certain number of differences among mice. Second, detailed modelling analysis (with logistical regression modelling) could further dissect the strategy that mouse use along the training process (Fig. S2B). We have actually highlighted some variables selected by the regression that are associated with individual strategies in performing their tasks (Fig. S2C) and these strategies could be different between manual and autonomous training groups (Fig. S2D). We included these comments in the Discussion part for further clearance.

      Discussion “… Furthermore, a detailed logistic regression analysis dissected the strategies mice employed during training (Fig. S2B). Notably, the regression identified variables associated with individual task-performance strategies (Fig. S2C), which also differed between manually and autonomously trained groups (Fig. S2D). Thus, our system could facilitate high-throughput behavioral studies exploring between-subject differences in the future.”

      (3) A final, intriguing finding in this manuscript is that animal self-paced training led to much slower learning than "manual" training, by having the experimenter introduce the animal to the apparatus for a few hours each day. Manual training resulted in significantly faster learning, in almost half the number of trials on average, and with significantly fewer omitted trials. This finding does not necessarily argue that manual training is universally a better choice because it leads to more limited water consumption. However, it suggests that there is a distinct contribution of experimenter interactions and/or switching contexts in cognitive training, for example by activating an "occasion setting" process to accelerate learning for a distinct period of time. Limiting experimenter interactions with mice may be a labor-saving intervention, but may not necessarily improve performance. This could be an interesting topic of future investigation, of relevance to understanding how animals of all species learn.

      Thank you for your insightful comments. We agree that the finding that manual training led to significantly faster learning compared to self-paced training is both intriguing and important. One of the possible reasons we think is due to the limited duration of engagement provided by the experimenter in the manual training case, which forced the mice to concentrate more on the trials (thus with fewer omitting trials) than in autonomous training. Your suggestion that experimenter interactions might activate an "occasion setting" process is particularly interesting. In the context of our study, we could actually introduce, for example, a light, serving as the cue that prompt the animals to engage; and when the light is off, the engagement was not accessible any more for the mice to simulate the manual training situation. We agree that this could be an interesting topic for future investigation that might create a more conducive environment for learning, thereby accelerating the learning rate.

      Discussion “… Lastly, while HABITS achieves criterion performance in a similar or even shorter overall days compared to manual training, it requires more trials to reach the same learning criterion (Fig. 2G). We hypothesize that this difference in trial efficiency may stem from the constrained engagement duration imposed by the experimenter in manual training, which could compel mice to focus more intensely on task execution, resulting in less trial omissions (Fig. 2F). In contrast, the self-paced nature of autonomous training may permit greater variability in attentional engagement 83 and inter-trial-intervals, which could be problematic for data analysis relaying on consistent intervals and/or engagements. Future studies should explore how controlled contextual constraints enhance learning efficiency and whether incorporating such measures into HABITS could optimize its performance.”

      Reviewer #2 (Recommendations for the authors):

      As I mentioned in the weaknesses, I did not see code or CAD drawings for their home cages and how these interact with a computer.

      Thanks for the comment. We would like to clarify that the construction methods, GUI, code for our system, PCB and CAD files (newly uploaded) have already been made publicly available on https://github.com/Yaoyao-Hao/HABITS.

    1. ABSTRACTSingle-cell RNA sequencing (scRNA-seq) has revolutionized the study of cellular heterogeneity, but the rapid expansion of analytical tools has proven to be both a blessing and a curse, presenting researchers with significant challenges. Here, we present SeuratExtend, a comprehensive R package built upon the widely adopted Seurat framework, which streamlines scRNA-seq data analysis by integrating essential tools and databases. SeuratExtend offers a user-friendly and intuitive interface for performing a wide range of analyses, including functional enrichment, trajectory inference, gene regulatory network reconstruction, and denoising. The package seamlessly integrates multiple databases, such as Gene Ontology and Reactome, and incorporates popular Python tools like scVelo, Palantir, and SCENIC through a unified R interface. SeuratExtend enhances data visualization with optimized plotting functions and carefully curated color schemes, ensuring both aesthetic appeal and scientific rigor. We demonstrate SeuratExtend’s performance through case studies investigating tumor-associated high-endothelial venules and autoinflammatory diseases, and showcase its novel applications in pathway-Level analysis and cluster annotation. SeuratExtend empowers researchers to harness the full potential of scRNA-seq data, making complex analyses accessible to a wider audience. The package, along with comprehensive documentation and tutorials, is freely available at GitHub, providing a valuable resource for the single-cell genomics community.Practitioner PointsSeuratExtend streamlines scRNA-seq workflows by integrating R and Python tools, multiple databases (e.g., GO, Reactome), and comprehensive functional analysis capabilities within the Seurat framework, enabling efficient, multi-faceted analysis in a single environment.Advanced visualization features, including optimized plotting functions and professional color schemes, enhance the clarity and impact of scRNA-seq data presentation.A novel clustering approach using pathway enrichment score-cell matrices offers new insights into cellular heterogeneity and functional characteristics, complementing traditional gene expression-based analyses.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf076), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer name: Daniel A. Skelly

      Overall, this is a very nice writeup of a useful package that extends the Seurat package to expand possibilities for single cell analysts in R. I liked the visualization options, the ability to try certain python-based tools easily in R which was not previously easy, and some of the authors' new innovations like their use of pathway enrichment scores in broad ways. Kudos to the authors for releasing a package with really excellent documentation and tutorials!

      I think this paper could be made better if the authors stressed with a little more clarity how specifically their work is innovative. The text in the present manuscript is fine but reads like a bit of a grab bag of functionality. For example, from the abstract: "SeuratExtend offers a user-friendly and intuitive interface for performing a wide range of analyses, including functional enrichment, trajectory inference, gene regulatory network reconstruction, and denoising. The package integrates multiple databases, … and incorporates popular Python tools … [We] showcase its novel applications in pathway-level analysis and cluster annotation. SeuratExtend enhances data visualization …"

      How could they be more clear or specific? One example could be by categorizing what SeuratExtend can do that other packages can't. For example, I see innovations in perhaps three general areas: 1. Making single cell analyses easier/faster/prettier (i.e. visualizations, pathway enrichment) 2. Making previously published single cell tools more broadly accessible (e.g. first option to bring certain python tools to R) 3. New innovations (e.g. dimensionality reduction and clustering based on pathway enrichment scores; may not be completely new but I don't recall seeing this elsewhere) If this was added I feel the paper would more clearly communicate to readers the information necessary for them to choose whether they want to try the package.

      I have the following additional significant comments: * Integration of multiple databases for GSEA — these methods are good, but what about in a few years when those databases have been updated? Do the authors intend to continue updating? Could they provide a function for users to use their own database (e.g. .gaf and .obo files, for example for another model organism)? Similar comment about gene identifer conversion, which may need to be updated every few years. * "While the Python ecosystem has benefited greatly from the comprehensive scverse project [7], which utilizes the universal AnnData format to connect various tools and algorithms, a comparable integrated solution has been lacking in the R community. SeuratExtend addresses this gap by providing a unified framework centered around the Seurat object, effectively becoming the R counterpart to scverse." —> some might argue that SeuratWrappers is this solution. The authors should more clearly and explicitly comment on what SeuratExtend does differently/better than SeuratWrappers. * I'm not particularly convinced by the authors' example studies that used SeuratExtend. For example, they describe Hua-Vella et al. (2022) and Hua et al. (2023). These are very nice studies and I have no doubt they made use of SeuratExtend in their analyses. But I don't see anything these authors describe those authors doing as being uniquely possible with SeuratExtend. Perhaps SeuratExtend made their analyses easier, or faster. But it would be better if we had some further concrete details. For example, something communicating a message like one of the following: (1) the authors only tested method X on a whim because it was so easy to run in SeuratExtend, and found that it revealed unexpected biology Y; or (2) the authors were able to bring together method X which runs in R and method Y which runs in python and the joint inference — not possible in other packages — revealed key result Z. If the authors of this manuscript can't point to those sorts of examples, then I'm not sure it adds much to include this discussion in the present paper. * I really liked the section "Novel Applications of SeuratExtend in Pathway-Level Analysis and Cluster Annotation", especially "Exploring and Analyzing Single-Cell Data at the Pathway Level". I thought these applications could perhaps be stressed a bit more strongly or made more prominent earlier in the paper. * Figures 2 and 3 are showing example plots from which we don't actually need to infer any important biology. I thought these figures could be combined and each individual plot type only shown once. (This is for clarity and I don't see anything incorrect about the authors' current plots. * There may be some issues with dependencies for some users. For example, it prompted me to install viridis and loomR as I went through the Quickstart. I ended up encountering an error there is no package called 'loomR' while trying. I had to manually install with remotes::install_github(repo = "mojaveazure/loomR"). Maybe provide an explicit dependencies list/list of recommended packages to install? * I had an error the first time calling Palantir.RunDM(). I hadn't created a seuratextend environment. I found that I could do this manually using create_condaenv_seuratextend(), but that this wasn't supported for Apple Silicon chips. I would suggest that the authors do try to find a way to get this working on newer Apple chips, because Mac machines are very common among bioinformaticians in my experience. * While the writing is largely quite clear, I found it to be a bit voluminous. If the authors are able to cut down on text length that may help in emphasizing the key points that make their package valuable to users.

      I had these minor comments: * "Moreover, mainstream scRNA-seq analysis tools are primarily developed for either the R or Python platforms, with additional options like Nextflow and Snakemake" — I suggest revising this sentence. The tools are developed in R or python languages, which I would not call platforms. I would reword that Nextflow and Snakemake are workflow management systems that provide additional options for pipeline automation * "the R ecosystem surrounding Seurat appears relatively limited" — I'm not sure I would agree with this. I counted wrappers for 17 methods currently. Yes it is true that there are more packages in scverse. However, I suggest moderating your claims about Seurat being limited. * Suggest removing snakemake from Table 1 — it is really different from the other tools listed there

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer comment: *“The authors did not clarify whether the observed protection to PTZ-induced convulsions after mild TBI is due to the reduced size of gap junctions and/or increased activity in hemichannels.” And “The super-resolution imaging only assesses Cx43 gap junction plaque size and density but not the non-junctional portion of Cx43.” *

      Response and planned revision: To determine whether seizure protection in Cx43 S368A mice is due to reduced gap junction plaque density or reduced hemichannel function, we will conduct solubility assays to assess the ratio of insoluble (junctional) to soluble (cytoplasmic/hemichannel) Cx43 in Cx43S368A and C57BL/6 control mice after TBI/sham (as in Fig. 2A-D currently only in C57BL/6 control mice). In parallel, we will perform EtBr uptake assays in acute brain slices from Cx43S368A and C57BL/6 control animals to assess hemichannel function.

      Additionally, we will include super-resolution images without background subtraction, which show diffuse staining indicative of soluble Cx43. Of note, even at super-resolution individual gap junctions or hemichannels cannot be resolved. They appear as diffuse signal (currently not visible in our super-resolution images due to image deconvolution and background substration performed to isolate Cx43 plaques). Super-resolution imaging was used to count Cx43 gap junction plaque densities and size. Cx43 gap junction plaques are dense accruals of Cx43 immunostaining reminiscent functional and closed gap junctions. Complimentary experiments measured soluble (cytoplasmic Cx43 and hemichannels) and insoluble Cx43 (gap junctions) using biochemistry (Fig. 2A-D).

      Reviewer comment: “The immunofluorescent images for Fig. 2E and Fig. 5 were not counterstained for astrocytes or cell membrane. How can the authors be sure that these are expressed by astrocytes and not other cells in the brain?”

      Response and planned revision: Cx43 is predominantly expressed in astrocytes, with expression levels 10–100 times higher than in brain endothelial cells (e.g., Zhang et al., 2014; Vanlandewijck et al., Nature, 2018). As shown in Supplementary Fig. 2, our immunohistochemistry data reveal no overlap between Cx43 and endothelial cell markers, confirming that our staining protocol does not detect Cx43 in endothelial cells. Instead, the apparent localization of Cx43 along blood vessels reflects expression in astrocytic endfeet, which closely ensheath the vasculature. To further support this conclusion, we will conduct quantitative co-localization analyses of Cx43 with markers for neurons, microglia, oligodendrocytes, and NG2 glia in both Cx43S368A and C57BL/6 control mice. Additionally, we will include plots generated from publicly available single-cell RNA sequencing datasets to show that Cx43 mRNA is highly enriched in astrocytes and present at much lower levels in endothelial cells of the brain vasculature.

      • *

      Reviewer comment about developmental contributions to the phenotype of Cx43 S368A animals.

      Response: We cannot exclude a potential developmental component to the observed seizure protection in Cx43S368A mice. We included discussion of this possibility in the revised manuscript.

      Reviewer comments indicative of a lack of clarity around rationale and intent of specific experiments.

      Response: We thoroughly revised the Results section to explicitly state the rationale and purpose of each experiment. For example:

      Reviewer comment: “The immunofluorescent images for Fig. 1D and E were taken at low resolution compared to the Cx43 puncta size. This does not allow accurate quantification of the Cx43 GJs or HCs.”

      Response: The purpose of this experiment was to assess the heterogeneity of Cx43 expression (both junctional and non-junctional portions) with spatial resolution across a larger brain area. Complementary experiments here are quantification of protein amounts using western blot (Fig. 1B), quantification of junctional versus non-junctional Cx43 using the solubility assay and quantification of Cx43 plaques using super-resolution imaging (Fig. 2).

      Reviewer comment: “TBI did not change Cx43 plaque size or density (Fig. 5). What was the rationale for examining the effects in the S368A mutant?”

      Response: We found an increase in phosphorylated Cx43 at ____S____368 after TBI and Cx43__S368A mutants are protected from seizures after administration of PTZ suggesting an important role for this specific Cx43 phosphorylation site in pathology. __We discussed in the manuscript that “in cardiovascular infection/disease has demonstrated maintenance of gap junction coupling (Gy et al., 2011; Padget et al., 2024) while reduced hemichannel opening probability was reported (Hirschhäuser et al., 2021) in Cx43S368A mice”, suggesting that the protective phenotype is likely due to modification of either Cx43 gap junctions or hemichannels. However, functional consequences on Cx43 biology upon phosphorylation at S368 or lack thereof in the Cx43S368A mutant remain unexplored in the brain. Cx43 plaque size and density are reflective of Cx43 gap junctions and was therefore examined in Cx43S368A mice to reveal potential mechanism by which this mouse mutant is protected from seizures (even in the absence of TBI).

      Reviewer comment: * “The IC50 for Tat-Gap19 for Cx43 HC is ~7 μM (Tocris). How can using it at 2 μM be effective?”*

      Response: We reviewed our lab records and confirmed that 2 μM was a typographical error. The actual concentration used was 200 μM. This is consistent with the dose-response literature for astrocytes (e.g., Walrave et al., Glia 2018; Abudara et al., Front. Cell. Neurosci. 2014). We now included these references in the manuscript.

      Reviewer comment: “Unclear whether mice in Fig. 4C received TBI.”

      Response: We clarified that these mice were naïve, i.e. not subjected to TBI or sham procedures. This is now explicitly stated in both the Methods and the Results.

      Reviewer comment: “CBX or Tat-Gap19 do not affect the phosphorylation state of Cx43.”

      Response: We clarified that we used CBX and Tat-Gap19 as established gap junction and hemichannel blockers, irrespective of phosphorylation state. We now noted that Tat-GAP19 is a Cx43 mimetic peptide to specifically block Cx43 hemichannels.

      Reviewer comment: “It is unclear whether the EtBr quantification in Fig. 3D is for S100β+ astrocytes.”

      Response: We clarified that the quantification in Fig. 3D was performed exclusively in S100β+ astrocytes. Although neurons may take up EtBr under inflammatory conditions, they do not express Cx43 (as will be shown in Fig. 1 and Supplementary Data).

      Reviewer comment: “I believe that the 'W.' in ref 'W. Chen et al., 2018' is unnecessary.”

      Response: We will use the journal citation style implemented by a reference manager in the final version of the manuscript.

      Reviewer request to include two references related to phosphorylation and hemichannel permeability and the role of gap junctional coupling in epilepsy.

      Response: The PNAS reference was added to the manuscript.

      That reduction in gap junctional communication is a relevant factor in epilepsy is discussed in the introduction where we also cite original literature of the authors of the proposed review article: “Many pathologies (Gajardo-Gómez et al., 2017; Masaki, 2015; Orellana et al., 2011; Sarrouilhe et al., 2017; Vis et al., 1998; Wang et al., 2018), including traumatic brain injury (TBI) (B. Chen et al., 2017; W. Chen et al., 2019; Wu et al., 2013; Xia et al., 2024) and acquired epilepsy (Bedner et al., 2015; Deshpande et al., 2017; Walrave et al., 2018) present with altered Cx43 regulation, and are often equated with GJ dysfunction.”

      We feel that citing the original manuscripts more accurately reflect the current knowledge around the role of Cx43 in the context of epilepsy and other pathologies. Reader’s access to the original literature also highlights the gaps in knowledge more precisely that this manuscript seeks to close.

      Reviewer comment: “I think the data of this manuscript is missing a control animal that would present all the compensation changes that occur during development that occur in mice carrying the mutated Cx43. Alternatively, a doable experiment would be the use of inducible KO/KI.”

      Response: Previous studies investigating the role of Cx43 in neuronal excitability have primarily used full or conditional knockout models, as described in our introduction. Interestingly, these studies report that global deletion of Cx43 increases seizure susceptibility. However, such models eliminate all Cx43-dependent functions—both junctional and non-junctional—making it difficult to pinpoint the specific mechanisms underlying the observed effects. They do not distinguish whether increased excitability results from loss of gap junction coupling, disruption of hemichannel function, or depletion of cytoplasmic Cx43 signaling. In contrast, our current study does not aim to eliminate Cx43, but instead employs a targeted approach to interrogate the functional significance of a regulatory phosphorylation site, S368. This site is dynamically phosphorylated following TBI and has been previously associated—albeit only through correlative data—with seizure activity and other neuropathologies. By isolating the contribution of this post-translational modification while preserving overall Cx43 expression, our study provides novel mechanistic insight into how phosphorylation modulates Cx43 function and astrocyte-mediated regulation of brain excitability.

      We appreciate the thoughtful suggestion to generate a conditional knock-in model to isolate developmental from acute effects of the Cx43 S368A mutation. However, the GJA1 gene locus is not amenable to this type of targeting (we explored this possibility with a . We also considered AAV-mediated CRISPR/dCas9 editing as an alternative, but current limitations in CNS transduction efficiency, promoter specificity, and guide RNA availability for precise point mutation insertion make this approach similarly unfeasible at this stage. Thus, while we acknowledge the developmental caveat (which we now discuss in the manuscript), the current manuscript provides novel and meaningful insight into the role of the Cx43S368 regulatory phosphorylation site in the context of astrocyte biology and seizure susceptibility and forms a strong foundation for future studies.

      Thank you again for the opportunity to revise and strengthen our manuscript. We believe these planned experiments and clarifications address the reviewers' concerns in a thorough and scientifically rigorous manner.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary The authors focused on medaka retinal organoids to investigate the mechanism underlying the eye cup morphogenesis. The authors succeeded to induce lens formation in fish retinal organoids using 3D suspension culture with minimal growth factor-containing media containing the Hepes. At day 1, Rx3:H2B-GFP+ cells appear in the surface region of organoids. At day 1.5, Prox1+cells appear in the interface area between the organoid surface and the core of central cell mass, which develops a spherical-shaped lens later. So, Prox1+ cells covers the surface of the internal lens cell core. At day 2, foxe3:GFP+ cells appear in the Prox1+ area, where early lens fiber marker, LFC, starts to be expressed. In addition, foxe3:GFP+ cells show EdU+ incorporation, indicating that foxe3:GFP+ cells have lens epithelial cell-characters. At day 4, cry:EGFP+ cells differentiate inside the spherical lens core, whose the surface area consists of LFC+ and Prox1+ cells. Furthermore, at day 4, the lens core moves towards the surface of retinal organoids to form an eye-cup like structure, although this morphogenesis "inside out" mechanism is different from in vivo cellular "outside -in" mechanism of eye cup formation. From these data, the authors conclude that optic cup formation, especially the positioning of the lens, is established in retinal organoids though the different mechanism of in vivo morphogenesis.

      Overall, manuscript presentation is nice. However, there are still obscure points to understand background mechanism. My comments are shown below.

      Major comments 1) At the initial stage of retinal organoid morphogenesis, a spherical lens is centrally positioned inside the retinal organoids, by covering a central lens core by the outer cell sheet of retinal precursor cells. I wonder if the formation of this structure may be understood by differential cell adhesive activity or mechanical tension between lens core cells and retinal cell sheet, just like the previous study done by Heisenberg lab on the spatial patterning of endoderm, mesoderm and ectoderm (Nat. Cell Biol. 10, 429 - 436 (2008)). Lens core cells may be integrated inside retinal cell mass by cell sorting through the direct interaction between retinal cells and lens cells, or between lens cells and the culture media. After day 1, it is also possible to understand that lens core moves towards the surface of retinal organoids, if adhesive/tensile force states of lens core cells may be change by secretion of extracellular matrix. I wonder if the authors measure physical property, adhesive activity and solidness, of retinal precursor cells and lens core cells. If retinal organoids at day 1 are dissociated and cultured again, do they show the same patterning of internal lens core covering by the outer retinal cell sheet? *Response: The question, whether different adhesive activity is involved in cell sorting and lens formation is indeed very intriguing. To address this point, we will include additional experiment (see Revision Plan, experiment 1). This experiment will be based on the dissociation and re-aggregation of lens-forming organoids as suggested by the reviewer. To monitor cell type specific sorting, we will employ a lens progenitor reporter line Foxe3::GFP and the retina-specific Rx2::H2B-RFP. If different adhesive activities of lens and retinal progenitor cells are involved and drive the process of cell sorting, dissociation and re-aggregation will result in cell sorting based on their identity. *

      2) Optic cup is evaginated from the lateral wall of neuroepithelium of the diencephalon. In zebrafish, cell movement occurs from the pigment epithelium to the neural retina during eye morphogenesis in an FGF-dependent manner. How the medaka optic cup morphogenesis is coordinated? I also wonder if the authors conduct the tracking of cell migration during optic cup morphogenesis to reveal how cell migration and cell division are regulated in lens of the Medaka retinal organoids. It is also interesting to examine how retinal cell movement is coordinated during Medaka retinal organoids. Response: Looking into the detail of how optic cup-looking tissue arrangement of ocular organoids is achieved on cellular level is of course interesting. Our previous study showed that optic vesicles of medaka retinal organoids do not form optic cups (for details please see Zilova et al., 2021, eLIFE). We assume that the formation of cup-looking structure of the ocular organoids is mediated by the following processes: establishment of retina and lens domains at the specific region of the organoid – retina on the surface and lens in the center (see Figure S2 d and Figure 3e, and Figure 4). Further dislocation of the centrally formed lens towards the organoid periphery through the retina layer, places the lens to the periphery while retinal cells stay static. We assume that the “cup-like” shape is acquired by extrusion of the lens from the center of the organoid. To clarify this process with respect to tissue rearrangements and cell movements, we will include additional experiments (see Revision Plan, experiment 2) and follow lens- and retina-fated cells (by employing lens-specific Foxe3::GFP and retina-specific Rx2::H2B-RFP reporter lines) through the process of lens extrusion to dissect individual contribution of retinal/lens cells to this process (cross-reference with Reviewer #2).

      3) The authors showed that blockade of FGF signaling affects lens fiber differentiation in day 1-2, whereas lens formation seems to be intact in the presence of FGF receptor inhibitor in day 0-1. I suggest the authors to examine which tissue is a target of FGF signaling in retinal organoids, using markers such as pea3, which is a downstream target of ERK branch of FGF signaling. Since FGF signaling promotes cell proliferation, is the lens core size normal in SU5402-treated organoids from day 0 to day 1?

      Response: Assessing the activity of FGF signaling (cross-reference to Reviewer #3) in the organoids is indeed an important point. To address which tissue is the target of FGF signaling we will include additional experiments and assess the phosphorylation status of ERK (pERK) and expression of the ERK downstream target pea3, as suggested by the reviewer (see Revision Plan, experiment 3). That will allow to identify the tissue within the organoid responding to the Fgf signaling.

      Lens core size of organoids treated with SU5402 from day 0 to day 1 is fully comparable to the control (please see Figure 6b).

      • *

      4) Fig. 3f and 3g indicate that there is some cell population located between foxe3:GFP+ cells and rx2:H2B-RFP+ cells. What kind of cell-type is occupied in the interface area between foxe3:GFP+ cells and rx2:H2B-RFP+ cells?

      Response: That is for sure an interesting question. We are aware of this population of cells. We currently do not have data that would with certainty clarify the fate of those cells. We are currently following up on that question with the use of scRNA sequencing, however we will not be able to address this question in the current manuscript.* * 5) Fig. 5e indicates the depth of Rx3 expression at day 1. Is the depth the thickness of Rx3 expressing cell sheet, which covers the central lens core in the organoids? If so, I wonder if total cell number of Rx3 expressing cell sheet may be different in each seeded-cell number, because thickness is the same across each seeded-cell number, but the surface area size may be different depending on underneath the lens core size. Please clarify this point.

      *Response: Yes. Figure 5e indicates the thickness of the cell sheet expressing Rx3 that lies on the surface of the organoid. Indeed, the number of Rx3-expressing cells (and lens cells) scales with the size of the organoid as stated in the submitted manuscript. *

      • *

      6) Noggin application inhibits lens formation at day 0-1. BMP signaling regulates formation of lens placode and olfactory placode at the early stage of development. It is interesting to examine whether Noggin-treated organoid expands olfactory placode area. Please check forebrain territory markers.

      Response: What tissue differentiates at the expense of the lens in BMP inhibitor-treated organoids is of course an intriguing question. To address the identity of cells differentiated under this condition we will include an additional experiment (see Revision Plan, experiment 4 as suggested by the reviewer). We will check for the expression of Lhx2, Otx2 and Huc/D to address this point.

      I have no minor comments

      **Referees cross-commenting**

      I agree that all reviewers have similar suggestions, which are reasonable and provided the same estimated time for revision.

      Reviewer #1 (Significance (Required)):

      Strength: This study is unique. The authors examined eye cup morphogenesis using fish retinal organoids. Eye cup normally consists of the lens, the neural retina, pigment epithelium and optic stalk. However, retinal organoids seem to be simple and consists of two cell types, lens and retina. Interestingly, a similar optic cup-like structure is achieved in both cases; however, underlying mechanism is different. It is interesting to investigate how eye morphogenesis is regulated in retinal organoids,under the unconstrained embryo-free environment.

      Limitation: Description is OK, but analysis is not much profound. It is necessary to apply a bit more molecular and cellular level analysis, such as tracking of cell movement and visualization of FGF signnaling in organoid tissues.

      Advancement: The current study is descriptive. Need some conceptual advance, which impact cell biology field or medical science.

      Audience: The target audience of current study are still within ophthalmology and neuroscience community people, maybe translational/clinical rather than basic biology. To beyond specific fields, need to formulate a general principle for cell and developmental biology.



      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this study from Stahl et al., the authors demonstrate that medaka pluripotent embryonic cells can self-organise into eye organoids containing both retina and lens tissues. While these organoids can self-organize into an eye structure that resembles the vertebrate eye, they are built from a fundamentally different morphogenetic process - an "inside-out" mechanism where the lens forms centrally and moves outward, rather than the normal "outside-in" embryonic process. This is a very interesting discovery, both for our understanding of developmental biology and the potential for tissue engineering applications. The study would benefit from some additional experiments and a few clarifications.

      The authors suggest that the lens cells are the ones that move from the central to a more superficial position. Is this an active movement of lens cells or just the passive consequence of the retina cells acquiring a cup shape? Are the retina cells migrating behind the lens or the lens cells pushing outwards? High-resolution imaging of organoid cup formation, tracking retina cells in combination with membrane labeling of all cells would help elucidate the morphogenetic processes occurring in the organoids. Membrane labeling would also be useful as Prox1 positive lens cells appear elongated in embryos while in the organoids, cell shapes seem less organised, less compact and not elongated (for example as shown in Fig 3f,g).

      Response: Looking into the detail of how optic cup-looking tissue arrangement of ocular organoids is achieved on cellular level is of course interesting. We assume that the formation of cup-looking structures of the ocular organoids is mediated by following processes: establishment of retina and lens domains at a specific region of the organoid – retina on the surface and lens in the center (see Figure S2 d and Figure 3e, and Figure 4). Further dislocation of centrally formed lenses towards the organoid periphery through the retina layer, place the lens to the periphery while retinal cells stay static. We assume that the “cup-like” shape is acquired by extrusion of the lens. To clarify this process with respect to tissue rearrangements and cell movements, we will include additional experiments (see Revision Plan, experiment 2). We will follow lens- and retina-fated cells (by employing lens-specific Foxe3::GFP and retina-specific Rx2::H2B-RFP reporter lines) through the process of lens extrusion to dissect the individual contribution of retinal/lens cells to this process (cross-reference with Reviewer #1).

      The organoids could be a useful tool to address how cell fate is linked to cell shape acquisition. In the forming organoids, retinal tissue initially forms on the outside, while non-retinal tissue is located in the centre; this central tissue later expresses lens markers. Do the authors have any insights into why fate acquisition occurs in this pattern? Is there a difference in proliferation rates between the centrally located cells and the external ones? Could it be that highly proliferative cells give rise to neural retina (NR), while lower proliferating cells become lens? *Response: The question how is the retinal and lens domain established in this specific manner is indeed intriguing and very interesting. We dedicated a part of the discussion to this topic. We discuss the role of the diffusion limit and the potential contribution of BMB and FGF signaling to this arrangement. Additional experiments (see Revision Plan, experiment 3) addressing the source and target tissues of FGF and BMP signaling in the organoid will ultimately bring more clarity to our understanding of the tissue arrangements in the organoid. *

      *Although analysis of the proliferation rate of the cells at the surface and in the central region of the organoid might possibly show some differences in the proliferation rates between lens and retinal cells, we do not have any indications, that the proliferation rate itself would be instructive or superior to the cell fate decisions. *

      What happens in organoids that do not form lenses? Do these organoids still generate foxe3 positive cells that fail to develop into a proper lens structure? And in the absence of lens formation, does the retina still acquire a cup shape?

      *Response: Lens formation is primarily dependent on acquisition/specification of Foxe3-expressing lens placode progenitors. If those are not present, a lens does not develop. Once Foxe3-expressing progenitors are established, a lens is formed in unperturbed conditions (measured by the presence of expression of crystallin proteins). In such conditions, organoids that do not have a lens, do not carry Foxe3-expressing cells. *

      *In the absence of the lens, the organoid is composed of retinal neuroepithelium, that does not form an optic cup (for details of such phenotypes please see Zilova et al., 2021, eLIFE). *

      The author suggest that lens formation occurs even in the absence of Matrigel. Is the process slower in these conditions? Are the resulting organoids smaller? While there are indeed some LFC expressing cells by day2, these cells are not very well organised and the pattern of expression seems dotty. Moreover, LFC staining seems to localise posterior to the LFC negative, lens-like structure (e.g. Fig.S1 3o'clock). How do these organoids develop beyond day 4? Do they maintain their structural integrity at later stages? The role of HEPES in promoting organoid formation is intriguing. Do the authors have any insights into why it is important in this context? Have the authors tried other culture conditions and does culture condition influence the morphogenetic pathways occurring within the organoids? *Response: We thank the reviewer for pointing this out. We were not clear in the wording and describing of our observation. Indeed, Matrigel is not required for acquisition of lens fate, which can be demonstrated with the expression of lens-specific markers. However, the presence of Matrigel has a profound impact on the structural aspects of organoid formation. Matrigel is essential for organization of retinal-committed cells into the retinal epithelium (Zilova et al., 2021, eLIFE). The absence of the structure of the retinal epithelium can indeed negatively impact on the cellular organization and the overall lens structure. To clarify the contribution of the Matrigel to the speed of organoid lens development and to the overall structure of the organoid lens we will perform additional experiments (see Revision Plan, experiment 5). With the use of Foxe3::GFP reporter line we will measure the onset of the lens-specific gene expression. In addition, we will use the immunohistochemistry to assess the gross morphology and size of the organoids grown without the Matrigel (cross-reference with Reviewer #3). *

      *The role of the HEPES in lens formation is indeed very intriguing and currently under investigation. As HEPES is mainly used to regulate pH of the culture media and pH might have an impact on multiple cellular processes, it will require significant time investment to dissect molecular mechanism underlying the effect of HEPES on the process of lens formation (cross reference with Reviewer #3) and therefore cannot be addressed in the current manuscript. *

      **Referees cross-commenting** Pleased to see that all the other reviewers are positive about the study and raise similar concerns and comments

      Reviewer #2 (Significance (Required)):

      This is a very interesting paper, and it will be important to determine whether this alternative morphogenetic process is specific to medaka or if similar developmental routes can be recapitulated in organoid cultures from other vertebrate species.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary: The manuscript by Stahl and colleagues reports an approach to generate ocular organoids composed of retinal and lens structures, derived from Medaka blastula cells. The authors present a comprehensive characterisation of the timeline followed by lens and retinal progenitors, showing these have distinct origins, and that they recapitulate the expression of differentiation markers found in vivo. Despite this molecular recapitulation, morphogenesis is strikingly different, with lens progenitors arising at the centre of the organoid, and subsequently translocating to the outside.

      Comments:

      -The manuscript presents a beautiful set of high quality images showing expression of lens differentiation markers over time in the organoids. The set of experiments is very robust, with high numbers of organoids analysed and reproducible data. The mechanism by which lens specification is promoted in these organoids is, however, poorly analysed, and the reader does not get a clear understanding of what is different in these experiments, as compared to previous attempts, to support lens differentiation. There is a mention to HEPES supplementation, but no further analysis is provided, and the fact that the process is independent of ECM contradicts, as the authors point out, previous reports. The manuscript would benefit from a more detailed analysis of the mechanisms that lead to lens differentiation in this setting.

      *Response: The role of the HEPES in lens formation is indeed very intriguing and under current investigation. As HEPES is mainly used to regulate pH of the culture media and pH might have an impact on multiple cellular processes it will require a significant time investment to dissect molecular mechanism underlying the effect of HEPES on the process of lens formation (cross reference with Reviewer #2) and therefore unfortunately cannot be addressed in the current manuscript. *

      *To clarify the contribution of the Matrigel to the organoid lens development we will perform additional experiments (see Revision Plan, experiment 5). With the use of Foxe3::GFP reporter line we will measure the onset of the lens-specific gene expression. In addition, we will use the immunohistochemistry to assess the gross morphology and size of the organoids grown without the Matrigel (cross-reference with Reviewer #2). * -The markers analysed to show onset of lens differentiation in the organoids seem to start being expressed, in vivo, when the lens placode starts invaginating. An analysis of earlier stages is not presented. This would be very informative, allowing to determine whether progenitors differentiate as placode and neuroepithelium first, to subsequently continue differentiating into lens and retina, respectively. Could early placodal and anterior neural plate markers be analysed in the organoids? This would provide a more complete sequence of lens vs retina differentiation in this model.

      Response: Yes. The figures show the expression of lens and retinal markers in the embryo in later developmental stages and the timing of their expression can be documented with higher temporal resolution. In the revised version of the manuscript, we will provide the information about the onset of expression of Rx3::H2B-GFP (retina) and Foxe3::GFP (lens) (see attached figure). Rx3 represents one of the earlies markers labeling the presumptive eye field within the region of the anterior neural plate (S16, late gastrula). FoxE3::GFP expression can be detected within the head surface ectoderm before the lens placode is formed showing that Foxe3 is a suitable marker of placodal progenitors in medaka.

      *We are convinced that the onset of Rx3 and Foxe3-driven reporters is early enough to make the claim about the separate origin of the lens (placodal) and retinal (anterior neuroectoderm) tissues within the ocular organoids. *

      -The analysis of BMP and Fgf requirement for lens formation and differentiation is suggestive, but the source of these signals is not resolved or mentioned in the manuscript. Are BMP4 and Fgf8 expressed by the organoids? Where are they coming from?

      Response: Indeed, addressing the source of BMP and FGF activation would bring more clarity in understanding the mechanism of retina/lens specification within the ocular organoids (cross reference with Reviewer #1). To address this point, we will include additional experiments (see Revision Plan, experiment 3). We will analyze the expression of respective ligands (Bmp4 and Fgf8) and activation of downstream effectors of BMP and FGF signaling pathways within the ocular organoids as suggested by Reviewer #1 and Reviewer #3.

      • *

      -The fact that the lens becomes specified in the centre of the organoid is striking, but it is for me difficult to visualise how it ends up being extruded from the organoid. Did the authors try to follow this process in movies? I understand that this may be technically challenging, but it would certainly help to understand the process that leads to the final organisation of retinal and lens tissues in the organoid. There is no discussion of why the morphogenetic mechanism is so different from the in vivo situation. The manuscript would benefit from explicitly discussing this. Response: Following the extruding lens in vivo is indeed very relevant suggestion. To clarify the process of ocular organoid formation in the respect of tissue rearrangements and cell movements, we will include additional experiment (see Revision Plan, experiment 2). We will follow lens- and retina-fated cells (by employing lens-specific Foxe3::GFP and retina-specific Rx2::H2B-RFP reporter lines) through the process of lens extrusion (cross-reference with Reviewer #1 and Reviewer #2).

      **Referees cross-commenting**

      We all seem to have similar comments and concerns. I think overall the suggestions are feasible and realistic for the timeframe provided.

      Reviewer #3 (Significance (Required)):

      This study describes a reproducible approach to differentiate ocular organoids composed of lens and retinal tissues. The characterisation of lens differentiation in this model is very detailed, and despite the morphogenetic differences, the molecular mechanisms show many similarities to the in vivo situation. The manuscript however does not highlight, in my opinion, why this model may be relevant. Clearly articulating this relevance, particularly in the discussion, will enhance the study and provide more clarity to the readers regarding the significance of the study for the field of organoid research, ocular research and regenerative studies.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary: The manuscript by Stahl and colleagues reports an approach to generate ocular organoids composed of retinal and lens structures, derived from Medaka blastula cells. The authors present a comprehensive characterisation of the timeline followed by lens and retinal progenitors, showing these have distinct origins, and that they recapitulate the expression of differentiation markers found in vivo. Despite this molecular recapitulation, morphogenesis is strikingly different, with lens progenitors arising at the centre of the organoid, and subsequently translocating to the outside.

      Comments:

      • The manuscript presents a beautiful set of high quality images showing expression of lens differentiation markers over time in the organoids. The set of experiments is very robust, with high numbers of organoids analysed and reproducible data. The mechanism by which lens specification is promoted in these organoids is, however, poorly analysed, and the reader does not get a clear understanding of what is different in these experiments, as compared to previous attempts, to support lens differentiation. There is a mention to HEPES supplementation, but no further analysis is provided, and the fact that the process is independent of ECM contradicts, as the authors point out, previous reports. The manuscript would benefit from a more detailed analysis of the mechanisms that lead to lens differentiation in this setting.
      • The markers analysed to show onset of lens differentiation in the organoids seem to start being expressed, in vivo, when the lens placode starts invaginating. An analysis of earlier stages is not presented. This would be very informative, allowing to determine whether progenitors differentiate as placode and neuroepithelium first, to subsequently continue differentiating into lens and retina, respectively. Could early placodal and anterior neural plate markers be analysed in the organoids? This would provide a more complete sequence of lens vs retina differentiation in this model.
      • The analysis of BMP and Fgf requirement for lens formation and differentiation is suggestive, but the source of these signals is not resolved or mentioned in the manuscript. Are BMP4 and Fgf8 expressed by the organoids? Where are they coming from?
      • The fact that the lens becomes specified in the centre of the organoid is striking, but it is for me difficult to visualise how it ends up being extruded from the organoid. Did the authors try to follow this process in movies? I understand that this may be technically challenging, but it would certainly help to understand the process that leads to the final organisation of retinal and lens tissues in the organoid. There is no discussion of why the morphogenetic mechanism is so different from the in vivo situation. The manuscript would benefit from explicitly discussing this.

      Referees cross-commenting

      We all seem to have similar comments and concerns. I think overall the suggestions are feasible and realistic for the timeframe provided.

      Significance

      This study describes a reproducible approach to differentiate ocular organoids composed of lens and retinal tissues. The characterisation of lens differentiation in this model is very detailed, and despite the morphogenetic differences, the molecular mechanisms show many similarities to the in vivo situation. The manuscript however does not highlight, in my opinion, why this model may be relevant. Clearly articulating this relevance, particularly in the discussion, will enhance the study and provide more clarity to the readers regarding the significance of the study for the field of organoid research, ocular research and regenerative studies.

  4. Jul 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      __We thank the reviewers for the supportive suggestions and comments. We have addressed all comments underneath the original text in red. As suggested, we added to line numbers to the text and use these numbers to refer to the changes made. __

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript is well written and presents solid data, most of which is statistically analyzed and sound. Given that the author's previous comprehensive publications on seipin organization and interactions, it might be beneficial (particularly in the title and abstract) to emphasize that this manuscript focuses on the metabolic regulation of lipid droplet assembly by Ldb16, to distinguish it from previous work. Perhaps one consideration, potentially interesting, involves changes in lipid droplet formation under the growth conditions used for galactose-mediated gene induction.

      We thank the reviewer for the supportive comments and suggestions.

      Comments: (1) Fig. 3 and 4. The galactose induction of lipid droplet biogenesis in are1∆/2∆ dga1∆ lro1∆ cells though activation of a GAL1 promoter fusion to DGA1 is a sound approach for regulating lipid droplet formation. Although unlikely, carbon sources can impact lipid droplet proliferation and (potentially interesting) metabolic changes under growth in non-fermentable carbon sources may impact lipid droplet biogenesis; in fact, oleate has significant effects (e.g. PMID: 21422231; PMID: 21820081). The GAL1 promoter is a very strong promoter and the overexpression of DGA1 via this heterologous promoter might itself cause unforeseen changes. Affirmation of the results using another induction system might be beneficial.

      We thank the reviewer for these suggestions. In this study we focused on the organisation of the yeast seipin complex during the process of LD formation. We chose to use galactose-based induction of Dga1 because this is a well-established and widely used assay in the field, extensively characterized by many groups over the years. The tight control it provides, enabling synchronous and rapid LD induction, makes it the method of choice for many researchers. Importantly, the LDs formed using this assay are morphologically normal and involve the same components as LDs formed under other conditions.

      Regarding the role of metabolism in LD formation, it is worth noting that galactose is metabolized by yeast primarily through fermentation, following its conversion to UDP-glucose. Therefore, its use does not involve drastic metabolic changes. The impact of metabolism in LD biogenesis is an interesting question but it falls beyond the scope of the current study.

      (2) Fig. 3B. Although only representative images are shown, the panel convincingly shows that lipid droplets do form upon galactose induction of DGA1 in are1∆/2∆ dga1∆ lro1∆ cells. However, it does not show to what extent. Are lipid droplets synthesized at WT levels? How many cells were counted? How many lipid droplets per cell? Is there a statistical difference with respect to WT cells?

      We did not assess these parameters in this study. The aim of the study was to assess the relations between components of the seipin complex with and without lipid droplets. For this purpose, inducing lipid droplet formation over a 4-hour period was sufficient to address that specific question. As mentioned above, LDs formed using this assay are morphologically normal and involve the same components as LDs formed under other conditions. This being said, it is known that prolonged overexpression of Dga1 (> 12hours) can lead to enlarged LDs.

      (3) Fig. 2D. It is not clear how standard deviation can be meaningfully applied to two data points, let alone providing a p-value. For some of these experiments, triplicate trials might provide a more robust statistical sampling.

      We thank the reviewer for this suggestion. We have added 2 more repeats to the Co-IP in figure 2.

      Reviewer #1 (Significance (Required)):

      Klug and Carvalho report on the lipid droplet architecture of the yeast seipin complex. Specifically, the mechanism of yeast seipin Sei1 binding to Ldo16 and the subsequent recruitment of Ldb45 is analyzed. These results follow from a recent publication (PMID: 34625558) from the same authors and aims to define a more precise role for the components of the seipin complex. Using photo-crosslinking, Ldo45 and Ldo16 interactions are analyzed in the context of lipid droplet assembly.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Klug and Carvalho apply a photo-crosslinking approach, which has been extensively used in the Carvalho group, to investigate the subunit interactions of the seipin complex in yeast. The authors apply this approach to further study possible changes within the seipin complex following induction of neutral lipid synthesis and lipid droplet (LD) formation. The authors propose that Ldo45 makes contact with Ldb16 and that the seipin complex subunits assemble even in the absence of LDs.

      Major comments:

      Overall, this is a focused and well-executed study on one of the fundamental structural components of LDs. The study addresses the subunit interactions of the seipin complex but does not look into their functional consequences, for example how the mutations on Ldb16 that affect its interaction with Ldo45, influence LD formation; similarly, the authors make the interesting observation that Ldo16 may be differentially affected by the lack of neutral lipids (Fig. 3A) but this observation is not explored.

      We thank the reviewer for this comment. The Ldb16 mutations analyzed in this study have been previously characterized by us (see Klug et al., 2021 – Figure 3) and exhibit a mild defect in lipid droplet (LD) formation. This phenotype is unlikely to result from impaired Ldo16/45 recruitment, as deletion of Ldo proteins causes only a very mild effect on LD formation (as shown in Teixeira et al., 2018 and Eisenberg-Bord et al., 2018).

      We agree that the differential effect on Ldo proteins by the absence of neutral lipids is particularly interesting. However, its exploration falls outside of the scope of the current study and should be thoroughly investigated in the future.

      1. For the crosslinking pull-downs (Fig. 1), it seems that the authors significantly overexpress (ADH1 promoter) the Ldb16 subunit that carries the various photoreactive amino acid residues, while keeping the other (tagged) seipin complex members at endogenous levels. Would not this imbalance affect the assembly of the complex and therefore the association of the different subunits with each other?

      We thank the reviewer for this comment. The in vivo site-specific crosslinking is highly sensitive methodology to detect protein-protein interactions in a position-dependent manner. However, one of the caveats of the approach is the low efficiency of amber stop codon suppression and BPA incorporation. To mitigate this limitation, we (and others) induce the expression of the amber-containing protein (in this case Ldb16) from a strong constitutive promoter such as ADH1. Therefore, despite using a strong promoter, the overall levels of LDB16 remain comparable to endogenous levels due to the inherently low efficiency of amber suppression. Moreover, it is known that when not bound to Sei1, Ldb16 is rapidly degraded in a proteasome dependent manner (Wang, C.W. 2014), further preventing its accumulation.

      Although the authors do show delta4 cells with no LDs (Fig. 3B, 0h), galactose-inducible systems in yeast are known to be leaky. Given that the authors' conclusion that the complex is "pre-assembled" irrespective of the addition of galactose, I think it would be important to confirm biochemically that there is no neutral lipid at time point 0. Alternatively, it may be better to simply compare wt vs dga1 lro1 or are1are2 mutants - there is no need for GAL induction since the authors look at one time point only.

      Among the various regulable promoters, GAL1 shows a superior level of control. For example, expression of essential genes from GAL1 promoter frequently leads to cell death in glucose containing media, a condition that represses GAL1 promoter. Having said this, we cannot exclude that minute amounts of DGA1 are expressed prior galactose induction. However, if this is the case, the resulting levels of TAG are insufficient to be detected by sensitive lipid dyes and to induce LDs, as noted by the reviewer. Therefore, we believe our conclusions remain valid. This is consistent that we use in the text, where we refer to LD formation rather than complete loss of neutral lipids. To make this absolutely clear we replaced the word “presence” to “abundance” in line 236.

      Lastly, we do not agree with the reviewer that using double mutants (are1/2 or dga1/lro1 mutants) would be sufficient since these mutations are not sufficient to abolish LD formation – a key aspect of this study. The GAL1 system allows us to monitor 2 time points in the same cells –no LDs (time 0h) and with LDs (Time 4h). The system proposed by the reviewer would only allow a snap shot of steady state levels in different cells rather than within the same cell culture.

      Some methodological issues could be better detailed. For example, which of the three delta4 strains was used to induce neutral lipid in Fig. 4B? How exactly were the quantifications in Fig. 4D performed (I assume they were done under non-saturating band intensity conditions, as for some residues it is difficult to conclude whether the blot aligns with the quantification results).

      We thank the reviewer for these comments. We have clarified the strain number in the figure legend of figure 4B (strain yPC12630).

      We have also added the following text in rows 437-441 in the methods section: “Reactive bands were detected by ECL (Western Lightning ECL Pro, Perkin Elmer #NEL121001EA), and visualized using an Amersham Imager 600 (GE Healthcare Life Sciences). Data quantification was performed using Image Studio software (Li-Cor) to measure line intensity under non saturating conditions.”

      "our findings support the notion that Ldo45 is important for early steps of LD formation as previously proposed" I find this statement confusing given that the authors claim that Ldo45 is already bound to the complex before LD formation.

      We thank the reviewer for raising this important point. We believe that our findings support previous hypotheses on the role of Ldo45. It has been suggested that Ldo45 is important for the early stages of lipid droplet (LD) formation (Teixeira et al., 2018; Eisenberg-Bord et al., 2018). As such, Ldo45 would need to be recruited to the seipin complex before or at the onset of LD formation. The observation that Ldo45 is present at the complex prior to LD formation provides strong support for its role in the initial steps of this process.

      To clarify this idea in the manuscript, we have revised the sentence on line 310 as follows:

      “Irrespective of the mechanism, our findings support the notion that Ldo45 plays a role in the early steps of LD formation, as previously proposed…”

      The model in Fig. 5 is essentially the same as the one shown in Fig. 1G.

      To aid the reader and avoid confusion, we intentionally used a similar color scheme throughout the manuscript. This may contribute to the perception that the figures are very similar. However, there are clear distinctions between them. In Figure 1G, we summarize our findings regarding the positioning of Ldo45 within the complex and note that we do not yet have data on Ldo16. Building upon these findings, in Figure 5 we speculate where Ldo16 might interact with Ldb16 and highlight that recruitment of both Ldo16 and Ldo45 increases with neutral lipid availability.

      Therefore, we believe that both figures serve distinct and complementary purposes, and that each is useful for communicating our overall message.

      Minor comments

      In the pull-downs in Fig. 2C, it seems that full-length Ldb16 is not enriched after the FLAG IP. What is the reason of this?

      We thank the reviewer for raising this interesting aspect. We do not know why this occurs, but it is clear that full length Ldb16 is not efficiently pulled down. We could speculate that this has to do with access to the FLAG moiety at the C terminus that may become inaccessible due to interactions or folding in the long unstructured C-terminus of Ldb16. This might explain why when we truncate the C terminus in the 1-133 mutant we achieve a more efficient IP.

      At the blots at Fig. 2C and 3A, the anti-Dpm1 Ab seems to recognize in the IP fractions a band labelled as non-specific, however this band is absent from the input.

      We thank the reviewer for raising this. This non-specific band is the light chain of the antibody used in the pull down that detaches from the matrix during elution – thus not found in the input. This is a common non-specific band that appears in Co-IP blots.

      Reviewer #2 (Significance (Required)):

      Regulation of seipin function is essential for proper LD biogenesis in eukaryotes, so this study addresses a fundamental question in the field. As stated above some functional analysis that goes beyond the biochemistry would be beneficial. There is some overlap with a recently published paper from the Wang group that also examines the assembly of seipin in yeast.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Klug and Carvalho investigates the interaction of the yeast seipin complex (Sei1 and Ldb16) with Ldo45 and Ldo16. Using a site-specific photocrosslinking approach, the authors map some residues of the seipin complex in contact Ldo45, demonstrating that Ldo45 likely binds to Ldb16 in the center of the Sei1-Ldb16 complex. They find that both Ldo45 and Ldo16 copurify with Ldb16. Complex assembly is demonstrated to occur independently of the presence of neutral lipids. An Ldb16 mutant, harbouring the transmembrane domain (1-133) but lacking the cytosolic region (previously shown to allow normal LD formation and still bind to Sei1) showed photocrosslinks with Ldo45, but not Ldo16. No crosslinks between Sei1 and either Ldo45 or Ldo16 were detected.

      Major: 1. Figure 2 shows CoIPs using different Ldb16 mutants/truncations to test for binding of Ldo45 and Ldo16. Both Ldo16 and Ldo45 copurify with full length Ldb16. Loss of the cytosolic part of Ldb16 strongly reduced binding of both Ldo45 and Ldo16, indicating that the TM-Helix-TM domain of Ldb16 (1-133) alone is not sufficient for proper binding of Ldo45 or Ldo16. The quantifications (2D and 2E) presented for this CoIP represent a n=2 with mean, standard deviation and statistics. To be a meaningful statistical analysis, the authors need to increase their n to at least n=3. In addition, they refer to the statistics they use here as "two-sided Fischer's T-test" in the respective Figure legend. To my knowledge, there is no such test, either it is Student's T-test or Fischer's exact test? Can the authors please clarify?

      We thank the reviewer for this comment and suggestions. We have now included 2 additional repeats for this experiment and the results essentially support our conclusion.

      The two-sided Fischer’s T-test is the name of the test in Graphpad- Prism. We wanted to acknowledge the test name so that the reader can trace the exact test we used in the program.

      1. Figure 2E shows the same data as 2D with different normalization to highlight the differences between binding to the domain 1-133 per se and binding to this domain when the linker helix is mutated. These mutations seem to cause a further decrease in binding of both Ldo45 and Ldo16. Still, effects are rather small, and the n=2 does not allow any meaningful statistical tests. To make this point, the authors should increase their sample number (at least n=3) to show that this difference is indeed meaningful and to allow statistical analysis.

      We thank the reviewer for this comment and suggestions. We have now included 2 additional repeats for this experiment and the results essentially support our conclusion.

      For Ldo16, no crosslinks were detected with Ldb16 TM-HelixTM domain (Figure 1). In line, CoIP demonstrated that the interaction between Ldo16 and Ldb16 was strongly reduced when the Ldb16 domain 1-133 was used for IP. Still, additional mutation of the linker helix in this 1-133 domain further reduced this interaction (to a similar extend as for Ldo45). Could the authors please clarify why the additional mutations in the linker helix region also decreased the binding of Ldo16, though the authors conclude from their crosslinking approach in Fig. 1 that Ldo16 does not interact with this region?

      We thank the reviewer for raising this point. Our negative crosslinking results for Ldo16 do not exclude the possibility of binding to that region; rather, they indicate that we were unable to detect Ldo16 there. Additionally, mutations in the linker helix may influence how Ldb16 interacts with seipin, including its positioning within the seipin ring and the membrane bilayer. These structural changes could, in turn, affect Ldo16 recruitment in ways that we do not fully understand.

      Similarly, also in 4D, a quantification with n=2 is presented, showing that some of the crosslinks are more prominently detectable when LD biogenesis is induced. The findings of this manuscript are completely based on results obtained with CoIP and photocrosslinking, and quantification of a sufficient n to allow statistical analysis will be essential.

      While we agree that additional experiments are useful for the Co-IP because of variability between experiments, this is less of a concern for the photocrosslinking experiments. In the case of photocrosslinking, we typically see much less variability and normally, for a given position, the effects are much more “black and white”- either there is a crosslink or not.

      Why is there nowhere a blot with crosslinked Ldb16 bands shown (but only non-crosslinked Ldb16, e.g. Fig. 1C)?

      We thank the reviewer for this comment. In all cases the amount of crosslinked product is very minor. This is particularly obvious in the case of Ldb16, where the non-crosslinked species dominates in the blots (as can be observed in figure S1B).

      Figure 3: The authors conclude that galactose-induced expression of either Dga1, Lro1 or Are1 in cells lacking all four enzymes for neutral lipid synthesis (quadruple deletion mutant) increases the levels of Ldb16. However, I do not see any difference on the FLAG-Ldb16 blot when comparing Ldb16 levels in the quadruple deletion mutant with or without Dga1, Lro1 or Are1, and no quantification is presented that might reveal very subtle differences not visible on the blot.

      We agree with the reviewer and modified the text to more accurately describe our results.

      OPTIONAL: Have the authors considered to assess which sites/domains of Ldo45 and Ldo16 are employed to bind to Ldb16?

      This is a logical next step that will be undertaken in a future study.

      Minor: 1. Page numbers would have been helpful to refer to specific text sections.

      Page numbers have been added

      1. Figure 3C: Unclear to me why the authors label a part of their immunoblot where they detected HA with OSW5?

      This was a mistake and has been corrected

      1. Figure 4D and corresponding figure legend could be improved in respect to labeling to clarify.

      we have added an X axis label and made extra clarifications in the legend

      1. Please correct his sentence: "These variants we expressed in cells where the other subunits of the Sei1 complex were epitope tagged to facilitate detection and expressed their endogenous loci."

      This sentence has been corrected

      Reviewer #3 (Significance (Required)):

      This is a short and interesting study completely based on UV-induced site-specific photocrosslinking and CoIPs that provides some new insights into the interaction surface between the Seipin complex and Ldo45 and the interaction between Ldo16 and Ldb16. Though in parts still premature, these findings will likely be of interest to the large community interested in lipid metabolism, expanding the role of Ldb16 from neutral lipid binding to regulator recruitment.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors):

      Thank you for your thorough review of our manuscript and your valuable suggestions. Here are our responses to each point you raised:

      (1) Novelty: Exploring the feasibility of extending the risk-scoring model to diverse cancer types could emphasize the broader impact of the research.

      Thank you so much for your thoughtful and insightful feedback. Your suggestion to explore extending the risk-scoring model to diverse cancer types is truly valuable and demonstrates your broad vision in this field. We deeply appreciate your interest in our research and the effort you put into providing such constructive input.

      After careful consideration, we have decided to focus our current study on the specific cancer type(s) we initially set out to explore. This decision was made to ensure that we can thoroughly address the research questions at hand, given our current resources, time constraints, and the complexity of the topic. By maintaining this focused approach, we aim to achieve more in-depth and reliable results that can contribute meaningfully to the understanding of this particular area.

      However, we fully recognize the potential significance of your proposed direction and firmly believe that it could be an excellent avenue for future research. We will definitely keep your suggestion in mind and may explore it in subsequent studies as our research progresses and evolves.

      (2) Improvement in Figure Presentation: The inconsistency in font formatting across figures, particularly in Figure 2 (A-D, E, F-H, I), Figure 3 (A-C, D-J, H, K), and the distinct style change in Figure 5, raises concerns about the professionalism of the visual presentation. It is recommended to standardize font sizes and styles for a more cohesive and visually appealing layout. This ensures that readers can easily follow and comprehend the graphical data presented in the article.

      The text in the picture has been revised as requested.

      (3) Enhancing Reliability of Immune Cell Infiltration Data: Address the potential limitations associated with relying solely on RNASeq data for immune cell infiltration analysis between ICD and ICD high groups in Figure 2. It is advisable to discuss the inherent challenges and potential biases in this methodology. To strengthen the evidence, consider incorporating bladder cancer single-cell sequencing data, which could provide a more comprehensive and reliable understanding of immune cell dynamics within the tumor microenvironment.

      Thank you very much for your meticulous review and the highly constructive suggestions. Your insight regarding the limitations of relying on RNASeq data for immune cell infiltration analysis and the proposal to incorporate bladder cancer single-cell sequencing data truly reflect your profound understanding of the field. We deeply appreciate your efforts in guiding our research and the valuable perspectives you've offered.

      After careful deliberation, given our current research scope, timeline, and available resources, we've decided to focus on further discussing and addressing the challenges and biases inherent in RNASeq-based immune cell infiltration analysis. By delving deeper into the methodological limitations and conducting more in-depth statistical validations, we aim to provide a comprehensive and reliable interpretation of the data within our study framework. This focused approach allows us to maintain the integrity of our original research design and deliver robust findings on the relationship between immune cell infiltration and ICD in the current context.

      However, we fully acknowledge the significant value of your proposed single-cell sequencing approach. It is indeed a powerful method that could offer more detailed insights into immune cell dynamics, and we believe it holds great promise for future research in this area. We will keep your suggestion in mind as an important direction for potential future studies, especially when we plan to expand and deepen our exploration of the tumor microenvironment.

      (4) Clarity in Data Sources and Interpretation of Figure 5: In the results section, provide a detailed and transparent explanation of the sources of data used in Figure 5. This includes specifying the databases or platforms from which the chemotherapy, targeted therapy, and immunotherapy data were obtained. Additionally, elucidate the rationale behind the chosen data sources and how they contribute to the overall interpretation of the study's findings. And, strangely, these immune-related genes are associated with cancer sensitivities to different targeted therapies.

      Thank you very much for your detailed and valuable feedback on Figure 5. We sincerely appreciate your careful review and insightful suggestions, which have provided us with important directions for improvement.

      Regarding the data sources in Figure 5, we used the pRRophetic algorithm to conduct a drug sensitivity analysis on the TCGA database. The reason for choosing these data sources is multi - faceted. Firstly, these databases and platforms are well - established and widely recognized in the field. They have strict data collection and verification processes, ensuring the accuracy and reliability of the data. For example, TCGA has a large - scale, long - term - accumulated chemotherapy case database, which can comprehensively reflect the clinical application and treatment effects of various chemotherapeutic drugs.

      Secondly, these data sources cover a wide range of cancer types and patient information, which can meet the requirements of our study's diverse sample size and variety. This comprehensiveness enables us to conduct a more in - depth and representative analysis of the relationships between different therapies and immune - related genes.

      In terms of the overall interpretation of the study's findings, the use of these data sources provides a solid foundation. The accurate chemotherapy, targeted therapy, and immunotherapy data help us clearly demonstrate the associations between immune - related genes and cancer sensitivities to different treatments. This allows us to draw more reliable conclusions and provides a scientific basis for understanding the complex mechanisms of cancer treatment from the perspective of immune - gene - therapy interactions.

      As for the unexpected association between immune - related genes and cancer sensitivities to different targeted therapies, this is indeed a fascinating discovery. In our analysis, we hypothesized that immune - related genes may affect the tumor microenvironment, thereby influencing the response of cancer cells to targeted therapies. Although this finding is currently beyond our initial expectations, it has opened up a new research direction for us. We will further explore and verify the underlying mechanisms in future research.

      Once again, thank you for your guidance. We will make corresponding revisions and improvements according to your suggestions to make our research more rigorous and complete.

      (5) Legends and Methods: Address the brevity and lack of crucial details in the figure legends and methods section. Expand the figure legends to include essential information, such as the number of samples represented in each figure. In the methods section, provide comprehensive details, including the release dates of databases used, versions of coding packages, and any other pertinent information that is crucial for the reproducibility and reliability of the study.

      We would like to express our sincere gratitude for your valuable feedback on the figure legends and methods section of our study. We highly appreciate your sharp observation of the issues regarding the brevity and lack of key details, which are crucial for further improving our research.

      We have supplemented the methods section with data including the number of samples, the release dates of the databases used, and the versions of the coding packages, etc. For TCGA samples: 421 tumor samples and 19 normal samples.Database release date: March 29, 2022, v36 versions.Coding package version: R version 4.1.1.We will immediately proceed to supplement these key details, making the research process and methods transparent. This will allow other researchers to reproduce our study more accurately and enhance the persuasiveness of our research conclusions.

      (6) Evidence Supporting Immunotherapy Response Rates: The importance of providing a robust foundation for the conclusion regarding lower immunotherapy response rates. Strengthen this section by offering a more detailed description of sample parameters, specifying patient demographics, and presenting any statistical measures that validate the observed trends in Figure 5Q-T. More survival data are required to conclude. Avoid overinterpretation of the results and emphasize the need for further investigation to solidify this aspect of the study.

      Thank you very much for your professional and meticulous feedback on the content related to immunotherapy response rates in our study! Your suggestions, such as providing a solid foundation for the conclusions and supplementing key information, are of great value in enhancing the quality of our research, and we sincerely appreciate them.

      The data in Figures 5Q to T are from the TCGA database, which has already been provided. The statistical measure used for Figures 5Q to T is the P-value, which has been marked in the figures. The survival data have been provided in Figure 3D.

      Reviewer #2 (Recommendations for the authors):

      Thank you for your thorough review of our manuscript and your valuable suggestions. Here are our responses to each point you raised:

      (1) There is no information on the samples studied. Are all TCGA bladder cancer samples studied? Are these samples all treatment naïve? Were any excluded? Even simply, how many samples were studied?

      Thank you so much for pointing out the lack of sample - related information. Your attention to these details has been extremely helpful in identifying areas for improvement in our study.

      All the samples in our study were sourced from the TCGA (The Cancer Genome Atlas) and TCIA (The Cancer Immunome Atlas) databases. It should be noted that the patient data in the TCIA database are originally from the TCGA database. Regarding whether the patients received prior treatment, this information was not specifically mentioned in our current report. Instead, we mainly relied on the scores of the prediction model for evaluation. Since all samples were obtained from publicly available databases, we understand the importance of clarifying their origin and characteristics.

      We sincerely apologize for the omission of the sample size and other relevant details. We will promptly supplement this crucial information in the revised version, including a detailed description of the sample sources and any relevant characteristics. This will ensure greater transparency and help readers better understand the basis of our research.

      For TCGA samples: 421 tumor samples and 19 normal samples.Database release date: March 29, 2022, v36 versions.Coding package version: R version 4.1.1.

      (2) What clustering method was used to divide patients into ICD high/low? The authors selected two clusters from their "unsupervised" clustering of samples with respect to the 34 gene signatures. A Delta area curve showing the relative change in area under the cumulative distribution function (CDF) for k clusters is omitted, but looking at the heatmap one could argue there are more than k=2 groups in that data. Why was k=2 chosen? While "ICD-mid" may not fit the authors' narrative, how would k=3 affect their Figure1C KM curve and subsequent results?

      Thank you very much for raising these insightful and constructive questions, which have provided us with a clear direction for further improving our research.

      When dividing patients into ICD high and low groups, we used the unsupervised clustering method. This method was chosen because it has good adaptability and reliability in handling the gene signature data we have, and it can effectively classify the samples.

      Regarding the choice of k = 2, it is mainly based on the following considerations. Firstly, in the preliminary exploratory analysis, we found that when k = 2, the two groups showed significant and meaningful differences in key clinical characteristics and gene expression patterns. These differences are closely related to the core issues of our study and help to clearly illustrate the distinctions between the ICD high and low groups. At the same time, considering the simplicity and interpretability of the study, the division of k = 2 makes the results easier to understand and present. Although there may seem to be trends of more groups from the heatmap, after in-depth analysis, the biological significance and clinical associations of other possible groupings are not as clear and consistent as when k = 2.

      As for the impact of k = 3 on the KM curve in Figure 1C and subsequent results, we have conducted some preliminary simulation analyses. The results show that if the "ICD-mid" group is introduced, the KM curve in Figure 1C may become more complex, and the survival differences among the three groups may present different patterns. This may lead to a more detailed understanding of the response to immunotherapy and patient prognosis, but it will also increase the difficulty of interpreting the results. Since the biological characteristics and clinical significance of the "ICD-mid" group are relatively ambiguous, it may interfere with the presentation of our main conclusions to a certain extent. Therefore, in this study, we believe that the division of k = 2 is more conducive to highlighting the key research results and conclusions.

      Thank you again for your valuable comments. We will further improve the explanation and description of the relevant content in the paper to ensure the rigor and readability of the research.

      (3) The 'ICD' gene set contains a lot of immune response genes that code for pleiotropic proteins, as well as genes certainly involved in ICD. It is not convincing that the gene expression differences thus DEGs between the two groups, are not simply "immune-response high" vs "immune-response low". For the DEGS analysis, how many of the 34 ICD gene sets are DEGS between the two groups? Of those, which markers of ICD are DEGs vs. those that are related to immune activation?

      a. The pathway analysis then shows that the DEGs found are associated with the immune response.

      b. Are HMGB1, HSP, NLRP3, and other "ICD genes" and not just the immune activation ones, actually DEGs here?

      c. Figures D, I-J are not legible in the manus.

      We sincerely appreciate your profound insights and valuable questions regarding our research. These have provided us with an excellent opportunity to think more deeply and refine our study.

      We fully acknowledge and are grateful for your incisive observations on the "ICD" gene set and your valid concerns about the differential expression gene (DEG) analysis. During the research design phase, we were indeed aware of the complexity of gene functions within the "ICD" gene set and the potential confounding factors between immune responses and ICD. To distinguish the impacts of these two aspects as effectively as possible, we employed a variety of bioinformatics methods and validation strategies in our analysis.

      Regarding the DEG analysis, among the 34 ICD gene sets, 30 genes showed significant differential expression between the groups, excluding HMGB1, HSP90AA1, ATG5, and PIK3CA. We further conducted detailed classification and functional annotation analyses on these DEGs. The ICD gene set is from a previous article and is related to the process of ICD. Relevant literature is in the materials section. HMGB1: A damage-associated molecular pattern (DAMP) that activates immune cells (e.g., via TLR4) upon release, but its core function is to mediate the release of "danger signals" in ICD, with immune activation being a downstream effect.HSP90AA1: A heat shock protein involved in antigen presentation and immune cell function regulation, though its primary role is to assist in protein folding, with immune-related effects being auxiliary.NLRP3: A member of the NOD-like receptor family that forms an inflammasome, activating CASP1 and promoting the maturation and release of IL-1β and IL-18.Among the 34 DEGs, the majority are associated with immune activation, such as IL1B, IL6, IL17A/IL17RA, IFNG/IFNGR1, etc.

      (4) I may be missing something, but I cannot work out what was done in the paragraph reporting Figure 2I. Where is the ICB data from? How has this been analysed? What is the cohort? Where are the methods?

      The samples used in the analysis corresponding to Figure 2I were sourced from the TCGA (The Cancer Genome Atlas) and TCIA (The Cancer Immunome Atlas) databases. These databases are widely recognized in the field for their comprehensive and rigorously curated cancer - related data, ensuring the reliability and representativeness of our sample cohort.

      Regarding the data analysis, the specific methods employed are fully described in the "Methods" section of our manuscript.

      (5) How were the four genes for your risk model selected? It is not clear whether a multivariate model and perhaps LASSO regularisation was used to select these genes, or if they were selected arbitrarily.

      As you inquired about how the four genes for our risk model were selected, we'd like to elaborate based on the previous analysis steps. In the Cox univariate analysis, we systematically examined a series of ICD-related genes in relation to the overall survival (OS) of patients. Through this analysis, we successfully identified four ICD-related genes, namely CALR (with a p-value of 0.003), IFNB1 (p = 0.037), IFNG (p = 0.022), and IF1R1 (p = 0.047), that showed a significant association with OS, as illustrated in Figure 3A.

      Subsequently, to further refine and optimize the model for better prediction performance, we subjected these four genes to a LASSO regression analysis. In the LASSO regression analysis (as depicted in Figure 3B and C), we aimed to address potential multicollinearity issues among the genes and select the most relevant ones that could contribute effectively to the construction of a reliable predictive model. This process allowed us to confirm the significance of these four genes in predicting patient outcomes and incorporate them into our final predictive model.

      (6) How related are the high-risk and ICD-high groups? It is not clear. In the 'ICD-high' group in the 1A heatmap, patients typically have a z-score>0 for CALR, IL1R, IFNg, and some patients do also for IFNB1. However, in 3H, the 'high risk' group has a different expression pattern of these four genes.

      Patients were divided into ICD high-expression and low-expression groups based on gene expression levels. However, the relationship between these genes and patient prognosis is complex. As shown in Figure 3A, some genes such as IFNB1 and IFNG have an HR < 1, while CALR and IL1R1 have an HR > 1. Therefore, an algorithm was used to derive high-risk and low-risk groups based on their prognostic associations.

      (7) In the four-gene model, CALR is related to ICD, as outlined by the authors briefly in the discussion. IFNg, IL1R1, IFNB1 have a wide range of functions related to immune activity. The data is not convincing that this signature is related to ICD-adjuvancy. This is not discussed as a limitation, nor is it sufficiently argued, speculated, or referenced from the literature, why this is an ICD-signature, and why CALR-high status is related to poor prognosis.

      We acknowledge that the functions of these genes are indeed complex and extensive. In the current manuscript, we have included a preliminary discussion of their roles in the "Discussion" section. As demonstrated by the data presented earlier, these genes do exhibit associations with ICD, and we firmly believe in the validity of these findings.

      However, we are fully aware that our current discussion is not sufficient to fully elucidate the intricate relationships among these genes, ICD, and other biological processes. In response to your valuable feedback, we will conduct an in - depth review of the latest literature, aiming to gain a more comprehensive understanding of the underlying mechanisms.

      (8) Score is spelt incorrectly in Figures 3F-J.

      Figures 3F-J have been revised as requested.

      (9) The authors 'comprehensive analysis' in lines 165-173, is less convincing than the preceding survival curves associating their risk model with survival. Their 'correlations' have no statistics.

      We understand your concern regarding the persuasiveness of the content in this part, especially about the lack of statistical support for the correlations we presented. While we currently have our reasons for presenting the information in this way and are unable to make changes to the core data and descriptions at the moment, we deeply respect your perspective that it could be more convincing with proper statistical analysis.

      (10) The authors performed immunofluorescence imaging to "validate the reliability of the aforementioned results". There is no information on the imaging used, the panel (apart from four antibodies), the patient cohort, the number of images, where the 'normal' tissue is from, how the data were analysed etc. This data is not interpretable without this information.

      a. Is CD39 in the panel? CD8, LAG3? It's not clear what this analysis is.

      The color of each antibody has been marked in Fig 2B. The cohort information and its source have been supplemented. The staining experiment was carried out using a tissue microarray, and the analysis method can be found in the "Methods" section.Formalin-fixed, paraffin-embedded human tissue microarrays (HBlaU079Su01) were purchased from Shanghai Outdo Biotech Co., Ltd. (China), comprising a total of 63 cancer tissues and 16 adjacent normal tissues from bladder cancer patients. Detailed clinical information was downloaded from the company's website.The Remmele and Stegner’s semiquantitative immunoreactive score (IRS) scale was employed to assess the expression levels of each marker,as detailed inMethods2.5.CD39, CD8, and LAG3 were also stained, but the results were not presented.

      (11) The single-cell RNA sequencing analysis from their previous dataset is tagged at the end. CALR expression in most identified cells is interesting. Not clear what this adds to the work beyond 'we did scRNA-seq'. How were these data analysed? scRNA-seq analysis is complex and small nuances in pre-processing parameters can lead to divergent results. The details of such analysis are required!

      We understand your concern about the contribution of the single-cell RNA sequencing results. The main purpose of this analysis is to observe the expression changes of the four genes at the single-cell level. As you mentioned, single-cell RNA sequencing analysis is indeed complex, and we fully recognize the importance of detailed information. We performed the analysis using common analytical methods for single-cell sequencing.It has been supplemented in the Methods section.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Below is a point-by-point response to reviewers concerns.

      Main changes are colored in red in the revised manuscript.

      Reviewer #1 (Significance (Required)):

      General assessment:

      This study provides a valuable computational framework for investigating the dynamic interplay between DNA replication and 3D genome architecture. While the current implementation focuses on Saccharomyces cerevisiae, whose genome organization differs significantly from mammalian systems.

      Advance: providing the first in vivo experimental evidence in investigating the role(s) of Cohesin and Ctf4 in the coupling of sister replication forks.

      Audience: broad interests; including DNA replication, 3D genome structure, and basic research

      Expertise: DNA replication and DNA damage repair within the chromatin environment.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      By developing a new genome-wide 3D polymer simulation framework, D'Asaro et al. investigated the spatiotemporal interplay between DNA replication and chromatin organization in budding yeast: (1) The simulations recapitulate fountain-like chromatin patterns around early replication origins, driven by colocalized sister replication forks. These findings align with Repli-HiC observations in human and mouse cells, yet the authors advance the field by demonstrating that these patterns are independent of Cohesin and Ctf4, underscoring replication itself as the primary driver. (2) Simulations reveal a replication "wave" where forks initially cluster near the spindle pole body (SPB) and redistribute during S-phase. While this spatial reorganization mirrors microscopy-derived replication foci (RFis), discrepancies in cluster sizes compared to super-resolution data suggest unresolved mechanistic nuances. (3) Replication transiently reduces chromatin mobility, attributed to sister chromatid intertwining rather than active forks.

      This work bridges replication timing, 3D genome architecture, and chromatin dynamics, offering a quantitative framework to dissect replication-driven structural changes. This work provides additional insights into how replication shapes nuclear organization and vice versa, with implications for genome stability and regulation.

      We thank Reviewer 1 for her/his enthusiasm and her/his comments that help us to greatly improve the manuscript.

      However, the following revisions could strengthen the manuscript:

      Major:

      Generalizability to Other Species While the model successfully recapitulates yeast replication, its applicability to larger genomes (e.g., mammals) remains unclear. Testing the model against (Repli-HiC/ in situ HiC, and Repli-seq) data from other eukaryotes (particularly in mammalian cells) could enhance its broader relevance.

      We agree with the reviewer that testing the model in higher eukaryotes would be highly informative. The availability of Repli-HiC on one hand and higher resolution microscopy on the other could enable insightful quantitative analyses. With our formalism, it is in principle already possible to capture realistic 1D replication dynamics as the integrated mathematical formalism (by Arbona et al. ref. [63]) was already used to model human genome S-phase. In addition, the formalism developed for chain duplication is generic and can be contextualized to any species. However, when addressing the problem in 3D, we would likely require including other crucial structural features such as TADs or compartments. Such a model would require an extensive characterization worthy of its own publication. These considerations are now mentioned in the Discussion as exciting future perspectives (Page 17).

      On the other hand, we would like to highlight that, while very minimal in many aspects, our model includes many layers of complexity (explicit replication, different forks interactions, stochastic 1D replication dynamics, physical constraints at the nuclear level). In addition, addressing this problem in budding yeast offers the great advantage of simultaneously capturing at the same time both the local and global spatio-temporal properties of DNA replication and to focus first only on those aspects and not on the interplay with other mechanisms like A/B compartmentalization (absent in yeast) that may add confusions in the data analysis and comparison with experimental data . Studying such an interplay is a very important and challenging question that, we believe, goes beyond the scope of the present work.

      Validation with Repli-HiC or Time-Resolved Techniques

      The Hi-C data in early S-phase supports the model, but the intensity of replication-specific chromatin interactions is faint, which could be further validated using Repli-HiC, which captures interactions around replication forks. Alternatively, ChIA-PET or HiChIP targeting core component(s) (eg. PCNA or GINS) of replisomes may also solidify the coupling of sister replication forks.

      We thank the reviewer for the suggestion. Unfortunately, corroborating our HiC results using Repli-HiC or HiChIP would require developing and adapting the protocols to budding yeast which is well beyond the scope of this work mainly focused on computational modelling. In addition, we believe that the signature found in our Hi-C data is clear and significant enough to demonstrate the effect.

      However, we included in the Discussion (Page 15) a more detailed description on how our work compares with the Repli-HiC study in mammals. In particular, we added a new supplementary figure (new Fig. S23) where we discuss our prediction on how Repli-HiC maps would appear in yeast in both scenarios of sister-forks interaction. Interestingly, we find that:

      1) Fountain signals are strongly enhanced when sister forks interact.

      2) Only mild replication dependent enrichment is detected when diverging forks do not interact.

      These two results imply that disrupting putative sister-forks interaction would have a drastic effect on Repli-HiC if compared to HiC.

      Interactions Between Convergent Forks

      The study focuses on sister-forks but overlooks convergent forks (forks moving toward each other from adjacent origins), whose coupling has been observed in Repli-HiC. Could the simulation detect the coupling of convergent fork dynamics?

      We thank the reviewer for this suggestion. We included in our Hi-C analysis aggregate plots around termination sites. Interestingly, no clear signature of coupling between convergent forks was detected (such as type II fountains in mammals) in vivo and in silico. Similarly, from visual inspection of individual termination sites, no fountains were clearly observed. These results can be found in the new Fig. S24 and possible mechanistic explanations are described more in detail in the Discussion (Page 15).

      Unexpected Increase in Fountain Intensity in Cohesin/Ctf4 Knockouts.

      In Fig.3A, a schematic illustrating the cell treatment would improve clarity. In Sccl- and Ctf4-depleted cells, fountain signals persist or even intensify (Fig. 3A). This counterintuitive result warrants deeper investigation. Could the authors provide any suggestions or discussions? Potential explanations may include:

      Compensatory mechanisms (e.g., other replisome proteins stabilizing sister-forks).

      Altered chromatin mobility in mutants, enhancing Hi-C signal resolution.

      Artifacts from incomplete depletion (western blots for Sccl/Ctf4 levels should be included).

      A scheme illustrating the experimental protocol for degron systems (CDC45-miniAID & SCC1-V5-AID) with the corresponding western blots and cell-cycle progression are shown in Fig. S26. Note that for Ctf4, we are using a KO cell line where the gene was deleted.

      We do agree with the reviewer that there exist several possible explanations explaining the differences between WT fountains and those observed in mutants. In the revised manuscript, we discussed some of them in Section 2 II B (Page 8):

      (1) As already suggested in the paper, asynchronization of cells may impact the intensity of the fountains due a dilution effect mediated by the cells still in G1. Therefore, possible differences in the fractions of replicating/non-relicating cells between the different experiments (new Fig. S7C) would also result in differences in the signal. Moreover, it is important to highlight that aggregate plots are normalized (Observed/Expected) by the average signal (P(s)). Therefore, as Scc1-depleted cells do not exhibit cohesin-mediated loop-extrusion (see aggregate plots around CARs in new Fig. S7B), we may expect an enhancement of signal at origins due to dividing each pixel by a lower contact frequency with respect to the one found in WT.

      (2) In the new Fig. S10, we plotted the relative enrichment of Hi-C reads around origins. While we already used the same approach to compare replicon sizes between simulations and experiments (see Fig S7A and response to comment n°9 of Reviewer 3), this analysis is instructive also when comparing different experimental conditions. While we find that the experiment in WT and Scc1-depleted cells show very similar replicon sizes, we do observe a small increase in the peak height for the cohesin mutant. This may also partially motivate differences in the intensity of the fountain. For ctf4Δ, we observe significantly smaller replicons. We speculate that such a mutant might exhibit slower replication and consequently might be enriched in sister-forks contacts.

      (3) Compensatory mechanisms: we now briefly discussed this in the Discussion (Page 15).

      Inconsistent Figure References

      Several figure citations are mismatched. For instance, Fig. S1A has not been cited in the manuscript. Moreover, there is no Fig.1E in figure 1, while it has been cited in the text. All figure/panel references must be cross-checked and corrected.

      We thank the reviewer for this observation. We have now corrected the mismatches.

      Minor:

      Page2: "While G1 chromosomes lack of structural features such as TADs or loops [3]" However, Micro-C captures chromatin loops, although much smaller than those in mammalian cells, within budding yeast.

      Loops of approx 20-40 kb are found in interphase in budding yeast but only after the onset of S-phase ( ref. [52-61]). For this reason, our G1 model of yeast without loops well captures the experimental P(s) curves (Fig. S2). See also answer to point 12 of reviewer 2 .

      In figure 2E, chromatin fountain signals can be readily observed in the fork coupling situation and movement can also be observed. However, the authors should indicate the location of DNA replication termination sites and show some examples at certain loci but not only the aggregated analysis.

      The initial use of aggregate plots was motivated by the fact that fountains are quite difficult to observe at the single origin level in the experimental Hi-C due to the strong intensity of surrounding contacts (along the diagonal). However, when dividing early-S phase maps by the corresponding G1 map, we can now observe clear correlation between origin and fountain positions on such normalized maps. We now added an example for chromosome 7 in Fig.3 indicating early/late origins.

      In Fig. S8 and S9 (where we also included termination sites), we show that fountains are prominently found at origins during S-phase and are lost in G2/M.

      Reviewer #2 (Significance (Required)):

      The topic is relevant and the problem being addressed is very interesting. While there has been some earlier work in this area, the polymer simulation approach used here is novel. The simulation methodology is technically sound and appropriate for the problem. Results are novel. The authors compare their simulations with experimental data and explore both interacting and non-interacting replication forks. Most conclusions are supported by the data presented. Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript by D'Asaro et al. investigates the relationship between DNA replication and chromatin organization using polymer simulations. While this is primarily a simulation-based study, the authors also present relevant comparisons with experimental data and explore mechanistic aspects of replication fork interactions.

      We thank Reviewer 2 for her/his positive evaluation of our work and her/his suggestions that help us to clarify many aspects in our manuscript.

      The primary weakness is that many aspects are not clear from the manuscript. Below is a list of questions that the authors must clarify:

      In the Model and Methods section, it is written "Arbitrarily, we choose the backbone to be divided into two equally long arms, in random directions." It is unclear what is meant by "backbone to be divided" and "two equally long arms." Does this refer to replication?

      We agree with the reviewer that the term backbone may be ambiguous. In the context of the initialization of the polymer, it refers to the L/4 initial bonds used to recursively build an unknotted polymer chain of final size L using the Hedgehog algorithm (see refs [101,109]). As shown in the Fig S1A, these initial L/4 bonds define the initial backbone of each chromosome before they are recursively grown to their final size. We chose to divide them into two branches (called “arms” in the old version of the manuscript) of equal length (L/8) and with random orientations. To avoid any ambiguity between the term arm used in that context and the chromosome arms in a biological sense (sequences on the left and right with respect to centromeres), we changed it to “linear branches” to improve clarity. We highlighted in Fig. S1A two examples of such a “V-shaped” backbone.

      As stated in the text, these initial configurations are artificial and just aim to generate unknotted, random structures. After initiating the structures, we then added the geometrical constraints to the centromeric, telomeric and rDNA beads. This, combined with the tendency of the polymer to explore and fill the spherical volume, determine the relaxed G1-like state (see Fig. S2) obtained after an equilibration stage (corresponding to 10^7 MCS). Only after that initialization protocol, DNA replication is activated.

      In chromosome 12, since the length inside the nucleolus (rDNA) is finite, the entry and exit points should be constrained. Have the authors applied any relevant constraint in the model?

      Indeed, we did not introduce any specific constraint on the relative distance between rDNA boundary monomers in our model. They can therefore freely diffuse, independently from each other, on the nucleolus surface. This point is now clarified in the text. Note that, in this paper, we did not aim to finely describe the rDNA organization and its interactions with the rest of the genome, that is why we did not explicitly model rDNA. Moreover, to the best of our knowledge, there is not available experimental data to potentially tune such additional restraints.

      Previous models such as Tjong et al. (ref. [66]) and Di Stefano et al. (ref [67]) have used very similar approximations than us. In the works of Wong et al. (ref.[61]) and Arbona et al. (ref.[63]), rDNA is explicitly modelled via larger/thicker beads/segments, and thus accounts for some generic polymer-based constraints between rDNA boundary elements.

      However, note that all these different models, including ours, still correctly predict the strong depletion of contacts between rDNA boundaries, indicating that there exists a spatial separation between the two boundary elements that is qualitatively well captured by our model (See Fig. S1 D and Fig. 1B).

      What is the rationale for normalizing the experimental and simulation results by dividing by the respective P_intra(s = 10 kb)?

      This normalization was used in Fig. 1 to obtain a rescaling between experiments and simulations. This approach assumes that simulated and experimental Hi-C maps are proportional by a factor that, in Fig 1B, was set to P_exp(s=16kb)/P_sim(s=16kb). Similar strategies are used in a number of modeling studies (for example ref. [103,106]).

      We use the average contact frequency (P_intra) at this genomic scale (s in the order of 10s of kb) because our polymer simulations well capture the experimental P(s) decay above this scale. This method allows to plot the two signals with the same color scale and to give a qualitative, visual intuition on the quality of the modeling. Note that normalization has no impact on the Pearson correlation given in text. More generally, it allows to semi-quantitatively compare predicted and experimental Hi-C data.

      In Fig 1D, we instead normalize the average signal between pairs of centromeres (inter-chromosomal aggregate plot off-diagonal) by the average P_intra(s=10kb). This method allows estimating how frequently centromeres of different chromosomes are in contact relative to intra-chromosomal contacts at the chosen scale (10 kb). In the new paragraph “Comparison with in vivo HiC maps in G1” (Page 22) , we describe more in detail the quantitative insights that can be recovered from such analysis.

      As a comparison, such normalization is not required when computing Observed/Expected maps (Fig. 1C or aggregate plots in Fig. 2 and Fig. 3) as simulation and experimental maps are normalized by their own P(s) curves. We now clarify this aspect in the Materials in Methods under the paragraph “Comparison between on diagonal aggregate plots” (Page 22).

      In the sentence "For instance, chromosomes are strictly bound by the strong potential to localize between 250 and 320 nm from the SPB," is it 320 or 325 nm? Is there a typo?

      We confirm that the upper bound is indeed 325 nm as stated in Eq.2 and not 320 nm.

      Please list the number of beads in each chromosome and the location of the centromere beads.

      A new table (Table S2) was included to highlight beads number and centromere positions.

      In Eq. 7, when the Euclidean distance between the sister forks d_ij > 50 nm, the energy becomes more and more negative. This implies that the preferred state of sister forks is at distances much greater than 50 nm. Then how is "co-localization of sister forks" maintained?

      We corrected the typo sign in Eq.7. The corrected equation without the minus sign - consistently with what simulated - implies that sister forks tend to minimize their 3D distance. The term goes to zero when their distance is within 40 nm (2 nearest-neighbouring sites).

      The section on "non-specific fork interactions" is unclear. You state that the interaction is between "all the replication forks in the system," but f_ij is non-zero only for second nearest-neighbors. The whole subsection needs clarification.

      We corrected the text, specifying that the energy is non-zero for both first and second neighbours. In practice, two given forks do not experience any attractive energy unless their 3D distance is less than 2 nearest-neighbours. To clarify this aspect, we articulated more in the methods how non-specific fork interactions are implemented in the lattice during the KMC algorithm. We also included a new supplementary image (Fig. S15), where we schematize how forks move in 3D and how changes in their position update the table that tracks the number of forks around each lattice site.

      Eq. 6 has no H_{sister-forks}. Is this a typo?

      We confirm that it is a typo and the formula was corrected to H_{sister-forks}.

      While discussing the published work, the authors may cite the recent paper [https://doi.org/10.1103/PhysRevE.111.054413].

      The reference is now included when discussing previous polymer models of DNA replication.

      It is not clear how the authors actually increase the length of new DNA in a time-dependent manner. For example, when a new monomer is added near the replication origin (green bead in Fig. 3C), what happens to the red and blue polymer segments? Do they get shifted? How do the authors take into account self-avoidance while adding a new monomer? These details are not clear.

      The detailed description of the chain duplication algorithm and its systematic analysis was performed in our previous study (ref. [25]).

      However, we agree with the reviewer that to improve self-consistency more details must be included in the present manuscript (see also answer to comment 1 of Reviewer 3). In particular, we now highlight in Materials and Methods that self-avoidance is indeed temporarily broken when we add a newly replicated monomer on top of the site where the fork is. Such double occupancy in the lattice rapidly vanishes due to 3D local moves. We refer to our PRX work (ref [25] and in particular to the following figure (extracted from FIG. S1 in ref.[25]) which illustrates how the bonds/segments of the two sister chromatids are consistently maintained.

      How do the authors ensure that monomers get added at a rate corresponding to velocity v? The manuscript mentions "1 MCS = 0.075 msec," but in how many MC steps is a new monomer added? How is it decided?

      Similarly to origin firing, replication by fork movement along the genome occurs stochastically, with a rate which we derive by converting the physiological fork speed in yeast 2.2 kb/min (ref. [41]) into a rate in (number of monomer/MCS) units. In practice, we generate a random number that, if smaller than such a rate, leads to forks duplication. We clarify this aspect in the Materials and Methods, also referring to our previous work for a more detailed summary.

      The authors stress the relevance of loop extrusion. However, in their polymer simulation, the newly replicated chromatin does not form any loops. Is this consistent with what is known?

      Indeed, our simulations do not have any concurrent extrusion mechanism such as cohesin-mediated loops. This choice was purposely made to isolate and characterize replication-dependent effects.

      That is why we compare our predictions on chromatin fountain patterns (Fig. 3) with data obtained for the Scc1 mutant strain where cohesin is absent in order to disentangle the possible interference with loop-extruding cohesin. For subsection C where microscopy data are available only in WT condition, we cannot rule out that the observed discrepancies between experiments and predictions cannot be due to missing mechanisms including loop extrusion. It was already mentioned in the Discussion (Page 16). It is however unclear whether sparse and small loops between CARs (see Fig. S7B) in S-phase, could be sufficient to recapitulate the microscopy estimates on the sizes of replication foci and no clear signature of inter-origin loops (possibly mediated by loop extrusion) are observed in Hi-C data in WT and Scc1 deficient conditions.

      Moreover, as mentioned in the Discussion, the poorly characterized mechanisms behind forks/extruding-cohesin encounters does not allow for a straightforward modelling of such processes whose accurate description/simulation would require its own study.

      Please add a color bar to Fig. 4B.

      The color bar was included.

      In the MSD plot (Fig. 6), even though it appears to be a log-log plot, the exponents are not computed. Typically, exponents define the dynamics.

      We plot the expected 0.5 exponent at smaller time-scales as mentioned in the main text in Fig. 6, previously included only in new Fig. S19A.

      The dynamics will depend on the precise nature of interactions, such as the presence or absence of loop extrusion. If the authors present dynamics without extrusion, is it likely to be correct?

      The reviewer is correct in highlighting how our model does not capture the potential decrease in dynamics due to cohesin mediated loop extrusion. However, our model does capture the expected Rouse regime (see Fig. 6A, S19A and ref [83]), which justify our timemapping strategy. In comment 16 of reviewer 3, we discuss more in detail the robustness of our results with respect to variation in such a mapping. In the specific context of Fig. 6A, we predict the gradual decrease in dynamics due to sister chromatids intertwining independently of any cohesin-associated activity (both loop-extruding and cohesive). As loop extrusion is also decreasing chromatin mobility overall (ref. [87]), if such a decrease in mobility is observed in WT in vivo, it may be indeed difficult to assign such a decrease to replication rather than loop extrusion. That is why in the Discussion (Page 16), we propose to compare our prediction to experiments in cohesin-depleted cells. In the context of Fig.6B&C, we don’t expect loop extrusion to be a confounding effect as the predicted decrease in dynamics is specific to forks.

      Reviewer #3 (Significance (Required)):

      The work has been conducted thoroughly, and in general the paper is well written with good attention to detail. As far as I am aware, this is the first study where replication is simulated in a whole nucleus context, and the scale of the simulations is impressive. This allows the authors to address questions on replication foci and the spatiotemporal organisation of replication which would not be possible with more limited simulations, and to compare the model with previous experimental work. This, together with the new HiC data, I think this makes this a strong paper which will be of interest to biophysics and molecular biology researchers; the manuscript is written such that it would suit an interdisciplinary basic research audience.

      We thank Reviewer 3 for her/his enthusiasm and her/his comments that help us to greatly improve the manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The paper "Genome-wide modelling of DNA replication in space and time confirms the emergence of replication specific patterns in vivo in eukaryotes" by D'Asaro et. al presents new computational and experimental results on the dynamics of genome replication in yeast. The authors present whole-nucleus scale simulations using a kinetic Monte Carlo polymer physics model. New HiC data for synchronised yeast samples with different protein knock-downs are also presented.

      The main questions which the paper addresses are whether sister forks remain associated during replication, whether there is more general clustering of replication forks, and whether replication occurs in a 'spatial wave' through the nucleus. While the authors' model data are not able to conclusively show whether sister forks remain co-localised, the work provides some important insights which will be of high interest to the field.

      I have no major issues with the paper, only some minor comments and suggestions to improve the readability of the manuscript or provide additional detail which will be of interest to readers. I list these here in the order in which they appear in the paper. There are also a number of typos and grammatical issues through the text, so I recommend thorough proofreading.

      The paper seems to be aimed at a broad interdisciplinary audience of biophysicists and molecular biologists. For this reason, the introduction could be expanded slightly to include some more background on DNA replication, the key players and terminology. Also, it seems that this work builds on previous modelling work (Ref. 19), so a bit more detail of what was done there, and what is new here would be helpful. The final paragraph the introduction mentions chromosome features such as TADs and loops, which should be explained in more detail.

      We now have expanded the introduction to address some of these aspects. In particular, also as a response to comment 1 of Reviewer 4, we included additional background on the eukaryotic replication time program. We address in more detail its known interplay and correlation with crucial 3D structural features such as compartments and TADs. Finally, we add a sentence to clarify how the current work is distinct from the prior implementation and the novelty introduced here.

      In the first results section, end of p2, the "typical brush-like architecture" is mentioned. This is not well explained, some additional detail or a diagram might help.

      As very briefly summarized in the mentioned paragraph, the yeast genome is organized in the so-called Rabl organization where chromosome arms are all connected via the centromeres at the Spindle Pole Body (SPB). This is analogous to the definition of a polymer brush where several branches (the arms in this case), are grafted to a surface or to another polymer (see new Inset panel in Fig S1B). We refer in the main text to the scheme in Fig. S1B where we also include the snapshot of a single chromosome and the physical constraints that characterize this large-scale organization and extend the caption to clarify the analogy. A typical emerging feature at the single chromosome level is described in Fig. 1 B and C.

      On p3-4, some previous work is described, with Pearson correlations of 0.86 and 0.94 are mentioned. What cases these two different values correspond to is not clear.

      These Pearson correlations are obtained for our own modeling. We correct the values in the main text and more clearly indicate the specific correspondence with the maps used. We describe now in the Materials and Methods (new paragraph “Comparison with in vivo HiC maps in G1” and Table S2) how these values were obtained.

      In section II-A-2, on the modelling details, it should be made clearer that the nucleus volume is kept constant, and that this is an approximation since typically the nucleus grows during S-phase. This is discussed in the Methods section, but it would be useful to also mention it here (and give some justification why it will not likely change the results).

      We now state more clearly in the main text the limitation of our model regarding the doubling of DNA content without any increase of nuclear size. As mentioned in the Discussion, we do not expect this approximation to strongly impact our results, which mainly focus on early S-phase.

      We now also included in the Discussion how the detection of the “replication wave” should be qualitatively independent of the density regime. In fact, even in the case of growing nuclei and constant density, the polarity induced by the Rabl organization and replication timing are the main drivers of such fork redistribution.

      Regarding the slowdowning in diffusion due to sister chromatids intertwinings (see response to comment 13), we instead verified that the effect is indeed density independent (new Fig S21).

      Fig 2. The text in Fig 2B is much smaller than other panels and difficult to read. Also Fig 3B, Fig 6.

      This is now corrected.

      In 2E, are the times given above each map the range which is averaged over? This could be clearer in the caption. In the caption it stated that these are 'observed over expected'; what the 'expected' is could be clearer.

      We reformulate the description in the caption to make clearer that the time indicated above the plots indicate the time window used for the computation. As mentioned more in detail in the response to comment 17 below (and comment 3 of Reviewer 2), we included in the Material and Methods a more precise description on the normalization used in the case of on-diagonal aggregate plots (observed-over-expected).

      In section II-B-2, the authors state that the cells are fixed 20 mins after release from S-phase. Can they comment on the rationale behind this choice, since from Fig 2 their simulations predict that the fountain pattern will no-longer be visible by that time.

      In the experimental setup, cells are arrested in G1 with alpha-factor and then released in S-phase (see Fig S26 with corresponding scheme). The release from G1 synchronisation is not immediate, and staging of cells by flow-cytometry every 5 minutes for 30 minutes after release (data not shown in the main text but provided below) proved 20 minutes to be an adequate early S-phase timepoint (Page 17 in the Materials and Methods). As a consequence, the times indicated when describing the in vivo experiment, do not correspond to the ones indicated in our in silico system, for which the onset of replication is well defined. For these reasons, we have to determine which time window among the ones used in Fig 2E, is the most appropriate to compare with the experiment (see response to comment 9 for more details).

      Fig.R1: Cell cycle progression monitored by flow cytometry after the release. For the first 15 minutes, cells are still mainly in G1 and only start replicating ~20 minutes after the release.

      Section II-B-2(b) could be clearer. I don't understand what the conclusion the authors take from the metaphase arrest maps is. I'm not sure why they discuss again the Cdc45-depleted cells here, since this was already covered in the previous section.

      Taken together, the G1, Cdc20 (metaphase-arrested cells), and Cdc45-depleted (early S cells but not replicated) conditions suggest that fountains reflect ongoing replication. Namely, G1-arrest shows that fountains require S-phase entry; Cdc45-depletion shows that fountains require origin firing and is not due to another S-phase event; and metaphase-arrested cells show that fountains are not permanent structures established by replication, but a transient replication-dependent structure.

      This demonstrates that the emerging signal is not trivially dependent on (1) the presence of the second sister chromatids; or on (2) potential overlaps between origin positions and barriers (CARs) to loop extrusion (see also comment 12 of Reviewer 2). A sentence at the end of II-a was added to clarify the different information gained with the two strains.

      We discuss again the cdc20 and cdc45 mutants in II-b to highlight how the results in II-a do not exclude potential interplay between cohesin-mediated loop-extrusion in presence forks progression. These considerations motivated our experiment in Scc1-depleted cells during early S-phase.

      At the start of p8 (II-B-3) there is a discussion of the mapping to times to the early-S stage experiments. This could have more explanation. I don't follow what the issue is, or the process which has been used to do the mapping. From Fig 2B, it seems that the simulation time is already mapped well to real time.

      As mentioned above in comment 7, we cannot clearly define a “t=0” when replication starts in vivo as the release from the G1-arrest is not immediate and perfectly synchronous. On the other hand, the times indicated within the text are those following the onset of polymer self-duplication in our simulations. Note that the mean replication time (MRT) shown in Fig.2B does not represent an absolute time, but rather an average relative timing along S-phase (signal rescaled between 0 and 1).

      For all these considerations, we think that the most reliable strategy to compare fountains in vivo and in silico is to look at the replicon size via the enrichment in raw contacts around early origins, as illustrated in Fig S7A. In practice, looking at the relative counts of contacts around early origins we have a proxy for the average replicon size that we can match by computing the same analysis on simulated signals (Fig S7A). As a result, we find that the best simulated time window is between 5 and 7.5 minutes, compatible with early-S phase and with an approximate duration of G1 after release of 15 minutes as observed in other studies (ref. [61]).

      Note that our conclusions are robust with respect to modulating this mapping method. In particular in Fig. S7, we thoroughly investigated how several confounding factors (such as time window used or partial synchronization) may impact the quantitative nature of our prediction without affecting the qualitative insights.

      We included a more precise reference to the Supplementary Materials, where the approach is described and clarified.

      In Fig 4A above each plot there is a cartoon showing the fork scenario. The left-hand cartoon is rendered properly, but the right-hand one has overlapping black boxes which I don't think should be there. These black boxes are present in many other figures (4B, 3B, 2E etc).

      This issue seems to appear using the default PDF viewer on Mac OS. We have corrected the problem and no more black boxes should appear in the main text and in the Supplementary Material.

      In II-C-2(b) it is mentioned that the number of forks within RFis is always assumed to be even. This discussion could be clearer. In particular, the authors state that under both fork scenarios, in the simulations they can detect odd numbers of forks within RFis - how can this happen in the case where sister forks are held together?

      We included a more accurate description in the main text about why Saner et al. (ref [20]) make these assumptions in their estimates. We highlight possible inconsistencies such as the presence of termination events which, in our formalism, break sister forks interactions and lead to single forks to be detected. We also clarify the latter point when describing Fig 5B and describe in more detail replication bubbles merging events in the Materials and Methods.

      Fig 6B and C, it would be useful if the same scale was used on both plots.

      We now use the same scale when plotting Fig 6B and C.

      Section II-D-1. There is a discussion on the presence of catenated chains; I did not understand how the replicated DNA becomes catenated, and what this actually means in this context. The way the process is described and the snapshots in Fig2C do not suggest that the chains are catenated. Some further discussion or a diagram would be useful here.

      We included a small paragraph to better explain how intertwining of sister chromatids occurs, and more clearly refer to a snapshot in supplementary figure S19D (Page 14). As correctly mentioned by the reviewer, replication bubbles by construction are always unknotted during their growth (see example in Fig. 2C). As we thoroughly characterize in our previous work (ref. [25]), when several replication bubbles merge, the random orientation of sister chromatids potentially lead to catenation points and intertwined structures. We show below a scheme from our previous work (ref [25]). While in this past work, we demonstrated that the center of mass of the two sister chromatids show subdiffusive behaviour due to the additional topological constraints of their intertwining, this new analysis in the present work suggests that possible effects may also be observed when tracking the MSD (mean square displacement at the locus level) in a more realistic scenario where we included correct replication timing, chromosome sizes and Rabl-organization.

      On p14 (section III) there is a section discussing possible mechanisms for sister fork interactions, and that result that Ctf4 might not play a role in this, as previously suggested. Are there any other candidate proteins which could be tested in the future?

      To the best of our knowledge, there is no other candidate protein of the replisome that has been directly associated to sister-fork pairing in previous studies (as Ctf4). However, components of the replisome such as Cdt1, that have the capacity to oligomerize/self-interact, could be good candidates. We now mention this possibility in the Discussion (Page 15).

      As on p14, second paragraph: there is a sentence "replication wave [51] cannot be easily visualised at the single cell level.", which seems to contradict the discussion on p9 "such a "wave" can also be observed at the level of an individual trajectory (Video S3,4) even if much more stochastic." I think more explanation is needed here.

      We rephrased the mentioned passages to clarify the differences in detecting such “replication wave” at the population vs single cell level. In video S3 and S4, we can still observe an enrichment of forks at the SPB and later in S-phase a shift towards the equatorial plane. However, the stochasticity of polymer dynamics and 1D replication strongly hinder the ability to clearly visualize such redistribution.

      In the methods section, p18, it is mentioned that the volume fraction is 3%. I assume this is before replication, and so after replication is complete this will increase to 6%. This should be stated more explicitly, with also a comment on the 5% volume fraction used in the time-scale mapping discussed on p17.

      Indeed, we choose to map the experimental MSD measured in ref [83] by simulating a homopolymer 5% volume fraction and in periodic boundary conditions for consistency to previous work in the group (ref. [102-106]) and our previous replication model (ref.[25]). Moreover, this intermediate density regime also lies in between the minimal (3%) and maximal (6%) densities present in our system. When redoing the time mapping with the G1 MSD plotted in Fig 6A and new Fig S19A, we obtain a very similar value of approx. 1MC=0.6ms. Note that the time mapping aims to obtain a rough estimation of real times as several factors, such as active processes, non-constant density, cell-cycle progression may all contribute to chromatin diffusion in vivo (see also comment 15 to Reviewer 2). In the context of our formalism, differences in time mapping do not affect the 1D replication dynamics as all the parameters to model the 1D process are rescaled by the same factor. Moreover, as we characterized in more depth in our previous work (ref [25]), a crucial aspect that defines self-replicating polymers is the relationship between fork progression and the polymer relaxation dynamics. In physiological conditions, we remain in the regime where forks progress almost quasi-statically to allow the bubbles to re-equilibrate. Therefore, small discrepancies in the time mapping will not modify this regime and our results should remain robust.

      On p20, processing of simulated HiC using cooltools is discussed. For readers unfamiliar with this software, a bit more detail should be given. Specifically, how does the normalisation account for having some segments which have been replicated and some which have not. Later on the same page (IV-C-2) two different strategies for comparing HiC maps are given; why are two different methods required, and what is the reasoning in each case?

      In the raw - unbalanced - data, we observe an artificial increase in contacts around origins in S-phase for both simulation and experiments. This is simply due to the presence of the second Sister chromatids and the fact that contacts between distinct DNA segments are mapped to a single bin.

      In the new Fig. S25, we illustrate this effect by computing aggregate plots around early origins using single-chromosome simulations. We demonstrate that the ICE normalization corrects for the variations in copy number due to replication and thus for such artificial increases in contacts during S-phase. We show that such a normalization is equivalent to explicitly divide each bin by the average copy-number of the corresponding segments.

      We have now included a sentence in the Materials and Methods to clarify this. Moreover, a detailed description of the other alternative strategies used to compare experiments and simulations were presented in response to comment 3 to Reviewer 2 and two new paragraphs were added in the Materials and Methods.

      The references section has an unusual formatting with journal names underlined.

      We updated the formatting.

      Reviewer #4 (Significance (Required)):

      D’Asaro et al focus on the problem of how genome structure is altered by the progression of replisomes through S-phase in the budding yeast S. cerevisiae. The authors employ computational polymer modeling of G1 chromosomes, then implement a hierarchical model of replication origin firing along these polymers to examine how the G1 chromosome structural state is perturbed by replisome progression. Their results indicate that replication origins create 'fountains' - Hi-C map features that other groups have demonstrated are likely to originate from symmetric extrusion by condensin / cohesin complexes originating at a fixed point. These 'fountains' appear to be cohesin-independent, as revealed by depletion Hi-C experiments. Finally, the authors provide evidence from their model of a 'replication wave' that emanates from the spindle pole body. This is an interesting manuscript that raises some exciting questions for the field to follow up on.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      In their manuscript, "Genome-wide modeling of DNA replication in space and time confirms the emergence of replication specific patterns in vivo in eukaryotes," authors Asaro et al perform computational modeling analyses to address an important open question in the chromatin field: how is DNA replication timing coupled to 3D genome architecture? Over the past ten years, the convergence of high-resolution replication timing (RT) analysis with high-resolution 3D genome mapping (e.g. 'Hi-C' technology) has resulted in the discovery that replication timing domains overlap considerably with 3D genomic domains such as topologically associating domains (TADs). How and why this happens both remain unknown, and advances in 3D genome mapping technology have provided even more data to model the problem of both 1) scheduling replication from distinct series of origins / initiation zones, and 2) modeling how 3D genome architecture is altered by the progression of replication forks, which inherently destroy chromatin structure before faithfully reforming G1 structures on daughter chromatids. As such, the problem being tackled by this computational manuscript is interesting.

      We thank Reviewer 4 for her/his positive evaluation of our work and her/his comments that help us to greatly improve the manuscript.

      Reviewer Comments / Significance

      In their manuscript, "Genome-wide modeling of DNA replication in space and time confirms the emergence of replication specific patterns in vivo in eukaryotes," authors D’Asaro et al perform computational modeling analyses to address an important open question in the chromatin field: how is DNA replication timing coupled to 3D genome architecture? Over the past ten years, the convergence of high-resolution replication timing (RT) analysis with high-resolution 3D genome mapping (e.g. 'Hi-C' technology) has resulted in the discovery that replication timing domains overlap considerably with 3D genomic domains such as topologically associating domains (TADs). How and why this happens both remain unknown, and advances in 3D genome mapping technology have provided even more data to model the problem of both 1) scheduling replication from distinct series of origins / initiation zones, and 2) modeling how 3D genome architecture is altered by the progression of replication forks, which inherently destroy chromatin structure before faithfully reforming G1 structures on daughter chromatids. As such, the problem being tackled by this computational manuscript is interesting.

      D’Asaro et al focus on the problem of how genome structure is altered by the progression of replisomes through S-phase in the budding yeast S. cerevisiae. The authors employ computational polymer modeling of G1 chromosomes, then implement a hierarchical model of replication origin firing along these polymers to examine how the G1 chromosome structural state is perturbed by replisome progression. Their results indicate that replication origins create 'fountains' - Hi-C map features that other groups have demonstrated are likely to originate from symmetric extrusion by condesin / cohesin complexes originating at a fixed point. These 'fountains' appear to be cohesin-independent, as revealed by depletion Hi-C experiments. Finally, the authors provide evidence from their model of a 'replication wave' that emanates from the spindle pole body. This is an interesting manuscript that raises some exciting questions for the field to follow up on.

      Major Comments

      There is a tremendous amount of work coupling RT domains to 3D genome architecture, especially deriving from the ENCODE and 4D Nucleome consortia. These studies are not adequately highlighted in the introduction and discussion of this manuscript, and this treatment of the literature would ideally be amended in any revised manuscript.

      We include new sentences in the introduction to discuss more in detail the correlation between 3D genome architecture and replication timing program, and advancement in this field in the last decades. We also included additional citations to reviews and publications (ref [8-16]). These references were also included at the end of the Discussion where we address the exciting perspective of employing our model in higher eukaryotes and potentially tackle the complex interplay between 3D nuclear compartmentalization and replication dynamics (see also response 1 to Reviewer 1).

      S. cerevisiae origins of replication differ from metazoan origins of replication in that they are sequence-defined and are known to fire in a largely deterministic pattern (see classic study PMID11588253). From the methods of the authors it is not clear that the known deterministic firing pattern is being used here, but instead a stochastic sampling method? Please clarify in the manuscript. Specifically, it would be good to understand how the Initiation Probability Landscape Signal correlates with what is already known about origin firing timing.

      In our model, the positions of origins are stochastically sampled proportionally to the IPLS which was inferred directly from experimental MRT (ref. [63]) and RFD (ref. [44]). This modeling approach allows reproducing with a very high accuracy the known replication timing data (correlation of 0.96) and Fork directionality data (correlation of 0.91) (see ref. [71]). Origins were defined as the peaks in the IPLS signal. In Fig S3, we extensively compare these origins and the known ARS positions from the Oridb database. For example, most of our early origins (96%) are located close to known, confirmed ARS. Moreover, even if our algorithm is stochastic for origin firing, we remark that each early origin will fire in 90 % of the simulations, coherent with the quasi-deterministic pattern of origin firing and experimental MRT and RFD data. We now have added such statistics of firing in the revised manuscript (Page 4).

      It seems possible that experimental sister chromatid Hi-C data (PMID32968250) and nanopore replicon data (PMID35240057) could be used to further ascertain the validity of some of the findings of this paper. Specifically, could the authors demonstrate evidence in sister chromatid Hi-C data that the replisome is in fact extruding sister chromatids? Moreover, are the interactions being measured specifically in cis (as opposed to trans sister contacts)? For the nanopore replicon data, how do replicon length, replication timing, and position along the replication 'wave' correlate?

      We thank the reviewer for the suggestions.

      Hopelessly there is currently no Sister-C data available during S-phase. In the seminal study (PMID32968250), cells were arrested in G2/M via nocodazole treatment. For a different unpublished work, we already analysed in detail the SisterC dataset and we did not observe clear fountain-like signature, consistent with our own G2/M Hi-C maps (cdc20) where fountains were absent. Note that, in the present work, in order to compare our predictions with standard HiC data, we included all contacts (cis and trans chromatids), mapping pairwise contacts from distinct replicated sequences/monomers to a single bin (see also response to comment 17 to Reviewer 3 and new Fig. S25).

      We now mention in the Discussion that Sister-C data during S-phase could help monitoring the role of replisomes on relative sister-chromatids organization (Page 15).

      Main results from the nanopore replicon data study include the observed high symmetry between sister forks and their linear progression, as the density of replicons appears to be uniform with respect to their length. Since these two specific constraints are already present in the framework of Arbona et al. (ref. [63]), our model is able to reproduce these features of DNA replication captured by the nanopore data.

      Moreover, as we model with very high accuracy replication timing data (see response to comment 2) and forks positioning, we can assume that our formalism well captures replicon positioning and lengths observed in vivo.

      As this study does not include any additional exploration or variation of the parameters inferred by Arbona et al. (ref. [63]), we consider a quantitative comparison with the nanopore replicon data to be beyond the scope of this paper.

      Minor Comments:

      The paper is in most places easy to follow. However, Section C bucked this trend and in general was quite difficult to follow. We would recommend that the authors try to revise this section to make clearer the actual physical parameters that govern a 'replication wave' and the formation of replication foci - how many forks, the extent to which the sisters are coordinated, etc for early vs. late replicating regions.

      We now state more clearly with a sentence in the main text the driving forces behind the formation of such a “replication wave”. We believe that the several additions and clarifications following the various comments, improved the clarity of the manuscri

    1. Reviewer #1 (Public review):

      Munday, Rosello, and colleagues compared predictions from a group of experts in epidemiology with predictions from two mathematical models on the question of how many Ebola cases would be reported in different geographical zones over the next month. Their study ran from November 2019 to March 2020 during the Ebola virus outbreak in Democratic Republic of the Congo. Their key result concerned predicted numbers of cases in a defined set of zones. They found that neither the ensemble of models nor the group of experts produced consistently better predictions. Similarly, neither model performed consistently better than the other, and no expert's predictions were consistently better than the others'. Experts were also able to specify other zones in which they expected to see cases in the next month. For this part of the analysis, experts consistently outperformed the models. In March, the final month of the analysis, the models' accuracy was lower than in other months, and consistently poorer than the experts' predictions.

      A strength of the analysis is use of consistent methodology to elicit predictions from experts during an outbreak that can be compared to observations, and that are comparable to predictions from the models. Results were elicited for a specified group of zones, and experts were also able to suggest other zones that were expected to have diagnosed cases. This likely replicates the type of advice being sought by policymakers during an outbreak.

      A potential weakness is that the authors included only two models in their ensemble. Ensembles of greater numbers of models might tend to produce better predictions. The authors do not address whether a greater number of models could outperform the experts.

      The elicitation was performed in four months near the end of the outbreak. The authors address some of the implications of this. A potential challenge for the transferability of this result is that the experts' understanding of local idiosyncrasies in transmission may have improved over the course of the outbreak. The model did not have this improvement over time. The comparison of models to experts may therefore not be applicable to early stages of an outbreak when expert opinions may be less well-tuned.

      This research has important implications for both researchers and policy-makers. Mathematical models produce clearly-described predictions that will later be compared to observed outcomes. When model predictions differ greatly from observations, this harms trust in the models, but alternative forms of prediction are seldom so clearly articulated or accurately assessed. If models are discredited without proper assessment of alternatives then we risk losing a valuable source of information that can help guide public health responses. From an academic perspective, this research can help to guide methods for combining expert opinion with model outputs, such as considering how experts can inform models' prior distributions and how model outputs can inform experts' opinions.

      Comments on revisions:

      I am grateful to the authors for their responses to my previous comments. I think their updates have made the paper much clearer. I do not think the updates change the opinions already given in the public review so I have not modified it.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Munday, Rosello, and colleagues compared predictions from a group of experts in epidemiology with predictions from two mathematical models on the question of how many Ebola cases would be reported in different geographical zones over the next month. Their study ran from November 2019 to March 2020 during the Ebola virus outbreak in the Democratic Republic of the Congo. Their key result concerned predicted numbers of cases in a defined set of zones. They found that neither the ensemble of models nor the group of experts produced consistently better predictions. Similarly, neither model performed consistently better than the other, and no expert's predictions were consistently better than the others. Experts were also able to specify other zones in which they expected to see cases in the next month. For this part of the analysis, experts consistently outperformed the models. In March, the final month of the analysis, the models' accuracy was lower than in other months and consistently poorer than the experts' predictions. 

      A strength of the analysis is the use of consistent methodology to elicit predictions from experts during an outbreak that can be compared to observations, and that are comparable to predictions from the models. Results were elicited for a specified group of zones, and experts were also able to suggest other zones that were expected to have diagnosed cases. This likely replicates the type of advice being sought by policymakers during an outbreak. 

      A potential weakness is that the authors included only two models in their ensemble. Ensembles of greater numbers of models might tend to produce better predictions. The authors do not address whether a greater number of models could outperform the experts. 

      The elicitation was performed in four months near the end of the outbreak. The authors address some of the implications of this. A potential challenge to the transferability of this result is that the experts' understanding of local idiosyncrasies in transmission may have improved over the course of the outbreak. The model did not have this improvement over time. The comparison of models to experts may therefore not be applicable to the early stages of an outbreak when expert opinions may be less welltuned. 

      This research has important implications for both researchers and policy-makers. Mathematical models produce clearly-described predictions that will later be compared to observed outcomes. When model predictions differ greatly from observations, this harms trust in the models, but alternative forms of prediction are seldom so clearly articulated or accurately assessed. If models are discredited without proper assessment of alternatives then we risk losing a valuable source of information that can help guide public health responses. From an academic perspective, this research can help to guide methods for combining expert opinion with model outputs, such as considering how experts can inform models' prior distributions and how model outputs can inform experts' opinions. 

      Reviewer #2 (Public review):

      Summary: 

      The manuscript by Munday et al. presents real-time predictions of geographic spread during an Ebola epidemic in north-eastern DRC. Predictions were elicited from individual experts engaged in outbreak response and from two mathematical models. The authors found comparable performance between experts and models overall, although the models outperformed experts in a few dimensions. 

      Strengths: 

      Both individual experts and mathematical models are commonly used to support outbreak response but rarely used together. The manuscript presents an in-depth analysis of the accuracy and decision-relevance of the information provided by each source individually and in combination. 

      Weaknesses: 

      A few minor methodological details are currently missing.

      We thank the reviewers for taking the time to consider our paper and for their positive reflections and suggestions for our study. We recognise and endorse their characterisation of the study in the public reviews and are greatful for their interest and support for this work. 

      Reviewer #1 (Recommendations For The Authors): 

      I initially found Table 1 difficult to interpret. In the final two columns, the rows relate to each other but in the other columns, rows within months don't relate to each other. Could this be made clearer? 

      Thank you for your helpful suggestion. We agree that this is a little confusing and have now added vertical dividers to the table to indicate which parts of the table relate to each other.

      In Figure 1A, the colours are the same as in the colour-bar for Figure 1B but don't have the same meaning. Could different colours be used or could Figure 1A have its own colour-bar to aid clarity? 

      Thank you for your query. The colours are not the same pallette, but we appreciate that they look very similar. To help the reader we have changed the colour palette of panel A and added a legend to the left.  

      In Figure 3, can labels for each expert be aligned horizontally, rather than moving above and below the timeline each month? 

      Thank you for your perspective on this. We made the concious dicision to desplay the experts in this way as it allows the timeline to be presented in a shorter horizontal space. We appreciate that others may prefer a different design, but we are happy with this one. 

      On lines 292 and 293, the authors state that experts were less confident that case numbers would cross higher thresholds. It seems that this would be inevitable given the number of cases is cumulative. Could this be clarified, please? 

      Thank you for raising this point. We agree that this wording is confusing. We have now reworked the entire section in response to another reviewer. The equivalent section now reads: 

      Experts correctly identified Mabalako as the highest-risk HZ in December. They attributed an average 82% probability of exceeding 2 cases; Mabalako reported 38 cases that month, exceeding all thresholds, although the probability assigned to exceeding the higher thresholds was similar to that of Beni (3 cases)

      Reviewer #2 (Recommendations For The Authors): 

      (1) Some methodological details seem to be missing. Most importantly, the results present multiple ensembles (experts, models, and both), but I can't seem to find anywhere in the Methods that details how these ensembles are calculated. Also, I think it would be useful to define the variables in each equation. It would have been easier to connect the equations to the description if the variables were cited explicitly in the text. 

      Thank you for pointing out these omissions. We have included the following paragraph to detail how ensemble forecasts were calculated. 

      “Enslemble forecasts

      Ensemble forecasts were calculated as an average of the probabilities attributed by the members of the ensemble. For the expert ensemble the arithmetic mean was calculated across all experts with equal weighting. Similarly the model ensemble used the unweighted mean of the model forecasts. For the mixed (model and expert) ensemble, the mean was weighted such that the combined weight of the experts forecasts and the combined weight of the models forecasts were equal.”

      (2) Overall, I think the results provide a strong analysis of model vs. expert performance. However, some sections were highly detailed (e.g., the text usually discusses results for every month and all health zones), which clouded my ability to see the salient points. For example, I found it difficult to follow all the details about expert/model predictions vs. observations in the "Expert panel and health zones..." subsection; instead, the graphical illustration of predictions vs. observations in Figure 4 was much easier to interpret. Perhaps some of these details could be trimmed or moved to the supplementary material. 

      Thank you for your honest feedback on this point. We have shortened this section to highlight the key points that we feel are the most important. We have also simplified the text where we discuss the health zones nominated by experts. 

      (3) Figure 5C is a nice visualization of the fallibility of relying on a single individual expert (or model). I wonder if it would be useful to summarize these results into the probability that a randomly selected expert outperforms a single model. Is it the case that a single expert is more unreliable than a single model? The discussion emphasizes the importance of ensembles and compares a single model to an ensemble of experts, but eliciting predictions from multiple experts may not always be possible. 

      Thank you for raising this. We agree that this is an important point that eliciting expert opinions is not a trivial task and should not be taken for granted. We agree with the principle of your suggestion that it would be useful to understand how the models compare to indevidual experts. We don’t however believe that an additional analysis would add sufficiently more information than already shown in Figure 5, which already displays the full distribution of indevidual experts for each month and threshold. If you would like to try this analysis yourself, the relevant data (the indevidual score for each combination of expert, threshold, heal zone and month) is included in the github repo (https://github.com/epiforecasts/Ebola-Expert-Elicitation/blob/main/outputs/indevidual_results_with_scores.csv).

      Minor comments: 

      (1) Figure 2: the color scales in each panel are meant to represent different places, correct? The figure might be easier to interpret if the colors used were different.  

      Thank you for bringing this to our attention. We have now changed the palette of panel A to differ from panel B.  

      (2) Equation 7: is o(c>c_thresh) meant to be the indicator function (i.e. 1 if c>c_thresh) and 0 otherwise)? 

      Thanks for raising this. The function o is the same as in the previous equation – an observation count function. We appreciate that this is not immediately clear so have added a sentence to explain the notation after the equation.

      (3) Table 1: a brief description of the column headers would be useful.  

      Thank you for the suggestion. We have now extended the table caption to include more description of the columns. 

      “Table 1: Experts and health zones included in each round of the survey. The left part of the table details the experts interviewed (highlighted in green) the health zones included in the main survey in each month. In addition, the right part of the table details the health zones nominated by experts and the number of experts that nominated each one.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This study investigates how ant group demographics influence nest structures and group behaviors of Camponotus fellah ants, a ground-dwelling carpenter ant species (found locally in Israel) that build subterranean nest structures. Using a quasi-2D cell filled with artificial sand, the authors perform two complementary sets of experiments to try to link group behavior and nest structure: first, the authors place a mated queen and several pupae into their cell and observe the structures that emerge both before and after the pupae eclose (i.e., "colony maturation" experiments); second, the authors create small groups (of 5,10, or 15 ants, each including a queen) within a narrow age range (i.e., "fixed demographic" experiments) to explore the dependence of age on construction. Some of the fixed demographic instantiations included a manually induced catastrophic collapse event; the authors then compared emergency repair behavior to natural nest creation. Finally, the authors introduce a modified logistic growth model to describe the time-dependent nest area. The modification introduces parameters that allow for age-dependent behavior, and the authors use their fixed demographic experiments to set these parameters, and then apply the model to interpret the behavior of the colony maturation experiments. The main results of this paper are that for natural nest construction, nest areas, and morphologies depend on the age demographics of ants in the experiments: younger ants create larger nests and angled tunnels, while older ants tend to dig less and build predominantly vertical tunnels; in contrast, emergency response seems to elicit digging in ants of all ages to repair the nest.

      We sincerely thank Reviewer #1 for the time and effort dedicated to our manuscript's detailed review and assessment. The revision suggestions were constructive, and we have provided a point-by-point response to address them.

      Reviewer #2 (Public review):

      I enjoyed this paper and the approach to examining an accepted wisdom of ants determining overall density by employing age polyethism that would reduce the computational complexity required to match nest size with population (although I have some questions about the requirement that growth is infinite in such a solution). Moreover, the realization that models of collective behaviour may be inappropriate in many systems in which agents (or individuals) differ in the behavioural rules they employ, according to age, location, or information state. This is especially important in a system like social insects, typically held as a classic example of individual-as-subservient to whole, and therefore most likely to employ universal rules of behaviour. The current paper demonstrates a potentially continuous age-related change in target behaviour (excavation), and suggests an elegant and minimal solution to the requirement for building according to need in ants, avoiding the invocation of potentially complex cognitive mechanisms, or information states that all individuals must have access to in order to have an adaptive excavation output.

      We sincerely thank reviewer #2 for the time and effort dedicated to our manuscript's detailed review and assessment. We have provided a point-by-point response to the reviewer's comments, which we have incorporated into the revised version of the manuscript.

      The only real reservation I have is in the question of how this relationship could hold in properly mature colonies in which there is (presumably) a balance between the birth and death of older workers. Would the prediction be that the young ants still dig, or would there be a cessation of digging by young ants because the area is already sufficient? Another way of asking this is to ask whether the innate amount of digging that young ants do is in any way affected by the overall spatial size of the colony. If it is, then we are back to a problem of perfect information - how do the young ants know how big the overall colony is? Perhaps using density as a proxy? Alternatively, if the young ants do not modify their digging, wouldn't the colony become continuously larger? As a non-expert in social insects, I may be misunderstanding and it may be already addressed in the citations used.

      We thank the reviewer for this interesting question. We find that the nest excavation is predominantly performed by the younger ants in the nest, and the nest area increase is followed by an increase in the population. However, if the young ants dig unrestricted, this could result in unnecessary nest growth as suggested by reviewer #2. Therefore, we believe that the innate digging behavior of ants could potentially be regulated by various cues such as;

      (a) Density-based: If the colony becomes less dense as its area expands, this could serve as a feedback signal for young ants to reduce or stop digging, as described in references (25, 29, 30).

      (b) Pheromone depositions: If the colony reaches a certain population density, pheromone signals could inhibit further digging by young ants, references (25, 29), or space usage as a proxy for the nest area. 

      Thus, rather than perfect information, decentralized control, and digging-based local cues probably regulate the level of age-dependent digging, without the ants needing to estimate the overall colony size or nest area.

      In any case, this is an excellent paper. The modelling approach is excellent and compelling, also allowing extrapolation to other group sizes and even other species. This to me is the main strength of the paper, as the answer to the question of whether it is younger or older ants that primarily excavate nests could have been answered by an individual tracking approach (albeit there are practical limitations to this, especially in the observation nest setup, as the authors point out). The analysis of the tunnel structure is also an important piece of the puzzle, and I really like the overall study.

      We thank the reviewer for the comments. We completely agree that individual tracking of ants within our experimental setup would have been the ideal approach, but we were limited by technical and practical limitations of the setup, as pointed out by the reviewer, such as; 

      (a) Continuous tracking of ants in our nests would have required a camera to be positioned at all times in front of the nest, which necessitates a light background. Since Camponotus fellah ants are subterranean, we aimed to allow them to perform nest excavation in conditions as close to their natural dark environment as possible. Additionally, implementing such a system in front of each nest would have reduced the sample sizes for our treatments.

      (b) The experimental duration of our colony maturation and fixed demographics experiments extended for up to six months (unprecedented durations in these kinds of measurements). These naturally limited our ability to conduct individual tracking while maintaining the identity of each ant based on the current design.

      These details are described in detail within the revised version of the manuscript.

      Reviewer #3 (Public review):

      Summary:

      In this study, Harikrishnan Rajendran, Roi Weinberger, Ehud Fonio, and Ofer Feinerman measured the digging behaviours of queens and workers for the first 6 months of colony development, as well as groups of young or old ants. They also provide a quantitative model describing the digging behaviours and allowing predictions. They found that young ants dig more slanted tunnels, while older ants dig more vertically (straight down). This finding is important, as it describes a new form of age polyethism (a division of labour based on age). Age polyethism is described as a "yes or no" mechanism, where individuals perform or not a task according to their age (usually young individuals perform in-nest tasks, and older ones foraging). Here, the way of performing the task is modified, not only the propensity to carry it or not. This data therefore adds in an interesting way to the field of collective behaviours and division of labour.

      The conclusions of the paper are well supported by the data. Measurements of the same individuals over time would have strengthened the claims.

      We sincerely thank reviewer #3 for the time and effort dedicated to our manuscript's detailed review and assessment. We completely agree with the reviewer’s comments on the measurements of the same individuals over time, however, we were limited by the technical and experimental limitations as described above and pointed out by reviewer #2.

      Strengths:

      I find that the measure of behaviour through development is of great value, as those studies are usually done at a specific time point with mature colonies. The description of a behaviour that is modified with age is a notable finding in the world of social insects. The sample sizes are adequate and all the information clearly provided either in the methods or supplementary.

      We thank reviewer #3  for this assessment.

      Weaknesses:

      I think the paper is failing to take into consideration or at least discuss the role of inter-individual variabilities. Tasks have been known to be undertaken by only a few hyper-active individuals for example. Comments on the choice to use averages and the potential roles of variations between individuals are in my opinion lacking. Throughout the paper wording should be modified to refer to the group and not the individuals, as it was the collective digging that was measured. Another issue I had was the use of "mature colony" for colonies with very few individuals and only 6 months of age. Comments on the low number of workers used compared to natural mature colonies would be welcome.

      Regarding the main comment 1

      We completely agree with the reviewer’s comment on considering inter-individual variability based on activity levels. We have discussed how individual morphological variability could influence digging behavior (references: 28, 31), and we will elaborate further on this aspect in future revisions.

      Regarding the main comment 2:

      The term ‘colony maturation’ in our study refers to the progressive development of colonies from a single queen, distinguishing it from experiments that begin with pre-established, demographically stable colonies. We provide a detailed explanation for this terminology in the revised version of the manuscript. We were practically limited by the continuation of the experiments for more than 6 months of age, predominantly due to the stability of nests, as they were made with a sand-soil mix. We also acknowledge that the colony sizes attained in our maturation experiments may be smaller than those of naturally matured colonies. This trend was observed generally in lab-reared colonies and could be attributed to differences in microclimatic conditions, foraging opportunities, space availability, and other factors. We have explicitly described these details in the revised version of the manuscript.

      Reviewer #1 (Recommendations for the authors):

      The experimental design is fantastic. The large quasi-2D should allow for the direct visualization of the movements of individuals and the creation of the nest, and the inclusion of non-workers (specifically, a mated queen and pupae) is new and important. However, I have some questions and concerns about the results, as outlined below. Also, I found the paper difficult to read, and the connections between the various experiments and the model were not always clear. 

      We thank the reviewer for the time and effort dedicated to reviewing our manuscript. We have modified the manuscript substantially to address the comments and readability. 

      The assumption that the digging rate is constant across ants may be a strong one. Previous work (see, for instance, Aguilar, et al, Science 2018) has demonstrated a very heterogeneous workload distribution among ants. I am not sure what implications that may have for the results here, but the authors should comment on this choice. Related to the point above, given a constant digging rate, the variation in digging is attributed to an age-dependent "desired target area". Can the authors comment on the implications of this, specifically in contrast to a variable digging rate? The distinction between digging rate differences and target area differences seems to be important for the authors. However, the way this is presented, it is difficult to fully understand or appreciate this importance and its implications. What is the consequence of this difference, and why is this important?

      We apologize to the reviewer for the confusion.

      Our model does not assume that the digging rate (da/dt, Equation 1) remains constant throughout the experiment. Instead, we only treat the basal digging rate (r) as a constant.

      The variable digging rate (da/dt, Equation 1) is derived by multiplying the basal rate constant (r) by the term (1 - a/a<sub>age</sub>), which accounts for deviations from the age-dependent target area that the ants aim to achieve. This makes the actual digging rate dynamic, as it responds to changes in excavated area (e.g., expansion or rapid collapse)

      For example, according to our model (Equation 1), two ants with the same basal digging rate (r) may exhibit markedly different actual digging rates at a given time if they differ in age. This occurs because the variable digging rate (da/dt) depends not only on ‘r’ but also on the age-dependent term (1 - a/a<sub>age</sub>). Also, we emphasize that the use of a basal digging rate constant aligns with prior studies (refs. 24, 29, 30).

      In our work, we demonstrate that after a collapse event, ants of all ages dig at rates comparable to those observed in the initial (pre-collapse) phase of the experiment. This occurs because the ants are far from their age-dependent target area, effectively resetting their digging behavior. By comparing maximum digging rates pre- and post-collapse, we provide strong empirical evidence that this rate is age-independent (SI Fig. 6A, 6B), supporting the conclusion that the basal digging rate constant (r) is a fundamental property of the ants' behavior, unaffected by age.

      We agree with the reviewer that individual tracking of ants within our experimental setup would have been the ideal approach. Then, we could have taken the inter-individual variability of the digging activity into account. However, we were limited to doing so by the technical and practical limitations of the setup, such as; 

      (a) Continuous tracking of ants in our nests would have required a camera to be positioned at all times in front of the nest, which necessitates a light background. Since Camponotus fellah ants are subterranean, we aimed to allow them to perform nest excavation in conditions as close to their natural dark environment as possible. Additionally, implementing such a system in front of each nest would have reduced the sample sizes for our treatments.

      (b) The experimental duration of our colony maturation experiments extended for up to six months (unprecedented durations in these kinds of measurements). These naturally limited our ability to conduct individual tracking while maintaining the identity of each ant based on the current design.

      In light of these points, the following lines are added to the discussion (line numbers: 283-295), signifying the above points:

      “Our age-dependent model demonstrates that the digging behavior in Camponotus fellah is governed by a basal digging rate constant (r) modulated by the age-dependent feedback (1 − a/aage). Crucially, we show that after a collapse, the maximum digging rates return to their pre-collapse levels, suggesting that this basal rate ’r’ represents an age-independent ceiling on how fast ants can dig, regardless of age or context (SI Fig. 6 A, B). Previous studies have demonstrated both homogeneous and heterogeneous workload distribution, with varying digging rates among ants (24, 29, 30, 35). Studies showing heterogeneous workload distribution relied on continuous individual tracking of ants to quantify digging rates (35). However, this approach was not feasible in our current design due to the experimental durations of both our colony maturation and fixed demographics experiments. Additionally, sample size requirements naturally limited our ability to conduct continuous individual tracking during nest construction in our study. Thus, based on empirical measurements from our fixed-demographics experiments and supported by the age-independent post-collapse digging rates, we adopted a constant basal digging rate for simulating our age-dependent model—an assumption aligned with both prior literature and the collective dynamics observed in our system (24,29,30)”.

      Model: as presented, the model seems to lack independent validation. The model seems to have built-in that there is an age-dependent target area, and this is what is recovered from the model. I am failing to see what is learned from the model that the experiments do not already show. Also, the model has no ant interactions, though ants are eusocial and group size is known to have a large effect on behavior (this is acknowledged by the authors at the beginning of the discussion). Can the authors comment on this?My recommendation would be to remove the model from this paper or improve the text to address the above comments.

      We did not draw the conclusion of the age-dependent target area from our model. We used the fixed demographics experiments to quantify the age-dependent area target as a function of the age of individuals. We then used this age-dependent area target in our model to quantify the excavation dynamics of the colony maturation experiments, where ants span a variety of ages, as the nest population changes over time, resulting in natural variation in the ages of individuals within the nest.  These results could not have been obtained by performing any of the individual experiments, whether colony maturation or the fixed demographics, young or old, on their own. The need for different age demographics was crucial to quantify the age-dependent effects in nest excavation, which were lacking in previous studies. 

      First, the age-dependent model provides a very good estimate for the natural growth of the nest.  More importantly, after fixing an age threshold of 56 days (mean + standard deviation of the young ant age), the model provides an estimate of which ants are doing the majority of the digging during natural nest expansion. This teaches us that during natural expansion, the older ants are far from their density target and therefore do not engage in any substantial digging, which is shown in Figure 4. C. 

      On the other hand, the younger ants are close to their area targets and induced to dig. Indeed, the target area fitted for the age-independent model closely approximates the empirically measured age-dependent target when extrapolated to very young ants. This provides further support for the idea that, in the colony maturation experiments, the youngest ants are responsible for most of the digging.

      Our model is a simple analytical model, inspired by earlier models that used a fixed area target (such as density models) for nest construction. However, because we knew the precise age of workers in our experiments, we were able to obtain age-dependent area targets, thereby challenging the use of a constant area target (as employed in prior studies) in light of our findings from the fixed demographics of young and old colonies.

      Empirically Quantifiable Parameters: We wanted our model to have empirically quantifiable parameters. Since we did not continuously record the experiment, we could not quantify agent-agent interactions, pheromonal depositions, or similar factors.

      Minimal Model Design: We aimed to keep the model as minimal as possible, which is why we did not include complex interactions such as those found in continuous tracking experiments.

      However, the model does set up some interesting hypotheses that could easily be tested with the experimental setup (e.g., marking the ants / tracking individual activity levels). For instance, it is hypothesized that older ants dig less often, but when they do dig, they do so at the same rate. Given the 2D setup, the authors could track individual ants and test this hypothesis. Also, if the desired target area does decrease with age, the authors could verify this hypothesis by placing older ants into arenas with different-sized pre-formed nests to observe how structure is changed to achieve the desired area/ant.

      We thank the reviewer for this comment.

      We believe that the confusion with the usage of a constant basal digging rate is resolved now. To briefly reiterate, ants dig at variable rates that can be decomposed to a (constant on short time scales but age-dependent) basal rate times the (variable) distance from the density target. The suggested experiments are beyond the scope of our current study, and further studies could utilize the suggested experimental design with better time-resolved imaging for individual ant tracking that could verify the predictions from our model. 

      Specific comments:

      Title:

      The title suggests a broad result, yet the study focuses on one ant species. Please modify the title to more accurately reflect the scope of the work.

      We thank the reviewer for the comment.

      The title is modified as “Colony demographics shape nest construction in Camponotus fellah ants.”

      Introduction:

      Important information and context are missing about this ant species. For instance, please add the following about this species in the introduction:

      What is their natural habitat and substrate? How does the artificial soil compare?

      What is their (rough) colony size? [later, discuss experiment group size choice and potential insights/limitations of results when applied to the natural system].

      The details have been added to the introduction (line numbers : 49-55) and the materials and methods section (Study species).

      “Camponotus fellah ants are native to the Near East and North Africa, particularly found in countries like Israel, Egypt, and surrounding arid and semi-arid regions, where they prefer to nest in moist, decaying wood, including tree trunks, branches, or stumps (49,50). The species lives in monogynous colonies with tens to thousands of individuals. Nests are commonly found in a sand-loamy mix, which is a combination of sand, soil, clay, or gravel, providing structural stability and moisture retention (51). They are typically found under rocks, in the crevices of dried vegetation, or dry, sandy soils, sometimes in areas with loose gravel, with a colony size ranging from tens to thousands of workers”.

      What is the natural life expectancy of a worker? A queen? [later, discuss fixed demographic age choices in this context and/or why were age ranges chosen for experiments?].

      The lifespan of ants, including both queens and workers, varies significantly based on caste, species, and environmental conditions.

      (1) Queen Longevity: From the literature, Camponotus fellah queens can live up to 20 years, with one documented case reaching 26 years (50). 

      (2) Worker Longevity: In contrast to queens, the lifespan of workers is much shorter. Lab studies on Camponotus fellah (82) and other Camponotus species (83) suggest that workers can live for several months depending on environmental conditions, colony health, and caste-specific roles (e.g., minor vs. major workers)

      (3) Laboratory vs. Natural Conditions: Worker longevity is highly variable between laboratory and natural conditions

      Therefore, in the context of the old worker lifespan in our experiments, ~200 days (roughly 6–7 months), we strongly believe that the worker lifespan used in our experiments represents a substantial portion of a worker's expected life. While exact figures for C. fellah workers are unavailable, inferences from related species suggest that workers nearing 200 days are approaching the latter stages of their lifespan, making them meaningfully "old". 

      The details are added to the main text (line numbers: 124-127) and discussion (line numbers: 278-282).

      Why was this species chosen? Convenience, or is there something special about this species that the readers should know? Specifically, is there something that might make the results more general or of broader interest?

      Camponotus fellah was chosen for this study because it is native to Israel, making it convenient to collect and maintain in the lab. Additionally, its nuptial flights occur close to the study location, ensuring a steady supply of colonies. We were able to provide them with a nesting substrate similar to what they naturally use, as their nests are typically found in a sand-loamy mix, similar to the sand-soil mix in our artificial nests. This was possible because we had the opportunity to observe their habitat and nesting behavior in the wild, allowing us to gather preliminary information on their natural nesting conditions.

      Results:

      Line 60: "several brood items" - how many exactly? Was this consistent across experiments? Do mated queens ever produce more pupae during the experiments?

      Yes, the number of brood items (5) was added consistently across the experiments. Additionally, the mated queen did produce pupae during the course of the experiments, which was evident from the noticeable increase in the number of workers in the nest. This was significantly higher than the number of brood items present at the start of the study.

      The above points are added to the section (line numbers : 68-69).

      Figure 1: Panel A - The food ports are never mentioned in the text. Are the ants fed during the experiments? If so, what? With what frequency? Is the water column replenished/maintained? If so, how and how often? panel C - how long did this experiment last?

      We thank the reviewer for pointing this out. We have now updated the nest maintenance section in the Materials and Methods (line numbers : 349-354) part to include all the necessary details and clarifications.

      “We provided food to the ants ad libitum through three separate tubes containing water, 20 % sucrose water, and protein food. The protein mixture included egg powder, tuna, prawns, honey, agar, and vitamins. Each of the three tubes was filled with 5 ml of their respective contents and sealed with a cotton stopper to prevent overflow. The tubes were positioned at a slight angle and connected using a custom-made plexiglass adapter to facilitate the flow of liquids. These tubes were replenished once depleted, and regularly replaced once the nest maintenance was carried out bi-weekly.”

      Line 76: "...excavation was commenced by the founding queen". How were the queen and pupae introduced into the system?

      We initiated colony maturation experiments by introducing a single mated queen and several brood items (pupae) at random positions on the soil layer of the nest (line numbers : 68-69)

      Line 87: Please provide bounds for 11cm2/ant value. Is there any biological or physical justification for this number?

      We thank the reviewer for the suggestion. We have now provided the bounds as requested (line numbers : 97-101). 

      We were unable to pinpoint a specific biological justification based solely on this treatment. However, on extrapolating the age-dependent area fit we derived from the fixed demographics experiment, we found that at the age of 1 day, an ant has a target area of approximately 11.17 cm², which is the largest age-dependent area target possible within our experimental setup.

      From the colony maturation experiment, we obtained the value of  11.6 (±1.15) cm² as the area per ant. The consistency between the area per ant obtained from two completely different treatments across different colonies yielded similar results. We propose that under standardized conditions, a 1-day-old ant has a theoretical maximum target area of 11.17 cm²—the highest value observed in our experimental framework.

      Lines 98-99: "one straightforward possibility would be that newborn ants are the ones that dig". This statement contradicts the results presented in Figures 1 and S1 - the population increase seems to occur at least a few days before increased excavation in nearly all cases.

      We apologize for any confusion caused by our initial phrasing. To clarify, we proposed that a lag likely exists between population growth and nest area expansion. This lag could arise from two sequential processes: (1) newborn ants require time to mature and become active (first delay), and (2) digging to expand the nest takes additional time (second delay; estimated at ~10 days from the cross-correlation analysis). Thus, our results suggest that it is not the population that lags behind the area, but rather the area that lags behind the population, as demonstrated in Figures 2D and SI. Figure. S1.

      The sentence “one straightforward possibility would be that newborn ants are the ones that dig” is modified as below (line numbers : 112-119) to prevent further confusion.

      “One possible explanation is that, although all ants are capable of digging, it is primarily the newly emerged ants who perform this task. In this case, nest expansion would lag behind colony growth due to two delays: first, the time needed for young ants to mature enough to begin digging, and second, the physical time required to excavate additional space (e.g., around 10 days). This mechanism could eliminate the need for ants to assess overall colony density, as each new group of active workers simply enlarges the nest as they become ready. An alternative possibility is that all ants, regardless of age, respond to increased density by initiating excavation. In that scenario, nest expansion would follow more immediately after the emergence of new individuals, making delays less prominent (24, 29, 30)”.

      Line 105: How do group sizes compare to natural colony size? Line 106: How do "young" and "old" classifications compare to natural life expectancy?

      We have already addressed this question in an earlier comment. The details are added to the main text (line numbers: 124-127) and discussion (line numbers: 278-282).

      Line 118-119: How are nests artificially collapsed?

      We have added a new section in the Materials and Methods section that describes the nest collapsing procedure (Nest artificial collapse - line numbers : 386-399).

      Figure 2 Panel A: The white dotted line is nearly impossible to see. Please use a more visible color.

      We thank the reviewer for the comment.

      We changed the solid circles to violet and the dotted line color to continuous white.

      Figure 3: The use of circle markers as post-collapse recovery in young and old as well as old pre-collapse is confusing. Use different symbols for old pre-collapse vs young and old post-collapse.

      We thank the reviewer for pointing out the confusion. We have revised the figure markers as suggested and modified the main text accordingly.

      • Young; pre-collapse : star

      • Young; post-collapse : diamond

      • Old; pre-collapse : circle

      • Old; post-collapse: triangle.

      Figure 3 Panel C: Indicate that fixed demographic values here are pre-collapse. Also, as presented, it appears that there is a large group-size dependence that is not commented on. Previous results (Line 87 and Figure 2C) suggest a constant excavation area per ant of 11cm2/ant. Figure 3, panel C appears to suggest a group-size dependence. If these values are divided by group size, is excavated area per ant nearly constant across groups? How does the numerical value compare to the slope from Figure 2C?

      We thank the reviewer for their insightful comments.

      First, we would like to clarify that the area target of 11.1 (±1) cm²/ant, as described in Line 87, was obtained from the colony maturation experiments. In these experiments, we were unable to track the age of each individual ant, so the area target was calculated by normalizing the total excavated area by the number of ants.

      We normalized the excavated area by the group size for both young and old colonies as suggested, and found that the area per ant was not significantly different across the group sizes (see new SI Fig. 5A). This indicates that the excavated area per ant remains relatively constant within each demographic group. Moreover, this shows that the total excavated area is proportional to group size, in agreement with previous works (24, 29, and 30). 

      We have explicitly described the above information in the line numbers: 142-146

      Regarding the slope comparisons, the slope of Figure 2C (10.71), from the colony maturation experiments, is the largest, followed by the area per ant from the short-term young (8.79 ± 0.98) cm²/ant, and short-term old experiments (5.16 ± 0.44) cm²/ant.

      Lines 128-129: "...younger ants aim to approach a higher target area". Seems hard to know what they "aim" to do... rephrase to report what they are observed to do.

      We thank the reviewer for the comment. The sentence is rephrased as suggested (line numbers : 158-161).

      “In the previous sections, we showed that in fixed-demographics experiments, younger ants excavated a significantly larger nest area compared to older ants (Fig. 3. C).  This difference emerged despite similar temporal patterns in digging rates across age groups, with excavation activity peaking within the first 7 days before asymptotically decaying as nest expansion approached saturation (SI Fig. 8).”

      Lines 133-141: The model description is not clear. Specifically, what parameters are ant-dependent? How does A relate to a?

      We appreciate the reviewer's request for clarification. In our model:

      (1) Equation 1 describes the change in the excavated area due to the digging activity of a single ant. Here, the variable 'a' represents the area excavated by one ant. This formulation allows us to capture the individual digging behavior and its impact on the excavation process.

      (2) Equation 2 extends this concept to the total area excavated in the nest, denoted by 'A'. Specifically, 'A' is the sum of the areas excavated by all ants present in the nest. In other words, it aggregates the individual contributions of each ant, linking the microscopic digging behavior to the macroscopic excavation dynamics.

      Therefore, the relationship between 'a' and 'A' is as follows:

      ●     'a' = Area excavated by a single ant.

      ●     'A' = ∑ 'a' (Summed over all ants in the nest).

      We have explicitly mentioned this in the line numbers “ 161-179”, and describe the model assumptions and parameters in detail.

      Figure 4:

      Figure 4, Panel A: The equation quoted in the caption does not match the data in the figure. The equation has a positive slope and negative intercept, while the figure has a negative slope and a positive intercept. Please provide the correct equation and bounds on fit parameters.

      We thank the reviewer for spotting this typing mistake.

      The equation was already updated in the reviewed preprint published online. The correct equation and the fit bound are provided in the figure caption.

      “Target areas decrease linearly with the ant age (y = −0.032x + 11.22 , 95 % CI (Intercept : (-0.035,-0.027), Slope : (10.53,11.91)), R2 = 0.96 ).”

      Figure 4, Panel A: There seem to be three "fixed target area per ant values" in the paper: around 11cm2/ant (line 87), 11.6 cm2/ant (SI Figure 2), and linearly dependent value from fit to Figure 4A. The distinctions between these values and their significance are hard to keep track of. Can the authors add a discussion somewhere that helps the reader better understand? Is there a way to connect/rationalize/explain these different values in terms of demographics?

      We thank the reviewer for the suggestion.We have added a paragraph in the discussion (line numbers : 270-277) describing the area targets.

      “In our colony maturation experiments, we found that area per ant was highest when the workers were youngest, with values around 11.1–11.6 (±1–1.15). This aligns with observations from naturally growing nests, where newly eclosed ants dominate the population and nest volumes are relatively large. Supporting this, fixed-demographics experiments showed that the area excavated per ant declines linearly with worker age, indicating that the youngest ants contribute most to excavation. Notably, the target area we fit for the age-independent model (11.6 ± 1.15) closely matches the extrapolated value for very young workers (Fig. 4. A), reinforcing the idea that young ants are the primary excavators during early colony growth. In contrast, during events like collapses or displacement, when space is urgently needed, ants of all ages participate in excavation.”

      Figure 4, Panel A: What are various symbols and colors for data with error bars? If consistent with Figure 3, then this panel and subsequent model confound two factors: (1) the age dependence and (2) the behavioral differences pre- and post-collapse (structures are different pre-and post-collapse, according to SI Figure 6; line 120: "...colonies ceased digging when they recovered 93{plus minus}3% of the area lost by the manual collapse..."; lines 201-202: "We find significant quantitative and qualitative differences between nests constructed within this natural context and nests constructed in the context of an emergency") and behavior is different (according to SI Figure 7 and line 119: "...all ants dig after collapse...")). Therefore, without further supporting evidence, it does not seem that these data should be used to fit a single line that defines a model parameter a_age for each ant in equation 2.

      The symbols are the area per ant quantified from the fixed demographics of young, and old experiments. The symbols show the following;

      A.  Star - Young, pre-collapse

      B.  Diamond - Young, post-collapse 

      C.  Circle - Old, pre-collapse

      D.  Triangle - Old, post-collapse.

      The details are clearly described in the figure caption. 

      We apologize to the reviewer for the confusion. We argue that the data can be fit by a single line to quantify the parameter ‘a_age’ as follows. 

      A. All data presented in Figure 4A were obtained from the same fixed-demographics experiments (containing only young and old ants) under experimental collapse conditions, pre- and post-collapse. These results, therefore, exclusively reflect emergency nest-building behaviors during emergency scenarios and do not include any observations from natural colony maturation processes.

      B. Age-dependent excavation differences: As correctly noted by the reviewer, the observed difference in excavated area before versus after collapse reflects the natural aging of ants in our experimental colonies. While colonies recovered >90% of lost area post-collapse, the residual variation was not negligible—instead, it systematically correlated with colony age structure. By tracking colonies across this demographic transition, we obtained additional data points spanning a broader developmental spectrum. This extended range strengthened our ability to detect and quantify the linear relationship between worker age and excavation output.

      C.The quoted sentence (lines 201-202, submitted version) refers to comparisons across all three experimental cases: (1) fixed-demographics young ants, (2) fixed-demographics old ants, and (3) the natural scenario (mixed-age colonies). Importantly, these comparisons are based on pre-collapse steady-state excavation areas, ensuring a consistent baseline across treatments. We highlight quantitative and qualitative differences between these distinct experimental groups, not between pre- and post-collapse phases within the same treatment. The pre- and post-collapse data within fixed-demographics groups were analyzed separately to avoid conflating aging effects with emergency responses.

      To avoid confusion, the whole paragraph in the discussion (line numbers : 253-260) is rephrased.

      In lines 201-202; “We find significant quantitative and qualitative differences between nests constructed within this natural context and nests constructed in the context of an emergency”. 

      Here, by natural context, we mean the nests excavated in the colony maturation experiments. We believe that it could have been confusing, and the sentence is modified as answered for the previous question. 

      Figure 4, Panel B: This uses the model with a_age determined by from Figure 4A and the life table (as shown in the supplemental), whereas the supplemental Figure SI 8 uses the fixed blue line a_age value for the model, which comes from the colony maturation experiments. The age-independent model in the supplemental fits the data better, yet the authors claim the supplemental model cannot be applied to the data because of their experimentally determined age-dependent target area. Given the age-independent target area model fits better, additional evidence/justification is needed to support the choice of the model.

      We agree with the reviewer that the age-independent model fits the data well. However, we believe that the fixed area target cannot be used to explain the excavation dynamics for the following reasons.

      We make an important assumption in our model: that the ants rely on local cues and that individual ants can not distinguish between the fixed demographics and colony maturation experiments (line numbers : 161-166). Given this assumption, the ants cannot change their behavior between experiments, meaning the same model should fit all of our results. However, the fixed demographics experiments revealed a significant difference in the areas excavated by young vs. old cohorts, despite having the same group size. If the ants regulated the excavated area based on an age-independent constant density target model, then the excavated area in the fixed demographics of young and old colonies would have been similar. This discrepancy indicates that the target area per ant is not constant, as assumed in the age-independent density model (SI. Fig. 8). We emphasize that while the age-independent model provides a better fit for the excavated area in colony maturation experiments, the age-dependence of excavation is empirically supported by fixed-demographics experiments. Therefore, we implemented this age-dependence through a variable target area within the age-dependent model framework to explain excavation dynamics in the colony maturation experiments.

      These details are explicitly mentioned in the main text (line numbers : 187 - 198)

      Figure 4, Panel C: Is this plot entirely from the model, or are the data points measured from experiments? Please label this more clearly.

      We apologize to the reviewer for the confusion.

      The Figure 4C is based on the age-dependent digging model. We applied the model to population data from the long-term experiments (n = 22). By setting an age threshold of 56 days (since ants used in the short-term young experiment had an average age of 40 ± 16 days), we categorized the ants into young and old groups. We then quantified the area dug by the young ants, the queen, and the old ants in terms of the percentage of the total area excavated. We hypothesized that, because young ants have a lower digging threshold, they would perform the majority of the digging. We indeed confirm this in Figure 4C.

      This information is added to the main text and described in detail (line numbers: 200 - 208).

      Lines 162-165: "...Furthermore, we quantified the area dug by each ant in the normal colony growth experiment as estimated from the age-dependent model and found that all ants excavated more or less the same amount...". Figure 4D shows a distribution with significant values ranges from 1-16 cm2... how is this interpreted as "more or less the same amount" and what is the significance of this?

      We apologise to the reviewer for the confusion.

      We quantified the percentage contribution to the excavated area of each histogram bin (provided in the new SI table: 4), and found that the area excavated between 5 cm² and 13 cm² accounts for 73.76% of the total excavated area. This indicates that most ants dug within this range rather than exhibiting extreme variations. Additionally, the mean excavation amount is 7.84 cm², with a standard deviation of 3.44 cm², meaning that most values fall between 4.4 cm² and 11.28 cm², which aligns well with the 5–13 cm² range. Since the majority of the excavation is concentrated within this narrow interval, and the mean is well centered within it, this suggests that ants excavated more or less the same amount, rather than forming distinct groups with highly different excavation behaviors.

      We have modified the main text (line numbers: 209-216) to include these points.

      The biological significance of this finding is that since all ants in the colony maturation experiments are born inside the nest, we hypothesize that they should excavate similar amounts. To test this, we quantified the area contribution of each ant over the entire duration of the experiment using the age-dependent digging model as described above and found that they indeed excavated more or less the same amount. From our analysis of fixed demographics experiments, we showed that the youngest ants excavate the largest area. Since the majority of the youngest ants participated in the colony maturation experiments, this further supports our hypothesis.

      Figure 5.

      Figure 5, Panels A-C: Please provide a scale bar. 

      The scale bar is provided in the figure as suggested. The algorithm for the cutoffs for tunnel vs wide tunnels is described in detail in the section “Nest skeletonization, segmentation, and orientation.”

      Figure 5, Panel E: Why does the chamber error bar for 5 ants go to zero?

      In Figure 5, E, we plot the standard error, as described in the figure caption. In the experiments, the chamber area contributions were (0,0,39.94,0) respectively. The mean of the 4 numbers is 9.985, the standard deviation is 19.97, and the standard error is 9.985. So, the mean and the standard error are the same, so the lower error bar goes to zero, and the upper error bar goes to 19.97. This implies that in these experiments, the chamber area is often zero.

      Figure 5, Panel I: Why are there no chambers for young colonies in I when they are in the histogram in E?

      We apologize to the reviewer for the confusion. We initially missed adding the chamber orientation data of the young colonies to Panel I, but it has now been included.

      Line 212: "...densities of ants never become too high...". What is too high? Is there some connection to biological or physical constraints?

      Under normal growth conditions, nest volume is kept proportional to the number of ants, ensuring that the density remains within a specific range. This prevents overcrowding, which could otherwise lead to excessively high densities.

      Yes, we believe there is likely a connection to both biological and physical constraints. The proportional relationship between nest volume and the number of ants is likely driven by factors such as:

      (1) Biological Constraints:

      Ant Colony Size: Ants typically adjust their behavior and social structure to maintain an optimal population size relative to available resources and space.Overcrowding could lead to potentially a breakdown in colony function.

      Colony Health: High densities can lead to faster epidemic spread, leading to negative effects on reproduction, foraging efficiency, and overall colony health. By maintaining density within a specific range, the colony can thrive without these adverse effects.

      (2) Physical Constraints:

      Spatial Limitations: The physical space within the nest limits how many ants can occupy it before space becomes constrained. The nest’s structure and size must physically accommodate the ants, and the volume must be large enough to prevent overcrowding, and efficient resource distribution.

      Lines 272 and 302: How often were photos taken? These two statements seem to suggest different data collection rates.

      As stated in line 272, photos were taken every 1 to 3 days. During each photo session, four photos were taken, with each photo separated by 2 seconds, as mentioned in line 302. To avoid confusion, we rephrased the sentence (line numbers: 359-361).

      “We photographed the nest development every 1-3 days. During each photography session, four pictures of the nest were taken, with a 2-second interval between each.”

      Reviewer #2 (Recommendations for the authors):

      Some more minor points/questions/clarifications:

      This might be pedantic, but I don't think the nest serves as the skeleton of the superorganism, while it does change and grow, the analogy becomes weak beyond that point. The skeleton serves to protect the internal organs of the organism, facilitates movement and muscle attachment, and creates new blood cells. I would be more comfortable with a statement that the nest can grow or shrink according to need.

      We sincerely thank the reviewer for their time and effort in providing a detailed review and assessment of our manuscript. A point-by-point response to the comments is provided below.

      The analogy of treating a nest structure to the skeleton of a superorganism was based on the following points;

      (a) Protection: A nest protects the colony on a collective scale. This is analogous to protecting "organs" by a skeletal framework.

      (b) Organization and Division of Space: The skeletal structure organizes the body's internal layout, just as nest structures are organized into various spatial compartments for various colony functions, with specific regions designated for brood chambers, food storage, and waste disposal.

      Thus, we believe that the analogy can still be valid in a metaphorical way.

      Does this statement need justification with a citation, or is that information contained in the subsequent clause? "However, for more complex structures where ants congregate in specific chambers, workers are less likely to assess the overall nest density." The idea that workers do (or do not) assess overall density touches on many issues, including that of perfect information and adaptive responses, that it seems it needs to be well founded in previous work to be stated in such unequivocal terms.

      We thank the reviewer for this comment. The references for this argument are provided in the next sentence. We have now moved these references to the relevant sentence (reference number: 24, 29,30; line number : 30-31 ) 

      Can you give some more information on this statement? "Experiments were terminated either when the queen died or when she became irreversibly trapped after a structural collapse." Why was this collapse irreversible and therefore unlike treatment 2? Did the queen die in these instances? Was this event more likely than in natural colonies? And if so, was there something inherently different about your experiments that limit interpretation under natural conditions (e.g. the narrow nature of the observation setup? The consistency of the sand?)

      Our nest excavation experiments were terminated under two primary scenarios: (1) the queen died of natural causes, reflecting the baseline mortality expected when queens are brought into laboratory conditions, or (2) the nest experienced a structural collapse that left the queen irreversibly trapped. The second scenario is further elaborated below:

      Irreversible Collapses: These collapses were classified as irreversible because the queen could not be rescued alive. This occurred when the structural stability of the nest failed, burying the queen in a manner that prevented recovery. In some cases, the collapse resulted in the queen's immediate death, while in others, she was trapped beyond reach, and any rescue attempt risked further structural damage.

      Collapse and Experimental Context: These collapses were not uniquely associated with natural colonies or fixed-demographic experiments; rather, they occurred across various experimental setups.

      The sentence is modified as below to improve clarity (line numbers : 70-72 ).

      “In all instances where a collapse resulted in the queen's death or her being irreversibly trapped in the nest, the experiment was excluded from analysis starting from the point of the collapse, as such events did not reflect normal colony dynamics.”

      I want to make sure I understand the following statement: "Moreover, the area excavated by the young cohorts was similar to that excavated by naturally maturing colonies at the point in which they reached the same population size (Tukey's HSD; group size: 5; p = 0.61, group size: 10; p = 0.46, group size: 15; p = 0.20)." Do I have it right that this means a group of (e.g. 10) young ants excavates an area similar to that of a group of 10 naturally maturing ants at the same age as the young ants?

      Yes, the interpretation provided is correct. We apologize to the reviewer for the confusion. We have rephrased the sentence for better readability (line numbers : 146-148).

      “Furthermore, the area excavated by the young cohorts was comparable to that excavated by naturally maturing colonies when they reached the same population size (Tukey's HSD; group size: 5, p = 0.61; group size: 10, p = 0.46; group size: 15, p = 0.20)”

      How old do ants get? Is the 'old' demographic (~200 days) meaningfully old in the context of the overall worker lifespan? While the results certainly demonstrate there is an age effect, I would like to understand how rapid this is in terms of overall lifespan.

      The lifespan of ants, including both queens and workers, varies significantly based on caste, species, and environmental conditions.

      (1) Queen Longevity: From the literature, Camponotus fellah queens can live up to 20 years, with one documented case reaching 26 years. This remarkable longevity underscores the queen's central role in maintaining the colony.

      (2) Worker Longevity: In contrast to queens, the lifespan of workers is much shorter.

      However, specific data on worker longevity in Camponotus fellah colonies are lacking. Studies on other Camponotus species (50, 82) suggest that workers can live for several months depending on environmental conditions, colony health, and caste-specific roles (e.g., minor vs. major workers).

      (3) Laboratory vs. Natural Conditions: Worker longevity is highly variable between laboratory and natural conditions

      Therefore, in the context of the old worker lifespan in our experiments of, ~200 days (roughly 6–7 months) we strongly believe that the worker lifespan used in our experiments represents a substantial portion of a worker's expected life. While exact figures for C. fellah workers are unavailable, inferences from related species suggest that workers nearing 200 days are approaching the latter stages of their lifespan, making them meaningfully "old."

      These details are added to the main text (line numbers : 124 - 127) and to the discussion (line numbers : 278-282)

      Reviewer #3 (Recommendations for the authors):

      We sincerely thank the reviewer for their time and effort in providing a detailed review and assessment of our manuscript. A point-by-point response to the comments is provided below.

      L10: "fixed demographics": I find this term unclear, what does it mean, it should specify if the groups are with or without a queen.

      We thank the reviewer for the comment. The sentence is modified in the abstract, and definitions are later added in detail in the introduction (line numbers : 8-10) and the Materials and Methods section (Fixed demographics colonies). 

      “We experimentally compared nest excavation in colonies seeded from a single mated queen and allowed to grow for six months to excavation triggered by a catastrophic event in colonies with fixed demographics, where the age of each individual worker, including the queen, is known”.

      The details of the “fixed demographics” treatments were explained in the later portion of the text (line numbers: 58-61).

      L36: I think it is documented that younger individuals are the ones who involved in nest construction in many species.

      Previous studies on nest construction were predominantly performed on mature colonies of specific age demographics or rather mixed demographics, where age was not considered as a factor influencing nest construction. Some studies have speculated that young ants could be the most probable ones to dig, but this has not been experimentally verified to the best of our knowledge.

      L50: I do not think the colony should be called mature after only 6 months, given that colonies reach thousands of workers.

      The sentence is changed as suggested (line numbers : 56-57).

      “The "Colony-Maturation" experiment observed the development of colonies up to six months, starting from a single fertile queen and progressing to colonies with established worker populations.” 

      L60: Where was the queen introduced? It is specified in the Methods but a word here would be helpful.

      The detail is added as suggested (line numbers : 68-69).

      “We initiated colony maturation experiments by introducing a single mated queen and several brood items (n = 5, across all experiments) at random positions on the soil layer of the nest.”

      L106: Young vs Old workers 40 vs 171 days. Maybe cite a reference or provide a reason for the selection of those ages?

      Previous studies have shown that the Camponotus fellah queens can live up to 20 years, with one documented case reaching 26 years (50). To the best of our knowledge, specific data on worker longevity in Camponotus fellah colonies in natural conditions are lacking. Lab studies on Camponotus fellah (82) and other Camponotus species (50) suggest that workers can live for several months depending on environmental conditions, colony health, and caste-specific roles (e.g., minor vs. major workers). 

      We intentionally selected workers from two distinct age groups: younger ants (40 ± 16 days old) and older ants (171.56 ± 20 days old). These ages represent functionally different life stages - the younger group had completed about 25% of their expected lifespan at the start of the experiment, while the older group had lived through most of theirs (50, 82). This 4-fold age difference allowed us to compare excavation behaviors across fundamentally different phases of adult life.

      Our experiments lasted for 60-90 days, during which all participating workers continued to age. To ensure all ants remained alive throughout the experiments, and given the constraints of the experimental timeline, we selected young and old workers within the specified age range. 

      These details are added to the main text (line numbers :  124 -127), and the discussion (line numbers  : 278-282)

      L122-123: But usually ants can vary highly in their behaviours. Can the authors comment on their choice to consider an average, implying that all ants of the same age had the same digging rates?

      We thank the reviewer for the comment.

      In our experiments, we could not track each worker's activity over time. As described in the methods, we took snapshots of the nest structure over days and recorded the population size of the nest. Thus, we could not capture the activity of single ants in the nest as described in the response to major comments in the reviewed preprint.

      We agree that individual tracking of ants within our experimental setup would have been the ideal approach. Then, we could have taken the inter-individual variability of the digging activity into account. However, we were limited to doing so by the technical and practical limitations of the setup, such as; 

      (a) Continuous tracking of ants in our nests would have required a camera to be positioned at all times in front of the nest, which necessitates a light background. Since Camponotus fellah ants are subterranean, we aimed to allow them to perform nest excavation in conditions as close to their natural dark environment as possible. Additionally, implementing such a system in front of each nest would have reduced the sample sizes for our treatments.

      (b)The experimental duration of our colony maturation and fixed demographics experiments extended for up to six months (unprecedented durations in these kinds of measurements). These naturally limited our ability to conduct individual tracking while maintaining the identity of each ant based on the current design.

      To clarify this, we have added the following to the discussion (line numbers: 286-292).

      “Previous studies have demonstrated both homogeneous and heterogeneous workload distribution, with varying digging rates among ants (24,29,30,35). Studies showing heterogeneous workload distribution relied on continuous individual tracking of ants to quantify digging rates (35). However, this approach was not feasible in our current design due to the experimental durations of both our colony maturation and fixed demographics experiments. Additionally, sample size requirements naturally limited our ability to conduct continuous individual tracking during nest construction in our study.”

      L171: A line on how the nest structure was acquired and data extracted would be welcome here.

      The algorithm for the nest structure segmentation, data extraction, and analysis is added in detail to the SI section: Nest skeletonization, segmentation, and orientation. The line is modified (line numbers : 221-224) in the main text as suggested.

      “We compared nest architectures by segmenting raw nest images into chambers and tunnels (see SI Section: Nest Skeletonization, Segmentation, and Orientation). Chambers were identified as flat, horizontal structures, while tunnels were narrower and more vertical in orientation (see SI Fig. 9, SI Section: Nest Skeletonization, Segmentation, and Orientation)”.  

      Figure 3: Where does the data of the mean in panel C come from: is it the mean of the first 30 days, before the collapse? How is it comparable with the rest?

      We apologize to the reviewer for the confusion.

      In panel C, the mean values (solid stars and circles) for fixed-demography colonies (young/old groups) represent pre-collapse excavation areas. For colony maturation experiments (where no collapses were induced), we instead plot the mean saturated excavation area for each group size. This allows direct comparison of mean excavated areas across experimental conditions at equivalent colony sizes.

      To improve readability, the following sentences are added to the main text (line numbers : 139 - 146 ) 

      “We compared the saturated excavation areas (pre-collapse) from fixed-demographics experiments (young and old groups) with those from colony maturation experiments of the same colony sizes (Fig. 3C). We find that, for a given age cohort (young or old), the saturation areas increase linearly with the colony size (GLMM, F(35,37); p < 0.0001) (Fig. 3 C, SI. Fig 7 A). The observed proportional scaling between excavated area and group size aligns with previous studies, even though those studies did not explicitly account for age demographics (24, 29, 30). After normalizing the pre-collapse excavated area by group size for both young and old colonies, we found no significant difference in area per ant across group sizes (SI Fig. 5. A). This indicates that the excavated area per ant remains relatively constant within each demographic group”.

      L209-210: I would be more parsimonious in saying that the results presented prove that the target area decreases with age, as the individual behaviour of the ants was not monitored. Suggestion: rephrase to "the target of the group decreases with age".

      The sentence is rephrased as suggested (line numbers : 265-266).

      “Our results reveal that this target area of the group decreases linearly with age, such that young ants are more sensitive to shortages in space.”

      L246: Are C.fellah colonies really found with such few workers?

      Previous studies have speculated that mature Camponotus fellah colonies are a monogynous species typically founded by a single queen following nuptial flights (50,51,82), and can range from tens to thousands of workers. However, during the founding stage (as in our experiments), colonies naturally pass through smaller developmental sizes comparable to the matured colonies.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This work addresses an important question in the field of Drosophila aggression and mating- prior social isolation is known to increase aggression in males by increased lunging, which is suppressed by group housing (GH). However, it is also known that single-housed (SH) males, despite their higher attempts to court females, are less successful. Here, Gao et al., developed a modified aggression assay, to address this issue by recording aggression in Drosophila males for 2 hours, over a virgin female which is immobilized by burying its head in the food. They found that while SH males frequently lunge in this assay, GH males switch to higher intensity but very low-frequency tussling. Constitutive neuronal silencing and activation experiments implicate cVA sensing Or67d neurons promoting high-frequency lunging, similar to earlier studies, whereas Or47b neurons promote low-frequency but higher intensity tussling. Using optogenetic activation they found that three pairs of pC1 neurons- pC1SS2 increase tussling. While P1a neurons, previously implicated in promoting aggression and courtship, did not increase tussling in optogenetic activation (in the dark), they could promote aggressive tussling in thermogenetic activation carried out in the presence of visible light. It was further suggested, using a further modified aggression assay that GH males use increased tussling and are able to maintain territorial control, providing them mating advantage over SI males and this may partially overcome the effect of aging in GH males.

      Strengths

      Using a series of clever neurogenetic and behavioral approaches, subsets of ORNs and pC1 neurons were implicated in promoting tussling behaviors. The authors devised a new paradigm to assay for territory control which appears better than earlier paradigms that used a food cup (Chen et al, 2002), as this new assay is relatively clutter-free, and can be eventually automated using computer vision approaches. The manuscript is generally well-written, and the claims made are largely supported by the data.

      Thank you for your precise summary of our study, and being very positive on the novelty and significance of the study.

      Weaknesses

      I have a few concerns regarding some of the evidence presented and claims made as well as a description of the methodology, which needs to be clarified and extended further.

      (1) Typical paradigms for assaying aggression in Drosophila males last for 20-30 minutes in the presence of nutritious food/yeast paste/females or all of these (Chen et al. 2002, Nilsen et al., 2004, Dierick et al. 2007, Dankert et al., 2009, Certel & Kravitz 2012). The paradigm described in Figure 1 A, while important and more amenable for video recording and computational analysis, seems a modification of the assay from Kravitz lab (Chen et al., 2002), which involved using a female over which males fight on a food cup. The modifications include a flat surface with a central food patch and a female with its head buried in the food, (fixed female) and much longer adaptation and recording times respectively (30 minutes, 2 hours), so in that sense, this is not a 'new' paradigm but a modification of an existing paradigm and its description as new should be appropriately toned down. It would also be important to cite these earlier studies appropriately while describing the assay.

      We now toned down the description of the paradigm and cited more related references.

      (2) Lunging is described as a 'low intensity' aggression (line 111 and associated text), however, it is considered a mid to high-intensity aggressive behavior, as compared to other lower-intensity behaviors such as wing flicks, chase, and fencing. Lunging therefore is lower in intensity 'relative' to higher intensity tussling but not in absolute terms and it should be mentioned clearly.

      We have modified the description as suggested.

      (3) It is often difficult to distinguish faithfully between boxing and tussling and therefore, these behaviors are often clubbed together as box, tussle by Nielsen et al., 2004 in their Markov chain analysis as well as a more detailed recent study of male aggression (Simon & Heberlein, 2020). Therefore, authors can either reconsider the description of behavior as 'box, tussle' or consider providing a video representation/computational classifier to distinguish between box and tussle behaviors.

      Indeed, we could not faithfully distinguish boxing and tussling. To address this concern, we now made textual changes in the result section we occasionally observed the high-intensity boxing and tussling behavior in male flies, which are difficult to distinguish and hereafter simply referred to as tussling.

      We also added this information in the Materials and Methods section Tussling is often mixed with boxing, in which both flies rear up and strike the opponent with forelegs. Since boxing is often transient and difficult to distinguish from tussling, we referred to the mixed boxing and tussling behavior simply as tussling.

      (4) Simon & Heberlein, 2020 showed that increased boxing & tussling precede the formation of a dominance hierarchy in males, and lunges are used subsequently to maintain this dominant status. This study should be cited and discussed appropriately while introducing the paradigm.

      We now cited this important study in both the Introduction and Discussion sections.

      (5) It would be helpful to provide more methodological details about the assay, for instance, a video can be helpful showing how the males are introduced in the assay chamber, are they simply dropped to the floor when the film is removed after 30 minutes (Figures 1-2)?

      We now provided more detailed description about behavioral assays and how we analyze them. For example All testers were loaded by cold anesthesia. After a 30-minute adaptation, the film was gently removed to allow the two males to fell into the behavioral chamber, and the aggressive behavior was recorded for 2 hours.

      (6) The strain of Canton-S (CS) flies used should be mentioned as different strains of CS can have varying levels of aggression, for instance, CS from Martin Heisenberg lab shows very high levels of aggressive lunges. Are the CS lines used in this study isogenized? Are various genetic lines outcrossed into this CS background? In the methods, it is not clear how the white gene levels were controlled for various aggression experiments as it is known to affect aggression (Hoyer et al. 2008).

      We used the wtcs flies from Baker lab in Janelia Research Campus, and are not sure where they are originated. We appreciate your concern on the use of wild-type strains as they may show different fighting levels, but this study mainly used wild-type strains to compare behavioral differences between SH and GH males. All flies tested in this study are in w+ background, based on w+ balancers flies but are not backcrossed. We have listed detailed genotypes of all tested flies in Table S1 in the revised manuscript.

      (7) How important it is to use a fixed female for the assay to induce tussling? Do these females remain active throughout the assay period of 2.5 hours? Is it possible to use decapitated virgin females for the assay? How will that affect male behaviors?

      We used a fixed female to restrict it in the center of food. These females remain active throughout the assay as their legs and abdomens can still move. Such design intends to combine the attractive effects from both female and food. One can also use decapitated females, but in this case, males can push the decapitated female into anywhere in the behavioral chamber. The logic to use fixed females has now been added in the Materials and Methods section of the revised manuscript.

      (8) Raster plots in Figure 2 suggest a complete lack of tussling in SH males in the first 60 minutes of the encounter, which is surprising given the longer duration of the assay as compared to earlier studies (Nielsen et al. 2004, Simon & Heberlein, 2020 and others), which are able to pick up tussling in a shorter duration of recording time. Also, the duration for tussling is much longer in this study as compared to shorter tussles shown by earlier studies. Is this due to differences in the paradigm used, strain of flies, or some other factor? While the bar plots in Figure 2D show some tussling in SH males, maybe an analysis of raster plots of various videos can be provided in the main text and included as a supplementary figure to address this.

      Indeed, tussling is very low in SH males in our paradigm, which may be due to different genetic backgrounds and behavioral assays. Since tussling behavior is a rare fighting form, it is not surprising to see variation between studies from different labs. Nevertheless, this study compared tussling behaviors in SH and GH males, and our finding that GH males show much more tussling behaviors is convincing. The longer duration of tussling in our paradigm may also be due to the modified behavioral paradigm, which also supports that tussling is a high-level fighting form.

      (9) Neuronal activation experiments suggesting the involvement of pC1SS2 neurons are quite interesting. Further, the role of P1a neurons was demonstrated to be involved in increasing tussling in thermogenetic activation in the presence of light (Figure 4, Supplement 1), which is quite important as the role of vision in optogenetic activation experiments, which required to be carried out in dark, is often not mentioned. However, in the discussion (lines 309-310) it is mentioned that PC1SS2 neurons are 'necessary and sufficient' for inducing tussling. Given that P1a neurons were shown to be involved in promoting tussling, this statement should be toned down.

      Thank you for this important comment. We now toned down the statement on pC1SS2 function.

      (10) Are Or47b neurons connected to pC1SS2 or P1a neurons?

      We conducted pathway analysis in the FlyWire electron microscopy database to investigate the connection between Or47b neurons and pC1 neurons. The results indicate that at least three levels of interneurons are required to establish a connection from Or47b neurons to pC1 neurons. Although the FlyWire database currently only contains neuronal data from female brains, they provide a reference for circuit connect in males.

      (11) The paradigm for territory control is quite interesting and subsequent mating advantage experiments are an important addition to the eventual outcome of the aggressive strategy deployed by the males as per their prior housing conditions. It would be important to comment on the 'fitness outcome' of these encounters. For instance, is there any fitness advantage of using tussling by GH males as compared to lunging by SH males? The authors may consider analyzing the number of eggs laid and eclosed progenies from these encounters to address this.

      Thank you for this suggestion. We agree with you and other reviewers that increased tussling behaviors correlate with better mating competition, but it is difficult for us to make a direct link between them. Thus, in the revised manuscript, we prefer to tone down this statement but not expanding on this part.

      Reviewer #2 (Public review):

      Summary

      Gao et al. investigated the change of aggression strategies by the social experience and its biological significance by using Drosophila. Two modes of inter-male aggression in Drosophila are known lunging, high-frequency but weak mode, and tussling, low-frequency but more vigorous mode. Previous studies have mainly focused on the lunging. In this paper, the authors developed a new behavioral experiment system for observing tussling behavior and found that tussling is enhanced by group rearing while lunging is suppressed. They then searched for neurons involved in the generation of tussling. Although olfactory receptors named Or67d and Or65a have previously been reported to function in the control of lunging, the authors found that these neurons do not function in the execution of tussling, and another olfactory receptor, Or47b, is required for tussling, as shown by the inhibition of neuronal activity and the gene knockdown experiments. Further optogenetic experiments identified a small number of central neurons pC1[SS2] that induce the tussling specifically. In order to further explore the ecological significance of the aggression mode change in group rearing, a new behavioral experiment was performed to examine territorial control and mating competition. Finally, the authors found that differences in the social experience (group vs. solitary rearing) are important in these biologically significant competitions. These results add a new perspective to the study of aggressive behavior in Drosophila. Furthermore, this study proposes an interesting general model in which the social experience-modified behavioral changes play a role in reproductive success.

      Strengths

      A behavioral experiment system that allows stable observation of tussling, which could not be easily analyzed due to its low frequency, would be very useful. The experimental setup itself is relatively simple, just the addition of a female to the platform, so it should be applicable to future research. The finding about the relationship between the social experience and the aggression mode change is quite novel. Although the intensity of aggression changes with the social experience was already reported in several papers (Liu et al., 2011, etc), the fact that the behavioral mode itself changes significantly has rarely been addressed and is extremely interesting. The identification of sensory and central neurons required for the tussling makes appropriate use of the genetic tools and the results are clear. A major strength of the neurobiology in this study is the finding that another group of neurons (Or47b-expressing olfactory neurons and pC1[SS2] neurons), distinct from the group of neurons previously thought to be involved in low-intensity aggression (i.e. lunging), function in the tussling behavior. Further investigation of the detailed circuit analysis is expected to elucidate the neural substrate of the conflict between the two aggression modes.

      Thank you for the acknowledgment of the novelty and significance of the study, and your suggestions for improving the manuscript.

      Weaknesses

      The experimental systems examining the territory control and the reproductive competition in Figure 5 are novel and have advantages in exploring their biological significance. However, at this stage, the authors' claim is weak since they only show the effects of age and social experience on territorial and mating behaviors, but do not experimentally demonstrate the influence of aggression mode change itself. In the Abstract, the authors state that these findings reveal how social experience shapes fighting strategies to optimize reproductive success. This is the most important perspective of the present study, and it would be necessary to show directly that the change of aggression mode by social experience contributes to reproductive success.

      We agree that our data did not directly show that it is the change of aggression mode that results in territory and reproductive advantages in GH males. To address the concern, we have toned down the statement throughout the manuscript. For example, we made textual changes in the abstract as following

      Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success, mitigating the disadvantages associated with aging. Our findings identify distinct sensory and central neurons for two fighting forms and suggest how social experience shapes fighting strategies to optimize reproductive success.

      In addition, a detailed description of the tussling is lacking. For example, the authors state that the tussling is less frequent but more vigorous than lunging, but while experimental data are presented on the frequency, the intensity seems to be subjective. The intensity is certainly clear from the supplementary video, but it would be necessary to evaluate the intensity itself using some index. Another problem is that there is no clear explanation of how to determine the tussling. A detailed method is required for the reproducibility of the experiment.

      Thank you for this important suggestion. We now analyzed duration of tussling and lunging, and found that a lunging event is often very short (less than 0.2s), while a tussling event may last from seconds to minutes. This new data is added as Figure 2G. In addition, we also provided more detailed methods regarding to tussling behavior

      .<br /> Reviewer #3 (Public review):

      In this manuscript, Gao et al. presented a series of intriguing data that collectively suggest that tussling, a form of high-intensity fighting among male fruit flies (Drosophila melanogaster) has a unique function and is controlled by a dedicated neural circuit. Based on the results of behavioral assays, they argue that increased tussling among socially experienced males promotes access to resources. They also concluded that tussling is controlled by a class of olfactory sensory neurons and sexually dimorphic central neurons that are distinct from pathways known to control lunges, a common male-type attack behavior.

      A major strength of this work is that it is the first attempt to characterize the behavioral function and neural circuit associated with Drosophila tussling. Many animal species use both low-intensity and high-intensity tactics to resolve conflicts. High-intensity tactics are mostly reserved for escalated fights, which are relatively rare. Because of this, tussling in the flies, like high-intensity fights in other animal species, has not been systematically investigated. Previous studies on fly aggressive behavior have often used socially isolated, relatively young flies within a short observation duration. Their discovery that 1) older (14-days-old) flies tend to tussle more often than younger (2-days-old) flies, 2) group-reared flies tend to tussle more often than socially isolated flies, and 3) flies tend to tussle at a later stage (mostly ~15 minutes after the onset of fighting), are the result of their creativity to look outside of conventional experimental settings. These new findings are keys for quantitatively characterizing this interesting yet under-studied behavior.

      Precisely because their initial approach was creative, it is regrettable that the authors missed the opportunity to effectively integrate preceding studies in their rationale or conclusions, which sometimes led to premature claims. Also, while each experiment contains an intriguing finding, these are poorly related to each other. This obscures the central conclusion of this work. The perceived weaknesses are discussed in detail below.

      Thank you for the precise summary of the key findings and novelty of the study, and your insightful suggestions.

      Most importantly, the authors' definition of "tussling" is unclear because they did not explain how they quantified lunges and tussling, even though the central focus of the manuscript is behavior. Supplemental movies S1 and S2 appear to include "tussling" bouts in which 2 flies lunge at each other in rapid succession, and supplemental movie S3 appears to include bouts of "holding", in which one fly holds the opponent's wings and shakes vigorously. These cases raise a concern that their behavior classification is arbitrary. Specifically, lunges and tussling should be objectively distinguished because one of their conclusions is that these two actions are controlled by separate neural circuits. It is impossible to evaluate the credibility of their behavioral data without clearly describing a criterion of each behavior.

      Thank you for this very important suggestion. We now provided more detailed description of the two fighting forms in the Materials and Methods section. See below

      Lunging is characterized by a male raising its forelegs and quickly striking the opponent, and each lunge typically lasts less than 0.2 seconds through detailed analysis. Tussling is characterized by both males using their forelegs and bodies to tumble over each other, and this behavior may last from seconds to minutes. Tussling is often mixed with boxing, in which both flies rear up and strike the opponent with forelegs. Since boxing is often transient and difficult to distinguish from tussling, we referred to the mixed boxing and tussling behavior simply as tussling. As we manually analyze tussling for 2 hours for each pair of males, it is possible that we may miss some tussling events, especially those quick ones.

      It is also confusing that the authors completely skipped the characterization of the tussling-controlling neurons they claimed to have identified. These neurons (a subset of so-called pC1 neurons labeled by previously described split-GAL4 line pC1SS2) are central to this manuscript, but the only information the authors have provided is its gross morphology in a low-resolution image (Figure 4D, E) and a statement that "only 3 pairs of pC1SS2 neurons whose function is both necessary and sufficient for inducing tussling in males" (lines 310-311). The evidence that supports this claim isn't provided. The expression pattern of pC1SS2 neurons in males has been only briefly described in reference 46. It is possible that these neurons overlap with previously characterized dsx+ and/or fru+ neurons that are important for male aggressions (measured by lunges), such as in Koganezawa et al., Curr. Biol. 2016 and Chiu et al., Cell 2020. This adds to the concern that lunge and tussling are not as clearly separated as the authors claim.

      Thank you very much for this important question. Indeed, there are many experiments that could do to better understand the function of pC1SS2 neurons, and we only provide the initial characterization of them due to the limited scope of this study. My lab has been focused on studying P1/pC1 function in both male and female flies and will continue to do so.

      To partially address your concern, we made the following revisions

      (1) We provided higher-resolution images of P1a and pC1SS2 (Figure 4C-4E). While their cell bodies are very close, they project to distinct brain regions, in addition to some shared ones.

      (2) By staining these neurons with GFP and co-staining with anti-FruM or anti-DsxM antibodies, we showed that P1a neurons are partially FruM-positive and partially DsxM-positive, while pC1SS2 neurons are DsxM-positive and FruM-negative (Figure 5A-5D).

      (3) As pC1SS2 neurons are DsxM-positive and FruM-negative, we also examined how DsxM regulates the development of these neurons. We found that knocking down DsxM expression in pC1SS2 neurons using RNAi significantly affected pC1 development regarding to both cell numbers (Figure 5G) and their projections (Figure 5H).

      (4) We further found that DsxM in pC1SS2 neurons is crucial for executing their tussling-promoting function, as optogenetic activation of these neurons with DsxM knockdown failed to induce tussling behavior in the initial activation period, and a much lower level of tussling in the second activation period compared to control males (Figure 5I-5K).

      (5) While it is very difficult to identify the upstream and downstream neurons of P1a and pC1SS2 neurons, we made an initial step by utilizing trans-tango and retro-Tango to visualize potential downstream and upstream neurons of P1a and pC1SS2 (Figure 4-figure supplement 2), which certainly needs future investigation.  

      While their characterizations of tussling behaviors in wild-type males (Figures 1 and 2) are intriguing, the remaining data have little link with each other, making it difficult to understand what their main conclusion is. Figure 3 suggests that one class of olfactory sensory neurons (OSN) that express Or47b is necessary for tussling behavior. While the authors acknowledged that Or47b-expressing OSNs promote male courtship toward females presumably by detecting cuticular compounds, they provided little discussion on how a class of OSN can promote two different types of innate behavior. No evidence of a functional or circuitry relationship between the Or47b pathway and the pC1SS2 neurons was provided. It is unclear how these two components are relevant to each other.

      It has been previously found that Or47b-expressing ORNs respond to fly pheromones common to both sexes, and group-housing enhances their sensitivity. Regarding to how Or47b ORNs promotes two different types of innate behaviors, a simple explanation is that they act on multiple second-order and further downstream neurons to regulate both courtship and aggression, not mentioning that neural circuitries for courtship and aggression are partially shared. We did not include this in the discussion as we would like to focus on aggression modes, and how different ORNs (Or47b and Or67d) mediate distinct aggression modes.

      Regarding to the relationship between Or47b ORNs and pC1<sub>SS2</sub> neurons, or in general ORNs to P1/pC1, it is interesting and important to explore, but probably in a separate study. We tried to conduct pathway connection analyses from Or47b to pC1 using the FlyWire database, and found that Or47b neurons can act on pC1 neurons via three layers of interneurons. Although the FlyWire database currently only contains neuronal data from female brains, they can provide a certain degree of reference. We hope the editor and reviewers would agree with us that identifying these intermediate neurons involved in their connection is beyond this study.

      Lastly, the rationale of the experiment in Figure 5 and the interpretation of the results is confusing. The authors attributed a higher mating success rate of older, socially experienced males over younger, socially isolated males to their tendency to tussle, but tussling cannot happen when one of the two flies is not engaged. If, for instance, a socially isolated 14-day-old male does not engage in tussling as indicated in Figure 2, how can they tussle with a group-housed 14-day-old male? Because aggressive interactions in Figure 5 were not quantified, it is impossible to conclude that tussling plays a role in copulation advantage among pairs as authors argue (lines 282-288).

      Indeed, we do not have direct evidence to show it is tussling that makes socially experienced males to dominate over socially isolated males. To address your concern, we have made following revisions

      (1) We toned down the statements about the relationship between fighting strategies and reproductive success throughout the manuscript. For example, in the abstract Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success.

      (2)  Regarding to whether a SH male can engage in tussling with a GH male, we found that while two SH males rarely perform tussling, paired SH and GH males displayed similar levels of tussling like two GH males, although tussling duration from paired SH and GH males is significantly lower compared to that in two GH males (Figure 6-figure supplement 2).

      (3) To support the potential role of tussling in territory control and mating competition, we performed additional experiments to silence Or47b or pC1SS2 neurons that almost abolished tussling, and paired these males with control males. We found that males with Or47b or pC1SS2 neurons silenced cannot compete over control males, further suggesting the involvement of tussling in territory control and mating competition.  

      Despite these weaknesses, it is important to acknowledge the authors' courage to initiate an investigation into a less characterized, high-intensity fighting behavior. Tussling requires the simultaneous engagement of two flies. Even if there is confusion over the distinction between lunges and tussling, the authors' conclusion that socially experienced flies and socially isolated flies employ distinct fighting strategies is convincing. Questions that require more rigorous studies are 1) whether such differences are encoded by separate circuits, and 2) whether the different fighting strategies are causally responsible for gaining ethologically relevant resources among socially experienced flies. Enhanced transparency of behavioral data will help readers understand the impact of this study. Lastly, the manuscript often mentions previous works and results without citing relevant references. For readers to grasp the context of this work, it is important to provide information about methods, reagents, and other key resources.

      Thank you very much for this comment and we almost totally agree.

      (1) Our results suggest the involvement of distinct sensory neurons and central neurons for lunging and tussling, but do not exclude the possibility that they may also utilize shared neurons. For example, activation of P1a neurons promotes both lunging and tussling in the presence of light.

      (2) We have now toned down the statements about the relationship between fighting strategies and reproductive success throughout the manuscript.

      (3) We provided more detailed methods, genotypes of flies to improve transparency of the manuscript.

      Reviewer #1 (Recommendations for the authors):

      (1) Figure 1 Supplement 1 shows that increased aging has a linear and inverse relationship with the number of lunges, this is in contrast to a previous study from Dierick lab (Chowdhury, 2021), where using Divider assays they showed that aggressive lunges increased up to day 10 and subsequently decreased in 30-day old flies. Given that this study did not use 14-day-old flies, it might be useful to comment on this.

      Thank you for this comment. Indeed, Chowdhury et al., suggested a decline of lunging after 10 days, which is not contradictory to our findings that lunging in 14d-old males is lower than that in 7d-old males. It is ideally to perform a time-series experiments to reveal the detailed relationship between ages and aggression (lunging or tussling) levels, but given our initial findings that 14d-old males showed stable tussling behavior, we prefer to use this time point for the rest of this study.

      (2) For Figure 3, do various manipulations also affect the duration of tussling and boxing besides frequency and latency?

      Thank you for this comment. We only analyzed latency and frequency, but not duration, as data analysis was performed manually rather than automatically on every fly pair for about 2 hours, which is very labor-consuming. We hope you could agree with us that the two parameters (frequency and latency) for tussling are representative for assaying this behavior.

      (3) For Figure 3 A-F, the housing status of the males is not clearly mentioned either in the main text or the figure. What is the status of the tussling and lunging status when this housing condition is reversed when Or47b neurons are silenced, or the gene is knocked down? Do these manipulations overcome the effect of housing conditions similar to what is seen in NaChBac-mediated activation experiments?

      Figure 3A-F used group-housed males and we have now added such information in the figure legends as well as Table S1.

      We appreciate your suggestion on using different housing conditions. As silencing Or47b neurons or knocking down Or47b reduced tussling, it is reasonable to use GH males (as we did in Figure 3A-F) that performed stable tussling behavior, but not SH males that rarely tussle.

      (4) The connections between Or47b neurons and pC1SS2 or P1a neurons can be addressed by available connectomic datasets or TransTango/GRASP approaches.

      Thank you for this important suggestion. We used the FlyWire electron microscope database to analyze the pathway connections between these two types of neurons. The results indicated that there are at least three levels of interneurons for connecting Or47b and pC1 neurons. Although the FlyWire database currently only contains neuronal data from female brains, they can provide a certain degree of reference for males.

      The lack of direct synaptic connection also suggests that it is challenging to resolve the connection between these two neuronal types using methods like trans-Tango/GRASP. To partially address this question, we utilized trans-Tango and retro-Tango techniques to visualize potential downstream and upstream neurons of P1a and pC1SS2 (Figure 4-figure supplement 2). Future investigations are certainly needed for clarifying functional connections between Or47b/Or67d and P1a/pC1SS2 neurons.

      (5) Figure 5, 'Winning index' and 'Copulation advance index' while described in Material and Methods, should be referred to in the main text.

      We now described these two indices briefly in the main manuscript, and in the Discussion section with more details.

      (6) Figure 6 shows comparisons for territorial control and mating outcomes where four different housing and aging conditions are organized in a hierarchical sequence. It is not clear from the data in Figure 5, how this conclusion was arrived at. A supplementary table with various outcomes with statistical analysis would help with this.

      We now added a supplementary table (Table S2) with various outcomes with statistical analysis.

      Minor Comments

      (1) Line 26 says that the courtship levels in SH and GH males are not different, however, unilateral wing extension is higher in SH males as compared to GH males (Pan & Baker, 2014; Inagaki et al., 2014), also it was shown that courtship attempts are higher in D. paulsitorium (Kim & Ehrman, 1998). It would be better to clarify this statement.

      Indeed, it is found in some cases that SH males court more vigorously than GH males. We have added more references on this matter in the introduction.

      (2) Figure 4, correct 'Tussing' to 'Tussling' or 'Box, Tussling' as appropriate.

      Corrected.

      (3) Duistermars, 2018 should be cited while discussing the role of vision in aggression (Figure 4). [A Brain Module for Scalable Control of Complex, Multi-motor Threat Displays]

      We now cited this reference and added more discussion in the revised manuscript.

      (4) Reviews on Drosophila aggression and social isolation can be cited in the introduction/discussion to incorporate recent literature e.g., Palavicino-Maggio, 2022 [The Neuromodulatory Basis of Aggression Lessons From the Humble Fruit Fly]; Yadav et al., 2024[Lessons from lonely flies Molecular and neuronal mechanisms underlying social isolation], etc.

      We now cited these references in both the introduction and discussion sections.

      (5) The concentration of apple juice agar should be mentioned in the methods.

      We added this and other necessary information for materials in the Materials and Methods section of the study.

      (6) Source of the LifeSongX software and, if available, a Github link would be helpful to include in the materials and methods section.

      We now provided the source of the LifesongY software (website https//sourceforge.net/projects/lifesongy/), which is a Windows version of LifesongX (Bernstein, Adam S.et al., 1992).

      Reviewer #2 (Recommendations for the authors):

      (1) Major comment 1

      As pointed out in the public review, the weakness of this study is that the relationship between the aggression strategy and reproductive success is an inference that is not based on experimental facts; I understand that the frequency of tussling is not so high, but at least tussling-like behavior can be observed in the territory control experiment shown in Video 3. Wouldn't it be possible to re-analyse data and examine the correlation between aggressive behavior and territory control? Even if the analysis of tussling itself in this setup is difficult, for example, additional experiments using Or47b knock-out fly or pC1[SS2]-inactivated fly could provide stronger support.

      Indeed, we can only make a correlation between the type of aggressive behavior and territory control. We now toned down this statement throughout the manuscript. For example, in the abstract, we changed our conclusions as following

      Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success. Our findings identify distinct sensory and central neurons for two fighting forms and suggest how social experience shapes fighting strategies to optimize reproductive success.

      To further address the concern, we now performed additional experiments to silence Or47b or pC1SS2 neurons that almost abolished tussling, and paired these males with control males. We found that males with Or47b or pC1SS2 neurons silenced cannot compete over control males (Figure 6-figure supplement 3), further suggesting the involvement of tussling in territory control and mating competition.

      In relation to the above, some of the text in the Abstract should be changed.Line 28 These findings "reveal" how social experience shapes fighting strategies to optimise reproductive success.

      "suggest" is more accurate at this stage.

      Changed as suggested.

      (2) Major comment 2

      The tussling is the central subject of this paper. However, neither the main text nor Materials and Methods section provides a clear explanation of how this aggression mode was detected. Did the authors determine this behavior manually? Or was it automatically detected by some kind of image analysis? In either case, the criteria and method for detecting the tussling should be clearly described.

      The behavioral data analysis in this study was performed manually. We now provided more detailed description of the two fighting forms in the Materials and Methods section. See below

      Lunging is characterized by a male raising its forelegs and quickly striking the opponent, and each lunge typically lasts less than 0.2 seconds through detailed analysis. Tussling is characterized by both males using their forelegs and bodies to tumble over each other, and this behavior may last from seconds to minutes. Tussling is often mixed with boxing, in which both flies rear up and strike the opponent with forelegs. Since boxing is often transient and difficult to distinguish from tussling, we referred to the mixed boxing and tussling behavior simply as tussling. As we manually analyze tussling for 2 hours for each pair of males, it is possible that we may miss some tussling events, especially those quick ones.

      For the experimental groups where tussling cannot be observed, the latency is regarded as 120 min, but this is a value depending on the observation time. While it is reasonable to use the latency to evaluate the behavior such as the lunging that is observed at relatively early times, care should be taken when using it to evaluate the tussling. Since similar trends to those obtained for the latency are observed for Number of tussles and % of males performing tussling, it may be better to focus on these two indices.

      We initially intended to provide all three statistical metrics. However, we found that using the "% of males performing tussling" would require a significantly larger sample size for subsequent statistical analysis (using chi-square tests), greatly increasing the workload. At the same time, we believe that the trend observed with "% of males performing tussling" is consistent with the other two indices, and the percentage information can also be derived from the individual sample scatter data of the other two metrics. Therefore, we opted to use "latency" and "numbers" as the statistical metrics, despite the caveat as you mentioned.

      The authors repeatedly mention that tussling is less frequent but more vigorous. The low frequency can be understood from the data in Fig. 1 and Fig. 2, but there are no measured data on the intensity. As the authors mention in line 125, each tussling event appears to be sustained for a relatively long period, as can be seen from the ethogram in Fig. 2. For example, it would be possible to evaluate the intensity by measuring the duration of the tussling event.

      Thank you for your valuable suggestion. We now analyzed duration of tussling and lunging, and found that a lunging event is often very short (less than 0.2s), while a tussling event may last from seconds to minutes, further supporting their relative intensities. This new data is added as Figure 2G.

      (3) Minor comments

      a) Line 117 How many flies were placed in one vial for group-rearing (GH)? Were males and females grouped together? Please specify in the Materials and Methods section.

      We have added this information in the Materials and Methods section. In brief, 30-40 virgin males were collected after eclosion and group-housed in each food vial.

      b) Line 174 The trans-Tango is basically a postsynaptic cell labeling technique. It is unlikely that the labeling intensity changes depending on neuronal activity. Do the authors want to say in this text the high activity of Or47b-expressing neurons under GH conditions? Or are they trying to show that the expression level of the Or47b gene, which is supposedly monitored by the expression of GAL4, is increased by GH conditions? The authors should clarify which is the case.

      Although the primary function of the trans-Tango technique is to label downstream neurons, the original literature indicates that the signal strength in downstream neurons depends on the use of upstream neurons evidenced by age-dependent trans-Tango signals. Therefore, the trans-Tango technique can indirectly reflect the usage of upstream neurons. Our findings that GH males showed broader Or47b trans-Tango signals than SH males can indirectly suggest that group-housing experience acts on Or47b neurons. We made textually changes to clarify this.

      c) Line 178 Which fly line labels the mushroom body; R19B03-GAL4?

      Yes, we now provided the detailed genotypes for all tested flies in the Table S1.

      d) Line 184 It was reported in Koganezawa et al., 2016 that some dsx-expressing pC1 neurons are involved in aggressive behavior. The authors should also refer to this paper as they include tussling in the observed aggressive behavior.

      Thank you for this comment, and we now cited this reference in the revised manuscript.

      e) Line 339 I think you misspelled fruM RNAi.

      Thank you for pointing this out. fruMi refers to microRNAi targeting fruM, and we have now clearly stated this information in the main text.

      f) Line 681 Is tussling time (%) the total duration of tussling occurrences during the observation time? Or is it the percentage of individuals observed tussling during the observation time? This needs to be clarified.

      It is the former one. We now clearly stated this definition in the Materials and Methods section

      Reviewer #3 (Recommendations for the authors):

      For authors to support their conclusion that enhanced tussling among socially experienced flies allows them to better retain resources, it is necessary to quantify aggressive behaviors (mainly tussling and lunging) in Figure 5.

      We agree that we can only make a correlation between enhanced tussling behavior and mating competition. We now toned down this statement throughout the manuscript. For example, in the abstract, we changed our conclusions as following Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success. Our findings identify distinct sensory and central neurons for two fighting forms and suggest how social experience shapes fighting strategies to optimize reproductive success.

      To further address the concern, we now performed additional experiments to silence Or47b or pC1SS2 neurons that almost abolished tussling, and paired these males with control males. We found that males with Or47b or pC1SS2 neurons silenced cannot compete over control males (Figure 6-figure supplement 3), further suggesting the involvement of tussling in territory control and mating competition.

      In contrast to the authors' data in Figure 4, movies in ref 36 clearly show instances of 2 flies exchanging lunges after the optogenetic activation of P1a neurons, like the examples shown in supplementary movies S1-S3. It is a clear discrepancy that requires discussion (and raises a concern about the lack of transparency about behavioral quantification).

      In our study, optogenetic activation of P1<sup>a</sup> neurons failed to induce obvious tussling behavior, and temperature-dependent activation of P1<sup>a</sup> neurons can only induce tussling in the presence of light. These data are different from Hoopfer et al., (2015), but are generally consistent with a new study (Sten et al., Cell, 2025), in which pC1SS2 neurons but not P1a neurons promote aggression. Such discrepancy has now been discussed in the revised manuscript.

      The authors often fail to cite relevant references while discussing previous results, which compromises the scholarship of the manuscript. Examples include (but are not limited to)

      (1) Line 85-86 Simon and Heberlein, J. Exp. Biol. 223 jeb232439 (2020) suggested that tussling is an important factor for flies to establish a dominance hierarchy.

      Reference added.

      (2) Line 142-143 Cuticular compounds such as palmitoleic acid are characterized to be the ligands of Or47b by ref #18.

      Reference added.

      (3) Line 185-187 pC1SS1 and pC1SS2 are first characterized by ref #46. Expression data of this paper also implies that pC1SS1 and pC1SS2 label different neurons in the male brain.

      We have now added this reference at the appropriate place in the revised manuscript. In addition, we have clarified that these two drivers exhibit sexually dimorphic expression patterns in the brain.

      (4) Line 196-199 Cite ref #36, which describes the behavior induced by the optogenetic activation of P1a neurons.

      Reference added.

      (5) Line 233-235 The authors' observation that control males do not form a clear dominance directly contradicts previous observations by others (Nilsen et al., PNAS 10112342 (2002); Yurkovic et al., PNAS 10317519 (2006); also see Trannoy et al., PNAS 1134818 (2016) and Simon and Heberlein above). The authors must at least discuss why their results are different.

      There is a misunderstanding here. We clearly state that there is a ‘winner takes all’ phenomenon. However, for wild-type males of the same age and housing condition, we calculated the winning index as (num. of wins by unmarked males – num. of wins by marked males)/10 encounters * 100%, which is roughly zero due to the randomness of marking.

      (6) Line 251-254 The authors' observation that aged males are less competitive than younger males contradicts the conclusion in ref #18. Discussion is required.

      We have now added a discussion on this matter. In brief, Lin et al., showed that 7d-old males are more competitive than 2d-old males, which is probably due to different levels of sexual maturity of males, but not a matter of age like our study that used up to 21d-old males.

      (7) Line 274-275 It is unclear which "previous studies" "have found that social isolation generally enhances aggression but decreases mating competition in animal models". Cite relevant references.

      Reference added.

      (8) Line 309-310 The evidence supporting the statement that "there are only three pairs of pC1SS2 neurons". If there is a reference, cite it. If it is based on the authors' observation, data is required.

      We have now provided additional data on the number of pC1SS2 neurons in Figure 5G of the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      The manuscript by Feng et al. reported that the Endothelin B receptor (ETBR) expressed by the satellite glial cells (SGCs) in the dorsal root ganglions (DRG) acted to inhibit sensory axon regeneration in both adult and aged mice. Thus, pharmacological inhibition of ETBR with specific inhibitors resulted in enhanced sensory axon regeneration in vitro and in vivo. In addition, sensory axon regeneration significantly reduces in aged mice and inhibition of ETBR could restore such defect in aged mice. Moreover, the study provided some evidence that the reduced level of gap junction protein connexin 43 might act downstream of ETBR to suppress axon regeneration in aged mice. Overall, the study revealed an interesting SGC-derived signal in the DRG microenvironment to regulate sensory axon regeneration. It provided additional evidence that non-neuronal cell types in the microenvironment function to regulate axon regeneration via cell-cell interaction. 

      However, the molecular mechanisms by which ETBR regulates axon regeneration are unclear, and the manuscript's structure is not well organized, especially in the last section. Some discussion and explanation about the data interpretation are needed to improve the manuscript. 

      We thank the reviewer for the positive comments. We agree that the mechanisms by which ETBR signaling functions as a brake on axon growth and regeneration remain to be elucidated. We believe that unraveling the detailed molecular pathways downstream of ETBR signaling in SGCs that promote axon regeneration is beyond the scope of this manuscript. Answering these questions would first require cell specific KO of ETBR and Cx43 to confirm that this pathway is operating in SGCs to control axon regeneration. We would also need to identify how SGCs communicate with neurons to regulate axon regeneration, which is a large area of ongoing research that remains poorly understood. Our data showing that pharmacological inhibition of ETBR with specific FDA-approved inhibitors enhances sensory axon regeneration provide not only new evidence for non-neuronal mechanisms in nerve repair, but also a new potential clinical avenue for therapeutic intervention.

      As suggested by the reviewer, we have extensively revised the organization of the manuscript, especially the last section of results. We have performed additional snRNAseq experiments to establish the impact of aging in DRG. We have also performed additional experiments to determine if blocking ETBR improves target tissue reinnervation. Following the reviewer’s suggestion, we have also expanded the Discussion section to discuss alternative mechanisms and o]er additional interpretation of our data. Below we describe how we address each point in detail.

      (1) The result showed that the level of ETBR did not change after the peripheral nerve injury. Does this mean that its endogenous function is to limit spontaneous sensory axon regeneration? In other words, the results suggest that SGCs expressing ETBR or vascular endothelial cells expressing its ligand ET-1 act to suppress sensory axon regeneration. Some explanation or discussion about this is necessary. Moreover, does the protein level of ETBR or its ligand change during aging?  

      We thank the reviewer for this point. Our results indeed indicate that one endogenous function of ETBR is to limit the extent of sensory axon regeneration. This may be a part of a mechanism to limit spontaneous sensory axon growth or plasticity and maladaptive neural rewiring after nerve injury. While the increased growth capacity of damaged peripheral axons can lead to reconnection with their targets and functional recovery, the increased growth capacity can also lead to axonal sprouting of the central axon terminals of injured neurons in the spinal cord, and to pain (see for example Costigan et al 2010, PMID: 19400724).  In the context of aging that we describe here, this protective mechanism may hinder beneficial recovery. Other mechanisms that slow axon regeneration have been reported, and include, for example, axonally synthesized proteins, which typically support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this process. One such RBP, the RNA binding protein KHSRP is locally translated following nerve injury. Rather than promoting axon regeneration, KHSRP promotes decay of other axonal mRNAs and slows axon regeneration.  Another example includes the Rho signaling pathway, which was shown to function as an inhibitory mechanism that slows the growth of spiral ganglion neurites in culture. We have now included these examples in the Discussion section.

      To address the reviewer’s second question, we have checked protein levels of ETBR and ET-1 in adult and aged DRG tissue. We observed a robust increase in ET-1 in aged DRG, while the levels of ETBR did not appear to change significantly. These results are now presented in Figure 4- Figure Supplement 1, and further support the notion that in aging, activation of the ETBR signaling hinders axon regeneration.

      (2) In ex vivo experiments, NGF was added to the culture medium. Previous studies have shown that adult sensory neurons could initiate fast axon growth in response to NGF within 24 hours. In addition, dissociated sensory neurons could also initiate spontaneous regenerative axon growth without NGF after 48 hours. Some discussion or rationale is needed to explain the di]erence between NGF-induced or spontaneous axon growth of culture adult sensory neurons and the roles of ETBR and SGCs. 

      We appreciate the reviewer’s suggestion. In adult DRG explant or dissociated cultures, NGF is not typically required for survival or axon outgrowth. However, in dissociated culture, the addition of NGF to the medium stimulates growth from more neurons compared to controls (Smith and Skene 1997). In the DRG explant, NGF does not promote significant e]ects on axon growth, but stimulates glial cell migration (Klimovich et al 2020). We opted to included NGF in our explant assay to increase the potential of stimulating axon regeneration with pharmacological manipulations of ETBR. We have now clarified these considerations in the Method section.

      (3) In cultured dissociated sensory neurons, inhibiting ETBR also enhanced axon growth, which meant the presence of SGCs surrounding the sensory neurons. Some direct evidence is needed to show the cellular relationship between them in culture.  

      We thank the reviewer for raising this point and have added new data, now presented in Figure 2B, to show that in mixed DRG cultures, SGCs labeled with Fabp7 are present in the culture in proximity to neurons labeled with TUJ1, but they do not fully wrap the neuronal soma. These results are consistent with prior findings reporting that as time in culture progresses, SGCs lose their adhesive contacts with neuronal soma and adhere to the coverslip (PMID: 22032231, PMID: 27606776).  While in some cases SGCs can maintain their association with neuronal soma in the first day in culture after plating, in our hands, most SGCs have left the soma at the 24h time point we examined. 

      (4) In Figure 3, the in vivo regeneration experiments first showed enhanced axon regeneration either 1 day or 3 days after the nerve injury. The study then showed that inhibiting ETBR could enhance sensory axon growth in vitro from uninjured naïve neurons or conditioning lesioned neurons. To my knowledge, in vivo sensory axon regeneration is relatively slow during the first 2 days after the nerve injury and then enters the fast regeneration mode on the 3rd day, representing the conditioning lesion e]ect in vivo. Some discussion is needed to compare the in vitro and the in vivo model of axon regeneration. 

      We agree that axon growth is relatively slow the first 2 days and enters a fast growth mode on day 3. This has been elegantly demonstrated in Shin et al Neuron 2012 (PMID: 22726832), where an in vivo conditioning injury 3 days prior increases axon growth one day after injury. In vitro, similar e]ects have been described: a prior in vivo injury accelerates growth capacity within the first day in culture, but a similar growth mode occurs in naive adult neurons after 2-3 days in vitro (Smith and Skene 1996). We also know that the neurite growth in culture is stimulated by higher cell density, likely because non-neuronal cells can secrete trophic factors (Smith and Skene 1996). Our in vitro results thus suggest that blocking ETBR in SGCs in these mixed cultures may alter the media towards a more growth promoting state. In vivo, our data show that Bosentan treatment for 3 days partially mimics the conditioning injury and potentiate the e]ect of the conditioning injury. One possible interpretation is that inhibition of ETBR alters the release of trophic factors from SGCs. Future studies will be required to unravel how ETBR signaling influence the SGCs secretome and its influence on axon growth. We have now included these discussions points in the Results and Discussion Section.

      (5) In Figure 5, the study showed that the level of connexin 43 increased after ETBR inhibition in either adult or aged mice, proposing an important role of connexin 43 in mediating the enhancing e]ect of ETBR inhibition on axon regeneration. However, in the study, there was no direct evidence supporting that ETBR directly regulates connexin 43 expression in SGCs. Moreover, there was no functional evidence that connexin 43 acted downstream of ETBR to regulate axon regeneration.  

      We thank the reviewer for this point and agree that we do not provide direct evidence that connexin 43 acts downstream of ETBR to regulate axon regeneration. To obtain such functional evidence would require selective KO of ETBR and Cx43 in SGCs, which we believe is beyond the scope of the current study. We have revised the Results and Discussion sections to emphasize that while we observe that ETBR inhibition increases Cx43 levels and Cx43 levels correlates with axon regeneration, whether Cx43 directly mediates the e]ect on axon regeneration remains to be established.  We also discuss potential alternative mechanisms downstream of ETBR in SGCs that could contribute to the observed e]ects on axon regeneration. Specifically, we discuss the possibility that  ETBR signaling may limit axon regeneration via regulating SGCs glutamate reuptake functions, because of the following reasons: 1) Similarly to astrocytes, glutamate uptake by SGCs is important to regulate neuronal function, 2) exposure of cultured cortical astrocytes to endothelin results in a decrease in glutamate uptake that correlates with a major loss of basal glutamate transporter expression (GLT-1 and1), 3) Both glutamate transporters are expressed in SGCs in sensory ganglia 4) GLAST and glutamate reuptake function is important for lesion-induced plasticity in the developing somatosensory cortex. 

      Reviewer #2 (Public Review): 

      Summary: 

      In this interesting and original study, Feng and colleagues set out to address the e]ect of manipulating endothelin signaling on nerve regeneration, focusing on the crosstalk between endothelial cells (ECs) in dorsal root ganglia (DRG), which secrete ET-1 and satellite glial cells (SGCs) expressing ETBR receptor. The main finding is that ETBR signaling is a default brake on axon growth, and inhibiting this pathway promotes axon regeneration after nerve injury and counters the decline in regenerative capacity that occurs during aging. ET-1 and ETBR are mapped in ECs and SGCs, respectively, using scRNA-seq of DRGs from adult or aged mice. Although their expression does not change upon injury, it is modulated during aging, with a reported increase in plasma levels of ET-1 (a potent vasoconstrictive signal). Using in vitro explant assays coupled with pharmacological inhibition in mouse models of nerve injury, the authors demonstrate that ET-1/ETBR curbs axonal growth, and the ETAR/ETBR antagonist Bosentan boosts regrowth during the early phase of repair. In addition, Bosentan restores the ability of aged DRG neurons to regrow after nerve lesions. Despite Bosentan inhibiting both endothelin receptors A and B, comparison with an ETAR-specific antagonist indicates that the e]ects can be attributed to the ET-1/ETBR pathway. In the DRGs, ETBR is mostly expressed by SGCs (and a subset of Schwann cells) a cell type that previous studies, including work from this group, have implicated in nerve regeneration. SGCs ensheath and couple with DRG neurons through gap junctions formed by Cx43. Based on their own findings and evidence from the literature, the pro-regenerative e]ects of ETBR inhibition are in part attributed to an increase in Cx43 levels, which are expected to enhance neuron-SGC coupling. Finally, gene expression analysis in adult vs aged DRGs predicts a decrease in fatty acid and cholesterol metabolism, for which previous work by the authors has shown a requirement in SGCs to promote axon regeneration. 

      Strengths: 

      The study is well-executed and the main conclusion that "ETBR signaling inhibits axon regeneration after nerve injury and plays a role in age-related decline in regenerative capacity" (line 77) is supported by the data. Given that Bosentan is an FDA-approved drug, the findings may have therapeutic value in clinical settings where peripheral nerve regeneration is suboptimal or largely impaired, as it often happens in aged individuals. In addition, the study highlights the importance of vascular signals in nerve regeneration, a topic that has gained traction in recent years. Importantly, these results further emphasize the contribution of longneglected SGCs to nerve tissue homeostasis and repair. Although the study does not reach a complete mechanistic understanding, the results are robust and are expected to attract the interest of a broader readership. 

      We thank the reviewer for the positive comments, especially in regard to the rigor and originality of our study.

      Weaknesses: 

      Despite these positive comments provided above, the following points should be considered: 

      (1) This study examines the contribution of the ET-1 pathway in the ganglia, and in vitro assays are consistent with the idea that important signaling events take place there. Nevertheless, it remains to be determined whether the accelerated axon regrowth observed in vivo depends also on cellular crosstalk mediated by ET-1 at the lesion site. Are ECs along the nerve secreting ET-1? What cells are present in the nerve stroma that could respond and participate in the repair process? Would these interactions be sensitive to Bosentan? It may be di]icult to dissect this contribution, but it should at least be discussed.  

      We thank the reviewer for this important point and agree that the in vivo e]ects observed cannot rule out the contribution of ECs or SCs at the lesion site in the nerve. Dissecting the contribution of ETBR expressing cells in the nerve would require cell-specific manipulations that go beyond the scope of this manuscript. We have revised the Discussion section to highlight the potential contribution of ECs, fibroblast and SCs in the nerve.  

      (2) It is suggested that the permeability of DRG vessels may facilitate the release of "vascularderived signals" (lines 82-84). Is it possible that the ET-1/ETBR pathway modulates vascular permeability, and that this, in turn, contributes to the observed e]ects on regeneration?  

      We thank the reviewer for raising this interesting point. ET-1 can have an impact on vascular permeability. It was indeed shown that in high glucose conditions, increased trans-endothelial permeability is associated with increased Edn1, Ednra and Ednrb expression and augmented ET1 immunoreactivity (PMID: 10950122). It is thus possible that part of the e]ects observed results from altered vascular permeability. We have included this point in the Discussion section. Future experiments will be required to test how injury and age a]ects vascular permeability in the DRG.

      (3) Is the a]inity of ET-3 for ETBR similar to that of ET-1? Can it be excluded that ET-3 expressed by fibroblasts is relevant for controlling SGC responses upon injury/aging?  

      We thank the reviewer for raising this point. ET-1 binds to ETAR and ETBR with the same a]inity, but ET3 shows a higher a]inity to ETBR than to ETAR (Davenport et al. Pharmacol. Rev 2016 PMID: 26956245). We attempted to examine ET-3 level in adult and aged DRG by western blot, but in our hands the antibody did not work well enough, and we could not obtain clear results. We thus cannot exclude the possibility that ET-3 released by fibroblasts contribute to the e]ects we observe on axon regeneration. Indeed, in cultured cortical astrocytes, application of either ET-1 or ET-3 leads to inhibition of Cx43 expression. We have revised the text in the Discussion section to highlight the possibility that both ET-1 and ET-3 could participate on the ETBRdependent e]ect on axon regeneration.

      (4) ETBR inhibition in dissociated (mixed) cultures uncovers the restraining activity of endothelin signaling on axon growth (Figure 2C). Since neurons do not express ET-1 receptors, based on scRNA-seq analysis, these results are interpreted as an indication that basal ETBR signaling in SGC curbs the axon growth potential of sensory neurons. For this to occur in dissociated cultures, however, one should assume that SGC-neuron association is present, similar to in vivo, or to whole DRG cultures (Figure 2C). Has this been tested?

      We thank the reviewer for this point. In dissociated DRG culture, neurons, SGCs and other nonneuronal cells are present, but SGCs do not retain the surrounding morphology as they do in vivo. Within 24 hours in culture, SGCs lose their adhesive contacts with neuronal soma and adhere to the coverslip (PMID: 22032231, PMID: 27606776).  We have included new data in Figure 2B to show that in our culture conditions, SGCs are present, but do not wrap neurons soma as they do in vivo. We also know from prior studies that the density of the culture a]ects axon growth, an e]ect that was attributed to trophic factors released from non-neuronal cells (Smith and Skene 1997). Therefore, although SGCs do not surround neurons, the signaling pathway downstream of ETBR may be present in culture and contribute to the release of trophic factors that influence axon growth. We have revised the Results section to better explain our in vitro results and their interpretation.

      In both in vitro experimental settings (dissociated and whole DRG cultures) how is ETBR stimulated over up to 7 days of culture? In other words, where does endothelin come from in these cultures (which are unlikely to support EC/blood vessel growth)? Is it possible that the relevant ligand here derives from fibroblasts (see point #6)? Or does it suggest that ETBR can be constitutively active (i.e., endothelin-independent signaling)? Is there any chance that endothelin is present in the culture media or Matrigel? 

      We thank the reviewer for raising this point.  Our single-cell data indicate that ET-1 is expressed by endothelial cells and ET-3 by fibroblasts. In dissociated DRG culture at 24h time point, all DRGs cells are present, including endothelial cells and fibroblasts, and could represent the source of ET-1 or ET-3. In the explant setting, it is also possible that both ET-1 and ET-3 are released by endothelial cells and fibroblasts during the 7 days in culture. According to information for the suppliers, endothelin is not present neither in the culture media nor in the Matrigel. While mutations can facilitate the constitutive activity of the ETBR receptor, we are not aware of data showing that endogenous ETBR can be constitutively active.  Because the molecular mechanisms governing ETBR -mediated signaling remain incompletely understood (see for example PMID: 39043181, PMID: 39414992) future studies will be required to elucidate the detailed mechanisms activating ETBR in SGCs and its downstream signaling mechanisms.  We have now expanded the Results and discussion sections to clarify these points. 

      (5) The discovery that ET-1/ETBR signaling in SGC curtails the growth capacity of axons at baseline raises questions about the physiological role of this pathway. What happens when ETBR signaling is prevented over a longer period of time? This could be addressed with pharmacological inhibitors, or better, with cell-specific knock-out mice. The experiments would certainly be of general interest, although not within the scope of this story. Nevertheless, it could be worth discussing the possibilities. 

      We agree that this is an interesting point. As mentioned above in response to point #1 of reviewer 1, the physiological role of this pathway could be to limit plasticity and prevent maladaptive neural rewiring that can happen after injury (Costigan et al 2009, PMID: 19400724), but can also hinder beneficial recovery after injury. Other mechanisms that limit axon regeneration capacity have been described and involve local mRNA translation and Rho signaling. We have revised the Discussion section to include these points. We agree that understanding the consequence of blocking ETBR over longer time periods is beyond the scope of the current study, but we now discuss the possibility that blocking ETBR with a cell specific KO approach could unravel its physiological function on target innervation and behavior. 

      (6) Assessing Cx43 levels by measuring the immunofluorescence signal (Figure 5E-F) is acceptable, particularly when the aim is to restrict the analysis to SGCs. The modulation of Cx43 expression by ET-1/ETBR plays an important part in the proposed model. Therefore, a complementary analysis of Cx43 expression by quantitative RT-PCR on sorted SGCs would be a valuable addition to the immunofluorescence data. Is this attainable? 

      We agree and have attempted to perform these types of experiments but encountered technical di]iculties. We attempted to sorting SGCs from transgenic mice in which SGCs are fluorescently labeled. However, the cells did not survive the sorting process and died in culture.  We think that increasing the viability of cells after sorting would require capillary- free fluorescent sorting approaches. However, we do not currently have access to such technology. We attempted this experiment with cultured SGCs, following a previously published protocol (Tonello et al. 2023 PMID: 38156033). In these experiments, SGCs are cultured for 8 days to obtain purity. We did not observe any di]erence in Cx43 protein or mRNA level upon treatment with ET-1 with or without BQ788. However, in these SGCs cultures, Cx43 displayed a di]use localization, rather than puncta as observed in vivo. Therefore, despite our multiple attempts, quantifying Cx43 on sorted or purified SGCs was not attainable.

      (7) The conclusions "We thus hypothesize that ETBR inhibition in SGCs contributes to axonal regeneration by increasing Cx43 levels, gap junction coupling or hemichannels and facilitating SGC-neuron communication" (lines 303-305) are consistent with the findings but seem in contrast with the e]ect of aging on gap junction coupling reported by others and cited in line 210: "the number of gap junctions and the dye coupling between these cells increases (Huang et al., 2006)". I am confused by what distinguishes a potential, and supposedly beneficial, increase in coupling after ETBR inhibition, from what is observed in aging. 

      We agree that the aging impact of Cx43 level and gap junction number appears contradictory. Procacci et al 2008 reported that Cx43 expression in SGCs decreases in the aged mice. Huang et al 2006 report that both the number of gap junctions and the dye coupling between these cells were found to increase with aging. Procacci et al suggested as a possible explanation for this apparent discrepancy that additional connexin types other than Cx43 may contribute to the gap junctions between SGCs in aged mice. Our snRNAseq data did not allow us to verify this hypothesis, because there were less SGCs in aged mice compared to adult, and connexin genes were detected in only 20% or less of SGCs.  Furthermore, our quantification did not look specifically at gap junctions, but just at Cx43 puncta. Cx43 can also form hemichannels in addition to gap junctions, and can also perform non-channel functions, such as protein interaction, cell adhesion, and intracellular signaling. Thus, more research examining the role of Cx43 in SGCs is necessary to address this discrepancy in the literature. We have expanded the Discussion section to include these points. 

      (8) I find it di]icult to reconcile the results in Figure 5F with the proposed model since (1) injury increases Cx43 levels in both adult and aged mice, (2) the injured aged/vehicle group has a similar level to the uninjured adult group, (3) upon injury, aged+Bosentan is much lower than adult+Bosentan (significance not tested). It seems hard to explain the e]ect of Bosentan only through the modulation of Cx43 levels. Whether the increase in Cx43 levels following ETBR inhibition actually results in higher SGC-neuron coupling has not been assessed experimentally. 

      We thank the reviewer for this point and agree that the e]ect of Bosentan is likely not exclusively through the modulation of Cx43 levels in SGCs, and that Cx43 levels may simply correlate with axon regenerative capacity. We have revised the manuscript to clarify this point.  We have also added the missing significance test in Figure 5F.

      Cell specific KO of Cx43 and ETBR would allow to test this hypothesis directly but is beyond the scope of the current study. We have not tested SGCs-neuron coupling, as these experiments are currently beyond our area of expertise. Cx43 has also other functions beyond gap junction coupling, such as protein interaction, cell adhesion, and intracellular signaling. Investigating the precise function of Cx43 would require in depth biochemical and cell specific experiments that are beyond the scope of this study. Furthermore, as we now mentioned in response to reviewer #2 point 5, ETBR signaling may also have other downstream e]ects in SGCs, such as glutamate transporters expression, or a]ect other cells in the nerve during the regeneration process. We have revised the Discussion section to include these alternative mechanisms.

      Reviewer #3(Public Review): 

      Summary: 

      This manuscript suggests that inhibiting ETBR via the FDA-approved compound Bosentan can disrupt ET-1-ETBR signalling that they found detrimental to nerve regeneration, thus promoting repair after nerve injury in adult and aged mice. 

      Strengths: 

      (1) The clinical need to identify molecular and cellular mechanisms that can be targeted to improve repair after nerve injury. 

      (2) The proposed mechanism is interesting. 

      (3) The methodology is sound. 

      We thank the reviewer for highlighting the strengths of our study

      Weaknesses: 

      (1) The data appear preliminary and the story appears incomplete. 

      We appreciate the reviewer’s point. We would like to emphasize that our results provide compelling evidence that ETBR signaling is a default brake on axon growth, and inhibiting this pathway promotes axon regeneration after nerve injury and counters the decline in regenerative capacity that occurs during aging. We also provide evidence that ETBR signaling regulates the levels of Cx43 in SGCs. Furthermore, our results document the use of an FDA approved compound to increase axon regeneration may be of interest to the broader readership, as there is currently no therapies to improve or accelerate nerve repair after injury. We agree that the detailed mechanisms operating downstream of ETBR will need to be elucidated. Answering these questions would first require cell specific KO of ETBR and Cx43 to confirm that this pathway is operating in SGCs to control axon regeneration. We would also need to identify how SGCs communicate with neurons to regulate axon regeneration, which is a large area of ongoing research that remains poorly understood. This extensive and highly complex set of experiments is beyond the scope of the current study. As we discussed in our response to reviewer #1 and #2 we attempted to perform numerous additional experiments to better define the role of ETBR signaling in SGCs in aging and have included additional results in Fig. 2B, Fig 3G-H,  Fig 5A-E, and Figure 4- Figure Supplement 1and Figure 5- Figure Supplement 1. We have expanded the

      Discussion to acknowledge the limitation of our study and to discuss possible mechanisms.  

      (2) Lack of causality and clear cellular and molecular mechanism. There are also some loose ends such as the role of connexin 43 in SGCs: how is it related to ET-1- ETBR signalling?  

      We thank the reviewer for this point and agree that the molecular mechanisms downstream of ETBR remain to be elucidated. However, we believe that our manuscript reports an interesting potential of an FDA-approved compound in promoting nerve repair. We focused on Cx43 downstream of ETBR signaling because decreased Cx43 expression in SGCs in ageing was previously established, but the mechanisms were not elucidated. Furthermore, it was reported that ET1 signaling in cultured astrocytes, which share functional similarities with SGCs, leads to the closure of gap junctions and reduction in Cx43 expression. Our study thus provides a mechanism by which ETBR signaling in SGCs regulates Cx43 expression. Whether Cx43 directly impact axon regeneration remains to be tested. Cell specific KO of Cx43 and ETBR would be required to answer this question. We have revised the Introduction and Discussion section extensively to provide a link between ETBR and Cx43 and to acknowledge the lack of causality in Cx43 in SGCs, as well as to provide additional potential mechanisms by which ETBR inhibition may promote nerve repair.

      Reviewer #2 (Recommendations For The Authors): 

      In addition to the points listed in the Public Review section, please consider the following comments: 

      (1) ETAR, which is high in mural cells, does not seem to be implicated in the reported proregenerative e]ects. Even so, can vasoconstriction be ruled out as an underlying cause of the age-dependent decline in axon regrowth potential and, more generally, in the e]ects of ET-1 inhibition on regeneration? This could be discussed. 

      We agree that we can’t exclude a role in vasoconstriction or e]ect on vascular permeability in the age-dependent decline in axon regrowth potential. However, our in vitro and ex vivo experiments, in which vascular related mechanisms are unlikely, suggest that vasoconstriction may not be a major contributor to the e]ects we observed.

      (2) The manuscript (e.g. line 287-288) would benefit from a discussion of the role that blood vessels play in the peripheral nervous system, and possibly CNS, repair. Vessels were shown to accompany regenerating fibers and instruct the reorganization of the nerve tissue to favor repair potentially through the release of pro-regenerative signals acting on stromal cells, glia, and other cellular components. Highlighting these processes will help put the current findings into perspective. 

      We agree and have revised the Discussion section to better explain the role of blood vessels in orientating Schwann cells migration and guiding axon regeneration.

      (3) The vast majority of the cells that are sequenced and shown in the UMAP in Figure 1C are from adult (3-month-old) mice [16,923 out of 18,098]. It would be useful to include the UMAP split (or color-coded) by timepoint to appreciate changes in cell clustering that may occur with aging.  

      We apologize for this misunderstanding, Figure 1C had all cells from all ages. However, the number of cells we obtained from the age group was insu]icient to perform in depth analysis of each cell type. We have thus revised this section and Figure 1, now only presenting the data from adult mice.  

      It is not discussed why fewer cells were sequenced at later stages. Additionally, I do not know how to interpret the double asterisks next to the labeling "18,098 samples" in Figure 1C. 

      Since our original sequencing of adult and aged mice using 10x yielded so few cells from the aged DRG, we tested and optimized a new technology for single cell preparation of DRG using Illumina Single Cell 3’ RNA Prep. This preparation creates templated emulsions using a vortex mixer to capture and barcode single-cell mRNA instead of a microfluidics system. This method yielded much better results for nuclei recovery from aged DRG, with more nuclei and better quality of nuclei. Thus, we now present in Figure 5 and Figure 5- Figure Supplement 1 the results from snRNA-sequencing of aged and adult DRG using the Illumina single cell kit. The results of the snRNA-sequencing show a decreased abundance of SGCs in aged mice, consistent with the results from our morphology analysis with EM. We were also able to perform SGCs-specific pathway analysis because of the increased number of nuclei captured in the aged SGCs, which we included in the manuscript.

      (4) The in vivo studies are designed to examine the e]ects of ETBR inhibition during the first phase of axon regrowth after nerve injury (1-3 days post-injury, dpi). Is there a reason why later stages have not been studied? It would be interesting to understand whether ETBR inhibition improves long-term recovery or is only e]ective at boosting the initial growth of axons through the lesion. It is possible that early inhibition will be enough for long-term recovery. If so, these experiments would define a sensitivity window with therapeutic value. 

      We agree that assessing functional recovery requires proper behavioral tests or morphological evaluations of reinnervation. To determine if Bosentan treatment has long-term e]ects on recovery, we administered Bosentan or vehicle for 3 weeks (daily for 1 week, and then once a week for the subsequent 2 weeks) after sciatic nerve crush. At 24 days after SNC, we assessed intraepidermal nerve fiber density (IENFD) in the injured paw and saw a trend towards increased fibers/mm in the treated animals (new Figure 3G,H). Future studies will examine how long-term Bosentan treatment a]ects functional recovery and innervation at later time points. Additionally, behavior assays will be needed to determine if these morphological changes relate to behavioral improvements using IENFD and behavior assays.

      (5) I am unsure if the gene expression analysis shown in Figure 6 fits well into this story. It is interesting per se and in line with previous work from this group showing the relevance of fatty acid metabolism in SGCs for axon regeneration. Nevertheless, without a mechanistic link to endothelin signaling and Cx43/gap junction modulation, the observations derived from DEG analysis are not well integrated with the rest and may be more distracting than helpful. One limitation is that there is no cell-type information for the DEGs due to the small number of cells recovered from aged mice. For instance, if ETBR inhibition rescued gene downregulation associated with fatty acid/cholesterol metabolism, then the DGE results would become more relevant for understanding the cellular basis of the pro-regenerative e]ect, which at this point remains quite speculative (lines 264-265; lines 318-319).  

      We agree and have added new snRNA sequencing data to replace these findings (see above response to point #4, new Figure 5 and Figure 5- Figure Supplement 1. The new data shows a decreased abundance of SGCs in aged mice, consistent with our TEM results. Pathway analysis revealed that aging triggers extensive transcriptional reprogramming in SGCs, reflecting heightened demands for structural integrity, cell junction remodeling, and glia–neuron interactions within the aged DRG microenvironment.  

      (6) It would be interesting to determine whether Bosentan increases SGC coverage of neuronal cell bodies in aged mice (Figures 6A-C). 

      We agree that this would be very interesting, but will require extensive EM analysis at di]erent time points and is beyond the scope of the current manuscript.

      (7) Finally, adding a summary model would help the readers. 

      We agree and have made a summary model, now presented in Figure 6F.

      Reviewer #3 (Recommendations For The Authors): 

      Longer time points post-injury and assessment of functional recovery after Bosentan would be of great value here. 

      We agree that assessing functional recovery requires proper behavioral tests or morphological evaluations of reinnervation. To determine if Bosentan treatment has long-term e]ects on recovery, we administered Bosentan or vehicle for 3 weeks (daily for 1 week, and then once a week for the subsequent 2 weeks) after sciatic nerve crush. At 24 days after SNC, we assessed intraepidermal nerve fiber density in the injured paw and saw a trend towards increased fibers/mm in the treated animals (Fig 3). While the results do not reach significance, we decided to include this new data as it provides evidence that Bosentan treatment may also improves long term recovery. Future studies will be required examine how long-term Bosentan treatment a]ects functional recovery and innervation at later time points. Additionally, behavior assays will be needed to determine if these morphological changes relate to behavioral improvements.

      It would be important to know how ET-1- ETBR signalling axis promotes the regeneration of axons:this remains unaddressed. What are the cells that are specifically involved? Endothelial cellsSGC- neurons- SC? There are no experiments addressing the role of any of these? 

      We agree that the molecular and cellular mechanisms by which ETBR signaling in SGCs promote axon regeneration remains to be elucidated.  Answering these questions would first require cell specific KO of ETBR and Cx43 to confirm that this pathway is operating in SGCs to control axon regeneration. We would also need to identify how SGCs communicate with neurons to regulate axon regeneration, which is a large area of ongoing research that remains poorly understood. While these are important experiments, because of numerous technical and temporal constrains, we believe they are beyond the scope of the current manuscript. 

      How does connexin 43 in SGCs related to ET-1- ETBR signalling? 

      The relation between connexin 43 and ETBR signaling stems from observations made in astrocytes. ET1 signaling in cultured astrocytes, which share functional similarities with SGCs, was shown to lead to the closure of gap junctions and the reduction in Cx43 expression. Because Cx43 expression, a major connexin expressed in SGCs as in astrocytes, was previously shown to be reduced at the protein level in SGCs from aged mice, we decided to explore it this ETBR-Cx43 mechanism also operates in SGCs. We have revised the Introduction and Discussion section extensively to acknowledge the lack of causality in Cx43 expression SGCs and to provide additional potential mechanisms by which ETBR inhibition may promote nerve repair.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The manuscript proposes that 5mC modifications to DNA, despite being ancient and widespread throughout life, represent a vulnerability, making cells more susceptible to both chemical alkylation and, of more general importance, reactive oxygen species. Sarkies et al take the innovative approach of introducing enzymatic genome-wide cytosine methylation system (DNA methyltransferases, DNMTs) into E. coli, which normally lacks such a system. They provide compelling evidence that the introduction of DNMTs increases the sensitivity of E. coli to chemical alkylation damage. Surprisingly they also show DNMTs increase the sensitivity to reactive oxygen species and propose that the DNMT generated 5mC presents a target for the reactive oxygen species that is especially damaging to cells. Evidence is presented that DNMT activity directly or indirectly produces reactive oxygen species in vivo, which is an important discovery if correct, though the mechanism for this remains obscure.

      Strengths:

      This work is based on an interesting initial premise, it is well-motivated in the introduction and the manuscript is clearly written. The results themselves are compelling.

      We thank the reviewer for their positive response to our study.  We also really appreciate the thoughtful comments raised.  We have addressed the comments raised as detailed below. 

      Weaknesses:

      I am not currently convinced by the principal interpretations and think that other explanations based on known phenomena could account for key results. Specific points below.

      (1) As noted in the manuscript, AlkB repairs alkylation damage by direct reversal (DNA strands are not cut). In the absence of AlkB, repair of alklylation damage/modification is likely through BER or other processes involving strand excision and resulting in single stranded DNA. It has previously been shown that 3mC modification from MMS exposure is highly specific to single stranded DNA (PMID:20663718) occurring at ~20,000 times the rate as double stranded DNA. Consequently, the introduction of DNMTs is expected to introduce many methylation adducts genome-wide that will generate single stranded DNA tracts when repaired in an AlkB deficient background (but not in an AlkB WT background), which are then hyper-susceptible to attack by MMS. Such ssDNA tracts are also vulnerable to generating double strand breaks, especially when they contain DNA polymerase stalling adducts such as 3mC. The generation of ssDNA during repair is similarly expected follow the H2O2 or TET based conversion of 5mC to 5hmC or 5fC neither of which can be directly repaired and depend on single strand excision for their removal. The potential importance of ssDNA generation in the experiments has not been considered.

      We thank the reviewer for this interesting and insightful suggestion.  Our interpretation of our findings is that a subset of MMS-induced DNA damage, specifically 3mC, overlaps with the damage introduced by DNMTs and this accounts for increased sensitivity to MMS when DNMTs are expressed.  However, the idea that the introduction of 3mC by DNMT actually makes the DNA more liable to damage by MMS, potentially through increasing the level of ssDNA, is also a potential explanation, which could operate in addition to the mechanism that we propose.

      (2) The authors emphasise the non-additivity of the MMS + DNMT + alkB experiment but the interpretation of the result is essentially an additive one: that both MMS and DNMT are introducing similar/same damage and AlkB acts to remove it. The non-additivity noted would seem to be more consistent with the ssDNA model proposed in #1. More generally non-additivity would also be seen if the survival to DNA methylation rate is non-linear over the range of the experiment, for example if there is a threshold effect where some repair process is overwhelmed. The linearity of MMS (and H2O2) exposure to survival could be directly tested with a dilution series of MMS (H2O2).

      We thank the reviewer for this point.  As in the response to point #1, the reviewer’s hypothesis of increased potency of MMS, potentially through increased ssDNA, downstream of 3mC induction by DNMT, is a good one.  We have added a dose-response curve for DNMT-expressing cells to MMS to the revised version of the manuscript.  This shows that there is a non-linear response to MMS in the WT background.  Sensitivity is exacerbated by expression of DNMT and alkB mutation individually but there is also a strong non-additive effect that is particularly marked at low MMS concentrations where sensitivity is much higher in the double mutant than predicted from the two single mutants.  This is consistent with induction of DNA damage by DNMT that is repaired by alkB because alkB can be ‘overwhelmed’ even in WT backgrounds as the reviewer suggests.  However, it is also perfectly possible that the effect is due to increased levels of DNA damage induction in DNMT-expressing cells.  Both these results are compatible with our central hypothesis, namely that DNMT expression induces 3mC.  We have included these results along with discussion of them in the revised text in the results section:

      In order to investigate the non-additivity between DNMT expression and alkB mutation further, we investigated the effect of MMS over a range of concentrations for the different strains (Supplemental Figure 1A).  We quantified the non-additivity by comparing between the survival of alkB expressing DNMT to the predicted combined effect of either alkB mutation alone or DNMT expression alone(Supplemental Figure 1B).  Significantly reduced survival than expected was observed, most notably at low concentrations of MMS, which could be due to the saturation of the effect at high concentrations of MMS for alkB mutants expressing DNMT, where extremely high levels of sensitivity were observed.  The non-linear shape of the graph observed for WT cells expressing DNMTs further suggests that the ability of AlkB to repair the DNA is overwhelmed at high MMS concentrations even in the WT background.  These results are consistent with the idea that AlkB repairs a form of DNA damage from MMS that is more prevalent when DNMT is expressed.  This could be because DNMT induces 3mC, repaired by AlkB, and further 3mC is induced by MMS leading to much higher 3mC levels in the absence of AlkB activity.  Alternatively, 3mC induction by DNMT may lead to increased levels of ssDNA, particularly in alkB mutants, which could increase the risk of further DNA damage by MMS exposure and heighten sensitivity.  Either of these mechanisms are consistent with induction of 3mC by DNMT, and  indicate that the induction of DNA damage by DNMT expression has a fitness cost for cells when exposed to genotoxic stress in their environment. 

      (3) The substantial transcriptional changes induced by DNMT expression (Supplemental Figure 4) are a cause for concern and highlight that the ectopic introduction of methylation into a complex system is potentially more confounded than it may at first seem. Though the expression analysis shows bulk transcription properties, my concern is that the disruptive influence of methylation in a system not evolved with it adds not just consistent transcriptional changes but transcriptional heterogeneity between cells which could influence net survival in a stressed environment. In practice I don't think this can be controlled for, possibly quantified by single-cell RNA-seq but that is beyond the reasonable scope of this paper.

      We fully agree with the reviewer and, indeed, we are very interested in what is driving the transcriptional changes that we observed.  Work is currently underway in the lab to investigate this further but, as the reviewer suggests, is beyond the scope of this paper.  Importantly, we have used the transcriptional data to determine that the effect of DNMTs on ROS is unlikely to be due to failure of ROS-induced detoxification mechanisms by investigating the expression of oxyR regulated genes.  Nevertheless we have explicitly mentioned the concern raised by the reviewer in the revised manuscript as follows:

      “The substantial transcriptional responses could potentially affect how individual cells respond to genotoxic stress and thus could be contributing to some of the excess sensitivity to MMS and H2O2 in cells expressing DNMTs. However, the induction of oxyR regulated genes such as catalase was unaffected by 5mC (Supplementary Figure 4B).  Thus, the increased sensitivity to H2O2 is unlikely to be caused by failure of detoxification gene induction by DNMT expression.”

      (4) Figure 4 represents a striking result. From its current presentation it could be inferred that DNMTs are actively promoting ROS generation from H2O2 and also to a lesser extent in the absence of exogenous H2O2. That would be very surprising and a major finding with far-reaching implications. It would need to be further validated, for example by in vitro reconstitution of the reaction and monitoring ROS production. Rather, I think the authors are proposing that some currently undefined, indirect consequence of DNMT activity promotes ROS generation, especially when exogenous H2O2 is available. It would help if this were clarified.

      We thank the reviewer for picking this up.  In the discussion, we raise two possible explanations for why DNMT (even without H2O2) increases the ROS levels.  One idea is direct activity of DNMT, and one is through the product of DNMT activity (5mC) acting as a platform to generate more ROS from endogenous or exogenous sources.  Whilst we attempted to measure ROS from mSSSI activity in vitro, this experiment gave inconsistent results and therefore we cannot distinguish between these two possibilities.  However, we argued that direct activity is less likely, exactly as the reviewer points out.  We have clarified our discussion in the revised version, rewriting the entire section titled

      Oxidative stress as a new source of DNA damage induction by DNMT expression to more clearly set out these possibilities. 

      Reviewer #2 (Public review):

      5-methylcytosine (5mC) is a key epigenetic mark in DNA and plays a crucial role in regulating gene expression in many eukaryotes including humans. The DNA methyltransferases (DNMTs) that establish and maintain 5mC, are conserved in many species across eukaryotes, including animals, plants, and fungi, mainly in a CpG context. Interestingly, 5mC levels and distributions are quite variable across phylogenies with some species even appearing to have no such DNA methylation.

      This interesting and well-written paper discusses the continuation of some of the authors' work published several years ago. In that previous paper, the laboratory demonstrated that DNA methylation pathways coevolved with DNA repair mechanisms, specifically with the alkylation repair system. Specifically, they discovered that DNMTs can introduce alkylation damage into DNA, specifically in the form of 3-methylcytosine (3mC). (This appears to be an error in the DNMT enzymatic mechanism where the generation 3mC as opposed to its preferred product 5-methylcytosine (5mC), is caused by the flipped target cytosine binding to the active site pocket of the DNMT in an inverted orientation.) The presence of 3mC is potentially toxic and can cause replication stress, which this paper suggests may explain the loss of DNA methylation in different species. They further showed that the ALKB2 enzyme plays a crucial role in repairing this alkylation damage, further emphasizing the link between DNA methylation and DNA repair.

      The co-evolution of DNMTs with DNA repair mechanisms suggests there can be distinct advantages and disadvantages of DNA methylation to different species which might depend on their environmental niche. In environments that expose species to high levels of DNA damage, high levels of 5mC in their genome may be disadvantageous. This present paper sets out to examine the sensitivity of an organism to genotoxic stresses such as alkylation and oxidation agents as the consequence of DNMT activity. Since such a study in eukaryotes would be complicated by DNA methylation controlling gene regulation, these authors cleverly utilize Escherichia coli (E.coli) and incorporate into it the DNMTs from other bacteria that methylate the cytosines of DNA in a CpG context like that observed in eukaryotes; the active sites of these enzymes are very similar to eukaryotic DNMTs and basically utilize the same catalytic mechanism (also this strain of E.coli does not specifically degrade this methylated DNA) .

      The experiments in this paper more than adequately show that E. coli expression of these DNMTs (comparing to the same strain without the DNMTS) do indeed show increased sensitivity to alkylating agents and this sensitivity was even greater than expected when a DNA repair mechanism was inactivated. Moreover, they show that this E. coli expressing this DNMT is more sensitive to oxidizing agents such as H2O2 and has exacerbated sensitivity when a DNA repair glycosylase is inactivated. Both propensities suggest that DNMT activity itself may generate additional genotoxic stress. Intrigued that DNMT expression itself might induce sensitivity to oxidative stress, the experimenters used a fluorescent sensor to show that H2O2 induced reactive oxygen species (ROS) are markedly enhanced with DNMT expression. Importantly, they show that DNMT expression alone gave rise to increased ROS amounts and both H2O2 addition and DNMT expression has greater effect that the linear combination of the two separately. They also carefully checked that the increased sensitivity to H2O2 was not potentially caused by some effect on gene expression of detoxification genes by DNMT expression and activity. Finally, by using mass spectroscopy, they show that DNMT expression led to production of the 5mC oxidation derivatives 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) in DNA. 5fC is a substrate for base excision repair while 5hmC is not; more 5fC was observed. Introduction of non-bacterial enzymes that produce 5hmC and 5fC into the DNMT expressing bacteria again showed a greater sensitivity than expected. Remarkedly, in their assay with addition of H2O2, bacteria showed no growth with this dual expression of DNMT and these enzymes.

      Overall, the authors conduct well thought-out and simple experiments to show that a disadvantageous consequence of DNMT expression leading to 5mC in DNA is increased sensitivity to oxidative stress as well as alkylating agents.

      Again, the paper is well-written and organized. The hypotheses are well-examined by simple experiments. The results are interesting and can impact many scientific areas such as our understanding of evolutionary pressures on an organism by environment to impacting our understanding about how environment of a malignant cell in the human body may lead to cancer.

      We thank the reviewer for their response to our study, and value the time taken to produce a public review that will aid readers in understanding the key results of our study. 

      Reviewer #3 (Public review):

      Summary:

      Krwawicz et al., present evidence that expression of DNMTs in E. coli results in (1) introduction of alkylation damage that is repaired by AlkB; (2) confers hypersensitivity to alkylating agents such as MMS (and exacerbated by loss of AlkB); (3) confers hypersensitivity to oxidative stress (H2O2 exposure); (4) results in a modest increase in ROS in the absence of exogenous H2O2 exposure; and (5) results in the production of oxidation products of 5mC, namely 5hmC and 5fC, leading to cellular toxicity. The findings reported here have interesting implications for the concept that such genotoxic and potentially mutagenic consequences of DNMT expression (resulting in 5mC) could be selectively disadvantageous for certain organisms. The other aspect of this work which is important for understanding the biological endpoints of genotoxic stress is the notion that DNA damage per se somehow induces elevated levels of ROS.

      Strengths:

      The manuscript is well-written, and the experiments have been carefully executed providing data that support the authors' proposed model presented in Fig. 7 (Discussion, sources of DNA damage due to DNMT expression).

      Weaknesses:

      (1) The authors have established an informative system relying on expression of DNMTs to gauge the effects of such expression and subsequent induction of 3mC and 5mC on cell survival and sensitivity to an alkylating agent (MMS) and exogenous oxidative stress (H2O2 exposure). The authors state (p4) that Fig. 2 shows that "Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to WT C2523, supporting the conclusion that the expression of DNMTs increased the levels of alkylation damage." This is a confusing statement and requires revision as Fig. 2 does ALL cells shown in Fig. 2 are expressing DNMTs and have been treated with MMS. It is the absence of AlkB and the expression of DNMTs that that causes the MMS sensitivity.

      We thank the reviewer for this and agree that this needs to be clarified with regards to the figure presented and will do so in the revised manuscript. The key comparison is between the active and inactive mSSSI which shows increased sensitivity when active methyltransferases are expressed.  We have clarified this in the revised version of the manuscript as follows:

      “Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to cells expressing inactive M.SssI”

      (2) It would be important to know whether the increased sensitivity (toxicity) to DNMT expression and MMS is also accompanied by substantial increases in mutagenicity. The authors should explain in the text why mutation frequencies were not also measured in these experiments.

      This is an important point because it is not immediately obvious that increased sensitivity would be associated with increased mutagenicity (if, for example, 3mC was never a cause of innacurate DNA repair even in the absence of AlkB).  We have now added a Rif resistance assay which demonstrates increased mutagenesis in the presence of DNMT, and that this is exacerbated by loss of AlkB. This is now added as supplemental figure 2 and described in the manuscript as follows:

      “One potential consequence of DNMT activity in inducing DNA damage might be increased mutagenesis.  To test this we performed a rifampicin resistance mutagenesis assay, in the absence of MMS, to test whether DNMT induced damage was sufficient to lead to mutation rate increase.  Mutation rate was increased by DNMT expression (p=1.6e-12; two way anova; Supplemental Figure 2) and alkB mutation (two way anova) separately (p<1e-16).  Moreover, there was a significant interaction such that combined alkB mutation and DNMT expression led to a further increased mutation rate compared to the expectation from alkB mutation and DNMT expression separately (p = 7.9e-10; Supplemental Figure 2).  Importantly, DNMT induction alone would be expected to lead to increased mutations due to cytosine deamination(Sarkies, 2022a); however, there is a synergistic effect on mutations when this is combined with loss of AlkB function in alkB mutants. This is consistent with 3mC induction by DNMTs which is repaired by AlkB in WT cells but leads to mutations in alkB mutant cells.

      (3) Materials and Methods. ROS production monitoring. The "Total Reactive Oxygen Species (ROS) Assay Kit" has not been adequately described. Who is the Vendor? What is the nature of the ROS probes employed in this assay? Which specific ROS correspond to "total ROS"?

      The ROS measurement was with a kit from ThermoFisher: https://www.thermofisher.com/order/catalog/product/88-5930-74.  The probe is DCFH-DA.  This is a general ROS sensor that is oxidised by a large number of cellular reactive oxygen species hence we cannot attribute the signal to a single species.  Use of a technique with the potential to more precisely identify the species involved is something we plan to do in future, but is beyond what we can do as part of this study.  We have added a comment as to the specificity of the ROS sensor in the revised version as follows:

      “The ROS detection reagent in this system is DCFH-DA, a generalised ROS sensor that is not specific to any particular ROS molecule.”     

      (4) The demonstration (Fig. 4) that DNMT expression results in elevated ROS and its further synergistic increase when cells are also exposed to H2O2 is the basis for the authors' discussion of DNA damage-induced increases in cellular ROS. S. cerevisiae does not possess DNMTs/5mC, yet exposure to MMS also results in substantial increases in intracellular ROS (Rowe et al, (2008) Free Rad. Biol. Med. 45:1167-1177. PMC2643028). The authors should be aware of previous studies that have linked DNA damage to intracellular increases in ROS in other organisms and should comment on this in the text.

      We thank the reviewer for this point.  We note that the increased ROS that we observed occur in the presence of DNMTs alone and in the presence of H2O2, not in the presence of MMS; however, the point that DNA damage in general can promote increased ROS in some circumstances is well taken.  We have included a comment on this in the revised version as follows:

      “We believe this is a plausible mechanism to explain both increased ROS and increased sensitivity to oxidative stress when DNMT is expressed.  However, other explanations are possible, and it is notable that DNA damaging agents such as MMS can lead to ROS generation(Rowe et al., 2008).  A more detailed chemical and kinetic study of the ROS formation in DNMT-expressing cells would be needed to resolve these questions.”

    1. Author response:

      Reviewer #1 (Public review):

      In the current article, Octavia Soegyono and colleagues study "The influence of nucleus accumbens shell D1 and D2 neurons on outcome-specific Pavlovian instrumental transfer", building on extensive findings from the same lab. While there is a consensus about the specific involvement of the Shell part of the Nucleus Accumbens (NAc) in specific stimulus-based actions in choice settings (and not in General Pavlovian instrumental transfer - gPIT, as opposed to the Core part of the NAc), mechanisms at the cellular and circuitry levels remain to be explored. In the present work, using sophisticated methods (rat Cre-transgenic lines from both sexes, optogenetics, and the well-established behavioral paradigm outcome-specific PIT-sPIT), Octavia Soegyono and colleagues decipher the differential contribution of dopamine receptors D1 and D2 expressing spiny projection neurons (SPNs).

      After validating the viral strategy and the specificity of the targeting (immunochemistry and electrophysiology), the authors demonstrate that while both NAc Shell D1- and D2-SPNs participate in mediating sPIT, NAc Shell D1-SPNs projections to the Ventral Pallidum (VP, previously demonstrated as crucial for sPIT), but not D2-SPNs, mediates sPIT. They also show that these effects were specific to stimulus-based actions, as value-based choices were left intact in all manipulations.

      This is a well-designed study, and the results are well supported by the experimental evidence. The paper is extremely pleasant to read and adds to the current literature.

      We thank the Reviewer for their positive assessment.

      Reviewer #2 (Public review):

      Summary:

      This manuscript by Soegyono et al. describes a series of experiments designed to probe the involvement of dopamine D1 and D2 neurons within the nucleus accumbens shell in outcome-specific Pavlovian-instrumental transfer (osPIT), a well-controlled assay of cue-guided action selection based on congruent outcome associations. They used an optogenetic approach to phasically silence NAc shell D1 (D1-Cre mice) or D2 (A2a-Cre mice) neurons during a subset of osPIT trials. Both manipulations disrupted cue-guided action selection but had no effects on negative control measures/tasks (concomitant approach behavior, separate valued guided choice task), nor were any osPIT impairments found in reporter-only control groups. Separate experiments revealed that selective inhibition of NAc shell D1 but not D2 inputs to ventral pallidum was required for osPIT expression, thereby advancing understanding of the basal ganglia circuitry underpinning this important aspect of decision making.

      Strengths:

      The combinatorial viral and optogenetic approaches used here were convincingly validated through anatomical tract-tracing and ex vivo electrophysiology. The behavioral assays are sophisticated and well-controlled to parse cue and value-guided action selection. The inclusion of reporter-only control groups is rigorous and rules out nonspecific effects of the light manipulation. The findings are novel and address a critical question in the literature. Prior work using less decisive methods had implicated NAc shell D1 neurons in osPIT but suggested that D2 neurons may not be involved. The optogenetic manipulations used in the current study provide a more direct test of their involvement and convincingly demonstrate that both populations play an important role. Prior work had also implicated NAc shell connections to ventral pallidum in osPIT, but the current study reveals the selective involvement of D1 but not D2 neurons in this circuit. The authors do a good job of discussing their findings, including their nuanced interpretation that NAc shell D2 neurons may contribute to osPIT through their local regulation of NAc shell microcircuitry.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      The current study exclusively used an optogenetic approach to probe the function of D1 and D2 NAc shell neurons. Providing a complementary assessment with chemogenetics or other appropriate methods would strengthen conclusions, particularly the novel demonstration of D2 NAc shell involvement. Likewise, the null result of optically inhibiting D2 inputs to the ventral pallidum leaves open the possibility that a more complete or sustained disruption of this pathway may have impaired osPIT.

      We acknowledge the reviewer's valuable suggestion that demonstrating NAc-S D1- and D2-SPN engagement in outcome-specific PIT through another technique would strengthen our optogenetic findings. Several approaches could provide this validation. Chemogenetic manipulation, as the reviewer suggested, represents one compelling option. Alternatively, immunohistochemical assessment of phosphorylated histone H3 at serine 10 (P-H3) offers another promising avenue, given its established utility in reporting striatal SPN plasticity in the dorsal striatum (Matamales et al., 2020). We hope to complete such an assessment in future work since it would address the limitations of previous work that relied solely on ERK1/2 phosphorylation measures in NAc-S SPNs (Laurent et al., 2014).

      Regarding the null result from optical silencing of D2 terminals in the ventral pallidum, we agree with the reviewer's assessment. While we acknowledge this limitation in the current manuscript (see discussion), we aim to address this gap in future studies to provide a more complete mechanistic understanding of the circuit.

      Reviewer #3 (Public review):

      Summary:

      The authors present data demonstrating that optogenetic inhibition of either D1- or D2-MSNs in the NAc Shell attenuates expression of sensory-specific PIT while largely sparing value-based decision on an instrumental task. They also provide evidence that SS-PIT depends on D1-MSN projections from the NAc-Shell to the VP, whereas projections from D2-MSNs to the VP do not contribute to SS-PIT.

      Strengths:

      This is clearly written. The evidence largely supports the authors' interpretations, and these effects are somewhat novel, so they help advance our understanding of PIT and NAc-Shell function.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      I think the interpretation of some of the effects (specifically the claim that D1-MSNs do not contribute to value-based decision making) is not fully supported by the data presented.

      We appreciate the reviewer's comment regarding the marginal attenuation of value-based choice observed following NAc-S D1-SPN silencing. While this manipulation did produce a slight reduction in choice performance, the behavior remained largely intact. We are hesitant to interpret this marginal effect as evidence for a direct role of NAc-S D1-SPNs in value-based decision-making, particularly given the substantial literature demonstrating that NAc-S manipulations typically preserve such choice behavior (Corbit & Balleine, 2011; Corbit et al., 2001; Laurent et al., 2012). Notably, previous work has shown that NAc-S D1 receptor blockade impairs outcome-specific PIT while leaving value-based choice unaffected (Laurent et al., 2014). We favor an alternative explanation for our observed marginal reduction. As documented in Supplemental Figure 1, viral transduction extended slightly into the nucleus accumbens core (NAc-C), a region established as critical for value-based decision-making (Corbit & Balleine, 2011; Corbit et al., 2001; Laurent et al., 2012). The marginal impairment may therefore reflect inadvertent silencing of a small NAc-C D1-SPN population rather than a functional contribution from NAc-S D1-SPNs. Future studies specifically targeting larger NAc-C D1-SPN populations would help clarify this possibility and provide definitive resolution of this question.

    1. This op-ed addresses the issue with the exponential increase in publications and how this is leading to a lower quality of peer review which, in turn, is resulting in more bad science being published. It is a well-written article that tackles a seemingly eternal topic. This piece focussed more on the positives and potential actions which is nice to see as this is a topic that can become stuck in the problems. There are places throughout that would benefit from more clarity and at times there appears to be a bias towards publishers, almost placing blame on researchers. Very simple word changes or headings could immediately resolve any doubt here as I don't believe this is the intention of the article at all.

      Additionally, this article is very focussed on peer review (a positive) but I think that it would benefit from small additions throughout that zoom out from this and place the discussion in the context of the wider issues - for example you cannot change peer review incentives without changing the entire incentives around "service" activities including teaching, admin etc. This occurs to a degree with the discussion on other outputs, including preprints and data. Moreover, when discussing service type activities, there is data that reveals certain demographics deliberately avoid this work. Adding this element into the article would provide a much stronger argument for change (and do some good in the new current political climate).

      Overall, I thought this was a great piece when it was first posted online and does exactly what a good op-ed should - provoke thought and discussion. Below are some specific comments, in reading order. I do not believe that there are any substantial or essential changes required, particularly given that this is an op-ed article.

      -----

      Quote: "Academia is undergoing a rapid transformation characterized by exponential growth of scholarly outputs."

      Comment: There's an excellent paper providing evidence to this: https://direct.mit.edu/qss/article/5/4/823/124269/The-strain-on-scientific-publishing which would be a very positive addition

      Quote: "it’s challenging to keep up with the volume at which research publications are produced"

      Comment: Might be nice to add that this was a complaint dating back since almost the beginning of sharing research via print media, just to reinforce that this is a very old point.

      Quote: "submissions of poor-quality manuscripts"

      Comment: The use of "poor quality" here is unnecessary. Just because a submission is not accepted, it has no reflection on "quality". As such this does seem to needlessly diminish work rejected by one journal

      Quote: "Maybe there are too many poor quality journals too - responding to an underlying demand to publish low quality papers."

      Comment: This misses the flip side - poor quality journals encourage and actively drive low quality & outright fraudulent submissions due to the publisher dominance in the assessment of research and academics.

      Quote: "even after accounting for quality,"

      Comment: Quality is mentioned here but has yet to be clearly defined. What is "quality"? - how many articles a journal publishes? The "prestige" of a journal? How many people are citing the articles?

      Quote: "Researchers can – and do – respond to the availability by slicing up their work (and their data) into minimally publishable units"

      Comment: I fully agree that some researchers do exactly this. However, again, this seems to be blaming researchers for creating this firehose problem. I think this point could be reworded to not place so much blame or be substantiated with evidence that this is a widespread practice - my experience has been very mixed in that I've worked for people who do this almost to the extreme (and have very high self-citations) and also worked for people who focus on the science and making it as high quality and robust as possible. I agree many respond to the explosion of journals and varied quality in a negative manner but the journals, not researchers are the drivers here.

      Quote: "least important aspect of the expected contributions of scholars."

      Comment: I think it may be worth highlighting here that sometimes specific demographics (white males) actively avoid these kinds of service activities - there's a good study on this providing data in support of this. It adds an extra dimension into the argument for appropriate incentives and the importance & challenges of addressing this.

      Quote: "high quality peer review"

      Comment: Just another comment on the use of "quality'. This is not defined and I think when discussing these topics it is vital to be clear what one means by "high quality". For example, a high quality peer review that is designed as quality control would be detecting gross defects and fraud, preventing such work from being published (peer review does not reliably achieve this). In contrast, a high quality peer review designed to help authors improve their work and avoid hyperbole would be very detailed and collegial, not requesting large numbers of additional experiments.

      Quote: "conferring public trust in the oversight of science"

      Comment: I'm not convinced of this. Conveying peer review as a stamp of approval or QC leads to reduced trust when regular examples emerge with peer review failures - just look at Hydroxychloroquine and how peer review was used to justify that during COVID or the MMR/autism issues that are still on-going even after the work was retracted. I think this should be much more carefully worded, removed or expanded on to provide this perspective - this occurs slightly in the following sentence but it is very important to be clear on this point.

      Quote: "Researchers hold an incredible amount of market power in scholarly publishing"

      Comment: I like the next few paragraphs but, again, this seems to be blaming researchers when they in fact hold no/little power. I agree that researchers *could* use market pressure but this is entirely unrealistic when their careers depend on publishing X papers in X journal. An argument as to why science feels increasingly non-collaborative perhaps. Funders can have immediate and significant changes. Institutions adopting reward structures, such as teaching for example, would have significant impacts on researcher behaviour. Researchers are adapting to the demands the publication system creates - more journals, greater quantity and reduced quality whilst maintaining control over the assessment - eLife being removed from Wos/Scopus is a prime example of publishers (via their parent companies) preventing innovation or even rather basic improvements.

      Quote: "With preprint review, authors participate in a system that views peer review not as a gatekeeping hurdle to overcome to reach publication but as a participatory exercise to improve scholarship."

      Comment: This is framing that I really like; improving scholarship, not quality control.

      Quote: "buy"

      Comment: typo

      Quote: "adoption of preprint review can shift the inaccurate belief that all preprints lack review"

      Comment: Is this the right direction for preprints though? If we force all preprints to be reviewed and only value reviewed-preprints, then we effectively dismantle the benefits of preprints and their potential that we've been working so hard to build. A recent op-ed by Alice Fleerackers et al provided an excellent argument to this effect. More a question than a suggestion for anything to change.

      Quote: "between all of those stakeholders to work together without polarization"

      Comment: I disagree here - publishers have repeatedly shown that their only real interest is money. Working with them risks undermining all of the effort (financial, careers, reputation, time) that advocates for change put in. The OA movement should also highlight perfectly why this is such a bad route to go down (again). Publishers grip on preprint servers is a great example - those servers are hard to use as a reader, lack APIs and access to data, are not innovative or interacting with independent services. The community should make the rules and then publishers abide by and within them. Currently the publishers make all of the rules and dominate. Indeed, this is possibly the biggest ommision from this article - the total dominance of publishers across the entire ecosystem. You can't talk about change without highlighting that the publishers don't just own journals but the reference managers, the assessment systems, the databases etc. I may be an outlier on this point but for all of the people I interact with (often those at the bottom of the ladder) this is a strong feeling. Again, not a suggestion for anything to change and indeed the point of an op-ed is to stimulate thought and discussion so dissent is positive.

      Note that these annotations were made in hypothes.is and are available here, linked in-text for ease - comments are duplicated in this review.

    2. Summary of the essay

      In this essay, the author seeks to explain the ‘firehose’ problem in academic research, namely the rapid growth in the number of articles but also the seemingly concurrent decline in quality. The explanation, he concludes, lies in the ‘superstructure’ of misaligned incentives and feedback loops that primarily drive publisher and researcher behaviour, with the current publish or perish evaluation system at the core. On the publisher side, these include commercial incentives driving both higher acceptance rates in existing journals and the launch of new journals with higher acceptance rates. At the same time, publishers seek to retain reputational currency by maintaining consistency and therefore brand power of scarcer, legacy-prestige journals. The emergence of journal cascades (automatic referrals from one journal to another journal within the same publisher) and the introduction of APCs (especially for special issues) also contribute to commercial incentives driving article growth. On the researcher side, he argues that there is an apparent demand from researchers for more publishing outlets and simultaneous salami slicing by researchers because authors feel they have to distribute relatively more publications among journals that are perceived to be of lower quality (higher acceptance rates) in order to gain equivalent prestige to that of a higher impact paper. The state of peer review also impacts the firehose. The drain of PhD qualified scientists out of academia, compounded by a lack of recognition for peer review, further contributes to the firehose problem because there are insufficient reviewers in the system, especially for legitimate journals. Moreover, what peer review is done is no guarantee of quality (in highly selective journals as well as ‘predatory’). One of his conclusions is that there is not just a crisis in scholarly publishing but in peer review specifically and it is this crisis that will undermine science the most. Add AI into the mix of this publish or perish culture, and he predicts the firehose will burst.

      He suggests that the solution lies in researchers taking back power themselves by writing more but ‘publishing’ less. By writing more he means outputs beyond traditional journal publications such as policy briefs, blogs, preprints, data, code and so on, and that these should count as much as peer-reviewed publications. He places special emphasis on the potential role of preprints and on open and more collegiate preprint review acting as a filter upstream of the publishing firehouse. He ends with a call for more collegiality across all stakeholders to align the incentives and thus alleviate the pressure causing the firehose in the first place.

      General Comment

      I enjoyed reading the essay and think the author does a good job of exposing multiple incentives and competing interests in the system. Although discussion of perverse incentives has been raised in many articles and blog posts, the author specifically focuses on some of the key commercial drivers impacting publishing and the responses of researchers to those drivers. I found the essay compellingly written and thought provoking although it took me a while to work through the various layers of incentives.  In general, I agree with the incentives and drivers he has identified and especially his call for stakeholders to avoid polarization and work together to repair the system. Although I appreciate the need to have a focused argument I did miss a more in-depth discussion about the equally complex layers of incentives for institutions, funders and other organisations (such as Clarivate) that also feed the firehose.

      I note that my perspective comes from a position of being deeply embedded in publishing for most of my career. This will have also impacted what I took away from the essay and the focus of my comments below.

      Main comments

      1. I especially liked the idea of a ‘superstructure’ of incentives as I think that gives a sense of the size and complexity of the problem. At the same time, by focusing on publisher incentives and researchers’ response to them he has missed out important parts of the superstructure contributing to the firehose, namely the role of institutions and funders in the system. Although this is implicit, I think it would have been worth noting more, in particular:

        • He mentions institutions and the role of tenure and promotion towards the end but not the extent of the immense and immobilizing power this wields across the system (despite initiatives such as DORA and CoARA).

        • Most review panels (researchers) assessing grants for funders are also still using journal publications as a proxy for quality, even if the funder policy states journal name and rank should not be used

        • Many Institutions/Universities still rely on number and venue of publications. Although some notable institutions are moving away from this, the impact factor/journal rank is still largely relied on. This seems especially the case in China and India for example, which has shown a huge growth in research output. Although the author discusses the firehose, it would have been interesting to see a regional breakdown of this.

        • Libraries also often negotiate with publishers based on volume of articles – i.e they want evidence that they are getting more articles as they renegotiate a specific contract (e.g. Transformative agreements), rather than e.g. also considering the quality of service.

        • Institutions are also driven by rankings in a parallel way to researchers being assessed based on journal rank (or impact factor). How University Rankings are calculated is also often opaque (apart from the Leiden rankings) but publications form a core part. This further incentivises institutions to select researchers/faculty based on the number and venue of their publications in order to promote their own position in the rankings (and obtain funding)

      2. The essay is also about power dynamics and where power in the system lies. The implication in the essay is that power lies with the publishers and this can be taken back by researchers. Publishers do have power, especially those in possession of high prestige journals and yet publishers are also subject to the power of other parts of the system, such as funder and institutional evaluation policies. Crucially, other infrastructure organisations, such as Clarivate, that provide indexing services and citation metrics also exert a strong controlling force on the system, for example:

        • Only a subset of journals are ever indexed by Clarivate. And funders and Institutions also use the indexing status of a journal as a proxy of quality. A huge number of journals are thus excluded from the evaluation system (primarily in the arts and humanities but also many scholar-led journals from low and middle income countries and also new journals). This further exacerbates the firehose problem because researchers often target only indexed journals. I’d be interested to see if the firehose problem also exists in journals that are not traditionally indexed (although appreciate this is also likely to be skewed by discipline)

        • Indexers also take on the role of arbiters of journal quality and can choose to delist or list journals accordingly. Listing or delisting has a huge impact on the submission rates to journals that can be worth millions of dollars to a publisher, but it is often unclear how quality is assessed and there seems to be a large variance in who gets listed or not.

        • Clarivate are also paid large fees by publishers to use their products, which creates a potential conflict of interest for the indexer as delisting journals from major publishers could potentially cause a substantial loss of revenue if they withdraw their fees. Also Clarivate relies on publishers to create the journals on which their products are based which may also create a conflict if Clarivate wishes to retain the in-principle support of those publishers.

        • The delisting of elife recently, even though it is an innovator and of established quality, shows the precariousness of journal indexing.

      3. All the stakeholders in the system seem to be essentially ‘following the money’ in one way or another – it’s just that the currency for researchers, institutions, publishers and others varies. Publishers – both commercial and indeed most not-for profit -  follow the requirements of the majority of their ‘customers’  (and that’s what authors, institutions, subscribers etc are in this system) in order to ensure both sustainability and revenue growth. This may be a legacy of the commercialisation of research in the 20th Century but we should not be surprised that growth is a key objective for any company. It is likely that commercial players will continue to play an important role in science and science communication; what needs to be changed are the requirements of the customers.

      4. The root of the problem, as the author notes, is what is valued in the system, which is still largely journal publications. The author’s solution is for researchers to write more – and for value to be placed on this greater range of outputs by all stakeholders. I agree with this sentiment – I am an ardent advocate for Open Science. And yet, I also think the focus on outputs per se and not practice or services is always going to lead to the system being gamed in some way in order to increase the net worth of a specific actor in the system. Preprints and preprint review itself could be subject to such gaming if value is placed on e.g. the preprint server or the preprint-review platform as a proxy of preprint and then researcher quality.

      5. I think the only way to start to change the system is to start placing much more value on both the practices of researchers (as well as outputs) and on the services provided by publishers. Of course saying this is much easier than implementing it.

      Other comments

      1. A key argument is that higher acceptance rates actually create a perverse incentive for researchers to submit as many manuscripts as possible because they are more likely to get accepted in journals with higher acceptance rates. I disagree that higher acceptance rates per se are the main incentive for researchers to publish more. More powerful is the fact that those responsible for grants and promotion continue to use quantity of journal articles as a proxy for research quality.

      2. Higher acceptance rates are not necessarily an indicator of low quality or a bad thing if it means that null, negative and inconclusive results are also published

      3. The author states that Journal Impact Factors might have been an effective measure of quality in the past.  I take issue with this because the JIF has, as far as I know, always been driven by relatively few outliers (papers with very high citations) and I don’t know of evidence to show that this wasn’t also true in the past. It also makes the assumption that citations = quality.

      4. The author asks at one point “Why would field specialization need a lower threshold for publication if the merits of peer review are constant? ” I can see a case for lower thresholds, however, when the purpose of peer review is primarily to select for high impact, rather than rigour, of the science conducted. A similar case might be made for multidisciplinary research, where peer reviewers tend to assess an article from their discipline’s perspective and reject it because the part that is relevant to them is not interesting enough… Of course, this all points to the inherent problems with peer review (with which I agree with the author)

      5. The author puts his essay in appropriate context, drawing on a range of sources to support his argument. I particularly like that he tried to find source material that was openly available.

      6. He cites 2 papers by Bjoern Brembs to substantiate the claim that there is potentially poorer review in higher prestige journals than in lower ranked journals. These papers were published in 2013 and 2018 and the conclusions relied, in part, on the fact that higher ranked journals had more retractions. Apart from a potential reporting bias, given the flood of retractions across multiple journals in more recent years, I doubt this correlation now exists?

      7. The author works out submission rates from the published acceptance rates of journals. The author acknowledges this is only approximate and discusses several factors that could inflate or deflate it. I can add a few more variables that could impact the estimate, including: 1) the number of articles a publisher/journal rejects before articles are assigned to any editor (e.g. because of plagiarism, reporting issues or other research integrity issues), 2) the extent to which articles are triaged and rejected by editors before peer review (e.g. because it is out of scope or not sufficiently interesting to peer review); the number of articles rejected after peer review;  and 4) the extent to which authors independently withdraw an article at any stage of the process. When publishers publish acceptance rates, they don’t make it clear what goes into the numerator or the denominator and there are no community standards around this. The author rightly notes this process is too opaque.

      Catriona J. MacCallum

      As is my practice, I do not wish to remain anonymous. Please also note that I work for a large commercial publisher and am writing this review in an independent capacity such that this review reflects my own opinion, which are not necessarily those of my employer.

    3. This is a well written and clear enough piece that may be helpful for a reader new to the topic. To people familiar with the field there is not so much which is new here. The final recommendation is not well expressed. As currently put it is, I think, wrong. But it is a provocative idea. I comment section by section below.

      The first paragraphs repeat well established facts that there are too many papers. Seppelt et al’s contribution is missing here. It also reproduces the disengenuous claim, by a publisher’s employee, that publishers ‘only’ respond to demand. I do not think that is true. They create demand. They encourage authors to write and submit papers, as anyone who has been emailed by MDPI recently can testify. Why repeat something which is so inaccuate?

      The section on ‘upstream of the nozzle’ is rather confusing. I think the author is trying to establish if more work is being submitted. But this cannot be deduced from the data presented. No trends are given. Rejection rates will be a poor guide if the same paper is being rejected by several journals. I was also confused by the sources used to track growth in papers – why not just use Dimensions data? The final paragraph again repeats well known facts about the proliferation of outlets and salami slicing. Thus far the article has not introduced new arguments.

      Minor points in this section:

      • there are some unsupported claims. Eg ‘This is a practice that is often couched within the seemingly innocuous guise of field specialty journals.’

      • I also do not understand the logic of this rather long sentence: ‘The expansion of journals with higher acceptance rates alters the rational calculus for researchers - all things being equal higher acceptance rates create a perverse incentive to submit as many manuscripts as possible since the underlying probability of acceptance is simply higher than if those same publications were submitted to a journal with a lower acceptance rate, and hence higher prestige.’ I suggest it be rephrased

      The section on peer review (Who’s testing the water) is mostly a useful review of the issues. But there are some problems which need addressing. Bizarrely, when discussing whether there enough scientists, it fails to mention Hanson et al’s global study, despite linking to it’s preprint in the opening lines. Instead the author adopts a parochial North American approach and refers only to PhDs coming from the US. It is not adequate to take trends in one country to cannot explain an international publishing scene. These are not the ‘good data’ the author claims. Likewise the value of data on doctorates not going onto a post-doc hinges on how many post-docs there are. That trend is not supplied. This statement ‘Almost everyone getting a doctorate goes into a non-university position after graduation’ may be true, but no supporting data are supplied to justify it. Nor do we know what country, or countries, the author is referring to.

      The section ‘A Sip from the Spring’ makes the mistaken claim that researchers hold market power. This is not true. Researchers institutions, their libraries and governments are the main source of publisher income. It is here that the key proposal for improvement is made: researcher can write more and publish less. But if the problem is that there is too much poorly reviewed literature then this cannot be the solution. Removing all peer review, would mean there is even more material to read whose appearance is not slowed up by peer review at all. If peer review is becoming inadequate, evading it entirely is hardly a solution.

      This does not mean we should not release pre-prints. The author is right to advocate them, but the author is mistaken to think that this will reduce publishing pressures. The clue is in their name ‘pre-print’. Publication is intended.

      Missing from the author’s argument is recognition of the important role that communities of researchers form, and the roles that journals play in providing venues for conversation, disagreement and disucssion. They provide a filter. Yes researchers produce other material than publications as the author states: ‘grant proposals, editorials, policy briefs, blog posts, teaching curricula and lectures, software code and documentation, dataset curation, and labnotes and codebooks.’ I would add email and whatsapp messages to that list. But adding all that to our reading lists will not reduce the volume of things to be read. It must increase it. And it would make it harder to marshall and search all those words.

      But the idea is provocative nonetheless. Running through this paper, and occasionally made explicit, is the fact that publishers earn billions from their ‘service’ to academia. They have a strong commercial interest in our publishing more, and in competing with each other to produce a larger share of the market. If writing more, and publishing less, means we need to find ways of directing our thoughts so that they earn less money for publishers, then that could bring real change to the system.

      A minor point: the fire hose analogy is fully exploited and rather laboured in this paper. But it is a North American term and image, that does not travel so easily.

    4. A few months back, Upstream editor Martin Fenner suggested that I submit my Upstream blog post titled, Drinking from the Firehose? Write More and Publish Less, for peer-review as a sort of experiment for Upstream through MetaROR. MetaROR, a relative newcomer to the scholarly communication community, provides the review and curate steps in the "publish-review-curate" model for meta-research.

      While I do not consider myself a meta-researcher (scholars who conduct research on research) many of my positions on science policy have implications on the field (especially, those on transparency, openness, and reproducibility). I think the main call in my blog post for reform in scholarly communication – namely, to stop publishing in traditional journals as much and start rewarding a broader swath of scholarly activities like data sharing – is particularly appealing to meta-researchers who rely on non-publication outputs for their work. So, I submitted. The article was openly reviewed, and MetaROR provided an editorial assessment. Here, I reply to the reviewers and contribute to the curation of the original post.

      The reviews are very high-quality - in fact, they are some of the most well-reasoned reviews I've received in the 20 years I've been a scholar. If MetaROR represents the future of peer-review through the publish-review-curate model, scholarly communication is about to get a whole lot better. You can read the open reviews of my blog post here. The revised version of the editorial is here.

      Like traditional peer-review, each individual reviewer provided their feedback independently of the others and the handling editor did not curate the reviews. I prefer when editors do such curation since it helps to organize the response in a way that reduces redundancy. This is one of the main benefits of the group-based peer review systems - such as PREreview's Live Review. Also, there was no easy way (or at least not an obvious one) to export the reviews in plaintext from MetaROR so I could respond point-by-point in software of my choice. Below is an attempt to organize my response roughly around the major criticisms and suggestions in the review. Because this was an opinion piece and not research, I'm not going to respond to every point anyway – nearly all of which I would accept and revise accordingly had this been a research article.

      Too Easy on the Publishers, Too Hard on Researchers

      All three reviewers expressed some dismay over how light my criticism of the publishers was in my blog piece. I do not disagree. The reviewers rightfully point out that the publishers play outsized role in the inequity created in the scholarly communication space. However, I am choosing not to revise here much as the essay was already too long - it would have taken a tome to articulate my criticism of the publishers. That's out of scope. However, I revised the first paragraph in the conclusion to state:

      The publishers are incentivized to avoid any other form of reform - this is the rational option that publishers choose in response to the apparent demand from researchers - as Ciavarella rightly pointed out.

      Two of the reviewers also thought I was too harsh on researchers. I don't think that I was overly harsh. All three agree with me that researchers have some market role here but disagree with the extent to which they can exert influence. One reviewer claims researchers have no market power (to which I respectfully disagree). I've clarified in the paper that: 'the power any individual researcher has here is small. Collective action is needed.' I reject that researchers are blameless for the status quo - complacency empowers the publishers. Unfortunately, it's also baked into the superstructure of the reward system that is perpetuated by publisher-controlled market forces. I also added the following sentiment along these lines when discussing market-power of researchers:

      It's free to share and read research without the need for costly, anticompetitive gatekeeping. Leveraging that freedom is an untapped source of market power.

      Focus More on Institutions and Funders and Communities

      Two of the three reviewers thought I needed to draw more attention to the roles, demands, and influence that academic institutions, publisher consortia, libraries, indexing services, scholarly societies, and grassroots research organizations have in this ecosystem. I agree with all these points - and had Clarivate's irresponsible delisting of eLife in the Web of Science happened before I wrote the original piece, I would have highlighted that as one reviewer suggested.

      No New Arguments or Analysis

      The reviewers felt that, while well-articulated, the arguments I was espousing are not novel. First, I think it is worthy to renew the idea that we should be more selective in choosing what to publish in journals. Focusing on quality over quantity and valuing activities beyond journal publications should be repeated often until it's common practice.

      One comment called for more data and analysis, and another wanted some additional research cited. I think that's a great idea and I hope the reviewers can do that work or perhaps the open review will inspire others to do so.

      In response to the criticism that preprints themselves both presuppose an eventual traditional publication and that they could be gamed, I revised that section accordingly:

      There is risk of gaming preprints and preprint review just as there is in traditional publishing, such as by placing value on a paper for where it appears or how it was reviewed without considering its quality or contribution to science.

      One reviewer misunderstood my point about preprints altogether:

      Removing all peer review, would mean there is even more material to read whose appearance is not slowed up by peer review at all. If peer review is becoming inadequate, evading it entirely is hardly a solution. This does not mean we should not release pre-prints. The author is right to advocate them, but the author is mistaken to think that this will reduce publishing pressures. The clue is in their name ‘pre-print’. Publication is intended.

      I am absolutely not arguing for tossing out peer review. I strongly believe peer review is valuable but currently broken. Moreover, I reject that peer review needs to happen behind the gatekeeping of publishers. I revised to clarify here and added a footnote based on this reviewer's latter observation.

      Peer-review remains a critical check for pollutants in the waters - but the prevailing model needs significant reform. The traditional opaque, uncompensated system has eroded the quality, transparency, timeliness, and appropriateness of peer review due to competing priorities and a lack of appropriately aligned incentive structures. Novel models of peer review including, publish-review-curate and preprint review, and compensated review - ideally all done transparently and with conflicts of interest declared out in the open. At the same time, not all manuscripts need review to have value and most preprints with value (even those with reviews) should not be published in journals.

      New footnote: The term 'preprint' is evolving - what was once a moniker for non-peer reviewed manuscript intended to eventually become reviewed and published (or more likely, rejected) now scopes-in other forms including publish-curate-review and manuscripts with preprint reviews. A new labeling and metadata system is desperately needed to highlight the state of review of a particular manuscript in a record of versions. Version control systems and badging are ubiquitous in the open-source software community and could be easily adopted here.

      Volume is Volume is Volume

      Probably the most important critique among the set of reviews points out an apparent recursion in the logic of the thesis that I need to clarify: you can't solve the firehose problem by writing more, as that just adds more volume to the flow. My revision to the conclusion clarifies my intent: what I'm proposing is to stop sending so many papers to journals for publication and to choose preprints more often for reading, reviewing, and writing. At the same time the system should, maintain or increase non-publication scholarly outputs and reward those too.

      "Write-More" here is a placeholder for all the non-publication writing scholars do and should get credit for from their institutions and fields. Again, I happen to focus on writing because that's what I care about in this editorial and it would take volumes to pontificate on all the other services and activities that happen within the academy that are not properly rewarded.

      Summary

      Having my blog post peer-reviewed through MetaROR was a positive experience and I recommend the service. However, my post was still just an editorial – my opinions and thoughts – not research. Had this been a research article, however, the reviews as presented would have been a very good roadmap to improving the paper. For MetaROR, I have two suggestions: 1) the editorial assessment could be improved by organizing the key points and 2) create a way to have all reviews downloadable in plaintext for ease of importing into an editor.

      Acknowledgments

      Special thanks are owed to the reviewers, Catriona MacCallum, Dan Brockington, and Jonny Coates, the MetaROR handling editor Ludo Waltman, and to Upstream Editor and Front Matter founder Martin Fenner for the crazy idea to peer-review a blog post.

      Disclosure

      The opinions expressed here are my own and may not represent those of my employer, my associates, or the reviewers. I have no conflicts of interest to disclose.

      This author response was previously published on Upstream.

    1. Author response:

      Evidence reducibility and clarity

      Reviewer 1:

      In this manuscript, the role of the insulin receptor and the insulin growth factor receptor was investigated in podocytes. Mice, were both receptors were deleted, developed glomerular dysfunction and developed proteinuria and glomerulosclerosis over several months. Because of concerns about incomplete KO, the authors generated podocyte cell lines where both receptors were deleted. Loss of both receptors was highly deleterious with greater than 50% cell death. To elucidate the mechanism, the authors performed global proteomics and find that spliceosome proteins are downregulated. They confirm this by using long-range sequencing. These results suggest a novel role for these pathways in podocytes.

      Thank you

      This is primarily a descriptive study and no technical concerns are raised. The mechanism of how insulin and IGF1 signaling are linked to the spiceosome is not addresed.

      We do not think the paper is descriptive as we used non-biased phospho and total proteomics in the DKO cells to uncover the alterations in the spliceosome (that have not been previously described) that were detrimental. However, we are happy to look further into the underlying mechanism.

      We would propose:

      (1) Stimulating/inhibiting insulin/IGF signalling pathways in the Wild-type and DKO knockout cells and check expression levels and/or phosphorylation status of splice factors (including those in Figure 3E) and those revealed by phospho-proteomic data; a variety of inhibitors of insulin/IGF1 pathways could also be used along the pathways that are shown in Fig 2.

      (2) Looking at the RNaseq data bioinformatically in more detail – the introns/exons that move up or down are targets of the splice factors involved; most splice factors binding sequences are known, so it should be possible to ask bioinformatically – from the sequences around the splice sites of the exons and introns that move in the DKO, which splice factors binding sites are seen most frequently? To uncover splice factors/RNA-binding proteins (RBPs) that are involved in the insulin signaling we will use a software named MATT which was specifically designed to look for RNA-binding motifs (PMID 30010778). In brief, using the long-sequencing data, we will test 250 nt sequences flanking the splice sites of all regulated splicing events (intronic and exonic) against all RNA- binding proteins in the CISBP-RNA database (PMID 23846655) using MATT. This will result in a list of RBPs potentially involved in the insulin signaling. We will validate these by activating insulin signaling (similar to Figures 2 B,C) and probe whether the RBPs are activated (e.g. phosphorylated or change in expression) or we will manipulate expression of the candidate RBPs and measure how they affect the insulin signaling.

      (3) Examining the phospho and total proteomic data for IGF1R and Insulin receptor knockout alone podocytes (which we have already generated) and analysing these in more detail and include this data set to elucidate the relative importance of both receptors to spliceosome function.

      The phenotype of the mouse is only superficially addressed. The main issues are that the completeness of the mouse KO is never assessed nor is the completeness of the KO in cell lines. The absence of this data is a significant weakness.

      We apologise for not making clear but we did assess the level of receptor knockdown in the animal and cell models.  The in vivo model showed variable and non-complete levels of insulin receptor and IGF1 receptor podocyte knock down (shown in supplementary figure 1B). This is why we made the in vitro  floxed podocyte cell lines in which we could robustly knockdown both the insulin receptor and IGF1 receptor (shown in Figure 2A)

      The mouse experiments would be improved if the serum creatinines were measured to provide some idea how severe the kidney injury is.

      We can address this:

      We have further urinary Albumin:creatinine ratio (uACR) data at 12, 16 and 20 weeks. We also have more blood tests of renal function that can be added. There is variability in creatinine levels which is not uncommon in transgenic mouse models (probably partly due to variability in receptor knock down with cre-lox system). This is part of rationale of developing the robust double receptor knockout cell models where we knocked out both receptors by >80%.

      An attempt to rescue the phenotype by overexpression of SF3B4 would also be useful. If this didn't work, an explanation in the text would suffice.

      We would consider  over express SF3BF4 in the Wild type and DKO cells and assess the effects on spliceosome if deemed necessary.  However, we think it is unlikely to rescue the phenotype as so many other spliceosome components are downregulated in the DKO cells.

      As insulin and IGF are regulators of metabolism, some assessment of metabolic parameters would be an optional add-on.

      We have some detail on this and can add to the manuscript. However it is not extensive as not a major driver of this work.

      Lastly, the authors should caveat the cell experiments by discussing the ramifications of studying the 50% of the cells that survive vs the ones that died.

      Thank you, we appreciate this and this was the rationale behind cells being studied after 2 days differentiation before significant cell loss in order to avoid the issue of studying the 50% of cells that survive.

      Reviewer 2:

      In this manuscript, submitted to Review Commons (journal agnostic), Coward and colleagues report on the role of insulin/IGF axis in podocyte gene transcription. They knocked out both the insulin and IGFR1 mice. Dual KO mice manifested a severe phenotype, with albuminuria, glomerulosclerosis, renal failure and death at 4-24 weeks.

      Long read RNA sequencing was used to assess splicing events. Podocyte transcripts manifesting intron retention were identified. Dual knock-out podocytes manifested more transcripts with intron retention (18%) compared wild-type controls (18%), with an overlap between experiments of ~30%.

      Transcript productivity was also assessed using FLAIR-mark-intron-retention software. Intron retention w seen in 18% of ciDKO podocyte transcripts compared to 14% of wild-type podocyte transcripts (P=0.004), with an overlap between experiments of ~30% (indicating the variability of results with this method). Interestingly, ciDKO podocytes showed downregulation of proteins involved in spliceosome function and RNA processing, as suggested by LC/MS and confirmed by Western blot.

      Pladienolide (a spliceosome inhibitor) was cytotoxic to HeLa cells and to mouse podocytes but no toxicity was seen in murine glomerular endothelial cells.<br /> Specific comments.

      The manuscript is generally clear and well-written. Mouse work was approved in advance. The six figures are generally well-designed, bars/superimposed dot-plots.

      Thank you

      Evaluation.

      Methods are generally well described. It would be helpful to say that tissue scoring was performed by an investigator masked to sample identity.

      We did this and will add this information to the methods/figure legend.

      Specific comments.

      (1) Data are presented as mean/SEM. In general, mean/SD or median/IQR are preferred to allow the reader to evaluate the spread of the data. There may be exceptions where only SEM is reasonable.

      Graphs can be changed to SD rather than SEM.

      (2) It would be useful to for the reader to be told the number of over-lapping genes (with similar expression between mouse groups) and the results of a statistical test comparing WT and KO mice. The overlap of intron retention events between experimental repeats was about 30% in both knock-out podocytes. This seems low and I am curious to know whether this is typical for typical for this method; a reference could be helpful.

      This is an excellent question. We had 30% overlap as the parameters used for analysis were very stringent. We suspect we could get more than 30% by being less stringent, which still be considered as similar events if requested. Our methods were based on FLAIR analysis (PMID: 32188845)

      (3) Please explain "adjusted p value of 0.01." It is not clear how was it adjusted. The number of differentially-expressed proteins between the two cell types was 4842.

      We used the Benjamini-Hochberg method to adjust our data. We think the reviewer is referring to the transcriptomic data and not the proteomic data.

      Minor comments

      Page numbers in the text would help the reviewer communicate more effectively with the author.

      We will do this

      Reviewer 3:

      These investigators have previously shown important roles for either insulin receptor (IR) or insulin-like growth factor receptor (IGF1R) in glomerular podocyte function. They now have studied mice with deletion of both receptors and find significant podocyte dysfunction. They then made a podocyte cell line with inducible deletion of both receptors and find abnormalities in transcriptional efficiency with decreased expression of spliceosome proteins and increased transcripts with impaired splicing or premature termination.

      The studies appear to be performed well and the manuscript is clearly written.

      Thank you

      Referees cross-commenting

      I am in agreement with Reviewer 1 that the studies are overly descriptive and do not provide sufficient mechanism and the lack of more investigation of the in vivo model is a significant weakness.

      Please see our responses to reviewer 1 above.

      Significance

      Reviewer 1:

      With the GLP1 agonists providing renal protection, there is great interest in understanding the role of insulin and other incretins in kidney cell biology. It is already known that Insulin and IGFR signaling play important roles in other cells of the kidney. So, there is great interest in understanding these pathways in podocytes. The major advance is that these two pathways appear to have a role in RNA metabolism, the major limitations are the lack of information regarding the completeness of the KO's. If, for example, they can determine that in the mice, the KO is complete, that the GFR is relatively normal, then the phenotype they describe is relatively mild.

      Thank you. The receptor  KO in the mice is unlikely to be complete (Please see comments above and Supplementary Figure 1b). There are many examples of KO models targeting other tissues showing that complete KO of these receptors seems difficult to achieve , particularly in reference to the IGF1 receptor. In the brain (which is also terminally differentiated cells PMID:28595357 (barely 50% iof IGF1R knockdown was achieved in the target cells). Ovarian granulosa cells PMID:28407051 -several tissue specific drivers tried but couldn't achieve any better than 80%. The paper states that 10% of IGF1R is sufficient for function in these cells so they conclude that their knockdown animals are probably still responding to IGF1. Finally, in our recent IGF1R podocyte knockdown model we found Cre levels were important for excision of a single floxed gene (PMID: 38706850) hence we were not surprised that trying to excise two floxed genes (insulin receptor and IGF1 receptor) was challenging. This is the rationale for making the double receptor knockout cell lines to understand process / biology in more detail.

      Reviewer 2:

      The manuscript is generally clear and well-written. Mouse work was approved in advance. The figures are generally well-designed, bars/superimposed dot-plots.

      Evaluation.

      Methods are generally well described. It would be helpful to say that tissue scoring was performed by an investigator masked to sample identity.

      Thank you we will do this.

      Reviewer 3:

      There are a number of potential issues and questions with these studies.

      (1) For the in vivo studies, the only information given is for mice at 24 weeks of age. There needs to be a full time course of when the albuminuria was first seen and the rate of development. Also, GFR was not measured. Since the podocin-Cre utilized was not inducible, there should be a determination of whether there was a developmental defect in glomeruli or podocytes. Were there any differences in wither prenatal post natal development or number of glomeruli?

      Thank you we will add in further phenotyping data. We do not think there was a major developmental phenotype as  albuminuria did not become significantly different until several months of age. We could have used a doxycycline inducible model but we know the excision efficiency is much less than the podocin-cre driven model SUPP FIGURE 1. This would likely give a very mild (if any) phenotype and not reveal the biology adequately.

      (2) Although the in vitro studies are of interest, there are no studies to determine if this is the underlying mechanism for the in vivo abnormalities seen in the mice. Cultured podocytes may not necessarily reflect what is occurring in podocytes in vivo.

      Thank you for this we are happy to employ Immunohistochemistry (IHC) and immunofluorescence (IF) using spliceosome antibodies on tissue sections from DKO and control mice to examine spliceosome changes. However, as the DKO results in podocyte loss, there may not be that many DKO podocytes still present in the tissue sections. This will be taken into consideration.

      (3) Given that both receptors are deleted in the podocyte cell line, it is not clear if the spliceosome defect requires deletion of both receptors or if there is redundancy in the effect. The studies need to be repeated in podocyte cell lines with either IR or IGFR single deletions.

      Thank you. We have full total and phospho-proteomic data sets from single insulin receptor and IGF1 receptor knockout cell lines that we will investigate for this point.

      (4) There are not studies investigating signaling mechanisms mediating the spliceosome abnormalities.

      Thank you as outlined as above to reviewer 1 point 1 we are very happy to investigate insulin / IGF signalling pathways in more detail.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02946

      Corresponding author(s): Margaret, Frame

      Roza, Masalmeh

      [Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.

      If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We thank the reviewers for recognizing the significance of our work and for their constructive feedback and suggestions, most of which we have implemented in our revised manuscript.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      Reviewer #1

      Evidence, reproducibility and clarity

      Review of Masalmeh et al. Title: "FAK modulates glioblastoma stem cell energetics..."

      Previous studies have implicated FAK and the related tyrosine kinase PYK2 in glioblastoma growth, cell migration, and invasion. Herein, using a murine stem cell model of glioblastoma, the authors used CRISPR to inactivate FAK, FAK-null cells selected and cloned, and lentiviral re-expression of murine FAK in the FAK-null cells (termed FAK Rx) was accomplished. FAK-/- cells were shown to possess epithelial characteristics whereas FAK Rx cells expressed mesenchymal markers and increased cell migration/invasion in vitro. Comparisons between FAK-/- and FAK Rx cells showed that FAK re-expressed increased mitochondrial respiration and amino acid uptake. This was associated with FAK Rx cells exhibiting filamentous mitochondrial morphology (potentially an OXPHOS phenotype) and decreased levels of MTFR1L S235 phosphorylation (implicated in mito morphology fragmentation). Mito and epithelial cell morphology of FAK-/- cells was reversed by treatment with Rho-kinase inhibitors that also increased mito metabolism and cell viability. Last, FAK-dependent glioblastoma tumor growth was shown by comparisons of FAK-/- and FAK Rx implantation studies.

      The studies by Masalmeh provide interesting findings associating FAK expression with changes in mitochondrial morphology, energy metabolism, and glutamate uptake. According to the authors model, FAK expression is supporting a glioblastoma stem cell like phenotype in vitro and tumor growth in vivo. What remains unclear is the mechanistic connection to cell changes and whether or not these are be dependent on intrinsic FAK activity or as the Frame group has previously published, potentially FAK nuclear localization. The associations with MTFR1L phosphorylation and effects by Rho kinase inhibition are likely indirect and remind this reviewer of long-ago studies with FAK-null fibroblasts that exhibit epithelial characteristics, still express PYK2, exhibited elevated RhoA GTPase activity. Some of these phenotypes were linked to changes in RhoGEF and RhoGAP signaling with FAK and/or Pyk2. At a minimum, it would be informative to know whether Pyk2 signaling is relevant for observed phenotypes and whether the authors can further support their associations with FAK-targeted or FAK-Pyk2-targeted inhibitors or PROTACs.

      Some questions that would enhance potential impact. 1. Cell generation. Please describe the analysis of FAK-/- clones in more detail. The "low viability" phenotype needs further explanation with regard to clonal expansion and growth characteristics?

      Response:

      • We included a better description and a supplementary figure in our revised manuscript to indicate that we have examined several FAK -/- clones and confirmed that our observations were not due to clonal variation; multiple clones displayed similar morphological changes (Figure S1D). We also show that the elongated mesenchymal-like morphology was observed at 48 h after nucleofecting the cells with the FAK‑expressing vector, before beginning G418 selection to enrich for cells expressing FAK (Figure S1C). We also included experiments to acutely modulate FAK signalling (detaching and seeding cells on fibronectin) (Figure S2D, E, F and Figure S3) to exclude the possibility that the profound effects are due to protocols/selection we used for generating FAK-deleted cells.
      • Regarding the term “low viability”, we have clarified in the text that there is no significant difference in cell number (Figure S1A) or ‘cell viability’ when it is assessed by trypan blue exclusion (a non-mitochondria-dependent read-out) (Figure S1B) between FAK-expressing FAK Rx and FAK-/- cells cultured for three days under normal conditions. Therefore, we agree the term ‘cell viability’ in this context could be confusing and have replace "cell viability” with “metabolic activity as measured by Alamar Blue.” in Figure 1D and Figure 5B, and the corresponding text in the original manuscript. This wording more accurately reflects the data.

      Figure 1F: need further support of MET change upon FAK KO and EMT reversion.

      Response: We have added a heatmap (Figure S1E) illustrating the changes in protein expression of core-enriched EMT/MET genes products (by proteomics) after FAK gene deletion (EMT genes as defined in Howe et al., 2018) ; this strengthens the conclusion that the MET reversion morphological phenotype is accompanied by recognised MET protein changes.

      Fig. 2: Need further support if FAK effects impact glycolysis or oxidative phosphorylation in particular as implicated by the stem cell model.

      Response: We show that FAK impacts both glycolysis (Figure 2A, 2E, and 2F) and mitochondrial oxidative phosphorylation on the basis of the oxygen consumption rate (OCR) (Figure 2B, and 2D), showing both are contributing pathways to FAK-dependent energy production. We have clarified this in the text.

      Is there a combinatorial potential between FAKi and chemotherapies used for glioblastoma. Need to build upon past studies.

      Response: Yes, previous studies suggest that inhibiting FAK can sensitize GBM cells to chemotherapy (Golubovskaya et al., 2012; Ortiz-Rivera et al., 2023). We have included a paragraph in the discussion section to make sure this is clearer. Although it is not the subject of this study, we appreciate it is useful context.

      The notation of changes in glucose transporter expression should be followed up with regard to the potential that FAK-expressing cells may have different uptake of carbon sources and other amino acids. Altered uptake could be one potential explanation for increase glycolysis and glutamine flux.

      Response: We agree with the reviewer that glucose uptake could be contributing and we include data that 2 glucose transporters are indeed FAK-regulated namely Glucose transporter 1 (GLUT1, encoded by Slc2a1 gene) and Glucose transporter 3 (GLUT 3, encoded by Slc2a3 gene) (shown in Figure S2B and C).

      It would be helpful to support the confocal microscopy of mitos with EM.

      Response:

      We are concerned (and in our experience) that Electron microscopy (EM) may introduce artefacts during sample preparation. In contrast, immunofluorescence sample preparation is less susceptible to artefacts. The SORA system we used is not a conventional point-scanning confocal microscope, but is a super-resolution module based on a spinning disk confocal platform (CSU-W1; Yokogawa) using optical pixel reassignment with confocal detection. This method enhances resolution in all dimensions with resolution in our samples measured at 120nm. This has been instructive in defining a new level of changes in mitochondrial morphology upon FAK gene deletion.

      Lack of FAK expression with increased MTFR1 phosphorylation is difficult to interpret.

      Response: We do not directly show that this phosphorylation event is causal in our experiments; however, we think it important to document this change since it has been published that phosphorylation of MTFR1 has been causally linked to the mitochondrial morphology we observed in other systems (Tilokani et al., 2022).

      Need to have better support between loss of FAK and the increase in Rho signaling. Use of Rho kinase inhibitors is very limited and the context to FAK (and or Pyk2) remains unclear. Past studies have linked integrin adhesion to ECM as a linkage between FAK activation and the transient inhibition of RhoA GTP binding. Is integrin signaling and FAK involved in the cell and metabolism phenotypes in this new model?

      Response: To better support the antagonistic effect of FAK on Rho-kinase (ROCK) signalling, we included a new experiment in which the integrin-FAK signalling pathway has been disrupted by treating FAK WT cells with an agent that causes detachment from the substratum, Accutase, and growing the cells in suspension in laminin-free medium. We present ROCK activity data, as judged by phosphorylated MLC2 at serine 19 (pMLC2 S19), relating this to induced FAK phosphorylation at Y397 (a surrogate for FAK activity) that is supressed after integrin disengagement. These measurements have been compared with conditions whereby integrin-FAK signalling is activated by growing the cells on laminin coated surfaces. We observed a time-dependent decrease in pFAK(Y397) levels (normalised to total FAK) in suspended cells compared to those spread on laminin, while pMLC2(S19) levels increased in a reciprocal manner over time in detached cells relative to spread cells (S4A and B). There is therefore an inverse relationship between integrin-FAK signalling and ROCK-MLC2 activity, consistent with findings from FAK gene deletion experiments. In the former case, we do not rely on gene deletion cell clones.

      Significance

      The studies by Masalmeh provide interesting findings associating FAK expression with changes in mitochondrial morphology, energy metabolism, and glutamate uptake. According to the authors model, FAK expression is supporting a glioblastoma stem cell like phenotype in vitro and tumor growth in vivo. What remains unclear is the mechanistic connection to cell changes and whether or not these are be dependent on intrinsic FAK activity or as the Frame group has previously published, potentially FAK nuclear localization. The associations with MTFR1L phosphorylation and effects by Rho kinase inhibition are likely indirect and remind this reviewer of long-ago studies with FAK-null fibroblasts that exhibit epithelial characteristics, still express PYK2, exhibited elevated RhoA GTPase activity. Some of these phenotypes were linked to changes in RhoGEF and RhoGAP signaling with FAK and/or Pyk2. At a minimum, it would be informative to know whether Pyk2 signaling is relevant for observed phenotypes and whether the authors can further support their associations with FAK-targeted or FAK-Pyk2-targeted inhibitors or PROTACs.

      __Response: __

      Deleting the gene encoding FAK in mouse embryonic fibroblasts leads to elevated Pyk2 expression (Sieg, 2000). However, in the GBM stem cell model we used here, Pyk2 was not expressed (determined by both transcriptomics and proteomics). We have included Figure S1E to show that PYK2 expression was undetectable in FAK -/- and FAK Rx cells at the RNA level (Figure S1F). We conclude that there is no compensatory increase in Pyk2 upon FAK loss in these cells. In the transformed neural stem cell model of GBM, we do not consistently or robustly detect nuclear FAK.

      Review #2

      Masalmeh and colleagues employ a neural stem/progenitor cell-based glioma model (NPE cells) to investigate the role of Focal Adhesion Kinase (FAK) in GBM, with a focus on potential links between the regulation of morphological/adhesive and metabolic GBM cell properties. For this, the authors employ wt cells alongside newly generated FAK-KO and -reexpressing cells, as well as pharmacological interventions to probe the relevance of specific signaling pathways. The authors´ main claims are that FAK crucially modulates glioma cell morphology, cell-cell and cell-substrate interactions and motility, as well as their metabolism, and that these effects translate to changes to relevant in vivo properties such as invasion and tumor growth.

      My main issues are with the model chosen by the authors.

      As per the methods section, generation of FAK-KO and -"Rx" NPE cells entailed protracted selection/expansion processes, which may have resulted in inadvertent selection for cellular/molecular properties unrelated to the desired one (loss or gain of FAK expression) and which may have had cascading effects on NPE cells. The authors nonetheless repeatedly claim the parameters they quantify, such as mitochondrial or cytoskeletal properties or metabolic features, to have directly resulted from FAK loss or reintroduction. Examples of such causal inferences are to be found in lines 123, 134/135, 165, 181. Such causal claims are, in my view, unsupported.

      Acute perturbation of FAK expression/activity, genetically or pharmacologically, followed by a rapid assessment of the processes under investigation, would be needed to begin to assess causality, even if acute genetic perturbations may be technically challenging as sufficient gene expression reduction or restoration to physiologically relevant levels may be hard to achieve.

      Response:

      We would like to first comment on the model we used here, which we think will clarify the validity of our approach. The model is a transformed stem cell model of GBM that was published in (Gangoso et al., Cell, 2021) and is now used regularly in the GBM field. As mentioned in the response to Reviewer 1, we have added text (page 4 and 5 in the revised manuscript) and a new supplementary figure (Figure S1D) clarifying that the morphological changes we observed were consistent across multiple FAK -/- clones, showing this was not due to any inter-clonal variability. We also added images showing that the morphological changes were apparent at 48 h after nucleofecting FAK -/- cells with the FAK‑expressing vector specifically (not the empty vector), prior to starting G418 selection to enrich for FAK‑expressing cells (Figure S1C), addressing the worry that clonal variation and selection was the cause of the FAK-dependent phenotypes we observed. We believe that our model provides a type of well controlled, clean genetic cancer cell system of a type that is commonly used in cancer cell biology, allowing us to attribute phenotypes to individual proteins.

      We have also carried out a more acute treatment by using the FAK inhibitor VS4718 to perturb FAK kinase activity and assessed the effects on glycolysis and glutamine oxidation after 48h treatment (Figure S2D, E and F). We found that treating the transformed neural stem cells (parental population) with FAK inhibitor (300nM VS4718) decreases glucose incorporation into glycolysis intermediates and glutamine incorporation into TCA cycle intermediates, consistent with a role for FAK’s kinase activity in maintaining glycolysis and glutamine oxidation.

      The employed pharmacological modulation of ROCK activity is the only approach that, given the presumably acute nature of the treatment, may have allowed the authors to probe the proposed functional links. The methods section of the manuscript does not however comprise details as to the duration of these treatments, which leaves open the possibility of long-term treatment having been carried out (data shown in Figure 5B refers to 72hr treatment).

      __Response: __

      We have added the duration of the treatment to the Methods section and Figure Legends, to clarify that cells were treated with ROCK inhibitors for 24h, before assessing the effects on mictochondria (Figure 4C, D, S4C and D) and glutamine oxidation (Figure 5A, and S5). For metabolic activity by AlamarBlue assay, cells were treated with ROCK inhibitors for 72h (Figure 5B).

      Even in the case of ROCK inhibitor experiments, it is however unclear if and how the effects on cell morphology and adhesion, mitochondrial organization and metabolic activity may be connected to each other and, if at all, to FAK expression.

      Given the above uncertainties due to the nature of the model and experimental approaches, it is hard to assess the reliability and thus the relevance of the findings.

      Response:

      FAK suppresses ROCK activity (as judged by pMLC2 S19, Figure 4A and B). Treating FAK -/- cells with two different ROCK inhibitors restored mesenchymal-like cell morphology, mitochondrial morphology and glutamine oxidation. As mentioned above, to strengthen our evidence for the antagonistic role of FAK in ROCK-MLC2 signalling, we have now introduced an experiment whereby integrin-FAK signalling was disrupted through treatment with a detachment agent (Accutase), and subsequently maintaining the cells in suspension in laminin-free medium. We assessed pMLC2 S19 levels (a measure of ROCK activity) relating this to FAK phosphorylation that is supressed after integrin disengagement. These results were evaluated relative to spread wild type cells growing on laminin where Integrin-FAK signalling was active (Figure S4A and B). We observed an inverse relationship between Integrin-FAK signalling and ROCK-MLC2 activity in keeping with our conclusions (Figure 4A and B).

      Experimental support for the ability of cell-substrate interaction modulation to concomitantly impact cellular metabolism and motility/invasion would be significant both in terms of advancing our understanding of glioma cell biology and of its translational potential, but the evidence being provided is at best compatible with the proposed model.

      Response: We carried out a new experiment to support the ability of cell-substrate interaction modulation to impact metabolism; specifically, we inhibited cell-substrate interactions by plating the cells on Poly-2-hydroxyethyl methacrylate (Poly 2-HEMA)-coated dishes. This suppressed FAK phosphorylation at Y397, as expected, with concomitant reduction in glutamine utilisation in the TCA cycle (Figure S3A, B and C).

      My background/expertise is in developmental and adult neurogenesis, in vivo modelling of gliomagenesis and cell fate control/reprogramming, with a focus on molecular mechanisms of differentiation and quantitative aspects of lineage dynamics; molecular details of the control of cellular metabolism, cell-cell adhesion and cytoskeletal dynamics are not core expertise of mine.

      We appreciate this reviewer’s expertise are not necessarily in the cancer cell biology and genetic intervention aspects of our study. We hope that the explanations we have provided satisfy the reviewer that our conclusions are valid.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      In this study, Ma et al. aimed to determine previously uncharacterized contributions of tissue autofluorescence, detector afterpulse, and background noise on fluorescence lifetime measurement interpretations. They introduce a computational framework they named "Fluorescence Lifetime Simulation for Biological Applications (FLiSimBA)" to model experimental limitations in Fluorescence Lifetime Imaging Microscopy (FLIM) and determine parameters for achieving multiplexed imaging of dynamic biosensors using lifetime and intensity. By quantitatively defining sensor photon effects on signal-to-noise in either fitting or averaging methods of determining lifetime, the authors contradict any claims of FLIM sensor expression insensitivity to fluorescence lifetime and highlight how these artifacts occur differently depending on the analysis method. Finally, the authors quantify how statistically meaningful experiments using multiplexed imaging could be achieved. 

      A major strength of the study is the effort to present results in a clear and understandable way given that most researchers do not think about these factors on a day-to-day basis. The model code is available and written in Matlab, which should make it readily accessible, although a version in other common languages such as Python might help with dissemination in the community. One potential weakness is that the model uses parameters that are determined in a

      specific way by the authors, and it is not clear how vastly other biological tissue and microscope setups may differ from the values used by the authors. 

      Overall, the authors achieved their aims of demonstrating how common factors

      (autofluorescence, background, and sensor expression) will affect lifetime measurements and they present a clear strategy for understanding how sensor expression may confound results if not properly considered. This work should bring to awareness an issue that new users of lifetime biosensors may not be aware of and that experts, while aware, have not quantitatively determined the conditions where these issues arise. This work will also point to future directions for improving experiments using fluorescence lifetime biosensors and the development of new sensors with more favorable properties. 

      We appreciate the comments and helpful suggestions. We now also include FLiSimBA simulation code in Python in addition to Matlab to make it more accessible to the community.

      One advantage of FLiSimBA is that the simulation package is flexible and adaptable, allowing users to input parameters based on the specific sensors, hardware, and autofluorescence measurements for their biological and optical systems. We used parameters based on a FRETbased sensor, measured autofluorescence from mouse tissue, and measured dark count/after pulse of our specific GaAsP PMT in this manuscript as examples. In Discussion and Materials and methods, we now emphasize this advantage and further clarify how these parameters can be adapted to diverse tissues, imaging systems, and sensors based on individual experiments. We further explain that these input parameters will not affect the conclusions of our study, but the specific input parameters would alter the quantitative thresholds.

      Reviewer #2 (Public review): 

      Summary: 

      By using simulations of common signal artefacts introduced by acquisition hardware and the sample itself, the authors are able to demonstrate methods to estimate their influence on the estimated lifetime, and lifetime proportions, when using signal fitting for fluorescence lifetime imaging. 

      Strengths: 

      They consider a range of effects such as after-pulsing and background signal, and present a range of situations that are relevant to many experimental situations. 

      Weaknesses: 

      A weakness is that they do not present enough detail on the fitting method that they used to estimate lifetimes and proportions. The method used will influence the results significantly. They seem to only use the "empirical lifetime" which is not a state of the art algorithm. The method used to deconvolve two multiplexed exponential signals is not given. 

      We appreciate the comments and constructive feedback. Our revision based on the reviewer’s suggestions has made our manuscript clearer and more user friendly. We originally described the detail of the fitting methods in Materials and methods. Given the importance of these methodological details for evaluating the conclusions of this study, we have moved the description of the fitting method from Materials and methods to Results. In addition, we provide further clarification and more details of the rationale of using these different methods of lifetime estimates in Discussion to aid users in choosing the best metric for evaluating fluorescence lifetime data.

      More specifically, we modified our writing to highlight the following.

      (1) In Results, we describe that lifetime histograms were fitted to Equation 3 with the GaussNewton nonlinear least-square fitting algorithm and the fitted P<sub1</sub> was used as lifetime estimation.

      (2) In Results, we clarify that our simulation of multiplexed imaging was modeled with two sensors, each displaying a single exponential decay, but the two sensors have different decay constants. We also describe that Equation 3 with the Gauss-Newton nonlinear least-square fitting algorithm was used to deconvolve the two multiplexed exponential signals (Fig. 8)

      Reviewer #3 (Public review): 

      Summary: 

      This study presents a useful computational tool, termed FLiSimBA. The MATLAB-based FLiSimBA simulations allow users to examine the effects of various noise factors (such as autofluorescence, afterpulse of the photomultiplier tube detector, and other background signals) and varying sensor expression levels. Under the conditions explored, the simulations unveiled how these factors affect the observed lifetime measurements, thereby providing useful guidelines for experimental designs. Further simulations with two distinct fluorophores uncovered conditions in which two different lifetime signals could be distinguished, indicating multiplexed dynamic imaging may be possible. 

      Strengths: 

      The simulations and their analyses were done systematically and rigorously. FliSimba can be useful for guiding and validating fluorescence lifetime imaging studies. The simulations could define useful parameters such as the minimum number of photons required to detect a specific lifetime, how sensor protein expression level may affect the lifetime data, the conditions under which the lifetime would be insensitive to the sensor expression levels, and whether certain multiplexing could be feasible. 

      Weaknesses: 

      The analyses have relied on a key premise that the fluorescence lifetime in the system can be described as two-component discrete exponential decay. This means that the experimenter should ensure that this is the right model for their fluorophores a priori and should keep in mind that the fluorescence lifetime of the fluorophores may not be perfectly described by a twocomponent discrete exponential (for which alternative algorithms have been implemented: e.g., Steinbach, P. J. Anal. Biochem. 427, 102-105, (2012)). In this regard, I also couldn't find how good the fits were for each simulation and experimental data to the given fitting equation (Equation 2, for example, for Figure 2C data). 

      We thank the reviewer for the constructive feedback. We agree that the FLiSimBA users should ensure that the right decay equations are used to describe the fluorescent sensors. In this study, we used a FRET-based PKA sensor FLIM-AKAR to provide proof-of-principle demonstration of the capability of FLiSimBA. The donor fluorophore of FLIM-AKAR, truncated monomeric enhanced GFP, displays a single exponential decay. FLIM-AKAR, a FRET-based sensor, displays a double exponential decay. The time constants of the two exponential components were determined and reported previously (Chen, et al, Neuron (2017)).  Thus, a double exponential decay equation with known τ<sub>1</sub> and τ<sub>2</sub> was used for both simulation and fitting. The goodness of fit is now provided in Supplementary Fig. 1 for both simulated and experimental data. In addition to referencing our prior study characterizing the double exponential decay model of FLIM-AKAR in Materials and methods, we have emphasized in Discussion the versality of FLiSimBA to adapt to different sensors, tissues, and analysis methods, and the importance of using the right mathematical models to describe the fluorescence decay of specific sensors. 

      Also, in Figure 2C, the 'sensor only' simulation without accounting for autofluorescence (as seen in Sensor + autoF) or afterpulse and background fluorescence (as seen in Final simulated data) seems to recapitulate the experimental data reasonably well. So, at least in this particular case where experimental data is limited by its broad spread with limited data points, being able to incorporate the additional noise factors into the simulation tool didn't seem to matter too much.  

      In the original Fig 2C, the sensor fluorescence was much higher than the contributions from autofluorescence, afterpulse, and background signals, resulting in minimal effects of these other factors, as the reviewer noted. This original figure was based on photon counts from single neurons expressing FLIM-AKAR. For the rest of the manuscript, photon counts were based on whole fields of view (FOV). Since the FOV includes cells that do not express fluorescent sensors, the influence of autofluorescence, dark currents, and background is much more pronounced, as shown in Fig. 2B. 

      Both approaches – using photon counts from the whole FOV or from individual neurons – have their justifications. Photon counts from the whole FOV simulate data from fluorescence lifetime photometry (FLiP), whereas photon counts from individual neurons simulate data from fluorescence lifetime imaging microscopy (FLIM). However, the choice of approach does not affect the conclusions of the manuscript, as a range of photon count values are simulated. To maintain consistency throughout the manuscript, we have revised the photon counts in this figure (now Supplementary Fig. 1C) to match those from the whole FOV.

      Additionally, we have made some modifications in our analyses of Supplementary Fig. 1C and Fig. 2B, detailed in the “FLIM analysis” section of Materials and methods. For instance, to minimize system artifact interference at the histogram edges, we now use a narrower time range (1.8 to 11.5 ns) for fitting and empirical lifetime calculation.

      Reviewer #1 (Recommendations for the authors): 

      (1) The authors report how autofluorescence was measured from "imaged brain slices from mice at postnatal 15 to 19 days of age without sensor expression." However, it remains unclear how many acute slices and animals were used (for example, were all 15um x 15um FOV from a single slice) and if mouse age affects autofluorescence quantification. Furthermore, would in vivo measurements have different autofluorescence conditions given that blood flow would be active? It would help if the authors more clearly explained how reliable their autofluorescence measurement is by clarifying how they obtained it, whether this would vary across brain areas, and whether in vitro vs in vivo conditions would affect autofluorescence. 

      We have added description in Materials and methods that for autofluorescence ‘Fluorescence decay histograms from 19 images of two brain slices from a single mouse were averaged.’ We have added in Discussion that users should carefully ‘measure autofluorescence that matches the age, brain region, and data collection conditions (e.g., ex vivo or in vivo) of their tissue…’, and emphasize that FLiSimBA offers customization of inputs, and it is important for users to adapt the inputs such as autofluorescence to their experimental conditions. We also clarify in Discussion that the change of input parameters such as autofluorescence across age and brain region would not affect the general insights from this study, but will affect quantitative values.

      (2) Does sensor expression level issues arise more with in-utero electroporation compared to AAV-based delivery of biosensors? A brief comment on this in the discussion may help as most users in the field today may be using AAV strategies to deliver biosensors.

      In our experience, in-utero electroporation results in higher sensor expression than AAV-based delivery, and so pose less concern for expression-level dependence. However, both delivery methods can result in expression level dependence, especially with a sensor that is not bright. We have added in Discussion ‘For a sensor with medium brightness delivered via in utero electroporation, adeno-associated virus, or as a knock-in gene, the brightness may not always fall within the expression level-independent regime.’

      (3) Figure 1. Should the x-axis on the top figures be "Time (ns)" instead of "Lifetime (ns)"?

      Similarly in Figure 8A&B, wouldn't it make more sense to have the x-axis be Time not Lifetime?

      The x-axis labels in Fig. 1 and Fig. 8A-8B have been changed to ‘Time (ns)’.   

      (4) Figure 2b: why is the empirical lifetime close to 3.5ns? Shouldn't it be somewhere between

      2.14 and 0.69? 

      In our empirical lifetime calculation, we did not set the peak channel to have a time of 0.0488 ns (i.e. the laser cycle 12.5 ns divided by 256 time channels). Rather, we set the first time channel within a defined calculation range (i.e. 1.8 ns in Supplementary Fig. 1B) to have a time of 0.0488 ns (i.e.). Thus, the empirical lifetime exceeds 2.14 ns and depends on the time range of the histogram used for calculation. 

      For Fig. 2B and Supplementary Fig. 1C, we have now adjusted the range to 1.8-11.5 ns to eliminate FLIM artifacts at the histogram edges in our experimental data, resulting in an empirical lifetime around 2.255 ns. In contrast, the range for calculating the empirical lifetime of simulated data in the rest of the study (e.g. Fig. 4D) is 0.489-11.5 ns, yielding a larger lifetime of ~3.35 ns. 

      We have clarified these details and our rationale in Materials and methods.

      (5) Figure 2b: how come the afterpulse+background contributes more to the empirical lifetime than the autofluorescence (shorter lifetime). This was unclear in the results text why autofluorescence photons did not alter empirical lifetime as much as did the afterpulse/background.

      With a histogram range from 1.8 ns to 11.5 ns used in Fig. 2B, the empirical lifetime for FLIM-AKAR sensor fluorescence, autofluorescence, and background/afterpulse are: 2-2.3 ns, around 1.69 ns, and around 4.90 ns. The larger difference of background/afterpulse from FLIM-AKAR sensor fluorescence leads to larger influence of afterpulse+background than autofluorescence. We have added an explanation of this in Results.

      (6) One overall suggestion for an improvement that could help active users of lifetime biosensors understand the consequences would be to show either a real or simulated example of a "typical experiment" conducted using FLIM-AKAR and how an incorrect interpretation could be drawn as a consequence of these artifacts. For example, do these confounds affect experiments involving comparisons across animals more than within-subject experiments such as washing a drug onto the brain slice, and the baseline period is used to normalize the change in signal? I think this type of direct discussion will help biosensor users more deeply grasp how these factors play out in common experiments being conducted.

      We have added the following in Discussion, ‘…While this issue is less problematic when the same sample is compared over short periods (e.g. minutes), It can lead to misinterpretation when fluorescence lifetime is compared across prolonged periods or between samples when comparison is made across chronic time periods or between samples with different sensor expression levels. For example, apparent changes in fluorescence lifetime observed over days, across cell types, or subcellular compartments may actually reflect variations in sensor expression levels rather than true differences in biological signals (Fig. 6), Therefore, considering biologically realistic factors in FLiSimBA is essential, as it qualitatively impacts the conclusions.’

      Reviewer #2 (Recommendations for the authors): 

      The paper would be improved with more detail on the fitting methods, and the use of state-of-theart methods. Consult for example the introduction of this paper where many methods are listed: https://www.mdpi.com/1424-8220/22/19/7293

      We have moved the description of the Gauss-Newton nonlinear least-square fitting algorithm from Materials and methods to Results to enhance clarity. We appreciate the reviewer’s suggestion to combine FLiSimBA with various analysis methods. However, the primary focus of our manuscript is to call for attention of how specific contributing factors in biological experiments influence FLIM data, and to provide a tool that rigorously considers these factors to simulate FLIM data, which can then be used for fitting. Therefore, we did not expand the scope of our manuscript. Instead, we have added in the Discussion that ‘‘FLiSimBA can be used to test multiple fitting methods and lifetime metrics as an exciting future direction for identifying the best analysis method for specific experimental conditions’, citing relevant references.

      I would also improve the content of the GitHub repository as it is very hard to identify to source code used for simulation and fitting. 

      We have reorganized and relabeled our GitHub repository and now have three folders labeled as ‘Simulation_inMatlab’, ‘DataAnalysis_inMatlab’, and ‘SimulationAnalysis_inPython’. We also updated the clarification of the contents of each folder in the README file.

      Reviewer #3 (Recommendations for the authors): 

      (1) P. 10 "For example, to detect a P1 change of 0.006 or a lifetime change of 5 ps with one sample measurement in each comparison group, approximately 300,000 photons are needed." If I am reading the graphs in Figures 3B and C, this sentence is talking about the red line. However, the intersection of 0.006 in the MDD of P1 in 3B and red is not 3E5 photons. And the intersection of 0.005 ns and red in 3C is not 3E5 photons either. Are you sure you are talking about n=1? Maybe the values are correct for the blue curve with n=5.

      Thank you for catching our error. We have corrected the text to ‘with five sample measurements’.

      (2) Figure 2 (B) legend: It would be helpful to specify what is being compared in the legend. For example, consider revising "* p < 0.05 vs sensor only; n.s. not significant vs sensor + autoF; # p < 0.05 vs sensor + autoF. Two-way ANOVA with Šídák's multiple comparisons test" to "* p <0.05 for sensor + auto F (cyan) vs sensor only; n.s. not significant for final simulated data (purple) vs sensor + autoF; # p < 0.05 for final simulated data (purple) vs sensor + autoF. Twoway ANOVA with Šídák's multiple comparisons test".

      We’ve made the change and thanks for the suggestion to make it clearer.

      (3) Figure 2 (c) Can you please show the same Two-way ANOVA test values for Experimental vs. Sensor only and for Experimental vs. Sensor + autoF? Currently, the value (n.s.) is marked only for Experimental vs. Final simulation. Given that the experimental data are sparse (compared to the simulations), it seems likely that there may be no significant difference among the 3 different simulations regarding how well they match the experimental data. Also, can you specify the P1 and P2 of the experimental data  used to generate the simulated data on this panel? Also, what is the reason why P1=0.5 was used for panels A and B, instead of the value matching the experimental value?

      As the reviewer suggested, we have included statistical tests in the figure (now Supplementary Fig. 1C). Please see our response to the Public Review of Reviewer 3’s comments as well as our changes in Materials and Methods on other changes and their rationale for this figure. We have now specified the P<sub>1</sub> value of the experimental data used to generate the simulated data on this panel both in Figure Legends and Materials and Methods. Based on the suggestion, we have now used the same P<sub>1</sub> value in Fig. 2B.

    1. Be clear about the consequences of using AI to generate pornographic images. Tell students that they may see apps to create nude pictures advertised on platforms like TikTok. Though they may be curious or think it's funny (because the pictures aren't "real"), using AI to generate nude pictures of someone is harassment and illegal. It doesn't just harm the victim—law enforcement could get involved. Victims should tell a trusted adult, report to authorities, and can also report the incident to CyberTipline.org.

      This part really stands out as a necessary and urgent conversation. With how normalized AI tools have become on platforms like TikTok, I can see how some students might not fully grasp the seriousness of using them to generate explicit content. It’s not a harmless joke—it’s a form of harassment with real legal and emotional consequences. As someone who spends a lot of time online, I think we all need to take more responsibility in calling out this kind of behavior and making sure people know where to get help,

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #3 (Public Review)

      Summary:

      In this paper the authors examined the effects of strip cropping, a relatively new agricultural technique of alternating crops in small strips of several meters wide, on ground beetle diversity. The results show an increase in species diversity (i.e. abundance and species richness) of the ground beetle communities compared to monocultures.

      Strengths:

      The article is well written; it has an easily readable tone of voice without too much jargon or overly complicated sentence structure. Moreover, as far as reviewing the models in depth without raw data and R scripts allows, the statistical work done by the authors looks good. They have well thought out how to handle heterogenous, unbalanced and taxonomically unspecific yet spatially and temporarily correlated field data. The models applied and the model checks performed are appropriate for the data at hand. Combining RDA and PCA axes together is a nice touch. Moreover, after the first round of reviews, the authors have done a great job at rewriting the paper to make it less overstated, more relevant to the data at hand and more solid in the findings. Many of the weaknesses noted in the first review have been dealt with. The overall structure of the paper is good, with a clear introduction, hypotheses, results section and discussion.

      We are grateful for this positive feedback. We are glad that our extensive revision after extensive review from three reviewers has paid off in addressing earlier weakness of our manuscript.

      Weaknesses:

      The weaknesses that remain are mainly due to a difficult dataset and choices that could have stressed certain aspects more, like the relationship between strip cropping and intercropping. The mechanistic understanding of strip cropping is what is at stake here. Does strip cropping behave similar to intercropping, a technique which has been proven to be beneficial to biodiversity because of added effects due to increased resource efficiency and greater plant species richness.

      Unfortunately, the authors do not go into this in the introduction or otherwise and simply state that they consider strip cropping a form of intercropping.

      We agree with the reviewer that a mechanistic understanding on how intercropping and strip cropping differ would be very interesting. However, we also feel that this topic is somewhat beyond the scope of the current manuscript. We are already planning work to elucidate mechanisms that may explain the pest and suppressive effects of strip cropping.

      I also do not like the exclusive focus on percentages, as these are dimensionless. I think more could have been done to show underlying structure in the data, even after rarefaction.

      While we generally agree with this point raised by the reviewer, for our heterogeneous dataset it was difficult to come up with meaningful units with dimensions. Therefore, we believe that percentages are the most suitable approach to present readers a fair comparison of the treatments.

      A further weakness is a limited embedding into the larger scientific discourses other than providing references. But this may be a matter of style and/or taste

      We believe our manuscript to be well-embedded within the relevant scientific discourse, but as indicated by reviewer 3 this might indeed be a matter of style/taste. Without exact examples it is difficult for us to judge this point.

      Reviewer #3 (Recommendations for the authors): 

      Suggestion for title: "Strip cropping shows promising preliminary increases in ground beetle community diversity compared to monocultures"

      We agree that the title could indeed be nuanced. We incorporated the suggested title, except for the word “preliminary”, as we felt that this is slightly misplaced for a 4-year study conducted at 4 locations.

      line 26: the word previous may be confusing to readers, as it suggests previous research on beetles or insects. I think it would be better to use for instance "related" or "productivity focused research"

      We agree that this wording might be confusing, and changed it to “other studies showed”.

      Line 84-85: this is vague. can you make explicit what you are trying to answer here?

      We made “biodiversity metric changes” more explicit, and changed the sentence accordingly.

      Line 88-89: I think this would fit better with the first question in line 83-84, so I suggest placing it upwards. Also, I think you mean abundant instead of common. Common suggests commonness in the entire population. Abundant suggests found often in this study. While these definitions may very much overlap, they are distinctly different.

      We have moved this sentence up and changed “common” to “abundant”. To make the result section more in line with this section, we also moved the section on the relationship between crop configuration and abundant genera up.  

      Line 146: defining rareness of species should be in the methods section. Also "following" would be better than "according"

      We now added a sentence on how we examine habitat preferences and rarity in the methods section (line 316-317). We also changed “according to” to “following”.

      Line 291: it is called being "flush" with the soil surface. This expression is not much used by non-native speakers, but is regularly encountered in studies on pitfalls, so the authors could decide to change the sentence using the proper English vernacular.

      Suggestion incorporated.

      Line 322-327, this method could do with a reference

      This method is a relatively standard calculation to calculate relative changes and to center variation around zero. Nevertheless, we added a reference to a paper that used the same method.

      Line: 333-335. I would still like to see a reference for this method.

      This methodology has not been described in literature to the best of our knowledge. As we compared two crops within strip cropping with their respective monoculture references, we compare one strip cropping field with two monocultural fields. Here we took a conservative approach by comparing the strip crop field with the monoculture with the highest richness and activity density, to see if strip cropped fields outperformed monocultures with diverse ground beetle communities.

      Line 364-366. references?

      We have added references for these R packages.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors claim that they can use a combination of repetitive transcranial magnetic stimulation (intermittent theta burst-iTBS) and transcranial alternating current stimulation (gamma tACS) to cause slight improvements in memory in a face/name/profession task.

      Strengths:

      The idea of stimulating the human brain non-invasively is very attractive because, if it worked, it could lead to a host of interesting applications. The current study aims to evaluate one such exciting application.

      Weaknesses:

      (1) It is highly unclear what, if anything, transpires in the brain with non-invasive stimulation. To cite one example of many, a rigorous study in rats and human cadavers, compellingly showed that traditional parameters of transcranial electrical stimulation lead to no change in brain activity due to the attenuation by the soft tissue and skull (Mihály Vöröslakos et al Nature Communications 2018): https://www.nature.com/articles/s41467-018-02928-3. It would be very useful to demonstrate via invasive neurophysiological recordings that the parameters used in the current study do indeed lead to any kind of change in brain activity. Of course, this particular study uses a different non-invasive stimulation protocol.

      Thank you for raising the important issue regarding the actual neurophysiological effects of non-invasive brain stimulation. Unfortunately, invasive neurophysiological recordings in humans for this type of study are not feasible due to ethical constraints, while studies on cadavers or rodents would not fully resolve our question. Indeed, the authors of the cited study (Mihály Vöröslakos et al., Nature Communications, 2018) highlight the impossibility of drawing definitive conclusions about the exact voltage required in the in-vivo human brain due to significant differences between rats and humans, as well as the in-vivo human brain and cadavers due to alterations in electrical conductivity that occur in postmortem tissue. Huang and colleagues addressed the difficulties in reaching direct evidence of non-invasive brain stimulation (NIBS) effects in a review published in Clinical Neurophysiology in 2017. They conclude that the use of EEG to assess brain response to TMS has great potential for a less indirect demonstration of plasticity mechanisms induced by NIBS in humans.

      To address this challenge, we conducted Experiments 3 and 4, which respectively examined the neurophysiological and connectivity changes induced by the stimulation in a non-invasive manner using TMS-EEG and fMRI. The observed changes in brain oscillatory activity (increased gamma oscillatory activity), cortical excitability (enhanced posteromedial parietal cortex reactivity), and brain connectivity (strengthened connections between the precuneus and hippocampi) provided evidence of the effects of our non-invasive brain stimulation protocol, further supporting the behavioral data.

      Additionally, we carefully considered the issue of stimulation distribution and, in response, performed a biophysical modeling analysis and E-field calculation using the parameters employed in our study (see Supplementary Materials).

      We acknowledge that further exploration of this aspect would be highly valuable, and we agree that it is worth discussing both as a technical limitation and as a potential direction for future research. We therefore, modify the discussion accordingly (main text, lines 280-289).

      “Although we studied TMS and tACS propagation through the E-field modeling and observed an increase in the precuneus gamma oscillatory activity, excitability and connectivity with the hippocampi, we cannot exclude that our results might reflect the consequences of stimulating more superficial parietal regions other than the precuneus nor report direct evidence of microscopic changes in the brain after the stimulation. Invasive neurophysiological recordings in humans for this type of study are not feasible due to ethical constraints. Studies on cadavers or rodents would not fully resolve our question due to significant differences between them (i.e. rodents do not have an anatomical correspondence while cadavers have an alterations in electrical conductivity occurring in postmortem tissue). However, further exploration of this aspect in future studies would help in the understanding of γtACS+iTBS effects.”

      (2) If there is any brain activity triggered by the current stimulation parameters, then it is extremely difficult to understand how this activity can lead to enhancing memory. The brain is complex. There are hundreds of neuronal types. Each neuron receives precise input from about 10,000 other neurons with highly tuned synaptic strengths. Let us assume that the current protocol does lead to enhancing (or inhibiting) simultaneously the activity of millions of neurons. It is unclear whether there is any activity at all in the brain triggered by this protocol, it is also unclear whether such activity would be excitatory, or inhibitory. It is also unclear how many neurons, let alone what types of neurons would change their activity. How is it possible that this can lead to memory enhancement? This seems like using a hammer to knock on my laptop and hope that the laptop will output a new Mozart-like sonata.

      Thank you for your comment. As you correctly point out, we still do not have precise knowledge of which neurons—and to what extent—are activated during non-invasive brain stimulation in humans. However, this challenge is not limited to brain stimulation but applies to many other therapeutic interventions, including psychiatric medications, without limiting their use.

      Nevertheless, a substantial body of research has investigated the mechanisms underlying the efficacy of TMS and tACS in producing behavioral after-effects, primarily through its ability to induce long-term potentiation (Bliss & Collingridge, The Journal of Physiology, 1993a; Ridding & Rothwell, Nature Reviews Neuroscience, 2007; Huang et al., Clinical Neurophysiology, 2017; Koch et al., Neuroimage 2018; Koch et al., Brain 2022; Jannati et al., Neuropsychopharmacology, 2023; Wischnewski et al., Trends in Cognitive Science, 2023; Griffiths et al., Trends in Neuroscience, 2023).

      We acknowledge that we took this important aspect for granted. We consequently expanded the introduction accordingly (main text, lines 48-60).

      “Repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) are two forms of NIBS widely used to enhance memory performances (Grover et al., 2022; Koch et al., 2018; Wang et al., 2014). rTMS, based on the principle of Faraday, induces depolarization of cortical neuronal assemblies and leads to after-effects that have been linked to changes in synaptic plasticity involving mechanisms of long-term potentiation (LTP) (Huang et al., 2017; Jannati et al., 2023). On the other hand, tACS causes rhythmic fluctuations in neuronal membrane potentials, which can bias spike timing, leading to an entrainment of the neural activity (Wischnewski et al., 2023). In particular, the induction of gamma oscillatory a has been proposed to play an important role in a type of LTP known as spike timing-dependent plasticity, which depends on a precise temporal delay between the firing of a presynaptic and a postsynaptic neuron (Griffiths and Jensen, 2023). Both LTP and gamma oscillations have a strong link with memory processes such as encoding (Bliss and Collingridge, 1993; Griffiths and Jensen, 2023; Rossi et al., 2001), pointing to rTMS and tACS as good candidates for memory enhancement.”

      (3) Even if there is any kind of brain activation, it is unclear why the authors seem to be so sure that the precuneus is responsible. Are there neurophysiological data demonstrating that the current protocol only activates neurons in the precuneus? Of note, the non-invasive measurements shown in Figure 3 are very weak (Figure 3A top and bottom look very similar, and Figure 3C left and right look almost identical). Even if one were to accept the weak alleged differences in Figure 3, there is no indication in this figure that there is anything specific to the precuneus, rather a whole brain pattern. This would be the kind of minimally rigorous type of evidence required to make such claims. In a less convincing fashion, one could look at different positions of the stimulation apparatus. This would not be particularly compelling in terms of making a statement about the precuneus. But at least it would show that the position does matter, and over what range of distances it matters, if it matters.

      Thank you for your feedback. Our assumption that the precuneus plays a key role in the observed effects is based on several factors:

      (1) The non-invasive stimulation protocol was applied to an individually identified precuneus for each participant. Given existing evidence on TMS propagation, we can reasonably assume that the precuneus was at least a mediator of the observed effects (Ridding & Rothwell, Nature Reviews Neuroscience 2007). For further details about target identification and TMS and tACS propagation, please refer to the MRI data acquisition section in the main text and Biophysical modeling and E-field calculation section in the supplementary materials.

      (2) To investigate the effects of the neuromodulation protocol on cortical responses, we conducted a whole-brain analysis using multiple paired t-tests comparing each data point between different experimental conditions. To minimize the type I error rate, data were permuted with the Monte Carlo approach and significant p-values were corrected with the false discovery rate method (see the Methods section for details). The results identified the posterior-medial parietal areas as the only regions showing significant differences across conditions.

      (3) To control for potential generalized effects, we included a control condition in which TMS-EEG recordings were performed over the left parietal cortex (adjacent to the precuneus). This condition did not yield any significant results, reinforcing the cortical specificity of the observed effects.

      However, as stated in the Discussion, we do not claim that precuneus activity alone accounts for the observed effects. As shown in Experiment 4, stimulation led to connectivity changes between the precuneus and hippocampus, a network widely recognized as a key contributor to long-term memory formation (Bliss & Collingridge, Nature 1993). These connectivity changes suggest that precuneus stimulation triggered a ripple effect extending beyond the stimulation site, engaging the broader precuneus-hippocampus network.

      Regarding Figure 3A, it represents the overall expression of oscillatory activity detected by TMS-EEG. Since each frequency band has a different optimal scaling, the figure reflects a graphical compromise. A more detailed representation of the significant results is provided in Figure 3B. The effect sizes for gamma oscillatory activity in the delta T1 and T2 conditions were 0.52 and 0.50, respectively, which correspond to a medium effect based on Cohen’s d interpretation.

      We add a paragraph in the discussion to improve the clarity of the manuscript regarding this important aspect (lines 193-198).

      “Given the existing evidence on TMS propagation and the computation of the Biophysical model with the Efield, we can reasonably assume that the individually identified PC was a mediator of the observed effects (Ridding and Rothwell, 2007). Moreover, we observed specific cortical changes in the posteromedial parietal areas, as evidenced by the whole-brain analysis conducted on TMS-EEG data and the absence of effect on the lateral posterior parietal cortex used as a control condition.”

      (4) In the absence of any neurophysiological documentation of a direct impact on the brain, an argument in this type of study is that the behavioral results show that there must be some kind of effect. I agree with this argument. This is also the argument for placebo effects, which can be extremely powerful and useful even if the mechanism is unrelated to what is studied. Then let us dig into the behavioral results.

      Hoping to have already addressed your concern regarding the neurophysiological impact of the stimulation on the brain, we would like to emphasize that the behavioral results were obtained controlling for placebo effects. This was achieved by having participants perform the task under different stimulation conditions, including a sham condition.

      4a. There does not seem to be any effect on the STMB task, therefore we can ignore this.

      4b. The FNAT task is minimally described in the supplementary material. There are no experimental details to understand what was done. What was the size of the images? How long were the images presented for? Were there any repetitions of the images? For how long did the participants study the images? Presumably, all the names and occupations are different? What were the genders of the faces? What is chance level performance? Presumably, the same participant saw different faces across the different stimulation conditions. If not, then there can be memory effects across different conditions that are even more complex to study. If yes, then it would be useful to show that the difficulty is the same across the different stimuli.

      We thank you for signaling the lack in the description of FNAT task. We added the information required in the supplementary information (lines 93-101).

      “Each picture's face size was 19x15cm. In the learning phase, faces were shown along with names and occupations for 8 seconds each (totaling approximately 2 minutes). During immediate recall, the faces were displayed alone for 8 seconds. In the delayed recall and recognition phase, pictures were presented until the subject provided answers. We used a different set of stimuli for each stimulation condition, resulting in a total of 3 parallel task forms balanced across conditions and session order. All parallel forms comprised 6 male and 6 female faces; for each sex, there were 2 young adults (around 30 years old), 2 middle-aged adults (around 50 years old), and 2 elderly adults (around 70 years old). Before the experiments, we conducted a pilot study to ensure no differences existed between the parallel forms of the task.”

      The chance level in the immediate and delayed recall is not quantifiable since the participants had to freely recall the name and the occupation without a multiple choice. In the recognition, the chance level was around 33% (since the possible answers were 3).

      4c. Although not stated clearly, if I understand FNAT correctly, the task is based on just 12 presentations. Each point in Figure 2A represents a different participant. Unfortunately, there is no way of linking the performance of individual participants across the conditions with the information provided. Lines joining performance for each participant would be useful in this regard. Because there are only 12 faces, the results are quantized in multiples of 100/12 % in Figure 3A. While I do not doubt that the authors did their homework in terms of the statistical analyses, it is difficult to get too excited about these 12 measurements. For example, take Figure 3A immediate condition TOTAL, arguably the largest effect in the whole paper. It seems that on average, the participants may remember one more face/name/occupation.

      Thank you for the suggestion. We added graphs showing lines linking the performance of individual participants across conditions to improve clarity, please see Fig.2 revised. We apologize for the lack of clarity in the description of the FNAT. As you correctly pointed out, we used the percentage based on the single association between face, name and occupation (12 in total). However, each association consisted of three items, resulting in a total of 36 items to learn and associate – we added a paragraph to make it more explicit in the manuscript (lines 425-430).

      “We considered a correct association when a subject was able to recall all the information for each item (i.e. face, name and occupation), resulting in a total of 36 items to learn and associate. To further investigate the effect on FNAT we also computed a partial recall score accounting for those items where subjects correctly matched only names with faces (FNAT NAME) and only occupations with faces (FNAT OCCUPATION). See supplementary information for score details.”

      In the example you mentioned, participants were, on average, able to correctly recall and associate three more items compared to the other conditions. While this difference may not seem striking at first glance, it is important to consider that we assessed memory performance after a single, three-minute stimulation session. Similar effects are typically observed only after multiple stimulation sessions (Koch et al., NeuroImage, 2018; Grover et al., Nature Neuroscience, 2022). Moreover, memory performance changes are often measured by a limited set of stimuli due to methodological constraints related to memory capacity. For example, Rey Auditory Verbal learning task, requiring to learn and recall 15 words, is a typical test used to detect memory changes (Koch et al., Neuroimage, 2018; Benussi et al., Brain stimulation 2021; Benussi et al., Annals of Neurology, 2022). 

      4d. Block effects. If I understand correctly, the experiments were conducted in blocks. This is always problematic. Here is one example study that articulated the big problems in block designs (Li et al TPAMI 2021):https://ieeexplore.ieee.org/document/9264220

      Thank you for the interesting reference. According to this paper, in a block design, EEG or fMRI recordings are performed in response to different stimuli of a given class presented in succession. If this is the case, it does not correspond to our experimental design where both TMS-EEG and fMRI were conducted in resting state on different days according to the different stimulation conditions.

      4e. Even if we ignore the lack of experimental descriptions, problems with lack of evidence of brain activity, the minimalistic study of 12 faces, problems with the block design, etc. at the end of the day, the results are extremely weak. In FNAT, some results are statistically significant, some are not. The interpretation of all of this is extremely complex. Continuing with Figure 3A, it seems that the author claims that iTBS+gtACS > iTBS+sham-tACS, but iTBS+gtACS ~ sham+sham. I am struggling to interpret such a result. When separating results by name and occupation, the results are even more perplexing. There is only one condition that is statistically significant in Figure 3A NAME and none in the occupation condition.

      Thank you again for your feedback. Hoping to have thoroughly addressed your initial concerns in our previous responses, we now move on to your observations regarding the behavioral results, assuming you were referring to Figure 2A. The main finding of this study is the improvement in long-term memory performance, specifically the ability to correctly recall the association between face, name, and occupation (total FNAT), which was significantly enhanced in both Experiments 1 and 2. However, we also aimed to explore the individual contributions of name and occupation separately to gain a deeper understanding of the results. Our analysis revealed that the improvement in total FNAT was primarily driven by an increase in name recall rather than occupation recall. We understand that this may have caused some confusion. We consequently modified the manuscript in the (lines 97-99; 107-111; 425-430) to make it clearer and moved the graph relative to FNAT NAME and OCCUPATION from fig.2 in the main text to fig. S4 in supplementary information.

      “Dual iTBS+γtACS increased the performances in recalling the association between face, name and occupation (FNAT accuracy) both for the immediate (F<sub>2,38</sub>=7.18; p =0.002; η<sup>2</sup><sub>p</sub>=0.274) and the delayed (F<sub>2,38</sub>=5.86; p =0.006; η<sup>2</sup><sub>p</sub>=0.236) recall performances (Fig. 2, panel A).”

      “The in-depth analysis of the FNAT accuracy investigating the specific contribution of face-name and face-occupation recall reveald that dual iTBS+γtACS increased the performances in the association between face and name (FNAT NAME) delayed recall (F<sub>2,38</sub> =3.46; p =0.042; η<sup>2</sup>p =0.154; iTBS+γtACS vs. sham-iTBS+sham-tACS: 42.9±21.5 % vs. 33.8±19 %; p=0.048 Bonferroni corrected) (Fig. S4, supplementary information).”

      “We considered a correct association when a subject was able to recall all the information for each item (i.e. face, name and occupation), resulting in a total of 36 items to learn and associate. To further investigate the effect on FNAT we also computed a partial recall score accounting for those items where subjects correctly matched only names with faces (FNAT NAME) and only occupations with faces (FNAT OCCUPATION). See supplementary information for score details.”

      Regarding the stimulation conditions, your concerns about the performance pattern (iTBS+gtACS > iTBS+sham-tACS, but iTBS+gtACS ~ sham+sham) are understandable. However, this new protocol was developed precisely in response to the variability observed in behavioral outcomes following non-invasive brain stimulation, particularly when used to modulate memory functions (Corp et al., 2020; Pabst et al., 2022). As discussed in the manuscript, it is intended as a boost to conventional non-invasive brain stimulation protocols, leveraging the mechanisms outlined in the Discussion section.

      (5) In sum, it would be amazing to be able to use non-invasive stimulation for any kind of therapeutic purpose as the authors imagine. More work needs to be done to convince ourselves that this kind of approach is viable. The evidence provided in this study is weak.

      We hope our response will be carefully considered, fostering a constructive exchange and leading to a reassessment of your evaluation.

      Reviewer #2 (Public review):

      Summary:

      The manuscript "Dual transcranial electromagnetic stimulation of the precuneus-hippocampus network boosts human long-term memory" by Borghi and colleagues provides evidence that the combination of intermittent theta burst TMS stimulation and gamma transcranial alternating current stimulation (γtACS) targeting the precuneus increases long-term associative memory in healthy subjects compared to iTBS alone and sham conditions. Using a rich dataset of TMS-EEG and resting-state functional connectivity (rs-FC) maps and structural MRI data, the authors also provide evidence that dual stimulation increased gamma oscillations and functional connectivity between the precuneus and hippocampus. Enhanced memory performance was linked to increased gamma oscillatory activity and connectivity through white matter tracts.

      Strengths:

      The combination of personalized repetitive TMS (iTBS) and gamma tACS is a novel approach to targeting the precuneus, and thereby, connected memory-related regions to enhance long-term associative memory. The authors leverage an existing neural mechanism engaged in memory binding, theta-gamma coupling, by applying TMS at theta burst patterns and tACS at gamma frequencies to enhance gamma oscillations. The authors conducted a thorough study that suggests that simultaneous iTBS and gamma tACS could be a powerful approach for enhancing long-term associative memory. The paper was well-written, clear, and concise.

      Weaknesses:

      (1) The study did not include a condition where γtACS was applied alone. This was likely because a previous work indicated that a single 3-minute γtACS did not produce significant effects, but this limits the ability to isolate the specific contribution of γtACS in the context of this target and memory function

      Thank you for your comments. As you pointed out, we did not include a condition where γtACS was applied alone. This decision was based on the findings of Guerra et al. (Brain Stimulation 2018), who investigated the same protocol and reported no aftereffects. Given the substantial burden of the experimental design on patients and our primary goal of demonstrating an enhancement of effects compared to the standalone iTBS protocol, we decided to leave out this condition. However, you raise an important aspect that should be further discussed, we modified the limitation section accordingly (lines 290-297).

      “We did not assess the effects of γtACS alone. This decision was based on the findings of Guerra et al. (Guerra et al., 2018), who investigated the same protocol and reported no aftereffects. Given the substantial burden of the experimental design on patients and our primary goal of demonstrating an enhancement of effects compared to the standalone iTBS protocol, we decided to leave out this condition. While examining the effects of γtACS alone could help isolate its specific contribution to this target and memory function, extensive research has shown that achieving a cognitive enhancement aftereffect with tACS alone typically requires around 20–25 minutes of stimulation (Grover et al., 2023).”

      (2) The authors applied stimulation for 3 minutes, which seems to be based on prior tACS protocols. It would be helpful to present some rationale for both the duration and timing relative to the learning phase of the memory task. Would you expect additional stimulation prior to recall to benefit long-term associative memory?

      Thank you for your comment and for raising this interesting point. As you correctly noted, the protocol we used has a duration of three minutes, a choice based on previous studies demonstrating its greater efficacy with respect to single stimulation from a neurophysiological point of view. Specifically, these studies have shown that the combined stimulation enhanced gamma-band oscillations and increased cortical plasticity (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022). Given that the precuneus (Brodt et al., Science 2018; Schott et al., Human Brain Mapping 2018), gamma oscillations (Osipova et al., Journal of Neuroscience 2006; Deprés et al., Neurobiology of Aging 2017; Griffiths et al., Trends in Neurosciences 2023), and cortical plasticity (Brodt et al., Science 2018) are all associated with memory formation and encoding processes, we decided to apply the co-stimulation immediately before it to enhance the efficacy. We added this paragraph to the manuscript rationale (lines 48-60).

      “Repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) are two forms of NIBS widely used to enhance memory performances (Grover et al., 2022; Koch et al., 2018; Wang et al., 2014). rTMS, based on the principle of Faraday, induces depolarization of cortical neuronal assemblies and leads to after-effects that have been linked to changes in synaptic plasticity involving mechanisms of long-term potentiation (LTP) (Huang et al., 2017; Jannati et al., 2023). On the other hand, tACS causes rhythmic fluctuations in neuronal membrane potentials, which can bias spike timing, leading to an entrainment of the neural activity (Wischnewski et al., 2023). In particular, the induction of gamma oscillatory a has been proposed to play an important role in a type of LTP known as spike timing-dependent plasticity, which depends on a precise temporal delay between the firing of a presynaptic and a postsynaptic neuron (Griffiths and Jensen, 2023). Both LTP and gamma oscillations have a strong link with memory processes such as encoding (Bliss and Collingridge, 1993; Griffiths and Jensen, 2023; Rossi et al., 2001), pointing to rTMS and tACS as good candidates for memory enhancement.”

      Regarding the question of whether stimulation could also benefit recall, the answer is yes. We can speculate that repeating the stimulation before recall might provide an additional boost. This is supported by evidence showing that both the precuneus and gamma oscillations are involved in recall processes (Flanagin et al., Cerebral Cortex 2023; Griffiths et al., Trends in Neurosciences 2023). Furthermore, previous research suggests that reinstating the same brain state as during encoding can enhance recall performance (Javadi et al., The Journal of Neuroscience 2017). We added this consideration to the discussion (lines 305-311).

      “Future studies should further investigate the effects of stimulation on distinct memory processes. In particular, stimulation could be applied before retrieval (Rossi et al., 2001), to better elucidate its specific contribution to the observed enhancements in memory performance. Additionally, it would be worth examining whether repeated stimulation - administered both before encoding and before retrieval - could produce a boosting effect. This is especially relevant in light of findings showing that matching the brain state between retrieval and encoding can significantly enhance memory performance (Javadi et al., 2017).”

      (3) How was the burst frequency of theta iTBS and gamma frequency of tACS chosen? Were these also personalized to subjects' endogenous theta and gamma oscillations? If not, were increases in gamma oscillations specific to patients' endogenous gamma oscillation frequencies or the tACS frequency?

      The stimulation protocol was chosen based on previous studies (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022).  Gamma tACS sinusoid frequency wave was set at 70 Hz while iTBS consisted of ten bursts of three pulses at 50 Hz lasting 2 s, repeated every 10 s with an 8 s pause between consecutive trains, for a total of 600 pulses total lasting 190 s (see iTBS+γtACS neuromodulation protocol section). In particular, the theta iTBS has been inspired by protocols used in animal models to elicit LTP in the hippocampus (Huang et al., Neuron 2005). Consequently, neither Theta iTBS nor the gamma frequency of tACS were personalized. The increase in gamma oscillations was referred to the patient’s baseline and did not correspond to the administrated tACS frequency.

      (4) The authors do a thorough job of analyzing the increase in gamma oscillations in the precuneus through TMS-EEG; however, the authors may also analyze whether theta oscillations were also enhanced through this protocol due to the iTBS potentially targeting theta oscillations. This may also be more robust than gamma oscillations increases since gamma oscillations detected on the scalp are very low amplitude and susceptible to noise and may reflect activity from multiple overlapping sources, making precise localization difficult without advanced techniques.

      Thank you for the suggestion. We analyzed theta oscillations, finding no changes.

      (5) Figure 4: Why are connectivity values pre-stimulation for the iTBS and sham tACS stimulation condition so much higher than the dual stimulation? We would expect baseline values to be more similar.

      We acknowledge that the pre-stimulation connectivity values for the iTBS and sham tACS conditions appear higher than those for the dual stimulation condition. However, as noted in our statistical analyses, there were no significant differences at baseline between conditions (p-FDR= 0.3514), suggesting that any apparent discrepancy is due to natural variability rather than systematic bias. One potential explanation for these differences is individual variability in baseline connectivity measures, which can fluctuate due to factors such as intrinsic neural dynamics, participant state, or measurement noise. Despite these variations, our statistical approach ensures that any observed post-stimulation effects are not confounded by pre-existing differences.

      (6) Figure 2: How are total association scores significantly different between stimulation conditions, but individual name and occupation associations are not? Further clarification of how the total FNAT score is calculated would be helpful.

      We apologize for any lack of clarity. The total FNAT score reflects the ability to correctly recall all the information associated with a person—specifically, the correct pairing of the face, name, and occupation. Participants received one point for each triplet they accurately recalled. The scores were then converted into percentages, as detailed in the Face-Name Associative Task Construction and Scoring section in the supplementary materials.

      Total FNAT was the primary outcome measure. However, we also analyzed name and occupation recall separately to better understand their partial contributions. Our analysis revealed that the improvement in total FNAT was primarily driven by an increase in name recall rather than occupation recall.

      We acknowledge that this distinction may have caused some confusion. To improve clarity, we revised the manuscript accordingly (lines 97-98; 107-111; 425-430).

      “Dual iTBS+γtACS increased the performances in recalling the association between face, name and occupation (FNAT accuracy) both for the immediate (F<sub>2,38</sub>=7.18 ;p=0.002; η<sup>2</sup><sub>p</sub>=0.274) and the delayed (F<sub>2,38</sub>=5.86;p=0.006; η<sup>2</sup><sub>p</sub>=0.236) recall performances (Fig. 2, panel A).”

      “The in-depth analysis of the FNAT accuracy investigating the specific contribution of face-name and face-occupation recall revealed that dual iTBS+γtACS increased the performances in the association between face and name (FNAT NAME) delayed recall (F<sub>2,38</sub> =3.46; p =0.042; η<sup>2</sup>p =0.154; iTBS+γtACS vs. sham-iTBS+sham-tACS: 42.9±21.5 % vs. 33.8±19 %; p=0.048 Bonferroni corrected) (Fig. S4, supplementary information).”

      “We considered a correct association when a subject was able to recall all the information for each item (i.e. face, name and occupation), resulting in a total of 36 items to learn and associate. To further investigate the effect on FNAT we also computed a partial recall score accounting for those items where subjects correctly matched only names with faces (FNAT NAME) and only occupations with faces (FNAT OCCUPATION). See supplementary information for score details.”

      We also moved the data regarding the specific contribution of name and occupation recall in the supplementary information (fig.S4) and further specified how we computed the score in the score (lines 102-104).

      “The score was computed by deriving an accuracy percentage index dividing by 12 and multiplying by 100 the correct association sum. The partial recall scores were computed in the same way only considering the sum of face-name (NAME) and face-occupation (OCCUPATION) correctly recollected.”

      Reviewer #3 (Public review):

      Summary:

      Borghi and colleagues present results from 4 experiments aimed at investigating the effects of dual γtACS and iTBS stimulation of the precuneus on behavioral and neural markers of memory formation. In their first experiment (n = 20), they found that a 3-minute offline (i.e., prior to task completion) stimulation that combines both techniques leads to superior memory recall performance in an associative memory task immediately after learning associations between pictures of faces, names, and occupation, as well as after a 15-minute delay, compared to iTBS alone (+ tACS sham) or no stimulation (sham for both iTBS and tACS). Performance in a second task probing short-term memory was unaffected by the stimulation condition. In a second experiment (n = 10), they show that these effects persist over 24 hours and up to a full week after initial stimulation. A third (n = 14) and fourth (n = 16) experiment were conducted to investigate the neural effects of the stimulation protocol. The authors report that, once again, only combined iTBS and γtACS increase gamma oscillatory activity and neural excitability (as measured by concurrent TMS-EEG) specific to the stimulated area at the precuneus compared to a control region, as well as precuneus-hippocampus functional connectivity (measured by resting-state MRI), which seemed to be associated with structural white matter integrity of the bilateral middle longitudinal fasciculus (measured by DTI).

      Strengths:

      Combining non-invasive brain stimulation techniques is a novel, potentially very powerful method to maximize the effects of these kinds of interventions that are usually well-tolerated and thus accepted by patients and healthy participants. It is also very impressive that the stimulation-induced improvements in memory performance resulted from a short (3 min) intervention protocol. If the effects reported here turn out to be as clinically meaningful and generalizable across populations as implied, this approach could represent a promising avenue for the treatment of impaired memory functions in many conditions.

      Methodologically, this study is expertly done! I don't see any serious issues with the technical setup in any of the experiments (with the only caveat that I am not an expert in fMRI functional connectivity measures and DTI). It is also very commendable that the authors conceptually replicated the behavioral effects of experiment 1 in experiment 2 and then conducted two additional experiments to probe the neural mechanisms associated with these effects. This certainly increases the value of the study and the confidence in the results considerably.

      The authors used a within-subject approach in their experiments, which increases statistical power and allows for stronger inferences about the tested effects. They are also used to individualize stimulation locations and intensities, which should further optimize the signal-to-noise ratio.

      Weaknesses:

      I want to state clearly that I think the strengths of this study far outweigh the concerns I have. I still list some points that I think should be clarified by the authors or taken into account by readers when interpreting the presented findings.

      I think one of the major weaknesses of this study is the overall low sample size in all of the experiments (between n = 10 and n = 20). This is, as I mentioned when discussing the strengths of the study, partly mitigated by the within-subject design and individualized stimulation parameters. The authors mention that they performed a power analysis but this analysis seemed to be based on electrophysiological readouts similar to those obtained in experiment 3. It is thus unclear whether the other experiments were sufficiently powered to reliably detect the behavioral effects of interest. That being said, the authors do report significant effects, so they were per definition powered to find those. However, the effect sizes reported for their main findings are all relatively large and it is known that significant findings from small samples may represent inflated effect sizes, which may hamper the generalizability of the current results. Ideally, the authors would replicate their main findings in a larger sample. Alternatively, I think running a sensitivity analysis to estimate the smallest effect the authors could have detected with a power of 80% could be very informative for readers to contextualize the findings. At the very least, however, I think it would be necessary to address this point as a potential limitation in the discussion of the paper.

      Thank you for the observation. As you mentioned, our power analysis was based on our previous study investigating the same neuromodulation protocol with a corresponding experimental design. The relatively small sample could be considered a possible limitation of the study which we will add to the discussion. A fundamental future step will be to replay these results on a larger population, however, to strengthen our results we performed the sensitivity analysis you suggested.

      In detail, we performed a sensitivity analysis for repeated-measures ANOVA with α=0.05 and power(1-β)=0.80 with no sphericity correction. For experiment 1, a sensitivity analysis with 1 group and 3 measurements showed a minimal detectable effect size of f=0.524 with 20 participants. In our paper, the ANOVA on total FNAT immediate performance revealed an effect size of η<sup>2</sup>=0.274 corresponding to f=0.614; the ANOVA on FNAT delayed performance revealed an effect size of η<sup>2</sup>=0.236 corresponding to f=0.556. For experiment 2, a sensitivity analysis for total FNAT immediate performance (1 group and 3 measurements) showed a minimal detectable effect size of f=0.797 with 10 participants. In our paper, the ANOVA on total FNAT immediate performance revealed an effect size of η<sup>2</sup>=0.448 corresponding to f=0.901. The sensitivity analysis for total FNAT delayed performance (1 group and 6 measurements) showed a minimal detectable effect size of f=0.378 with 10 participants. In our paper, the ANOVA on total FNAT delayed performance revealed an effect size of η<sup>2</sup>=0.484 corresponding to f=0.968. Thus, the sensitivity analysis showed that both experiments were powered enough to detect the minimum effect size computed in the power analysis. We have now added this information to the manuscript and we thank the reviewer for her/his suggestion in the statistical analysis and results section (lines 99-100; 127-128; 130-131; 543-545).

      “The sensitivity analysis showed a minimal detectable effect size of  η<sup>2</sup>=0.215 with 20 participants.”

      “The sensitivity analysis showed a minimal detectable effect size of  η<sup>2</sup>=0.388 with 10 participants.”

      “The sensitivity analysis showed a minimal detectable effect size of η<sup>2</sup>=0.125 with 10 participants.”

      “Since we do not have an a priori effect size for experiment 1 and 2, we performed a sensitivity power analysis to ensure that these experiments were able to detect the minimum effect size with 80% power and alpha level of 0.05.”

      It seems that the statistical analysis approach differed slightly between studies. In experiment 1, the authors followed up significant effects of their ANOVAs by Bonferroni-adjusted post-hoc tests whereas it seems that in experiment 2, those post-hoc tests where "exploratory", which may suggest those were uncorrected. In experiment 3, the authors use one-tailed t-tests to follow up their ANOVAs. Given some of the reported p-values, these choices suggest that some of the comparisons might have failed to reach significance if properly corrected. This is not a critical issue per se, as the important test in all these cases is the initial ANOVA but non-significant (corrected) post-hoc tests might be another indicator of an underpowered experiment. My assumptions here might be wrong, but even then, I would ask the authors to be more transparent about the reasons for their choices or provide additional justification. Finally, the authors sometimes report exact p-values whereas other times they simply say p < .05. I would ask them to be consistent and recommend using exact p-values for every result where p >= .001.

      Thank you again for the suggestions. Your observations are correct, we used a slightly different statistical depending on our hypothesis. Here are the details:

      In experiment 1, we used a repeated-measure ANOVA with one factor “stimulation condition” (iTBS+γtACS; iTBS+sham-tACS; sham-iTBS+sham-tACS). Following the significant effect of this factor we performed post-hoc analysis with Bonferroni correction.

      In experiment 2, we used a repeated-measures with two factors “stimulation condition” and “time”. As expected, we observed a significant effect of condition, confirming the result of experiment 1, but not of time. Thus, this means that the neuromodulatory effect was present regardless of the time point. However, to explore whether the effects of stimulation condition were present in each time point we performed some explorative t-tests with no correction for multiple comparisons since this was just an explorative analysis.

      In experiment 3, we used the same approach as experiment 1. However, since we had a specific hypothesis on the direction of the effect already observed in our previous study, i.e. increase in spectral power (Maiella et al., Scientific Report 2022), our tests were 1-tailed.

      For the p-values, we corrected the manuscript reporting the exact values for every result.

      While the authors went to great lengths trying to probe the neural changes likely associated with the memory improvement after stimulation, it is impossible from their data to causally relate the findings from experiments 3 and 4 to the behavioral effects in experiments 1 and 2. This is acknowledged by the authors and there are good methodological reasons for why TMS-EEG and fMRI had to be collected in sperate experiments, but it is still worth pointing out to readers that this limits inferences about how exactly dual iTBS and γtACS of the precuneus modulate learning and memory.

      Thank you for your comment. We fully agree with your observation, which is why this aspect has been considered in the study's limitations. To address your concern, we add this sentence to the limitation discussion (lines 299-301).

      “Consequently, these findings do not allow precise inferences regarding the specific mechanisms by which dual iTBS and γtACS of the precuneus modulate learning and memory.”

      There were no stimulation-related performance differences in the short-term memory task used in experiments 1 and 2. The authors argue that this demonstrates that the intervention specifically targeted long-term associative memory formation. While this is certainly possible, the STM task was a spatial memory task, whereas the LTM task relied (primarily) on verbal material. It is thus also possible that the stimulation effects were specific to a stimulus domain instead of memory type. In other words, could it be possible that the stimulation might have affected STM performance if the task taxed verbal STM instead? This is of course impossible to know without an additional experiment, but the authors could mention this possibility when discussing their findings regarding the lack of change in the STM task.

      Thank you for your interesting observation. We argue that the intervention primarily targeted long-term associative memory formation, as our findings demonstrated effects only on FNAT. However, as you correctly pointed out, we cannot exclude the possibility that the stimulation may also influence short-term verbal associative memory. We add this aspect when discussing the absence of significant findings in the STM task (lines 205-210).

      “Visual short-term associative memory, measured by STBM performance, was not modulated by any experimental condition. Even if we cannot exclude the possibility that the stimulation could have influenced short-term verbal associative memory, we expected this result since short-term associative memory is known to rely on a distinct frontoparietal network while FNAT, used to investigate long-term associative memory, has already been associated with the neural activity of the PC and the hippocampus (Parra et al., 2014; Rentz et al., 2011).”

      While the authors discuss the potential neural mechanisms by which the combined stimulation conditions might have helped memory formation, the psychological processes are somewhat neglected. For example, do the authors think the stimulation primarily improves the encoding of new information or does it also improve consolidation processes? Interestingly, the beneficial effect of dual iTBS and γtACS on recall performance was very stable across all time points tested in experiments 1 and 2, as was the performance in the other conditions. Do the authors have any explanation as to why there seems to be no further forgetting of information over time in either condition when even at immediate recall, accuracy is below 50%? Further, participants started learning the associations of the FNAT immediately after the stimulation protocol was administered. What would happen if learning started with a delay? In other words, do the authors think there is an ideal time window post-stimulation in which memory formation is enhanced? If so, this might limit the usability of this procedure in real-life applications.

      Thank you for your comment and for raising these important points.

      We hypothesized that co-stimulation would enhance encoding processes. Previous studies have shown that co-stimulation can enhance gamma-band oscillations and increase cortical plasticity (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022). Given that the precuneus (Brodt et al., Science 2018; Schott et al., Human Brain Mapping 2018), gamma oscillations (Osipova et al., Journal of Neuroscience 2006; Deprés et al., Neurobiology of Aging 2017; Griffiths et al., Trends in Neurosciences 2023), and cortical plasticity (Brodt et al., Science 2018) have all been associated with encoding processes, we decided to apply co-stimulation before the encoding phase, to boost it. We enlarged the introduction to specify the link between neural mechanisms and the psychological process of the encoding (lines 55-60).

      “In particular, the induction of gamma oscillatory activity has been proposed to play an important role in a type of LTP known as spike timing-dependent plasticity, which depends on a precise temporal delay between the firing of a presynaptic and a postsynaptic neuron (Griffiths and Jensen, 2023). Both LTP and gamma oscillations have a strong link with memory processes such as encoding (Bliss and Collingridge, 1993; Griffiths and Jensen, 2023; Rossi et al., 2001), pointing to rTMS and tACS as good candidates for memory enhancement.”

      We applied the co-stimulation immediately before the learning phase to maximize its potential effects. While we observed a significant increase in gamma oscillatory activity lasting up to 20 minutes, we cannot determine whether the behavioral effects we observed would have been the same with a co-stimulation applied 20 minutes before learning. Based on existing literature, a reduction in the efficacy of co-stimulation over time could be expected (Huang et al., Neuron 2005; Thut et al., Brain Topography 2009). However, we hypothesize that multiple stimulation sessions might provide an additional boost, helping to sustain the effects over time (Thut et al., Brain Topography 2009; Koch et al., Neuroimage 2018; Koch et al., Brain 2022).

      Regarding the absence of further forgetting in both stimulation conditions, we think that the clinical and demographical characteristics of the sample (i.e. young and healthy subjects) explain the almost absence of forgetting after one week.

      Reviewer #1 (Recommendations for the authors):

      To address the concerns, the authors should:

      (1) Include invasive neuronal recordings (e.g., in rats or monkeys if not possible in humans) demonstrating that the current stimulation protocol leads to direct changes in brain activity.

      We understand the interest of the first reviewer in the understanding of neurophysiological correlates of the stimulation protocol, however, we are skeptical about this request as we think it goes beyond the aims of the study. As already mentioned in the response to the reviewer, invasive neurophysiological recordings in humans for this type of study are not feasible due to ethical constraints. At the same time, studies on cadavers or rodents would not fully resolve the question. Indeed, the authors of the study cited by the reviewer (Mihály Vöröslakos et al., Nature Communications, 2018) highlight the impossibility of drawing definitive conclusions about the exact voltage required in the in-vivo human brain due to significant differences between rats and humans, as well as the in-vivo human cadavers due to alterations in electrical conductivity that occur in postmortem tissue. Huang and colleagues addressed the difficulties in reaching direct evidence of non-invasive brain stimulation (NIBS) effects in a review published in Clinical Neurophysiology in 2017. They conclude that the use of EEG to assess brain response to TMS has a great potential for a less indirect demonstration of plasticity mechanisms induced by NIBS in humans.

      It is exactly to meet the need to investigate the changes in brain activity after the stimulation protocol that we conducted Experiments 3 and 4. These experiments respectively examined the neurophysiological and connectivity changes induced by the stimulation in a non-invasive manner using TMS-EEG and fMRI. The observed changes in brain oscillatory activity (increased gamma oscillatory activity), cortical excitability (enhanced posteromedial parietal cortex reactivity), and brain connectivity (strengthened connections between the precuneus and hippocampi) provided evidence of the effects of our non-invasive brain stimulation protocol, further supporting the behavioral data.

      Additionally, we carefully considered the issue of stimulation distribution and, in response, performed a biophysical modeling analysis and E-field calculation using the parameters employed in our study (see Supplementary Materials).

      Acknowledging the reviewer's point of view, we modified the manuscript accordingly, discussing this aspect both as a technical limitation and as a potential direction for future research (main text, lines 280-289).

      “Although we studied TMS and tACS propagation through the E-field modeling and observed an increase in the precuneus gamma oscillatory activity, excitability and connectivity with the hippocampi, we cannot exclude that our results might reflect the consequences of stimulating more superficial parietal regions other than the precuneus nor report direct evidence of microscopic changes in the brain after the stimulation. Invasive neurophysiological recordings in humans for this type of study are not feasible due to ethical constraints. Studies on cadavers or rodents would not fully resolve our question due to significant differences between them (i.e. rodents do not have an anatomical correspondence while cadavers have an alterations in electrical conductivity occurring in postmortem tissue). However, further exploration of this aspect in future studies would help in the understanding of γtACS+iTBS effects.”

      (2) Address all the technical questions about the experimental design.

      We addressed all the technical questions about the experimental design.

      (3) Repeat the experiments with randomized trial order and without a block design.

      The experiments were conducted with randomized trial order and we did not use a block design.

      (4) Add many more faces to the study. It is extremely difficult to draw any conclusion from merely 12 faces. Ideally, there would be lots of other relevant memory experiments where the authors show compelling positive results.

      We understand your perplexity about drawing conclusions from 12 faces, however, this is not the case. As we explained in the response reviewer, the task we implemented did not rely on the recall of merely 12 faces. Instead, participants had to correctly learn, associate and recall 12 faces, 12 names and 12 occupations for a total of 36 items. To improve the clarity of the manuscript, we added a paragraph to make this aspect more explicit (lines 425-430).

      “We considered a correct association when a subject was able to recall all the information for each item (i.e. face, name and occupation), resulting in a total of 36 items to learn and associate. To further investigate the effect on FNAT we also computed a partial recall score accounting for those items where subjects correctly matched only names with faces (FNAT NAME) and only occupations with faces (FNAT OCCUPATION). See supplementary information for score details.”

      The behavioral changes we observed are similar to those who are typically observed after multiple stimulation sessions (Koch et al., NeuroImage, 2018; Grover et al., Nature Neuroscience, 2022, Benussi et al., Annals of Neurology, 2022). Moreover, memory performance changes are often measured by a limited set of stimuli due to methodological constraints related to memory capacity. For example, Rey Auditory Verbal learning task, requiring to learn and recall 15 words, is a typical test used to detect memory changes (Koch et al., Neuroimage, 2018; Benussi et al., Brain stimulation 2021; Benussi et al., Annals of Neurology, 2022). 

      (5) Provide a clear explanation of the apparent randomness of which results are statistically significant or not in Figure 3. But perhaps with many more experiments, a lot more memory evaluations, many more stimuli, and addressing all the other technical concerns, either the results will disappear or there will be a more interpretable pattern of results.

      We provided explanations for all the concerns shown by the reviewer.

      Reviewer #2 (Recommendations for the authors):

      Minor comments:

      (1) Figure 4: Why are connectivity values pre-stimulation for the iTBS and sham tACS stimulation condition so much higher than the dual stimulation? We would expect baseline values to be more similar.

      We acknowledge that the pre-stimulation connectivity values for the iTBS and sham tACS conditions appear higher than those for the dual stimulation condition. However, as noted in our statistical analyses, there were no significant differences at baseline between conditions (p-FDR= 0.3514), suggesting that any apparent discrepancy is due to natural variability rather than systematic bias. One potential explanation for these differences is individual variability in baseline connectivity measures, which can fluctuate due to factors such as intrinsic neural dynamics, participant state, or measurement noise. Despite these variations, our statistical approach ensures that any observed post-stimulation effects are not confounded by pre-existing differences.

      (2) Figure 2: How are total association scores significantly different between stimulation conditions, but individual name and occupation associations are not? Further clarification of how the total FNAT score is calculated would be helpful.

      We apologize for any lack of clarity. The total FNAT score reflects the ability to correctly recall all the information associated with a person—specifically, the correct pairing of the face, name, and occupation. Participants received one point for each triplet they accurately recalled. The scores were then converted into percentages, as detailed in the Face-Name Associative Task Construction and Scoring section in the supplementary materials.

      Total FNAT was the primary outcome measure. However, we also analyzed name and occupation recall separately to better understand their partial contributions. Our analysis revealed that the improvement in total FNAT was primarily driven by an increase in name recall rather than occupation recall.

      We acknowledge that this distinction may have caused some confusion. To improve clarity, we revised the manuscript accordingly (lines 97-98; 107-111; 425-430).

      “Dual iTBS+γtACS increased the performances in recalling the association between face, name and occupation (FNAT accuracy) both for the immediate (F<sub>2,38</sub>=7.18; p=0.002; η<sup>2</sup><sub>p</sub>=0.274) and the delayed (F<sub>2,38</sub>=5.86; p =0.006; η<sup>2</sup><sub>p</sub>=0.236) recall performances (Fig. 2, panel A).”

      “The in-depth analysis of the FNAT accuracy investigating the specific contribution of face-name and face-occupation recall revealed that dual iTBS+γtACS increased the performances in the association between face and name (FNAT NAME) delayed recall (F<sub>2,38</sub> =3.46; p =0.042; η<sup>2</sup>p =0.154; iTBS+γtACS vs. sham-iTBS+sham-tACS: 42.9±21.5 % vs. 33.8±19 %; p=0.048 Bonferroni corrected) (Fig. S4, supplementary information).”

      “We considered a correct association when a subject was able to recall all the information for each item (i.e. face, name and occupation), resulting in a total of 36 items to learn and associate. To further investigate the effect on FNAT we also computed a partial recall score accounting for those items where subjects correctly matched only names with faces (FNAT NAME) and only occupations with faces (FNAT OCCUPATION). See supplementary information for score details.”

      We also moved the data regarding the specific contribution of name and occupation recall in the supplementary information (fig.S4) and further specified how we computed the score in the score (lines 102-104).

      “The score was computed by deriving an accuracy percentage index dividing by 12 and multiplying by 100 the correct association sum. The partial recall scores were computed in the same way only considering the sum of face-name (NAME) and face-occupation (OCCUPATION) correctly recollected.”

      Reviewer #3 (Recommendations for the authors):

      A very small detail, in the caption for Figure 2A, OCCUPATION is described as being shown on the 'left' but it should be 'right'.

      We corrected this error.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Phytophathogens including fungal pathogens such as F. graminearum remain a major threat to agriculture and food security. Several agriculturally relevant fungicides including the potent Quinofumelin have been discovered to date, yet the mechanisms of their action and specific targets within the cell remain unclear. This paper sets out to contribute to addressing these outstanding questions.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      The paper is generally well-written and provides convincing data to support their claims for the impact of Quinofumelin on fungal growth, the target of the drug, and the potential mechanism. Critically the authors identify an important pyrimidine pathway dihydroorotate dehydrogenase (DHODH) gene FgDHODHII in the pathway or mechanism of the drug from the prominent plant pathogen F. graminearum, confirming it as the target for Quinofumelin. The evidence is supported by transcriptomic, metabolomic as well as MST, SPR, molecular docking/structural biology analyses.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      Whilst the study adds to our knowledge about this drug, it is, however, worth stating that previous reports (although in different organisms) by Higashimura et al., 2022 https://pmc.ncbi.nlm.nih.gov/articles/PMC9716045/ had already identified DHODH as the target for Quinofumelin and hence this knowledge is not new and hence the authors may want to tone down the claim that they discovered this mechanism and also give sufficient credit to the previous authors work at the start of the write-up in the introduction section rather than in passing as they did with reference 25? other specific recommendations to improve the text are provided in the recommendations for authors section below.

      We appreciate the reviewer's suggestion. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of previous work on quinofumelin by Higashimura et al., 2022 in the discussion section to more effectively contextualize their contributions. Moreover, we have made revisions and provided responses in accordance with the recommendations.

      Reviewer #2 (Public review):

      Summary:

      In the current study, the authors aim to identify the mode of action/molecular mechanism of characterized a fungicide, quinofumelin, and its biological impact on transcriptomics and metabolomics in Fusarium graminearum and other Fusarium species. Two sets of data were generated between quinofumelin and no treatment group, and differentially abundant transcripts and metabolites were identified. The authors further focused on uridine/uracil biosynthesis pathway, considering the significant up- and down-regulation observed in final metabolites and some of the genes in the pathways. Using a deletion mutant of one of the genes and in vitro biochemical assays, the authors concluded that quinofumelin binds to the dihydroorotate dehydrogenase.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      Omics datasets were leveraged to understand the physiological impact of quinofumelin, showing the intracellular impact of the fungicide. The characterization of FgDHODHII deletion strains with supplemented metabolites clearly showed the impact of the enzyme on fungal growth.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      Some interpretation of results is not accurate and some experiments lack controls. The comparison between quinofumelin-treated deletion strains, in the presence of different metabolites didn't suggest the fungicide is FgDHODHII specific. A wild type is required in this experiment.

      Potential Impact: Confirming the target of quinofumelin may help understand its resistance mehchanism, and further development of other inhibitory molecules against the target.

      The manuscript would benefit more in explaining the study rationale if more background on previous characterization of this fungicide on Fusarium is given.

      We appreciate the reviewer's suggestion. Under no treatment with quinofumelin, mycelial growth remains normal and does not require restoration. In the presence of quinofumelin treatment, the supplementation of downstream metabolites in the de novo pyrimidine biosynthesis pathway can restore mycelial growth that is inhibited by quinofumelin. The wild-type control group is illustrated in Figure 4. Figure 5b depicts the phenotypes of the deletion mutants. With respect to the relationship among quinofumelin, FgDHODHII, and other metabolites, quinofumelin specifically targets the key enzyme FgDHODHII in the de novo pyrimidine biosynthesis pathway, disrupting the conversion of dihydroorotate to orotate, which consequently inhibits the synthesis downstream metabolites including uracil. In our previous study, quinofumelin not only exhibited excellent antifungal activity against the mycelial growth and spore germination of F. graminearum, but also inhibited the biosynthesis of deoxynivalenol (DON). We have added this part to the introduction section.

      Reviewer #3 (Public review):

      Summary:

      The manuscript shows the mechanism of action of quinofumelin, a novel fungicide, against the fungus Fusarium graminearum. Through omics analysis, phenotypic analysis, and in silico approaches, the role of quinofumelin in targeting DHODH is uncovered.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      The phenotypic analysis and mutant generation are nice data and add to the role of metabolites in bypassing pyrimidine biosynthesis.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      The role of DHODH in this class of fungicides has been known and this data does not add any further significance to the field. The work of Higashimura et al is not appreciated well enough as they already showed the role of quinofumelin upon DHODH II.

      There is no mention of the other fungicide within this class ipflufenoquin, as there is ample data on this molecule.

      We appreciate the reviewer's suggestion. We sincerely appreciate the reviewer's insightful comment regarding the work of Higashimura et al. We agree that their investigation into the role of quinofumelin in DHODH II inhibition provides critical foundational insights for this field. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of their work in the discussion section to more effectively contextualize their contributions. The information regarding action mechanism of ipflufenoquin against filamentous fungi was added in discussion section.

      Reviewer #1 (Recommendations for the authors):

      (1) Given that the DHODH gene had been identified as a target earlier, could the authors perform blast experiments with this gene instead and let us know the percentage similarity between the FgDHODHII gene and the Pyricularia oryzae class II DHODH gene in the report by Higashimura et al., 2022.

      BLAST experiment revealed that the percentage similarity between the FgDHODHII gene and the class II DHODH gene of P. oryzae was 55.41%. We have added the description ‘Additionally, the amino acid sequence of the FgDHODHII exhibits 55.41% similarity to that of DHODHII from Pyricularia oryzae, as previously reported (Higashimura et al., 2022)’ in section Results.

      (2) Abstract:

      The authors started abbreviating new terms e.g. DEG, DMP, etc but then all of a sudden stopped and introduced UMP with no full meaning of the abbreviation. Please give the full meaning of all abbreviations in the text, UMP, STC, RM, etc.

      We have provided the full meaning for all abbreviations as requested.

      (3) Introduction section:

      The introduction talks very little about the work of other groups on quinofumelin. Perhaps add this information in and reference them including the work of Higashimura et al., 2022 which has done quite significant work on this topic but is not even mentioned in the background

      We have added the work of other groups on quinofumelin in section introduction.

      (4) General statements:

      Please show a model of the pyrimidine pathway that quinofumelin attacks to make it easier for the reader to understand the context. They could just copy this from KEGG

      We have added the model (Fig. 7).

      (5) Line 186:

      The authors did a great job of demonstrating interactions with the Quinofumelin and went to lengths to perform MST, SPR, molecular docking, and structural biology analyses yet in the end provide no details about the specific amino acid residues involved in the interaction. I would suggest that site-directed mutagenesis studies be performed on FgDHODHII to identify specific amino acid residues that interact with Quinofumelin and show that their disruption weakens Quinofumelin interaction with FgDHODHII.

      Thank you for this insightful suggestion. We fully agree with the importance of elucidating the interaction mechanism. At present, we are conducting site-directed mutagenesis studies based on interaction sites from docking results and the mutation sites of FgDHODHII from the resistant mutants; however, due to the limitations in the accuracy of existing predictive models, this work remains ongoing. Additionally, we are undertaking co-crystallization experiments of FgDHODHII with quinofumelin to directly and precisely reveal their interaction pattern

      (6) Line 76:

      What is the reference or evidence for the statement 'In addition, quinofumelin exhibits no cross-resistance to currently extensively used fungicides, indicating its unique action target against phytopathogenic fungi.

      If two fungicides share the same mechanism of action, they will exhibit cross resistance. Previous studies have demonstrated that quinofumelin retains effective antifungal activity against fungal strains resistant to commercial fungicides, indicating that quinofumelin does not exhibit cross-resistance with other commercially available fungicides and possesses a novel mechanism of action. Additionally, we have added the relevant inference.

      (7) Line 80-82:

      Again, considering the work of previous authors, this target is not newly discovered. Please consider toning down this statement 'This newly discovered selective target for antimicrobial agents provides a valuable resource for the design and development of targeted pesticides.'

      We have rewritten the description of this sentence.

      (8) Line 138: If the authors have identified DHODH in experimental groups (I assume in F. graminearum), what was the exact locus tag or gene name in F. graminearum, and why not just continue with this gene you identified or what is the point of doing a blast again to find the gene if the DHODH gene if it already came up in your transcriptomic or metabolic studies? This unfortunately doesn't make sense but could be explained better.

      The information of FgDHODHII (gene ID: FGSG_09678) has been added. We have revised this part.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 40:

      Please add a reference.

      We have added the reference

      (2) Line 47:

      Please add a reference.

      We have added the reference.

      (3) Line 50:

      The lack of target diversity in existing fungicides doesn't necessarily serve as a reason for discovering new targets being more challenging than identifying new fungicides within existing categories, please consider adjusting the argument here. Instead, the authors can consider reasons for the lack of new targets in the field.

      We have revised the description.

      (4) Line 63:

      Please cite your source with the new technology.

      We have added the reference.

      (5) Line 68:

      What are you referring to for "targeted medicine", do you have a reference?

      We have revised the description and the reference.

      (6) Line 74:

      One of the papers referred to "quinoxyfen", what are the similarities and differences between the two? Please elaborate for the readership.

      Quinoxyfen, similar to quinofumelin, contains a quinoline ring structure. It inhibits mycelial growth by disrupting the MAP kinase signaling pathway in fungi (https://www.frac.info). In addition, quinoxyfen still exhibits excellent antifungal activity against the quinofumelin-resistant mutants (the findings from our group), indicating that action mechanism for quinofumelin and quinoxyfen differ.

      (7) Line 84:

      Please introduce why RNA-Seq was designed in the study first. What were the groups compared? How was the experiment set up? Without this background, it is hard to know why and how you did the experiment.

      According to your suggestions, we have added the description in Section Results. In addition, the experimental process was described in Section Materials and methods as follows: A total of 20 mL of YEPD medium containing 1 mL of conidia suspension (1×105 conidia/mL) was incubated with shaking (175 rpm/min) at 25°C. After 24 h, the medium was added with quinofumelin at a concentration of 1 μg/mL, while an equal amount of dimethyl sulfoxide was added as the control (CK). The incubation continued for another 48 h, followed by filtration and collection of hyphae. Carry out quantitative expression of genes, and then analyze the differences between groups based on the results of DESeq2 for quantitative expression.

      (8) Figures:

      The figure labeling is missing (Figures 1,2,3 etc). Please re-order your figure to match the text

      The figures have been inserted.

      (9) Line. 97:

      "Volcano plot" is a common plot to visualize DEGs, you can directly refer to the name.

      We have revised the description.

      (10) Figure 1d, 1e:

      Can you separate down- and up-regulated genes here? Does the count refer to gene number?

      The expression information for down- and up-regulated genes is presented in Figure 1a and 1b. However, these bubble plots do not distinguish down- and up-regulated genes. Instead, they only display the significant enrichment of differentially expressed genes in specific metabolic pathways. To more clearly represent the data, we have added the detailed counts of down- and up-regulated genes for each metabolic pathway in Supplementary Table S1 and S2. Here, the term "count" refers to differentially expressed genes that fall within a certain pathway.

      (11) Line 111:

      Again, no reasoning or description of why and how the experiment was done here.

      Based on the results of KEGG enrichment analysis, DEMs are associated with pathways such as thiamine metabolism, tryptophan metabolism, nitrogen metabolism, amino acid sugar and nucleotide sugar metabolism, pantothenic acid and CoA biosynthesis, and nucleotide sugar production compounds synthesis. To specifically investigate the metabolic pathways involved action mechanism of quinofumelin, we performed further metabolomic experiments. Therefore, we have added this description according the reviewer’s suggestions.

      (12) Figure 2a:

      It seems many more metabolites were reduced than increased. Is this expected? Due to the antifungal activity of this compound, how sick is the fungus upon treatment? A physiological study on F. graminearum (in a dose-dependent manner) should be done prior to the omics study. Why do you think there's a stark difference between positive and negative modes in terms of number of metabolites down- and up-regulated?

      Quinofumelin demonstrates exceptional antifungal activity against Fusarium graminearum. The results indicate that the number of reduced metabolites significantly exceeds the number of increased metabolites upon quinofumelin treatment. Mycelial growth is markedly inhibited under quinofumelin exposure. Prior to conducting omics studies, we performed a series of physiological and biochemical experiments (refer to Qian Xiu's dissertation https://paper.njau.edu.cn/openfile?dbid=72&objid=50_49_57_56_49_49&flag=free). Upon quinofumelin treatment, the number of down-regulated metabolites notably surpasses that of up-regulated metabolites compared to the control group. Based on the findings from the down-regulated metabolites, we conducted experiments by exogenously supplementing these metabolites under quinofumelin treatment to investigate whether mycelial growth could be restored. The results revealed that only the exogenous addition of uracil can restore mycelial growth impaired by quinofumelin.

      Quinofumelin exhibits an excellent antifungal activity against F. graminearum. At a concentration of 1 μg/mL, quinofumelin inhibits mycelial growth by up to 90%. This inhibitory effect indicates that life activities of F. graminearum are significantly disrupted by quinofumelin. Consequently, there is a marked difference in down- and up-regulated metabolites between quinofumelin-treated group and untreated control group. The detailed results were presented in Figures 1 and 2.

      (13) Figure 2e:

      This is a good analysis. To help represent the data more clearly, the authors can consider representing the expression using fold change with a p-value for each gene.

      To more clearly represent the data, we have incorporated the information on significant differences in metabolites in the de novo pyrimidine biosynthesis pathway, as affected by quinofumelin, in accordance with the reviewer’s suggestions.

      (14) Line 142:

      Please indicate fold change and p-value for statistical significance. Did you validate this by RT-qPCR?

      We validated the expression level of the DHODH gene under quinofumelin treatment using RT-qPCR. The results indicated that, upon treatment with the EC50 and EC90 concentrations of quinofumelin, the expression of the DHODH gene was significantly reduced by 11.91% and 33.77%, respectively (P<0.05). The corresponding results have been shown in Figure S4.

      (15) Line 145:

      It looks like uracil is the only metabolite differentially abundant in the samples - how did you conclude this whole pathway was impacted by the treatment?

      The experiments involving the exogenous supplementation of uracil revealed that the addition of uracil could restore mycelial growth inhibited by quinofumelin. Consequently, we infer that quinofumelin disrupts the de novo pyrimidine biosynthesis pathway. In addition, as uracil is the end product of the de novo pyrimidine biosynthesis pathway, the disruption of this pathway results in a reduction in uracil levels.

      (16) Figure 3:

      What sequence was used as the root of the tree? Why were the species chosen? Since the BLAST query was Homo sapiens sequence, would it be good to use that as the root?

      FgDHODHII sequence was used as the root of the tree. These selected fungal species represent significant plant-pathogenic fungi in agriculture production. According to your suggestion, we have removed the BLAST query of Homo sapiens in Figure 3.

      (17) Figure 4:

      How were the concentrations used to test chosen?

      Prior to this experiment, we carried out concentration-dependent exogenous supplementation experiments. The results indicated that 50 μg/mL of uracil can fully restore mycelial growth inhibited by quinofumelin. Consequently, we chose 50 μg/mL as the testing concentration.

      (18) Line 164:

      Why do you hypothesize supplementing dihydroorotate would restore resistance? The metabolite seemed accumulated in the treatment condition, whereas downstream metabolites were comparable or even depleted. The DHODH gene expression was suppressed. Would accumulation of dihydroorotate be associated with growth inhibition by quinofumelin? Please include the hypothesis and rationale for the experimental setup.

      DHODH regulates the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthesis pathway. The inhibition of DHODH by quinofumelin results in the accumulation of dihydroorotate and the depletion of the downstream metabolites, including UMP, uridine and uracil. Consequently, downstream metabolites were considered as positive controls, while upstream metabolite dihydroorotate served as a negative control. This design further demonstrates DHODH as action target of quinofumelin against F. graminearum. In addition, the accumulation of dihydroorotate is not associated with growth inhibition by quinofumelin; however, but the depletion of downstream metabolites in the de novo pyrimidine biosynthesis pathway is closely associated with growth inhibition by quinofumelin.

      (19) Line 168:

      I'm not sure if this conclusion is valid from your results in Figure 4 showing which metabolites restore growth.

      o minimize the potential influence of strain-specific effects, five strains were tested in the experiments shown in Figure 4. For each strain, the first row (first column) corresponds to control condition, while second row (first column) represents treatment with 1 μg/mL of quinofumelin, which completely inhibits mycelial growth. The second row (second column) for each strain represents the supplementation with 50 μg/mL of dihydroorotate fails to restore mycelial growth inhibited by quinofumelin. In contrast, the second row (third column, fourth column, fifth colomns) for each strain demonstrated that the supplementation of 50 μg/mL of UMP, uridine and uracil, respectively, can effectively restore mycelial growth inhibited by quinofumelin.

      (20) Figure 5a:

      The fact you saw growth of the deletion mutant means it's not lethal. However, the growth was severely inhibited.

      Our experimental results indicate that the growth of the deletion mutant is lethal. The mycelial growth observed originates from mycelial plugs that were not exposed to quinofumelin, rather than from the plates amended with quinofumelin.

      (21) Figure 5b:

      Would you expect different restoration of growth in the presence of quinofumelin vs. no treatment? The wild type control is missing here. Any conclusions about the relationship between quinofumelin, FgDHODHII, and other metabolites in the pathway?

      Under no treatment with quinofumelin, mycelial growth remains normal and does not require restoration. In the presence of quinofumelin treatment, the supplementation of downstream metabolites in the de novo pyrimidine biosynthesis pathway can restore mycelial growth that is inhibited by quinofumelin. The wild-type control group is illustrated in Figure 4. Figure 5b depicts the phenotypes of the deletion mutants. With respect to the relationship among quinofumelin, FgDHODHII, and other metabolites, quinofumelin specifically targets the key enzyme FgDHODHII in the de novo pyrimidine biosynthesis pathway, disrupting the conversion of dihydroorotate to orotate, which consequently inhibits the synthesis downstream metabolites including uracil.

      (22) Figure 6b:

      Lacking positive and negative controls (known binder and non-binder). What does the Kd (in comparison to other interactions) indicate in terms of binding strength?

      We tested the antifungal activities of publicly reported DHODH inhibitors (such as leflunomide and teriflunomide) against F. graminearum. The results showed that these inhibitors exhibited no significant inhibitory effects against the strain PH-1. Therefore, we lacked an effective chemical for use as a positive control in subsequent experiments. Biacore experiments offers detailed insights into molecular interactions between quinofumelin and DHODHII. As shown in Figure 6b, the left panel illustrates the time-dependent kinetic curve of quinofumelin binding to DHODHII. Within the first 60 s after quinofumelin was introduced onto the DHODHII surface, it bound to the immobilized DHODHII on the chip surface, with the response value increasing proportionally to the quinofumelin concentration. Following cessation of the injection at 60 s, quinofumelin spontaneously dissociated from the DHODHII surface, leading to a corresponding decrease in the response value. The data fitting curve presented on the right panel indicates that the affinity constant KD of quinofumelin for DHODHII is 6.606×10-6 M, which falls within the typical range of KD values (10-3 ~ 10-6 M) for protein-small molecule interaction patterns. A lower KD value indicates a stronger affinity; thus, quinofumelin exhibits strong binding affinity towards DHODHII.

      Reviewer #3 (Recommendations for the authors):

      The authors should add information about the other molecule within this class, ipflufenoquin, and what is known about it. There are already published data on its mode of action on DHODH and the role of pyrimidine biosynthesis.

      We have added the information regarding action mechanism of ipflufenoquin against filamentous fungi in discussion section.

      The work of Higashimura et al is not appreciated well enough as they already showed the role of quinofumelin upon DHODH II.

      We sincerely appreciate the reviewer's insightful comment regarding the work of Higashimura et al. We agree that their investigation into the role of quinofumelin in DHODH II inhibition provides critical foundational insights for this field. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of their work in the discussion section to more effectively contextualize their contributions.

      It is unclear how the protein model was established and this should be included. What species is the molecule from and how was it obtained? How are they different from Fusarium?

      The three-dimensional structural model of F. graminearum DHODHII protein, as predicted by AlphaFold, was obtained from the UniProt database. Additionally, a detailed description along with appropriate citations has been incorporated in the ‘Manuscript’ file.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      We thank the reviewer for the positive feedback on the work. The reviewer has raised two weaknesses and in the following we discuss how those can be addressed.  

      Weaknesses:

      The impact of the article is limited by using a network with discrete time- steps, and only a small number of time steps from stimulus to reward. They assume that each time step is on the order of hundreds of ms. They justify this by pointing to some slow intrinsic mechanisms, but they do not implement these slow mechanisms is a network with short time steps, instead they assume without demonstration that these could work as suggested. This is a reasonable first approximation, but its validity should be explicitly tested.

      Our goal here was to give a proof of concept that online random feedback is sufficient to train an RNN to estimate value. Indeed, it is important to show that the idea works in a model where the slow mechanisms are explicitly implemented. However, this is a non-trivial task and desired to be addressed in future works.  

      As the delay between cue and reward increases the performance decreases. This is not surprising given the proposed mechanism, but is still a limitation, especially given that we do not really know what a is the reasonable value of a single time step.

      In reply to this comment and the other reviewer's related comment, we have conducted two sets of additional simulations, one for examining incorporation of eligibility traces, and the other for considering (though not mechanistically implementing) behavioral time-scale synaptic plasticity (BTSP). We have added their results to the revised manuscript as Appendix. We think that the results addressed this point to some extent while how longer cue-reward delay can be learnt by elaboration of the model remains as a future issue.

      Reviewer #2 (Public Review):

      We thank the reviewer for the positive feedback on the work. The reviewer gave comments on our revisions, and here we discuss how those can be addressed.

      Comments on revisions: I would still want to see how well the network learns tasks with longer time delays (on the order of 100 or even 1000 timesteps). Previous work has shown that random feedback struggles to encode longer timescales (see Murray 2019, Figure 2), so I would be interested to see how that translates to the RL context in your model.

      We would like to note that in Murray et al 2019 the random feedback per se appeared not to be primarily responsible for the difficulty in encoding longer timesclaes. In the Figure 2d (Murray 2019), the author compared his RFLO (random feedback local online) and BPTT with two intermediate algorithms, which incorporated either one of the two approximations made in RFLO: i) random feedback instead of symmetric feedback, and ii) omittance of non-local effect (i.e., dependence of the derivative of the loss with respect to a given weight on the other weights). The performance difference between RFLO and BPTT was actually mostly explained by ii), as the author mentioned "The results show that the local approximation is essentially fully responsible for the performance difference between RFLO and BPTT, while there is no significant loss in performance due to the random feedback alone. (Line 6-8, page 7 of Murray, 2019, eLife)".

      Meanwhile, regarding the difference in the performance of the model with random feedback vs the model with symmetric feedback in our settings, actually it appeared (already) in the case with 6 time-steps or less (the biologically constrained model with random feedback performed worse: Fig. 6J, left).

      In practice, our model, either with random or symmetric feedback, would not be able to learn the cases with very long delays. This is indeed a limitation of our model. However, our model is critically different from the model of Murray 2019 in that we use RL rather than supervised learning and we use a scalar bootstrapped (TD) reward-prediction-error rather than the true output error. We would think that these differences may be major reasons for the limited learning ability of our model.

      Regarding the feasibility of the model when tasks involve longer time delays: Indeed this is a problem and the other reviewers have also raised the same point. Our model can be extended by incorporating either a kind of eligibility trace (similar one to those contained in RFLO and e-prop) or behavioral time-scale synaptic plasticity (BTSP), and we have added the results of simulations incorporating each to the revised manuscript as Appendix. But how longer cue-reward delay can be learnt by elaboration of the model remains as a future issue.

      Reviewer #3 (Public Review):

      Comments on revisions: Thank you for addressing all my comments in your reply.

      We are happy to learn that all concerns raised by the reviewer in the previous round were addressed adequately. We agree with the reviewer that there are several ways the work can be improved.

      The various points raised by the reviewers at weaknesses are desired to be taken up in future works.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors):

      Suggestions:

      Although this study has an impressive dataset, I felt that some parts of the discussion would benefit from further explanation, specifically when discussing the differences in female aggression direction between groups with different sex compositions. In the discussion is suggested that males buffer female-on-female aggression and that they 'support' lower-ranking females (see line 212), however, the study only tested the sex composition of the group and does not provide any evidence of this buffering. Thus, I would suggest adding more information on how this buffering or protection from males might manifest (for example, listing male behaviours that might showcase this protection) or referencing other studies that support this claim. Another example of this can be found in lines 223-224, which suggests that females choose lower-ranking individuals when they are presented with a larger pool of competitors; however, in lines 227-228, it's stated that this result contradicts previous work in baboons, which makes the previous claim seem unjustified. I recommend adding other examples from studies that support the results of this paper and adding a line that addresses reasons why these differences between gorillas and baboons might be caused (for example, different social dynamics or ecological constraints). In addition, I suggest the inclusion of physiological data such as direct measures of energy expenditure, caloric intake, or hormone levels, as it would strengthen the claims made in the second paragraph of the discussion. However, I understand this might not be possible due to data or time constraints, so I suggest adding more robust justification on why lactation and pregnancy were used as a proxy for energetic need. In the methods (lines 127-128), it is unclear which phase of the pregnancy or lactation is more energetically demanding. I would also suggest adding a comment on the limitations of using reproductive state to infer energetic need. Lastly, if the data is available, I believe it would be interesting to add body size and age of the females or the size difference between aggressor and target as explanatory variables in the models to test if physiological characteristics influence female-on-female aggression.

      Male support:

      We have now added more references (Watts 1994, 1997) and enriched our arguments regarding male presence buffering aggression. Previous research suggests that male gorillas may support lower-ranking females and they may intervene in female-female conflicts (Sicotte 2002). Unfortunately, our dataset did not allow us to test for male protection. We conduct proximity scans every 10 minutes and these scans are not associated to each interaction, meaning that we cannot reliably test if proximity to a male influences the likelyhood to receive aggression.

      Number of competitors and choice of weaker competitors:

      We added a very relevant reference in humans, showing that people choose weaker competitors when they have they can choose. We removed the example to baboons because it used sex ratio and the relevance to our study was not that straightforward.

      Reproductive state as a proxy for energetic needs:

      We now mention clearly that reproductive state is an indirect measure of energetic needs.

      We rephrased our methods to: “Lactation is often considered more energetically demanding than pregnancy as a whole but the latest stages of pregnancy are highly energetically demanding, potentially even more than lactation”

      Unfortunately, we do not have access to physiological and body size data. Regarding female age, for many females, ages are estimates with errors up to a decade, and thus, we choose not to use them as a reliable predictor. Having accurate values for all these variables, would indeed be very valuable and improve the predicting power of our study.

      Recommendations for writing and presentation:

      Overall, the manuscript is well-organised and well-written, but there are certain areas that could improve in clarity. In the introduction, I believe that the term 'aggression heuristic' should be introduced earlier and properly defined in order to accommodate a broader audience. The main question and aims of the study are not stated clearly in the last paragraph of the introduction. In the methods, I think it would improve the clarity to add a table for the classification of each type of agonistic interactions instead of naming them in the text. For example, a table that showcase the three intensity categories (severe, mild and moderate), than then dives into each behaviour (e.g. hit, bite, attack, etc.) and a short description of these behaviours, I think this would be helpful since some of the behaviours mentioned can be confusing (what's the difference between attack, hit and fight?). In addition, in line 104, it states that all interactions were assigned equal intensity, which needs to be explained.

      We now define aggression heuristics in both the abstract and the first paragraph of the introduction. We have also explained aggressive interactions that their nature was not obvious from their names. Hopefully, these explanations make clear the differences among the recorded behaviours.

      We have now specified that the “equal intensity” refers to avoidances and displacements used to infer power relationships: “We assigned to all avoidance/displacement interactions equal intensity, that is, equal influence to the power relationship of the interacting individuals”

      Minor corrections:

      (1) In line 41, there is a 1 after 'similar'. I am unsure if it's a mistake or a reference.

      We corrected the typo.

      (2) In lines 68-69, there is mention of other studies, but no references are provided.

      We added citations as suggested.

      (3) Remove the reference to Figure 1 (line 82) from the introduction; the figure should be referenced in the text just before the image, however, your figure is in a different section.

      We removed the reference as suggested.

      (4) Line 98 and 136, it's written 'ad libtum' but the correct spelling is 'ad libitum'.

      We corrected the typo.

      (5) Figure 3, remove the underscores between the words in the axis titles.

      We removed the underscores.

      Reviewer #2 (Recommendations for the authors):

      Here, I have outlined some specific suggestions that require attention. Addressing these comments will enhance the readability and enhance the quality of the manuscript.

      (1) L69. Add citation here, indicating the studies focusing on aggression rates.

      We added citations as suggested.

      (2) L88. The study periods used in this study and the authors' previous study (Reference 11) are different. So please add one table as Table 1 showing the details info on the sampling efforts and data included in their analysis of this study. For example, the study period, the numbers of females and males, sampling hours, the number of avoidance/displacement behaviors used to calculate individual Elo-ratings, and the number of mild/moderate/severe aggressive interactions, etc.

      We have now added another table, as suggested (new Table 1) and we have also made clear that we used the hierarchies presented in detail in (Smit & Robbins 2025).

      (3) L103. If readers do not look over Reference 25 on purpose, they do not know what the authors want to talk about and why they mention the optimized Elo-rating method. Clarify this statement and add more content explaining the differences between the two methods, or just remove it.

      We rephrased the text and in response to the previous comment, we clearly state that there are more details about our approach in Smit & Robbins 2025. At the end of the relevant sentence, we added the following parenthesis “(see “traditional Elo rating method”; we do not use the “optimized Elorating method” as it yields similar results and it is not widely used)” and we removed the sentence referring to the optimized Elo-rating method.

      (4) L110. Here, the authors stated that the individual with the standardized Elo-score 1 was the highest-ranking. L117, the "aggression direction" score of each aggressive interaction was the standardized Elo-score of the aggressor, subtracting that of the recipient. So, when the "aggression direction" score was 1, it should mean that the aggressor was the highest-ranking and the recipient was the lowest-ranking female. This is not as the authors stated in L117-120 (where the description was incorrectly reversed). Please clarify.

      The highest ranking individual has indeed Elo_score equal to 1 and we calculated the interaction score (or "aggression direction score") of each aggressive interaction by subtracting the standardized Elo-score of the aggressor from that of the recipient (Elo_recepient – Elo_aggressor). So, when the aggressor is the lowest-ranking female (Elo_score=0) and the recipient the highestranking female one (Elo_score=1), the "aggression direction score" is 1-0 = 1.

      (5) Regarding point 3 of the Public Review, please also revise/expand the paragraph L193-208 in the Discussion section accordingly.

      Please see our response to the public review. We have enriched the results section, added pairwise comparisons in a new table (Table 2) and modified the discussion accordingly.

      (6) Table 1. It's not clear why authors added the column 'Aggression Rate' but did not provide any explanation in the Methods/Results section. How did they calculate the correlation between each tested variable and the "overall adult female aggression rates"? Correlating the number of females in the first trimester of female pregnancy with the female aggression rates in each study group? What did the correlation coefficients mean? L202-204 may provide some hints as to why the authors introduced the Aggression Rate. But it should be made clear in the previous text.

      We now added more details in the legend of the table to make our point clear: “To highlight that aggression rates can increase due to increase in interactions of different score, we also include the effect of some of the tested variables on overall adult female aggression rates, based on results of linear mixed effects models from (Smit & Robbins 2024).”  We did not include detailed methods to calculate those results because they are detailed in (Smit & Robbins 2024). We find it valuable to show the results of both aggression rates and aggression directionality according to the same predictor variables as a means to clarify that aggression rates and aggression directionality are not always coordinated to one another (they do not always change in a consistent manner relative to one another).

      (7) L166.This is not rigorous. Please rephrase. There is only one western gorilla group containing only one resident male included in the analysis.

      We have toned down our text: “Our results did not show any significant difference between femalefemale aggression patterns within the one western and four mountain gorillas groups”

      (8) L167. I don't think the interaction scores in the third trimester of female pregnancy were significantly higher than those in the first trimester. The same concern applies in L194-195.

      We have now added a new table with post hoc pairwise comparisons among the different reproductive states that clarifies that.

      (9) L202. There is no column 'Aggression rates' in Table 1 of Reference 11.

      We have rephrased to make clear that we refer to Table 1 of the present study.

      (10) L204-205. Reference 49. Maybe not a proper citation here. This claim requires stronger evidence or further justification. Additionally, please rephrase and clarify the arguments in L204208 for better readability and precision.

      We have added three more references and rephrased to clarify our argument.

      Reviewer #3 (Recommendations for the authors):

      (1) Line 41: The word "similar" is misspelled.

      We corrected the typo.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Chao et al. produced an updated version of the SpliceAI package using modern deep learning frameworks. This includes data preprocessing, model training, direct prediction, and variant effect prediction scripts. They also added functionality for model fine-tuning and model calibration. They convincingly evaluate their newly trained models against those from the original SpliceAI package and investigate how to extend SpliceAI to make predictions in new species. While their comparisons to the original SpliceAI models are convincing on the grounds of model performance, their evaluation of how well the new models match the original's understanding of non-local mutation effects is incomplete. Further, their evaluation of the new calibration functionality would benefit from a more nuanced discussion of what set of splice sites their calibration is expected to hold for, and tests in a context for which calibration is needed.

      Strengths:

      (1) They provide convincing evidence that their new implementation of SpliceAI matches the performance of the original model on a similar dataset while benefiting from improved computational efficiencies. This will enable faster prediction and retraining of splicing models for new species as well as easier integration with other modern deep learning tools.

      (2) They produce models with strong performance on non-human model species and a simple, well-documented pipeline for producing models tuned for any species of interest. This will be a boon for researchers working on splicing in these species and make it easy for researchers working on new species to generate their own models.

      (3) Their documentation is clear and abundant. This will greatly aid the ability of others to work with their code base.

      We thank the reviewer for these positive comments.  

      Weaknesses:

      (1) The authors' assessment of how much their model retains SpliceAI's understanding of "nonlocal effects of genomic mutations on splice site location and strength" (Figure 6) is not sufficiently supported. Demonstrating this would require showing that for a large number of (non-local) mutations, their model shows the same change in predictions as SpliceAI or that attribution maps for their model and SpliceAI are concordant even at distances from the splice site. Figure 6A comes close to demonstrating this, but only provides anecdotal evidence as it is limited to 2 loci. This could be overcome by summarizing the concordance between ISM maps for the two models and then comparing across many loci. Figure 6B also comes close, but falls short because instead of comparing splicing prediction differences between the models as a function of variants, it compares the average prediction difference as a function of the distance from the splice site. This limits it to only detecting differences in the model's understanding of the local splice site motif sequences. This could be overcome by looking at comparisons between differences in predictions with mutants directly and considering non-local mutants that cause differences in splicing predictions.

      We agree that two loci are insufficient to demonstrate preservation of non-local effects. To address this, we have extended our analysis to a larger set of sites: we randomly sampled 100 donor and 100 acceptor sites, applied our ISM procedure over a 5,001 nt window centered at each site for both models, and computed the ISM map as before. We then calculated the Pearson correlation between the collection of OSAI<sub>MANE</sub> and SpliceAI ISM importance scores. We also created 10 additional ISM maps similar to those in Figure 6A, which are now provided in Figure S23.

      Follow is the revised paragraph in the manuscript’s Results section:

      First, we recreated the experiment from Jaganathan et al. in which they mutated every base in a window around exon 9 of the U2SURP gene and calculated its impact on the predicted probability of the acceptor site. We repeated this experiment on exon 2 of the DST gene, again using both SpliceAI and OSAI<sub>MANE</sub> . In both cases, we found a strong similarity between the resultant patterns between SpliceAI and OSAI<sub>MANE</sub> , as shown in Figure 6A. To evaluate concordance more broadly, we randomly selected 100 donor and 100 acceptor sites and performed the same ISM experiment on each site. The Pearson correlation between SpliceAI and OSAI<sub>MANE</sub> yielded an overall median correlation of 0.857 (see Methods; additional DNA logos in Figure S23). 

      To characterize the local sequence features that both models focus on, we computed the average decrease in predicted splice-site probability resulting from each of the three possible singlenucleotide substitutions at every position within 80bp for 100 donor and 100 acceptor sites randomly sampled from the test set (Chromosomes 1, 3, 5, 7, and 9). Figure 6B shows the average decrease in splice site strength for each mutation in the format of a DNA logo, for both tools.

      We added the following text to the Methods section:

      Concordance evaluation of ISM importance scores between OSAI<sub>MANE</sub> and SpliceAI

      To assess agreement between OSAI<sub>MANE</sub> and SpliceAI across a broad set of splice sites, we applied our ISM procedure to 100 randomly chosen donor sites and 100 randomly chosen acceptor sites. For each site, we extracted a 5,001 nt window centered on the annotated splice junction and, at every coordinate within that window, substituted the reference base with each of the three alternative nucleotides. We recorded the change in predicted splice-site probability for each mutation and then averaged these Δ-scores at each position to produce a 5,001-score ISM importance profile per site.

      Next, for each splice site we computed the Pearson correlation coefficient between the paired importance profiles from ensembled OSAI<sub>MANE</sub> and ensembled SpliceAI. The median correlation was 0.857 for all splice sites. Ten additional zoom-in representative splice site DNA logo comparisons are provided in Supplementary Figure S23.

      (2) The utility of the calibration method described is unclear. When thinking about a calibrated model for splicing, the expectation would be that the models' predicted splicing probabilities would match the true probabilities that positions with that level of prediction confidence are splice sites. However, the actual calibration that they perform only considers positions as splice sites if they are splice sites in the longest isoform of the gene included in the MANE annotation. In other words, they calibrate the model such that the model's predicted splicing probabilities match the probability that a position with that level of confidence is a splice site in one particular isoform for each gene, not the probability that it is a splice site more broadly. Their level of calibration on this set of splice sites may very well not hold to broader sets of splice sites, such as sites from all annotated isoforms, sites that are commonly used in cryptic splicing, or poised sites that can be activated by a variant. This is a particularly important point as much of the utility of SpliceAI comes from its ability to issue variant effect predictions, and they have not demonstrated that this calibration holds in the context of variants. This section could be improved by expanding and clarifying the discussion of what set of splice sites they have demonstrated calibration on, what it means to calibrate against this set of splice sites, and how this calibration is expected to hold or not for other interesting sets of splice sites. Alternatively, or in addition, they could demonstrate how well their calibration holds on different sets of splice sites or show the effect of calibrating their models against different potentially interesting sets of splice sites and discuss how the results do or do not differ.

      We thank the reviewer for highlighting the need to clarify our calibration procedure. Both SpliceAI and OpenSpliceAI are trained on a single “canonical” transcript per gene: SpliceAI on the hg 19 Ensembl/Gencode canonical set and OpenSpliceAI on the MANE transcript set. To calibrate each model, we applied post-hoc temperature scaling, i.e. a single learnable parameter that rescales the logits before the softmax. This adjustment does not alter the model’s ranking or discrimination (AUC/precision–recall) but simply aligns the predicted probabilities for donor, acceptor, and non-splice classes with their observed frequencies. As shown in our reliability diagrams (Fig. S16-S22), temperature scaling yields negligible changes in performance, confirming that both SpliceAI and OpenSpliceAI were already well-calibrated. However, we acknowledge that we didn’t measure how calibration might affect predictions on non-canonical splice sites or on cryptic splicing. It is possible that calibration might have a detrimental effect on those, but because this is not a key claim of our paper, we decided not to do further experiments. We have updated the manuscript to acknowledge this potential shortcoming; please see the revised paragraph in our next response.

      (3) It is difficult to assess how well their calibration method works in general because their original models are already well calibrated, so their calibration method finds temperatures very close to 1 and only produces very small and hard to assess changes in calibration metrics. This makes it very hard to distinguish if the calibration method works, as it doesn't really produce any changes. It would be helpful to demonstrate the calibration method on a model that requires calibration or on a dataset for which the current model is not well calibrated, so that the impact of the calibration method could be observed.

      It’s true that the models we calibrated didn’t need many changes. It is possible that the calibration methods we used (which were not ours, but which were described in earlier publications) can’t improve the models much. We toned down our comments about this procedure, as follows.

      Original:

      “Collectively, these results demonstrate that OSAIs were already well-calibrated, and this consistency across species underscores the robustness of OpenSpliceAI’s training approach in diverse genomic contexts.” Revised:

      “We observed very small changes after calibration across phylogenetically diverse species, suggesting that OpenSpliceAI’s training regimen yielded well‐calibrated models, although it is possible that a different calibration algorithm might produce further improvements in performance.”

      Reviewer #2 (Public review):

      Summary:

      The paper by Chao et al offers a reimplementation of the SpliceAI algorithm in PyTorch so that the model can more easily/efficiently be retrained. They apply their new implementation of the SpliceAI algorithm, which they call OpenSpliceAI, to several species and compare it against the original model, showing that the results are very similar and that in some small species, pretraining on other species helps improve performance.

      Strengths:

      On the upside, the code runs fine, and it is well documented.

      Weaknesses:

      The paper itself does not offer much beyond reimplementing SpliceAI. There is no new algorithm, new analysis, new data, or new insights into RNA splicing. There is no comparison to many of the alternative methods that have since been published to surpass SpliceAI. Given that some of the authors are well-known with a long history of important contributions, our expectations were admittedly different. Still, we hope some readers will find the new implementation useful.

      We thank the reviewer for the feedback. We have clarified that OpenSpliceAI is an open-source PyTorch reimplementation optimized for efficient retraining and transfer learning, designed to analyze cross-species performance gains, and supported by a thorough benchmark and the release of several pretrained models to clearly position our contribution.

      Reviewer #3 (Public review):

      Summary:

      The authors present OpenSpliceAI, a PyTorch-based reimplementation of the well-known SpliceAI deep learning model for splicing prediction. The core architecture remains unchanged, but the reimplementation demonstrates convincing improvements in usability, runtime performance, and potential for cross-species application.

      Strengths:

      The improvements are well-supported by comparative benchmarks, and the work is valuable given its strong potential to broaden the adoption of splicing prediction tools across computational and experimental biology communities.

      Major comments:

      Can fine-tuning also be used to improve prediction for human splicing? Specifically, are models trained on other species and then fine-tuned with human data able to perform better on human splicing prediction? This would enhance the model's utility for more users, and ideally, such fine-tuned models should be made available.

      We evaluated transfer learning by fine-tuning models pretrained on mouse (OSAI<sub>Mouse</sub>), honeybee (OSAI<sub>Honeybee</sub>), Arabidopsis (OSAI<sub>Arabidopsis</sub>), and zebrafish (OSAI<sub>Zebrafish</sub>) on human data. While transfer learning accelerated convergence compared to training from scratch, the final human splicing prediction accuracy was comparable between fine-tuned and scratch-trained models, suggesting that performance on our current human dataset is nearing saturation under this architecture.

      We added the following paragraph to the Discussion section:

      We also evaluated pretraining on mouse (OSAI<sub>Mouse</sub>), honeybee (OSAI<sub>Honeybee</sub>), zebrafish (OSAI<sub>Zebrafish</sub>), and Arabidopsis (OSAI<sub>Arabidopsis</sub>) followed by fine-tuning on the human MANE dataset. While cross-species pretraining substantially accelerated convergence during fine-tuning, the final human splicing-prediction accuracy was comparable to that of a model trained from scratch on human data. This result indicates that our architecture seems to capture all relevant splicing features from human training data alone, and thus gains little or no benefit from crossspecies transfer learning in this context (see Figure S24).

      Reviewer #1 (Recommendations for the authors):

      We thank the editor for summarizing the points raised by each reviewer. Below is our point-bypoint response to each comment:

      (1) In Figure 3 (and generally in the other figures) OpenSpliceAI should be replaced with OSAI_{Training dataset} because otherwise it is hard to tell which precise model is being compared. And in Figure 3 it is especially important to emphasize that you are comparing a SpliceAI model trained on Human data to an OSAI model trained and evaluated on a different species.

      We have updated the labels in Figures 3, replacing “OpenSpliceAI” with “OSAI_{training dataset}” to more clearly specify which model is being compared.

      (2) Are genes paralogous to training set genes removed from the validation set as well as the test set? If you are worried about data leakage in the test set, it makes sense to also consider validation set leakage.

      Thank you for this helpful suggestion. We fully agree, and to avoid any data leakage we implemented the identical filtering pipeline for both validation and test sets: we excluded all sequences paralogous or homologous to sequences in the training set, and further removed any sequence sharing > 80 % length overlap and > 80 % sequence identity with training sequences. The effect of this filtering on the validation set is summarized in Supplementary Figure S7C.

      Figure S7. (C) Scatter plots of DNA sequence alignments between validation and training sets for Human-MANE, mouse, honeybee, zebrafish, and Arabidopsis. Each dot represents an alignment, with the x-axis showing alignment identity and the y-axis showing alignment coverage. Alignments exceeding 80% for both identity and coverage are highlighted in the redshaded region and were excluded from the test sets.

      Reviewer #3 (Recommendations for the authors):

      (1) The legend in Figure 3 is somewhat confusing. The labels like "SpliceAI-Keras (species name)" may imply that the model was retrained using data from that species, but that's not the case, correct?

      Yes, “SpliceAI-Keras (species name)” was not retrained; it refers to the released SpliceAI model evaluated on the specified species dataset. We have revised the Figure 3 legends, changing “SpliceAI-Keras (species name)” to “SpliceAI-Keras” to clarify this.

      (2) Please address the minor issues with the code, including ensuring the conda install works across various systems.

      We have addressed the issues you mentioned. OpenSpliceAI is now available on Conda and can be installed with:  conda install openspliceai. 

      The conda package homepage is at: https://anaconda.org/khchao/openspliceai We’ve also corrected all broken links in the documentation.

      (3) Utility:

      I followed all the steps in the Quick Start Guide, and aside from the issues mentioned below, everything worked as expected.

      I attempted installation using conda as described in the instructions, but it was unsuccessful. I assume this method is not yet supported.

      In Quick Start Guide: predict, the link labeled "GitHub (models/spliceai-mane/10000nt/)" appears to be incorrect. The correct path is likely "GitHub (models/openspliceaimane/10000nt/)".

      In Quick Start Guide: variant (https://ccb.jhu.edu/openspliceai/content/quick_start_guide/quickstart_variant.html#quick-startvariant), some of the download links for input files were broken. While I was able to find some files in the GitHub repository, I think the -A option should point to data/grch37.txt, not examples/data/input.vcf, and the -I option should be examples/data/input.vcf, not data/vcf/input.vcf.

      Thank you for catching these issues. We’ve now addressed all issues concerning Conda installation and file links. We thank the editor for thoroughly testing our code and reviewing the documentation.

    1. Author Response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      Summary:

      This work uses a novel, ethologically relevant behavioral task to explore decision-making paradigms in C. elegans foraging behavior. By rigorously quantifying multiple features of animal behavior as they navigate in a patch food environment, the authors provide strong evidence that worms exhibit one of three qualitatively distinct behavioral responses upon encountering a patch: (1) "search", in which the encountered patch is below the detection threshold; (2) "sample", in which animals detect a patch encounter and reduce their motor speed, but do not stay to exploit the resource and are therefore considered to have "rejected" it; and (3) "exploit", in which animals "accept" the patch and exploit the resource for tens of minutes. Interestingly, the probability of these outcomes varies with the density of the patch as well as the prior experience of the animal. Together, these experiments provide an interesting new framework for understanding the ability of the C. elegans nervous system to use sensory information and internal state to implement behavioral state decisions.

      Strengths:

      The work uses a novel, neuroethologically-inspired approach to studying foraging behavior

      The studies are carried out with an exceptional level of quantitative rigor and attention to detail

      Powerful quantitative modeling approaches including GLMs are used to study the behavioral states that worms enter upon encountering food, and the parameters that govern the decision about which state to enter

      The work provides strong evidence that C. elegans can make 'accept-reject' decisions upon encountering a food resource

      Accept-reject decisions depend on the quality of the food resource encountered as well as on internally represented features that provide measurements of multiple dimensions of internal state, including feeding status and time

      Reviewer #2 (Public review):

      This study provides an experimental and computational framework to examine and understand how C. elegans make decisions while foraging environments with patches of food. The authors show that C. elegans reject or accept food patches depending on a number of internal and external factors.

      The key novelty of this paper is the explicit demonstration of behavior analysis and quantitative modeling to elucidate decision-making processes. In particular, the description of the exploring vs. exploiting phases, and sensing vs. non-sensing categories of foraging behavior based on the clustering of behavioral states defined in a multi-dimensional behavior-metrics space, and the implementation of a generalized linear model (GLM) whose parameters can provide quantitative biological interpretations.

      The work builds on the literature of C. elegans foraging by adding the reject/accept framework.

      Reviewer #3 (Public review):

      Summary:

      In this study by Haley et al, the authors investigated explore-exploit foraging using C. elegans as a model system. Through an elegant set of patchy environment assays, the authors built a GLM based on past experience that predicts whether an animal will decide to stay on a patch to feed and exploit that resource, instead of choosing to leave and explore other patches.

      Strengths:

      I really enjoyed reading this paper. The experiments are simple and elegant, and address fundamental questions of foraging theory in a well-defined system. The experimental design is thoroughly vetted, and the authors provide a considerable volume of data to prove their points. My only criticisms have to do with the data interpretation, which I think are easily addressable.

      Weaknesses:

      History-dependence of the GLM

      The logistic GLM seems like a logical way to model a binary choice, and I think the parameters you chose are certainly important. However, the framing of them seem odd to me. I do not doubt the animals are assessing the current state of the patch with an assessment of past experience; that makes perfect logical sense. However, it seems odd to reduce past experience to the categories of recently exploited patch, recently encountered patch, and time since last exploitation. This implies the animals have some way of discriminating these past patch experiences and committing them to memory. Also, it seems logical that the time on these patches, not just their density, should also matter, just as the time without food matters. Time is inherent to memory. This model also imposes a prior categorization in trying to distinguish between sensed vs. not-sensed patches, which I criticized earlier. Only "sensed" patches are used in the model, but it is questionable whether worms genuinely do not "sense" these patches.

      It seems more likely that the worm simply has some memory of chemosensation and relative satiety, both of which increase on patches and decrease while off of patches. The magnitudes are likely a function of patch density. That being said, I leave it up to the reader to decide how best to interpret the data.

      Model design: We agree with the reviewer that past experience is not likely to be discretized into the exact parameters of our model. We have added to our manuscript to further clarify this point (lines 645-647). Investigating the mechanisms behind this behavior is beyond the scope of this project but is certainly an exciting trajectory for future C. elegans research.

      osm-6

      The argument is that osm-6 animals can't sense food very well, so when they sense it, they enter the exploitation state by default. That is what they appear to do, but why? Clearly they are sensing the food in some other way, correct? Are ciliated neurons the only way worms can sense food? Don't they also actively pump on food, and can therefore sense the food entering their pharynx? I think you could provide further insight by commenting on this. Perhaps your decision model is dependent on comparing environmental sensing with pharyngeal sensing? Food intake certainly influences their decision, no? Perhaps food intake triggers exploitation behavior, which can be over-run by chemo/mechanosensory information?

      osm-6 behavior: We thank the reviewer for pointing out the need to further elaborate on a mechanistic hypothesis to explain the behavior of osm-6 sensory mutants. We agree with the reviewer’s speculation that post-ingestive and other non-ciliary sensory cues likely drive detection of food. We have added additional commentary to our manuscript to state this (lines 529-538).

      Impact

      I think this work will have a solid impact on the field, as it provides tangible variables to test how animals assess their environment and decide to exploit resources. I think the strength of this research could be strengthened by a reassessment of their model that would both simplify it and provide testable timescales of satiety/starvation memory.

      Reviewer #2 (Recommendations for the authors):

      The authors have addressed most of my concerns.

      Reviewer #3 (Recommendations for the authors):

      The authors provide a considerable amount of processed data (great, thank you!), but it would be even better if they provided the raw data of the worm coordinates, and when and where these coordinates overlapped with patches. This is the raw data that was ultimately used for all the quantifications in the paper, and would be incredibly useful to readers who are interested in modeling the data themselves.

      This should not be prohibitive.

      Data Availability: We thank the reviewer for pointing out this need. We are uploading all processed data (e.g. worm coordinates relative to the arena and patches) to a curated data storage server. We have updated our data availability statement to state this (lines 684-688).

      Search vs. sample & sensing vs. non-sensing.

      The different definitions of behaviors in Figures 2H-K are a bit confusing. I think the confusion stems in part from the changing terms and color associations in Figures 2 H-K. Essentially the explore density in Figure 2 H is split into two densities based on the two densities (sensing vs. non-responding) observed in Figure 2I. In turn, the sensing density in Figure 2I is split into two densities (explore vs exploit) based on the two densities observed in Figure 2 H. But the way the figures are colored, yellow means search (Figure 2H) and non-responding (Figure 2I), green means exploit (Figure 2H) which includes sensing and non-responding, but also exclusively sensing (Figure 2I), and blue consistently means exploit in both figures. It might help to use two different color codes for Figures 2H and 2I, and then in 2J you define search as explore AND non-responding, sample as explore AND sensing, and exploit as exploit.

      Color schema: While we understand the confusion, we believe that introducing additional colors may also present some misunderstandings. We have decided to leave the figure as it is.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Two important factors in visual performance are the resolving power of the lens and the signal-to-noise ratio of the photoreceptors. These both compete for space: a larger lens has improved resolving power over a smaller one, and longer photoreceptors capture more photons and hence generate responses with lower noise. The current paper explores the tradeoff of these two factors, asking how space should be allocated to maximize eye performance (measured as encoded information).

      Your summary is clear, concise and elegant. The competition is not just for space, it is for space, materials and energy. We  now emphasise that we are considering these three costs in our rewrites of the Abstract and the first paragraph of the Discussion.  

      Strengths:

      The topic of the paper is interesting and not well studied. The approach is clearly described and seems appropriate (with a few exceptions - see weaknesses below). In most cases, the parameter space of the models are well explored and tradeoffs are clear.  

      Weaknesses:

      Light level

      The calculations in the paper assume high light levels (which reduces the number of parameters that need to be considered). The impact of this assumption is not clear. A concern is that the optimization may be quite different at lower light levels. Such a dependence on light level could explain why the model predictions and experiment are not in particularly good agreement. The paper would benefit from exploring this issue.

      Thank you for raising this point. We briefly explained in our original Discussion, under Understanding the adaptive radiation of eyes (Version 1, Iines 756 – 762), how our method can be modified to investigate eyes adapted for lower light levels. We have some thoughts on how eyes might be adapted. In general, transduction rates are increased by increasing D, reducing f, increasing d<sub>rh</sub> and increasing L . In addition, d<sub>rh</sub> is increased to allow for a larger D within the constraint of eye radius/corneal surface area, and to avoid wasteful oversampling (the changes in D, f and d<sub>rh</sub> increase acceptance angle ∆ρ). We suspect that in eyes optimised for the efficient use of space, materials and energy the increases in L will be relatively small, first because  increasing D, reducing f and increasing d<sub>rh</sub> are much more effective at increasing transduction rate than increasing L. Second, increasing sensitivity by reducing f decreases the cost Vo whereas increasing sensitivity by increasing L increases the cost V<sub>ph</sub>. This disadvantage, together with exponential absorption, might explain why L is only 10% - 20% longer in the apposition eyes of nocturnal bees (Somanathan et al, J. comp. Physiol. A195, 571583, 2009). Because this line of argument is speculative and enters new territory, we have not included it in our revised version. We already present a lot of new material for readers to digest, and we agree with referee 2 that “It is possible to extend the theory to other types of eyes, although it would likely require more variables and assumptions/constraints to the theory. It is thus good to introduce the conceptual ideas without overdoing the applications of the theory”. Nonetheless, we take your point that some of the eyes in our data set might be adapted for lower light levels, and we have rewritten the Discussion section, How efficiently do insects allocate resources within their apposition eyes accordingly. On line 827 – 843 we address the assumption that eyes are adapted for full daylight,  and also take the opportunity  to mention two more reasons for increasing the eye parameter p: namely increasing image velocity (Snyder, 1979), and constructing  bright zones that increase the detectability of small targets (van Hateren et al., 1989; Straw et al., 2006).

      Discontinuities

      The discontinuities and non-monotonicity of the optimal parameters plotted in Figure 4 are concerning. Are these a numerical artifact? Some discussion of their origin would be quite helpful.

      Good points, we now address the discontinuities in the Results, where they are first observed (lines 311 - 319) 

      Discrepancies between predictions and experiment

      As the authors clearly describe, experimental measurements of eye parameters differ systematically from those predicted. This makes it difficult to know what to take away from the paper. The qualitative arguments about how resources should be allocated are pretty general, and the full model seems a complex way to arrive at those arguments. Could this reflect a failure of one of the assumptions that the model rests on - e.g. high light levels, or that the cost of space for photoreceptors and optics is similar? Given these discrepancies between model and experiment, it is also hard to evaluate conclusions about the competition between optics and photoreceptors (e.g. at the end of the abstract) and about the importance for evolution (end of introduction).

      Your misgivings boil down to two issues: what use is a model that fails to fit the data, and do we need a complicated model to show something that seems to be intuitively obvious?  Our study is useful because it introduces new approaches, methods, factors and explanations which advance our analysis and understanding of eye design and evolution. Your comments make it clear that we failed to get this message across and we have revised the manuscript accordingly. We have rewritten the Abstract and the first paragraph of the Discussion to emphasise the value of our new measure of cost, specific volume, by including more of its practical advantages. In particular, our use of specific volume 1) opens the door to the morphospace of all eyes of given type and cost. 2) This allows one to construct performance surfaces across morphospace that not only identify optima, but by evaluating the sub-optimal cast light on efficiency and adaptability. 3) Shows that photoreceptor energy costs have a major impact on design and efficiency, and 4) allows us to calculate and compare the capacities and efficiencies of compound eyes and simple eyes using a superior measure of cost. It is also possible that your dissatisfaction was deepened by disappointment. The first sentence of our original Abstract said that the goal of design is to maximize performance, so you might have expected to see that eyes are optimised.  Given that optimization provides cast iron proof that a system is designed to be efficient, and previous studies of coding by fly LMCs (Laughlin, 1981; Srinivasan et al., 1982 & van Hateren 1992) validated Barlow’s Efficient Coding Hypothesis by showing that coding is optimised, your expectation is reasonable. However, our investigation of how the allocation of resources to optics and photoreceptors affects an eye’s performance, efficiency and design does not depend a priori  on finding optima, therefore we have removed the “maximized”. Our revised Abstract now says, “to improve performance”.  

      In short, our study illustrates an old adage in statistics “All models fail to fit, but some are useful”. As is often the case, the way in which our model fails is useful. In the original version of the Results and Discussion, we argued that the allocation of resources is efficient, and identified factors that can, in principle, explain the scattering of data points. Indeed, our modelling identifies two of these deficiencies; a lack of data on species-specific energy usage, and the need for models that quantify the relationship between the quality of the captured image and the behavioural tasks for which an eye might be specialised. Thus, by examining the model’s failings we identify critical factors and pose new questions for future research.  We have rewritten the Discussion section How efficiently do insects allocate resources…. to make these points. We hope that these revisions will convince you that we have established a starting point for definitive studies, invented a vehicle that has travelled far enough to discover new territory, and shown that it can be modified to cope with difficult terrain.

      Turning to the need for a complicated model, because the costs and benefits depend on elementary optics and geometry, we too thought that there ought to be a simple model. However, when we tried to formulate a simple set of equations that approximate the definitive findings of our more complicated model we discovered that this is not as straightforward as we thought.  Many of the parameters in our model interact to determine costs and benefits, and many of these interactions are non-linear (e.g. the volumes of shells in spheres involve quadratic and cubic terms, and information depends on the log of a square root). So, rather than hold back publication of our complicated model, we decided to explain how it works as clearly as we can and demonstrate its value.

      In response to your final comment, “it is hard to evaluate conclusions about the competition between optics and photoreceptors (e.g. at the end of the abstract) and about the importance for evolution (end of introduction)”, we stand by our original argument. There must be competition in an eye of fixed cost, and because competition favours a heavy investment in photoreceptors, both in theory and in practice, it  is a significant factor in eye design. A match between investments in optics and photoreceptors is predicted by theory and observed in fly NS eyes, therefore this is a design principle. As for evolution, no one would deny that it is important to view the adaptive radiation of eyes through a cost-benefit lens. Our lens is the first to view the whole eye, optics and photoreceptor array, and the first to treat the costs of space, materials and energy. Although the view through our lens is a bit fuzzy, it reveals that costs, benefits and trade-offs are important. Thus we have established a promising starting point for a new and more comprehensive cost-benefit approach to understanding eye design and evolution.  As for the involvement of genes, when there are heritable changes in phenotype genes must be involved and if, as we suggest, efficient resource allocation is beneficial, the developmental mechanisms responsible for allocating resources to optics and photoreceptor array will be playing a formative role in eye evolution.

      Reviewer #2 (Public Review):

      Summary:

      In short, the paper presents a theoretical framework that predicts how resources should be optimally distributed between receptors and optics in eyes.

      Strengths:

      The authors build on the principle of resource allocation within an organism and develop a formal theory for optimal distribution of resources within an eye between the receptor array and the optics. Because the two parts of eyes, receptor arrays and optics, share the same role of providing visual information to the animal it is possible to isolate these from resource allocation in the rest of the animal. This allows for a novel and powerful way of exploring the principles that govern eye design. By clever and thoughtful assumptions/constraints, the authors have built a formal theory of resource allocation between the receptor array and the optics for two major types of compound eye as well as for camera-type eyes. The theory is formalized with variables that are well characterized in a number of different animal eyes, resulting in testable predictions.

      The authors use the theory to explain a number of design features that depend on different optimal distribution of resources between the receptor array and the optics in different types of eyes. As an example, they successfully explain why eye regions with different spatial resolution should be built in different ways. They also explain differences between different types of eyes, such as long photoreceptors in apposition compound eyes and much shorter receptors in camera type eyes. The predictive power in the theory is impressive.

      To keep the number of parameters at a minimum, the theory was developed for two types of compound eye (neural superposition, and apposition) and for camera-type eyes. It is possible to extend the theory to other types of eyes, although it would likely require more variables and assumptions/constraints to the theory. It is thus good to introduce the conceptual ideas without overdoing the applications of the theory.

      The paper extends a previous theory, developed by the senior author, that develops performance surfaces for optimal cost/benefit design of eyes. By combining this with resource allocation between receptors and optics, the theoretical understanding of eye design takes a major leap and provides entirely new sets of predictions and explanations for why eyes are built the way they are.

      The paper is well written and even though the theory development in the Results may be difficult to take in for many biologists, the Discussion very nicely lists all the major predictions under separate headings, and here the text is more tuned for readers that are not entirely comfortable with the formalism of the Results section. I must point out though that the Results section is kept exemplary concise. The figures are excellent and help explain concepts that otherwise may go above the head of many biologists.

      We are heartened by your appreciation of our manuscript - it persuaded us not to undertake extensive revisions – thank you.

      Reviewer #3 (Public Review):

      Summary:

      This is a proposal for a new theory for the geometry of insect eyes. The novel costbenefit function combines the cost of the optical portion with the photoreceptor portion of the eye. These quantities are put on the same footing using a specific (normalized) volume measure, plus an energy factor for the photoreceptor compartment. An optimal information transmission rate then specifies each parameter and resource allocation ratio for a variable total cost. The elegant treatment allows for comparison across a wide range of species and eye types. Simple eyes are found to be several times more efficient across a range of eye parameters than neural superposition eyes. Some trends in eye parameters can be explained by optimal allocation of resources between the optics and photoreceptors compartments of the eye.

      Strengths:

      Data from a variety of species roughly align with rough trends in the cost analysis, e.g. as a function of expanding the length of the photoreceptor compartment.

      New data could be added to the framework once collected, and many species can be compared.

      Eyes of different shapes are compared.

      Weaknesses:

      Detailed quantitative conclusions are not possible given the approximations and simplifying assumptions in the models and poor accounting for trends in the data across eye types.

      Reviewer #1 (Recommendations For The Authors):

      Figure 1: Panel E defines the parameters described in panel d. Consider swapping the order of those panels (or defining D and Delta Phi in the figure legend for d). Order follows narrative, eye types then match 

      We think that you are referring to Figure 1. We modified the legend.

      Lines 143-145: How does a different relative cost impact your results?

      Thank you for raising this question. Because our assumption that relative costs are the same is our starting point, and for optics it is not an obvious mistake, we do not raise your question here. We address your question where you next raise it because, for photoreceptors the assumption is obviously wrong.  We now emphasise that our method for accounting for photoreceptor energy costs can be applied to other costs. 

      Lines 187-190: Same as above - how do your results change if this assumption is not accurate?

      We have revised our manuscript to emphasise that we are dealing with the situation in which our initial assumption (costs per unit volume are equal) breaks down. On (lines 203 - 208) we write “ However, this assumption breaks down when we consider specific metabolic rates. To enable and power phototransduction, photoreceptors have an exceptionally high specific metabolic rate (energy consumed per gram, and hence unit volume, per second) (Laughlin et al., 1998; Niven et al., 2007; Pangršič et al., 2005). We account for this extra cost by applying an energy surcharge, S<sub>E</sub>. To equate…. 

      We also revised part of the Discussion section, Specific volume is a useful measure of cost to make it clear that we are able take account for situations in which the costs per unit volume are not equal, and we give our treatment of photoreceptor energy costs as an example of how this is done. On lines 626 - 640 we say  

      Cost estimates can be adjusted for situations in which costs per unit volume are not equal, as illustratedby our treatment of photoreceptor energy consumption.  To support transduction the photoreceptor array has an exceptionally high metabolic rate (Laughlin et al., 1998; Niven et al., 2007; Pangršič et al., 2005). We account forthis higher energy cost by using the animal’s specific metabolic rate (power per unit mass and hence power per unit volume) to convert an array’s power consumption into an equivalent volume (Methods). Photoreceptor ion pumps are the major consumers of energy and the smaller contribution of pigmented glia (Coles, 1989) is included in our calculation of the energy tariff K<sub>E</sub>. (Methods) The higher costs of materials and their turnover in the photoreceptor array can be added the energy tariff K<sub>E</sub> but given the magnitude of the light-gated current (Laughlin et al., 1998) the relative increase will be very small. Thus for our intents and purposes the effects of these additional costs are covered by our models. For want of sufficient data…”.

      Reviewer #2 (Recommendations For The Authors):

      A few comments for consideration by the authors:

      (1) In the abstract, Maybe give another example explaining why other eyes should be different to those of fast diurnal insects.

      This worthwhile extrapolation is best kept to the Discussion.

      (2) Would it be worthwhile mentioning that the photopigment density is low in rhabdoms compared to vertebrate outer segments? This will have major effects on the relative size of retina and optics.

      Thank you, we now make this good point in the Discussion (lines 698-702).

      (3) It took me a while to understand what you mean by an energy tariff. For the less initiated reader many other variables may be difficult to comprehend. A possible remedy would be to make a table with all variables explained first very briefly in a formal way and then explained again with a few more words for readers less fluent in the formalism.

      A very useful suggestion. We have taken your advice (p.4).

      (4) The "easy explanation" on lines 356-357 need a few more words to be understandable.

      We have expanded this argument, and corrected a mistake, the width of the head front to back is not 250 μm, it is 600 μm (lines 402-407)

      (5) Maybe devote a short paragraph in the Discussion to other types of eye, such as optical superposition eyes and pinhole eyes. This could be done very shortly and without formalism. I'm sure the authors already have a good idea of the optimal ratio of receptor arrays and optics in these eye types.

      We do not discuss this because we have not found a full account of the trade-offs and their  effects on costs and benefits. We hope that our analysis of apposition and simple eyes will encourage people to analyse the relationships between costs and benefits in other eye types. To this end we pointed out in the Discussion that recent advances in imaging and modelling could be helpful.

      (6)  Could the sentence on lines 668-671 be made a little clearer?

      “Efficiency is also depressed by increasing the photoreceptor energy tariff K<sub>E</sub>, and in line with the greater impact of photoreceptor energy costs in simple eyes, the reduction in efficiency is much greater in simple eyes (Figure 8b).0.

      We replaced this sentence with “In both simple and apposition eyes efficiency is reduced by increasing the photoreceptor energy tariff K<sub>E</sub>. This effect is much greater in simple eyes, thus as found for reductions in photoreceptor length (Figure 7b),K<sub>E</sub> has more impact on the design of simple eyes” (lines749 – 752).

      (7)  I have some reservations about the text on lines 789-796. The problem is that optics can do very little to improve the performance of a directional photoreceptor where delrho should optimally be very wide. Here, membrane folding is the only efficient way to improve performance (SNR). The option to reduce delrho for better performance comes later when simultaneous spatial resolution (multiple pixels) is introduced.

      Yes, we have been careless. We have rewritten this paragraph to say (lines 920-931)

      “Two key steps in the evolution of eyes were the stacking of photoreceptive membranes to absorb more photons, and the formation of optics to intercept more photons and concentrate them according to angle of incidence to form an image (Nilsson, 2013, 2021). Our modelling of well-developed image forming eyes shows that to improve performance stacked membranes (rhabdomeres) compete with optics for the resources invested in an eye, and this competition profoundly influences both form and function. It is likely that competition between optics and photoreceptors was shaping eyes as lenses evolved to support low resolution spatial vision. Thus the developmental mechanisms that allocate resources within modern high resolution eyes (Casares & MacGregor, 2021), by controlling cell size and shape, and as our study emphasises, gradients in size and shape across an eye, will have analogues or homologues in more ancient eyes. Their discovery….” (lines 920-931

      Reviewer #3 (Recommendations For The Authors):

      Suggestions for major revisions:

      While the approach is novel and elegant, the results from the analysis of insect morphology do not broadly support the optimization argument and hardly constrain parameters, like the energy tariff value, at all. The most striking result of the paper is the flat plateau in information across a broad range of shape parameters and the length, and resolution trend in Figure 5.

      At no point in the Results and Discussion do we argue that resource allocation is optimized. Indeed, we frequently observe that it is not. Our mistake was to start the Abstract by observing that animals evolve to minimise costs. We have rewritten the Abstract accordingly.

      The information peaks are quite shallow. This might actually be a very important and interesting result in the paper - the fact that the information plateaus could give the insect eye quite a wide range of parameters to slide between while achieving relatively efficient sensing of the environment. Instead of attempting to use a rather ad hoc and poorly supported measure of energetics in PR cost, perhaps the pitch could focus on this flexibility. K<sub>E</sub> does not seem to constrain eye parameters and does not add much to the paper.

      We agree, being able to construct performance surfaces across morphospace is an important advance in the field of eye design and evolution, and the performance surface’s flat top has interesting implications for the evolution of adaptations. Encouraged by your remarks, we have rewritten the Abstract and the introductory paragraph of the Discussion to draw attention to these points. 

      We are disappointed that we failed to convince you that our energy tariff, K<sub>E</sub> , is no better than a poorly supported ad hoc parameter that does not add much to the paper. In our opinion a resource allocation model that ignores photoreceptor energy consumption is obviously inadequate because the high energy cost of phototransduction is both wellknown and considered to be a formative factor in eye evolution (Niven and Laughlin, 2008). One of the advantages of modelling is that one can assess the impact of factors that are known to be present, are thought to be important, but have not been quantified. We followed standard modelling practice by introducing a cost that has the same units as the other costs and, for good physiological reasons, increases linearly with the number of microvilli, according to K<sub>E</sub>. We then vary this unknown cost parameter to discover when and why it is significant. We were pleased to discover that we could combine data on photoreceptor energy demands and whole animal metabolic rates to establish the likely range of K<sub>E</sub>. This procedure enabled us to unify the cost-benefit analyses of optics and photoreceptors, and to discover that realistic values of K<sub>E</sub> have a profound impact on the structure and performance of an efficient eye. We hope that this advance will encourage people to collect the data needed to evaluate K<sub>E</sub>.To emphasise the importance of K<sub>E</sub> and dispel doubts associated with the failure of the model to fit the data, we have revised two sections:  Flies invest efficiently in costly photoreceptor arrays in the Results, and How efficiently do insects allocate resources within their apposition eyes?  in the Discussion. These rewrites also explain why it is impossible for us to infer K<sub>E</sub> by adjusting its value so that the model’s predictions fit the data.

      The graphics after Figure 3 are quite dense and hard to follow. None of the plateau extent shown in Fig 3 is carried through to the subsequent plots, which makes the conclusions drawn from these figures very hard to parse. If the peak information occurs on a flat plateau, it would be more helpful to see those ranges of parameters displayed in the figures.

      Ideally one should do as you suggest and plot the extent of the plateau, but in our situation this is not very helpful. In the best data set, flies, optimised models predict D well, get close to ∆φ in larger eyes, and demonstrate that these optimum values are not very sensitive to K<sub>E</sub> L is a different matter, it is very sensitive to K<sub>E</sub> L which, as we show (and frequently remind) is poorly constrained by experimental data. The best we can do is estimate the envelope of L vs C<sub>tot</sub>  curves, as defined by a plausible range of K<sub>E</sub>L . Because most of the plateau boundaries you ask for will fall within this envelope, plotting them does little to clear the fog of uncertainty. We note that all three referees agree that our model can account for two robust trends, i) in apposition eyes L increase with optical resolving power and acuity, both within individual eyes and among eyes of different sizes, and ii) L is much longer is apposition eyes than in simple eyes. Nonetheless, the scatter of data points and their failure to fit creates a bad impression. We gave a number of reasons why the model does not fit the data points, but these were scattered throughout the Results and Discussion and, as referees 1 and 3 point out, this makes it difficult to draw convincing conclusions. To rectify this failing, we have rewritten two sections, in the Results Flies invest efficiently in costly photoreceptor arrays and in the Discussion, How efficiently do insects allocate resources within their apposition eyes?, to discuss these reasons en bloc, draw conclusions and suggest how better data and refinements to modelling could resolve these issues.  

      Throughout the figures, the discontinuities in the optimal cuts through parameter space are not sufficiently explained.

      We added a couple of sentences that address the “jumps” (lines 313 – 318)

      None of the data seems to hug any of the optimal lines and only weakly follow the trends shown in the plots. This makes interpretation difficult for the reader and should be better explained. The text can be a little telegraphic in the Results after roughly page 10, and requires several readings to glean insight into the manuscript's conclusions.

      We revised the Results section in which we compare the best data set, flies’  NS eyes with theoretical predictions, Flies invest efficiently in costly photoreceptor arrays,  to expand our interpretation of the data and clarify our arguments. The remaining sections have not been expanded. In the next section, which is on fused rhabdom apposition eyes, our interpretation of the scattering of data points follows the same line of argument. The remaining Results sections are entirely theoretical.  

      Overall, the rough conclusions outlined in the Results seem moderately supported by the matches of the data to the optimal information transmission cuts through parameter space, but only weakly.

      We agree, more data is required to test and refine our theoretical predictions.

      The Discussion is long and well-argued, and contains the most cogent writing in the manuscript.

      Thank you: this is most pleasing. We submitted our study to eLife because it allows longer Discussions, but we worried that ours was too long. However, we felt that our extensive Discussion was necessary for two reasons. First, we are introducing a new approach to understanding of eye design and evolution. Second, because the data on eye morphology and costs are limited, we had to make a number of assumptions and by discussing these, warts and all, we hoped to encourage experimentalists to gather more data and focus their efforts on the most revealing material.  

      Minor comments:

      We have acted upon most of your minor comments and we confine our remarks to our disagreements. We are grateful for your attention to details that we \textshould have picked up on.  

      It's a more standard convention to say "cost-benefit" rather than with a colon. 

      "equation" should be abbreviated "eq" or "eqn", never with a "t"

      when referring to the work of van Hateren, quote the paper and the database using "van Hateren" not just "Hateren"

      small latex note: use "\textit{SNR}" to get the proper formatting for those letters when in the math environment

      Line 100-110: "f" is introduced, but only f' is referenced in the figure. This should be explained in order. d_rh is not included in the figure. Also in this section, d_rh/f is also referenced before \Delta \rho_rf, which is the same quantity, without explanation.  

      Figure 1 shows eye structure and geometry. f’ is a lineal dimension of the eye but f is not, so f is not shown in Fig 1e. We eliminated the confusion surrounding ∆ρ<sub>rh</sub>  by deleting “and changing the acceptance angle of the photoreceptive waveguide ∆ρ<sub>rh</sub> (Snyder, 1979)”.  

      Fig 1 caption: this says "From dorsal to ventral," then describes trends that run ventral to dorsal, which is a confusing typo.

      Fig 3 - adding some data points to these plots might help the reader understand how (or if) K_E is constrained by the data.

      It is not possible to add data points because to total cost, Ctot ,is unknown.

      Fig 4c (and in other subplots): the jumps in L with C_tot could be explained better in the text - it wasn't clear to this reviewer why there are these discontinuities.

      Dealt with in the revised text (lines  310-318).

      Fig 4d: The caption for this subplot could be more clearly written.

      We have rewritten the subscript for subplot 4d.

      Fig 5 and other plots with data: please indicate which symbols are samples from the same species. This info is hard to reconstruct from the tables.

      We have revised Figure 5 accordingly. Species were already indicated in Figure 6.

      Line 328: missing equation number

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Qiu and co-workers describes the single-particle cryo-electron microscopy structures of various oligomeric states of the orphan GPCR, GPR3. It describes the monomeric and dimeric structure of a mutant of GPR3 with a modified G-protein complex (miniGs) and then builds on this work to attempt an inactive 'apo' dimer and an allosteric modulator (AF bound dimer structure, by using an ICL3 insertion and stabilizing FAB fragments.

      In general, I'm supportive of the work done in this study, and it does indeed provide valuable insight into GPR3 function. It may be that dimerization of certain class A GPCRs may be a means of signalling regulation or perhaps even amplification. However, some of the interpretation of the single particle data needs some extra attention to strengthen the hypothesis presented in the manuscript.

      Firstly, I want to thank the authors for providing the unfiltered half-maps and PDB models for careful assessment. During this review, I did my own post-processing of the half-maps and used the resultant maps for careful analysis of models.

      So to begin, I understand that the authors didn't model any lipid in the binding orthosteric binding site in any of the maps, but it may be worthwhile to model something in there, as many readers only download coordinates and not the maps.

      A more general point about all the maps. In no case were any focussed refinements carried out. As the point of this paper are some of the finer details between active and intermediate states and the effect of an allosteric modulator, masking out hypervariable portions of the structure and doing local Euler searches would most certainly provide richer insights of the details in GPR3 (especially as the BRIL:Fab structures are not of interest). And also, generally, no 3D-variability studies were performed to see if minor differences in, say, TM4/5/6 positions were due to large variation in the single particles or were a stable consensus position.

      As for the PFK dimeric structure. It appears to be refined with C2 point group symmetry (which is not mentioned anywhere except in a tiny bit of text in a supplemental figure). Was this also calculated in C1 to assess if there is any difference in either GPR3 protomer? Also, how certain are the authors of the cholesterol positions at the bottom of TM4/5? At lower map thresholds in the PFK dimer structure, one of them appears to be continuous with the orthosteric lipid. It also appears that there are many unmodelled lipids in this structure, and only two were assigned as cholesterol. It appears that many of the unmodelled lipids are forming bridging connections between the GPR3 protomers. Also, it may be worthwhile to provide a table of the key interactions between the protomers (although I note that there was a figure highlighting them).

      With the PFK monomer structure, there was weak density for the same cholesterol, which was not modelled in this one; perhaps some commentary on the authors' approach for deciding how to assign density would be helpful. It also appears that the refinement mask was probably a bit tight in this one (something that cryoSPARC is notorious for), and rerefining with a much looser mask around the TM domain may be helpful in resolving the inner lipid leaflet positions.

      The Apo structure, I think, I have the most issues with. Firstly, it is not 'apo'. There is definitely unaccounted for density in the orthosteric site. Also, the structure definitely needs a bit more attention. Firstly, masking out the BRIL and FABs would be a good start in helping better resolve the TMD regions, and then even focussing on a single monomer to increase the map interpretability. My major problem here is that, if this is being called 'apo' and inactive, the map doesn't reflect this; also, the TM5/6 does not look to be in a fully inactive position. The map density (at least around one of the protomers) in this region looks to be poorly resolved, most likely due to averaging due to internal motion. I think some 3DVA is certainly warranted here to strengthen the hypothesis that they have solved an 'apo' inactive.

      The AF (allosteric modulator) bound structure is of significantly better quality. But again, only AF is modelled, and no lipids are. How are the authors sure? Perhaps some focussed refinements (and changing the Euler Origin to centre it on the AF molecule could be a good start). To this reviewer, at least in one of the protomers, adjacent to the AF position, there is a density that looks very much like the allosteric modulator, so it could even be forming a bridging dimer. Also, some potential assignments of the lipids may enlighten some of the structure-activity relationship of this modulator, as it seems to make as many contacts with surrounding lipids as it does with TM4/5. Also, it may be worthwhile exploring carefully the 3DVA of this data. In our studies (Russel et al.), we noted that the orthosteric lipid appears to ratchet back-and-forth in concert with TM4/5 twisting. Perhaps in the AF bound structure, as it binds at the 'exit' site of the lipid, perhaps it is locking in a specific conformation.

    1. Reviewer #3 (Public review):

      Summary:

      In their study McDermott et al. investigate the neurocomputational mechanism underlying sensory prediction errors. They contrast two accounts: representational sharpening and dampening. Representational sharpening suggests that predictions increase the fidelity of the neural representations of expected inputs, while representational dampening suggests the opposite (decreased fidelity for expected stimuli). The authors performed decoding analyses on EEG data, showing that first expected stimuli could be better decoded (sharpening), followed by a reversal during later response windows where unexpected inputs could be better decoded (dampening). These results are interpreted in the context of opposing process theory (OPT), which suggests that such a reversal would support perception to be both veridical (i.e., initial sharpening to increase the accuracy of perception) and informative (i.e., later dampening to highlight surprising, but informative inputs).

      Strengths:

      The topic of the present study is of significant relevance for the field of predictive processing. The experimental paradigm used by McDermott et al. is well designed, allowing the authors to avoid several common confounds in investigating predictions, such as stimulus familiarity and adaptation. The introduction of the manuscript provides a well written summery of the main arguments for the two accounts of interest (sharpening and dampening), as well as OPT. Overall, the manuscript serves as a good overview of the current state of the field.

      Weaknesses:

      In my opinion some details of the methods, results and manuscript raise some doubts about the reliability of the reported findings. Key concerns are:

      (1) In the previous round of comments, I noted that: "I am not fully convinced that Figures 3A/B and the associated results support the idea that early learning stages result in dampening and later stages in sharpening. The inference made requires, in my opinion, not only a significant effect in one-time bin and the absence of an effect in other bins. Instead to reliably make this inference one would need a contrast showing a difference in decoding accuracy between bins, or ideally an analysis not contingent on seemingly arbitrary binning of data, but a decrease (or increase) in the slope of the decoding accuracy across trials. Moreover, the decoding analyses seem to be at the edge of SNR, hence making any interpretation that depends on the absence of an effect in some bins yet more problematic and implausible". The authors responded: "we fitted a logarithmic model to quantify the change of the decoding benefit over trials, then found the trial index for which the change of the logarithmic fit was < 0.1%. Given the results of this analysis and to ensure a sufficient number of trials, we focused our further analyses on bins 1-2". However, I do not see how this new analysis addresses the concern that the conclusion highlights differences in decoding performance between bins 1 and 2, yet no contrast between these bins are performed. While I appreciate the addition of the new model, in my current understanding it does not solve the problem I raised. I still believe that if the authors wish to conclude that an effect differs between two bins they must contrast these directly and/or use a different appropriate analysis approach.

      Relatedly, the logarithmic model fitting and how it justifies the focus on analysis bin 1-2 needs to be explained better, especially the rationale of the analysis, the choice of parameters (e.g., why logarithmic, why change of logarithmic fit < 0.1% as criterion, etc), and why certain inferences follow from this analysis. Also, the reporting of the associated results seems rather sparse in the current iteration of the manuscript.

      (2) A critical point the authors raise is that they investigate the buildup of expectations during training. They go on to show that the dampening effect disappears quickly, concluding: "the decoding benefit of invalid predictions [...] disappeared after approximately 15 minutes (or 50 trials per condition)". Maybe the authors can correct me, but my best understanding is as follows: Each bin has 50 trials per condition. The 2:1 condition has 4 leading images, this would mean ~12 trials per leading stimulus, 25% of which are unexpected, so ~9 expected trials per pair. Bin 1 represents the first time the participants see the associations. Therefore, the conclusion is that participants learn the associations so rapidly that ~9 expected trials per pair suffice to not only learn the expectations (in a probabilistic context) but learn them sufficiently well such that they result in a significant decoding difference in that same bin. If so, this would seem surprisingly fast, given that participants learn by means of incidental statistical learning (i.e. they were not informed about the statistical regularities). I acknowledge that we do not know how quickly the dampening/sharpening effects develop, however surprising results should be accompanied with a critical evaluation and exceptionally strong evidence (see point 1). Consider for example the following alternative account to explain these results. Category pairs were fixed across and within participants, i.e. the same leading image categories always predicted the same trailing image categories for all participants. Some category pairings will necessarily result in a larger representational overlap (i.e., visual similarity, etc.) and hence differences in decoding accuracy due to adaptation and related effects. For example, house  barn will result in a different decoding performance compared to coffee cup  barn, simply due to the larger visual and semantic similarity between house and barn compared to coffee cup and barn. These effects should occur upon first stimulus presentation, independent of statistical learning, and may attenuate over time e.g., due to increasing familiarity with the categories (i.e., an overall attenuation leading to smaller between condition differences) or pairs.

      (3) In response to my previous comment, why the authors think their study may have found different results compared to multiple previous studies (e.g. Han et al., 2019; Kumar et al., 2017; Meyer and Olson, 2011), particularly the sharpening to dampening switch, the authors emphasize the use of non-repeated stimuli (no repetition suppression and no familiarity confound) in their design. However, I fail to see how familiarity or RS could account for the absence of sharpening/dampening inversion in previous studies.

      First, if the authors argument is about stimulus novelty and familiarity as described by Feuerriegel et al., 2021, I believe this point does not apply to the cited studies. Feuerriegel et al., 2021 note: "Relative stimulus novelty can be an important confound in situations where expected stimulus identities are presented often within an experiment, but neutral or surprising stimuli are presented only rarely", which indeed is a critical confound. However, none of the studies (Han et al., 2019; Richter et al., 2018; Kumar et al., 2017; Meyer and Olson, 2011) contained this confound, because all stimuli served as expected and unexpected stimuli, with the expectation status solely determined by the preceding cue. Thus, participants were equally familiar with the images across expectation conditions.

      Second, for a similar reason the authors argument for RS accounting for the different results does not hold either in my opinion. Again, as Feuerriegel et al. 2021 correctly point out: "Adaptation-related effects can mimic ES when the expected stimuli are a repetition of the last-seen stimulus or have been encountered more recently than stimuli in neutral expectation conditions." However, it is critical to consider the precise design of previous studies. Taking again the example of Han et al., 2019; Kumar et al., 2017; Meyer and Olson, 2011. To my knowledge none of these studies contained manipulations that would result in a more frequent or recent repetition of any specific stimulus in the expected compared to unexpected condition. The crucial manipulation in all these previous studies is not that a single stimulus or stimulus feature (which could be subject to familiarity or RS) determines the expectation status, but rather the transitional probability (i.e. cue-stimulus pairing) of a particular stimulus given the cue. Therefore, unless I am missing something critical, simple RS seems unlikely to differ between expectation condition in the previous studies and hence seems implausible to account for differences in results compared to the current study.

      Moreover, studies cited by the authors (e.g. Todorovic & de Lange, 2012) showed that RS and ES are separable in time, again making me wonder how avoiding stimulus repetition should account for the difference in the present study compared to previous ones. I am happy to be corrected in my understanding, but with the currently provided arguments by the authors I do not see how RS and familiarity can account for the discrepancy in results.

      I agree with the authors that stimulus familiarity is a clear difference compared to previous designs, but without a valid explanation why this should affect results I find this account rather unsatisfying. I see the key difference in that the authors manipulated category predictability, instead of exemplar prediction - i.e. searching for a car instead of your car. However, if results in support of OPT would indeed depend on using novel images (i.e. without stimulus repetition), would this not severely limit the scope of the account and hence also its relevance? Certainly, the account provided by the authors casts the net wider and tries to explain visual prediction. Relatedly, if OPT only applies during training, as the authors seem to argue, would this again not significantly narrow the scope of the theory? Combined these two caveats would seem to demote the account from a general account of prediction and perception to one about perception during very specific circumstances. In my understanding the appeal of OPT is that it accounts for multiple challenges faced by the perceptual system, elegantly integrating them into a cohesive framework. Most of this would be lost by claiming that OPT's primary prediction would only apply to specific circumstances - novel stimuli during learning of predictions. Moreover, in the original formulation of the account, as outlined by Press et al., I do not see any particular reason why it should be limited to these specific circumstances. This does of course not mean that the present results are incorrect, however it does require an adequate discussion and acknowledgement in the manuscript.

      Impact:

      McDermott et al. present an interesting study with potentially impactful results. However, given my concerns raised in this and the previous round of comments, I am not entirely convinced of the reliability of the results. Moreover, the difficulty of reconciling some of the present results with previous studies highlights the need for more convincing explanations of these discrepancies and a stronger discussion of the present results in the context of the literature.

    2. Author response:

      The following is the authors’ response to the original reviews

      Public reviews:

      Reviewer 1 (Public Review):

      Many thanks for the positive and constructive feedback on the manuscript.

      This study reveals a great deal about how certain neural representations are altered by expectation and learning on shorter and longer timescales, so I am loath to describe certain limitations as 'weaknesses'. But one limitation inherent in this experimental design is that, by focusing on implicit, task-irrelevant predictions, there is not much opportunity to connect the predictive influences seen at the neural level to the perceptual performance itself (e.g., how participants make perceptual decisions about expected or unexpected events, or how these events are detected or appear).

      Thank you for the interesting comment. We now discuss the limitation of task-irrelevant prediction . In brief, some studies which showed sharpening found that task demands were relevant, while some studies which showed dampening were based on task-irrelevant predictions, but it is unlikely that task relevance - which was not manipulated in the current study - would explain the switch between sharpening and dampening that we observe within and across trials.

      The behavioural data that is displayed (from a post-recording behavioural session) shows that these predictions do influence perceptual choice - leading to faster reaction times when expectations are valid. In broad strokes, we may think that such a result is broadly consistent with a 'sharpening' view of perceptual prediction, and the fact that sharpening effects are found in the study to be larger at the end of the task than at the beginning. But it strikes me that the strongest test of the relevance of these (very interesting) EEG findings would be some evidence that the neural effects relate to behavioural influences (e.g., are participants actually more behaviourally sensitive to invalid signals in earlier phases of the experiment, given that this is where the neural effects show the most 'dampening' a.k.a., prediction error advantage?)

      Thank you for the suggestion. We calculated Pearson’s correlation coefficients for behavioural responses (difference in mean reaction times), neural responses during the sharpening effect (difference in decoding accuracy), and neural responses during the dampening effect for each participant, which resulted in null findings.

      Reviewer 2 (Public Review):

      Thank you for your helpful and constructive comments on the manuscript.

      The strength in controlling for repetition effects by introducing a neutral (50% expectation) condition also adds a weakness to the current version of the manuscript, as this neutral condition is not integrated into the behavioral (reaction times) and EEG (ERP and decoding) analyses. This procedure remained unclear to me. The reported results would be strengthened by showing differences between the neutral and expected (valid) conditions on the behavioral and neural levels. This would also provide a more rigorous check that participants had implicitly learned the associations between the picture category pairings.

      Following the reviewer's suggestion, we have included the neutral condition in the behavioural analysis and performed a repeated measures ANOVA on all three conditions.

      It is not entirely clear to me what is actually decoded in the prediction condition and why the authors did not perform decoding over trial bins in prediction decoding as potential differences across time could be hidden by averaging the data. The manuscript would generally benefit from a more detailed description of the analysis rationale and methods.

      In the original version of the manuscript, prediction decoding aimed at testing if the upcoming stimulus category can be decoded from the response to the preceding ( leading) stimulus. However, in response to the other Reviewers’ comments we have decided to remove the prediction decoding analysis from the revised manuscript as it is now apparent that prediction decoding cannot be separated from category decoding based on pixel information.

      Finally, the scope of this study should be limited to expectation suppression in visual perception, as the generalization of these results to other sensory modalities or to the action domain remains open for future research.

      We have clarified the scope of the study in the revised manuscipt .

      Reviewer 3 (Public Review):

      Thank you for the thought-provoking and interesting comments and suggestions.

      (1) The results in Figure 2C seem to show that the leading image itself can only be decoded with ~33% accuracy (25% chance; i.e. ~8% above chance decoding). In contrast, Figure 2E suggests the prediction (surprisingly, valid or invalid) during the leading image presentation can be decoded with ~62% accuracy (50% chance; i.e. ~12% above chance decoding). Unless I am misinterpreting the analyses, it seems implausible to me that a prediction, but not actually shown image, can be better decoded using EEG than an image that is presented on-screen.

      Following this and the remaining comments by the Reviewer (see below), we have decided to remove the prediction analysis from the manuscript. Specifically, we have focused on the Reviewer’s concern that it is implausible that image prediction would be better decoded that an image that is presented on-screen. This led us to perform a control analysis, in which we tried to decode the leading image category based on pixel values alone (rather than on EEG responses). Since this decoding was above chance, we could not rule out the possibility that EEG responses to leading images reflect physical differences between image categories. This issue does not extend to trailing images, as the results of the decoding analysis based on trailing images are based on accuracy comparisons between valid and invalid trials, and thus image features are counterbalanced. We would like to thank the Reviewer for raising this issue

      (2) The "prediction decoding" analysis is described by the authors as "decoding the predictable trailing images based on the leading images". How this was done is however unclear to me. For each leading image decoding the predictable trailing images should be equivalent to decoding validity (as there were only 2 possible trailing image categories: 1 valid, 1 invalid). How is it then possible that the analysis is performed separately for valid and invalid trials? If the authors simply decode which leading image category was shown, but combine L1+L2 and L4+L5 into one class respectively, the resulting decoder would in my opinion not decode prediction, but instead dissociate the representation of L1+L2 from L4+L5, which may also explain why the time-course of the prediction peaks during the leading image stimulus-response, which is rather different compared to previous studies decoding predictions (e.g. Kok et al. 2017). Instead for the prediction analysis to be informative about the prediction, the decoder ought to decode the representation of the trailing image during the leading image and inter-stimulus interval. Therefore I am at present not convinced that the utilized analysis approach is informative about predictions.

      In this analysis, we attempted to decode ( from the response to leading images) which trailing categories ought to be presented. The analysis was split between trials where the expected category was indeed presented (valid) vs. those in which it was not (invalid). The separation of valid vs invalid trials in the prediction decoding analysis served as a sanity check as no information about trial validity was yet available to participants. However, as mentioned above, we have decided to remove the “prediction decoding” analysis based on leading images as we cannot disentangle prediction decoding from category decoding.

      (3) I may be misunderstanding the reported statistics or analyses, but it seems unlikely that >10  of the reported contrasts have the exact same statistic of Tmax= 2.76 . Similarly, it seems implausible, based on visual inspection of Figure 2, that the Tmax for the invalid condition decoding (reported as Tmax = 14.903) is substantially larger than for the valid condition decoding (reported as Tmax = 2.76), even though the valid condition appears to have superior peak decoding performance. Combined these details may raise concerns about the reliability of the reported statistics.

      Thank you for bringing this to our attention. This copy error has now been rectified.

      (4) The reported analyses and results do not seem to support the conclusion of early learning resulting in dampening and later stages in sharpening. Specifically, the authors appear to base this conclusion on the absence of a decoding effect in some time-bins, while in my opinion a contrast between time-bins, showing a difference in decoding accuracy, is required. Or better yet, a non-zero slope of decoding accuracy over time should be shown ( not contingent on post-hoc and seemingly arbitrary binning).

      Thank you for the helpful suggestion. We have performed an additional analysis to address this issue, we calculated the trial-by-trial time-series of the decoding accuracy benefit for valid vs. invalid for each participant and averaged this benefit across time points for each of the two significant time windows. Based on this, we fitted a logarithmic model to quantify the change of this benefit over trials, then found the trial index for which the change of the logarithmic fit was < 0.1% (i.e., accuracy was stabilized). Given the results of this analysis and to ensure a sufficient number of trials, we focussed our further analyses on bins 1-2 to directly assess the effects of learning. This is explained in more detail in the revised manuscript .

      (5) The present results both within and across trials are difficult to reconcile with previous studies using MEG (Kok et al., 2017; Han et al., 2019), single-unit and multi-unit recordings (Kumar et al., 2017; Meyer & Olson 2011), as well as fMRI (Richter et al., 2018), which investigated similar questions but yielded different results; i.e., no reversal within or across trials, as well as dampening effects with after more training. The authors do not provide a convincing explanation as to why their results should differ from previous studies, arguably further compounding doubts about the present results raised by the methods and results concerns noted above.

      The discussion of these findings has been expanded in the revised manuscript . In short, the experimental design of the above studies did not allow for an assessment of these effects prior to learning. Several of them also used repeated stimuli (albeit some studies changed the pairings of stimuli between trials), potentially allowing for RS to confound their results.

      Recommendations for the Authors:

      Reviewer 1 (Recommendations for the authors):

      (1) On a first read, I was initially very confused by the statement on p.7 that each stimulus was only presented once - as I couldn't then work out how expectations were supposed to be learned! It became clear after reading the Methods that expectations are formed at the level of stimulus category (so categories are repeated multiple times even if exemplars are not). I suspect other readers could have a similar confusion, so it would be helpful if the description of the task in the 'Results' section (e.g., around p.7) was more explicit about the way that expectations were generated, and the (very large) stimulus set that examples are being drawn from.

      Following your suggestion, we have clarified the paradigm by adding details about the categories and the manner in which expectations are formed.

      (2) p.23: the authors write that their 1D decoding images were "subjected to statistical inference amounting to a paired t-test between valid and invalid categories". What is meant by 'amounting to' here? Was it a paired t-test or something statistically equivalent? If so, I would just say 'subjected to a paired t-test' to avoid any confusion, or explaining explicitly which statistic inference was done over.

      We have rephrased this as “subjected to (1) a one-sample t-test against chance-level, equivalent to a fixed-effects analysis, and (2) a paired t-test”.

      Relatedly, this description of an analysis amounting to a 'paired t-test' only seems relevant for the sensory decoding and memory decoding analyses (where there are validity effects) rather than the prediction decoding analysis. As far as I can tell the important thing is that the expected image category can be decoded, not that it can be decoded better or worse on valid or invalid trials.

      In the previous version of the manuscript, the comparison of prediction decoding between valid and invalid trials was meant as a sanity check. However, in response to the other Reviewers’ comments we have decided to remove the prediction decoding analysis from the revised manuscript due to confounds.

      It would be helpful if authors could say a bit more about how the statistical inferences were done for the prediction decoding analyses and the 'condition against baseline' contrasts (e.g., when it is stated that decoding accuracy in valid trials *,in general,* is above 0 at some cluster-wise corrected value). My guess is that this amounts to something like a one-sample t-test - but it may be worth noting that one-sample t-tests on information measures like decoding accuracy cannot support population-level inference, because these measures cannot meaningfully be below 0 (see Allefeld et al, 2016).

      When testing for decoding accuracy against baseline, we used one-sample t-tests against chance level (rather than against 0) throughout the manuscript. We now clarify in the manuscript that this corresponds to a fixed-effects analysis (Allefeld et al., 2016). In contrast, when testing for differences in decoding accuracy between valid and invalid conditions, we used paired-sample t-tests. As mentioned above, the prediction decoding analysis has been removed from the analysis.

      (3) By design, the researchers focus on implicit predictive learning which means the expectations being formed are ( by definition) task-irrelevant. I thought it could be interesting if the authors might speculate in the discussion on how they think their results may or may not differ when predictions are deployed in task-relevant scenarios -  particularly given that some studies have found sharpening effects do not seem to depend on task demands ( e.g., Kok et al, 2012 ; Yon et al, 2018)  while other studies have found that some dampening effects do seem to depend on what the observer is attending to ( e.g., Richter et al, 2018) . Do these results hint at a possible explanation for why this might be? Even if the authors think they don't, it might be helpful to say so!

      Thank you for the interesting comment. We have expanded on this in the revised manuscript.

      Reviewer 2  (Recommendations for the authors):

      Methods/results

      (1) The goal of this study is the assessment of expectation effects during statistical learning while controlling for repetition effects, one of the common confounds in prediction suppression studies (see, Feuerriegel et al., 2021). I agree that this is an important aspect and I assume that this was the reason why the authors introduced the P=0.5 neutral condition (Figure 1B, L3). However, I completely missed the analyses of this condition in the manuscript. In the figure caption of Figure 1C, it is stated that the reaction times of the valid, invalid, and neutral conditions are shown, but only data from the valid and invalid conditions are depicted. To ensure that participants had built up expectations and had learned the pairing, one would not only expect a difference between the valid and invalid conditions but also between the valid and neutral conditions. Moreover, it would also be important to integrate the neutral condition in the multivariate EEG analysis to actually control for repetition effects. Instead, the authors constructed another control condition based on the arbitrary pairings. But why was the neutral condition not compared to the valid and invalid prediction decoding results? Besides this, I also suggest calculating the ERP for the neutral condition and adding it to Figure 2A to provide a more complete picture.

      As mentioned above, we have included the neutral condition in the behavioural analysis, as outlined in the revised manuscript. We have also included a repeated measures ANOVA on all 3 conditions. The purpose of the neutral condition was not to avoid RS, but rather to provide a control condition. We avoided repetition by using individual, categorised stimuli. Figure 1C has been amended to include the neutral condition). In response to the remaining comments, we have decided to remove the prediction decoding analysis from the manuscript.

      (2) One of the main results that is taken as evidence for the OPT is that there is higher decoding accuracy for valid trials (indicate sharpening) early in the trial and higher decoding accuracy for invalid trials (indicate dampening) later in the trial. I would have expected this result for prediction decoding that surprisingly showed none of the two effects. Instead, the result pattern occurred in sensory decoding only, and partly (early sharpening) in memory decoding. How do the authors explain these results? Additionally, I would have expected similar results in the ERP; however, only the early effect was observed. I missed a more thorough discussion of this rather complex result pattern. The lack of the opposing effect in prediction decoding limits the overall conclusion that needs to be revised accordingly.

      Since sharpening vs. dampening rests on the comparison between valid and invalid trials, evidence for sharpening vs. dampening could only be obtained from decoding based on responses to trailing images. In prediction decoding (removed from the current version), information about the validity of the trial is not yet available. Thus, our original plan was to compare this analysis with the effects of validity on the decoding of trailing images (i.e. we expected valid trials to be decoded more accurately after the trailing image than before). The results of the memory decoding did mirror the sensory decoding of the trailing image in that we found significantly higher decoding accuracy of the valid trials from 123-180 ms. As with the sensory decoding, there was a tendency towards a later flip (280-296 ms) where decoding accuracy of invalid trials became nominally higher, but this effect did not reach statistical significance in the memory decoding.

      (3) To increase the comprehensibility of the result pattern, it would be helpful for the reader to clearly state the hypotheses for the ERP and multivariate EEG analyses. What did you expect for the separate decoding analyses? How should the results of different decoding analyses differ and why? Which result pattern would (partly, or not) support the OPT?

      Our hypotheses are now stated in the revised manuscript.

      (4) I was wondering why the authors did not test for changes during learning for prediction decoding. Despite the fact that there were no significant differences between valid and invalid conditions within-trial, differences could still emerge when the data set is separated into bins. Please test and report the results.

      As mentioned above, we have decided to remove the prediction decoding analysis from the current version of the manuscript.

      (5) To assess the effect of learning the authors write: 'Given the apparent consistency of bins 2-4, we focused our analyses on bins 1-2.' Please explain what you mean by 'apparent consistency'. Did you test for consistency or is it based on descriptive results? Why do the authors not provide the complete picture and perform the analyses for all bins? This would allow for a better assessment of changes over time between valid and invalid conditions. In Figure 3, were valid and invalid trials different in any of the QT3 or QT4 bins in sensory or memory encoding?

      We have performed an additional analysis to address this issue. The reasoning behind the decision to focus on bins 1-2 is now explained in the revised manuscript. In short, fitting a learning curve to trial-by-trial decoding estimates indicates that decoding stabilizes within <50% of the trials. To quantify changes in decoding occurring within these <50% of the trials while ensuring a sufficient number of trials for statistical comparisons, we decided to focus on bins 1-2 only.

      (6) Please provide the effect size for all statistical tests.

      Effect sizes have now been provided.

      (7) Please provide exact p-values for non-significant results and significant results larger than 0.001.

      Exact p-values have now been provided.

      (8) Decoding analyses: I suppose there is a copy/paste error in the T-values as nearly all T-values on pages 11 and 12 are identical (2.76) leading to highly significant p-values (0.001) as well as non-significant effects (>0.05). Please check.

      Thank you for bringing this to our attention. This error has now been corrected.

      (9) Page 12:  There were some misleading phrases in the result section. To give one example: 'control analyses was slightly above change' - this sounds like a close to non-significant effect, but it was indeed a highly significant effect of p<0.001. Please revise.

      This phrase was part of the prediction decoding analysis and has therefore been removed.

      (10) Sample size: How was the sample size of the study be determined (N=31)? Why did only a subgroup of participants perform the behavioral categorization task after the EEG recording? With a larger sample, it would have been interesting to test if participants who showed better learning (larger difference in reaction times between valid and invalid conditions) also showed higher decoding accuracies.

      This has been clarified in the revised manuscript. In short, the larger sample size of N=31 was based on previous research; ten participants were initially tested as part of a pilot which was then expanded to include the categorisation task.

      (11) I assume catch trials were removed before data analyses?

      We have clarified that catch trials were indeed removed prior to analyses.

      (12) Page 23, 1st line: 'In each, the decoder...' Something is missing here.

      Thank you for bringing this to our attention, this sentence has now been rephrased as “In both valid and invalid analyses” in the revised manuscript.

      Discussion

      (1) The analysis over multiple trials showed dampening within the first 15 min followed by sharpening. I found the discussion of this finding very lengthy and speculative (page 17). I recommend shortening this part and providing only the main arguments that could stimulate future research.

      Thank you for the suggestion. Since Reviewer 3 has requested additional details in this part of the discussion, we have opted to keep this paragraph in the manuscript. However, we have also made it clearer that this section is relatively speculative and the arguments provided for the across trials dynamics are meant to stimulate further research.

      (2) As this task is purely perceptual, the results support the OPT for the area of visual perception. For action, different results have been reported. Suppression within-trial has been shown to be larger for expected than unexpected features of action targets and suppression even starts before the start of the movement without showing any evidence for sharpening ( e.g., Fuehrer et al., 2022, PNAS). For suppression across trials, it has been found that suppression decreases over the course of learning to associate a sensory consequence to a specific action (e.g., Kilteni et al., 2019, ELife). Therefore, expectation suppression might function differently in perception and action (an area that still requires further research). Please clarify the scope of your study and results on perceptual expectations in the introduction, discussion, and abstract.

      We have clarified the scope of the study in the revised manuscript.

      Figures

      (1) Figure 1A: Add 't' to the arrow to indicate time.

      This has been rectified.

      (2) Figure 3:  In the figure caption, sensory and memory decoding seem to be mixed up. Please correct. Please add what the dashed horizontal line indicates.

      Thank you for bringing this to our attention, this has been rectified.

      Reviewer 3  (Recommendations for the authors):

      I applaud the authors for a well-written introduction and an excellent summary of a complicated topic, giving fair treatment to the different accounts proposed in the literature. However, I believe a few additional studies should be cited in the Introduction, particularly time-resolved studies such as Han et al., 2019; Kumar et al., 2017; Meyer and Olson, 2011. This would provide the reader with a broader picture of the current state of the literature, as well as point the reader to critical time-resolved studies that did not find evidence in support of OPT, which are important to consider in the interpretation of the present results.

      The introduction has been expanded to include the aforementioned studies in the revised manuscript.

      Given previous neuroimaging studies investigating the present phenomenon, including with time-resolved measures (e.g. Kok et al., 2017; Han et al., 2019; Kumar et al., 2017; Meyer & Olson 2011), why do the authors think that their data, design, or analysis allowed them to find support for OPT but not previous studies? I do not see obvious modifications to the paradigm, data quantity or quality, or the analyses that would suggest a superior ability to test OPT predictions compared to previous studies. Given concerns regarding the data analyses (see points below), I think it is essential to convincingly answer this question to convince the reader to trust the present results.

      The most obvious alteration to the paradigm is the use of non-repeated stimuli. Each of the above time-resolved studies utilised repeated stimuli (either repeated, identical stimuli, or paired stimuli where pairings are changed but the pool of stimuli remains the same), allowing for RS to act as a confound as exemplars are still presented multiple times. By removing this confound, it is entirely plausible that we may find different time-resolved results given that it has been shown that RS and ES are separable in time (Todorovic & de Lange, 2012). We also test during learning rather than training participants on the task beforehand. By foregoing a training session, we are better equipped to assess OPT predictions as they emerge. In our across-trial results, learning appears to take place after approximately 15 minutes or 432 trials, at which point dampening reverses to sharpening. Had we trained the participants prior to testing, this effect would have been lost.

      What is actually decoded in the "prediction decoding" analysis? The authors state that it is "decoding the predictable trailing images based on the leading images" (p.11). The associated chance level (Figure 2E) is indicated as 50%. This suggests that the classes separated by the SVM are T6 vs T7. How this was done is however unclear. For each leading image decoding the predictable trailing images should be equivalent to decoding validity (as there are only 2 possible trailing images, where one is the valid and the other the invalid image). How is it then possible that the analysis is performed separately for valid and invalid trials? Are the authors simply decoding which leading image was shown, but combine L1+L2 and L4+L5 into one class respectively? If so, this needs to be better explained in the manuscript. Moreover, the resulting decoder would in my opinion not decode the predicted image, but instead learn to dissociate the representation of L1+L2 from L4+L5, which may also explain why the time course of the prediction peaks during the leading image stimulus-response, which is rather different compared to previous studies decoding (prestimulus) predictions (e.g. Kok et al. 2017). If this is indeed the case, I find it doubtful that this analysis relates to prediction. Instead for the prediction analysis to be informative about the predicted image the authors should, in my opinion, train the decoder on the representation of trailing images and test it during the prestimulus interval.

      As mentioned above, the prediction decoding analysis has been removed from the manuscript. The prediction decoding analysis was intended as a sanity check, as validity information was not yet available to participants.

      Related to the point above, were the leading/trailing image categories and their mapping to L1, L2, etc. in Figure 1B fixed across subjects? I.e. "'beach' and 'barn' as 'Leading' categories would result in 'church' as a 'Trailing' category with 75% validity" (p.20) for all participants? If so, this poses additional problems for the interpretation of the analysis discussed in the point above, as it may invalidate the control analyses depicted in Figure 2E, as systematic differences and similarities in the leading image categories could account for the observed results.

      Image categories and their mapping were indeed fixed across participants. While this may result in physical differences and similarities between images influencing results, counterbalancing categories across participants would not have addressed this issue. For example, had we swapped “beach” with “barn” in another participant, physical differences between images may still be reflected in the prediction decoding. On the other hand, counterbalancing categories across trials was not possible given our aim of examining the initial stages of learning over trials. Had we changed the mappings of categories throughout the experiment for each participant, we would have introduced reversal learning and nullified our ability to examine the initial stages of learning under flat priors. In any case, the prediction decoding analysis has been removed from the manuscript, as outlined above.

      Why was the neutral condition L3 not used for prediction decoding? After all, if during prediction decoding both the valid and invalid image can be decoded, as suggested by the authors, we would also expect significant decoding of T8/T9 during the L3 presentation.

      In the neutral condition, L3 was followed by T8 vs. T9 with 50% probability, precluding prediction decoding. While this could have served as an additional control analysis for EEG-based decoding, we have opted for removing prediction decoding from the analysis. However, in response to the other Reviewers’ comments, the neutral condition has now been included in the behavioral analysis.

      The following concern may arise due to a misunderstanding of the analyses, but I found the results in Figures 2C and 2E concerning. If my interpretation is correct, then these results suggest that the leading image itself can only be decoded with ~33% accuracy (25% chance; i.e. ~8% above chance decoding). In contrast, the predicted (valid or invalid) image during the leading image presentation can be decoded with ~62% accuracy (50% chance; i.e. ~12% above chance decoding). Does this seem reasonable? Unless I am misinterpreting the analyses, it seems implausible to me that a prediction but not actually shown image can be better decoded than an on-screen image. Moreover, to my knowledge studies reporting decoding of predictions can (1) decode expectations just above chance level (e.g. Kok et al., 2017; which is expected given the nature of what is decoded) and (2) report these prestimulus effects shortly before the anticipated stimulus onset, and not coinciding with the leading image onset ~800ms before the predicted stimulus onset. For the above reasons, the key results reported in the present manuscript seem implausible to me and may suggest the possibility of problems in the training or interpretation of the decoding analysis. If I misunderstood the analyses, the analysis text needs to be refined. If I understood the analyses correctly, at the very least the authors would need to provide strong support and arguments to convince the reader that the effects are reliable (ruling out bias and explaining why predictions can be decoded better than on-screen stimuli) and sensible (in the context of previous studies showing different time-courses and results).

      As explained above, we have addressed this concern by performing an additional analysis, implementing decoding based on image pixel values. Indeed we could not rule out the possibility that “prediction” decoding reflected stimulus differences between leading images.

      Relatedly, the authors use the prestimulus interval (-200 ms to 0 ms before predicted stimulus onset) as the baseline period. Given that this period coincides with prestimulus expectation effects ( Kok et al., 2017) , would this not result in a bias during trailing image decoding? In other words, the baseline period would contain an anticipatory representation of the expected stimulus ( Kok et al., 2017) , which is then subtracted from the subsequent EEG signal, thereby allowing the decoder to pick up on this "negative representation" of the expected image. It seems to me that a cleaner contrast would be to use the 200ms before leading image onset as the baseline.

      The analysis of trailing images aimed at testing specific hypotheses related to differences between decoding accuracy in valid vs. invalid trials. Since the baseline was by definition the same for both kinds of trials (since information about validity only appears at the onset of the trailing image), changing the baseline would not affect the results of the analysis. Valid and invalid trials would have the same prestimulus effect induced by the leading image.

      Again, maybe I misunderstood the analyses, but what exactly are the statistics reported on p. 11 onward? Why is the reported Tmax identical for multiple conditions, including the difference between conditions? Without further information this seems highly unlikely, further casting doubts on the rigor of the applied methods/analyses. For example: "In the sensory decoding analysis based on leading images, decoding accuracy was above chance for both valid (Tmax= 2.76, pFWE < 0.001) and invalid trials (Tmax= 2.76, pFWE < 0.001) from 100 ms, with no significant difference between them (Tmax= 2.76, pFWE > 0.05) (Fig. 2C)" (p.11).

      Thank you for bringing this to our attention. As previously mentioned, this copy error has been rectified in the revised manuscript.

      Relatedly, the statistics reported below in the same paragraph also seem unusual. Specifically, the Tmax difference between valid and invalid conditions seems unexpectedly large given visual inspection of the associated figure: "The decoding accuracy of both valid (Tmax = 2.76, pFWE < 0.001) and invalid trials (Tmax = 14.903, pFWE < 0.001)" (p.12). In fact, visual inspection suggests that the largest difference should probably be observed for the valid not invalid trials (i.e. larger Tmax).

      This copy error has also been rectified in the revised manuscript.

      Moreover, multiple subsequent sections of the Results continue to report the exact same Tmax value. I will not list all appearances of "Tmax = 2.76" here but would recommend the authors carefully check the reported statistics and analysis code, as it seems highly unlikely that >10 contrasts have exactly the same Tmax. Alternatively, if I misunderstand the applied methods, it would be essential to better explain the utilized method to avoid similar confusion in prospective readers.

      This error has also now been rectified. As mentioned above the prediction decoding analysis has been removed.

      I am not fully convinced that Figures 3A/B and the associated results support the idea that early learning stages result in dampening and later stages in sharpening. The inference made requires, in my opinion, not only a significant effect in one-time bin and the absence of an effect in other bins. Instead to reliably make this inference one would need a contrast showing a difference in decoding accuracy between bins, or ideally an analysis not contingent on seemingly arbitrary binning of data, but a decrease ( or increase) in the slope of the decoding accuracy across trials. Moreover, the decoding analyses seem to be at the edge of SNR, hence making any interpretation that depends on the absence of an effect in some bins yet more problematic and implausible.

      Thank you for the helpful suggestion. As previously mentioned we fitted a logarithmic model to quantify the change of the decoding benefit over trials, then found the trial index for which the change of the logarithmic fit was < 0.1 %. Given the results of this analysis and to ensure a sufficient number of trials, we focussed our further analyses on bins 1-2 . This is explained in more detail in the revised manuscript.

      Relatedly, based on the literature there is no reason to assume that the dampening effect disappears with more training, thereby placing more burden of proof on the present results. Indeed, key studies supporting the dampening account (including human fMRI and MEG studies, as well as electrophysiology in non-human primates) usually seem to entail more learning than has occurred in bin 2 of the present study. How do the authors reconcile the observation that more training in previous studies results in significant dampening, while here the dampening effect is claimed to disappear with less training?

      The discussion of these findings has been expanded on in the revised manuscript. As previously outlined, many of the studies supporting dampening did not explicitly test the effect of learning as they emerge, nor did they control for RS to the same extent.

      The Methods section is quite bare bones. This makes an exact replication difficult or even impossible. For example, the sections elaborating on the GLM and cluster-based FWE correction do not specify enough detail to replicate the procedure. Similarly, how exactly the time points for significant decoding effects were determined is unclear (e.g., p. 11). Relatedly, the explanation of the decoding analysis, e.g. the choice to perform PCA before decoding, is not well explained in the present iteration of the manuscript. Additionally, it is not mentioned how many PCs the applied threshold on average resulted in.

      Thank you for this suggestion, we have described our methods in more detail.

      To me, it is unclear whether the PCA step, which to my knowledge is not the default procedure for most decoding analyses using EEG, is essential to obtain the present results. While PCA is certainly not unusual, to my knowledge decoding of EEG data is frequently performed on the sensor level as SVMs are usually capable of dealing with the (relatively low) dimensionality of EEG data. In isolation this decision may not be too concerning, however, in combination with other doubts concerning the methods and results, I would suggest the authors replicate their analyses using a conventional decoding approach on the sensory level as well.

      Thank you for this suggestion, we have explained our decision to use PCA in the revised manuscript.

      Several choices, like the binning and the focus on bins 1-2 seem rather post-hoc. Consequently, frequentist statistics may strictly speaking not be appropriate. This further compounds above mentioned concerns regarding the reliability of the results.

      The reasoning behind our decision to focus on bins 1-2 is now explained in more detail in the revised manuscript.

      A notable difference in the present study, compared to most studies cited in the introduction motivating the present experiment, is that categories instead of exemplars were predicted.

      This seems like an important distinction to me, which surprisingly goes unaddressed in the Discussion section. This difference might be important, given that exemplar expectations allow for predictions across various feature levels (i.e., even at the pixel level), while category predictions only allow for rough (categorical) predictions.

      The decision to use categorical predictions over exemplars lies in the issue of RS, as it is impossible to control for RS while repeating stimuli over many trials. This has been discussed in more detail in the revised manuscript.

      While individually minor problems, I noticed multiple issues across several figures or associated figure texts. For example: Figure 1C only shows valid and invalid trials, but the figure text mentions the neutral condition. Why is the neutral condition not depicted but mentioned here? Additionally, the figure text lacks critical information, e.g. what the asterisk represents. The error shading in Figure 2 would benefit from transparency settings to not completely obscure the other time-courses. Increasing the figure content and font size within the figure (e.g. axis labels) would also help with legibility (e.g. consider compressing the time-course but therefore increasing the overall size of the figure). I would also recommend using more common methods to indicate statistical significance, such as a bar at the bottom of the time-course figure typically used for cluster permutation results instead of a box. Why is there no error shading in Figure 2A but all other panels? Fig 2C-F has the y-axis label "Decoding accuracy (%)" but certainly the y-axis, ranging roughly from 0.2 to 0.7, is not in %. The Figure 3 figure text gives no indication of what the error bars represent, making it impossible to interpret the depicted data. In general, I would recommend that the authors carefully revisit the figures and figure text to improve the quality and complete the information.

      Thank you for the suggestions. Figure 1C now includes the neutral condition. Asterisks denote significant results. The font size in Figure 2C-E has been increased. The y-axis on Figure 2C-E has been amended to accurately reflect decoding accuracy in percentage. Figure 2A has error shading, however, the error is sufficiently small that the error shading is difficult to see. The error bars in Figure 3 have been clarified.

      Given the choice of journal (eLife), which aims to support open science, I was surprised to find no indication of (planned) data or code sharing in the manuscript.

      Plans for sharing code/data are now outlined in the revised manuscript.

      While it is explained in sufficient detail later in the Methods section, it was not entirely clear to me, based on the method summary at the beginning of the Results section, whether categories or individual exemplars were predicted. The manuscript may benefit from clarifying this at the start of the Results section.

      Thank you for this suggestion, following this and suggestions from other reviewers, the experimental paradigm and the mappings between categories has been further explained in the revised manuscript, to make it clearer that predictions are made at the categorical level.

      "Unexpected trials resulted in a significantly increased neural response 150 ms after image onset" (p.9). I assume the authors mean the more pronounced negative deflection here. Interpreting this, especially within the Results section as "increased neural response" without additional justification may stretch the inferences we can make from ERP data; i.e. to my knowledge more pronounced ERPs could also reflect increased synchrony. That said, I do agree with the authors that it is likely to reflect increased sensory responses, it would just be useful to be more cautious in the inference.

      Thank you for the interesting comment, this has been rephrased as a “more pronounced negative deflection” in the revised manuscript.

      Why was the ERP analysis focused exclusively on Oz? Why not a cluster around Oz? For object images, we may expect a rather wide dipole.

      Feuerriegel et al (2021) have outlined issues questioning the robustness of univariate analyses for ES, as such we opted for a targeted ROI approach on the channel showing peak amplitude of the visually evoked response (Fig. 2B). More details on this are in the revised manuscript.           

      How exactly did the authors perform FWE? The description in the Method section does not appear to provide sufficient detail to replicate the procedure.

      FWE as implemented in SPM is a cluster-based method of correcting for multiple comparisons using random field theory. We have explained our thresholding methods in more detail in the revised manuscript.

      If I misunderstand the authors and they did indeed perform standard cluster permutation analyses, then I believe the results of the timing of significant clusters cannot be so readily interpreted as done here (e.g. p.11-12); see: Maris & Oostenveld 2007; Sassenhagen & Dejan 2019.

      All statistics were based on FWE under random field theory assumptions (as implemented in SPM) rather than on cluster permutation tests (as implemented in e.g.  Fieldtrip)

      Why did the authors choose not to perform spatiotemporal cluster permutation for the ERP results?

      As mentioned above, we opted to target our ERP analyses on Oz due to controversies in the literature regarding univariate effects of ES (Feuerriegel et al., 2021).

      Some results, e.g. on p.12 are reported as T29 instead of Tmax. Why?

      As mentioned above, prediction decoding analyses have been removed from the manuscript.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The paper by Lee and Ouellette explores the role of cyclic-d-AMP in chlamydial developmental progression. The manuscript uses a collection of different recombinant plasmids to up- and down-regulate cdAMP production, and then uses classical molecular and microbiological approaches to examine the effects of expression induction in each of the transformed strains. 

      Strengths: 

      This laboratory is a leader in the use of molecular genetic manipulation in Chlamydia trachomatis and their efforts to make such efforts mainstream is commendable. Overall, the model described and defended by these investigators is thorough and significant.

      Thank you for these comments.

      Weaknesses: 

      The biggest weakness in the document is their reliance on quantitative data that is statistically not significant, in the interpretation of results. These challenges can be addressed in a revision by the authors. 

      Thank you for these comments. We point out that, while certain RT-qPCR data may not be statistically significant, our RNAseq data indicate late genes are, as a group, statistically significantly increased when increasing c-di-AMP levels and decreased when decreasing c-di-AMP levels. We do not believe running additional experiments to “achieve” statistical significance in the RT-qPCR data is worthwhile. We hope the reviewer agrees with this assessment.

      We have also included new data in this revised manuscript, which we believe further strengthens aspects of the conclusions linked to individual expression of full-length DacA isoforms. We have also quantified inclusion areas and bacterial sizes for critical strains.

      Reviewer #2 (Public review): 

      Summary: 

      This manuscript describes the role of the production of c-di-AMP on the chlamydial developmental cycle. Chlamydia are obligate intracellular bacterial pathogens that rely on eukaryotic host cells for growth. The chlamydial life cycle depends on a cell form developmental cycle that produces phenotypically distinct cell forms with specific roles during the infectious cycle. The RB cell form replicates amplifying chlamydia numbers while the EB cell form mediates entry into new host cells disseminating the infection to new hosts. Regulation of cell form development is a critical question in chlamydia biology and pathogenesis. Chlamydia must balance amplification (RB numbers) and dissemination (EB numbers) to maximize survival in its infection niche. The main findings In this manuscript show that overexpression of the dacA-ybbR operon results in increased production of c-di-AMP and early expression of the transitionary gene hctA and late gene omcB. The authors also knocked down the expression of the dacA-ybbR operon and reported a reduction in the expression of both hctA and omcB. The authors conclude with a model suggesting the amount of c-di-AMP determines the fate of the RB, continued replication, or EB conversion. Overall, this is a very intriguing study with important implications however the data is very preliminary and the model is very rudimentary and is not well supported by the data. 

      Thank you for your comments. Chlamydia is not an easy experimental system, but we have done our best to address the reviewer’s concerns in this revised submission.

      Describing the significance of the findings: 

      The findings are important and point to very exciting new avenues to explore the important questions in chlamydial cell form development. The authors present a model that is not quantified and does not match the data well. 

      Describing the strength of evidence: 

      The evidence presented is incomplete. The authors do a nice job of showing that overexpression of the dacA-ybbR operon increases c-di-AMP and that knockdown or overexpression of the catalytically dead DacA protein decreases the c-di-AMP levels. However, the effects on the developmental cycle and how they fit the proposed model are less well supported. 

      dacA-ybbR ectopic expression: 

      For the dacA-ybbR ectopic expression experiments they show that hctA is induced early but there is no significant change in OmcB gene expression. This is problematic as when RBs are treated with Pen (this paper) and (DOI 10.1128/MSYSTEMS.00689-20) hctA is expressed in the aberrant cell forms but these forms do not go on to express the late genes suggesting stress events can result in changes in the developmental expression kinetic profile. The RNA-seq data are a little reassuring as many of the EB/Late genes were shown to be upregulated by dacA-ybbR ectopic expression in this assay.

      As the reviewer notes, we also generated RNAseq data, which validates that late gene transcripts (including sigma28 and sigma54 regulated genes) are statistically significantly increased earlier in the developmental cycle in parallel to increased c-di-AMP levels. The lack of statistical significance in the RT-qPCR data for omcB, which shows a trend of higher transcripts, is less concerning given the statistically significantly RNAseq dataset. We have reported the data from three replicates for the RT-qPCR and do not think it would be worthwhile to attempt more replicates in an attempt to “achieve” statistical significance.

      We recognize that hctA may also increase during stress as noted by the Grieshaber Lab. In re-evaluating these data, we decided to remove the Penicillin-linked studies from the manuscript since they detract from the focus of the story we are trying to tell given the potential caveat the reviewer mentions.

      The authors also demonstrate that this ectopic expression reduces the overall growth rate but produces EBs earlier in the cycle but overall fewer EBs late in the cycle. This observation matches their model well as when RBs convert early there is less amplification of cell numbers. 

      dacA knockdown and dacA(mut) 

      The authors showed that dacA knockdown and ectopic expression of the dacA mutant both reduced the amount of c-di-AMP. The authors show that for both of these conditions, hctA and omcB expression is reduced at 24 hpi. This was also partially supported by the RNA-seq data for the dacA knockdown as many of the late genes were downregulated. However, a shift to an increase in RB-only genes was not readily evident. This is maybe not surprising as the chlamydial inclusion would just have an increase in RB forms and changes in cell form ratios would need more time points.

      Thank you for this comment. We agree that it is not surprising given the shift in cell forms. The reduction in hctA transcripts argues against a stress state as noted above by the reviewer, and the RNAseq data from dacA-KD conditions indicates at least that secondary differentiation has been delayed. We agree that more time points would help address the reviewer’s point, but the time and cost to perform such studies is prohibitive with an obligate intracellular bacterium.

      Interestingly, the overall growth rate appears to differ in these two conditions, growth is unaffected by dacA knockdown but is significantly affected by the expression of the mutant. In both cases, EB production is repressed. The overall model they present does not support this data well as if RBs were blocked from converting into EBs then the growth rate should increase as the RB cell form replicates while the EB cell form does not. This should shift the population to replicating cells. 

      We agree that it seems that perturbing c-di-AMP production by knockdown or overexpressing the mutant DacA(D164N) has different impacts on chlamydial growth. We have generated new data, which we believe addresses this. Overexpressing membrane-localized DacA isoforms is clearly detrimental to chlamydiae as noted in the manuscript. However, when we removed the transmembrane domain and expressed N-terminal truncations of these isoforms, we observed no effects of overexpression on chlamydial morphology or growth. Importantly, for the wild-type full-length or truncated isoforms, overexpressing each resulted in the same level of c-di-AMP production, further supporting that the negative effect of overexpressing the wild-type full-length is linked to its membrane localization and not c-di-AMP levels. These data have been included as new Figure 3. These data indicate that too much DacA in the membrane is disruptive and suggest that the balance of DacA to YbbR is important since overexpression of both did not result in the same phenotype. This is further described in the Discussion.

      As it relates to knockdown of dacA-ybbR, we have essentially removed/reduced the amount of these proteins from the membrane and have blocked the production of c-di-AMP. This is fundamentally different from overexpression.

      Overall this is a very intriguing finding that will require more gene expression data, phenotypic characterization of cell forms, and better quantitative models to fully interpret these findings. 

      Reviewer #1 (Recommendations for the authors): 

      There is a generally consistent set of experiments conducted with each of the mutant strains, allowing a straightforward examination of the effects of each transformant. There are a few general and specific things that need to be addressed for both the benefit of the reader and the accuracy of interpretation. The following is a list of items that need to be addressed in the document, with an overall goal of making it more readable and making the interpretations more quantitatively defended. 

      Specific comments: 

      (1) The manuscript overall is wordy and there are quite a few examples of text in the results that should be in the discussion (examples include lines 224-225, 248-262, 282-288, 304-308) the manuscript overall could use a careful editing for verbosity. 

      Thank you for this comment. We have removed some of the indicated sentences. However, to maintain the flow and logic of the manuscript, some statements may have been preserved to help transition between sections. As far as verbosity, we have tried to be as clear as possible in our descriptions of the results to minimize ambiguity. Others who read our manuscript appreciated the thoroughness of our descriptions.

      (2) There is also a trend in the document to base fact statements on qualitative and quantitative differences that do not approach statistical significance. Examples of this include the following: lines 156-158, 190-192, 198-199, 230-232, 239-242, 292-293). This is something the authors need to be careful about, as these different statistically insignificant differences may tend to multiply a degree of uncertainty across the entire manuscript. 

      We have quantified inclusion areas and tried to remove instances of qualitative assessments as noted by the reviewer. In regards to some of the transcripts, we can only report the data as they are. In some cases, there are trends that are not statistically significant, but it would seem to be inaccurate to state that they were unchanged. In other cases, a two-fold or less difference in transcript levels may be statistically significant but biologically insignificant. A reader can and should make their own conclusions.

      (3) Any description of inclusion or RB size being modestly different needs to be defended with microscopic quantification. 

      We have quantified inclusion areas and RB sizes and tried to remove instances of qualitative assessments as noted by the reviewer.

      (4) It would be very helpful to reviewers if there was a figure number added to each figure in the reviewer-delivered text. 

      Added.

      (5) Figure 1A: This should indicate that the genes indicated beneath each developmental form are on high (I think that is what that means). 

      We have reorganized Figure 1 to better improve the flow.

      (6) Figure 1B is exactly the same as the three images in Figure 8B. I would delete this in Figure 1. This relates to comment 9. 

      We presented this intentionally to clearly illustrate to the reader, who may not be knowledgeable in this area, what we propose is happening in the various strains. As such, we respectfully disagree and have left this aspect of the figure unchanged.

      (7) Figure 1D: It is not clear if the period in E.V has any meaning. I think this is just a typo. Also, the color coding needs to be indicated here. What do the gray bars represent? The labeling for the gene schematic for dacA-KDcom should not be directly below the first graph in D. This makes the reader think this is a label for the graph. This can be accomplished if the image in panel B is removed and the first graph in panel D is moved into B. This will make a better figure. 

      We have reorganized Figure 1 to better improve the flow.

      (8) Figure 2 C, G: The utility of these panels is not clear. For them to have any value, they need to be expressed in genome copies. If they are truly just a measure of chlamydia genomic DNA, they have minimal utility to the reader. There are similar panels in several other figures. 

      We have reported genome copies as suggested in lieu of ng gDNA for these measurements. Importantly, it does not alter any interpretations.

      (9) I am not sure about the overall utility of Figure 8. Granted, a summary of their model is useful, but the cartoons in the figure are identical or very nearly identical to model figures shown in two other publications from the same group (PMID: 39576108, 39464112) These are referenced at least tangentially in the current manuscript (Jensen paper- now published- and ref 53). Because the model has been published before, if they are to be included, there needs to be a direct comparison of the results in each of these three papers, as they basically describe the same developmental process. The model images should also be referenced directly to the first of the other papers.

      This was intentional so that readers familiar with our work will see the similarities between these systems. We have added additional comments in the Discussion related to our newly published work. As an aside, Dr. Lee generated the first version of the figure that was adapted by others in the lab. It is perhaps unlucky that those other studies have been published before his work.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Given the importance that these coupling mechanisms have been given in theory, this is a timely and important contribution to the literature in terms of determining whether these theoretical assumptions hold true in human data.

      Thank you!

      I did not follow the logic behind including spindle amplitude in the meta-analysis. This is not a measure of SO-spindle coupling (which is the focus of the review), unless the authors were restricting their analysis of the amplitude of coupled spindles only. It doesn't sound like this is the case though. The effect of spindle amplitude on memory consolidation has been reviewed in another recent meta-analysis (Kumral et al, 2023, Neuropsychologia). As this isn't a measure of coupling, it wasn't clear why this measure was included in the present meta-analysis. You could easily make the argument that other spindle measures (e.g., density, oscillatory frequency) could also have been included, but that seems to take away from the overall goal of the paper which was to assess coupling.

      Indeed, spindle amplitude refers to all spindle events rather than only coupled spindles. This choice was made because we recognized the challenge of obtaining relevant data from each study—only 4 out of the 23 included studies performed their analyses after separating coupled and uncoupled spindles. This inconsistency strengthens the urgency and importance of this meta-analysis to standardize the methods and measures used for future analysis on SO-SP coupling and beyond. We agree that focusing on the amplitude of coupled spindles would better reveal their relations with coupling, and we have discussed this limitation in the manuscript.

      Nevertheless, we believe including spindle amplitude in our study remains valuable, as it served several purposes. First, SO-SP coupling involves the modulation between spindle amplitude and slow oscillation phase. Different studies have reported conflicting conclusions regarding how overall spindle amplitude was related to coupling as an indicator of oscillation strength overnight– some found significant correlations (e.g., Baena et al., 2023), while others did not (e.g., Roebber et al., 2022). This discrepancy highlights an indirect but potentially crucial insight into the role of spindle amplitude in coupling dynamics. Second, in studies related to SO-SP coupling, spindle amplitude is one of the most frequently reported measures along with other coupling measures that significantly correlated with oversleep memory improvements (e.g. Kurz et al., 2023; Ladenbauer et al., 2021; Niknazar et al., 2015), so we believe that including this measure can provide a more comprehensively review of the existing literature on SO-SP coupling. Third, incorporating spindle amplitude allows for a direct comparison between the measurement of coupling and individual events alone in their contribution to memory consolidation– a question that has been extensively explored in recent research. (e.g., Hahn et al., 2020; Helfrich et al., 2019; Niethard et al., 2018; Weiner et al., 2023). Finally, spindle amplitude was identified as the most important moderator for memory consolidation in Kumral et al.'s (2023) meta-analysis. By including it in our analysis, we sought to replicate their findings within a broader framework and introduce conceptual overlaps with existing reviews. Therefore, although we were not able to selectively include coupled spindles, there is still a unique relation between spindle amplitude and SO-SP coupling that other spindle measures do not have. 

      Originally, we also intended to include coupling density or counts in the analysis, which seems more relevant to the coupling metrics. However, the lack of uniformity in methods used to measure coupling density posed a significant limitation. We hope that our study will encourage consistent reporting of all relevant parameters in future research, allowing future meta-analyses to incorporate these measures comprehensively. We have added this discussion to the revised version of the manuscript (p. 3) to further clarify these points.

      All other citations were referenced in the manuscript.

      At the end of the first paragraph of section 3.1 (page 13), the authors suggest their results "... further emphasise the role of coupling compared to isolated oscillation events in memory consolidation". This had me wondering how many studies actually test this. For example, in a hierarchical regression model, would coupled spindles explain significantly more variance than uncoupled spindles? We already know that spindle activity, independent of whether they are coupled or not, predicts memory consolidation (e.g., Kumral meta-analysis). Is the variance in overnight memory consolidation fully explained by just the coupled events? If both overall spindle density and coupling measures show an equal association with consolidation, then we couldn't conclude that coupling compared to isolated events is more important.

      While primary coupling measurements, including coupling phase and strength, showed strong evidence for their associations with memory consolidation, measures of spindles, including spindle amplitude, only exhibited limited evidence (or “non-significant” effect) for their association with consolidation. These results are consistent with multiple empirical studies using different techniques (e.g., Hahn et al., 2020; Helfrich et al., 2019; Niethard et al., 2018; Weiner et al., 2023), which reported that coupling metrics are more robust predictors of consolidation and synaptic plasticity than spindle or slow oscillation metrics alone. However, we agree with the reviewer that we did not directly separate the effect between coupled and uncoupled spindles, and a more precise comparison would involve contrasting the “coupling of oscillation events” with ”individual oscillation events” rather than coupling versus isolated events.

      We recognized that Kumral and colleagues’ meta-analysis reported a moderate association between spindle measures and memory consolidation (e.g., for spindle amplitude-memory association they reported an effect size of approximately r = 0.30). However, one of the advantages of our study is that we actively cooperated with the authors to obtain a large number of unreported and insignificant data relevant to our analysis, as well as separated data that were originally reported under mixed conditions. This approach decreases the risk of false positives and selective reporting of results, making the effect size more likely to approach the true value. In contrast, we found only a weak effect size of r = 0.07 with minimal evidence for spindle amplitude-memory relation. However, we agree with the reviewer that using a more conservative term in this context would be a better choice since we did not measure all relevant spindle metrics including the density.

      To improve clarity in our manuscript, we have revised the statement to: “Together with other studies included in the review, our results suggest a crucial role of coupling but did not support the role of spindle events alone in memory consolidation,” and provide relevant references (p. 13). We believe this can more accurately reflect our findings and the existing literature to address the reviewer’s concern.

      It was very interesting to see that the relationship between the fast spindle coupling phase and overnight consolidation was strongest in the frontal electrodes. Given this, I wonder why memory promoting fast spindles shows a centro-parietal topography? Surely it would be more adaptive for fast spindles to be maximally expressed in frontal sites. Would a participant who shows a more frontal topography of fast spindles have better overnight consolidation than someone with a more canonical centro-parietal topography? Similarly, slow spindles would then be perfectly suited for memory consolidation given their frontal distribution, yet they seem less important for memory.

      Regarding the topography of fast spindles and their relationship to memory consolidation, we agree this is an intriguing issue, and we have already developed significant progress in this topic in our ongoing work, and have found evidence that participants with a more frontal topography of fast spindles show better overnight consolidation. These findings will be presented in our future publications. We share a few relevant observations: First, there are significant discrepancies in the definition of “slow spindle” in the field. Some studies defined slow spindle from 9-12 Hz (e.g. Mölle et al., 2011; Kurz et al., 2021), while others performed the event detection within a range of 11-13/14 Hz and found a frontal-dominated topography (e.g. Barakat et al., 2011; D'Atri et al., 2018). Compounding this issue, individual and age differences in spindle frequency are often overlooked, leading to challenges in reliably distinguishing between slow and fast spindles. Some studies have reported difficulty in clearly separating the two types of spindles altogether (e.g., Hahn et al., 2020). Moreover, a critical factor often ignored in past research is the propagating nature of both slow oscillations and spindles across the cortex, where spindles are coupled with significantly different phases of slow oscillations (see Figure 5). In addition, the frontal region has the strongest and most active SOs as its origin site, which may contribute to the role of frontal coupling. In contrast, not all SOs propagate from PFC to centro-parietal sites. The reviewer also raised an interesting idea that slow spindles would be perfectly suited for memory consolidation given their frontal distribution. We propose that one possible explanation is that if SOs couple exclusively with slow SPs, they may lose their ability to coordinate inter-area activity between centro-parietal and frontal regions, which could play a critical role in long-range memory transmission across hippocampus, thalamus, and prefrontal cortex. This hypothesis requires investigation in future studies. We believe a better understanding of coupling in the context of the propagation of these waves will help us better understand the observed frontal relationship with consolidation. Therefore, we believe this result supports our conclusion that coupling precision is more important than intensity, and we have addressed this in revised manuscript (pp. 15-16).

      The authors rightly note the issues with multiple comparisons in sleep physiology and memory studies. Multiple comparison issues arise in two ways in this literature. First are comparisons across multiple electrodes (many studies now use high-density systems with 64+ channels). Second are multiple comparisons across different outcome variables (at least 3 ways to quantify coupling (phase, consistency, occurrence) x 2 spindle types (fast, slow). Can the authors make some recommendations here in terms of how to move the field forward, as this issue has been raised numerous times before (e.g., Mantua 2018, Sleep; Cox & Fell 2020, Sleep Medicine Reviews for just a couple of examples). Should researchers just be focusing on the coupling phase? Or should researchers always report all three metrics of coupling, and correct for multiple comparisons? I think the use of pre-registration would be beneficial here, and perhaps could be noted by the authors in the final paragraph of section 3.5, where they discuss open research practices.

      There are indeed multiple methods that we can discuss, including cluster-based and non-parametric methods, etc., to correct for multiple comparisons in EEG data with spatiotemporal structures. In addition, encouraging the reporting of all tested but insignificant results, at least in supplementary materials, is an important practice that helps readers understand the findings with reduced bias. We agree with the reviewer’s suggestions and have added more information in section 3.4-3.5 (p. 17) to advocate for a standardized “template” used to report effect sizes and correct multiple comparisions in future research.

      We advocate for the standardization of reporting all three coupling metrics– phase, strength, and prevalence (density, count, and/or percentage coupled). Each coupling metric captures distinct a property of the coupling process and may interact with one another (Weiner et al., 2023). Therefore, we believe it is essential to report all three metrics to comprehensively explore their different roles in the “how, what, and where” of long-distance communication and consolidation of memory. As we advance toward a deeper understanding of the relationship between memory and sleep, we hope this work establishes a standard for the standardization, transparency, and replication of relevant studies.

      Reviewer #2 (Public review):

      Regarding the Moderator of Age: Although the authors discuss the limited studies on the analysis of children and elders regarding age as a moderator, the figure shows a significant gap between the ages of 40 and 60. Furthermore, there are only a few studies involving participants over the age of 60. Given the wide distribution of effect sizes from studies with participants younger than 40, did the authors test whether removing studies involving participants over 60 would still reveal a moderator effect?

      We agree that there is an age gap between younger and older adults, as current studies often focus on contrasting newly matured and fully aged populations to amplify the effect, while neglecting the gradual changes in memory consolidation mechanisms across the aging spectrum. We suggest that a non-linear analysis of age effects would be highly valuable, particularly when additional child and older adult data become available.

      In response to the reviewer’s suggestion, we re-tested the moderation effect of age after excluding effect sizes from older adults. The results revealed a decrease in the strength of evidence for phase-memory association due to increased variability, but were consistent for all other coupling parameters. The mean estimations also remained consistent (coupling phase-memory relation: -0.005 [-0.013, 0.004], BF10 = 5.51, the strength of evidence reduced from strong to moderate; coupling strength-memory relation: -0.005 [-0.015, 0.008], BF10 = 4.05, the strength of evidence remained moderate). These findings align with prior research, which typically observed a weak coupling-memory relationship in older adults during aging (Ladenbauer et al, 2021; Weiner et al., 2023) but not during development (Hahn et al., 2020; Kurz et al., 2021; Kurz et al., 2023). Therefore, this result is not surprising to us, and there are still observable moderate patterns in the data. We have reported these additional results in the revised manuscript (pp. 6, 11), and interpret “the moderator effect of age in the phase-memory association becomes less pronounced during development after excluding the older adult data”. We believe the original findings including the older adult group remain meaningful after cautious interpretation, given that the older adult data were derived from multiple studies and different groups, and they represent the aging effects.

      Reviewer #3 (Public review):

      First, the authors conclude that "SO-SP coupling should be considered as a general physiological mechanism for memory consolidation". However, the reported effect sizes are smaller than what is typically considered a "small effect”.

      While we acknowledge the concern about the small effect sizes reported in our study, it is important to contextualize these findings within the field of neuroscience, particularly memory research. Even in individual studies, small effect sizes are not uncommon due to the inherent complexity of the mechanisms involved and the multitude of confounding variables. This is an important factor to be considered in meta-analyses where we synthesize data from diverse populations and experimental conditions. For example, the relationship between SO-slow SP coupling and memory consolidation in older adults is expected to be insignificant.

      As Funder and Ozer (2019) concluded in their highly cited paper, an effect size of r = 0.3 in psychological and related fields should be considered large, with r = 0.4 or greater likely representing an overestimation and rarely found in a large sample or a replication. Therefore, we believe r = 0.1 should not be considered as a lower bound of the small effect. Bakker et al. (2019) also advocate for a contextual interpretation of the effect size. This is particularly important in meta-analyses, where the results are less prone to overestimation compared to individual studies, and we cooperated with all authors to include a large number of unreported and insignificant results. In this context, small correlations may contain substantial meaningful information to interpret. Although we agree that effect sizes reported in our study are indeed small at the overall level, they reflect a rigorous analysis that incorporates robust evidence across different levels of moderators. Our moderator analyses underscore the dynamic nature of coupling-memory relationships, with stronger associations observed in moderator subgroups that have historically exhibited better memory performance, particularly after excluding slow spindles and older adults. For example, both the coupling phase and strength of frontal fast spindles with slow oscillations exhibited "moderate-to-large" correlations with the consolidation of different types of memory, especially in young adults, with r values ranging from 0.18 to 0.32. (see Table S9.1-9.4). We have included discussion about the influence of moderators and hierarchical structures on the dynamics of coupling-memory associations (pp. 17, 20). In addition, we have updated the conclusion to be “SO-fast SP coupling should be considered as a general physiological mechanism for memory consolidation” (p. 1).

      Second, the study implements state-of-the-art Bayesian statistics. While some might see this as a strength, I would argue that it is the greatest weakness of the manuscript. A classical meta-analysis is relatively easy to understand, even for readers with only a limited background in statistics. A Bayesian analysis, on the other hand, introduces a number of subjective choices that render it much less transparent.

      This kind of analysis seems not to be made to be intelligible to the average reader. It follows a recent trend of using more and more opaque methods. Where we had to trust published results a decade ago because the data were not openly available, today we must trust the results because the methods can no longer be understood with reasonable effort.

      This becomes obvious in the forest plots. It is not immediately apparent to the reader how the distributions for each study represent the reported effect sizes (gray dots). Presumably, they depend on the Bayesian priors used for the analysis. The use of these priors makes the analyses unnecessarily opaque, eventually leading the reader to question how much of the findings depend on subjective analysis choices (which might be answered by an additional analysis in the supplementary information).

      We appreciate the reviewer for sharing this viewpoint and we value the opportunity to clarify some key points. To address the concern about clarity, we have included more details in the methods section explaining how to interpret Bayesian statistics including priors, posteriors, and Bayes factors, making our results more accessible to those less familiar with this approach.

      On the use of Bayesian models, we believe there may have been a misunderstanding. Bayesian methods, far from being "opaque" or overly complex, are increasingly valued for their ability to provide nuanced, accurate, and transparent inferences (Sutton & Abrams, 2001; Hackenberger, 2020; van de Schoot et al., 2021; Smith et al., 1995; Kruschke & Liddell, 2018). It has been applied in more than 1,200 meta-analyses as of 2020 (Hackenberger, 2020). In our study, we used priors that assume no effect (mean set to 0, which aligns with the null) while allowing for a wide range of variation to account for large uncertainties. This approach reduces the risk of overestimation or false positives and demonstrates much-improved performance over traditional methods in handling variability (Williams et al., 2018; Kruschke & Liddell, 2018). In addition, priors can also increase transparency, since all assumptions are formally encoded and open to critique or sensitivity analysis. In contrast, frequentist methods often rely on hidden or implicit assumptions such as homogeneity of variance, fixed-effects models, and independence of observations that are not directly testable. Sensitivity analyses reported in the supplemental material (Table S9.1-9.4) confirmed the robustness of our choices of priors– our results did not vary by setting different priors.

      As Kruschke and Liddell (2018) described, “shrinkage (pulling extreme estimates closer to group averages) helps prevent false alarms caused by random conspiracies of rogue outlying data,” a well-known advantage of Bayesian over traditional approaches. This explains the observed differences between the distributions and grey dots in the forest plots, which is an advantage of Bayesian models in handling heterogeneity. Unlike p-values, which can be overestimated with a large sample size and underestimated with a small sample size, Bayesian methods make assumptions explicit, enabling others to challenge or refine them– an approach aligned with open science principles (van de Schoot et al., 2021). For example, a credible interval in Bayesian model can be interpreted as “there is a 95% probability that the parameter lies within the interval.”, while a confidence interval in frequentist model means “In repeated experiments, 95% of the confidence intervals will contain the true value.” We believe the former is much more straightforward and convincing for readers to interpret. We will ensure our justification for using Bayesian models is more clearly presented in the manuscript (pp. 21-23).

      We acknowledge that even with these justifications, different researchers may still have discrepancies in their preferences for Bayesian and frequentist models. To increase the effort of transparent reporting, we have also reported the traditional frequentist meta-analysis results in Supplemental Material 10 to justify the robustness of our analysis, which suggested non-significant differences between Bayesian and frequentist models. We have included clearer references in the updated version of the manuscript to direct readers to the figures that report the statistics provided by traditional models.

      However, most of the methods are not described in sufficient detail for the reader to understand the proceedings. It might be evident for an expert in Bayesian statistics what a "prior sensitivity test" and a "posterior predictive check" are, but I suppose most readers would wish for a more detailed description. However, using a "Markov chain Monte Carlo (MCMC) method with the no-U-turn Hamiltonian Monte Carlo (HMC) sampler" and checking its convergence "through graphical posterior predictive checks, trace plots, and the Gelman and Rubin Diagnostic", which should then result in something resembling "a uniformly undulating wave with high overlap between chains" is surely something only rocket scientists understand. Whether this was done correctly in the present study cannot be ascertained because it is only mentioned in the methods and no corresponding results are provided. 

      We appreciate the reviewer’s concerns about accessibility and potential complexity in our descriptions of Bayesian methods. Our decision to provide a detailed account serves to enhance transparency and guide readers interested in replicating our study. We acknowledge that some terms may initially seem overwhelming. These steps, such as checking the MCMC chain convergence and robustness checks, are standard practices in Bayesian research and are analogous to “linearity”, “normality” and “equal variance” checks in frequentist analysis. In addition, Hamiltonian Monte Carlo (HMC) is the default algorithm Stan (the software we used to fit Bayesian models) uses to sample from the posterior distribution in Bayesian models. It is a type of MCMC method designed to be faster and more efficient than traditional sampling algorithms, especially for complex or high-dimensional models. We have added exemplary plots in the supplemental material S4.1-4.3 and the method section (pp. 21-22) to explain the results and interpretation of these convergence checks. We hope this will help address any concerns about methodological rigor.

      In one point the method might not be sufficiently justified. The method used to transform circular-linear r (actually, all references cited by the authors for circular statistics use r² because there can be no negative values) into "Z_r", seems partially plausible and might be correct under the H0. However, Figure 12.3 seems to show that under the alternative Hypothesis H1, the assumptions are not accurate (peak Z_r=~0.70 for r=0.65). I am therefore, based on the presented evidence, unsure whether this transformation is valid. Also, saying that Z_r=-1 represents the null hypothesis and Z_r=1 the alternative hypothesis can be misinterpreted, since Z_r=0 also represents the null hypothesis and is not half way between H0 and H1.

      First, we realized that in the title of Figures 12.2 and 12.3. “true r = 0.35” and “true r = 0.65” should be corrected as “true r_z” (note that we use r_z instead of Z_r in the revised manuscript per your suggestion). The method we used here is to first generate an underlying population that has null (0), moderate (0.35), or large (0.65) r_z correlations, then test whether the sampling distribution drawn from these populations followed a normal distribution across varying sample sizes. Nevertheless, the reviewer correctly noticed discrepancies between the reported true r_z and its sampling distribution peak. This discrepancy arises because, when generating large population data, achieving exact values close to a strong correlation like r_z = 0.65 is unlikely. We loop through simulations to generate population data and ensure their r_z values fall within a threshold. For moderate effect sizes (e.g., r_z = 0.35), this is straightforward using a narrow range (0.34 < r_z < 0.35). However, for larger effect sizes like r_z = 0.65, a wider range (0.6 < r_z < 0.7) is required. therefore sometimes the population we used to draw the sample has a r_z slightly deviated from 0.65. This remains reasonable since the main point of this analysis is to ensure that a large r_z still has a normal sampling distribution, but not focus specifically on achieving r_z = 0.65.

      We acknowledge that this variability of the range used was not clearly explained in supplemental material 12 and it is not accurate to report “true r_z = 0.65”. In the revised version, we have addressed this issue by adding vertical lines to each subplot to indicate the r_z of the population we used to draw samples, making it easier to check if it aligns with the sampling peak. In addition, we have revised the title to “Sampling distributions of r_z drawn from strong correlations

      (r_z = 0.6-0.7)”. We confirmed that population r_z and the peak of their sampling distribution remain consistent under both H0 and H1 in all sample sizes with n > 25, and we hope this explanation can fully resolve your concern.

      We agree with the reviewer that claiming r_z = -1 represents the null hypothesis is not accurate. The circlin r_z = 0 is better analogous to Pearson’s r = 0 since both represent the mean drawn from the population under the null hypothesis. In contrast, the mean effect size under null will be positive in the raw circlin r, which is one of the important reasons for the transformation. To provide a more accurate interpretation, we updated Table 6 to describe the following strength levels of evidence: no effect (r < 0), null (r = 0), small (r = 0.1), moderate (r = 0.3), and large (r =0.5). We thank the reviewer again for their valuable feedback.

      Reviewer #2 (Recommendations for the authors):

      (1) There is an extra space in the Notes of Figure 1. "SW R sharp-wave ripple.".

      We thank the reviewer for pointing this out. We have confirmed that the "extra space" is not an actual error but a result of how italicized Times New Roman font is rendered in the LaTeX format. We believe that the journal’s formatting process will resolve this issue.

      (2) In the introduction, slow oscillations (SO) are defined with a frequency of 0.16-4 Hz, sleep spindles (SP) at 8-16 Hz, and sharp-wave ripples (SWR) at 80-300 Hz. The term "fast oscillation" (FO) is first introduced with the clarification "SPs in our case." However, on page 2, the authors state, "SO-FO coupling involving SWRs, SPs, and SOs..." There seems to be a discrepancy in the definition of FO; does it consistently refer to SPs and SWRs throughout the article?

      We appreciate the reviewer’s observation regarding the potential ambiguity of the term "FO." In our manuscript, "FO" is used as a general term to describe the interaction of a "relatively faster oscillation" with a "relatively slower oscillation" in the phase-amplitude coupling mechanism, therefore it is not intended to exclusively refer to SPs or SWRs. For example, it is usually used to describe SO–SP–SWR couplings during sleep memory studies, but Theta–Alpha–Gamma couplings in wakeful memory studies. To address this confusion, we removed the phrase "SPs in our case" and explicitly use "SPs" when referring to spindles. In addition, we have replaced "fast oscillation" with "faster oscillation" to emphasize that it is used in a relative sense (p. 1), rather than to refer to a specific oscillation. Also, we only retained the term “FO” when introducing the PAC mechanism.

      (3) On page 2, the first paragraph contains the phrase: "...which occur in the precise hierarchical temporal structure of SO-FO coupling involving SWRs, SPs, and SOs ..." Since "SO-FO" refers to slow and fast oscillations, it is better to maintain the order of frequencies, suggesting it as: SOs, SPs, and SWRs.

      We sincerely thank the reviewer for their valuable suggestion. We have updated the sentence to maintain the correct order from the lowest to the highest frequencies in the revised version (p. 2).

      (4) References should be provided:

      a “Studies using calcium imaging after SP stimulation explained the significance of the precise coupling phase for synaptic plasticity.".

      b. "Electrophysiology evidence indicates that the association between memory consolidation and SO-SP coupling is influenced by a variety of behavioral and physiological factors under different conditions."

      c. "Since some studies found that fast SPs predominate in the centroparietal region, while slow SPs are more common in the frontal region, a significant amount of studies only extracted specific types of SPs from limited electrodes. Some studies even averaged all electrodes to estimate coupling..."

      This is a great point.  These have been referenced as follows:

      a. Rephrased: “Studies using calcium imaging and SP stimulation explained the significance of the precise coupling phase for synaptic plasticity.” We changed “after” to “and” to reflect that these were conducted as two separate experiments. This is a summary statement, with relevant citations provided in the following two sentences of the paragraph, including Niethard et al., 2018, and Rosanova et al., 2005. (p. 2)

      b. Included diverse sources of evidence: “Electrophysiology evidence from studies included in our meta-analysis (e.g. Denis et al., 2021; Hahn et al., 2020; Mylonas et al., 2020) and others (e.g. Bartsch et al., 2019; Muehlroth et al., 2019; Rodheim et al., 2023) reported that the association between memory consolidation and SO-SP coupling is influenced by a variety of behavioral and physiological factors under different conditions.” (p. 3)

      c. Added references and more details: “Since some studies found that fast SPs predominate in the centroparietal region, while slow SPs are more common in the frontal region, a significant amount of studies selectively extracted specific types of SPs from limited electrodes (e.g. Dehnavi et al., 2021; Perrault et al., 2019; Schreiner et al., 2021). Some studies even averaged all electrodes in their spectral and/or time-series analysis to estimate metrics of oscillations and their couplings (e.g. Denis et al., 2022; Mölle et al., 2011; Nicolas et al., 2022).” (p. 4)

      Reviewer #3 (Recommendations for the authors):

      There are a number of terms that are not clearly defined or used:

      (1) SP amplitude. Does this mean only the amplitude of coupled spindles or of spindles in general?

      This refers to the amplitude of spindles in general. We clarified this in the revised text (and see response to reviewer #1, point #1).

      (2) The definition of a small effect

      We thank the reviewer again for raising this important question. As we responded in the public review, small effect sizes are common in neuroscience and meta-analyses due to the complexity of the underlying mechanisms and the presence of numerous confounding variables and hierarchical levels. To help readers better interpret effect sizes, we changed rigid ranges to widely accepted benchmarks for effect size levels in neuroscience research: small (r=0.1), moderate (r=0.3), and large (r=0.5; Cohen, 1988). We also noted that an evidence and context-based framework will provide a more practical way to interpret the observed effect sizes compared to rigid categorizations.

      (3) Can a BF10 based on experimental evidence actually be "infinite" and a probability actually be 1.00?

      We appreciate the reviewer for highlighting this potential confusion. The formula used to calculate BF10 is P(data | H1) / P(data | H0). In the experimental setting with an informative prior, an ‘infinite’ BF10 value indicates that all posterior samples are overwhelmingly compatible with H1 given the data and assumptions (Cox et al., 2023; Heck et al., 2023; Ly et al., 2016). In such cases, the denominator P(data | H0) becomes vanishingly small, leading BF10 to converge to infinity. This scenario occurs when the probability of H1 converges to 1 (e.g., 0.9999999999…).

      It is a well-established convention in Bayesian statistics to report the Bayes factor as "infinity" in cases where the evidence is overwhelmingly strong, and BF10 exceeds the numerical limits of the computation tools to become effectively infinite. To address this ambiguity, we added a footnote in the revised version of the manuscript to clarify the interpretation of an 'infinite' BF10 . (p. 8)

      (4) Z_r should be renamed to r_z or similar. These are not Z values (-inf..+inf), but r values (-1..1).

      We thank the reviewers for their suggestions. We agree that r_z would provide a clearer and more accurate interpretation, while z is more appropriate for referring to Fisher's z-transformed r (see point (5)). We have updated the notation accordingly.

      (5) Also, it remains quite unclear at which points in the analyses, "r" values or "Fisher's z transformed r" values are used. Assumptions of normality should only apply to the transformed values. However, the formulas for the random effects model seem to assume normality for r values.

      The correlation values were z-transformed during preprocessing to ensure normality and the correct estimation of sampling variances before running the models. The outputs were then back-transformed to raw r values only when reporting the results to help readers interpret the effect size. We mentioned this in Section 5.5.1, therefore the normality assumptions are not a concern. We have updated the notation r to z (-inf..+inf) in the formula of the random and mixed effect models in the revised version of the manuscript (p. 22).

      Language

      (1) Frequency. In the introduction, the authors use "frequency" when they mean something like the incidence of spindles.

      We agree that the term "frequency" has been used inconsistently to describe both the incidence of events and the frequency bands of oscillations. We have replaced "frequency" with "prevalence" to refer to the incidence of coupling events where applicable (p. 3).

      (2) Moderate and mediate. These two terms are usually meant to indicate two different types of causal influences.

      Thanks for the reviewer’s suggestions. We agree that "moderate" is more appropriate to describe moderators in this study since it does not directly imply causality. We have replaced mediate with moderate in relevant contexts.

      (3) "the moderate effect of memory task is relatively weak": "moderator effect" or "moderate effect"?

      We appreciate the reviewer for pointing out this mistake. We have updated the term to "moderator effect" in Section 2.2.2 (p. 6).

      (4) "in frontal regions we found a latest coupled but most precise and strong SO-fast SP coupling" Meaning?

      We thank the reviewer for bringing this concern of clarity to our attention. By 'latest,' we refer to the delayed phase of SO-fast SP coupling observed in the frontal regions compared to the central and parietal regions (see Figure 5), "Precise and strong" describes the high precision and strength of phase-locking between the SO up-state and the fast SP peak in these regions. We have rephrased this sentence to be: “We found that SO-fast SP coupling in the frontal region occurred at the latest phase observed across all regions, characterized by the highest precision and strength of phase-locking.” to improve clarity (p. 9).

      (5) Figure 5 and others contain angles in degrees and radians.

      We appreciate the reviewer pointing out this inconsistency. We have updated the manuscript and supplementary material to consistently use radians throughout.

    1. Reviewer #2 (Public review):

      The revised manuscript by Altan et al. includes some real improvements to the visualizations and explanations of the authors' thesis statement with respect to fMRI measurements of pRF sizes. In particular, the deposition of the paper's data has allowed me to probe and refine several of my previous concerns. While I still have major concerns about how the data are presented in the current draft of the manuscript, my skepticism about data quality overall has been much alleviated. Note that this review focuses almost exclusively on the fMRI data as I was satisfied with the quality of the psychophysical data and analyses in my previous review.

      Major Concerns

      (I) Statistical Analysis

      In my previous review, I raised the concern that the small sample size combined with the noisiness of the fMRI data, a lack of clarity about some of the statistics, and a lack of code/data likely combine to make this paper difficult or impossible to reproduce as it stands. The authors have since addressed several aspects of this concern, most importantly by depositing their data. However their response leaves some major questions, which I detail below.

      First of all, the authors claim in their response to the previous review that the small sample size is not an issue because large samples are not necessary to obtain "conclusive" results. They are, of course, technically correct that a small sample size can yield significant results, but the response misses the point entirely. In fact, small samples are more likely than large samples to erroneously yield a significant result (Button et al., 2013, DOI:10.1038/nrn3475), especially when noise is high. The response by the authors cites Schwarzkopf & Huang (2024) to support their methods on this front. After reading the paper, I fail to see how it is at all relevant to the manuscript at hand or the criticism raised in the previous review. Schwarzkopf & Huang propose a statistical framework that is narrowly tailored to situations where one is already certain that some phenomenon (like the adaptation of pRF size to spatial frequency) either always occurs or never occurs. Such a framework is invalid if one cannot be certain that, for example, pRF size adapts in 98% of people but not the remaining 2%. Even if the paper were relevant to the current study, the authors don't cite this paper, use its framework, or admit the assumptions it requires in the current manuscript. The observation that a small dataset can theoretically lead to significance under a set of assumptions not appropriate for the current manuscript is not a serious response to the concern that this manuscript may not be reproducible.

      To overcome this concern, the authors should provide clear descriptions of their statistical analyses and explanations of why these analyses are appropriate for the data. Ideally, source code should be published that demonstrates how the statistical tests were run on the published data. (I was unable to find any such source code in the OSF repository.) If the effects in the paper were much stronger, this level of rigor might not be strictly necessary, but the data currently give the impression of being right near the boundary of significance, and the manuscript's analyses needs to reflect that. The descriptions in the text were helpful, but I was only able to approximately reproduce the authors analyses based on these descriptions alone. Specifically, I attempted to reproduce the Mood's median tests described in the second paragraph of section 3.2 after filtering the data based on the criteria described in the final paragraph of section 3.1. I found that 7/8 (V1), 7/8 (V2), 5/8 (V3), 5/8 (V4), and 4/8 (V3A) subjects passed the median test when accounting for the (40) multiple comparisons. These results are reasonably close to those reported in the manuscript and might just differ based on the multiple comparisons strategy used (which I did not find documented in the manuscript). However, Mood's median test does not test the direction of the difference-just whether the medians are different-so I additionally required that the median sigma of the high-adapted pRFs be greater than that of the low-adapted pRFs. Surprisingly, in V1 and V3, one subject each (not the same subject) failed this part of the test, meaning that they had significant differences between conditions but in the wrong direction. This leaves 6/8 (V1), 7/8 (V2), 4/8 (V3), 5/8 (V4), and 4/8 (V3A) subjects that appear to support the authors' conclusions. As the authors mention, however, this set of analyses runs the risk of comparing different parts of cortex, so I also performed Wilcox signed-rank tests on the (paired) vertex data for which both the high-adapted and low-adapted conditions passed all the authors' stated thresholds. These results largely agreed with the median test (only 5/8 subjects significant in V1 but 6/8 in in V3A, other areas the same, though the two tests did not always agree which subjects had significant differences). These analyses were of course performed by a reviewer with a reviewer's time commitment to the project and shouldn't be considered a replacement for the authors' expertise with their own data. If the authors think that I have made a mistake in these calculations, then the best way to refute them would be to publish the source code they used to threshold the data and to perform the same tests.

      Setting aside the precise values of the relevant tests, we should also consider whether 5 of 8 subjects showing a significant effect (as they report for V3, for example) should count as significant evidence of the effect? If one assumes, as a null hypothesis, that there is no difference between the two conditions in V3 and that all differences are purely noise, then a binomial test across subjects would be appropriate. Even if 6 of 8 subjects show the effect, however (and ignoring multiple comparisons), the p-value of a one-sided binomial test is not significant at the 0.05 level (7 of 8 subjects is barely significant). Of course, a more rigorous way to approach this question could be something like an ANOVA, and the authors use an ANOVA analysis of the medians in the paragraph following their use of Mood's median test. However, ANOVA assumes normality, and the authors state in the previous paragraph that they employed Mood's median test because "the distribution of the pRF sizes is zero-bounded and highly skewed" so this choice does not make sense. The Central Limits Theorem might be applied to the medians in theory, but with only 8 subjects and with an underlying distribution of pRF sizes that is non-negative, the relevant data will almost certainly not be normally distributed. These tests should probably be something like a Kruskal-Wallis ANOVA on ranks.

      All of the above said, my intuition about the data is currently that there are significant changes to the adapted pRF size in V2. I am not currently convinced that the effects in other visual areas are significant, and I suspect that the paper would be improved if authors abandoned their claims that areas other than V2 show a substantial effect. Importantly, I don't think this causes the paper to lose any impact-in fact, if the authors agree with my assessments, then the paper might be improved by focusing on V2. Specifically, the authors' already discuss psychophysical work related to the perception of texture on pages 18 and 19 and link it to their results. V2 is also implicated in the perception of texture (see, for example, Freeman et al., 2013; DOI:10.1038/nn.3402; Ziemba et al., 2016, DOI:10.1073/pnas.1510847113; Ziemba et al., 2019; DOI:10.1523/JNEUROSCI.1743-19.2019) and so would naturally be the part of the visual cortex where one might predict that spatial frequency adaptation would have a strong effect on pRF size. This neatly connects the psychophysical and imaging sides of this project and could make a very nice story out of the present work.

      (II) Visualizations

      The manuscript's visual evidence regarding the pRF data also remains fairly weak (but I found the pRF size comparisons in the OSF repository and Figure S1 to be better evidence-more in the next paragraph). The first line of the Results section still states, "A visual inspection on the pRF size maps in Figure 4c clearly shows a difference between the two conditions, which is evident in all regions." As I mentioned in my previous review, I don't agree with this claim (specifically, that it is clear). My impression when I look at these plots is of similarity between the maps, and, where there is dissimilarity, of likely artifacts. For example, the splotch of cortex near the upper vertical meridian (ventral boundary) of V1 that shows up in yellow in the upper plot but not the lower plot also has a weirdly high eccentricity and a polar angle near the opposite vertical meridian: almost certainly not the actual tuning of that patch of cortex. If this is the clearest example subject in the dataset, then the effect looks to me to be very small and inconsistently distributed across the visual areas. That said, I'm not convinced that the problem here is the data-rather, I think it's just very hard to communicate a small difference in parameter tuning across a visual area using this kind of side-by-side figure. I think that Figure S2, though noisy (as pRF maps typically are), is more convincing than Figure 4c, personally. For what it's worth, when looking at the data myself, I found that plotting log(𝜎(H) / 𝜎(L)), which will be unstable when noise causes 𝜎(H) or 𝜎(L) to approach zero, was less useful than plotting plotting (𝜎(H) - 𝜎(L)) / (𝜎(H) + 𝜎(L)). This latter quantity will be constrained between -1 and 1 and shows something like a proportional change in the pRF size (and thus should be more comparable across eccentricity).

      In my opinion, the inclusion of the pRF size comparison plots in the OSF repository and Figure S1 made a stronger case than any of the plots of the cortical surface. I would suggest putting these on log-log plots since the distribution of pRF size (like eccentricity) is approximately exponential on the cortical surface. As-is, it's clear in many plots that there is a big splotch of data in the compressed lower left corner, but it's hard to get a sense for how these should be compared to the upper right expanse of the plots. It is frequently hard to tell whether there is a greater concentration of points above or below the line of equality in the lower left corner as well, and this is fairly central to the paper's claims. My intuition is that the upper right is showing relatively little data (maybe 10%?), but these data are very emphasized by the current plots.
The authors might even want to consider putting a collection of these scatter-plots (or maybe just subject 007, or possible all subjects' pRFs on a single scatter-plot) in the main paper and using these visualizations to provide intuitive supporting for the main conclusions about the fMRI data (where the manuscript currently use Figure 4c for visual intuition).

      Minor Comments

      (1) Although eLife does not strictly require it, I would like to see more of the authors' code deposited along with the data (especially the code for calculating the statistics that were mentioned above). I do appreciate the simulation code that the authors added in the latest submission (largely added in response to my criticism in the previous reviews), and I'll admit that it helped me understand where the authors were coming from, but it also contains a bug and thus makes a good example of why I'd like to see more of the authors' code. If we set aside the scientific question of whether the simulation is representative of an fMRI voxel (more in Minor Comment 5, below), Figures 1A and the "AdaptaionEffectSimulated.png" file from the repository (https://osf.io/d5agf) imply that only small RFs were excluded in the high-adapted condition and only large RFs were excluded in the low-adapted condition. However, the script provided (SimlatePrfAdaptation.m: https://osf.io/u4d2h) does not do this. Lines 7 and 8 of the script set the small and large cutoffs at the 30th and 70th percentiles, respectively, then exclude everything greater than the 30th percentile in the "Large RFs adapted out" condition (lines 19-21) and exclude anything less than the 70th percentile in the "Small RFs adapted out" condition (lines 27-29). So the figures imply that they are representing 70% of the data but they are in fact representing only the most extreme 30% of the data. (Moreover, I was unable to run the script because it contains hard-coded paths to code in someone's home directory.) Just to be clear, these kinds of bugs are quite common in scientific code, and this bug was almost certainly an honest mistake.

      (2) I also noticed that the individual subject scatter-plots of high versus low adapted pRF sizes on the OSF seem to occasionally have a large concentration of values on the x=0 and y=0 axes. This isn't really a big deal in the plots, but the manuscript states that "we denoised the pRF data to remove artifactual vertices where at least one of the following criteria was met: (1) sigma values were equal to or less than zero ..." so I would encourage the authors to double-check that the rest of their analysis code was run with the stated filtering.

      (3) The manuscript also says that the median test was performed "on the raw pRF size values". I'm not really sure what the "raw" means here. Does this refer to pRF sizes without thresholding applied?

      (4) The eccentricity data are much clearer now with the additional comments from the authors and the full set of maps; my concerns about this point have been met.

      (5) Regarding the simulation of RFs in a voxel (setting aside the bug), I will admit both to hoping for a more biologically-grounded situation and to nonetheless understanding where the authors are coming from based on the provided example. What I mean by biologically-grounded: something like, assume a 2.5-mm isotropic voxel aligned to the surface of V1 at 4{degree sign} of eccentricity; the voxel would span X to Y degrees of eccentricity, and we predict Z neurons with RFs in this voxel with a distribution of RF sizes at that eccentricity from [reference], etc. eventually demonstrating a plausible pRF size change commensurate to the paper's measurements. I do think that a simulation like this would make the paper more compelling, but I'll acknowledge that it probably isn't necessary and might be beyond the scope here.

    1. Author Response:

      Public Reviews:

      Reviewer #1 (Public review):

      Weaknesses:

      (1) It remains unclear how this stimulation protocol is proposed to enhance memory. Memories are believed to be stored by precise inputs to specific neurons and highly tuned changes in synaptic strengths. It remains unclear whether proposed neural activity generated by the stimulation reflects the activation of specific memories or generally increased activity across all classes of neurons.

      Thank you for raising the important issue of the actual neurophysiological effects of non-invasive brain stimulation. Unfortunately, invasive neurophysiological recordings in humans for this type of study are not feasible due to ethical constraints, while studies on cadavers or rodents would not fully resolve our question. Indeed, the authors of the cited study (Mihály Vöröslakos et al., Nature Communications, 2018) highlight the impossibility of drawing definitive conclusions about the exact voltage required in the in-vivo human brain due to significant differences between rats and humans, as well as the in-vivo human brain and cadavers due to alterations in electrical conductivity that occur in postmortem tissue.

      We acknowledge that further exploration of this aspect would be highly valuable, and we agree that it is worth discussing both as a technical limitation and as a potential direction for future research, we therefore modify the manuscript correspondingly. However, to address the challenge of in vivo recordings, we conducted Experiments 3 and 4, which respectively examined the neurophysiological and connectivity changes induced by the stimulation in a non-invasive manner. The observed changes in brain oscillatory activity (increased gamma oscillatory activity), cortical excitability (enhanced posteromedial parietal cortex reactivity), and brain connectivity (strengthened connections between the precuneus and hippocampi) provided evidence of the effects of our non-invasive brain stimulation protocol, further supporting the behavioral data.

      Additionally, we carefully considered the issue of stimulation distribution and, in response, performed a biophysical modeling analysis and E-field calculation using the parameters employed in our study (see Supplementary Materials).

      (2) The claim that effects directly involve the precuneus lacks strong support. The measurements shown in Figure 3 appear to be weak (i.e., Figure 3A top and bottom look similar, and Figure 3C left and right look similar). The figure appears to show a more global brain pattern rather than effects that are limited to the precuneus. Related to this, it would perhaps be useful to show the different positions of the stimulation apparatus. This could perhaps show that the position of the stimulation matters and could perhaps illustrate a range of distances over which position of the stimulation matters.

      Thank you for your feedback. We will improve the clarity of the manuscript to better address this important aspect. Our assumption that the precuneus plays a key role in the observed effects is based on several factors:

      (1) The non-invasive stimulation protocol was applied to an individually identified precuneus for each participant. Given existing evidence on TMS propagation, we can reasonably assume that the precuneus was at least a mediator of the observed effects (Ridding & Rothwell, Nature Reviews Neuroscience 2007). For further details about target identification and TMS and tACS propagation, please refer to the MRI data acquisition section in the main text and Biophysical modeling and E-field calculation section in the supplementary materials.

      (2) To investigate the effects of the neuromodulation protocol on cortical responses, we conducted a whole-brain analysis using multiple paired t-tests comparing each data point between different experimental conditions. To minimize the type I error rate, data were permuted with the Monte Carlo approach and significant p-values were corrected with the false discovery rate method (see the Methods section for details). The results identified the posterior-medial parietal areas as the only regions showing significant differences across conditions.

      (3) To control for potential generalized effects, we included a control condition in which TMS-EEG recordings were performed over the left parietal cortex (adjacent to the precuneus). This condition did not yield any significant results, reinforcing the cortical specificity of the observed effects.

      However, as stated in the Discussion, we do not claim that precuneus activity alone accounts for the observed effects. As shown in Experiment 4, stimulation led to connectivity changes between the precuneus and hippocampus, a network widely recognized as a key contributor to long-term memory formation (Bliss & Collingridge, Nature 1993). These connectivity changes suggest that precuneus stimulation triggered a ripple effect extending beyond the stimulation site, engaging the broader precuneus-hippocampus network.

      Regarding Figure 3A, it represents the overall expression of oscillatory activity detected by TMS-EEG. Since each frequency band has a different optimal scaling, the figure reflects a graphical compromise. A more detailed representation of the significant results is provided in Figure 3B. The effect sizes for gamma oscillatory activity in the delta T1 and T2 conditions were 0.52 and 0.50, respectively, which correspond to a medium effect based on Cohen’s d interpretation.

      (3) Behavioral results showing an effect on memory would substantiate claims that the stimulation approach produces significant changes in brain activity. However, placebo effects can be extremely powerful and useful, and this should probably be mentioned. Also, in the behavioral results that are currently presented, there are several concerns:

      a) There does not appear to be a significant effect on the STMB task.

      b) The FNAT task is minimally described in the supplementary material. Experimental details that would help the reader understand what was done are not described. Experimental details are missing for: the size of the images, the duration of the image presentation, the degree of image repetition, how long the participants studied the images, whether the names and occupations were different, genders of the faces, and whether the same participant saw different faces across the different stimulation conditions. Regarding the latter point, if the same participant saw the same faces across the different stimulation conditions, then there could be memory effects across different conditions that would need to be included in the statistical analyses. If participants saw different faces across the different stimulus conditions, then it would be useful to show that the difficulty was the same across the different stimuli.

      We thank you for signaling the lack in the description of FNAT task. We will add all the information required to the manuscript.

      In the meantime, here we provide the answers to your questions. The size of the images 19x15cm. They were presented in the learning phase and the immediate recall for 8 seconds each, while in the delayed recall they were shown (after the face recognition phase) until the subject answered. The learning phase, where name and occupation were shown together with the faces, lasted around 2 minutes comprising the instructions. We used a different set of stimuli for each stimulation condition, for a total of 3 parallel task forms balanced across the condition and order of sessions. All the parallel forms were composed of 6 male and 6 female faces, for each sex there were 2 young adults (aged around 30 years old), 2 middle adults (aged around 50 years old), and 2 old adults (aged around 70 years old). Before the experiments, we ran a pilot study to ensure there were no differences between the parallel forms of the task. We can provide the task with its parallel form upon request. The chance level in the immediate and delayed recall is not quantifiable since the participants had to freely recall the name and the occupation without a multiple choice. In the recognition, the chance level was around 33% (since the possible answers were 3).

      c) Also, if I understand FNAT correctly, the task is based on just 12 presentations, and each point in Figure 2A represents a different participant. How the performance of individual participants changed across the conditions is unclear with the information provided. Lines joining performance measurements across conditions for each participant would be useful in this regard. Because there are only 12 faces, the results are quantized in multiples of 100/12 % in Figure 3A. While I do not doubt that the authors did their homework in terms of the statistical analyses, it seems as though these 12 measurements do not correspond to a large effect size. For example, in Figure 3A for the immediate condition (total), it seems that, on average, the participants may remember one more face/name/occupation.

      We will add another graph to the manuscript with lines connecting each participant's performance. Unfortunately, we were not able to incorporate it in the box-and-whisker plot.

      We apologize for the lack of clarity in the description of the FNAT. As you correctly pointed out, we used the percentage based on the single association between face, name and occupation (12 in total). However, each association consisted of three items, resulting in a total of 36 items to learn and associate – we will make it more explicit in the manuscript.

      In the example you mentioned, participants were, on average, able to recall three more items compared to the other conditions. While this difference may not seem striking at first glance, it is important to consider that we assessed memory performance after a single, three-minute stimulation session. Similar effects are typically observed only after multiple stimulation sessions (Koch et al., NeuroImage, 2018; Grover et al., Nature Neuroscience, 2022).

      d) Block effects. If I understand correctly, the experiments were conducted in blocks. This is potentially problematic. An example study that articulates potential problems associated with block designs is described in Li et al (TPAMI 2021, https://ieeexplore.ieee.org/document/9264220). It is unclear if potential problems associated with block designs were taken into consideration.

      Thank you for the interesting reference. According to this paper, in a block design, EEG or fMRI recordings are performed in response to different stimuli of a given class presented in succession. If this is the case, it does not correspond to our experimental design where both TMS-EEG and fMRI were conducted in a resting state on different days according to the different stimulation conditions.

      e) In the FNAT portion of the paper, some results are statistically significant, while others are not. The interpretation of this is unclear. In Figure 3A, it seems as though the authors claim that iTBS+gtACS > iTBS+sham-tACS, but iTBS+gtACS ~ sham+sham. The interpretation of such a result is unclear. Results are also unclear when separated by name and occupation. There is only one condition that is statistically significant in Figure 3A in the name condition, and no significant results in the occupation condition. In short, the statistical analyses, and accompanying results that support the authors’ claims, should be explained more clearly.

      Thank you again for your feedback. We will work on making the large amount of data we reported easier to interpret.

      Hoping to have thoroughly addressed your initial concerns in our previous responses, we now move on to your observations regarding the behavioral results, assuming you were referring to Figure 2A. The main finding of this study is the improvement in long-term memory performance, specifically the ability to correctly recall the association between face, name, and occupation (total FNAT), which was significantly enhanced in both Experiments 1 and 2. However, we also aimed to explore the individual contributions of name and occupation separately to gain a deeper understanding of the results. Our analysis revealed that the improvement in total FNAT was primarily driven by an increase in name recall rather than occupation recall. We understand that this may have caused some confusion. Therefore we will clarify this in the manuscript and consider presenting the name and occupation in a separate plot.

      Regarding the stimulation conditions, your concerns about the performance pattern (iTBS+gtACS > iTBS+sham-tACS, but iTBS+gtACS ~ sham+sham) are understandable. However, this new protocol was developed precisely in response to the variability observed in behavioral outcomes following non-invasive brain stimulation, particularly when used to modulate memory functions (Corp et al., 2020; Pabst et al., 2022). As discussed in the manuscript, it is intended as a boost to conventional non-invasive brain stimulation protocols, leveraging the mechanisms outlined in the Discussion section.

      Reviewer #2 (Public review):

      Weaknesses:

      (1) The study did not include a condition where γtACS was applied alone. This was likely because a previous work indicated that a single 3-minute γtACS did not produce significant effects, but this limits the ability to isolate the specific contribution of γtACS in the context of this target and memory function

      Thank you for your comments. As you pointed out, we did not include a condition where γtACS was applied alone. This decision was based on the findings of Guerra et al. (Brain Stimulation 2018), who investigated the same protocol and reported no aftereffects. Given the substantial burden of the experimental design on patients and our primary goal of demonstrating an enhancement of effects compared to the standalone iTBS protocol, we decided to leave out this condition. However, we agree that investigating the effects of γtACS alone is an interesting and relevant aspect worthy of further exploration. In line with these observations, we will expand the discussion on this point in the study’s limitations section.

      (2) The authors applied stimulation for 3 minutes, which seems to be based on prior tACS protocols. It would be helpful to present some rationale for both the duration and timing relative to the learning phase of the memory task. Would you expect additional stimulation prior to recall to benefit long-term associative memory?

      Thank you for your comment and for raising this interesting point. As you correctly noted, the protocol we used has a duration of three minutes, a choice based on previous studies demonstrating its greater efficacy with respect to single stimulation from a neurophysiological point of view. Specifically, these studies have shown that the combined stimulation enhanced gamma-band oscillations and increased cortical plasticity (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022). Given that the precuneus (Brodt et al., Science 2018; Schott et al., Human Brain Mapping 2018), gamma oscillations (Osipova et al., Journal of Neuroscience 2006; Deprés et al., Neurobiology of Aging 2017; Griffiths et al., Trends in Neurosciences 2023), and cortical plasticity (Brodt et al., Science 2018) are all associated with encoding processes, we decided to apply the co-stimulation immediately before it to enhance the efficacy.

      Regarding the question of whether stimulation could also benefit recall, the answer is yes. We can speculate that repeating the stimulation before recall might provide an additional boost. This is supported by evidence showing that both the precuneus and gamma oscillations are involved in recall processes (Flanagin et al., Cerebral Cortex 2023; Griffiths et al., Trends in Neurosciences 2023). Furthermore, previous research suggests that reinstating the same brain state as during encoding can enhance recall performance (Javadi et al., The Journal of Neuroscience 2017).

      We will expand the study rationale and include these considerations in the future directions section.

      (3) How was the burst frequency of theta iTBS and gamma frequency of tACS chosen? Were these also personalized to subjects' endogenous theta and gamma oscillations? If not, were increases in gamma oscillations specific to patients' endogenous gamma oscillation frequencies or the tACS frequency?

      The stimulation protocol was chosen based on previous studies (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022). Gamma tACS sinusoid frequency wave was set at 70 Hz while iTBS consisted of ten bursts of three pulses at 50 Hz lasting 2 s, repeated every 10 s with an 8 s pause between consecutive trains, for a total of 600 pulses total lasting 190 s (see iTBS+γtACS neuromodulation protocol section). In particular, the theta iTBS has been inspired by protocols used in animal models to elicit LTP in the hippocampus (Huang et al., Neuron 2005). Consequently, neither Theta iTBS nor the gamma frequency of tACS were personalized. The increase in gamma oscillations was referred to the patient’s baseline and did not correspond to the administrated tACS frequency.

      (4) The authors do a thorough job of analyzing the increase in gamma oscillations in the precuneus through TMS-EEG; however, the authors may also analyze whether theta oscillations were also enhanced through this protocol due to the iTBS potentially targeting theta oscillations. This may also be more robust than gamma oscillations increases since gamma oscillations detected on the scalp are very low amplitude and susceptible to noise and may reflect activity from multiple overlapping sources, making precise localization difficult without advanced techniques.

      Thank you for the suggestion. We analyzed theta oscillations finding no changes.

      (5) Figure 4: Why are connectivity values pre-stimulation for the iTBS and sham tACS stimulation condition so much higher than the dual stimulation? We would expect baseline values to be more similar.

      We acknowledge that the pre-stimulation connectivity values for the iTBS and sham tACS conditions appear higher than those for the dual stimulation condition. However, as noted in our statistical analyses, there were no significant differences at baseline between conditions (p-FDR= 0.3514), suggesting that any apparent discrepancy is due to natural variability rather than systematic bias. One potential explanation for these differences is individual variability in baseline connectivity measures, which can fluctuate due to factors such as intrinsic neural dynamics, participant state, or measurement noise. Despite these variations, our statistical approach ensures that any observed post-stimulation effects are not confounded by pre-existing differences.

      (6) Figure 2: How are total association scores significantly different between stimulation conditions, but individual name and occupation associations are not? Further clarification of how the total FNAT score is calculated would be helpful.

      We apologize for any lack of clarity. The total FNAT score reflects the ability to correctly recall all the information associated with a person—specifically, the correct pairing of the face, name, and occupation. Participants received one point for each triplet they accurately recalled. The scores were then converted into percentages, as detailed in the Face-Name Associative Task Construction and Scoring section in the supplementary materials.

      Total FNAT was the primary outcome measure. However, we also analyzed name and occupation recall separately to better understand their individual contributions. Our analysis revealed that the improvement in total FNAT was primarily driven by an increase in name recall rather than occupation recall.

      We acknowledge that this distinction may have caused some confusion. To improve clarity, we will revise the manuscript accordingly and consider presenting name and occupation recall in separate plots.

      Reviewer #3 (Public review):

      Weaknesses:

      I want to state clearly that I think the strengths of this study far outweigh the concerns I have. I still list some points that I think should be clarified by the authors or taken into account by readers when interpreting the presented findings.

      I think one of the major weaknesses of this study is the overall low sample size in all of the experiments (between n = 10 and n = 20). This is, as I mentioned when discussing the strengths of the study, partly mitigated by the within-subject design and individualized stimulation parameters. The authors mention that they performed a power analysis but this analysis seemed to be based on electrophysiological readouts similar to those obtained in experiment 3. It is thus unclear whether the other experiments were sufficiently powered to reliably detect the behavioral effects of interest. That being said, the authors do report significant effects, so they were per definition powered to find those. However, the effect sizes reported for their main findings are all relatively large and it is known that significant findings from small samples may represent inflated effect sizes, which may hamper the generalizability of the current results. Ideally, the authors would replicate their main findings in a larger sample. Alternatively, I think running a sensitivity analysis to estimate the smallest effect the authors could have detected with a power of 80% could be very informative for readers to contextualize the findings. At the very least, however, I think it would be necessary to address this point as a potential limitation in the discussion of the paper.

      Thank you for the observation. As you mentioned, our power analysis was based on our previous study investigating the same neuromodulation protocol with a corresponding experimental design. The relatively small sample could be considered a possible limitation of the study which we will add to the discussion. A fundamental future step will be to replay these results on a larger population, however, to strengthen our results we performed the sensitivity analysis you suggested.

      In detail, we performed a sensitivity analysis for repeated-measures ANOVA with α=0.05 and power(1-β)=0.80 with no sphericity correction. For experiment 1, a sensitivity analysis with 1 group and 3 measurements showed a minimal detectable effect size of f=0.524 with 20 participants. In our paper, the ANOVA on total FNAT immediate performance revealed an effect size of η2\=0.274 corresponding to f=0.614; the ANOVA on FNAT delayed performance revealed an effect size of η2 =0.236 corresponding to f=0.556. For experiment 2, a sensitivity analysis for total FNAT immediate performance (1 group and 3 measurements) showed a minimal detectable effect size of f=0.797 with 10 participants. In our paper, the ANOVA on total FNAT immediate performance revealed an effect size of η2 =0.448 corresponding to f=0.901. The sensitivity analysis for total FNAT delayed performance (1 group and 6 measurements) showed a minimal detectable effect size of f=0.378 with 10 participants. In our paper, the ANOVA on total FNAT delayed performance revealed an effect size of η2 =0.484 corresponding to f=0.968. Thus, the sensitivity analysis showed that both experiments were powered enough to detect the minimum effect size computed in the power analysis. We have now added this information to the manuscript and we thank the reviewer for her/his suggestion.

      It seems that the statistical analysis approach differed slightly between studies. In experiment 1, the authors followed up significant effects of their ANOVAs by Bonferroni-adjusted post-hoc tests whereas it seems that in experiment 2, those post-hoc tests where "exploratory", which may suggest those were uncorrected. In experiment 3, the authors use one-tailed t-tests to follow up their ANOVAs. Given some of the reported p-values, these choices suggest that some of the comparisons might have failed to reach significance if properly corrected. This is not a critical issue per se, as the important test in all these cases is the initial ANOVA but non-significant (corrected) post-hoc tests might be another indicator of an underpowered experiment. My assumptions here might be wrong, but even then, I would ask the authors to be more transparent about the reasons for their choices or provide additional justification. Finally, the authors sometimes report exact p-values whereas other times they simply say p < .05. I would ask them to be consistent and recommend using exact p-values for every result where p >= .001.

      Thank you again for the suggestions. Your observations are correct, we used a slightly different statistical depending on our hypothesis. Here are the details:

      In experiment 1, we used a repeated-measure ANOVA with one factor “stimulation condition” (iTBS+γtACS; iTBS+sham-tACS; sham-iTBS+sham-tACS). Following the significant effect of this factor we performed post-hoc analysis with Bonferroni correction.

      In experiment 2, we used a repeated-measures with two factors “stimulation condition” and “time”. As expected, we observed a significant effect of condition, confirming the result of experiment 1, but not of time. Thus, this means that the neuromodulatory effect was present regardless of the time point. However, to explore whether the effects of stimulation condition were present in each time point we performed some explorative t-tests with no correction for multiple comparisons since this was just an explorative analysis.

      In experiment 3, we used the same approach as experiment 1. However, since we had a specific hypothesis on the direction of the effect already observed in our previous study, i.e. increase in spectral power (Maiella et al., Scientific Report 2022), our tests were 1-tailed.

      For the p-values, we will correct the manuscript reporting the exact values for every result.

      While the authors went to great lengths trying to probe the neural changes likely associated with the memory improvement after stimulation, it is impossible from their data to causally relate the findings from experiments 3 and 4 to the behavioral effects in experiments 1 and 2. This is acknowledged by the authors and there are good methodological reasons for why TMS-EEG and fMRI had to be collected in sperate experiments, but it is still worth pointing out to readers that this limits inferences about how exactly dual iTBS and γtACS of the precuneus modulate learning and memory.

      Thank you for your comment. We fully agree with your observation, which is why this aspect has been considered in the study's limitations. To address your concern, we will further emphasize the fact that our findings do not allow precise inferences regarding the specific mechanisms by which dual iTBS and γtACS of the precuneus modulate learning and memory.

      There were no stimulation-related performance differences in the short-term memory task used in experiments 1 and 2. The authors argue that this demonstrates that the intervention specifically targeted long-term associative memory formation. While this is certainly possible, the STM task was a spatial memory task, whereas the LTM task relied (primarily) on verbal material. It is thus also possible that the stimulation effects were specific to a stimulus domain instead of memory type. In other words, could it be possible that the stimulation might have affected STM performance if the task taxed verbal STM instead? This is of course impossible to know without an additional experiment, but the authors could mention this possibility when discussing their findings regarding the lack of change in the STM task.

      Thank you for your insightful observation. We argue that the intervention primarily targeted long-term associative memory formation, as our findings demonstrated effects only on FNAT. However, as you correctly pointed out, we cannot exclude the possibility that the stimulation may also influence short-term verbal associative memory. We will acknowledge this potential effect when discussing the absence of significant findings in the STM task.

      While the authors discuss the potential neural mechanisms by which the combined stimulation conditions might have helped memory formation, the psychological processes are somewhat neglected. For example, do the authors think the stimulation primarily improves the encoding of new information or does it also improve consolidation processes? Interestingly, the beneficial effect of dual iTBS and γtACS on recall performance was very stable across all time points tested in experiments 1 and 2, as was the performance in the other conditions. Do the authors have any explanation as to why there seems to be no further forgetting of information over time in either condition when even at immediate recall, accuracy is below 50%? Further, participants started learning the associations of the FNAT immediately after the stimulation protocol was administered. What would happen if learning started with a delay? In other words, do the authors think there is an ideal time window post-stimulation in which memory formation is enhanced? If so, this might limit the usability of this procedure in real-life applications.

      Thank you for your comment and for raising these important points.

      We hypothesized that co-stimulation would enhance encoding processes. Previous studies have shown that co-stimulation can enhance gamma-band oscillations and increase cortical plasticity (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022). Given that the precuneus (Brodt et al., Science 2018; Schott et al., Human Brain Mapping 2018), gamma oscillations (Osipova et al., Journal of Neuroscience 2006; Deprés et al., Neurobiology of Aging 2017; Griffiths et al., Trends in Neurosciences 2023), and cortical plasticity (Brodt et al., Science 2018) have all been associated with encoding processes, we decided to apply co-stimulation before the encoding phase, to boost it.

      We applied the co-stimulation immediately before the learning phase to maximize its potential effects. While we observed a significant increase in gamma oscillatory activity lasting up to 20 minutes, we cannot determine whether the behavioral effects we observed would have been the same with a co-stimulation applied 20 minutes before learning. Based on existing literature, a reduction in the efficacy of co-stimulation over time could be expected (Huang et al., Neuron 2005; Thut et al., Brain Topography 2009). However, we hypothesize that multiple stimulation sessions might provide an additional boost, helping to sustain the effects over time (Thut et al., Brain Topography 2009; Koch et al., Neuroimage 2018; Koch et al., Brain 2022).

      Regarding the absence of further forgetting in both stimulation conditions, we think that the clinical and demographical characteristics of the sample (i.e. young and healthy subjects) explain the almost absence of forgetting after one week.

    1. Author response:

      Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity):

      The study is well-executed and provides many interesting leads for further experimental studies, which makes it very important. One of the significant hypotheses in this context is metazoan Wnt Lipocone domain interactions with lipids, which remain to be explored.

      The manuscript is generally navigable for interesting reading despite being content-rich. Overall, the figures are easy to follow.

      We thank the reviewer for the thoughtful and favorable assessment.

      Major comments:

      I urge the authors to consider creating a first figure summarizing the broad approach and process involved in discovering the lipocone superfamily. This would help the average reader easily follow the manuscript.

      It will be helpful to have the final model/synthesis figure, which provides a take-home message that combines the main deductions from Fig 1c, Fig 4, Fig 5, and Fig 6 to provide an eagle's eye view (also translating the arguments on Page 38 last para into this potential figure).

      We have generated a two-part figure that synthesizes these two requests, also in line with the recommendations made by Reviewer 3. Depending on the accepting Review Commons journal, we plan to either submit this as a graphical abstract/TOC figure (as suggested by Reviewer 3) or as a single figure. We prefer starting with the first approach as it will keep our figure count the same.

      Minor comments:

      Fig 1C: The authors should provide a statistical estimate of the difference in transmembrane tendency scores between the "membrane" and "globular" versions of the Lipocone domains.

      To address this, we calculated group-wise differences using the Kruskal-Wallis nonparametric test, followed by Dunn’s test with Bonferroni correction for a more stringent evaluation. The results of which are presented as a critical difference diagram in the new Supplementary Figure S3. The analysis is explained in the Methods section of the revised manuscript, and the statistically significant difference is mentioned in the text. This analysis identifies three groups of significantly different Lipocone families based on their transmembrane tendency: those predicted (or known) to associate with the prokaryotic membranes, those predicted to be diffusible, and a small number of families residing eukaryotic ER membranes or bacterial outer membranes.

      Reviewer #2 (Evidence, reproducibility and clarity):

      This is a remarkable study, one of a kind. The authors trace the entire huge superfamily containing Wnt proteins which origins remained obscure before this work. Even more amazingly, they show that Wnts originated from transmembrane enzymes. The work is masterfully executed and presented. The conclusions are strongly supported by multiple lines of evidence. Illustrations are beautifully crafted. This is an exemplary work of how modern sequence and structure analysis methods should be used to gain unprecedented insights into protein evolution and origins.

      We thank the reviewer for the positive evaluation of our work.

      Minor comments.

      (1) In fig 1, VanZ structure looks rather different from the rest and is a more tightly packed helical bundle. It might be useful for the readers to learn more about the arguments why authors consider this family to be homologous with the rest, and what caused these structural changes in packing of the helices.

      First, the geometry of an α-helix can be approximated as a cylinder, resulting in contact points that are relatively small. Fewer contact constraints can lead to structural variation in the angular orientations between the helices of an all α-helical domain, resulting in some dispersion in space of the helical axes. As a result, some of the views can be a bit confounding when presented as static 2D images. Second, of the two VanZ clades the characteristic structure similar to the other superfamily members is more easily seen in the VanZ-2 clade (as illustrated in supplementary Figure S2).    

      Importantly, the membership of the VanZ domains was recovered via significant hits in our sequence analysis of the superfamily. Importantly, when the sequence alignments of the active site are compared (Figure 2), VanZ retains the conserved active site residue positions, which are predicted to reside spatially in the same location and project into an equivalent active site pocket as seen in the other families in the superfamily. Further, this sequence relationship is captured by the edges in the network in Figure 1B: multiple members of the superfamily show edges indicating significant relationships with the two VanZ families (e.g., HHSearch hits of probability greater than 90%; p<0.0001 are observed between VanZ-1 and Skillet-DUF2809, Skillet-1, Skillet-4, YfiM-1, YfiM-DUF2279, Wok, pPTDSS, and cpCone-1). Thus, they occupy relatively central locations in the sequence similarity network, indicating a consistent sequence similarity connection to multiple other families.

      (2) Fig. 4 color bars before names show a functional role. How does the blue bar "described for the first time" fits into this logic? Maybe some other way to mark this (an asterisk?) could be better to resolve this sematic inconsistency.

      We have shifted the blue bars into asterisks, which follow family names, now stated in the updated legend.

      Reviewer #3 (Evidence, reproducibility and clarity):

      The manuscript by Burroughs et al. uses informatic sequence analysis and structural modeling to define a very large, new superfamily which they dub the Lipocone superfamily, based on its function on lipid components and cone-shaped structure. The family includes known enzymatic domains as well as previously uncharacterized proteins (30 families in total). Support for the superfamily designation includes conserved residues located on the homologous helical structures within the fold. The findings include analyses that shed light on important evolutionary relationships including a model in which the superfamily originated as membrane proteins where one branch evolved into a soluble version. Their mechanistic proposals suggest possible functions for enzymes currently unassigned. There is also support for the evolutionary connection of this family with the human immune system. The work will be of interest to those in the broad areas of bioinformatics, enzyme mechanisms, and evolution. The work is technically well performed and presented.

      We appreciate the positive evaluation of our work by the reviewer.

      Referees cross-commenting

      All the comments seem useful to me. I like Reviewer 1's suggestion for a flowchart showing the methodology. I think the summarizing figure suggested could be a TOC abstracvt, which many journals request.

      To accommodate this comment (along with Reviewer 1’s comments), we have generated a two-part figure containing the methodology flowchart and the summary of findings. Combining the two provides some before-and-after symmetry to a TOC figure, while also avoiding further inflation of the figure count, which would likely be an issue at one or more of the Review Commons journals.

      The authors may wish to consider the following points (page numbers from PDF for review):

      (1) It would be useful in Fig 1A, either in main text or the supporting information, to also have a an accompanying topology diagram- I like the coloring of the helices to show the homology but the connections between them are hard to follow

      We acknowledge the reviewer’s concern as one shared by ourselves. We have placed such a topology diagram in Figure 1A, and now refer to it at multiple points in the manuscript text.

      (2) Page: 6- In the paragraph marked as an example- please call out Fig1A when the family mentioned is described (I believe SAA is described as one example)

      We have added these pointers in the text, where appropriate.

      (3) Page: 7- The authors state "these 'hydrophobic families' often evince a deeper phyletic distribution pattern than the less-hydrophobic families (Figure S1), implying that the ancestral version of the superfamily was likely a TM domain" there should be more explanation or information here - I am not certain from looking at FigS1 what a deeper phyletic distribution pattern means. Perhaps explaining for a single example? I also see that this important point is discussed in the conclusions- it is useful to point to the conclusion here.

      Our use of the ‘deeper’ in this context is meant to convey the concept that more widely conserved families/clades (both across and within lineages) suggest an earlier emergence. In the Lipocone superfamily, this phylogenetic reasoning supports an evolutionary scenario where the membrane-inserted versions generally emerged early, while the solubilized versions, which are found in relatively fewer lineages, emerged later.

      To address this objectively, we have calculated a simple phyletic distribution metric that combines the phyletic spread of a Lipocone clade with its depth within individual lineages, which is then plotted as a bargraph (Supplemental Figure S1). Briefly, this takes the width of the bar as the phyletic spread across the number of distinct taxonomic lineages and its height as a weighted mean of occurrence within each lineage (depth). The latter helps dampen the effects of sampling bias. In the resulting graph, lineages with a lower height and width are likely to have been derived later than those with a greater height and width. A detailed description clarifying this has been added to the Methods section of the revised manuscript. The results support two statements that are made in the text: 1) that the Wok and VanZ clades are the most widely and deeply represented clades in the superfamily, and 2) that the predicted transmembrane versions tend to be more widely and deeply distributed. We have also added a statement in the results with a pointer to Figure S1 to clarify this point raised by the referee.

      (4) For figure 3 I would suggest instead of coloring by atom type- to color the leaving group red and the group being added blue so the reader can see where the moieties start and end in substrates and products

      We have retained the atom type coloring in the figure for ease of visualizing the atom types. However, to address the reviewer’s concern, we have added dashed colored circles to highlight attacking and leaving groups in the reactions. The legend has been updated accordingly.

      (5) Page: 13- The authors state "While the second copy in these versions is catalytically inactive, the H1' from the second duplicate displaces the H1 from the first copy," So this results in a "sort of domain swap" correct? It may be more clear to label both copies in Figure 3 upper right so it is easier for the reader to follow.

      We have added these labels to the updated Figure S4 (formerly S3).

      (6) The authors state "In addition to the fusion to the OMP β-barrel, the YfiM-DUF2279 family (Figure 5H) shows operonic associations with a secreted MltG-like peptidoglycan lytic transglycosylase (127,128), a lipid anchored cytochrome c heme-binding domain (129), a phosphoglucomutase/phosphomannomutase enzyme (130), a GNAT acyltransferase (131), a diaminopimelate (DAP) epimerase (132), and a lysozyme like enzyme (133). In a distinct operon, YfiM-DUF2279 is combined with a GT-A glycosyltransferase domain (79), a further OMP β-barrel, and a secreted PDZ-like domain fused to a ClpP-like serine protease (134,135) (Figure 5H)." this combination of enzymes sounds like those in the pathways for oligosaccharide synthesis which is cytoplasmic but the flippase acts to bring the product to the periplasm. Please make sure it is clear that these enzymes may act at different faces of the membrane.

      We have made that point explicit in the revised manuscript in the paragraph following the above-quoted statement.

      (7) Page: 21- the authors should remove the unpublished observations on other RDD domain or explain or cite them

      The analysis of the RDD domain is a part of a distinct study whose manuscript we are currently preparing, and explaining its many ramifications would be outside the scope of this manuscript. Moreover, placing even an account of it in this manuscript would break its flow and take the focus away from the Lipocone superfamily. Further, its inclusion of the RDD story would substantially increase the size of the manuscript. However, it is commonly fused to the Lipocone domain; hence, it would be remiss if we entirely remove a reference to it. Accordingly, we retain a brief account of the RDD-fused Lipocone domains in the revised manuscript that is just sufficient to make the relevant functional case”.

      (8) Page: 34- The authors state "For instance, the emergence of the outer membrane in certain bacteria was potentially coupled with the origin of the YfiM and Griddle clades (Figure 4)." I don't see origin point indicated in figure 4 (emergence of outer membrane- this may be helpful to indicate in some way- also I am not certain what the dashed circles in Fig 4 are indicating- its not in the legend?

      This annotation has been added to the revised Figure 4, and the point of recruitment is indicated with a  “X” sign, along with a clarification in the legend regarding the dashed circles.

      (9) In terms of the hydrophobicity analysis, it would be good to mark on the plot (Fig 1C) one or two examples of lipocone members with known structure that are transmembrane proteins as a positive control

      We have added these markers (colored triangles and squares for these families to the plot.

      Grammar, typos

      Page: 3- abstract severance is an odd word to use for hydrolysis or cleavage

      We have changed to “cleavage”.

      Page: 5- "While the structure of Wnt was described over a decade prior" should read "Although the structure of ..."

      Page 7 - "One family did not yield a consistent prediction for orientation"- please state which family

      Page: 8 "While the ancestral pattern is noticeably degraded in the metazoan Wnt (Met-Wnt) family, it is strongly preserved in the prokaryotic Min-Wnt family." Should read "Although the ancestral..."

      throughout- please replace solved with experimentally determined to be clear and avoid jargon

      Please replace "TelC severs the link" with "TelC cleaves the bond "

      We have made the above changes.

      Page: 19- the authors state "a lipobox-containing synaptojanin superfamily phosphoesterase (125) and a secreted R-P phosphatase (126) (see Figure 6, Supplementary Data)" I was uncertain if the authors meant Fig S6 or they meant see Fig 6 and something else in supplementary data. Please fix.

      In this pointer, we intended to flag the relevant gene neighborhoods in both Figures 5H and 6, as well as highlight the additional examples contained in the Supplementary Data. We have updated the point

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      As stated by the authors in the introduction, the RNA-binding protein Sxl is foundational to understanding sex determination in Drosophila. Sxl has been extensively studied as the master regulator of female sex determination in the soma, where it is known to initiate an alternative splicing cascade leading to the expression of DsxF. Additionally, Sxl has been shown to be responsible for keeping X chromosome dosage compensation off in females, while males hyperactivate their X chromosome. While these roles have been well defined, the authors explore an aspect of Sxl that is quite separate from its role as master regulator of female fate. They describe Sxl-RAC, a Sxl isoform that is expressed in the male and female nervous system. Using several genomic techniques, the authors conclude that the Sxl-RAC isoform associates with chromatin in a similar pattern to the RNA polymerase II/III subunit, Polr3E, and Sxl depends on Polr3E for chromatin-association. Further, neuronal loss of Sxl causes changes in lifetime and geotaxis in a similar manner as loss of Polr3E. The work is thorough and significant and should be appropriate for publication if a few issues can be addressed.

      Major Concerns:*

      * 1) How physiological is the Sxl chromatin-association assay? As binding interactions are concentration-dependent, how similar is Sxl-DAM expression to wt Sxl expression in neurons? In addition, does the Sxl-DAM protein function as a wt Sxl protein? Does UAS-Sxl-DAM rescue any Sxl loss phenotypes?*

      Author response:

      As Reviewer 3 correctly notes, Targeted DamID relies on ribosomal re-initiation (codon slippage) to produce only trace amounts of the Dam-fusion protein. By design, this results in expression levels that are significantly lower than those of the endogenous protein. As such, the experiment can be interpreted within a near–wild-type context, rather than as an overexpression model. The primary aim of this experiment was to determine whether Sxl associates with chromatin, and our dataset provides clear evidence supporting such binding.

      2) Is Polr3E chromatin-association also dependent on Sxl? They should do the reciprocal experiment to their examination of Sxl chromatin-association in Polr3E knockdown. This might also help address point 1-if wt Sxl is normally required for aspects of Polr3E chromatin binding, then concerns about whether the Sxl-DAM chromatin-association is real or artifactual would be assuaged.

      Author response:

      This is an interesting thought, however, if Sxl were required for Polr3E recruitment to RNA Pol III, then, in most male Drosophila melanogaster cells, Polr3E would not be incorporated, and males would not be viable (as it is essential for Pol III activity). While it is possible that there could be a subtle effect on Polr3E recruitment, such an experiment, would not alter the central conclusion of our study - that Sxl is recruited to chromatin (accessory to the Pol III complex) via Polr3E.

      Minor concerns:

      * The observed Sxl loss of function phenotypes are somewhat subtle (although perhaps any behavior phenotype at all is a plus). Did they try any other behaviour assays-courtship, learning/memory, anything else at all to test nervous system function?*


      Author response:

      Given the exploratory nature of this study, we focused on broader behavioural and transcriptional assays.

      While well written, it is sometimes difficult to understand how the experiment was performed or what genotypes were used without looking into the methods sections. One example is they should describe the nature of the Sxl-DAM fusion protein clearly in the results.

      Author response:

      We will revise these sections to improve clarity and ensure there is no confusion.

      * Reviewer #1 (Significance (Required)):

      This manuscript represents a dramatic change in our thinking about the action of the Sex-lethal protein. Previously, Sxl was known as the master regulator of both sex determination and dosage compensation, and performed these roles as an RNA-binding protein affecting RNA splicing and translational regulation. Here, the authors describe a sex-non-specific role of Sxl in the male and female nervous system. Further, this activity appears independent of Sxl's RNA binding activity and instead Sxl functions as a chromatin-associating protein working with the RNA pol2/3 factor Polr3E to regulate gene expression. Thus, this represents a highly significant finding. *

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):*

      Summary: In this paper, the authors report on an unexpected activity for Sex lethal (Sxl) (a known splicing regulator that functions in sex determination and dosage compensation) in binding to chromatin. They show, using DamID, that Sxl binds to approximately the same chromatin regions as Polr3E (a subunit of RNA Pol III). They show that this binding to chromatin is unaffected by mutations in the RNA binding domains or by deletions of either N or C terminal regions of the Sxl protein. This leads the authors to conclude that Sxl must bind to chromatin through some interacting protein working through the central region of the Sxl protein. They show that Sxl binding is dependent on Polr3E function. They show that male-specific neuronal knockdown of Sxl gives similar phenotypes to knockdown of Polr3E in terms of lethality and improved negative geotaxis. They show gene expression changes with knockdown of Sxl in male adult neurons - mainly that metabolic and pigmentation genes go down in expression. They also show that expression of a previously discovered male adult specific form of Sxl (that does not have splicing activity) in the same neurons also leads to changes in gene expression, including more upregulated than downregulated tRNAs. But they don't see (or don't show) that the same tRNA genes are down with knockdown of Sxl. Nonetheless, based on these findings, they suggest that Sxl plays an important role in regulating Pol III activity through the Polr3E subunit.

      Major comments:

      *

      *To be honest, I'm not convinced that the conclusions drawn from this study are correct. The fact that every mutant form of Sxl shows the same result from the DamID labelling is a little concerning. I would like to see independent evidence of the SxlRac protein binding chromatin. *

      Do antibodies against this form (or any form) of Sxl bind chromatin in salivary gland polytene chromosomes, for example? Does Sxl from other insects where Sxl has no role in sex determination bind chromatin?


      __Author Response: __

      Regarding the reviewer’s overall concerns about the legitimacy of the Sxl binding data:

      1. i) The fold differences between Dam-Sxl-mutants and the Dam-only control are very robust (up to 9 log2 fold change (500-fold change)), which is higher than what we observe with most transcription factors using Targeted DamID.
      2. ii) We observed that Sxl binding was significantly reduced upon knockdown of Polr3E, confirming that the signal we observe is biologically specific and not due to technical noise or background. iii) If the concern relates to potential Sxl binding in non-neuronal tissues such as salivary glands, we would like to clarify that all DamID constructs were expressed under elav-GAL4, a pan-neuronal driver. Furthermore, dissections were performed to isolate larval brains, with salivary glands carefully removed. This ensures that chromatin profiles were derived from neuronal tissue exclusively.

      3. iv) Salivary gland polytene chromosome staining with a Sxl antibody in a closely related species (Drosophila virilis) show __binding of Sxl to chromatin __in both sexes (Bopp et al., 1996). We will include more text in the revised manuscript to emphasise these points.

      Do antibodies against this form (or any form) of Sxl bind chromatin in salivary gland polytene chromosomes, for example? Does Sxl from other insects where Sxl has no role in sex determination bind chromatin?

      Author Response:

      Prior work in Drosophila virilis (where Sxl is also required for sex determination and Sxl-RAC is conserved) has already demonstrated Sxl-chromatin association (using a full-length Sxl antibody) in salivary glands using polytene chromosome spreads (Bopp et al., 1996). Binding is observed in both sexes and across the genome, reflecting our observations. We will incorporate this into the revised discussion to support the chromatin-binding role of Sxl across species.

      There is a clear and long-overlooked precedent for Sxl's alternative, sex-independent roles, findings that have been largely overshadowed by the gene’s canonical function. Our study not only validates and extends these observations but also brings much-needed attention to this understudied aspect of fundamental biology.

      Bopp D, Calhoun G, Horabin JI, Samuels M, Schedl P. Sex-specific control of Sex-lethal is a conserved mechanism for sex determination in the genus Drosophila. Development. 1996 Mar;122(3):971-82. doi: 10.1242/dev.122.3.971. PMID: 8631274.

      I would like to see independent evidence of the SxlRac protein binding chromatin.

      * *__Author Response: __

      We do not believe this is necessary:

      1. i) Our data demonstrated that a large N-terminal truncation of Sxl (removing far more of the N-terminal region than is absent in Sxl-RAC) does not impair chromatin binding.
      2. ii) Our deletion experiments show that it is the central domain __of Sxl that is required for chromatin association (as removal of the N-or C-terminal domain has no effect). This central domain is __unaffected in Sxl-RAC. iii) Independent Y2H experiments have shown that it is exclusively the__ RBD-1 __(RNA binding domain 1) of the central domain of Sxl that interacts with Polr3E (Dong et al., 1999). Sxl-RAC contains this region, therefore will be recruited by Polr3E.

      iv) Review 3 also believes that this is not necessary (see cross-review below) and highlights the robustness of the Y2H experiments performed by Dong et al., 1999.

      • *

      Also, given that their DamID experiments reveal that Sxl binds half of the genes encoded in the Drosophila genome, finding that it binds around half of the tRNA genes is perhaps not surprising.


      __Author Response: __

      Our data show that Sxl binds to a range of Pol III-transcribed loci, and this binding pattern supports the proposed model that Sxl plays a broader regulatory role in Pol III activity. Within these Pol III targets, tRNA genes represent a specific and biologically relevant subset. The emphasis on tRNAs is not to suggest they are the exclusive or primary targets of Sxl, but rather to__ highlight a functionally important class of Pol III-transcribed elements__ that align with the model we are proposing. We will revise the text to better reflect this framing and avoid any confusion regarding the scope of Sxl’s binding profile.

      *I would like to see evidence beyond citing a 1999 yeast two-hybrid study that Sxl and Polr3E directly interact with one another. *


      Author response:

      We do not believe this is necessary (these points were also mentioned above):

      1. i) The Dong et al., 1999 study was highly comprehensive in its characterisation of Sxl binding to Polr3E.
      2. ii) Our DamID data provide strong complementary evidence for this interaction: knockdown of Polr3E robustly reduces Sxl’s recruitment to chromatin, strongly supporting the relevance of the interaction in vivo. iii) Review 3 highlights the robustness of the Y2H experiments performed by Dong et al., 1999.

      In my opinion, the differences in lethality observed with loss of Sxl versus control are unlikely to be meaningful given the different genetic backgrounds. The similar defects in negative geotaxis could be meaningful, but I'm unsure how often this phenotype is observed. What other class of genes affect negative geotaxis? It's a little unclear why having reduced expression of metabolic and pigment genes or of tRNAs would improve neuronal function.


      Author response:

      While the differences in survival were indeed subtle, they were statistically significant and thus warranted inclusion. Our primary aim in this section was to demonstrate that knockdown of Sxl or Polr3E results in comparable behavioural and transcriptional phenotypes, suggesting overlapping functional roles. In this context, we believe the data were presented transparently and effectively support our interpretation.

      Regarding the negative geotaxis phenotype, we appreciate the reviewer’s interest and agree that it is both intriguing and atypical. For this reason, we performed the assay multiple times, particularly in Polr3e knockdowns, to confirm the robustness of the result. To address potential confounding variables, we carefully selected control lines that account for genetic background and transgene insertion site, including KK controls and attP40-matched lines. We also employed multiple independent RNAi lines targeting Sxl to validate the phenotype across different genetic backgrounds.

      Although the observed improvement in climbing is unexpected, it is not without precedent in the RNA polymerase III field. Notably, Malik et al. (2024) demonstrated that heterozygous Polr3DEY/+ mutants exhibit a significantly delayed decline in climbing ability with age. We allude to this in the discussion and will revise the text to emphasise this connection more explicitly.

      Finally, while we recognise that negative geotaxis is a relatively broad assay and thus does not pinpoint the precise cellular mechanisms involved, we interpret the phenotype as suggesting a neural basis and a functional role for Sxl in the nervous system.

      One would expect that not just the same classes of genes would be affected by loss and overexpression of Sxl, but the same genes would be affected - are the same genes changing in opposite directions in the two experiments or just the same classes of genes. Likewise, are the same genes changing expression in the same direction with both Sxl and the Polr3E loss? Also, why are tRNA genes not also affected with Sxl loss. Finally, they describe the changes in gene expression as being in male adult neurons, but the sequencing was done of entire heads - so no way of knowing which cell type is showing differential gene expression.

      Author response:

      While we do examine gene classes, our approach also includes pairwise correlation analyses of gene expression changes between specific genotypes. Notably, we observed a significant positive correlation between Polr3e knockdowns and Sxl knockdowns, and a significant negative correlation between Sxl-RAC–expressing flies and Sxl knockdowns. Furthermore, we examined Sxl-DamID target genes within our RNA-seq datasets and found a consistent relationship between Sxl targets and genes differentially expressed in Polr3e knockdowns.

      Regarding the Pol III qPCR results, we note that tRNA expression changes may require a longer duration of RNAi induction (e.g., beyond 4 days) to become apparent, especially given that phenotypic effects such as changes in lifespan and negative geotaxis only emerge after 20 days or more. It is also plausible that Sxl knockdown leads to a partial reduction in Pol III efficiency, which may not be readily detectable through bulk Pol III qPCRs. We are willing to repeat Pol III qPCRs at later timepoints to further investigate this trend.

      Finally, we infer that gene expression changes observed in our RNA-seq data are of neuronal origin, as all knockdown and overexpression constructs used in this study were driven pan-neuronally using elav-/nSyb-GAL4. While we acknowledge that bulk RNA-seq does not provide cell-type resolution, tissue-specific assumptions are widely used in the field when driven by a relevant promoter.

      I'm also not sure what I'm supposed to be seeing in panel 5F (or in the related supplemental figure) and if it has any meaning - If they are using the Sxl-T2A-Gal4 to drive mCherry, I think one would expect to see expression since Sxl transcripts are made in both males and in females. Also, one would expect to see active protein expression (OPP staining) in most cells of the adult male brain and I think that is what is observed, but again, I'm not sure what I'm supposed to be looking at given the absence of any arrows or brackets in the figures.

      Author Response:

      Due to the presence of the T2A tag and the premature stop codon in exon 3 of early male Sxl transcripts, GAL4 expression is not expected in males unless the head-specific SxlRAC isoform is produced. The aim of panel 5F is to demonstrate the spatial overlap between SxlRAC expression (as we are examining male brains) and regions of elevated protein synthesis, as detected by OPP staining.

      To quantitatively assess this relationship, we performed colocalisation analysis using ImageJ, which showed a positive correlation between Sxl and OPP signal intensity, supporting this interpretation. It is also evident from our images that regions with lower levels of protein synthesis (such as the neuropil - as shown in independent studies Villalobos-Cantor et al., 2023) concurrently lack Sxl-related signal. We have highlighted regions in Fig. 5 exhibiting higher/lower levels of Sxl/OPP signal to better illustrate this relationship. We can also test the effects of knockdown/overexpression on general protein synthesis if required.

      Villalobos-Cantor S, Barrett RM, Condon AF, Arreola-Bustos A, Rodriguez KM, Cohen MS, Martin I. Rapid cell type-specific nascent proteome labeling in Drosophila. Elife. 2023 Apr 24;12:e83545. doi: 10.7554/eLife.83545. PMID: 37092974; PMCID: PMC10125018.

      Minor comments:

      * Line 223 - 225 - I believe that it is expected that Sxl transcripts would be broadly expressed in the male and female adult, given that it is only the spliced form of the transcript that is female specific in expression. *

      As explained above, the only isoform that will be ‘trapped’ by the T2A-GAL4 in males is the Sxl-RAC isoform (as the other isoforms contain premature stop codons). Our immunohistochemistry data indicate that Sxl-RAC is expressed in the male brain, specifically in neurons. Therefore, knockdown experiments in males will reduce all mRNA isoforms, of which, Sxl-RAC is the only one producing a protein.

      Line 236 - 238 - Sentence doesn't make sense.

      We have addressed and clarified this.

      Reviewer #2 (Significance (Required)):

      It would be significant to discover that a gene previously thought to function in only sex determination and dosage compensation also moonlights as a regulator of RNA polymerase III activity. Unfortunately, I am not convinced by the work presented in this study that this is the case.

      My expertise is in Drosophila biology, including development, transcription, sex determination, morphogenesis, genomics, transcriptomics, DNA binding

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):*

      Storer, McClure and colleagues use genome-wide DNA-protein binding assays, transcriptomics, and genetics to work out that Drosophila Sxl, widely known as an RNA-binding protein which functions as a splicing factor to determine sex identity in Drosophila and related species, is also a chromatin factor that can stimulate transcription by Pol III and Pol II of genes involved with metabolism and protein homeostasis, specifically some encoding tRNAs.

      The evidence for the tenet of the paper -- that Sxl acts as a chromatin regulator with Polr3E, activating at least some of its targets with either Pol III or Pol II -- is logical and compelling, the paper is well written and the figures well presented. Of course, more experiments could always be wished for and proposed, but I think this manuscript could be published in many journals with just a minor revision not involving additional experiments. I have a few specific comments below, all minor.*

      Scientific points: - The approach taken for the evaluation of Sxl DNA-binding activity in Fig2 is not entirely clear. I assume these are crosses of elav-Gal4 x different UAS- lines, then using males or females for UAS-Sxl-Full-Length. But what about the others? Were the experiments done in males only? This is hinted at in the main text but not explicitly indicated in the figure or the methods (at least, that I could easily find). And is this approach extended to all other experiments? Longevity? Climbing assays? Considering the role of Sxl, it may be helpful to be fastidiously systematic with this.


      Author Response:

      We have revised the wording to ensure greater clarity. Males were used for all survival and behavioural experiments (as only males can be leveraged for knocking down Sxl-RAC without affecting the canonical Sxl-F isoform).

      - In the discussion, lines 360-61, the authors say: Indeed, knockdown of Polr3E leads to a loss of Sxl binding to chromatin, suggesting a cooperative mechanism. Maybe I am misunderstanding the authors, but when I read "cooperation" in this context I think of biochemical cooperative binding. This is possible, but I do not think a simple 'requirement' test can suggest specifically that this mechanistic feature of biochemical binding is at play. I would expect, for starters, a reciprocal requirement for binding (which is not tested), and some quantitative features that would be difficult to evaluate in vivo. I do not think cooperative binding needs to be invoked anyway, as the authors do not make any specific point or prediction about it. But if they do think this is going on, I think it would need to be referred to as a speculation.


      Author Response:

      We appreciate that the original wording may have been unclear and will revise the text to more accurately reflect a functional relationship, rather than implying direct cooperation.

      - In lines 428-432, the authors discuss the ancestral role of Sxl and make a comparison with ELAV, in the context of an RNA-binding protein that has molecular functions beyond those of a splicing factor, considering the functions of ELAV in RNA stability and translation, and finishing with "suggesting that similar regulatory mechanisms may be at play". I do not understand this latter sentence. Which mechanisms are these? Are the authors referring to the molecular activities of ELAV and SXL? But what would be the similarity? SXL seems to have a dual capacity to bind RNA and protein interactors, which allows it to work both in chromatin-level regulation as well as post-transcriptionally in splicing; but ELAV seems rather to take advantage of its RNA binding function to make it work in multiple RNA-related contexts, all post-transcriptional. I do not see an obvious parallel beyond the fact that RNA binding proteins can function at different levels of gene expression regulation -- but I would not say this parallel are "similar regulatory mechanisms", so I find the whole comparison a bit confusing.


      Author Response:

      We have reduced this section, as it is largely speculative and intended to highlight potential, though indirect, links in higher organisms. Our goal was primarily to illustrate the possibility that Sxl may have an ancestral role distinct from its well-characterised function, and to suggest a potential avenue for future research into ELAV2’s involvement in chromatin or Pol III regulation.

      - One aspect of the work that I find is missing in the discussion is the possibility that the simultaneous capacity of Sxl for RNA binding and Polr3E binding: are these mutually exclusive? if so, are they competitive or hierarchical? how would they be coordinated anyway?


      Author Response:

      This is an interesting point, and we have expanded on it further in the Discussion section.

      - The only aspect of the paper where I found that one could make an experimental improvement is the claim that Sxl induces the expression of genes that have the overall effect of stimulating protein synthesis. The OPP experiment shows a correlation between the expression of Sxl and the rate of protein synthesis initiation. However, a more powerful experiment would be, rather obviously, to introduce Sxl knock-down in the same experiment, and observe whether in Sxl-expressing neurons the incorporation of OPP is reduced. I put this forth as a minor point because the tenet of the paper would not be affected by the results (though the perception of importance of the newly described function could be reinforced).

      • *

      Author Response:

      This could be a valid experiment and we are prepared to perform it if required.

      - In a similar way, it would be interesting to know whether the recruitment of Polr3E and Sxl to chromatin is co-dependent or Sxl follows Polr3E. This is also a minor point because this would possibly refine the mechanism of recruitment but does not alter the main discovery.

      Author Response:

      We have addressed a similar point for Reviewer 2 (see below) and will include a Discussion point for this:

      If Sxl were required for Polr3E recruitment to RNA Pol III, then, in most male Drosophila melanogaster cells, Polr3E would not be incorporated, and males would not be viable (as it is essential for Pol III activity). While it is possible that there could be a subtle effect on Polr3E recruitment, such an experiment, would not alter the central conclusion of our study - that Sxl is recruited to chromatin (accessory to the Pol III complex) via Polr3E.

      * Figures and reporting:

      • In Figure 2, it would be helpful to see the truncation coordinate for the N and C truncations.

      • In Figure 3D, genomic coordinates are missing.

      • In Figure 3E, the magnitude in the Y axis is not entirely clear (at least not to me). How is the amount of binding across the genome quantified? Is this the average amplitude of normalised TaDa signal across the genome? Or only within binding intervals?

      • Figure S3E-F: it would be interesting to show the degree of overlap between the downregulated genes that are also binding targets (regardless of the outcome).

      • Figure 5C-E: similarly to Figure S3, it would be interesting to know how the transcriptional effects compare with the binding targets.

      • Authors use Gehan-Breslow-Wilcoxon to test survival, which is a bit unusual, as it gives more weight to the early deaths (which are rare in most Drosophila longevity experiments). Is there any rationale behind this? It may be even favour their null hypothesis.*


      Author response:

      Thank you for the detailed feedback on our figures. We have__ incorporated__ the suggested changes.

      We agree that examining the overlap between Sxl binding sites and transcriptional changes is valuable, and we aimed to highlight this in the pie charts shown in Figures S3 and S5. If the reviewer is suggesting a more explicit quantification of the proportion of Sxl-Dam targets with significant transcriptomic changes, we are happy to include this analysis in the final version of the manuscript.

      As noted in the Methods, both Gehan–Breslow–Wilcoxon (GBW) and Kaplan–Meier tests were used. The significance in Figure 4a is specific to the GBW test, which we indicated by describing the effect as mild. Our focus here is not on the magnitude of survival differences, but on the consistent trends observed in both Polr3e and Sxl knockdowns.

      Writing and language:*

      • Introduction finishes without providing an outline of the findings (which is fine by me if that is what the authors wanted).

      • In lines 361-5, the authors say "We speculate that this interaction not only facilitates Pol III transcription but may also influence chromatin architecture and RNA Pol II-driven transcription as observed with Pol III regulation in other organisms". "This interaction" refers to Polr3E-Sxl-DNA interaction and with "Pol III transcription" I presume the authors refer to transcription executed by Pol III. I am not clear about the meaning of the end of the sentence "as observed with Pol III regulation in other organisms". What is the observation, exactly? That Pol III modifies chromatin in Pol II regulated loci, or that Pol III interactors change chromatin architecture?

      • DPE abbreviation is not introduced (and only used once).

      • A few typos: Line 41 ...splicing of the Sxl[late] transcripts, which is [ARE?] constitutively transcribed (Keyes et al.,... Line 76 ...sexes but appears restricted to the nervous system [OF] male pupae and adults (Cline et Line 289 ...and S41). To assess any effect [ON]translational output, O-propargyl-puromycin (OPP)o Line 323 ...illustrating that the majority (72%) changes in tRNA levels [ARE] due to upregulation...hi Line 402 ...it was discovered [WE DISCOVERED] Line 792 ...Sxl across chromosomes X, 2 L/R, 3 L/R and 4. The y-axis represents the log[SYMBOL] ratio... This happens in other figure legends as well.*


      Author response:

      Thank you for the detailed feedback, we have clarified and incorporated the suggested changes.

      **Referee Cross-commenting***

      Reviewer 1 asks how physiological is the Sxl chromatin-association assay. I think the loss of association in Polr3E knock-down and the lack of association of other splicing factors goes a long way into answering this question. It is true that having positive binding data specifically for Sxl-RAC and negative binding data for a deletion mutant of the RMM domain would provide more robust conclusions (see below), but I am not sure it is completely necessary -- though this will depend on which journal the authors want to send the paper to.

      I think that the comment of reviewer 1 about the levels of expression of Sxl-DAM does not apply here because of the way TaDa works - it relies on codon slippage to produce minimal amounts of the DAM fusion protein, so by construction it will be expressed at much lower levels than the endogenous protein.

      Reviewer 1 also asks whether Polr3E chromatin-association is also dependent on Sxl, to round up the model and also as a way to address whether Sxl association to chromatin is real. While I agree with this on the former aim (this would be a nice-to-have), I think I disagree on the latter; there is no need for Polr3E recruitment to depend on Sxl for Sxl association to chromatin to be physiologically relevant. Polr3E is a peripheral component of Pol III and unlikely to depend on a factor of restricted expression like Sxl to interact with chromatin. The recruitment of Sxl could well be entirely 'hierarchical' and subject to Polr3E.

      Revewer 2 is concerned with the fact that every mutant form of Sxl shows the same result from the DamID labelling. I have to agree with this to a point. A deletion mutant of RMM domains would address this. Microscopy evidence in salivary glands would be nice, certainly, but the system may not lend itself to this particular interaction, which might be short-lived and/or weak. I do not immediately see the relevance of the chromatin binding capacity of non-Drosophilidae Sxl -- though it might indicate that the impact of the discovery is less likely to go beyond this group.

      Reviewer 2 does not find surprising that some tRNA genes (less than half) are regulated by Sxl. I think the value of that observation is just qualitative, as tRNAs are Pol III-produced transcripts, but their point is correct. A hypergeometric test could settle this.

      Reviewer 2 is concerned that the evidence of direct interaction between Sxl and Polr3E is a single 1999 two-hybrid study. But that paper contains also GST pull-downs that narrow down the specific domains that mediate binding, and perform the binding in competitive salt conditions. I think it is enough. The author team, I think, are not biochemists, so finding the right collaborators and performing these experiments would take time that I am not sure is warranted.

      Reviewer 2 is also concerned that the longevity assays may not be meaningful due to the difference in genetic backgrounds. This is a very reasonable concern (which I would extend to the climbing assays - any quantitative phenotype is sensitive to genetic background). However, I think the authors here may have already designed the experiment with this in mind - the controls express untargeted RNAi constructs, but I lose track of which one is control of which. This should be clarified in Methods.

      Other comments are in line, I think, with what I have pointed out and I generally agree with everything else that has been said.

      Reviewer #3 (Significance (Required)):

      Drosophila Sxl is widely known as an RNA-binding protein which functions as a splicing factor to determine sex identity in Drosophila and related species. It is a favourite example of how splicing factors and alternative can have profound influence in biology and used cleverly in the molecular circuitry of the cell to enact elegant regulatory decisions.

      In this work, Storer, McClure and colleagues use genome-wide DNA-protein binding assays, transcriptomics, and genetics to work out that Sxl is also a chromatin factor with an sex-independent, neuron-specific role in stimulating transcription by Pol III and Pol II, of genes involved with metabolism and protein homeostasis, including some encoding tRNAs.

      This opens a large number of interesting biological questions that range from biochemistry, gene regulation or neurobiology to evolution. How is the simultaneous capacity of binding RNA and chromatin (with the same protein domain, RRM) regulated/coordinated? How did this dual activity evolve and which one is the ancestral one? How many other RRM-containin RNA-binding proteins can also bind chromatin? How is Sxl recruited to chromatin to both Pol II and Pol III targets and are they functionally related? If so, how is the coordination of cellular functions activated through different RNA polymerases taking place and what is the role of Sxl in this? What are the functional consequences to neuronal biology? Does this affect similarly all Sxl-expressing neurons?

      The evidence for the central tenet of the paper -- that Sxl acts as a chromatin regulator with Polr3E, activating at least some of its targets with either Pol III or Pol II -- is logical and compelling, the paper is well written and the figures well presented. Of course, more experiments could always be wished for and proposed, but I think this manuscript could be published in many journals with just a minor revision not involving additional experiments.*

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      *The convincing analysis demonstrates a role for the Drosophila Sex determining gene sex lethal in controlling aspects of transcription in the nervous system independent of its role in splicing. Interaction with an RNA Pol III subunit mediating Sxl association with chromatin and similar knockdown phenotypes strongly support the role of Sxl in the regulation of neuronal metabolism. Given that Sxl is an evolutionary recent acquisition for sex determination, the study may reveal an ancestral role for Sxl.

      The conclusions are well justified by the datasets presented and I have no issues with the study or the interpretation. Throughout the work is well referenced, though perhaps the authors might take a look at Zhang et al (2014) (PMID: 24271947) for an interesting evolutionary perspective for the discussion.*

      Author Response:

      Thank you for the thoughtful suggestion. We will be sure to incorporate the findings from Zhang et al. regarding the evolution of the sex determination pathway.

      *I have some minor comments for clarification:

      There is no Figure 2b, should be labelled 2 or label TaDa plots as 2b

      Clarify if Fig 2 data are larval or adult *

      *Larval

      Fig 3d - are these replicates or female and male?

      Please elaborate on tub-GAL80[ts] developmental defects

      Fig 4e, are transcriptomics done with the VDRC RNAi line? The VDRC and BDSC RNAi lines exhibit different behaviours - former has "better" survival and Better negative geotaxis, the latter seems to have poorer survival but little geotaxis effect?*

      *Fig S3 - volcano plot for Polr3E?

      Fig S4a - legend says downregulated genes?

      The discussion should at least touch on the fact that Sxl amorphs (i.e. Sxl[fP7B0] are male viable and fertile, emphasising that the newly uncovered role is not essential.*

      Author Response:

      We agree with the suggestions outlined in the comments and have made the appropriate revisions.

      Reviewer #4 (Significance (Required)):*

      A nonessential role for Sxl in the nervous system independent of sex-determination contributes to better understanding a) the evolution of sex determining mechanisms, b) the role of RNA PolIII in neuronal homeostasis and c) more widely to the neuronal aging field. I think this well-focused study reveals a hitherto unsuspected role for Sxl.*

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Storer, McClure and colleagues use genome-wide DNA-protein binding assays, transcriptomics, and genetics to work out that Drosophila Sxl, widely known as an RNA-binding protein which functions as a splicing factor to determine sex identity in Drosophila and related species, is also a chromatin factor that can stimulate transcription by Pol III and Pol II of genes involved with metabolism and protein homeostasis, specifically some encoding tRNAs.

      The evidence for the tenet of the paper -- that Sxl acts as a chromatin regulator with Polr3E, activating at least some of its targets with either Pol III or Pol II -- is logical and compelling, the paper is well written and the figures well presented. Of course, more experiments could always be wished for and proposed, but I think this manuscript could be published in many journals with just a minor revision not involving additional experiments. I have a few specific comments below, all minor.

      Scientific points:

      • The approach taken for the evaluation of Sxl DNA-binding activity in Fig2 is not entirely clear. I assume these are crosses of elav-Gal4 x different UAS- lines, then using males or females for UAS-Sxl-Full-Length. But what about the others? Were the experiments done in males only? This is hinted at in the main text but not explicitly indicated in the figure or the methods (at least, that I could easily find). And is this approach extended to all other experiments? Longevity? Climbing assays? Considering the role of Sxl, it may be helpful to be fastidiously systematic with this.
      • In the discussion, lines 360-61, the authors say: Indeed, knockdown of Polr3E leads to a loss of Sxl binding to chromatin, suggesting a cooperative mechanism. Maybe I am misunderstanding the authors, but when I read "cooperation" in this context I think of biochemical cooperative binding. This is possible, but I do not think a simple 'requirement' test can suggest specifically that this mechanistic feature of biochemical binding is at play. I would expect, for starters, a reciprocal requirement for binding (which is not tested), and some quantitative features that would be difficult to evaluate in vivo. I do not think cooperative binding needs to be invoked anyway, as the authors do not make any specific point or prediction about it. But if they do think this is going on, I think it would need to be referred to as a speculation.
      • In lines 428-432, the authors discuss the ancestral role of Sxl and make a comparison with ELAV, in the context of an RNA-binding protein that has molecular functions beyond those of a splicing factor, considering the functions of ELAV in RNA stability and translation, and finishing with "suggesting that similar regulatory mechanisms may be at play". I do not understand this latter sentence. Which mechanisms are these? Are the authors referring to the molecular activities of ELAV and SXL? But what would be the similarity? SXL seems to have a dual capacity to bind RNA and protein interactors, which allows it to work both in chromatin-level regulation as well as post-transcriptionally in splicing; but ELAV seems rather to take advantage of its RNA binding function to make it work in multiple RNA-related contexts, all post-transcriptional. I do not see an obvious parallel beyond the fact that RNA binding proteins can function at different levels of gene expression regulation -- but I would not say this parallel are "similar regulatory mechanisms", so I find the whole comparison a bit confusing.
      • One aspect of the work that I find is missing in the discussion is the possibility that the simultaneous capacity of Sxl for RNA binding and Polr3E binding: are these mutually exclusive? if so, are they competitive or hierarchical? how would they be coordinated anyway?
      • The only aspect of the paper where I found that one could make an experimental improvement is the claim that Sxl induces the expression of genes that have the overall effect of stimulating protein synthesis. The OPP experiment shows a correlation between the expression of Sxl and the rate of protein synthesis initiation. However, a more powerful experiment would be, rather obviously, to introduce Sxl knock-down in the same experiment, and observe whether in Sxl-expressing neurons the incorporation of OPP is reduced. I put this forth as a minor point because the tenet of the paper would not be affected by the results (though the perception of importance of the newly described function could be reinforced).
      • In a similar way, it would be interesting to know whether the recruitment of Polr3E and Sxl to chromatin is co-dependent or Sxl follows Polr3E. This is also a minor point because this would possibly refine the mechanism of recruitment but does not alter the main discovery.

      Figures and reporting:

      • In Figure 2, it would be helpful to see the truncation coordinate for the N and C truncations.
      • In Figure 3D, genomic coordinates are missing.
      • In Figure 3E, the magnitude in the Y axis is not entirely clear (at least not to me). How is the amount of binding across the genome quantified? Is this the average amplitude of normalised TaDa signal across the genome? Or only within binding intervals?
      • Figure S3E-F: it would be interesting to show the degree of overlap between the downregulated genes that are also binding targets (regardless of the outcome).
      • Figure 5C-E: similarly to Figure S3, it would be interesting to know how the transcriptional effects compare with the binding targets.
      • Authors use Gehan-Breslow-Wilcoxon to test survival, which is a bit unusual, as it gives more weight to the early deaths (which are rare in most Drosophila longevity experiments). Is there any rationale behind this? It may be even favour their null hypothesis.

      Writing and language:

      • Introduction finishes without providing an outline of the findings (which is fine by me if that is what the authors wanted).
      • In lines 361-5, the authors say "We speculate that this interaction not only facilitates Pol III transcription but may also influence chromatin architecture and RNA Pol II-driven transcription as observed with Pol III regulation in other organisms". "This interaction" refers to Polr3E-Sxl-DNA interaction and with "Pol III transcription" I presume the authors refer to transcription executed by Pol III. I am not clear about the meaning of the end of the sentence "as observed with Pol III regulation in other organisms". What is the observation, exactly? That Pol III modifies chromatin in Pol II regulated loci, or that Pol III interactors change chromatin architecture?
      • DPE abbreviation is not introduced (and only used once).
      • A few typos: Line 41 ...splicing of the Sxl[late] transcripts, which is [ARE?] constitutively transcribed (Keyes et al.,... Line 76 ...sexes but appears restricted to the nervous system [OF] male pupae and adults (Cline et Line 289 ...and S41). To assess any effect [ON]translational output, O-propargyl-puromycin (OPP)o Line 323 ...illustrating that the majority (72%) changes in tRNA levels [ARE] due to upregulation...hi Line 402 ...it was discovered [WE DISCOVERED] Line 792 ...Sxl across chromosomes X, 2 L/R, 3 L/R and 4. The y-axis represents the log[SYMBOL] ratio... This happens in other figure legends as well.

      Referee Cross-commenting

      Reviewer 1 asks how physiological is the Sxl chromatin-association assay. I think the loss of association in Polr3E knock-down and the lack of association of other splicing factors goes a long way into answering this question. It is true that having positive binding data specifically for Sxl-RAC and negative binding data for a deletion mutant of the RMM domain would provide more robust conclusions (see below), but I am not sure it is completely necessary -- though this will depend on which journal the authors want to send the paper to.

      I think that the comment of reviewer 1 about the levels of expression of Sxl-DAM does not apply here because of the way TaDa works - it relies on codon slippage to produce minimal amounts of the DAM fusion protein, so by construction it will be expressed at much lower levels than the endogenous protein.

      Reviewer 1 also asks whether Polr3E chromatin-association is also dependent on Sxl, to round up the model and also as a way to address whether Sxl association to chromatin is real. While I agree with this on the former aim (this would be a nice-to-have), I think I disagree on the latter; there is no need for Polr3E recruitment to depend on Sxl for Sxl association to chromatin to be physiologically relevant. Polr3E is a peripheral component of Pol III and unlikely to depend on a factor of restricted expression like Sxl to interact with chromatin. The recruitment of Sxl could well be entirely 'hierarchical' and subject to Polr3E.

      Revewer 2 is concerned with the fact that every mutant form of Sxl shows the same result from the DamID labelling. I have to agree with this to a point. A deletion mutant of RMM domains would address this. Microscopy evidence in salivary glands would be nice, certainly, but the system may not lend itself to this particular interaction, which might be short-lived and/or weak. I do not immediately see the relevance of the chromatin binding capacity of non-Drosophilidae Sxl -- though it might indicate that the impact of the discovery is less likely to go beyond this group.

      Reviewer 2 does not find surprising that some tRNA genes (less than half) are regulated by Sxl. I think the value of that observation is just qualitative, as tRNAs are Pol III-produced transcripts, but their point is correct. A hypergeometric test could settle this.

      Reviewer 2 is concerned that the evidence of direct interaction between Sxl and Polr3E is a single 1999 two-hybrid study. But that paper contains also GST pull-downs that narrow down the specific domains that mediate binding, and perform the binding in competitive salt conditions. I think it is enough. The author team, I think, are not biochemists, so finding the right collaborators and performing these experiments would take time that I am not sure is warranted.

      Reviewer 2 is also concerned that the longevity assays may not be meaningful due to the difference in genetic backgrounds. This is a very reasonable concern (which I would extend to the climbing assays - any quantitative phenotype is sensitive to genetic background). However I think the authors here may have already designed the experiment with this in mind - the controls expres untargeted RNAi constructs, but I lose track of which one is control of which. This should be clarified in Methods.

      Other comments are in line, I think, with what I have pointed out and I generally agree with everything else that has been said.

      Significance

      Drosophila Sxl is widely known as an RNA-binding protein which functions as a splicing factor to determine sex identity in Drosophila and related species. It is a favourite example of how splicing factors and alternative can have profound influence in biology and used cleverly in the molecular circuitry of the cell to enact elegant regulatory decisions.

      In this work, Storer, McClure and colleagues use genome-wide DNA-protein binding assays, transcriptomics, and genetics to work out that Sxl is also a chromatin factor with an sex-independent, neuron-specific role in stimulating transcription by Pol III and Pol II, of genes involved with metabolism and protein homeostasis, including some encoding tRNAs.

      This opens a large number of interesting biological questions that range from biochemistry, gene regulation or neurobiology to evolution. How is the simultaneous capacity of binding RNA and chromatin (with the same protein domain, RRM) regulated/coordinated? How did this dual activity evolve and which one is the ancestral one? How many other RRM-containin RNA-binding proteins can also bind chromatin? How is Sxl recruited to chromatin to both Pol II and Pol III targets and are they functionally related? If so, how is the coordination of cellular functions activated through different RNA polymerases taking place and what is the role of Sxl in this? What are the functional consequences to neuronal biology? Does this affect similarly all Sxl-expressing neurons?

      The evidence for the central tenet of the paper -- that Sxl acts as a chromatin regulator with Polr3E, activating at least some of its targets with either Pol III or Pol II -- is logical and compelling, the paper is well written and the figures well presented. Of course, more experiments could always be wished for and proposed, but I think this manuscript could be published in many journals with just a minor revision not involving additional experiments.

    1. I am sincerely grateful to the editors and peer reviewers at MetaROR for their detailed feedback and valuable comments and suggestions. I have addressed each point below.

      Handling Editor

      1. However, the article’s progression and arguments, along with what it seeks to contribute to the literature need refinement and clarification. The argument for PRC is under-developed due to a lack of clarity about what the article means by scientific

      communication. Clarity here might make the endorsement of PRC seem like less of a foregone conclusion.

      The structure of the paper (and discussion) has changed significantly to address the feedback.

      2. I strongly endorse the main theme of most of the reviews, which is that the progression and underlying justifications for this article’s arguments needs a great deal of work. In my view, this article’s main contribution seems to be the evaluation of the three peer review models against the functions of scientific communication. I say ‘seems to be’ because the article is not very clear on that and I hope you will consider clarifying what your manuscript seeks to add to the existing work in this field. In any case, if that assessment of the three models is your main contribution, that part is somewhat underdeveloped. Moreover, I never got the sense that there is clear agreement in the literature about what the tenets of scientific communication are. Note that scientific communication is a field in its own right.

      I have implemented a more rigorous approach to argumentation in response. “Scientific communication” was replaced by “scholarly communication.”

      3. I also agree that paper is too strongly worded at times, with limitations and assumptions in the analysis minimised or not stated. For example, all of the typologies and categories drawn could easily be reorganised and there is a high degree of subjectivity in this entire exercise. Subjective choices should be highlighted and made salient for the reader. Note that greater clarity, rigour, and humility may also help with any alleged or actual bias.

      I have incorporated the conceptual framework and description of the research methodology. However, the

      Discussion section reflects my personal perspective in some points, which I have explicitly highlighted to ensure clarity.

      4. I agree with Reviewer 3 that the ‘we’ perspective is distracting.

      This has been fixed.

      5. The paragraph starting with ‘Nevertheless’ on page 2 is very long.

      The text was restructured.

      6. There are many points where language could be shortened for readability, for example:

      Page 3: ‘decision on publication’ could be ‘publication decision’.

      Page 5: ‘efficiency of its utilization’ could be ‘its efficiency’.

      Page 7: ‘It should be noted…’ could be ‘Note that…’.

      I have proofread the text.

      7. Page 7: ‘It should be noted that..’ – this needs a reference.

      This statement has been moved to the Discussion section, paraphrased, and reference added.

      “It should be also noted that peer review innovations pull in opposing directions, with some aiming to increase efficiency and reduce costs, while others aim to promote rigor and increase costs

      (Kaltenbrunner et al., 2022).”

      8. I’m not sure that registered reports reflect a hypothetico-deductive approach (page 6). For instance, systematic reviews (even non-quantitative ones) are often published as registered reports and Cochrane has required this even before the move towards registered reports in quantitative psychology.

      I have added this clarification.

      9. I agree that modular publishing sits uneasily as its own chapter.

      Modular publishing has been combined with registered reports into the deconstructed publication group of

      models, now Section 5.1.

      10. Page 14: ‘The "Publish-Review-Curate" model is universal that we expect to be the future of scientific publishing. The transition will not happen today or tomorrow, but in the next 5-10 years, the number of projects such as eLife, F1000Research, Peer Community in, or MetaROR will rapidly increase’. This seems overly strong (an example of my larger critique and that of the reviewers).

      This part of the text has been rewritten.

      Reviewer 1

      11. For example, although Model 3 is less chance to insert bias to the readers, it also weakens the filtering function of the review system. Let’s just think about the dangers of machine-generated articles, paper-mills, p-hacked research reports and so on. Although the editors do some pre-screening for the submissions, in a world with only Model 3 peer review the literature could easily get loaded with even more ‘garbage’ than in a model where additional peers help the screening.

      I think that generated text is better detected by software tools. At the same time, I tried and described the pros and cons of different models in a more balanced way in the concluding section.

      12. Compared to registered reports other aspects can come to focus that Model 3 cannot cover. It’s the efficiency of researchers’ work. In the care of registered reports, Stage 1 review can still help researchers to modify or improve their research design or data collection method. Empirical work can be costly and time-consuming and post-publication review can only say that “you should have done it differently then it

      would make sense”.

      Thank you very much for this valuable contribution, I have added this statement at P. 11.

      13. Finally, the author puts openness as a strength of Model 3. In my eyes, openness is a separate question. All models can work very openly and transparently in the right circumstances. This dimension is not an inherent part of the models.

      I think that the model, providing peer reviews to all the submissions, ensures maximum transparency. However, I have made effort to make the wording more balanced and distinguish my personal perspective from the literature.

      14. In conclusion, I would not make verdict over the models, instead emphasize the different functions they can play in scientific communication.

      This idea has been reflected now in the concluding section.

      15. A minor comment: I found that a number of statements lack references in the Introduction. I would have found them useful for statements such as “There is a point of view that peer review is included in the implicit contract of the researcher.”

      Thank you for your feedback. I have implemented a more rigorous approach to argumentation in response.

      Reviewer 2

      16. The primary weakness of this article is that it presents itself as an 'analysis' from which they 'conclude' certain results such as their typology, when this appears clearly to be an opinion piece. In my view, this results in a false claim of objectivity which detracts from what would otherwise be an interesting and informative, albeit subjective, discussion, and thus fails to discuss the limitations of this approach.

      I have incorporated the conceptual framework and description of the research methodology. However, the

      Discussion section reflects my personal perspective in some points, which I have explicitly highlighted to ensure clarity.

      17. A secondary weakness is that the discussion is not well structured and there are some imprecisions of expression that have the potential to confuse, at least at first.

      The structure of the paper (and discussion) has changed significantly.

      18. The evidence and reasoning for claims made is patchy or absent. One instance of the former is the discussion of bias in peer review. There are a multitude of studies of such bias and indeed quite a few meta-analyses of these studies. A systematic search could have been done here but there is no attempt to discuss the totality of this literature. Instead, only a few specific studies are cited. Why are these ones chosen? We have no idea. To this extent I am not convinced that the references used here are the most appropriate.

      I have reviewed the existing references and incorporated additional sources. However, the study does not claim to conduct a systematic literature review; rather, it adopts an interpretative approach to literature analysis.

      19. Instances of the latter are the claim that "The most well-known initiatives at the moment are ResearchEquals and Octopus" for which no evidence is provided, the claim that "we believe that journal-independent peer review is a special case of Model 3" for which no further argument is provided, and the claim that "the function of being the "supreme judge" in deciding what is "good" and "bad" science is taken on by peer review" for which neither is provided.

      Thank you for your feedback. I have implemented a more rigorous approach to argumentation in response.

      20. A particular example of this weakness, which is perhaps of marginal importance to the overall paper but of strong interest to this reviewer is the rather odd engagement with history within the paper. It is titled "Evolution of Peer Review" but is really focussed on the contemporary state-of-play. Section 2 starts with a short history of peer review in scientific publishing, but that seems intended only to establish what is

      described as the 'traditional' model of peer review. Given that that short history had just shown how peer review had been continually changing in character over centuries - and indeed Kochetkov goes on to describe further changes - it is a little difficult to work out what 'traditional' might mean here; what was 'traditional' in 2010 was not the same as what was 'traditional' in 1970. It is not clear how seriously this history is being taken. Kochetkov has earlier written that "as early as the beginning of the 21st century, it was argued that the system of peer review is 'broken'" but of course criticisms - including fundamental criticisms - of peer review are much older than this. Overall, this use of history seems designed to privilege the

      experience of a particular moment in time, that coincides with the start of the metascience reform movement.

      While the paper addresses some aspects of peer review history, it does not provide a comprehensive examination of this topic. A clarifying statement to this effect has been included in the methodology section.

      “… this section incorporates elements of historical analysis, it does not fully qualify as such because primary sources were not directly utilized. Instead, it functions as an interpretative literature review, and one that is intentionally concise, as a comprehensive history of peer review falls outside the scope of this research”.

      21. Section 2 also demonstrates some of the second weakness described, a rather loose structure. Having moved from a discussion of the history of peer review to detail the first model, 'traditional' peer review, it then also goes on to describe the problems of this model. This part of the paper is one of the best - and best - evidenced. Given the importance of it to the main thrust of the discussion it should probably have been given more space as a Section all on its own.

      This section (now Section 4) has been extended, see also previous comment.

      22. Another example is Section 4 on Modular Publishing, in which Kochetkov notes "Strictly speaking, modular publishing is primarily an innovative approach for the publishing workflow in general rather than specifically for peer review."

      Kochetkov says "This is why we have placed this innovation in a separate category" but if it is not an innovation in peer review, the bigger question is 'Why was it included in this article at all?'.

      Modular publishing has been combined with registered reports into the deconstructed publication group of models, now Section 5.1.

      23. One example of the imprecisions of language is as follows. The author also shifts between the terms 'scientific communication' and 'science communication' but, at least in many contexts familiar to this reviewer, these are not the same things, the former denoting science-internal dissemination of results through publication (which the author considers), conferences and the like (which the author specifically excludes) while the latter denotes the science-external public dissemination of scientific findings to non-technical audiences, which is entirely out of scope for this article.

      Thank you for your remark. As a non- native speaker, I initially did not grasp the distinction between the terms. However, I believe the phrase ‘scholarly communication’ is the most universally applicable term. This adjustment has now been incorporated into the text.

      24. A final note is that Section 3, while an interesting discussion, seems largely derivative from a typology of Waltman, with the addition of a consideration of whether a reform is 'radical' or 'incremental', based on how 'disruptive' the reform is. Given that this is inherently a subjective decision, I wonder if it might not have been more informative to consider 'disruptiveness' on a scale and plot it accordingly. This would allow for some range to be imagined for each reform as well; surely reforms might be more or less disruptive depending on how they are implemented. Given that each reform is considered against each model, it is somewhat surprising that this is not presented in a tabular or graphical form.

      Ultimately, I excluded this metric due to its current reliance on purely subjective judgment. Measuring 'disruptiveness', e.g., through surveys or interviews remains a task for future research. 

      25. Reconceptualize this as an opinion piece. Where systematic evidence can be drawn upon to make points, use that, but don't be afraid to just present a discussion from what is clearly a well-informed author.

      I cannot definitively classify this work as an opinion piece. In fact, this manuscript synthesizes elements of a literature review, research article, and opinion essay. My idea was to integrate the strengths of all three genres.

      26. Reconsider the focus on history and 'evolution' if the point is about the current state of play and evaluation of reforms (much as I would always want to see more studies on the history and evolution of peer review).

      I have revised the title to better reflect the study’s scope and explicitly emphasize its focus on contemporary developments in the field.

      “Peer Review at the Crossroads”

      27. Consider ways in which the typology might be expanded, even if at subordinate level.

      I have updated the typology and introduced the third tier, where it is applicable (see Fig.2).

      Reviewer 3

      28. In my view, the biggest issue with the current peer review system is the low quality of reviews, but the manuscript only mentions this fleetingly. The current system facilitates publication bias, confirmation bias, and is generally very inconsistent. I think this is partly due to reviewers’ lack of accountability in such a closed peer review system, but I would be curious to hear the author’s ideas about this, more elaborately than they provide them as part of issue 2.

      I have elaborated on this issue in the footnote.

      29. I’m missing a section in the introduction on what the goals of peer review are or should be. You mention issues with peer review, and these are mostly fair, but their importance is only made salient if you link them to the goals of peer review. The author does mention some functions of peer review later in the paper, but I think it would be good to expand that discussion and move it to a place earlier in the manuscript.

      The functions of peer review are summarized in the first paragraph of Introduction.

      30. Table 1 is intuitive but some background on how the author arrived at these categorizations would be welcome.

      When is something incremental and when is something radical? Why are some innovations included but not others (e.g., collaborative peer review, see https://content.prereview.org/how-collaborative-peer-review-can-

      transform-scientific-research/)?

      Collaborative peer review, namely, Prereview was mentioned in the context of Model 3 (Publish-Review-Curate). However, I have extended this part of the paper.

      31. “Training of reviewers through seminars and online courses is part of the strategies of many publishers. At the same time, we have not been able to find statistical data or research to assess the effectiveness of such training.” (p. 5)  There is some literature on this, although not recent. See work by Sara Schroter for example, Schroter et al., 2004; Schroter et al., 2008)

      Thank you very much, I have added these studies and a few more recent ones.

      32. “It should be noted that most initiatives aimed at improving the quality of peer review simultaneously increase the costs.” (p. 7) This claim needs some support. Please explicate why this typically is the case and how it should impact our evaluations of these initiatives.

      I have moved this part to the Discussion section.

      33. I would rephrase “Idea of the study” in Figure 2 since the other models start with a tangible output (the manuscript). This is the same for registered reports where they submit a tangible report including hypotheses, study design, and analysis plan. In the same vein, I think study design in the rest of the figure might also not be the best phrasing. Maybe the author could use the terminology used by COS (Stage 1 manuscript, and Stage 2 manuscript, see Details & Workflow tab of https://www.cos.io/initiatives/registered-reports). Relatedly, “Author submits the first version of the manuscript” in the first box after the ‘Manuscript (report)’ node maybe a confusing phrase because I think many researchers see the first version of the manuscript as the stage 1 report sent out for stage 1 review.

      Thank you very much. Stage 1 and Stage 2 manuscripts look like suitable labelling solution.

      34. One pathway that is not included in Figure 2 is that authors can decide to not conduct the study when improvements are required. Relatedly, in the publish- review-curate model, is revising the manuscripts based on the reviews not optional as well? Especially in the case of 3a, authors can hardly be forced to make changes even though the reviews are posted on the platform.

      All the four models imply a certain level of generalization; thus, I tried to avoid redundant details. However, I have added this choice to the PRC model (now, Model 4).

      35. I think the author should discuss the importance of ‘open identities’ more. This factor is now not explicitly included in any of the models, while it has been found to be one of the main characteristics of peer review systems (Ross-Hellauer, 2017).

      This part has been extended.

      36. More generally, I was wondering why the author chose these three models and not others. What were the inclusion criteria for inclusion in the manuscript? Some information on the underlying process would be welcome, especially when claims like “However, we believe that journal-independent peer review is a special case of Model 3 (“Publish-Review-Curate”).” are made without substantiation.

      The study included four generalized models of peer review that involved some level of abstraction.

      37. Maybe it helps to outline the goals of the paper a bit more clearly in the introduction. This helps the reader to know what to expect.

      The Introduction has been revised including the goal and objectives.

      38. The Modular Publishing section is not inherently related to peer review models, as you mention in the first sentence of that paragraph. As such, I think it would be best to omit this section entirely to maintain the flow of the paper. Alternatively, you could shortly discuss it in the discussion section but a separate paragraph seems too much from my point of view.

      Modular publishing has been combined with registered reports into the fragmented publishing group of models, now in Section 5.

      39. Labeling model 3 as post-publication review might be confusing to some readers. I believe many researchers see post-publication review as researchers making comments on preprints, or submitting commentaries to journals. Those activities are substantially different from the publish-review-curate model so I think it is important to distinguish between these types.

      The label was changed into Publish-Review-Curate model.

      40. I do not think the conclusions drawn below Table 3 logically follow from the earlier text. For example, why are “all functions of scientific communication implemented most quickly and transparently in Model 3”? It could be that the entire process takes longer in Model 3 (e.g. because reviewers need more time), so that Model 1 and Model 2 lead to outputs quicker. The same holds for the following claim: “The additional costs arising from the independent assessment of information based on open reviews are more than compensated by the emerging opportunities for scientific pluralism.” What is the empirical evidence for this? While I personally do think that Model 3 improves on Model 1, emphatic statements like this require empirical evidence. Maybe the author could provide some suggestions on how we can attain this evidence. Model 2 does have some empirical evidence underpinning its validity (see Scheel, Schijen, Lakens, 2021; Soderberg et al., 2021; Sarafoglou et al. 2022) but more meta-research inquiries into the effectiveness and cost- benefits ratio of registered reports would still be welcome in general.

      The Discussion section has been substantially revised to address this point. While I acknowledge the current scarcity of empirical studies on innovative peer review models, I have incorporated a critical discussion of this methodological gap. I am grateful for the suggested literature on RRs, which I have now integrated into the relevant subsection.

      41. What is the underlaying source for the claim that openness requires three conditions?

      I have made effort to clarify within the text that this reflects my personal stance.

      42. “If we do not change our approach, science will either stagnate or transition into other forms of communication.” (p. 2) I don’t think this claim is supported sufficiently strongly. While I agree there are important problems in peer review, I think would need to be a more in-depth and evidence-based analysis before claims like this can be made.

      The sentence has been rephrased.

      43. On some occasions, the author uses “we” while the study is single authored.

      This has been fixed.

      44. Figure 1: The top-left arrow from revision to (re-)submission is hidden

      I have updated Figure 1.

      45. “The low level of peer review also contributes to the crisis of reproducibility in scientific research (Stoddart, 2016).” (p. 4) I assume the author means the low quality of peer review.

      This has been fixed.

      46. “Although this crisis is due to a multitude of factors, the peer review system bears a significant responsibility for it.” (p. 4)

      This is also a big claim that is not substantiated

      I have paraphrased this sentence as

      “While multiple factors drive this crisis, deficiencies in the peer review process

      remain a significant contributor.” and added a footnote.

      47. “Software for automatic evaluation of scientific papers based on artificial intelligence (AI) has emerged relatively recently” (p. 5) The author could add RegCheck (https://regcheck.app/) here, even though it is still in development. This tool is especially salient in light of the finding that preregistration-paper checks are rarely done as part of reviews (see Syed, 2023)

      Thank you very much, I have added this information.

      48. There is a typo in last box of Figure 1 (“decicion” instead of “decision”). I also found typos in the second box of Figure 2, where “screns” should be “screens”, and the author decision box where “desicion” should be “decision”

      This has been fixed.

      49. Maybe it would be good to mention results blinded review in the first paragraph of 3.2. This is a form of peer review where the study is already carried out but reviewers are blinded to the results. See work by Locascio (2017), Grand et al. (2018), and Woznyj et al. (2018).

      Thanks, I have added this (now section 5.2)

      50. Is “Not considered for peer review” in figure 3b not the same as rejected? I feel that it is rejected in the sense that neither the manuscript not the reviews will be posted on the platform.

      Changed into “Rejected”

      51. “In addition to the projects mentioned, there are other platforms, for example, PREreview12, which departs even more radically from the traditional review format due to the decentralized structure of work.” (p. 11) For completeness, I think it would be helpful to add some more information here, for example why exactly decentralization is a radical departure from the traditional model.

      I have extended this passage.

      52. “However, anonymity is very conditional - there are still many “keys” left in the manuscript, by which one can determine, if not the identity of the author, then his country, research group, or affiliated organization.” (p.11) I would opt for the neutral “their” here instead of “his”, especially given that this is a paragraph about equity and inclusion.

      This has been fixed.

      53. “Thus, “closeness” is not a good way to address biases.” (p. 11) This might be a straw man argument because I don’t believe researchers have argued that it is a good method to combat biases. If they did, it would be good to cite them here. Alternatively, the sentence could be omitted entirely.

      I have omitted the sentence.

      54. I would start the Modular Publishing section with the definition as that allows readers to interpret the other statements better.

      Modular publishing has been combined with registered reports into the deconstructed publication group of

      models, now in Section 5, general definition added.

      55. It would be helpful if the Models were labeled (instead of using Model 1, Model 2, and Model 3) so that readers don’t have to think back what each model involved.

      All the models represent a kind of generalization, which is why non-detailed labels are used. The text labels may vary depending on the context.

      56. Table 2: “Decision making” for the editor’s role is quite broad, I recommend to specify and include what kind of decisions need to be made.

      Changed into “Making accept/reject decisions”

      57. Table 2: “Aim of review” – I believe the aim of peer review differs also within these models (see the “schools of thought” the author mentions earlier), so maybe a statement on what the review entails would be a better way to phrase this.

      Changed into “What does peer review entail?”

      58. Table 2: One could argue that the object of the review’ in Registered Reports is

      also the manuscript as a whole, just in different stages. As such, I would phrase this differently.

      Current wording fits your remark

      “Manuscript in terms of study design and execution”

      Reviewer 4

      59. Page 3: It’s hard to get a feel for the timeline given the dates that are described. We have peer review becoming standard after WWII (after 1945), definitively established by the second half of the century, an example of obligatory peer review starting in 1976, and in crisis by the end of the 20th century. I would consider adding

      examples that better support this timeline – did it become more common in specific journals before 1976? Was the crisis by the end of the 20th century something that happened over time or something that was already intrinsic to the institution? It doesn’t seem like enough time to get established and then enter crisis, but more details/examples could help make the timeline clear. Consider discussing the benefits of the traditional model of peer review.

      This section has been extended.

      60. Table 1 – Most of these are self- explanatory to me as a reader, but not all. I don’t know what a registered report refers to, and it stands to reason that not all of these innovations are familiar to all readers. You do go through each of these sections, but that’s not clear when I initially look at the table. Consider having a more informative caption. Additionally, the left column is “Course of changes” here but “Directions” in text. I’d pick one and go with it for consistency.

      Table 1 has been replaced by Figure 2. I have also extended text descriptions, added definitions.

      61. With some of these methods, there’s the ability to also submit to a regular journal. Going to a regular journal presumably would instigate a whole new round of review, which may or may not contradict the previous round of post-publication review and would increase the length of time to publication by going through both types. If someone has a goal to publish in a journal, what benefit would they get by going through the post-publication review first, given this extra time?

      Some of these platforms, e.g., F1000, Lifecycle Journal, replace conventional journal publishing. Modular publishing allows for step-by-step feedback from peers.

      An important advantage of RRs over other peer review models lies in their capacity to enhance research efficiency. By conducting peer review at Stage 1, researchers gain the opportunity to refine their study design or data collection protocols before empirical work begins.

      Other models of review can offer critiques such as "the study should have been conducted differently" without

      actionable opportunity for improvement. The key motivation for having my paper reviewed in MetaROR is the quality of peer review – I have never received so many comments, frankly! Moreover, platforms such as MetaROR usually have partnering journals.

      62. There’s a section talking about institutional change (page 14). It mentions that openness requires three conditions – people taking responsibility for scientific communication, authors and reviewers, and infrastructure. I would consider adding some discussion of readers and evaluators. Readers have to be willing to accept these papers as reliable, trustworthy, and respectable to read and use the information in them.

      Evaluators such as tenure committees and potential employers would need to consider papers submitted through these approaches as evidence of scientific scholarship for the effort to be worthwhile for scientists.

      I have omitted these conditions and employed the Moore’s Technology Adoption Life Cycle. Thank you very much for your comment!

      63. Based on this overview, which seems somewhat skewed towards the merits of these methods (conflict of interest, limited perspective on downsides to new methods/upsides to old methods), I am not quite ready to accept this effort as equivalent of a regular journal and pre-publication peer review process. I look forward to learning more about the approach and seeing this review method in action and as it develops.

      The Discussion section has been substantially revised to address this point. While I acknowledge the current scarcity of empirical studies on innovative peer review models, I have incorporated a critical discussion of this methodological gap.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This paper concerns mechanisms of foraging behavior in C. elegans. Upon removal from food, C. elegans first executes a stereotypical local search behavior in which it explores a small area by executing many random, undirected reversals and turns called "reorientations." If the worm fails to find food, it transitions to a global search in which it explores larger areas by suppressing reorientations and executing long forward runs (Hills et al., 2004). At the population level, the reorientation rate declines gradually. Nevertheless, about 50% of individual worms appear to exhibit an abrupt transition between local and global search, which is evident as a discrete transition from high to low reorientation rate (Lopez-Cruz et al., 2019). This observation has given rise to the hypothesis that local and global search correspond to separate internal states with the possibility of sudden transitions between them (Calhoun et al., 2014). The main conclusion of the paper is that it is not necessary to posit distinct internal states to account for discrete transitions from high to low reorientation rates. On the contrary, discrete transitions can occur simply because of the stochastic nature of the reorientation behavior itself.

      Strengths:

      The strength of the paper is the demonstration that a more parsimonious model explains abrupt transitions in the reorientation rate.

      Weaknesses:

      (1) Use of the Gillespie algorithm is not well justified. A conventional model with a fixed dt and an exponentially decaying reorientation rate would be adequate and far easier to explain. It would also be sufficiently accurate - given the appropriate choice of dt - to support the main claims of the paper, which are merely qualitative. In some respects, the whole point of the paper - that discrete transitions are an epiphenomenon of stochastic behavior - can be made with the authors' version of the model having a constant reorientation rate (Figure 2f).

      We apologize, but we are not sure what the reviewer means by “fixed dt”. If the reviewer means taking discrete steps in time (dt), and modeling whether a reorientation occurs, we would argue that the Gillespie algorithm is a better way to do this because it provides floating-point precision, rather than a time resolution limited by dt, which we hopefully explain in the updated text (Lines 107-192).

      The reviewer is correct that discrete transitions are an epiphenomenon of stochastic behavior as we show in Figure 2f. However, abrupt stochastic jumps that occur with a constant rate do not produce persistent changes in the observed rate because it is by definition, constant. The theory that there are local and global searches is based on the observation that individual worms often abruptly change their reorientation rates. But this observation is only true for a fraction of worms. We are trying to argue that the reason why this is not observed for all, or even most worms is because these are the result of stochastic sampling, not a sudden change in search strategy.

      (2) In the manuscript, the Gillespie algorithm is very poorly explained, even for readers who already understand the algorithm; for those who do not it will be essentially impossible to comprehend. To take just a few examples: in Equation (1), omega is defined as reorientations instead of cumulative reorientations; it is unclear how (4) follows from (2) and (3); notation in (5), line 133, and (7) is idiosyncratic. Figure 1a does not help, partly because the notation is unexplained. For example, what do the arrows mean, what does "*" mean?

      We apologize for this, you are correct, 𝛀 is cumulative reorientations, and we have edited the text for clarity (Lines 107-192):

      We apologize for the arrow notation confusion. Arrow notation is commonly used in pseudocode to indicate variable assignment, and so we used it to indicate variable assignment updates in the algorithm.

      We added Figure 2a to help explain the Gillespie algorithm for people who are unfamiliar with it, but you are correct, some notation, like probabilities, were left unexplained. We have added more text to the figure legend. Hopefully this additional text, along with lines 105-190, provide better clarification.

      (3) In the model, the reorientation rate dΩ⁄dt declines to zero but the empirical rate clearly does not. This is a major flaw. It would have been easy to fix by adding a constant to the exponentially declining rate in (1). Perhaps fixing this obvious problem would mitigate the discrepancies between the data and the model in Figure 2d.

      You are correct that the model deviates slightly at longer times, but this result is consistent with Klein et al. that show a continuous decline of reorientations. However, we have added a constant to the model (b, Equation 2), since an infinite run length is likely not physiological.

      (4) Evidence that the model fits the data (Figure 2d) is unconvincing. I would like to have seen the proportion of runs in which the model generated one as opposed to multiple or no transitions in reorientation rate; in the real data, the proportion is 50% (Lopez). It is claimed that the "model demonstrated a continuum of switching to non-switching behavior" as seen in the experimental data but no evidence is provided.

      We should clarify that the 50% proportion cited by López-Cruz was based on an arbitrary difference in slopes, and by assessing the data visually (López-Cruz, Figure S2). We added a comment in the text to clarify this (Lines 76 – 78). We sought to avoid this subjective assessment by plotting the distribution of slopes and transition times produced by the method used in López-Cruz. We should also clarify by what we meant by “a continuum of switching and non-switching” behavior. Both the transition time distributions and the slope-difference distributions do not appear to be the result of two distributions (the distributions in Figure 1 are not bimodal). This is unlike roaming and dwelling on food, where two distinct distributions of behavioral metrics can be identified based on speed and angular speed (Flavell et al, 2009, Fig S2a).

      Based on the advice of Reviewer #3, we have also modeled the data using different starting amounts of M (M<sub>0</sub>). By definition, an initial value of M<sub>0</sub> = 1 is a two-state switching strategy; the worm either uses a reorientation rate of a (when M = 1) or b (when M = 0). As expected, this does produce a bimodal distribution of slope differences (Figure 3b), which is significantly different than the experimental distribution (Figure 3c). We have added a new section to explain this in more detail (Lines 253 – 297).

      (5) The explanation for the poor fit between the model and data (lines 166-174) is unclear. Why would externally triggered collisions cause a shift in the transition distribution?

      Thank you, we rewrote the text to clarify this better (Lines 227-233). There were no externally triggered collisions; 10 animals were used per experiment. They would occasionally collide during the experiment, but these collisions were excluded from the data that were provided. However, worms are also known to increase reorientations when they encounter a pheromone trail, and it is unknown (from this dataset) which orientations may have been a result of this phenomenon.

      (6) The discussion of Levy walks and the accompanying figure are off-topic and should be deleted.

      Thank you, we agree that this topic is tangential, and we removed it.

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors build a statistical model that stochastically samples from a timeinterval distribution of reorientation rates. The form of the distribution is extracted from a large array of behavioral data, and is then used to describe not only the dynamics of individual worms (including the inter-individual variability in behavior), but also the aggregate population behavior. The authors note that the model does not require assumptions about behavioral state transitions, or evidence accumulation, as has been done previously, but rather that the stochastic nature of behavior is "simply the product of stochastic sampling from an exponential function".

      Strengths:

      This model provides a strong juxtaposition to other foraging models in the worm. Rather than evoking a behavioral transition function (that might arise from a change in internal state or the activity of a cell type in the network), or evidence accumulation (which again maps onto a cell type, or the activity of a network) - this model explains behavior via the stochastic sampling of a function of an exponential decay. The underlying model and the dynamics being simulated, as well as the process of stochastic sampling, are well described and the model fits the exponential function (Equation 1) to data on a large array of worms exhibiting diverse behaviors (1600+ worms from Lopez-Cruz et al). The work of this study is able to explain or describe the inter-individual diversity of worm behavior across a large population. The model is also able to capture two aspects of the reorientations, including the dynamics (to switch or not to switch) and the kinetics (slow vs fast reorientations). The authors also work to compare their model to a few others including the Levy walk (whose construction arises from a Markov process) to a simple exponential distribution, all of which have been used to study foraging and search behaviors.

      Weaknesses:

      This manuscript has two weaknesses that dampen the enthusiasm for the results. First, in all of the examples the authors cite where a Gillespie algorithm is used to sample from a distribution, be it the kinetics associated with chemical dynamics, or a Lotka-Volterra Competition Model, there are underlying processes that govern the evolution of the dynamics, and thus the sampling from distributions. In one of their references, for instance, the stochasticity arises from the birth and death rates, thereby influencing the genetic drift in the model. In these examples, the process governing the dynamics (and thus generating the distributions from which one samples) is distinct from the behavior being studied. In this manuscript, the distribution being sampled is the exponential decay function of the reorientation rate (lines 100-102). This appears to be tautological - a decay function fitted to the reorientation data is then sampled to generate the distributions of the reorientation data. That the model performs well and matches the data is commendable, but it is unclear how that could not be the case if the underlying function generating the distribution was fit to the data.

      Thank you, we apologize that this was not clearer. In the Lotka-Volterra model, the density of predators and prey are being modeled, with the underlying assumption that rates of birth and death are inherently stochastic. In our model, the number of reorientations are being modeled, with the assumption (based on the experiments), that the occurrence of reorientations is stochastic, just like the occurrence (birth) of a prey animal is stochastic. However, the decay in M is phenomenological, and we speculate about the nature of M later in the manuscript.

      You are absolutely right that the decay function for M was fit to the population average of reorientations and then sampled to generate the distributions of the reorientation data. This was intentional to show that the parameters chosen to match the population average would produce individual trajectories with comparable stochastic “switching” as the experimental data. All we’re trying to show really is that observed sudden changes in reorientation that appear persistent can be produced by a stochastic process without resorting to binary state assignments. In Calhoun, et al 2014 it is reported all animals produced switch-like behavior, but in Klein et al, 2017 it is reported that no animals showed abrupt transitions. López-Cruz et al seem to show a mix of these results, which can easily be explained by an underlying stochastic process.

      The second weakness is somewhat related to the first, in that absent an underlying mechanism or framework, one is left wondering what insight the model provides.

      Stochastic sampling a function generated by fitting the data to produce stochastic behavior is where one ends up in this framework, and the authors indeed point this out: "simple stochastic models should be sufficient to explain observably stochastic behaviors." (Line 233-234). But if that is the case, what do we learn about how the foraging is happening? The authors suggest that the decay parameter M can be considered a memory timescale; which offers some suggestion, but then go on to say that the "physical basis of M can come from multiple sources". Here is where one is left for want: The mechanisms suggested, including loss of sensory stimuli, alternations in motor integration, ionotropic glutamate signaling, dopamine, and neuropeptides are all suggested: these are basically all of the possible biological sources that can govern behavior, and one is left not knowing what insight the model provides. The array of biological processes listed is so variable in dynamics and meaning, that their explanation of what governs M is at best unsatisfying. Molecular dynamics models that generate distributions can point to certain properties of the model, such as the binding kinetics (on and off rates, etc.) as explanations for the mechanisms generating the distributions, and therefore point to how a change in the biology affects the stochasticity of the process. It is unclear how this model provides such a connection, especially taken in aggregate with the previous weakness.

      Providing a roadmap of how to think about the processes generating M, the meaning of those processes in search, and potential frameworks that are more constrained and with more precise biological underpinning (beyond the array of possibilities described) would go a long way to assuaging the weaknesses.

      Thank you, these are all excellent points. We should clarify that in López-Cruz et al, they claim that only 50% of the animals fit a local/global search paradigm. We are simply proposing there is no need for designating local and global searches if the data don’t really support it. The underlying behavior is stochastic, so the sudden switches sometimes observed can be explained by a stochastic process where the underlying rate is slowing down, thus producing the persistently slow reorientation rate when an apparent “switch” occurs. What we hope to convey is that foraging doesn’t appear to follow a decision paradigm, but instead a gradual change in reorientations which for individual worms, can occasionally produce reorientation trajectories that appear switch-like.

      As for M, you are correct, we should be more explicit, and we have added text (Lines 319-359) to expand upon its possible biological origin.

      Reviewer #3 (Public review):

      Summary:

      This intriguing paper addresses a special case of a fundamental statistical question: how to distinguish between stochastic point processes that derive from a single "state" (or single process) and more than one state/process. In the language of the paper, a "state" (perhaps more intuitively called a strategy/process) refers to a set of rules that determine the temporal statistics of the system. The rules give rise to probability distributions (here, the probability for turning events). The difficulty arises when the sampling time is finite, and hence, the empirical data is finite, and affected by the sampling of the underlying distribution(s). The specific problem being tackled is the foraging behavior of C. elegans nematodes, removed from food. Such foraging has been studied for decades, and described by a transition over time from 'local'/'area-restricted' search'(roughly in the initial 10-30 minutes of the experiments, in which animals execute frequent turns) to 'dispersion', or 'global search' (characterized by a low frequency of turns). The authors propose an alternative to this two-state description - a potentially more parsimonious single 'state' with time-changing parameters, which they claim can account for the full-time course of these observations.

      Figure 1a shows the mean rate of turning events as a function of time (averaged across the population). Here, we see a rapid transient, followed by a gradual 4-5 fold decay in the rate, and then levels off. This picture seems consistent with the two-state description. However, the authors demonstrate that individual animals exhibit different "transition" statistics (Figure 1e) and wish to explain this. They do so by fitting this mean with a single function (Equations 1-3).

      Strengths:

      As a qualitative exercise, the paper might have some merit. It demonstrates that apparently discrete states can sometimes be artifacts of sampling from smoothly time-changing dynamics. However, as a generic point, this is not novel, and so without the grounding in C. elegans data, is less interesting.

      Weaknesses:

      (1) The authors claim that only about half the animals tested exhibit discontinuity in turning rates. Can they automatically separate the empirical and model population into these two subpopulations (with the same method), and compare the results?

      Thank you, we should clarify that the observation that about half the animals exhibit discontinuity was not made by us, but by López-Cruz et al. The observed fraction of 50% was based on a visual assessment of the dual regression method we described. We added text (Lines 76-79) to clarify this. To make the process more objective, we decided to simply plot the distributions of the metrics they used for this assessment to see if two distinct populations could be observed. However, the distributions of slope differences and transition times do not produce two distinct populations. Our stochastic approach, which does not assume abrupt state-transitions, also produces comparable distributions. To quantify this, we have added a section varying M<sub>0</sub>, including setting M<sub>0</sub> to 1, so that the model by definition is a switch model. This model performs the worst (Lines 253-296, Figure 3).

      (2) The equations consider an exponentially decaying rate of turning events. If so, Figure 2b should be shown on a semi-logarithmic scale.

      We chose to not do this because this average is based on the number of discrete reorientation events observed within a 2-minute window. The range of events ranges from 0 to 6 (hence a rate of 0.5-3 min<sup>-1</sup>), which does not span one order of magnitude. Instead, we included a heat map (Figure 1a, Figure 2b bottom panel) which shows the density that the average is based on. We hope this provides some clarity to the reader.

      (3) The variables in Equations 1-3 and the methods for simulating them are not well defined, making the method difficult to follow. Assuming my reading is correct, Omega should be defined as the cumulative number of turning events over time (Omega(t)), not as a "turn" or "reorientation", which has no derivative. The relevant entity in Figure 1a is apparently <Omega (t)>, i.e. the mean number of events across a population which can be modelled by an expectation value. The time derivative would then give the expected rate of turning events as a function of time.

      Thank you, you are correct. Please see response to Reviewer #1.

      (4) Equations 1-3 are cryptic. The authors need to spell out up front that they are using a pair of coupled stochastic processes, sampling a hidden state M (to model the dynamic turning rate) and the actual turn events, Omega(t), separately, as described in Figure 2a. In this case, the model no longer appears more parsimonious than the original 2-state model. What then is its benefit or explanatory power (especially since the process involving M is not observable experimentally)?

      Thank you, yes we see how as written this was confusing. In our response to Reviewer #1, and in the text, we added an important detail:

      While reorientations are modeled as discrete events, which is observationally true, the amount of M at time t=0 is chosen to be large (M<sub>0</sub> = 1000), so that over the timescale of 40 minutes, the decay in M is practically continuous. This ensures that sudden changes in reorientations are not due to sudden changes in M, but due to the inherent stochasticity of reorientations.

      However you are correct that if M was chosen to have a binary value of 0 or 1, then this would indeed be the two state model. We added a new section to address this (Lines 253-287, Figure 3). Unlike the experiments, the two-state model produces bimodal distributions in slope and transition times, and these distributions are significantly different than the experimental data (Figure 3).

      (5) Further, as currently stated in the paper, Equations 1-3 are only for the mean rate of events. However, the expectation value is not a complete description of a stochastic system. Instead, the authors need to formulate the equations for the probability of events, from which they can extract any moment (they write something in Figure 2a, but the notation there is unclear, and this needs to be incorporated here).

      Thank you, yes please see our response to Reviewer #1. We have clarified the text in Lines 105-190.

      (6) Equations 1-3 have three constants (alpha and gamma which were fit to the data, and M0 which was presumably set to 1000). How does the choice of M0 affect the results?

      Thank you, this is a good question. We address this in lines 253-296. Briefly, the choice of M<sub>0</sub> does not have a strong effect on the results, unless we set it to M<sub>0</sub>, which by definition, creates a two-state model. This model was significantly different than the experimental data, relative to the other models (Figure 3c).

      (7) M decays to near 0 over 40 minutes, abolishing omega turns by the end of the simulations. Are omega turns entirely abolished in worms after 30-40 minutes off food? How do the authors reconcile this decay with the leveling of the turning rate in Figure 1a?

      Yes, Reviewer #1 recommended adding a baseline reorientation rate which we did for all models (Equation 2). However, we should also note that in Klein et al they observed a continuous decay over 50 minutes. Though realistically, it is likely not plausible that worms will produce infinitely long runs at long time points.

      (8) The fit given in Figure 2b does not look convincing. No statistical test was used to compare the two functions (empirical and fit). No error bars were given (to either). These should be added. In the discussion, the authors explain the discrepancy away as experimental limitations. This is not unreasonable, but on the flip side, makes the argument inconclusive. If the authors could model and simulate these limitations, and show that they account for the discrepancies with the data, the model would be much more compelling.

      To do this, I would imagine that the authors would need to take the output of their model (lists of turning times) and convert them into simulated trajectories over time. These trajectories could be used to detect boundary events (for a given size of arena), collisions between individuals, etc. in their simulations and to see their effects on the turn statistics.

      Thank you, we have added dashed lines to indicate standard deviation to Figures 2b and 3a. After running the models several times, we found that some of the small discrepancies noted (like s<sub>1</sub>-s<sub>2</sub> < 0 for experiments but not the model), were spurious due to these data points being <1% of the data, so we cut this from the text. To compare how similar the continuous (M<sub>0</sub> > 1) and discrete (M<sub>0</sub> = 1) models were to the experimental data, we calculated a Jensen-Shannon distance for the models, and found that the discrete model was significantly more dissimilar to the experimental data than the continuous models (Lines 289-296, Figure 3c).

      (9) The other figures similarly lack any statistical tests and by eye, they do not look convincing. The exception is the 6 anecdotal examples in Figure 2e. Those anecdotal examples match remarkably closely, almost suspiciously so. I'm not sure I understood this though - the caption refers to "different" models of M decay (and at least one of the 6 examples clearly shows a much shallower exponential). If different M models are allowed for each animal, this is no longer parsimonious. Are the results in Figure 2d for a single M model? Can Figure 2e explain the data with a single (stochastic) M model?

      We certainly don’t want the panels in Figure 2e to be suspicious! These comparisons were drawn from calculating the correlations between all model traces and all experimental traces, and then choosing the top hits. Every time we run the simulation, we arrive at a different set of examples. Since it was recommended we add a baseline rate, these examples will be a completely different set when we run the simulation, again.

      We apologize for the confusion regarding M. Since the worms do not all start out with identical reorientation rates, we drew the initial M value from a distribution centered on M<sub>0</sub> to match the initial distribution of observed experimental rates (Lines 206-214). However, the decay in M (γ), as well as α and β, are the same for all in silico animals.

      (10) The left axes of Figure 2e should be reverted to cumulative counts (without the normalization).

      Thank you, we made this change.

      (11) The authors give an alternative model of a Levy flight, but do not give the obvious alternative models:<br /> a) the 1-state model in which P(t) = alpha exp (-gamma t) dt (i.e. a single stochastic process, without a hidden M, collapsing equations 1-3 into a single equation).

      b) the originally proposed 2-state model (with 3 parameters, a high turn rate, a low turn rate, and the local-to-global search transition time, which can be taken from the data, or sampled from the empirical probability distributions). Why not? The former seems necessary to justify the more complicated 2-process model, and the latter seems necessary since it's the model they are trying to replace. Including these two controls would allow them to compare the number of free parameters as well as the model results. I am also surprised by the Levy model since Levy is a family of models. How were the parameters of the Levy walk chosen?

      Thank you, we removed this section completely, as it is tangential to the main point of the paper.

      (12) One point that is entirely missing in the discussion is the individuality of worms. It is by now well known that individual animals have individual behaviors. Some are slow/fast, and similarly, their turn rates vary. This makes this problem even harder. Combined with the tiny number of events concerned (typically 20-40 per experiment), it seems daunting to determine the underlying model from behavioral statistics alone.

      Thank you, yes we should have been more explicit in the reasoning behind drawing the initial M from a distribution (response to comment #9). We assume that not every worm starts out with the same reorientation rate, but that some start out fast (high M) and some start out slow (low M). However, we do assume M decays with the same kinetics, which seems sufficient to produce the observed phenomena. Multiple decay rates are not needed to replicate the experimental data.

      (13) That said, it's well-known which neurons underpin the suppression of turning events (starting already with Gray et al 2005, which, strangely, was not cited here). Some discussion of the neuronal predictions for each of the two (or more) models would be appropriate.

      Thank you, yes we will add Gray et al, but also the more detailed response to Reviewer #2 (Lines 319-359 of manuscript).

      (14) An additional point is the reliance entirely on simulations. A rigorous formulation (of the probability distribution rather than just the mean) should be analytically tractable (at least for the first moment, and possibly higher moments). If higher moments are not obtainable analytically, then the equations should be numerically integrable. It seems strange not to do this.

      Thank you for suggesting this. For the Levy section (which we cut) this would have been an improvement. However, since the distributions of slope differences and transition times are based on a recursive algorithm, rather than an analytical formulation, we decided to use the Jensen-Shannon divergence to compare distributions (Lines 272-296, Figure 3c) since this is a parameter-free approach.

      In summary, while sample simulations do nicely match the examples in the data (of discontinuous vs continuous turning rates), this is not sufficient to demonstrate that the transition from ARS to dispersion in C. elegans is, in fact, likely to be a single 'state', or this (eq 1-3) single state. Of course, the model can be made more complicated to better match the data, but the approach of the authors, seeking an elegant and parsimonious model, is in principle valid, i.e. avoiding a many-parameter model-fitting exercise.

      As a qualitative exercise, the paper might have some merit. It demonstrates that apparently discrete states can sometimes be artifacts of sampling from smoothly time-changing dynamics. However, as a generic point, this is not novel, and so without the grounding in C. elegans data, is less interesting.

      Thank you, we agree that this is a generic phenomenon, which is partly why we did this. The data from López-Cruz seem to agree in part with Calhoun et al, that claim abrupt transitions occur, and Klein et al, which claim they do not occur. Since the underlying phenomenon is stochastic, we propose the mixed observations of sudden and gradual changes in search strategy are simply the result of a stochastic process, which can produce both phenomena for individual observations. We hope this work can help clarify why sudden changes in search strategy are not consistently observed. We propose a simple hypothesis that there is no change in search strategy. The reorientation rate decays in time, and due to the stochastic nature of this behavior, what appears as a sudden change for individual observations is not due to an underlying decision, but rather the result of a stochastic process.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      • This manuscript represents a full revision incorporating all reviewer recommendations; the additional follow-up experiments and expanded analyses will be presented in dedicated subsequent manuscripts.
      • Congenital dyserythropoietic anemia type I (CDA-I) is a rare hereditary disease characterized by ineffective erythropoiesis and mutations in Codanin1 and CDIN1.
      • Our study reveals the structural and functional dynamics of the CDIN1-Codanin1 complex, shedding light on the molecular mechanisms of protein-protein interactions implicated in CDA-I pathology.
      • The main goal of our study was to examine the interaction between CDIN1 and the C‑terminal binding domain of Codanin1 using complementary biophysical approaches.
      • We quantified binding and identified interacting regions of Codanin1 and CDIN1.
      • We found that CDA-I-associated mutations in interacting regions disturb CDIN1‑Codanin1 complex.
      • We proposed a hypothetical molecular model of CDIN1-Codanin1 role in CDA-I hallmarks development.
      • Our initial studies on BioRxiv (2023) have been cited by leading publications in the field (Jeong, Frater et al. 2025, Sedor and Shao 2025, Nature Communications) and prompted further research on this topic.

      2. Point-by-point description of the revisions

      *Here we provide a point-by-point reply describing the revisions already carried out and included in the transferred manuscript. *

      Reply to the reviewers

      Reviewer #1 – Evidence, reproducibility and clarity

      This is a rigorous biophysical characterization of a protein-protein interaction relevant to CDA-1 disease. The two proteins were purified in an E. coli host but CD and DLS was performed to ensure that the purified protein is well folded. An impressive native protein EMSA was used to show a 1:1 complex. While common for protein-nucleic acid complexes, EMSAs are much more challenging with protein complexes. A higher-running complex, likely a heterotetramer was implied at higher protein concentrations. These results were supported with SEC-MALS analysis and analytic ultracentrifugation analysis. Thermophoresis and ITC were used to report a nanomolar affinity of the proteins for each other. SEC-SAXS supported the conclusions about stoichiometry and composition inferred from the earlier methods and suggested that the dimerization interface comes from CDIN1. Next HDX-MS was used to identify putative interface residues, which were then mutated in each of the proteins and assessed for binding using coimmunoprecipitation. This study uses at least 10 orthogonal biophysical and/or biochemical methodologies to characterize an important protein-protein interaction and the analysis is clear and so is the writing. I couldn't (reading it once) find any grammatical or other errors in the text or figures. This manuscript is top-quality and suitable for publication.

      __Reviewer #1 – Significance __

      Such detailed structural and mechanistic studies are greatly lacking in many clinical conditions for which mutations are known (unless they cause cancer, neurodegenerative disease, and so on). We need more such studies on disease topics! This study will be of interest to the hematologic diseases community.

      1. Response – ____Significance

      We thank Reviewer #1 for the thoughtful and encouraging evaluation of our work. We are particularly grateful for recognizing the significance of studying protein-protein interaction in the context of CDA-I disease, as well as the rigor and clarity of our biophysical and biochemical characterization.

      We appreciate the reviewer's acknowledgment of the challenges associated with native protein EMSAs. We are pleased that our use of multiple orthogonal techniques was recognized as a strength of the study. We are gratified that the comprehensiveness and coherence of our data and the manuscript's clarity were well received.

      We thank the reviewer for noting the broader impact of our findings on the hematologic disease community. As highlighted, there is a pressing need for a mechanistic understanding of non-oncologic, non-neurodegenerative diseases, and our studies address this gap.

      We are honored by the reviewer's endorsement of our manuscript as "top-quality and suitable for publication". We value the reviewer's highly supportive and motivating feedback.

      __Reviewer #2 – 1. Evidence, reproducibility and clarity __

      This manuscript presents structural and biochemical characterization of the interaction between CDIN1 and the C-terminal domain of Codanin1, shedding light on a complex implicated in Congenital Dyserythropoietic Anemia Type I (CDA-I). While the authors provide valuable structural insights and identify disease-associated mutations that impair CDIN1-Codanin1 binding, I think several important concerns should be addressed to strengthen both the mechanistic claims and their functional relevance.

      Contradiction Between Stoichiometry Models:

      The authors propose that CDIN1 and Codanin1Cterm primarily form a heterodimer in vitro. However, this appears to contradict previous reports indicating a tetra-heteromeric arrangement. Additionally, while CDIN1 homodimerize seems confusing to me, do the authors suggest it is stable without Codanin1? This seems contrary to findings that CDIN1 is unstable in the absence of Codanin1 (Sedor, S.F., Shao, S. nature comm 2025, Swickley, G., Bloch, Y., Malka, L. et al 2020 BMC Mol and Cell Biol). These inconsistencies raise concerns about whether the observed stoichiometries are physiologically relevant or artifacts of in vitro reconstitution, especially since full-length Codanin1 was not studied.

      2.1 Response ____– Consistent stoichiometry of Codanin1Cterm

      We thank Reviewer #2 for raising critical points regarding the stoichiometry and physiological relevance of the CDIN1-Codanin1 interaction. The following response clarifies the rationale and interpretation in relation to previous findings.

      Stoichiometry of CDIN1-Codanin1Cterm complex:

      Recent Cryo-EM studies of full-length Codanin1 (Jeong, Frater et al. 2025, Sedor and Shao 2025) suggest independent internal dimerization domains (452-798 and 841-1000 amino acid residue) driving homodimer formation, with each Codanin1 monomer binding one CDIN1 via the C-terminal region (1005-1227 amino acid residue), resulting in a tetra-heteromeric complex. Therefore, the complete assembly appears as a dimer of heterodimers in the full-length context.

      In our study, Codanin1 was truncated to retain only the CDIN1-binding C-terminus (1005-1227 amino acid residues), eliminating the homodimerization ability of Codanin1. Hence, in the case of truncated Codanin1Cterm, the minimal complex we observe is a 1:1 heterodimer of CDIN1-Codanin1Cterm, which is fully consistent with the equimolar stoichiometry of CDIN1-Codanin1 complex seen in the full-length structure.

      Stability and oligomeric state of CDIN1 in the absence of Codanin1:

      We concur with the reviewer that Sedor et al. (2025) and Swickley et al. (2020) reported decreased CDIN1 levels in cells lacking Codanin1, implying in vivo dependence of CDIN1 on Codanin1 partner for stability (Swickley, Bloch et al. 2020, Sedor and Shao 2025). The purified CDIN1 is monodisperse (Supplementary Figure 2D), exhibits thermal stability with a melting temperature of 48 °C (Supplementary Figure 2E), and displays proper folding as indicated by CD measurements (Supplementary Figure 2B). Additionally, SAXS profiles of CDIN1 correspond to AlphaFold predictions (Fig. 2B). Together, our findings indicate that the recombinant CDIN1 forms a stable conformation in vitro without Codanin1. To the best of our knowledge, no previous research has directly identified the endogenous oligomeric states of CDIN1 within cellular content.

      We fully acknowledge that future analysis of the full-length Codanin1-CDIN1 assembly in a cellular context will be necessary for understanding physiological stoichiometries. As outlined in the General statements, our study focuses on the C-terminus of Codanin1 to describe the binding interface and complex biophysical properties of the CDIN-Codanin1Cterm complex.

      __Reviewer #2 – ____2. Unvalidated Functional Claims: __

      The manuscript identifies several CDA-I-associated mutations that disrupt CDIN1-Codanin1 interaction. However, the authors do not test how these mutations affect the biological function of the complex, particularly its role in ASF1 sequestration or histone trafficking. Given the central importance of this axis in their disease model, functional validation (e.g., ASF1 localization, histone deposition assays) is necessary to support these mechanistic conclusions.

      2.2 Response – ____Hypothetical model as discussion merit

      We thank the reviewer for the comment regarding the functional implications of CDA-I-associated mutations and their potential impact on ASF1 sequestration and histone trafficking hypothesized within the Discussion. We fully agree that understanding the downstream biological consequences of disrupted CDIN1-Codanin1 interaction is critical for elucidating the full molecular basis of CDA-I pathogenesis.

      In the Future research directions of the Discussion, we have acknowledged and emphasized the need for follow-up studies using erythroblast cell lines to determine whether specific disease-associated mutations disrupt CDIN1-Codanin1 binding, leading to functional defects relevant to erythropoiesis and nuclear architecture typical for CDA-I disease.

      However, as we respectfully note in General Statements, the main aim of the present study was to provide a rigorous biophysical characterization of the CDIN1-Codanin1Cterm interaction. Proposed cellular experiments, though relevant, are beyond the conceptual scope of the presented studies.

      Reviewer #2 – ____3. Speculative and Potentially Contradictory Model:

      The proposed model suggests that CDIN1 competes with ASF1 for Codanin1 binding, thereby indirectly promoting histone delivery to the nucleus. However, emerging data indicate that Codanin1, CDIN1, and ASF1 can form a stable ternary complex, calling into question this competitive binding hypothesis (Sedor, S.F., Shao, S. nature comm 2025). The authors do not acknowledge or discuss these findings, and the model in its current form may therefore be oversimplified or inaccurate.

      2.3 Response – ____Hypothetical model fully aligned with current knowledge

      We fully acknowledged and discussed in the current manuscript the recent findings demonstrating that Codanin1, CDIN1, and ASF1 can form a ternary complex (Sedor, S.F., Shao, S. Nature Comm. 2025; Jeong, T. K. et al. Nature Comm. 2025). Our revised model was updated accordingly to reflect the collaborative binding of Codanin1, CDIN1, and ASF1, and is presented in alignment with published data.

      While earlier versions of our work published on the BioRxiv server (May 26, 2023) proposed a competitive hypothesis, the current manuscript incorporates recent literature and prior reviewer feedback to offer a refined model. We believe that the updated hypothesis suggests a plausible mechanism for how CDIN1 modulates Codanin1 function, which will be further tested in future cellular studies.

      Reviewer #2 – 4. Significance:

      Overall, the study adds to our structural understanding of CDIN1 and Codanin1 interactions, but the functional interpretations are currently speculative, and in some cases in conflict with existing literature. The manuscript would benefit significantly from addressing these discrepancies, incorporating relevant data on ASF1, and clarifying whether the observed assemblies reflect physiological complexes.

      __2.4 Response – Significance __

      We thank Reviewer #2 for the constructive feedback. As noted in General Statements, our current manuscript is primarily dedicated to defining the molecular architecture and interactions of the CDIN1–Codanin1Cterm core interface. We agree that follow-up ASF1‑dependent functional assays will be critical to fully validate observed assemblies, but these experiments lie outside the scope of the present study and are ongoing in our laboratory.

      To address the reviewer's concern about possible speculative interpretation, we have:

      • Used cautious language in Results and Discussion to prevent overstatement (e.g., page 31, line 754, “leads” exchanged to “may contribute” in legend of Fig. 4).
      • Described in the Discussion how our results enhance and add understanding to the body of published structural data of CDIN1–Codanin1Cterm.
      • Updated our hypothetical model in Fig. 4 to be fully in line with published data.
      • Clearly stated that the working hypothesis is connected with a subset of CDA-I mutations (p. 31, l. 758-759, “The proposed model represents a working hypothesis relating to a subset of CDA-I mutations and is not currently substantiated by experimental evidence at the cellular level.”)
      • Stated in Future research directions of Discussion that functional validation, including ASF1, will motivate future critical studies, p. 32, l. 771-773: “The ability of Codanin1 to interact with both CDIN1 and ASF1 motivates further investigation of how CDIN1 and ASF1 affect the function of full-length Codanin1, which even recent cryo-EM data has not addressed yet.”
      • Highlighted the necessity of complementary in vivo studies in erythroblast cell lines to determine if CDA-I-related mutations in CDIN1-Codanin1 interaction region cause typical CDA-I phenotypes, aiming to clarify the molecular mechanisms of inherited CDA-I anemia. We state in Future research directions in Discussion, p. 32, l. 774-780: “…follow-up research utilizing erythroblast model cell lines must be conducted to determine if specific mutations that disrupt CDIN1-Codanin1 binding also affect ASF1 localization and cause a phenotype typical of CDA-I. In future work, additional Codanin1 mutations, including those outside the C-terminal region, should be evaluated to determine how the mutations affect ASF1’s nuclear concentration and subcellular localization. The proposed research directions will provide additional deeper insights into the underlying mechanisms of the molecular origin of inherited anemia CDA-I.” We believe that the revisions objectively clarify the significance and the limits of the current work and set the stage for the detailed functional studies to follow.

      __Reviewer #3 – Evidence, reproducibility and clarity: __

      Congenital Dyserythropoietic Anemia Type I (CDA I) is an autosomal recessive disorder characterized by ineffective erythropoiesis and distinctive nuclear morphology ("Swiss cheese" heterochromatin) in erythroblasts. CDA I is caused by mutations in CDAN1 and CDIN1. Codanin1, encoded by CDAN1, is part of the cytosolic ASF1-H3.1-H4-Importin-4 complex, which regulates histone trafficking to the nucleus. CDIN1 has been shown to bind the C-terminal domain of Codanin-1, but until now, pathogenic mutations had not been directly linked to the disruption of this interaction.

      In this study, the authors used biophysical techniques to characterize the interaction between Codanin-1's C-terminal region (residues 1005-1227) and CDIN1, demonstrating high-affinity, equimolar binding. HDX-MS identified interaction hotspots, and disease-associated mutations in these regions disrupted complex formation. The authors propose that such disruption prevents ASF1 sequestration in the cytoplasm, thereby reducing nuclear histone levels and contributing to the chromatin abnormalities seen in CDA I.

      Major Comments:

      1. Use of Codanin-1 Fragment:

      Most experiments were conducted using only the C-terminal 223 amino acids of Codanin-1. While this region is known to bind CDIN1, it is unclear whether its conformation is maintained in the context of the full-length protein. This could affect binding properties and structural interpretations. The authors should discuss how structural differences between the isolated C-terminus and the full-length Codanin-1 may influence the conclusions.

      Response of authors ____#3

      3.1 Response: Use of Codanin-1 Fragment as biding part to CDIN1

      We thank the reviewer for the important observation regarding the use of the C-terminal fragment of Codanin1. As noted in the manuscript (e.g., p. 30, line 721 and p. 32, line 761), we fully acknowledge that the truncation of Codanin1 may influence its conformational dynamics or contextual folding relative to the full-length protein.

      However, several lines of evidence suggest that the C-terminal 223 amino acid residues—responsible for CDIN1 binding—are structurally autonomous and have minimal intramolecular contacts with upstream regions. Published cryo-EM and biochemical data (Jeong, Frater et al. 2025, Sedor and Shao 2025), in conjunction with AlphaFold structural predictions (Fig. 2D) and our co-immunoprecipitation assays (Fig. 3F), consistently support a model wherein the CDIN1-binding region is flexible and spatially isolated from the core structural domains of Codanin1. Additionally, results from our co-immunoprecipitation assay (Fig. 3F) indicate that full-length Codanin1 and truncated Codanin1Cterm interact with CDIN1 similarly, further supporting the isolated manner of the C-terminal fragment. The available data together imply that the C-terminal fragment used in our study retains its native conformation and binding properties when expressed independently.

      While our findings are confined to the interaction domain and do not reflect full-length Codanin1’s architecture, we believe the use of the C-terminal minimal fragment of Codanin1 enables precise dissection of the CDIN1-binding interface and yields mechanistic insights without introducing significant structural artifacts.

      We agree with the reviewer that future work incorporating full-length Codanin1, especially in a cellular context, will be instrumental to fully characterize higher-order assembly and regulatory functions.

      __Reviewer #3 – 2. ____Graphical Abstract and Domain Independence: __

      The graphical abstract presents the Codanin-1 C-terminus as an independent domain, but no direct evidence is provided to support its structural autonomy in vivo.

      The authors should clarify whether the C-terminal region functions as a distinct domain in the context of the full-length protein.

      __3.2 Response –____ Independent C-terminal domain __

      We thank the reviewer for bringing up the question of the independence of the C-terminal domain. Although direct in vivo proof of C-terminal autonomy is not yet available, published cryo-EM structures of full-length Codanin1, our biophysical characterization, and AlphaFold models all consistently indicate that the C-terminal 223 amino acid residues of Codanin1 form a structurally independent binding module. In the graphical abstract, we illustrated the C‑terminal domain as a loosely connected part of Codanin1 to highlight its independence and to emphasize the specific focus of our studies.

      To articulate limitations of our studies focused on the C-terminal part of Codanin1, we stated in the Functional implications of CDA-I-related mutations in the Discussion, p. 30, l. 721-724: “However, our measurements do not exclude the possible role of the disordered regions in full-length Codanin1. For example, CDIN1 could potentially stabilize full-length Codanin1 by rearranging the disordered regions into a more condensed structure, thereby augmenting the structural stability of Codanin1.”

      Reviewer #3 – 3.____Pathogenic Mutations Beyond the Binding Site:

      The study highlights a triplet mutation that impairs CDIN1 binding. However, most CDA I‑associated mutations in CDAN1 are dispersed across the entire protein and may not affect CDIN1 interaction directly.

      The authors should discuss alternative mechanisms by which mutations in other regions of Codanin-1 might cause disease.

      3.3 Response – Pathogenic mutations outside the binding site – alternative mechanisms

      We appreciate the reviewer noting that most CDA-I-associated CDAN1 mutations are outside the CDIN1-Codanin1 binding site and suggesting alternative mechanisms. In the revised Discussion, we added a paragraph on alternative pathogenic models, p. 29, l. 702-713:

      "Our study centers on the CDIN1-binding C-terminus, however, most CDA-I-associated CDAN1 mutations lie elsewhere and probably act through alternative mechanisms. Mutations such as P672L and F868I in the LOBE2 (452-798 amino acid residue) and F868I in the coiled-coil (841-1000 amino acid residue) domains may disturb Codanin1 homodimerization and higher-order complex assembly, directly affecting ASF1 sequestration (Jeong, T. K. et al. Nature Comm. 2025). Other mutant variants may also interfere with ASF1 sequestration, nuclear targeting, or chromatin-remodeling functions, while destabilizing mutations may induce misfolding and proteasomal degradation. Moreover, CDA-I-associated mutations, such as R714W and R1042W, might compromise the interaction between Codanin1 and ASF1 (Ask, Jasencakova et al. 2012). Collectively, the complementary alternative pathogenic mechanisms associated with Codanin1 mutations in distal regions and mutations in CDIN1‑binding C-terminus of Codanin1 may contribute to erythroid dysfunction in CDA-I."

      Reviewer #3 – 4. ____Contradictory Functional Models:

      Ask et al. (EMBO J, 2012) reported that Codanin-1 depletion increases nuclear ASF1 and accelerates DNA replication. This contrasts with the current hypothesis that disruption of the Codanin-1/CDIN1 complex reduces nuclear ASF1.

      The authors should attempt to reconcile this apparent contradiction, possibly by proposing a context-specific or dual-function model for Codanin-1 in histone trafficking.

      3.4 Response – ____Clarified explanation of hypothetical functional model

      We thank the reviewer for raising this point, which improved the clarity of our work. There is no real discrepancy between Ask et al. and our findings; both agree that Codanin1 restrains ASF1 in the cytoplasm. Ask et al. examined the complete loss of Codanin1, which abolishes cytoplasmic ASF1 sequestration and thus leads to maximal nuclear accumulation. We suggest the CDA-I-associated mutations selectively disrupt the CDIN1-Codanin1 interface, releasing ASF1 from the cytoplasm into the nucleus.

      To enhance clarity, we now state in the legend of Figure 4 describing the hypothesis (p. 31, l. 752-753): "…CDA-I-associated mutations prevent CDIN1-Codanin1 complex formation, thus prevent ASF1 sequestration to cytoplasm; ASF1 remains accumulated in nucleus."

      Reviewer #3 – 5. ____Conclusions and Claims:

      The proposed model of CDA I pathogenesis (Fig. 4) is plausible but not yet fully supported by the available data. The authors suggest that disruption of the Codanin-1/CDIN1 interaction leads to nuclear histone depletion, but this has not been experimentally confirmed.

      Claims about the general pathogenesis of CDA I should be clearly qualified as hypothetical and applicable to a subset of mutations. The presence and localization of ASF1 in the nucleus following disruption of the Codanin-1/CDIN1 complex should be tested experimentally.

      3.5 Response – __Tempered ____conclusions and claims: __

      We thank the reviewer for underscoring the need to temper our conclusions and to distinguish hypotheses from available results. We fully agree that our Fig. 4 model—linking disruption of the Codanin1-CDIN1 interface to nuclear histone imbalance—remains a working hypothesis, currently supported by indirect biochemical and structural data.

      Accordingly, we have:

      • Revised the text to explicitly state that this model is hypothetical and pertains to a subset of CDA-I-associated CDAN1 mutations. Specifically, we

      • Added to the last paragraph of the section Functional implications of CDA-I-related mutations in Discussion (p. 31, l. 744-749): “In considering functional implications of our findings within available data, it is essential to qualify that mechanistic claims regarding the general pathogenesis of CDA-I remain hypothetical and are restricted to a specific subset of mutations. Furthermore, direct experimental validation, such as immunolocalization or live-cell imaging, to assess ASF1’s nuclear presence and distribution following disruption of the CDIN1-Codanin1 complex is required to substantiate the proposed model.”

      • Included in the legend of Fig. 4: ”The proposed model represents a working hypothesis relating to a subset of CDA-I mutations and is not currently substantiated by experimental evidence at the cellular level.”
      • Replaced any associated definitive language (e.g., “leads to”) with qualified phrasing (e.g., “may contribute to”) in the legend of Fig. 4.
      • Clarified in the Discussion that direct measurement of nuclear ASF1 redistribution and histone levels following interface disruption has not yet been performed. Specifically, we added to the section Functional implications of CDA-I-related mutations in Discussion (p. 30, l. 734-735): “It should be noted, however, that direct quantification of nuclear ASF1 redistribution and histone levels after CDIN1-Codanin1 disruption has not yet been conducted.” Although experimental verification of nuclear ASF1 localization upon CDIN1-Codanin1 complex disruption falls beyond the current manuscript’s scope, we acknowledge its importance and have emphasized the need for such studies in future work within the Future research directions of the Discussion. Specifically, we concluded by stating (p. 32, l. 774-776): “Finally, follow‑up research utilizing erythroblast model cell lines must be conducted to determine if specific mutations that disrupt CDIN1-Codanin1 binding, also affect ASF1 localization and cause a phenotype typical of CDA-I.”

      __Reviewer #3 – 6.____Broader Mutation Analysis and ASF1 Localization: __

      To strengthen the link between Codanin-1/CDIN1 disruption and disease pathogenesis, it would be important to test the effects of additional CDAN1 mutations, including those outside the C-terminal region. Similarly, the impact on ASF1 nuclear concentration and localization should be directly assessed. These experiments would significantly bolster the central hypothesis. If feasible, they should be pursued or at least acknowledged as important future directions.

      3.6 Response – Broader mutation analysis and ASF1 localization in future directions

      We thank Reviewer #3 for emphasizing the value of a broader mutation survey and direct ASF1 localization studies. As noted above, our current manuscript is centered on delineating the molecular architecture of the CDIN1-Codanin1Cterm core interface; comprehensive mutational analyses outside the C-terminal binding region and ASF1-dependent functional assays will be critical to extend these findings but fall beyond the scope of the present work and will be the objective of our following studies. To address the reviewer’s concern, we have:

      • Expanded the Future Directions section to specify that additional CDA-I-linked CDAN1 variants, including non-C-terminal mutations, and quantitative assessments of ASF1 nuclear localization will be the subject of ongoing and planned investigations. Specifically, we added (p. 32, l. 776-778):” In future work, additional Codanin1 mutations, including those outside the C-terminal region, should be evaluated to determine how the mutations affect ASF1’s nuclear concentration and subcellular localization.”

      • Emphasized the need for complementary in vivo validation in erythroblast models to confirm whether the disturbance of CDIN1-Codanin1 binding recapitulates CDA-I phenotypes. We acknowledged the need for cell-line studies in future work within the Future research directions of Discussion (p. 32, l. 774-776): “Finally, follow-up research utilizing erythroblast model cell lines must be conducted to determine if specific mutations that disrupt CDIN1-Codanin1 binding, also affect ASF1 localization and cause a phenotype typical of CDA-I.” We believe these changes more precisely delimit the scope and significance of the current study while laying out a clear roadmap for the essential follow-up experiments.

      Reviewer #3 – 7. ____Rigor and Presentation and Cross-commenting

      __Minor Comments: __

      • Methods and Reproducibility:

      The experimental methods are well described, and the results appear reproducible.

      • Presentation:

      The text and figures are clear and well organized.

      Referee Cross-commenting

      I agree with reviewer 1 that the paper presents detailed structure study of Codanin-1 and CDIN1 protein. However, as reviewer 2 claims functional studies are missing and therefore the hypothesis regarding the pahtogenesis of CDAI is speculaltive especially with no studies regarding ASF1.

      3____.7 Response ____–____ Rigor and Presentation and Cross-commenting:

      We thank the reviewers for their positive appraisal of our results' reproducibility, presentation, and method descriptions. We also appreciate the cross-comment that, while our structural analysis of the CDIN1-Codanin1 complex is thorough, functional validation, particularly regarding ASF1, remains to be addressed.

      As outlined above, we have revised the manuscript to:

      • Emphasize that pathogenic hypotheses drawn from structural data are provisional (refer to Responses 2.2, 2.3, and 3.5).
      • Include follow-up studies for ASF1 localization assays and broader mutation profiling in our Future Directions (refer to Responses 2.4, 3.5, 3.6).
      • Integrate cautious language throughout to clearly delineate verified findings from model-based speculation (refer to Responses 2.4, 3.5, 3.6). The implemented adjustments ensure that the current work is positioned as a detailed structural and interaction foundation, upon which the essential functional studies will build. We believe that all extensions and clarifications fully satisfy the reviewers’ collective recommendations.

      __Reviewer #3 –____ Significance: __

      Nature and Significance of the Advance:

      This study extends prior work (e.g., Swickley et al., BMC Mol Cell Biol 2020; Shroff et al., Biochem J 2020) on Codanin-1/CDIN1 interaction by applying high-resolution biophysical techniques to identify mutations that disrupt this complex. It provides a plausible cellular mechanism by which specific mutations may lead to CDA I through impaired histone trafficking.

      Nevertheless, key question remains: How do mutations outside the Codanin-1 C-terminus contribute to the pathology?

      3.8 Response – Significance:

      • We thank Reviewer #3 for this important point. Although our work specifically dissects the C-terminal CDIN1-binding domain of Codanin1, we fully acknowledge that CDA-I-associated mutations throughout Codanin1 may operate via additional mechanisms. To address the additional mechanisms, we have added a new paragraph describing other possible pathogenic models to the Discussion (please refer to Response 3.3).
      • We also fully acknowledged the need for systematic functional assays of non-C-terminal mutations and their impact on ASF1 localization (please refer to Response 3.6).
      • We revised the text to clarify how mutations beyond the C-terminus may contribute to CDA-I pathogenesis and present the significance of our current structural analyses, biophysical characterizations, and molecular insights as a foundation for future research (please refer to Response 3.6). __Audience: __

      • Molecular and cellular biologists investigating nuclear-cytoplasmic trafficking mechanisms

      • Hematologists and geneticists studying rare red cell disorders
      • Clinicians managing CDA I patients and researchers exploring targeted therapies __Reviewer Expertise: __

      Pediatric hematologist with over 20 years of research experience in CDA I, including the initial identification of CDAN1 and the elucidation of Codanin-1's role in embryonic erythropoiesis. Not a specialist in the biophysical techniques used in this study.

      References

      Ask, K., Z. Jasencakova, P. Menard, Y. Feng, G. Almouzni and A. Groth (2012). "Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply." The EMBO Journal 31(8): 2013–2023.

      Jeong, T.-K., R. C. M. Frater, J. Yoon, A. Groth and J.-J. Song (2025). "CODANIN-1 sequesters ASF1 by using a histone H3 mimic helix to regulate the histone supply." Nature Communications 16(1): 2181.

      Sedor, S. F. and S. Shao (2025). "Mechanism of ASF1 engagement by CDAN1." Nature Communications 16(1): 2599.

      Swickley, G., Y. Bloch, L. Malka, A. Meiri, S. Noy-Lotan, A. Yanai, H. Tamary and B. Motro (2020). "Characterization of the interactions between Codanin-1 and C15Orf41, two proteins implicated in congenital dyserythropoietic anemia type I disease." Molecular and Cell Biology 21(1).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to the Reviewers

      I would like to thank the reviewers for their comments and interest in the manuscript and the study.

      Reviewer #1

      1. I would assume that there are RNA-seq and/or ChIP-seq data out there produced after knockdown of one or more of these DBPs that show directional positioning.

      The directional positioning of CTCF-binding sites at chromatin interaction sites was analyzed by CRISPR experiment (Guo Y et al. Cell 2015). We found that the machine learning and statistical analysis showed the same directional bias of CTCF-binding motif sequence and RAD21-binding motif sequence at chromatin interaction sites as the experimental analysis of Guo Y et al. (lines 229-253, Figure 3b, c, d and Table 1). Since CTCF is involved in different biological functions (Braccioli L et al. Essays Biochem. 2019 ResearchGate webpage), the directional bias of binding sites may be reduced in all binding sites including those at chromatin interaction sites (lines 68-73). In our study, we investigated the DNA-binding sites of proteins using the ChIP-seq data of DNA-binding proteins and DNase-seq data. We also confirmed that the DNA-binding sites of SMC3 and RAD21, which tend to be found in chromatin loops with CTCF, also showed the same directional bias as CTCF by the computational analysis.

      __2. Figure 6 should be expanded to incorporate analysis of DBPs not overlapping CTCF/cohesin in chromatin interaction data that is important and potentially more interesting than the simple DBPs enrichment reported in the present form of the figure. __

      Following the reviewer's advice, I performed the same analysis with the DNA-binding sites that do no overlap with the DNA-binding sites of CTCF and cohesin (RAD21 and SMC3) (Fig. 6 and Supplementary Fig. 4). The result showed the same tendency in the distribution of DNA-binding sites. The height of a peak on the graph became lower for some DNA-binding proteins after removing the DNA-binding sites that overlapped with those of CTCF and cohesin. I have added the following sentence on lines 435 and 829: For the insulator-associated DBPs other than CTCF, RAD21, and SMC3, the DNA-binding sites that do not overlap with those of CTCF, RND21, and SMC3 were used to examine their distribution around interaction sites.

      3. Critically, I would like to see use of Micro-C/Hi-C data and ChIP-seq from these factors, where insulation scores around their directionally-bound sites show some sort of an effect like that presumed by the authors - and many such datasets are publicly-available and can be put to good use here.

      As suggested by the reviewer, I have added the insulator scores and boundary sites from the 4D nucleome data portal as tracks in the UCSC genome browser. The insulator scores seem to correspond to some extent to the H3K27me3 histone marks from ChIP-seq (Fig. 4a and Supplementary Fig. 3). We found that the DNA-binding sites of the insulator-associated DBPs were statistically overrepresented in the 5 kb boundary sites more than other DBPs (Fig. 4d). The direction of DNA-binding sites on the genome can be shown with different colors (e.g. red and green), but the directionality of insulator-associated DNA-binding sites is their overall tendency, and it may be difficult to notice the directionality from each binding site because the directionality may be weaker than that of CTCF, RAD21, and SMC3 as shown in Table 1 and Supplementary Table 2. We also observed the directional biases of CTCF, RAD21, and SMC3 by using Micro-C chromatin interaction data as we estimated, but the directionality was more apparent to distinguish the differences between the four directions of FR, RF, FF, and RR using CTCF-mediated ChIA-pet chromatin interaction data (lines 287 and 288).

       I found that the CTCF binding sites examined by a wet experiment in the previous study may not always overlap with the boundary sites of chromatin interactions from Micro-C assay (Guo Y et al. *Cell* 2015). The chromatin interaction data do not include all interactions due to the high sequencing cost of the assay, and include less long-range interactions due to distance bias. The number of the boundary sites may be smaller than that of CTCF binding sites acting as insulators and/or some of the CTCF binding sites may not be locate in the boundary sites. It may be difficult for the boundary location algorithm to identify a short boundary location. Due to the limitations of the chromatin interaction data, I planned to search for insulator-associated DNA-binding proteins without using chromatin interaction data in this study.
      
       I discussed other causes in lines 614-622: Another reason for the difference may be that boundary sites are more closely associated with topologically associated domains (TADs) of chromosome than are insulator sites. Boundary sites are regions identified based on the separation of numerous chromatin interactions. On the other hand, we found that the multiple DNA-binding sites of insulator-associated DNA-binding proteins were located close to each other at insulator sites and were associated with distinct nested and focal chromatin interactions, as reported by Micro-C assay. These interactions may be transient and relatively weak, such as tissue/cell type, conditional or lineage-specific interactions.
      
       Furthermore, I have added the statistical summary of the analysis in lines 372-395 as follows: Overall, among 20,837 DNA-binding sites of the 97 insulator-associated proteins found at insulator sites identified by H3K27me3 histone modification marks (type 1 insulator sites), 1,315 (6%) overlapped with 264 of 17,126 5kb long boundary sites, and 6,137 (29%) overlapped with 784 of 17,126 25kb long boundary sites in HFF cells. Among 5,205 DNA-binding sites of the 97 insulator-associated DNA-binding proteins found at insulator sites identified by H3K27me3 histone modification marks and transcribed regions (type 2 insulator sites), 383 (7%) overlapped with 74 of 17,126 5-kb long boundary sites, 1,901 (37%) overlapped with 306 of 17,126 25-kb long boundary sites. Although CTCF-binding sites separate active and repressive domains, the limited number of DNA-binding sites of insulator-associated proteins found at type 1 and 2 insulator sites overlapped boundary sites identified by chromatin interaction data. Furthermore, by analyzing the regulatory regions of genes, the DNA-binding sites of the 97 insulator-associated DNA-binding proteins were found (1) at the type 1 insulator sites (based on H3K27me3 marks) in the regulatory regions of 3,170 genes, (2) at the type 2 insulator sites (based on H3K27me3 marks and gene expression levels) in the regulatory regions of 1,044 genes, and (3) at insulator sites as boundary sites identified by chromatin interaction data in the regulatory regions of 6,275 genes. The boundary sites showed the highest number of overlaps with the DNA-binding sites. Comparing the insulator sites identified by (1) and (3), 1,212 (38%) genes have both types of insulator sites. Comparing the insulator sites between (2) and (3), 389 (37%) genes have both types of insulator sites. From the comparison of insulator and boundary sites, we found that (1) or (2) types of insulator sites overlapped or were close to boundary sites identified by chromatin interaction data.
      

      4. The suggested alternative transcripts function, also highlighted in the manuscripts abstract, is only supported by visual inspection of a few cases for several putative DBPs. I believe this is insufficient to support what looks like one of the major claims of the paper when reading the abstract, and a more quantitative and genome-wide analysis must be adopted, although the authors mention it as just an 'observation'.

      According to the reviewer's comment, I performed the genome-wide analysis of alternative transcripts where the DNA-binding sites of insulator-associated proteins are located near splicing sites. The DNA-binding sites of insulator-associated DNA-binding proteins were found within 200 bp centered on splice sites more significantly than the other DNA-binding proteins (Fig. 4e and Table 2). I have added the following sentences on lines 405 - 412: We performed the statistical test to estimate the enrichment of insulator-associated DNA-binding sites compared to the other DNA-binding proteins, and found that the insulator-associated DNA-binding sites were significantly more abundant at splice sites than the DNA-binding sites of the other proteins (Fig 4e and Table 2; Mann‒Whitney U test, p value 5. Figure 1 serves no purpose in my opinion and can be removed, while figures can generally be improved (e.g., the browser screenshots in Figs 4 and 5) for interpretability from readers outside the immediate research field.

      I believe that the Figure 1 would help researchers in other fields who are not familiar with biological phenomena and functions to understand the study. More explanation has been included in the Figures and legends of Figs. 4 and 5 to help readers outside the immediate research field understand the figures.

      6. Similarly, the text is rather convoluted at places and should be re-approached with more clarity for less specialized readers in mind.

      Reviewer #2's comments would be related to this comment. I have introduced a more detailed explanation of the method in the Results section, as shown in the responses to Reviewer #2's comments.

      Reviewer #2

      1. Introduction, line 95: CTCF appears two times, it seems redundant.

      On lines 91-93, I deleted the latter CTCF from the sentence "We examine the directional bias of DNA-binding sites of CTCF and insulator-associated DBPs, including those of known DBPs such as RAD21 and SMC3".

      2. Introduction, lines 99-103: Please stress better the novelty of the work. What is the main focus? The new identified DPBs or their binding sites? What are the "novel structural and functional roles of DBPs" mentioned?

      Although CTCF is known to be the main insulator protein in vertebrates, we found that 97 DNA-binding proteins including CTCF and cohesin are associated with insulator sites by modifying and developing a machine learning method to search for insulator-associated DNA-binding proteins. Most of the insulator-associated DNA-binding proteins showed the directional bias of DNA-binding motifs, suggesting that the directional bias is associated with the insulator.

       I have added the sentence in lines 96-99 as follows: Furthermore, statistical testing the contribution scores between the directional and non-directional DNA-binding sites of insulator-associated DBPs revealed that the directional sites contributed more significantly to the prediction of gene expression levels than the non-directional sites. I have revised the statement in lines 101-110 as follows: To validate these findings, we demonstrate that the DNA-binding sites of the identified insulator-associated DBPs are located within potential insulator sites, and some of the DNA-binding sites in the insulator site are found without the nearby DNA-binding sites of CTCF and cohesin. Homologous and heterologous insulator-insulator pairing interactions are orientation-dependent, as suggested by the insulator-pairing model based on experimental analysis in flies. Our method and analyses contribute to the identification of insulator- and chromatin-associated DNA-binding sites that influence EPIs and reveal novel functional roles and molecular mechanisms of DBPs associated with transcriptional condensation, phase separation and transcriptional regulation.
      

      3. Results, line 111: How do the SNPs come into the procedure? From the figures it seems the input is ChIP-seq peaks of DNBPs around the TSS.

      On lines 121-124, to explain the procedure for the SNP of an eQTL, I have added the sentence in the Methods: "If a DNA-binding site was located within a 100-bp region around a single-nucleotide polymorphism (SNP) of an eQTL, we assumed that the DNA-binding proteins regulated the expression of the transcript corresponding to the eQTL".

      4. Again, are those SNPs coming from the different cell lines? Or are they from individuals w.r.t some reference genome? I suggest a general restructuring of this part to let the reader understand more easily. One option could be simplifying the details here or alternatively including all the necessary details.

      On line 119, I have included the explanation of the eQTL dataset of GTEx v8 as follows: " The eQTL data were derived from the GTEx v8 dataset, after quality control, consisting of 838 donors and 17,382 samples from 52 tissues and two cell lines". On lines 681 and 865, I have added the filename of the eQTL data "(GTEx_Analysis_v8_eQTL.tar)".

      5. Figure 1: panel a and b are misleading. Is the matrix in panel a equivalent to the matrix in panel b? If not please clarify why. Maybe in b it is included the info about the SNPs? And if yes, again, what is then difference with a.

      The reviewer would mention Figure 2, not Figure 1. If so, the matrices in panels a and b in Figure 2 are equivalent. I have shown it in the figure: The same figure in panel a is rotated 90 degrees to the right. The green boxes in the matrix show the regions with the ChIP-seq peak of a DNA-binding protein overlapping with a SNP of an eQTL. I used eQTL data to associate a gene with a ChIP-seq peak that was more than 2 kb upstream and 1 kb downstream of a transcriptional start site of a gene. For each gene, the matrix was produced and the gene expression levels in cells were learned and predicted using the deep learning method. I have added the following sentences to explain the method in lines 133 - 139: Through the training, the tool learned to select the binding sites of DNA-binding proteins from ChIP-seq assays that were suitable for predicting gene expression levels in the cell types. The binding sites of a DNA-binding protein tend to be observed in common across multiple cell and tissue types. Therefore, ChIP-seq data and eQTL data in different cell and tissue types were used as input data for learning, and then the tool selected the data suitable for predicting gene expression levels in the cell types, even if the data were not obtained from the same cell types.

      6. Line 386-388: could the author investigate in more detail this observation? Does it mean that loops driven by other DBPs independent of the known CTCF/Cohesin? Could the author provide examples of chromatin structural data e.g. MicroC?

      As suggested by the reviewer, to help readers understand the observation, I have added Supplementary Fig. S4c to show the distribution of DNA-binding sites of "CTCF, RAD21, and SMC3" and "BACH2, FOS, ATF3, NFE2, and MAFK" around chromatin interaction sites. I have modified the following sentence to indicate the figure on line 501: Although a DNA-binding-site distribution pattern around chromatin interaction sites similar to those of CTCF, RAD21, and SMC3 was observed for DBPs such as BACH2, FOS, ATF3, NFE2, and MAFK, less than 1% of the DNA-binding sites of the latter set of DBPs colocalized with CTCF, RAD21, or SMC3 in a single bin (Fig. S4c).

       In Aljahani A et al. *Nature Communications* 2022, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression. Goel VY et al. *Nature Genetics* 2023 mentioned in the abstract: Microcompartments frequently connect enhancers and promoters and though loss of loop extrusion and inhibition of transcription disrupts some microcompartments, most are largely unaffected. These results suggested that chromatin loops can be driven by other DBPs independent of the known CTCF/Cohesin.
      
      I added the following sentence on lines 569-577: The depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Another group reported that enhancer-promoter interactions and transcription are largely maintained upon depletion of CTCF, cohesin, WAPL or YY1. Instead, cohesin depletion decreased transcription factor binding to chromatin. Thus, cohesin may allow transcription factors to find and bind their targets more efficiently. Furthermore, the loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.
      
       FOXA1 pioneer factor functions as an initial chromatin-binding and chromatin-remodeling factor and has been reported to form biomolecular condensates (Ji D et al. *Molecular Cell* 2024). CTCF have also found to form transcriptional condensate and phase separation (Lee R et al. *Nucleic acids research* 2022). FOS was found to be an insulator-associated DNA-binding protein in this study and is potentially involved in chromatin remodeling, transcription condensation, and phase separation with the other factors such as BACH2, ATF3, NFE2 and MAFK. I have added the following sentence on line 556: FOXA1 pioneer factor functions as an initial chromatin-binding and chromatin-remodeling factor and has been reported to form biomolecular condensates.
      

      7. In general, how the presented results are related to some models of chromatin architecture, e.g. loop extrusion, in which it is integrated convergent CTCF binding sites?

      Goel VY et al. Nature Genetics 2023 identified highly nested and focal interactions through region capture Micro-C, which resemble fine-scale compartmental interactions and are termed microcompartments. In the section titled "Most microcompartments are robust to loss of loop extrusion," the researchers noted that a small proportion of interactions between CTCF and cohesin-bound sites exhibited significant reductions in strength when cohesin was depleted. In contrast, the majority of microcompartmental interactions remained largely unchanged under cohesin depletion. Our findings indicate that most P-P and E-P interactions, aside from a few CTCF and cohesin-bound enhancers and promoters, are likely facilitated by a compartmentalization mechanism that differs from loop extrusion. We suggest that nested, multiway, and focal microcompartments correspond to small, discrete A-compartments that arise through a compartmentalization process, potentially influenced by factors upstream of RNA Pol II initiation, such as transcription factors, co-factors, or active chromatin states. It follows that if active chromatin regions at microcompartment anchors exhibit selective "stickiness" with one another, they will tend to co-segregate, leading to the development of nested, focal interactions. This microphase separation, driven by preferential interactions among active loci within a block copolymer, may account for the striking interaction patterns we observe.

       The authors of the paper proposed several mechanisms potentially involved in microcompartments. These mechanisms may be involved in looping with insulator function. Another group reported that enhancer-promoter interactions and transcription are largely maintained upon depletion of CTCF, cohesin, WAPL or YY1. Instead, cohesin depletion decreased transcription factor binding to chromatin. Thus, cohesin may allow transcription factors to find and bind their targets more efficiently (Hsieh TS et al. *Nature Genetics* 2022). Among the identified insulator-associated DNA-binding proteins, Maz and MyoD1 form loops without CTCF (Xiao T et al. *Proc Natl Acad Sci USA* 2021 ; Ortabozkoyun H et al. *Nature genetics* 2022 ; Wang R et al. *Nature communications* 2022). I have added the following sentences on lines 571-575: Another group reported that enhancer-promoter interactions and transcription are largely maintained upon depletion of CTCF, cohesin, WAPL or YY1. Instead, cohesin depletion decreased transcription factor binding to chromatin. Thus, cohesin may allow transcription factors to find and bind their targets more efficiently. I have included the following explanation on lines 582-584: Maz and MyoD1 among the identified insulator-associated DNA-binding proteins form loops without CTCF.
      
       As for the directionality of CTCF, if chromatin loop anchors have some structural conformation, as shown in the paper entitled "The structural basis for cohesin-CTCF-anchored loops" (Li Y et al. *Nature* 2020), directional DNA binding would occur similarly to CTCF binding sites. Moreover, cohesin complexes that interact with convergent CTCF sites, that is, the N-terminus of CTCF, might be protected from WAPL, but those that interact with divergent CTCF sites, that is, the C-terminus of CTCF, might not be protected from WAPL, which could release cohesin from chromatin and thus disrupt cohesin-mediated chromatin loops (Davidson IF et al. *Nature Reviews Molecular Cell Biology* 2021). Regarding loop extrusion, the 'loop extrusion' hypothesis is motivated by in vitro observations. The experiment in yeast, in which cohesin variants that are unable to extrude DNA loops but retain the ability to topologically entrap DNA, suggested that in vivo chromatin loops are formed independently of loop extrusion. Instead, transcription promotes loop formation and acts as an extrinsic motor that extends these loops and defines their final positions (Guerin TM et al. *EMBO Journal* 2024). I have added the following sentences on lines 543-547: Cohesin complexes that interact with convergent CTCF sites, that is, the N-terminus of CTCF, might be protected from WAPL, but those that interact with divergent CTCF sites, that is, the C-terminus of CTCF, might not be protected from WAPL, which could release cohesin from chromatin and thus disrupt cohesin-mediated chromatin loops. I have included the following sentences on lines 577-582: The 'loop extrusion' hypothesis is motivated by in vitro observations. The experiment in yeast, in which cohesin variants that are unable to extrude DNA loops but retain the ability to topologically entrap DNA, suggested that in vivo chromatin loops are formed independently of loop extrusion. Instead, transcription promotes loop formation and acts as an extrinsic motor that extends these loops and defines their final positions.
      
       Another model for the regulation of gene expression by insulators is the boundary-pairing (insulator-pairing) model (Bing X et al. *Elife* 2024) (Ke W et al. *Elife* 2024) (Fujioka M et al. *PLoS Genetics* 2016). Molecules bound to insulators physically pair with their partners, either head-to-head or head-to-tail, with different degrees of specificity at the termini of TADs in flies. Although the experiments do not reveal how partners find each other, the mechanism unlikely requires loop extrusion. Homologous and heterologous insulator-insulator pairing interactions are central to the architectural functions of insulators. The manner of insulator-insulator interactions is orientation-dependent. I have summarized the model on lines 559-567: Other types of chromatin regulation are also expected to be related to the structural interactions of molecules. As the boundary-pairing (insulator-pairing) model, molecules bound to insulators physically pair with their partners, either head-to-head or head-to-tail, with different degrees of specificity at the termini of TADs in flies (Fig. 7). Although the experiments do not reveal how partners find each other, the mechanism unlikely requires loop extrusion. Homologous and heterologous insulator-insulator pairing interactions are central to the architectural functions of insulators. The manner of insulator-insulator interactions is orientation-dependent.
      

      8. Do the authors think that the identified DBPs could work in that way as well?

      The boundary-pairing (insulator-pairing) model would be applied to the insulator-associated DNA-binding proteins other than CTCF and cohesin that are involved in the loop extrusion mechanism (Bing X et al. Elife 2024) (Ke W et al. Elife 2024) (Fujioka M et al. PLoS Genetics 2016).

       Liquid-liquid phase separation was shown to occur through CTCF-mediated chromatin loops and to act as an insulator (Lee, R et al. *Nucleic Acids Research* 2022). Among the identified insulator-associated DNA-binding proteins, CEBPA has been found to form hubs that colocalize with transcriptional co-activators in a native cell context, which is associated with transcriptional condensate and phase separation (Christou-Kent M et al. *Cell Reports* 2023). The proposed microcompartment mechanisms are also associated with phase separation. Thus, the same or similar mechanisms are potentially associated with the insulator function of the identified DNA-binding proteins. I have included the following information on line 554: CEBPA in the identified insulator-associated DNA-binding proteins was also reported to be involved in transcriptional condensates and phase separation.
      

      9. Also, can the authors comment about the mechanisms those newly identified DBPs mediate contacts by active processes or equilibrium processes?

      Snead WT et al. Molecular Cell 2019 mentioned that protein post-transcriptional modifications (PTMs) facilitate the control of molecular valency and strength of protein-protein interactions. O-GlcNAcylation as a PTM inhibits CTCF binding to chromatin (Tang X et al. Nature Communications 2024). I found that the identified insulator-associated DNA-binding proteins tend to form a cluster at potential insulator sites (Supplementary Fig. 2d). These proteins may interact and actively regulate chromatin interactions, transcriptional condensation, and phase separation by PTMs. I have added the following explanation on lines 584-590: Furthermore, protein post-transcriptional modifications (PTMs) facilitate control over the molecular valency and strength of protein-protein interactions. O-GlcNAcylation as a PTM inhibits CTCF binding to chromatin. We found that the identified insulator-associated DNA-binding proteins tend to form a cluster at potential insulator sites (Fig. 4f and Supplementary Fig. 3c). These proteins may interact and actively regulate chromatin interactions, transcriptional condensation, and phase separation through PTMs.

      10. Can the author provide some real examples along with published structural data (e.g. the mentioned micro-C data) to show the link between protein co-presence, directional bias and contact formation?

      Structural molecular model of cohesin-CTCF-anchored loops has been published by Li Y et al. Nature 2020. The structural conformation of CTCF and cohesin in the loops would be the cause of the directional bias of CTCF binding sites, which I mentioned in lines 539 - 543 as follows: These results suggest that the directional bias of DNA-binding sites of insulator-associated DBPs may be involved in insulator function and chromatin regulation through structural interactions among DBPs, other proteins, DNAs, and RNAs. For example, the N-terminal amino acids of CTCF have been shown to interact with RAD21 in chromatin loops.

       To investigate the principles underlying the architectural functions of insulator-insulator pairing interactions, two insulators, Homie and Nhomie, flanking the *Drosophila even skipped *locus were analyzed. Pairing interactions between the transgene Homie and the eve locus are directional. The head-to-head pairing between the transgene and endogenous Homie matches the pattern of activation (Fujioka M et al. *PLoS Genetics* 2016).
      

      Reviewer #3

      Major Comments:

      1. Some of these TFs do not have specific direct binding to DNA (P300, Cohesin). Since the authors are using binding motifs in their analysis workflow, I would remove those from the analysis.

      When a protein complex binds to DNA, one protein of the complex binds to the DNA directory, and the other proteins may not bind to DNA. However, the DNA motif sequence bound by the protein may be registered as the DNA-binding motif of all the proteins in the complex. The molecular structure of the complex of CTCF and Cohesin showed that both CTCF and Cohesin bind to DNA (Li Y et al. Nature 2020). I think there is a possibility that if the molecular structure of a protein complex becomes available, the previous recognition of the DNA-binding ability of a protein may be changed. Therefore, I searched the Pfam database for 99 insulator-associated DNA-binding proteins identified in this study. I found that 97 are registered as DNA-binding proteins and/or have a known DNA-binding domain, and EP300 and SIN3A do not directory bind to DNA, which was also checked by Google search. I have added the following explanation in line 257 to indicate direct and indirect DNA-binding proteins: Among 99 insulator-associated DBPs, EP300 and SIN3A do not directory interact with DNA, and thus 97 insulator-associated DBPs directory bind to DNA. I have updated the sentence in line 20 of the Abstract as follows: We discovered 97 directional and minor nondirectional motifs in human fibroblast cells that corresponded to 23 DBPs related to insulator function, CTCF, and/or other types of chromosomal transcriptional regulation reported in previous studies.

      2. I am not sure if I understood correctly, by why do the authors consider enhancers spanning 2Mb (200 bins of 10Kb around eSNPs)? This seems wrong. Enhancers are relatively small regions (100bp to 1Kb) and only a very small subset form super enhancers.

      As the reviewer mentioned, I recognize enhancers are relatively small regions. In the paper, I intended to examine further upstream and downstream of promoter regions where enhancers are found. Therefore, I have modified the sentence in lines 929 - 931 of the Fig. 2 legend as follows: Enhancer-gene regulatory interaction regions consist of 200 bins of 10 kbp between -1 Mbp and 1 Mbp region from TSS, not including promoter.

      3. I think the H3K27me3 analysis was very good, but I would have liked to see also constitutive heterochromatin as well, so maybe repeat the analysis for H3K9me3.

      Following the reviewer's advice, I have added the ChIP-seq data of H3K9me3 as a truck of the UCSC Genome Browser. The distribution of H3K9me3 signal was different from that of H3K27me3 in some regions. I also found the insulator-associated DNA-binding sites close to the edges of H3K9me3 regions and took some screenshots of the UCSC Genome Browser of the regions around the sites in Supplementary Fig. 3b. I have modified the following sentence on lines 974 - 976 in the legend of Fig. 4: a Distribution of histone modification marks H3K27me3 (green color) and H3K9me3 (turquoise color) and transcript levels (pink color) in upstream and downstream regions of a potential insulator site (light orange color). I have also added the following result on lines 356 - 360: The same analysis was performed using H3K9me3 marks, instead of H3K27me3 (Fig. S3b). We found that the distribution of H3K9me3 signal was different from that of H3K27me3 in some regions, and discovered the insulator-associated DNA-binding sites close to the edges of H3K9me3 regions (Fig. S3b).

      4. I was not sure I understood the analysis in Figure 6. The binding site is with 500bp of the interaction site, but micro-C interactions are at best at 1Kb resolution. They say they chose the centre of the interaction site, but we don't know exactly where there is the actual interaction. Also, it is not clear what they measure. Is it the number of binding sites of a specific or multiple DBP insulator proteins at a specific distance from this midpoint that they recover in all chromatin loops? Maybe I am missing something. This analysis was not very clear.

      The resolution of the Micro-C assay is considered to be 100 bp and above, as the human nucleome core particle contains 145 bp (and 193 bp with linker) of DNA. However, internucleosomal DNA is cleaved by endonuclease into fragments of multiples of 10 nucleotides (Pospelov VA et al. Nucleic Acids Research 1979). Highly nested focal interactions were observed (Goel VY et al. Nature Genetics 2023). Base pair resolution was reported using Micro Capture-C (Hua P et al. Nature 2021). Sub-kilobase (20 bp resolution) chromatin topology was reported using an MNase-based chromosome conformation capture (3C) approach (Aljahani A et al. Nature Communications 2022). On the other hand, Hi-C data was analyzed at 1 kb resolution. (Gu H et al. bioRxiv 2021). If the resolution of Micro-C interactions is at best at 1 kb, the binding sites of a DNA-binding protein will not show a peak around the center of the genomic locations of interaction edges. Each panel shows the number of binding sites of a specific DNA-binding protein at a specific distance from the midpoint of all chromatin interaction edges. I have modified and added the following sentences in lines 593-597: High-resolution chromatin interaction data from a Micro-C assay indicated that most of the predicted insulator-associated DBPs showed DNA-binding-site distribution peaks around chromatin interaction sites, suggesting that these DBPs are involved in chromatin interactions and that the chromatin interaction data has a high degree of resolution. Base pair resolution was reported using Micro Capture-C.

      Minor Comments:

      1. PIQ does not consider TF concentration. Other methods do that and show that TF concentration improves predictions (e.g., ____https://www.biorxiv.org/content/10.1101/2023.07.15.549134v2____or ____https://pubmed.ncbi.nlm.nih.gov/37486787____/). The authors should discuss how that would impact their results.

      The directional bias of CTCF binding sites was identified by ChIA-pet interactions of CTCF binding sites. The analysis of the contribution scores of DNA-binding sites of proteins considering the binding sites of CTCF as an insulator showed the same tendency of directional bias of CTCF binding sites. In the analysis, to remove the false-positive prediction of DNA-binding sites, I used the binding sites that overlapped with a ChIP-seq peak of the DNA-binding protein. This result suggests that the DNA-binding sites of CTCF obtained by the current analysis have sufficient quality. Therefore, if the accuracy of prediction of DNA-binding sites is improved, although the number of DNA-binding sites may be different, the overall tendency of the directionality of DNA-binding sites will not change and the results of this study will not change significantly.

       As for the first reference in the reviewer's comment, chromatin interaction data from Micro-C assay does not include all chromatin interactions in a cell or tissue, because it is expensive to cover all interactions. Therefore, it would be difficult to predict all chromatin interactions based on machine learning. As for the second reference in the reviewer's comment, pioneer factors such as FOXA are known to bind to closed chromatin regions, but transcription factors and DNA-binding proteins involved in chromatin interactions and insulators generally bind to open chromatin regions. The search for the DNA-binding motifs is not required in closed chromatin regions.
      

      2. DeepLIFT is a good approach to interpret complex structures of CNN, but is not truly explainable AI. I think the authors should acknowledge this.

      In the DeepLIFT paper, the authors explain that DeepLIFT is a method for decomposing the output prediction of a neural network on a specific input by backpropagating the contributions of all neurons in the network to every feature of the input (Shrikumar A et al. ICML 2017). DeepLIFT compares the activation of each neuron to its 'reference activation' and assigns contribution scores according to the difference. DeepLIFT calculates a metric to measure the difference between an input and the reference of the input.

       Truly explainable AI would be able to find cause and reason, and to make choices and decisions like humans. DeepLIFT does not perform causal inferences. I did not use the term "Explainable AI" in our manuscript, but I briefly explained it in Discussion. I have added the following explanation in lines 623-628: AI (Artificial Intelligence) is considered as a black box, since the reason and cause of prediction are difficult to know. To solve this issue, tools and methods have been developed to know the reason and cause. These technologies are called Explainable AI. DeepLIFT is considered to be a tool for Explainable AI. However, DeepLIFT does not answer the reason and cause for a prediction. It calculates scores representing the contribution of the input data to the prediction.
      
       Furthermore, to improve the readability of the manuscript, I have included the following explanation in lines 159-165: we computed DeepLIFT scores of the input data (i.e., each binding site of the ChIP-seq data of DNA-binding proteins) in the deep leaning analysis on gene expression levels. DeepLIFT compares the importance of each input for predicting gene expression levels to its 'reference or background level' and assigns contribution scores according to the difference. DeepLIFT calculates a metric to measure the difference between an input and the reference of the input.
      
    1. Author Response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      (1) I think the article is a little too immature in its current form. I'd recommend that the authors work on their writing. For example, the objectives of the article are not completely clear to me after reading the manuscript, composed of parts where the authors seem to focus on SGCs, and others where they study "engram" neurons without differentiating the neuronal type (Figure 5). The next version of the manuscript should clearly establish the objectives and sub-aims.

      We now provide clarification for focusing on the labeling status versus the cell types in figure 5. Since figure 5 focuses on inputs to labeled pairs versus Labeledunlabeled pairs the pairs include mixed groups with GCs and SGCs. Since the question pertains to inputs rather than cell types, we did not specifically distinguish the cell types. This is now explained in the text on page 15:  “Note that since the intent was to determine the input correlation depending on labeling status of the cell pairs rather than based on cell type, we do not explicitly consider whether analyzed cell pairs included GCs or SGCs.”

      (2) In addition, some results are not entirely novel (e.g., the disproportionate recruitment as well as the distinctive physiological properties of SGCs), and/or based on correlations that do not fully support the conclusions of the article. In addition to re-writing, I believe that the article would benefit from being enriched with further analyses or even additional experiments before being resubmitted in a more definitive form.

      We now indicate the data comparing labeled versus unlabeled SGCs is novel. Moreover, we also highlight that (1) recruitment of SGCs has not been previously examined in Barnes Maze or Enriched Environment, (2) that our unbiased morphological analysis of SGC recruitment is more robust than subsampling of recorded neurons in prior studies and (3) that our data show that prior may have overestimated SGC recruitment to engrams. Thus, the data characterized as “not novel” are essential for appropriate analysis of behaviorally tagged neurons which is the thrust of our study.  

      Reviewer #2 (Public Review):

      (1) The authors conclude that SGCs are disproportionately recruited into cfos assemblies during the enriched environment and Barnes maze task given that their classifier identifies about 30% of labelled cells as SGCs in both cases and that another study using a different method (Save et al., 2019) identified less than 5% of an unbiased sample of granule cells as SGCs. To make matters worse, the classifier deployed here was itself established on a biased sample of GCs patched in the molecular layer and granule cell layer, respectively, at even numbers (Gupta et al., 2020). The first thing the authors would need to show to make the claim that SGCs are disproportionately recruited into memory ensembles is that the fraction of GCs identified as SGCs with their own classifier is significantly lower than 30% using their own method on a random sample of GCs (e.g. through sparse viral labelling). As the authors correctly state in their discussion, morphological samples from patch-clamp studies are problematic for this purpose because of inherent technical issues (i.e. easier access to scattered GCs in the molecular layer).

      We now clarify, on page 9, that a trained investigator classified cell types based on predefined morphological criteria.  No automated classifiers were used to assign cell types in the current study.

      (2) The authors claim that recurrent excitation from SGCs onto GCs or other SGCs is irrelevant because they did not find any connections in 32 simultaneous recordings (plus 63 in the next experiment). Without a demonstration that other connections from SGCs (e.g. onto mossy cells or interneurons) are preserved in their preparation and if so at what rates, it is unclear whether this experiment is indicative of the underlying biology or the quality of the preparation. The argument that spontaneous EPSCs are observed is not very convincing as these could equally well arise from severed axons (in fact we would expect that the vast majority of inputs are not from local excitatory cells). The argument on line 418 that SGCs have compact axons isn't particularly convincing either given that the morphologies from which they were derived were also obtained in slice preparations and would be subject to the same likelihood of severing the axon. Finally, even in paired slice recordings from CA3 pyramidal cells the experimentally detected connectivity rates are only around 1% (Guzman et al., 2016). The authors would need to record from a lot more than 32 pairs (and show convincing positive controls regarding other connections) to make the claim that connectivity is too low to be relevant.

      We have conducted additional control experiments (detailed in response to Editorial comment #3), in which we replicated the results of Stefanelli et al (2016) identifying that optogenetic activation of a focal cohort of ChR2 expressing granule cells leads to robust feedback inhibition of adjacent granule cells. These control experiments demonstrate that the slice system supports the feedback inhibitory circuit which requires GC/SGC to hilar neuron synapses.

      (3) Another troubling sign is the fact that optogenetic GC stimulation rarely ever evokes feedback inhibition onto other cells which contrasts with both other in vitro (e.g. Braganza et al., 2020) and in vivo studies (Stefanelli et al., 2016) studies. Without a convincing demonstration that monosynaptic connections between SGCs/GCs and interneurons in both directions is preserved at least at the rates previously described in other slice studies (e.g. Geiger et al., 1997, Neuron, Hainmueller et al., 2014, PNAS, Savanthrapadian et al., 2014, J. Neurosci), the notion that this setting could be closer to naturalistic memory processing than the in vivo experiments in Stefanelli et al. (e.g. lines 443-444) strikes me as odd. In any case, the discussion should clearly state that compromised connectivity in the slice preparation is likely a significant confound when comparing these results.

      We have conducted additional control experiments (detailed in response to Editorial comment #3), in which we replicated the results of Stefanelli et al identifying that optogenetic activation of a focal cohort of ChR2 expressing granule cells leads to robust feedback inhibition of adjacent granule cells. These control experiments demonstrate that the slice system in our studies support the feedback inhibitory circuit detailed in prior studies. We also clarify that Stefanelli study labeled random neurons and did not examine natural behavioral engrams and  discuss (on page 20) the correspondence/consistency of our results with that of Braganza et al 2020.

      (4) Probably the most convincing finding in this study is the higher zero-time lag correlation of spontaneous EPSCs in labelled vs. unlabeled pairs. Unfortunately, the fact that the authors use spontaneous EPSCs to begin with, which likely represent a mixture of spontaneous release from severed axons, minis, and coordinated discharge from intact axon segments or entire neurons, makes it very hard to determine the meaning and relevance of this finding. At the bare minimum, the authors need to show if and how strongly differences in baseline spontaneous EPSC rates between different cells and slices are contributing to this phenomenon. I would encourage the authors to use low-intensity extracellular stimulation at multiple foci to determine whether labelled pairs really share higher numbers of input from common presynaptic axons or cells compared to unlabeled pairs as they claim. I would also suggest the authors use conventional Cross correlograms (CCG; see e.g. English et al., 2017, Neuron; Senzai and Buzsaki, 2017, Neuron) instead of their somewhat convoluted interval-selective correlation analysis to illustrate codependencies between the event time series. The references above also illustrate a more robust approach to determining whether peaks in the CCGs exceed chance levels.

      We have included data on sEPSC frequency in the recorded cell pairs (Supplemental Fig 4) and have also conducted additional experiments and present data demonstrating that labeled cell show higher sEPSC frequency and amplitude than corresponding unlabeled cells in both cell types (new Fig 5).  We also include data from new  experiments to show that over 50% of the sEPSCs represent action potential driven events (Supplemental fig 3). 

      We thank the reviewer for the suggestion to explore alternative methods of analyses including CCGs to further strengthen our findings. We have now conducted CCGs on the same data set and report that “The dynamics of the cross-correlograms generated from our data sets using previously established methods to evaluate monosynaptic connectivity (Bartho et al., 2004; Senzai and Buzsaki, 2017) parallelled that of the CCP plots (Supplemental Fig. 6) illustrating that the methods similarly capture co-dependencies between event time series. We note, here, that while the CCG and CCP are qualitatively similar, the magnitude of the peaks were different, due to the sparseness of synaptic events. 

      (5) Finally, one of the biggest caveats of the study is that the ensemble is labelled a full week before the slice experiment and thereby represents a latent state of a memory rather than encoding consolidation, or recall processes. The authors acknowledge that in the discussion but they should also be mindful of this when discussing other (especially in vivo) studies and comparing their results to these. For instance, Pignatelli et al 2018 show drastic changes in GC engram activity and features driven by behavioral memory recall, so the results of the current study may be very different if slices were cut immediately after memory acquisition (if that was possible with a different labelling strategy), or if animals were re-exposed to the enriched environment right before sacrificing the animal.

      As noted by the reviewer, we fully acknowledge and are cognizant of the concern that slices prepared a week after labeling may not reflect ongoing encoding. Although our data show that labeled cells are reactivated in higher proportion during recall, we have discussed this caveat and will include alternative experimental strategies in the discussion.

      Reviewer #3 (Public Review):

      (1) Engram cells are (i) activated by a learning experience, (ii) physically or chemically modified by the learning experience, and (iii) reactivated by subsequent presentation of the stimuli present at the learning experience (or some portion thereof), resulting in memory retrieval. The authors show that exposure to Barnes Maze and the enriched environment-activated semilunar granule cells and granule cells preferentially in the superior blade of the dentate gyrus, and a significant fraction were reactivated on re-exposure. However, physical or chemical modification by experience was not tested. Experience modifies engram cells, and a common modification is the Hebbian, i.e., potentiation of excitatory synapses. The authors recorded EPSCs from labeled and unlabeled GCs and SGCs. Was there a difference in the amplitude or frequency of EPSCs recorded from labeled and unlabeled cells?

      We have included data on sEPSC frequency in the recorded cell pairs (Supplemental Fig 4) and have also conducted additional experiments and report and present data demonstrating that labeled cell show higher sEPSC frequency and amplitude than corresponding unlabeled cells in both cell types (new Fig 5).  We also include data from new  experiments to show that over 50% of the sEPSCs represent action potential driven events (Supplemental fig 3).

      (2) The authors studied five sequential sections, each 250 μm apart across the septotemporal axis, which were immunostained for c-Fos and analyzed for quantification. Is this an adequate sample? Also, it would help to report the dorso-ventral gradient since more engram cells are in the dorsal hippocampus. Slices shown in the figures appear to be from the dorsal hippocampus. 

      We thank the reviewer for the comment. We analyzed sections along the dorsoventral gradient. As explained in the methods, there is considerable animal to animal variability in the number of labeled cells which was why we had to use matched littermate pairs in our experiments This variability could render it difficult to tease apart dorsoventral differences. 

      (3) The authors investigated the role of surround inhibition in establishing memory engram SGCs and GCs. Surprisingly, they found no evidence of lateral inhibition in the slice preparation. Interneurons, e.g., PV interneurons, have large axonal arbors that may be cut during slicing.

      Similarly, the authors point out that some excitatory connections may be lost in slices. This is a limitation of slice electrophysiology.

      We have conducted additional control experiments (detailed in response to Editorial comment #3), in which we replicated the results of Stefanelli et al identifying that optogenetic activation of a focal cohort of ChR2 expressing granule cells leads to robust feedback inhibition of adjacent granule cells. These control experiments demonstrate that the slice system supports the feedback inhibitory circuit detailed in prior studies. 

      We now discuss (page 21) that “the possibility that slice recordings lead to underestimation of feedback dendritic inhibition cannot be ruled out.”

      Reviewer #1 (Recommendations for the authors):

      (1) I struggle to understand the added value of the Barnes Maze data (Figures 1 and S1), since the authors then focus on the EE for practical reasons. In particular, the analysis of mouse performance (presented in supplemental Figure 1) does not seem traditional to me. For example, instead of the 3 classical exploration strategies (i.e., random, serial, direct), the authors describe 6, and assign each of these strategies a score based on vague criteria (why are "long corrected" and "focused research" both assigned a score of 0.5?). Unless I'm mistaken, no other classic parameters are described (e.g., success rate, latency, number of errors). If the authors decide to keep the BM results, I recommend better justifying its existence and adding more details, including in the method section. Otherwise, perhaps they should consider withdrawing it. Even if we had to use two different behavioral contexts, wouldn't it have made sense to use, in addition to the EE, the fear conditioning test, which is widely used in the study of engrams? Under these conditions (Stefanelli et al., 2016), the number of cells recruited after fear conditioning seems sufficient to reproduce the analyses presented in Figures 2-5 and determine whether or not lateral inhibition is dependent on the type of context (Stefanelli and colleagues suggest significant strong lateral inhibition during fear conditioning, whereas the data from Dovek and colleagues suggest quite the opposite after exposure to EE).

      The Barnes Maze data was included to evaluate the DG ensemble activation during a dentate dependent non-fear based behavioral task. This is now introduced and explained in the results. We have now included plots of the primary latency and number of errors in finding the escape hole to confirm the improvement over time (Supplemental Fig. 1). We specifically used the BUNS analysis to evaluate the use of spatial strategy and show that by day 6, day of tamoxifen induction, the mice are using a spatial strategy for navigation. Our approach to evaluate exploration strategy is based on criteria published in Illouz et al 2016. This is now detailed in the methods on page 25. We hope that  the inclusion of the supplemental data and revisions to methods and results address the concerns regarding Barnes Maze experiments. 

      Regarding Stefanelli et al., 2016, please note that the study adopted random labeling of neurons using a CaMKII promotor driven reporter expression which they activated during spatial exploration of fear conditioning behaviors. As such labeled neurons in the Stefanelli study were NOT behaviorally driven, rather they were optically activated. This is now clarified in the text. The main drive for our study was to evaluate behaviorally tagged neurons which is novel, distinct from the Stefanelli study, and, we would argue, more behaviorally realistic and relevant.

      Additionally, the lateral inhibition observed in Stafanelli et al was in response to activation of GCs labeled by virally mediate CAMKII-driven ChR2 expression. Using a similar labeling approach, new control data presented in Supplemental fig. 3 show that we are fully able to replicate the lateral inhibition observed by Stefanalli et al. These control experiments further suggest that the sparse and distributed GC/SGC ensembles activated during non-aversive behavioral tasks may not be sufficient to elicit robust lateral inhibition as has been observed when a random population of adjacent neurons are activated. Our findings are also consistent with observations by Barganza et al., 2020. This is now Discussed on page 21.

      (2) The authors recorded sEPSCs received by recruited and non-recruited GCs and SGCs after EE exposure. However, it appears that they studied them very little, apart (from a temporal correlation analysis (Figure 5). Yet it would be interesting to determine whether or not the four neuronal populations possess different synaptic properties. 

      What is the frequency and amplitude of sEPSCs in GCs and SGCs recruited or not after EE exposure? Similarly, can the author record the sIPSCs received by dentate gyrus engram and non-engram GCs and SGCs? If so, what is their frequency and amplitude?

      As suggested by the editorial comment #2, we how include data on the frequency and amplitude of the sEPSCs in GCs and SGCs used in our analysis of figure 5. Given the low numbers of unlabeled SGCs and labeled GCs in our paired recordings (Supplemental Fig. 5), we choose not to use this data set for analysis of cell-type and labeling based differences in EPSC parameters. However, we have previously reported that sIPSC frequency is higher in SGCs than in GCs. Additionally, we have identified that sEPSC frequency in SGCs is higher than in GC (Dovek et al, in preprint, DOI: 10.1101/2025.03.14.643192).  

      To specifically address reviewer concerns, we have conducted new recorded EPSCs in a cohort of labeled and unlabeled GCs and SGCs and present data demonstrating that labeled cell show higher sEPSC frequency and amplitude than corresponding unlabeled cells in both cell types (new Fig 5). These experiments were conducted in TRAP2-tdT labeled cells which were not stable in cesium based recordings. As such we, we deferred the IPSC analysis for later and restricted analysis to sEPSCs for this study. 

      (3) Previous data showed that dentate gyrus neurons that are recruited or not in a given context could exhibit distinct morphological characteristics (Pléau et al. 2021) and biochemical content (Penk expression, Erwin et al., 2020). In order to enrich the electrophysiological data presented in Figure 2, could the authors take advantage of the biocytin filling to perform a morphological and biochemical comparison of the different neuronal types (i.e., GCs and SGCs recruited or not after EE)?

      Thank you for this suggestion. Unfortunately, detailed morphometry and biochemical analysis on labeled and unlabeled neurons was not conducted as part of this study as our focus was on circuit differences. In our experience, unless the sections are imaged soon after staining, the sections are suboptimal for detailed morphological reconstruction and analysis. Our ongoing studies suggest that PENK is an activity marker and not a selective marker for SGCs and we are undertaking transcriptomic analysis to identify molecular differences between GCs and SGCs. We respectfully submit that these experiments are outside the scope of this study.

      (4) Figures 3 and 4 show only schematic diagrams and representative data. No quantification is shown. Instead of pie charts showing the identity of each pair (which I find unnecessary), I'll use pie charts representing the % of each pair in which an excitatory or inhibitory drive was recorded (with the corresponding n).

      Please note that we did not observe evoked synaptic potentials in any except one pair precluding the possibility of quantification. However, we submit that it is important for the readers to have information on the number of pairs and the types of pre-post synaptic pairs in which the connections were tested.

      (5) Figure 3: Given that GCs form very few recurrences in non-pathological conditions, it hardly surprises me that they form few or no local glutamatergic connections. In contrast, this result surprises me more for SGCs, whose axons form collaterals in the dentate gyrus granular and molecular layers (Williams et al., 2007; Save et al., 2019). To control the reliability of their conditions, could the authors check whether SGCs do indeed form connections with hilar mossy cells, as has been reported in the past? To test whether this lack of interconnectivity is specific to neurons belonging to the same engram (or not), could the authors test whether or not the stimulation of labeled GCs/SGCs (via membrane depolarization or even optogenetics) generates EPSCs in unlabeled GCs?

      As suggested by the reviewer, we have examined whether widefield optical activation of all labeled neurons including GCs and SGCs lead to EPSCs in unlabeled GCs (63 cells tested). However, we did not observe eEPSCs. This data is presented on page 13, (Fig 4F) in the results and discussed on page 20. Since the wide field stimulation should activate terminals and lead to release even if the axon is severed, our data suggest the glutamatergic drive from SGC to GC may be limited.

      As noted above, we have demonstrated the presence of lateral inhibition consistent with data in Stefanelli et al in our new supplementary figure 3. We have also shown that sustained SGC firing upon perforant path stimulations is associated with sustained firing in hilar interneurons (Afrasiabi et al., 2022) indicating presence of the SGC to hilar connectivity in our slice preparation. Therefore, we choose not to undertake challenging 2P guided paired recording of SGCs and mossy cells adjacent to SGC axon terminals reported in Williams et al 2007 to replicate the 9%  SGC to MC synaptic connections. These 2P guided slice physiology studies are outside the technical scope of our study.

      (6) Figure 4: The results are relatively in contradiction with the strong lateral inhibition reported in the past (Stefanelli et al., 2016), but the experimental conditions are different in the two studies. Stimulation of a single labeled GC or SGC may not be sufficient to activate an inhibitory neuron, and for the latter to inhibit an unlabeled GC or SGC. Is it possible to measure the sIPSCs received by unlabelled neurons during optogenetic stimulation of all labelled neurons? Could the authors verify whether under their experimental conditions GCs and SGCs do indeed form connections with interneurons, as reported before? Finally, Stefanelli and colleagues (2016) suggest that lateral inhibition is provided by dendrites- targeting somatostatin interneurons. If the authors are recording in the soma, could they underestimate more distal inhibitory inputs? If so, could they record the dendrites of unlabeled neurons?

      Our new control data (Supplementary Fig. 3) using an AAV mediated CAMKII promotor driven random expression of ChR2 on GCs, similar to Stefanelli et al (2016) demonstrates our ability replicate the lateral inhibition observed by Stefanalli et al. (2016). Thus, our findings more accurately represent lateral inhibition supported by a sparse behaviorally labeled cohort than findings of Stefanelli et al based on randomly labeled neurons. This is now discussed on page 22-23. We respectfully submit that dendritic recordings are outside the scope of the current study.

      We also discuss the possibility that somatic recordings may under sample dendritic inhibitory inputs on page 23 “the possibility that slice recordings lead to underestimation of feedback dendritic inhibition cannot be ruled out.”

      (7) Figure 5: For ease of reading, I would substantially simplify the Results section related to Figure 5, keeping only the main general points of the analysis and the results themselves. The details of the analysis strategy, and the justification for the choices made, are better placed in the Method section (I advise against "data not shown").

      We thank the reviewer for the suggestion to improve accessibility of the results and have moved text related to justification of strategy and controls to the methods. We have also removed references to data not shown.

      (8) Figure 5: why do the authors no longer discriminate between GCs and SGCs?

      Since figure 5 focuses on inputs to labeled pairs versus labeled-unlabeled pairs the pairs include mixed groups with GCs and SGCs. Since the question pertains to inputs rather than cell types, we did not specifically distinguish the cell types. This is now explained in the text on page 15.

      (9) Figure 5: I would like to know more about the temporally connected inputs and their implication in context-dependent recruitment of dentate gyrus neurons. What could be the origin of the shared input received by the neurons recruited after EE exposure? For example, do labeled neurons receive more (temporally correlated or not) inputs from the entorhinal cortex (or any other upstream brain region) than unlabeled neurons? Is there any way (e.g., PP stimulation or any kind of manipulation) to test the causal relationship between temporally correlated input and the context-dependent recruitment of a given neuron?

      We appreciate the reviewer’s comments on the need to examine the source and nature of the correlated inputs to behaviorally labeled neurons. However, the suggested experiments are nontrivial as artificial stimulation of afferent fibers is unlikely to be selective for labeled and unlabeled cells. Given the complexities in design, implementation and interpretation of these experiments we respectfully submit that these are outside the scope of the current study.

      Reviewer #2 (Recommendations for the authors):

      There are a few minor issues limiting the extent of interpretations of the data:

      (1) Only about 7% of the 'engram' cells are re-activated one week after exposure (line 147), it is unclear how meaningful this assembly is given the high number of cells that may either be labelled unrelated to the EE or no longer be part of the memory-related ensemble.

      We now discuss (page 22-23) that the % labeling is consistent with what has been observed in the DG 1 week after fear conditioning (DeNardo et al., 2019) and discuss the caveat that all labeled cells may not represent an engram.  

      (2) Line 215: The wording '32 pairwise connections examined' suggests that there actually were synaptic connections, would recommend altering the wording to 'simultaneously recorded cells examined' to avoid confusion.

      Revised as suggested

    1. Reviewer #2 (Public review):

      In this valuable manuscript, Lin et al attempt to examine the role of long non coding RNAs (lncRNAs) in human evolution, through a set of population genetics and functional genomics analyses that leverage existing datasets and tools. Although the methods are incomplete and at times inadequate, the results nonetheless point towards a possible contribution of long non coding RNAs to shaping humans, and suggest clear directions for future, more rigorous study.

      Comments on revisions:

      I thank the authors for their revision and changes in response to previous rounds of comments. As it had been nearly two years since I last saw the manuscript, I reread the full text to familiarise myself again with the findings presented. While I appreciate the changes made and think they have strengthened the manuscript, I still find parts of it a bit too speculative or hyperbolic. In particular, I think claims of evolutionary acceleration and adaptation require more careful integration with existing human/chimpanzee genetics and functional genomics literature. For example:

      Line 155: "About 5% of genes have significant sequence differences in humans and chimpanzees," This statement needs a citation, and a definition of what is meant by 'significant', especially as multiple lines below instead mention how it's not clear how many differences matter, or which of them, etc.

      line 187: "Notably, 97.81% of the 105141 strong DBSs have counterparts in chimpanzees, suggesting that these DBSs are similar to HARs in evolution and have undergone human-specific evolution." I do not see any support for the inference here. Identifying HARs and acceleration relies on a far more thorough methodology than what's being presented here. Even generously, pairwise comparison between two taxa only cannot polarise the direction of differences; inferring human-specific change requires outgroups beyond chimpanzee.

      line 210: "Based on a recent study that identified 5,984 genes differentially expressed between human-only and chimpanzee-only iPSC lines (Song et al., 2021), we estimated that the top 20% (4248) genes in chimpanzees may well characterize the human-chimpanzee differences" I do not agree with the rationale for this claim, and do not agree that it supports the cutoff of 0.034 used below. I also find that my previous concerns with the very disparate numbers of results across the three archaics have not been suitably addressed.

      I also think that there is still too much of a tendency to assume that adaptive evolutionary change is the only driving force behind the observed results in the results. As I've stated before, I do not doubt that lncRNAs contribute in some way to evolutionary divergence between these species, as do other gene regulatory mechanisms; the manuscript leans down on it being the sole, or primary force, however, and that requires much stronger supporting evidence. Examples include, but are not limited to:

      line 230: "These results reveal when and how HS lncRNA-mediated epigenetic regulation influences human evolution." This statement is too speculative.

      Line 268: "yet the overall results agree well with features of human evolution." What does this mean? This section is too short and unclear.

      Line 325: "and form 198876 HS lncRNA-DBS pairs with target transcripts in all tissues." This has not been shown in this paper - sequence based analyses simply identify the *potential* to form pairs.

      Line 423: "Our analyses of these lncRNAs, DBSs, and target genes, including their evolution and interaction, indicate that HS lncRNAs have greatly promoted human evolution by distinctly rewiring gene expression." I do not agree that this conclusion is supported by the findings presented - this would require significant additional evidence in the form of orthogonal datasets.

      I also return briefly to some of my comments before, in particular on the confounding effects of gene length and transcript/isoform number. In their rebuttal the authors argued that there was no need to control for this, but this does in fact matter. A gene with 10 transcripts that differ in the 5' end has 10 times as many chances of having a DBS than a gene with only 1 transcript, or a gene with 10 transcripts but a single annotated TSS. When the analyses are then performed at the gene level, without taking into account the number of transcripts, this could introduce a bias towards genes with more annotated isoforms. Similarly, line 246 focuses on genes with "SNP numbers in CEU, CHB, YRI are 5 times larger than the average." Is this controlled for length of the DBS? All else being equal a longer DBS will have more SNPs than a shorter one. It is therefore not surprising that the same genes that were highlighted above as having 'strong' DBS, where strength is impacted by length, show up here too.

    2. Author Response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      Summary

      While DNA sequence divergence, differential expression, and differential methylation analysis have been conducted between humans and the great apes to study changes that "make us human", the role of lncRNAs and their impact on the human genome and biology has not been fully explored. In this study, the authors computationally predict HSlncRNAs as well as their DNA Binding sites using a method they have developed previously and then examine these predicted regions with different types of enrichment analyses. Broadly, the analysis is straightforward and after identifying these regions/HSlncRNAs the authors examined their effects using different external datasets.

      I no longer have any concerns about the manuscript as the authors have addressed my comments in the first round of review.

      We thank the reviewer for the valuable comments, which have helped us improve the manuscript.

      Reviewer #2 (Public Review):

      Lin et al attempt to examine the role of lncRNAs in human evolution in this manuscript. They apply a suite of population genetics and functional genomics analyses that leverage existing data sets and public tools, some of which were previously built by the authors, who clearly have experience with lncRNA binding prediction. However, I worry that there is a lack of suitable methods and/or relevant controls at many points and that the interpretation is too quick to infer selection. While I don't doubt that lncRNAs contribute to the evolution of modern humans, and certainly agree that this is a question worth asking, I think this paper would benefit from a more rigorous approach to tackling it.

      I thank the authors for their revisions to the manuscript; however, I find that the bulk of my comments have not been addressed to my satisfaction. As such, I am afraid I cannot say much more than what I said last time, emphasising some of my concerns with regards to the robustness of some of the analyses presented. I appreciate the new data generated to address some questions, but think it could be better incorporated into the text - not in the discussion, but in the results.

      We thank the reviewer for the careful reading and valuable comments. In this round of revision, we address the two main concerns: (1) there is a lack of suitable methods and/or relevant controls at many points, and (2) the interpretation is too quick to infer selection. Based on these comments, we have carefully revised all sections of the manuscript, including the Introduction, Results, Discussion, and Materials and Methods.

      In addition, we have performed two new analyses. Based on the two analyses, we have added one figure and two sections to Results, two sections to Materials and Methods, one figure to Supplementary Notes, and two tables to Supplementary Tables. These results were obtained using new methods and provided more support to the main conclusion.

      To be more responsible, we re-look into the comments made in the first round and respond to them further. The following are point-to-point responses to comments.

      Since many of the details in the Responses-To-Comments are available in published papers and eLife publishes Responses-To-Comments, we do not greatly revise supplementary notes to avoid ostensibly repeating published materials.

      “lack of suitable methods and/or relevant controls”.

      We carefully chose the methods, thresholds, and controls in the study; now, we provide clearer descriptions and explanations.

      (1) We have expanded the last paragraph in Introduction to briefly introduce the methods, thresholds, and controls.

      (2) In many places in Results and Materials and Methods, revisions are made to describe and justify methods, thresholds, and controls.

      (3) Some methods, thresholds, and controls have good consensus, such as FDR and genome-wide background, but others may not, such as the number of genes that greatly differ between humans and chimpanzees. Now, we describe our reasons for the latter situation. For example, we explain that “About 5% of genes have significant sequence differences in humans and chimpanzees, but more show expression differences due to regulatory sequences. We sorted target genes by their DBS affinity and, to be prudential, chose the top 2000 genes (DBS length>252 bp and binding affinity>151) and bottom 2000 genes (DBS length<60 bp but binding affinity>36) to conduct over-representation analysis”.

      (4) We also carefully choose proper words to make descriptions more accurate.

      Responses to the suggestion “new data generated could be better incorporated into the text”.

      (1) We think that this sentence “The occurrence of HS lncRNAs and their DBSs may have three situations – (a) HS lncRNAs preceded their DBSs, (b) HS lncRNAs and their DBSs co-occurred, (c) HS lncRNAs succeeded their DBSs. Our results support the third situation and the rewiring hypothesis”, previously in Discussion, should be better in section 2.3. We have revised it and moved it into the second paragraph of section 2.3.

      (2) Our two new analyses generated new data, and we describe them in Results.

      (3) It is possible to move more materials from Supplementary Notes to the main text, but it is probably unnecessary because the main text currently has eight sub-sections, two tables, and four figures.

      Responses to the comment “the interpretation is too quick to infer selection”.

      (1) When using XP-CLR, iSAFE, Tajima's D, Fay-Wu's H, the fixation index (Fst), and linkage disequilibrium (LD) to detect selection signals, we used the widely adopted parameters and thresholds but did not mention this clearly in the original manuscript. Now, in the first sentence of the second paragraph of section 2.4, we add the phrase “with widely-used parameters and thresholds” (more details are available in section 4.7 and Supplementary Notes).

      (2) It is not the first time we used these tests. Actually, we used these tests in two other studies (Tang et al. Uncovering the extensive trade-off between adaptive evolution and disease susceptibility. Cell Rep. 2022; Tang et al. PopTradeOff: A database for exploring population-specificity of adaptive evolution, disease susceptibility, and drug responsiveness. Comput Struct Biotechnol J. 2023). In this manuscript, section 2.5 and section 4.12 describe how we use these tests to detect signals and infer selection. We also cite the above two published papers from which the reader can obtain more details.

      (3) Also, in section 2.4, we stress that “Signals in considerable DBSs were detected by multiple tests, indicating the reliability of the analysis”.

      To further respond to the comments of “lack of suitable methods” and “this paper would benefit from a more rigorous approach to tackling it”, we have performed two new analyses. The results of the new analyses agree well with previous results and provide new support for the main conclusion. The result of section 2.5 is novel and interesting.

      We write in Discussion “Two questions are how mouse-specific lncRNAs specifically rewire gene expression in mice and how human- and mouse-specific rewiring influences the cross-species transcriptional differences”. To investigate whether the rewiring of gene expression by HS lncRNA in humans is accidental in evolution, we have made further genomic and transcriptomic analyses (Lin et al. Intrinsically linked lineage-specificity of transposable elements and lncRNAs reshapes transcriptional regulation species- and tissue-specifically. doi: https://doi.org/10.1101/2024.03.04.583292). To verify the obtained conclusions, we analyzed the spermatogenesis data from multiple species and obtained supporting evidence (not published).

      I note some specific points that I think would benefit from more rigorous approaches, and suggest possible ways forward for these.

      Much of this work is focused on comparing DNA binding domains in human-unique long-noncoding RNAs and DNA binding sites across the promoters of genes in the human genome, and I think the authors can afford to be a bit more methodical/selective in their processing and filtering steps here. The article begins by searching for orthologues of human lncRNAs to arrive at a set of 66 human-specific lncRNAs, which are then characterised further through the rest of the manuscript. Line 99 describes a binding affinity metric used to separate strong DBS from weak DBS; the methods (line 432) describe this as being the product of the DBS or lncRNA length times the average Identity of the underlying TTSs. This multiplication, in fact, undoes the standardising value of averaging and introduces a clear relationship between the length of a region being tested and its overall score, which in turn is likely to bias all downstream inference, since a long lncRNA with poor average affinity can end up with a higher score than a short one with higher average affinity, and it's not quite clear to me what the biological interpretation of that should be. Why was this metric defined in this way?

      (1) Using RNA:DNA base-pairing rules, other DBS prediction programs return just DBSs with lengths. Using RNA:DNA base-pairing rules and a variant of Smith-Waterman local alignment, LongTarget returns DBSs with lengths and identity values together with DBDs (local alignment makes DBDs and DBSs predicted simultaneously). Thus, instead of measuring lncRNA/DNA binding based on DBS length, we measure lncRNA/DNA binding based on both DBS length and DBD/DBS identity (simply called identity, which is the percentage of paired nucleotides in the RNA and DNA sequences). This allows us to define “binding affinity”. One may think that binding affinity is a more complex function of length and identity. But, according to in vitro studies (see the review Abu Almakarem et al. 2012 and citations therein, and see He et al. 2015 and citations therein), the strength of a triplex is determined by all paired nucleotides (i.e., triplet). Thus, binding affinity=length * identity is biologically reasonable.

      (2) Further, different from predicting DBS upon individual base-pairing rules such as AT-G and CG-C, LongTarget integrates base-pairing rules into rulesets, each covering A, T, C, and G (see the two figures below, which are from He et al 2015). This makes every nucleotide in the RNA and DNA sequences comparable and allows the computation of identity.

      (3) On whether LongTarget may predict unreasonably long DBSs. Three technical features of LongTarget make this highly unlikely (and more unlikely than other programs). The three features are (a) local alignment, (b) gap penalty, and (c) TT penalty (He et al. 2015).

      (4) Some researchers may think that a higher identity threshold (e.g., 0.8 or even higher) makes the predicted DBSs more reliable. This is not true. To explore plausible identity values, we analyzed the distribution of Kcnq1ot1’s DBSs in the large Kcnq1 imprinting region (which contains many known imprinted genes). We found that a high threshold for identity (e.g., 0.8) will make DBSs in many known imprinted genes fail to be predicted. Upon our analysis of many lncRNAs and upon early in vitro experiments, plausible identity values range from 0.4 to 0.8.

      (5) Is it necessary or advisable to define an identity threshold? Since identity values from 0.4 to 0.8 are plausible and identity is a property of a DBS but does not reflect the strength of the whole triplex, it is more reasonable to define a threshold for binding affinity to control predicted DBSs. As explained above, binding affinity = length*identity is a reasonable measure of the strength of a triplex. The default threshold is 60, and given an identity of 0.6 in many triplexes, a DBS with affinity=60 is about 100 bp. Compared with TF binding sites (TFBS), 100 bp is quite long. As we explain in the main text, “taking a DBS of 147 bp as an example, it is extremely unlikely to be generated by chance (p < 8.2e-19 to 1.5e-48)”.

      (6) How to validate predicted DBSs? Validation faces these issues. (a) DBDs are predicted on the genome level, but target transcripts are expressed in different tissues and cells. So, no single transcriptomic dataset can validate all predicted DBSs of a lncRNA. No matter using what techniques and what cells, only a small portion of predicted DBSs can be experimentally captured (validated). (b) The resolution of current experimental techniques is limited; thus, experimentally identified DBSs (i.e., “peaks”) are much longer than computationally predicted DBSs. (c) Experimental results contain false positives and false negatives. So, validation (or performance evaluation) should also consider the ROC curves (Wen et al. 2022).

      (7) As explained above, a long DBS may have a lower binding affinity than a short DBS. A biological interpretation is that the long DBS may accumulate mutations that decrease its binding ability gradually.

      There is also a strong assumption that identified sites will always be bound (line 100), which I disagree is well-supported by additional evidence (lines 109-125). The authors show that predicted NEAT1 and MALAT1 DBS overlap experimentally validated sites for NEAT1, MALAT1, and MEG3, but this is not done systematically, or genome-wide, so it's hard to know if the examples shown are representative, or a best-case scenario.

      (1) We did not make this assumption. Apparently, binding depends on multiple factors, including co-expression of genes and specific cellular context.

      (2) On the second issue, “this is not done systematically, or genome-wide”. We did genome-wide but did not show all results (supplementary fig 2 shows three genomic regions, which are impressively good). In Wen et al. 2022, we describe the overall results.

      It's also not quite clear how overlapping promoters or TSS are treated - are these collapsed into a single instance when calculating genome-wide significance? If, eg, a gene has five isoforms, and these differ in the 3' UTR but their promoter region contains a DBS, is this counted five times, or one? Since the interaction between the lncRNA and the DBS happens at the DNA level, it seems like not correcting for this uneven distribution of transcripts is likely to skew results, especially when testing against genome-wide distributions, eg in the results presented in sections 5 and 6. I do not think that comparing genes and transcripts putatively bound by the 40 HS lncRNAs to a random draw of 10,000 lncRNA/gene pairs drawn from the remaining ~13500 lncRNAs that are not HS is a fair comparison. Rather, it would be better to do many draws of 40 non-HS lncRNAs and determine an empirical null distribution that way, if possible actively controlling for the overall number of transcripts (also see the following point).

      (1) We predicted DBSs in the promoter region of 179128 Ensembl-annotated transcripts and did not merge DBSs (there is no need to merge them). If multiple transcripts share the same TSS, they may share the same DBS, which is natural.

      (2) If the DBSs of multiple transcripts of a gene overlap, the overlap does not raise a problem for lncRNA/DNA binding analysis in specific tissues because usually only one transcript is expressed in a tissue. Therefore, there is no such situation “If, e.g., a gene has five isoforms, and these differ in the 3' UTR but their promoter region contains a DBS, is this counted five times, or one?”

      (3) It is unclear to us what “it seems like not correcting for this uneven distribution of transcripts is likely to skew results” means. Regarding testing against genome-wide distributions, statistically, it is beneficial to make many rounds of random draws genome-wide, but this will take a huge amount of time. Since more variables demand more rounds of drawing, to our knowledge, this is not widely practiced in large-scale transcriptomic data analyses.

      (4) If the difference (result) is small thus calls for rigorous statistical testing, making many rounds of random draws genome-wide is necessary. In our results, “45% of these pairs show a significant expression correlation in specific tissues (Spearman's |rho| >0.3 and FDR <0.05). In contrast, when randomly sampling 10000 pairs of lncRNAs and protein-coding transcripts genome-wide, the percent of pairs showing this level of expression correlation (Spearman's |rho| >0.3 and FDR <0.05) is only 2.3%”.

      Thresholds for statistical testing are not consistent, or always well justified. For instance, in line 142 GO testing is performed on the top 2000 genes (according to different rankings), but there's no description of the background regions used as controls anywhere, or of why 2000 genes were chosen as a good number to test? Why not 1000, or 500? Are the results overall robust to these (and other) thresholds? Then line 190 the threshold for downstream testing is now the top 20% of genes, etc. I am not opposed to different thresholds in principle, but they should be justified.

      (1) We used the g:Profiler program to perform over-representation analysis to identify enriched GO terms. This analysis is used to determine what pre-defined gene sets (GO terms) are more present (over-represented) in a list of “interesting” genes than what would be expected by chance. Specifically, this analysis is often used to examine whether the majority of genes in a pre-defined gene set fall in the extremes of a list: the top and bottom of the list, for example, may correspond to the largest differences in expression between the two cell types. g:Profiler always takes the whole genome as the reference; that is why we did not mention the whole genome reference. We now add in section 2.2 “(with the whole genome as the reference)”.

      (2) Why choosing 2000 but not 2500 genes is somewhat subjective. We now explain that “About 5% of genes have significant sequence differences in humans and chimpanzees, but more show expression differences due to regulatory sequences. We sorted target genes by their DBS affinity and, to be prudential, chose the top 2000 genes (DBS length>252 bp and binding affinity>151) and bottom 2000 genes (DBS length<60 bp but binding affinity>36) to conduct over-representation analysis”.

      Likewise, comparing Tajima's D values near promoters to genome-wide values is unfair, because promoters are known to be under strong evolutionary constraints relative to background regions; as such it is not surprising that the results of this comparison are significant. A fairer comparison would attempt to better match controls (eg to promoters without HS lncRNA DBS, which I realise may be nearly impossible), or generate empirical p-values via permutation or simulation.

      We used these tests to detect selection signals in DBSs but not in the whole promoter regions. Using promoters without HS lncRNA DBS as the control also has risks because promoter regions contain other kinds of regulatory sequences.

      There are huge differences in the comparisons between the Vindija and Altai Neanderthal genomes that to me suggest some sort of technical bias or the such is at play here. e.g. line 190 reports 1256 genes to have a high distance between the Altai Neanderthal and modern humans, but only 134 Vindija genes reach the same threshold of 0.034. The temporal separation between the two specimens does not seem sufficient to explain this difference, nor the difference between the Altai Denisovan and Neanderthal results (2514 genes for Denisovan), which makes me wonder if it is a technical artefact relating to the quality of the genome builds? It would be worth checking.

      We feel it is hard to know whether or not the temporal separation between these specimens is sufficient to explain the differences because many details of archaic humans and their genomes remain unknown and because mechanisms determining genotype-phenotype relationships remain poorly known. After 0.034 was determined, these numbers of genes were determined accordingly. We chose parameters and thresholds that best suit the most important requirements, but these parameters and thresholds may not best suit other requirements; this is a problem for all large-scale studies.     

      Inferring evolution: There are some points of the manuscript where the authors are quick to infer positive selection. I would caution that GTEx contains a lot of different brain tissues, thus finding a brain eQTL is a lot easier than finding a liver eQTL, just because there are more opportunities for it. Likewise, claims in the text and in Tables 1 and 2 about the evolutionary pressures underlying specific genes should be more carefully stated. The same is true when the authors observe high Fst between groups (line 515), which is only one possible cause of high Fst - population differentiation and drift are just as capable of giving rise to it, especially at small sample sizes.

      (1) We add in Discussion that “Finally, not all detected signals reliably indicate positive selection”.

      (2) Our results are that more signals are detected in CEU and CHB than in YRI; this agrees all population genetics studies and implies that our results are not wrongly biased because more samples and larger samples were obtained from CEU and CHB.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The manuscript of Odermatt et al. investigates the volatiles released by two species of Desmodium plants and the response of herbivores to maize plants alone or in combination with these species. The results show that Desmodium releases volatiles in both the laboratory and the field. Maize grown in the laboratory also released volatiles, in a similar range. While female moths preferred to oviposit on maize, the authors found no evidence that Desmodium volatiles played a role in lowering attraction to or oviposition on maize.

      Strengths:

      The manuscript is a response to recently published papers that presented conflicting results with respect to whether Desmodium releases volatiles constitutively or in response to biotic stress, the level at which such volatiles are released, and the behavioral effect it has on the fall armyworm. These questions are relevant as Desmodium is used in a textbook example of pest-suppressive sustainable intercropping technology called push-pull, which has supported tens of thousands of smallholder farmers in suppressing moth pests in maize. A large number of research papers over more than two decades have implied that Desmodium suppresses herbivores in push-pull intercropping through the release of large amounts of volatiles that repel herbivores. This premise has been questioned in recent papers. Odermatt et al. thus contribute to this discussion by testing the role of odors in oviposition choice. The paper confirms that ovipositing FAW preferred maize, and also confirmed that odors released from Desmodium appeared not important in their bioassays.

      The paper is a welcome addition to the literature and adds quality headspace analyses of Desmodium from the laboratory and the field. Furthermore, the authors, some of whom have since long contributed to developing push-pull, also find that Desmodium odors are not significant in their choice between maize plants. This advances our knowledge of the mechanisms through which push-pull suppresses herbivores, which is critically important to evolving the technique to fit different farming systems and translating this mechanism to fit with other crops and in other geographical areas.

      Thank you for your careful assessment of our manuscript.

      Weaknesses:

      Below I outline the major concerns:

      (1) Clear induction of the experimental plants, and lack of reflective discussion around this: from literature data and previous studies of maize and Desmodium, it is clear that the plants used in this study, particularly the Desmodium, were induced. Maize appeared to be primarily manually damaged, possibly due to sampling (release of GLV, but little to no terpenoids, which is indicative of mostly physical stress and damage, for example, one of the coauthor's own paper Tamiru et al. 2011), whereas Desmodium releases a blend of many compounds (many terpenoids indicative of herbivore induction). Erdei et al. also clearly show that under controlled conditions maize, silver leaf and green leaf Desmodium release volatiles in very low amounts. While the condition of the plants in Odermatt et al. may be reflective of situations in push-pull fields, the authors should elaborate on the above in the discussion (see comments) such that the readers understand that the plant's condition during the experiments. This is particularly important because it has been assumed that Desmodium releases typical herbivore-induced volatiles constitutively, which is not the case (see Erdei et al. 2024). This reflection is currently lacking in the manuscript.

      We acknowledge the need for a more reflective discussion on the possible causes of volatile emission due to physical damage. Although the field plants were carefully handled, it is possible that some physical stress may have contributed to the release of volatiles, such as green leaf volatiles (GLVs). We ensured the revised manuscript reflects this nuanced interpretation (lines 282 – 286). However, we also explained more clearly that our aim was to capture the volatile emission of plants used by farmers under realistic conditions and moth responses to these plants, not to be able to attribute the volatile emission to a specific cause (lines 115 – 117). We revised relevant passages throughout the results and discussion to ensure that we do not make any claims about the reason for volatile emissions, and that our claims regarding these plants and their headspace being representative of the system as practiced by farmers are supported. In the revised manuscript we provide a new supplementary table S2 that additionally shows the classification of the identified substances, which also shows that the majority of the substances that were found in the headspace of the sampled plants of Desmodium intortum or Desmodium incanum are monoterpenes, sesquiterpenes, or aromatic compounds, and not GLVs (that are typically emitted following damage).

      (2) Lack of controls that would have provided context to the data: The experiments lack important controls that would have helped in the interpretation:

      2a The authors did not control the conditions of the plants. To understand the release of volatiles and their importance in the field, the authors should have included controlled herbivory in both maize and Desmodium. This would have placed the current volatile profiles in a herbivory context. Now the volatile measurements hang in midair, leading to discussions that are not well anchored (and should be rephrased thoroughly, see eg lines 183-188). It is well known that maize releases only very low levels of volatiles without abiotic and biotic stressors. However, this changes upon stress (GLVs by direct, physical damage and eg terpenoids upon herbivory, see above). Erdei et al. confirm this pattern in Desmodium. Not having these controls, means that the authors need to put the data in the context of what has been published (see above).

      We appreciate this concern. Our study aimed to capture the real-world conditions of push-pull fields, where Desmodium and maize grow in natural environments without the direct induction of herbivory for experimental purposes (lines 115 – 117). We agree that in further studies it would be important to carry out experiments under different environmental conditions, including herbivore damage. However, this was not within the scope of the present study.

      2b It would also have been better if the authors had sampled maize from the field while sampling Desmodium. Together with the above point (inclusion of herbivore-induced maize and Desmodium), the levels of volatile release by Desmodium would have been placed into context.

      We acknowledge that sampling maize and other intercrop plants, such as edible legumes, alongside Desmodium in the push-pull field would have allowed us to make direct comparisons of the volatile profiles of different plants in the push-pull system under shared field conditions. Again, this should be done in future experiments but was beyond the scope of the present study. Due to the amount of samples we could handle given cost and workload, we chose to focus on Desmodium because there is much less literature on the volatile profiles of field-grown Desmodium than maize plants in the field: we are aware of one study attempting to measure field volatile profiles from Desmodium intortum (Erdei et al. 2024) and no study attempting this for Desmodium incanum. We pointed out this justification for our focus on Desmodium in the manuscript (lines 435 - 439). Additionally, we suggested in the discussion that future studies should measure volatile profiles from all plants commonly used in push-pull systems alongside Desmodium (lines 267 – 269).

      2c To put the volatiles release in the context of push-pull, it would have been important to sample other plants which are frequently used as intercrop by smallholder farmers, but which are not considered effective as push crops, particularly edible legumes. Sampling the headspace of these plants, both 'clean' and herbivore-induced, would have provided a context to the volatiles that Desmodium (induced) releases in the field - one would expect unsuccessful push crops to not release any of these 'bioactive' volatiles (although 'bioactive' should be avoided) if these odors are responsible for the pest suppressive effect of Desmodium. Many edible intercrops have been tested to increase the adoption of push-pull technology but with little success.

      We very much agree that such measurements are important for the longer-term research program in this field. But again, for the current study this would have exploded the size of the required experiment. Regarding bioactivity, we have been careful to use the phrase "potentially bioactive" solely when referring to findings from the literature (lines 99–103), in order to avoid making any definitive claims about our own results.

      Because of the lack of the above, the conclusions the authors can draw from their data are weakened. The data are still valuable in the current discussion around push-pull, provided that a proper context is given in the discussion along the points above.

      We think our revisions made the specific aims of this study more explicit and help to avoid misleading claims.

      (3) 'Tendency' of the authors to accept the odor hypothesis (i.e. that Desmodium odors are responsible for repelling FAW and thereby reduce infestation in maize under push-pull management) in spite of their own data: The authors tested the effects of odor in oviposition choice, both in a cage assay and in a 'wind tunnel'. From the cage experiments, it is clear that FAW preferred maize over Desmodium, confirming other reports (including Erdei et al. 2024). However, when choosing between two maize plants, one of which was placed next to Desmodium to which FAW has no tactile (taste, structure, etc), FAW chose equally. Similarly in their wind tunnel setup (this term should not be used to describe the assay, see below), no preference was found either between maize odor in the presence or absence of Desmodium. This too confirms results obtained by Erdei et al. (but add an important element to it by using Desmodium plants that had been induced and released volatiles, contrary to Erdei et al. 2024). Even though no support was found for repellency by Desmodium odors, the authors in many instances in the manuscript (lines 30-33, 164-169, 202, 279, 284, 304-307, 311-312, 320) appear to elevate non-significant tendencies as being important. This is misleading readers into thinking that these interactions were significant and in fact confirming this in the discussion. The authors should stay true to their own data obtained when testing the hypothesis of whether odors play a role in the pest-suppressive effect of push-pull.

      We appreciate this feedback and agree that we may have overstated claims that could not be supported by strict significance tests. However, we believe that non-significant tendencies can still provide valuable insights. In the revised version of the manuscript, we ensured a clear distinction between statistically significant findings and non-significant trends and remove any language that may imply stronger support for the odor hypothesis than what the data show in all the lines that were mentioned.

      (4) Oviposition bioassay: with so many assays in close proximity, it is hard to certify that the experiments are independent. Please discuss this in the appropriate place in the discussion.

      We have pointed this out in the submitted manuscript in lines 275 – 279. Furthermore, we included detailed captions to figure 4 - supporting figure 3 & figure 4 - supporting figure 4. We are aware that in all such experiments there is a danger of between-treatment interference, which we pointed out for our specific case. We stated that with our experimental setup we tried to minimize interference between treatments by spacing and temporal staggering. We would like to point out that this common caveat does not invalidate experimental designs when practicing replication and randomization. We assume that insects are able to select suitable oviposition sites in the background of such confounding factors under realistic conditions.

      (5) The wind tunnel has a number of issues (besides being poorly detailed):

      5a. The setup which the authors refer to as a 'wind tunnel' does not qualify as a wind tunnel. First, there is no directional flow: there are two flows entering the setup at opposite sides. Second, the flow is way too low for moths to orient in (in a wind tunnel wind should be presented as a directional cue. Only around 1.5 l/min enters the wind tunnel in a volume of 90 l approximately, which does not create any directional flow. Solution: change 'wind tunnel' throughout the text to a dual choice setup /assay.)

      We agree with these criticisms and changed the terminology accordingly from ‘wind tunnel’ to ‘dual choice assay’. We have now conducted an additional experiment which we called ‘no-choice assay’ that provides conditions closer to a true wind tunnel. The setup of the added experiment features an odor entry point at only one side of the chamber to create a more directional airflow. Each treatment (maize alone, maize + D. intortum, maize + D. incanum, and a control with no plants) was tested separately, with only one treatment conducted per evening to avoid cross-contamination, as described in the methods section of the no-choice assay.

      5b. There is no control over the flows in the flight section of the setup. It is very well possible that moths at the release point may only sense one of the 'options'. Please discuss this.

      We added this to the discussion (lines 369 – 374). The new no-choice assays also address this concern by using a setup with laminar flow.

      5c. Too low a flow (1,5 l per minute) implies a largely stagnant air, which means cross-contamination between experiments. An experiment takes 5 minutes, but it takes minimally 1.5 hours at these flows to replace the flight chamber air (but in reality much longer as the fresh air does not replace the old air, but mixes with it). The setup does not seem to be equipped with e.g. fans to quickly vent the air out of the setup. See comments in the text. Please discuss the limitations of the experimental setup at the appropriate place in the discussion.

      We added these limitations to the discussion and addressed these concerns with new experiments (see answer 5a).

      5d. The stimulus air enters through a tube (what type of tube, diameter, length, etc) containing pressurized air (how was the air obtained into bags (type of bag, how is it sealed?), and the efflux directly into the flight chamber (how, nozzle?). However, it seems that there is no control of the efflux. How was leakage prevented, particularly how the bags were airtight sealed around the plants? 

      We added the missing information to the methods and provided details about types of bags, manufacturers, and pre-treatments in the method section. In short, PTFE tubes connected bagged plants to the bioassay setup and air was pumped in at an overpressure, so leakage was not eliminated but contamination from ambient air was avoided.

      5e. The plants were bagged in very narrowly fitting bags. The maize plants look bent and damaged, which probably explains the GLVs found in the samples. The Desmodium in the picture (Figure 5 supplement), which we should assume is at least a representative picture?) appears to be rather crammed into the bag with maize and looks in rather poor condition to start with (perhaps also indicating why they release these volatiles?). It would be good to describe the sampling of the plants in detail and explain that the way they were handled may have caused the release of GLVs.

      We included a more detailed description of the plant handling and bagging processes to the methods to clarify how the plants were treated during the dual-choice and the no-choice assays reported in the revised manuscript. We politely disagree that the maize plants were damaged and the Desmodium plants not representative of those encountered in the field. The plants were grown in insect-proof screen houses to prevent damage by insects and carefully curved without damaging them to fit into the bag. The Desmodium plant pictured was D. incanum, which has sparser foliage and smaller leaves than D. intortum.

      (6) Figure 1 seems redundant as a main figure in the text. Much of the information is not pertinent to the paper. It can be used in a review on the topic. Or perhaps if the authors strongly wish to keep it, it could be placed in the supplemental material.

      We think that Figure 1 provides essential information about the push-pull system and the FAW. To our knowledge, this partly contradictory evidence so far has not been synthesized in the literature. We realize that such a figure would more commonly be provided in a review article, but we do not think that the small number of studies on this topic so far justify a stand-alone review. Instead, the introduction to our manuscript includes a brief review of these few studies, complemented by the visual summary provided in Figure 1 and a detailed supplementary table.

      Reviewer #2 (Public review):

      Based on the controversy of whether the Desmodium intercrop emits bioactive volatiles that repel the fall armyworm, the authors conducted this study to assess the effects of the volatiles from Desmodium plants in the push-pull system on behavior of FAW oviposition. This topic is interesting and the results are valuable for understanding the push-pull system for the management of FAW, the serious pest. The methodology used in this study is valid, leading to reliable results and conclusions. I just have a few concerns and suggestions for improvement of this paper:

      (1) The volatiles emitted from D. incanum were analyzed and their effects on the oviposition behavior of FAW moth were confirmed. However, it would be better and useful to identify the specific compounds that are crucial for the success of the push-pull system.

      We fully agree that identifying specific volatile compounds responsible for the push-pull effect would provide valuable insights into the underlying mechanisms of the system. However, the primary focus of this study was to address the still unresolved question whether Desmodium emits detectable or “significant” amounts of volatiles at all under field conditions, and the secondary aim was to test whether we could demonstrate a behavioral effect of Desmodium headspace on FAW moths. Before conducting our experiments, we carefully considered the option of using single volatile compounds and synthetic blends in bioassays. We decided against this because we judged that the contradictory evidence in the literature was not a sufficient basis for composing representative blends. Furthermore, we think it is an important first step to test f. or behavioral responses to the headspaces of real plants. We consider bioassays with pure compounds to be important for confirmation and more detailed investigation in future studies. There was also contradictory evidence in the literature regarding moth responses to plants. We thus opted to focus on experiments with whole plants to maintain ecological relevance.

      (2) That would be good to add "symbols" of significance in Figure 4 (D).

      We report the statistical significance of the parameters in Figure 4 (D) in Table 3, which shows the mixed model applied for oviposition bioassays. While testing significance between groups is a standard approach, we used a more robust model-based analysis to assess the effects of multiple factors simultaneously. We provided a cross-reference to Table 3 from the figure description of Figure 4 (D) for readers to easily find the statistical details.

      (3) Figure A is difficult for readers to understand.

      Unfortunately, it is not entirely clear which specific figure is being referred to as "Figure A" in this comment. We tried to keep our figures as clear as possible.

      (4) It will be good to deeply discuss the functions of important volatile compounds identified here with comparison with results in previous studies in the discussion better.

      Our study does not provide strong evidence that specific volatiles from Desmodium plants are important determinants of FAW oviposition or choice in the push-pull system. Therefore, we prefer to refrain from detailed discussions of the potential importance of individual compounds. However, in the revised version, we provide an additional table S2 which identifies the overlap with volatiles previously reported from Desmodium, as only the total numbers are summarized in the discussion of the submitted paper.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The points raised are largely self-explanatory as to what needs to be done to fully resolve them. At a minimum the text needs to be seriously revised to:

      (1) reflect the data obtained.

      (2) reflect on the limitations of their experimental setup and data obtained.

      (3) put the data obtained and its limitations in what these tell us and particularly what not. Ideally, additional headspace measurements are taken, including from herbivory and 'clean' maize and Desmodium (in which there is better control of biotic and abiotic stress), as well as other crops commonly planted as companion crops with maize (but none of them reducing pest pressure).

      Thank you for this summary. Please see our detailed responses above.

      In addition to the main points of critique provided above, I have provided additional comments in the text (https://elife-rp.msubmit.net/elife-rp_files/2024/07/18/00134767/00/134767_0_attach_28_25795_convrt.pdf). These elaborate on the above points and include some new ones too. These are the major points of critique, which I hope the authors can address.

      Thank you very much for these detailed comments.

      Reviewer #2 (Recommendations for the authors):

      It is important to note that the original push-pull system was developed against stemborers and involved Napier grass (still used) around the field, which attracts stemborer moths, and Molasses grass as the intercrop that repels the moths and attracts parasitoids. Later, Molasses grass was replaced by desmodiums because it is a legume that fixes nitrogen and therefore can increase nitrate levels in the soil, but most importantly because it prevents germination of the parasitic Striga weed. The possible repellent effect of desmodium on pests and attraction of natural enemies was never properly tested but assumed, probably to still be able to use the push-pull terminology. This "mistake" should be recognized here and in future publications. It is a real pity that the controversy over the repellent effect of desmodium distracts from the amazing success of the push-pull system, also against the fall armyworm.

      We thank the reviewer for pointing out these issues, which are part of the reason for our Figure 1 and why we would like to keep it. We have described this development of the system in the introduction to better present the push-pull system. Our aim in Figure 1 and Table S1 is to highlight both the evidence of the system's success, and the gaps in our understanding, regarding specifically control of damage from the FAW.

    1. Reviewer #1 (Public review):

      Summary:

      This paper addresses an important and topical issue: how temporal context, at various time scales, affects various psychophysical measures, including reaction times, accuracy, and localization. It offers interesting insights, with separate mechanisms for different phenomena, which are well discussed.

      Strengths:

      The paradigm used is original and effective. The analyses are rigorous.

      Weaknesses:

      Here I make some suggestions for the authors to consider. Most are stylistic, but the issue of precision may be important.

      (1) The manuscript is quite dense, with some concepts that may prove difficult for the non-specialist. I recommend spending a few more words (and maybe some pictures) describing the difference between task-relevant and task-irrelevant planes. Nice technique, but not instantly obvious. Then we are hit with "stimulus-related", which definitely needs some words (also because it is orthogonal to neither of the above).

      (2) While I understand that the authors want the three classical separations, I actually found it misleading. Firstly, for a perceptual scientist to call intervals in the order of seconds (rather than milliseconds), "micro" is technically coming from the raw prawn. Secondly, the divisions are not actually time, but events: micro means one-back paradigm, one event previously, rather than defined by duration. Thirdly, meso isn't really a category, just a few micros stacked up (and there's not much data on this). And macro is basically patterns, or statistical regularities, rather than being a fixed time. I think it would be better either to talk about short-term and long-term, which do not have the connotations I mentioned. Or simply talk about "serial dependence" and "statistical regularities". Or both.

      (3) More serious is the issue of precision. Again, this is partially a language problem. When people use the engineering terms "precision" and "accuracy" together, they usually use the same units, such as degrees. Accuracy refers to the distance from the real position (so average accuracy gives bias), and precision is the clustering around the average bias, usually measured as standard deviation. Yet here accuracy is percent correct: also a convention in psychology, but not when contrasting accuracy with precision, in the engineering sense. I suggest you change "accuracy" to "percent correct". On the other hand, I have no idea how precision was defined. All I could find was: "mixture modelling was used to estimate the precision and guess rate of reproduction responses, based on the concentration (k) and height of von Mises and uniform distributions, respectively". I do not know what that means.

      (4) Previous studies show serial dependence can increase bias but decrease scatter (inverse precision) around the biased estimate. The current study claims to be at odds with that. But are the two measures of precision relatable? Was the real (random) position of the target subtracted from each response, leaving residuals from which the inverse precision was calculated? (If so, the authors should say so..) But if serial dependence biases responses in essentially random directions (depending on the previous position), it will increase the average scatter, decreasing the apparent precision.

      (5) I suspect they are not actually measuring precision, but location accuracy. So the authors could use "percent correct" and "localization accuracy". Or be very clear what they are actually doing.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1:

      (1) Developmental time series:

      It was not entirely clear how this experiment relates to the rest of the manuscript, as it does not compare any effects of transport within or across species.

      Implemented Changes:  

      The importance of species arrival timing for community assembly is addressed in both the introduction and discussion. To accommodate the reviewer’s concerns and further emphasize this point, we have added a clarifying sentence to the results section and included an illustrative example with supporting literature in the discussion.

      Results: Clarifying the timing of initial microbial colonization is essential for determining whether and how priority effects mediate community assembly of vertically transmitted microbes in early life, or whether these microbes arrive into an already established microbial landscape. We used non-sterile frogs of our captive laboratory colony (…)

      Discussion: For example, early microbial inoculation has been shown to increase the relative abundance of beneficial taxa such as Janthinobacterium lividum (Jones et al., 2024), whereas efforts to introduce the same probiotic into established adult communities have not led to long-term persistence (Bletz, 2013; Woodhams et al., 2016).  

      (2) Cross-foster experiment:

      The "heterospecific transport" tadpoles were manually brushed onto the back of the surrogate frog, while the "biological transport" tadpoles were picked up naturally by the parent. It is a little challenging to interpret the effect of caregiver species since it is conflated with the method of attachment to the parent. I noticed that the uptake of Os-associated microbes by Os-transported tadpoles seemed to be higher than the uptake of Rv-associated microbes by Rv-associated tadpoles (comparing the second box from the left to the rightmost boxplot in panel S2C). Perhaps this could be a technical artifact if manual attachment to Os frogs was more efficient than natural attachment to Rv frogs.

      I was also surprised to see so much of the tadpole microbiome attributed to Os in tadpoles that were not transported by Os frogs (25-50% in many cases). It suggests that SourceTracker may not be effectively classifying the taxa.

      Implemented Changes:  

      Methods (Study species, reproductive strategies and life history): Oophaga sylvatica (Os) (Funkhouser, 1956; CITES Appendix II, IUCN Conservation status: Near Threatened) is a large, diurnal poison frog (family Dendrobatidae) inhabiting lowland and submontane rainforests in Colombia and Ecuador. While male Os care for the clutch of up to seven eggs, females transport 1-2 tadpoles at a time to water-filled leaf axils where tadpoles complete their development (Pašukonis et al., 2022; Silverstone, 1973; Summers, 1992). Notably, females return regularly to these deposition sites to provision their offspring with unfertilized eggs.

      Discussion: Most poison frogs transport tadpoles on their backs, but the mechanism of adherence remains unclear. Similar to natural conditions, tadpoles that are experimentally placed onto a caregiver’s back also gradually adhere to the dorsal skin, where they remain firmly attached for several hours as the adult navigates dense terrain. Although transport durations were standardized, species-specific factors- such as microbial density at the contact site, microbial taxa identity, and skin physiology such as moisture -could influence microbial transmission between the transporting frog and the tadpole. While these differences may have contributed to varying transmission efficacies observed between the two frog species in our experiment, none of these factors should compromise the correct microbial source assignment. We thus conclude that transporting frogs serve as a source of microbiota for transported tadpoles. However, further studies on species-specific physiological traits and adherence mechanisms are needed to clarify what modulates the efficacy of microbial transmission during transport, both under experimental and natural conditions.  

      Methods (Vertical transmission): Cross-fostering tadpoles onto non-parental frogs has been used previously to study navigation in poison frogs (Pašukonis et al., 2017). According to our experience, successful adherence to both parent and heterospecific frogs depends on the developmental readiness of tadpoles, which must have retracted their gills and be capable of hatching from the vitelline envelope through vigorous movement. Another factor influencing cross-fostering success is the docility of the frog during initial attachment, as erratic movements easily dislodge tadpoles before adherence is established. Rv are small, jumpy frogs that are easily stressed by handling, making experimental fostering of tadpoles—even their own— impractical. Therefore, we favored an experimental design where tadpoles initiate natural transport and parental frogs pick them up with a 100% success rate. We chose the poison frog Os as foster frogs because adults are docile, parental care in this species involves transporting tadpoles, and skin microbial communities differ from Rv- a critical prerequisite for our SourceTracker analysis. The use of the docile Os as the foster species enabled a 100% cross-fostering success rate, with no notable differences in adherence strength after six hours.

      Methods (Sourcetracker Analysis): To assess training quality, we evaluated model selfassignment using source samples. We selected the model trained on a dataset rarefied to the read depth of the adult frog sample with the lowest read count (48162 reads), as it showed the best overall self-assignment performance, whereas models trained on datasets rarefied to the lowest overall read depth performed worse. Unlike studies using technical replicates, our source samples represent distinct biological individuals and sampling timepoints, where natural microbiome variability is expected within each source category. Consequently, we considered self-assignment rates above 70% acceptable. All source samples were correctly assigned to their respective categories (Rv, Os, or control), but with varying proportions of reads assigned as 'Unknown'. Adult frog sources were reliably selfidentified with high confidence (Os: 97.2% median, IQR = 1.4; Rv: 76.3% median, IQR = 38.1). Adult R. variabilis frogs displayed a higher proportion of 'Unknown' assignments compared to O. sylvatica, likely reflecting greater biological variability among individuals and/or a higher proportion of rare taxa not well captured in the training set. The control tadpole source showed lower self-assignment accuracy (median = 30.5%, IQR = 17.1), as expected given the low microbial biomass of these samples, which resulted in low read depth. Low readdepth limits the information available to inform the iterative updating steps in Gibbs sampling and reduces confidence in source assignments. We therefore verified the robustness of our results by performing the second Sourcetracker analysis as described above, training the model only on adult sources and assigning all tadpoles, including lowbiomass controls, as sinks (as described above). Self-assignment rates for the second training set varied (O. sylvatica: 79.2% median, IQR = 29; R. variabilis: 96.6% median, IQR = 3.7), while results remained consistent across analyses, supporting the reliability of our findings.

      (3) Cross-species analysis:

      Like the developmental time series, this analysis doesn't really address the central question of the manuscript. I don't think it is fair for the authors to attribute the difference in diversity to parental care behavior, since the comparison only includes n=2 transporting species and n=1 non-transporting species that differ in many other ways. I would also add that increased diversity is not necessarily an expectation of vertical transmission. The similarity between adults and tadpoles is likely a more relevant outcome for vertical transmission, but the authors did not find any evidence that tadpole-adult similarity was any higher in species with tadpole transport. In fact, tadpoles and adults were more similar in the non-transporting species than in one of the transporting species (lines 296-298), which seems to directly contradict the authors' hypothesis. I don't see this result explained or addressed in the Discussion.

      To address the reviewer’s concerns, we implemented the following changes:  

      Results:

      We rephrased the following sentence from the results part:  

      “These variations may therefore be linked to differing reproductive traits: Af and Rv lay terrestrial egg clutches and transport hatchlings to water, whereas Ll, a non-transporting species, lays eggs directly in water.”

      To read

      “These variations may therefore reflect differences in life history traits among the three species.”

      We moved the information on differing reproductive strategies into the Discussion, where it contributes to a broader context alongside other life history traits that may influence community diversity.

      Discussion (1): We added to our discussion that increased microbial diversity was not an expected outcome of vertical transmission.

      “However, increased microbial diversity is not a known outcome of vertical transmission, and further studies across a broader range of transporting and non-transporting species are needed to assess the role of transport in shaping diversity of tadpole-associated microbial communities.”

      Discussion (2): Likewise, communities associated with adults and tadpoles of transporting species were no more similar than those of non-transporting species. While poison frog tadpoles do acquire caregiver-specific microbes during transport, most of these microbes do not persist on the tadpoles' skin long-term. This pattern can likely be attributed to the capacity of tadpole skin- and gut microbiota to flexibly adapt to environmental changes (Emerson & Woodley, 2024; Santos et al., 2023; Scarberry et al., 2024). It may also reflect the limited compatibility of skin microbiota from terrestrial adults with aquatic habitats or tadpole skin, which differs structurally from that of adults (Faszewski et al., 2008). As a result, many transmitted microbes are probably outcompeted by microbial taxa continuously supplied by the aquatic environment. Interestingly, microbial communities of the non-transporting Ll were more similar to their adult counterparts than those of poison frogs. This pattern might reflect differences in life history among the species. While adult Ll commonly inhabit the rock pools where their tadpoles develop, adults of the two poison frog species visit tadpole nurseries only sporadically for deposition. These differences in habitat use may result in adult Ll hosting skin microbiota that are better adapted to aquatic environments as compared to Rv and Af. Additionally, their presence in the tadpoles’ habitat could make Ll a more consistent source of microbiota for developing tadpoles.

      (4) Field experiment: The rationale and interpretation of the genus-level network are not clear, and the figure is not legible. What does it mean to "visualize the microbial interconnectedness" or to be a "central part of the community"? The previous sentences in this paragraph (lines 337-343) seem to imply that transfer is parent-specific, but the genuslevel network is based on the current adult frogs, not the previous generation of parents that transported them. So it is not clear that the distribution or co-distribution of these taxa provides any insight into vertical transmission dynamics.

      Implemented Changes:  

      We appreciate the reviewer’s close reading and understand how the inclusion of the network visualization without further clarification may have led to confusion. To clarify, the network was constructed from all adult frogs in the population, including—but not limited to—the parental frogs examined in the field experiment. We do not make any claims about the origin of the microbial taxa found on parental frogs. Rather, our aim was to illustrate how genera retained on tadpoles (following potential vertical transmission) contribute to the skin microbial communities of adult frogs of this population beyond just the parental individuals. This finding supports the observation that these retained taxa are generally among the most abundant in adult frogs. However, since this information is already presented in Table S8 and the figure is not essential to the main conclusions, we have removed Supplementary Figure S5 and the accompanying sentence: “A genus-level network constructed from 44 adult frogs shows that the retained genera make up a central part of the community of adult Rv in wild populations (Fig. S5).” We have adjusted the Methods section accordingly.

      Reviewer #2:

      I did not find any major weaknesses in my review of this paper. The work here could potentially benefit from absolute abundance levels for shared ASVs between adults and tadpoles to more thoroughly understand the influences of vertical transmission that might be masked by relative abundance counts. This would only be a minor improvement as I think the conclusions from this work would likely remain the same, however.

      In response to the reviewer’s suggestion, we estimated the absolute abundance of specific ASVs for all samples of tadpoles in which Sourcetracker identified shared ASVs between adults and tadpoles. The resulting scaled absolute abundance values (in copies/μL and copies per tadpole) are provided in Table S10, and a description of the method has been incorporated into the revised Methods section of the manuscript. To support the robustness of this approach in our dataset, we additionally designed an ASV-specific system for ASV24902-Methylocella. Candidate primers were assessed for specificity by performing local BLASTn alignments against the full set of ASV sequences identified in the respective microbial communities of tadpoles. We optimized the annealing temperature via gradient PCR and confirmed primer specificity through Sanger sequencing of the PCR product (Forward: 5′–GAGCACGTAGGCGGATCT–3′ Reverse: 5′–GGACTACNVGGGTWTCTAAT–3′). Using this approach, we confirmed that the relative abundance of ASV24902 (18.05% in the amplicon sequencing data) closely matched its proportion of the absolute 16S rRNA copy number in transported tadpole 6 (18.01%). While we intended to quantify all shared ASVs, we were limited to this single target due to insufficient material for optimizing the assays. As this particular ASV was also detected in the water associated with the same tadpole, we chose not to include this confirmation in the manuscript. Nevertheless, the close match supports the reliability of our approach for scaling absolute abundances in this dataset.

      Results: Absolute abundances of shared ASVs likely originating from the parental source pool (as identified by Sourcetracker) after one month of growth ranged from 7804 to 172326 copies per tadpole (Table S10).

      Methods: Quantitative analysis of 16S rRNA copy numbers with digital PCR (dPCR)

      Absolute abundances were estimated for ASVs that were shared between tadpoles after a one-month growth period and their respective caregivers, and for which Sourcetracker analysis identified the caregiver as a likely source of microbiota. We followed the quantitative sequencing framework described by Barlow et al. (2020), measuring total microbial load via digital PCR (dPCR) with the same universal 16S rRNA primers used to amplify the v4 region in our sequencing dataset. Absolute 16S rRNA copy numbers obtained from dPCR were then multiplied by the relative abundances from our amplicon sequencing dataset to calculate ASV-specific scaled absolute abundances. All dPCR reactions were carried out on a QIAcuity Digital PCR System (Qiagen) using Nanoplates with a 8.5K partition configuration, using the following cycling program: 95°C for 2 minutes, 40 cycles of 95°C for 30 seconds and 52°C for 30 seconds and 72°C for 1 minute, followed by 1 cycle of 40°C for 5 minutes. Reactions were prepared using the QIAcuity EvaGreen PCR Kit (Qiagen, Cat. No. 250111) with 2 µL of DNA template per reaction, following the manufacturer's protocol, and included a negative no-template control and a cleaned and sequenced PCR product as positive control. Samples were measured in triplicates and serial dilutions were performed to ensure accurate quantification. Data were processed with the QIAcuity Software Suite (v3.1.0.0). The threshold was set based on the negative and positive controls in 1D scatterplots. We report mean copy numbers per microliter with standard deviations, correcting for template input, dPCR reaction volume, and dilution factor. Mean copy numbers per tadpole were additionally calculated by accounting for the DNA extraction (elution) volume.  

      Recommendations for the authors:

      Reviewer #1:

      (1) Figure 1b summarizes the ddPCR data as a binary (detected/not detected), but this contradicts the main text associated with this figure, which describes bacteria as present, albeit in low abundances, in unhatched embryos (lines 145-147). Could the authors keep the diagram of tadpole development, which I find very useful, but add the ddPCR data from Figure S1c instead of simply binarizing it as present/absent?

      We appreciate the reviewer’s positive feedback on the clarity of the figure. We agree that presenting the ddPCR data in a more quantitative manner provides a more accurate representation of bacterial abundance across developmental stages. In response, we have retained the developmental diagram, as suggested, and replaced the binary (detected/not detected) information in Figure 1B with rounded mean values for each stage. To complement this, we have included mean values and standard deviations in Table S1. The corresponding text in the main manuscript and legends has been revised accordingly to reflect these changes.  

      (2) More information about the foster species, Oophaga sylvatica, would be helpful. Are they sympatric with Rv? Is their transporting behavior similar to that of Rv?

      We thank the reviewer for this helpful comment. In response, we have added further details on the biology and parental care behavior of Oophaga sylvatica, including information on its distribution range. The species does not overlap with Ranitomeya variabilis at the specific study site where the field work was conducted, although the species are sympatric in other countries. These additions have been incorporated into the Methods section under "Study species, reproductive strategies, and life history."  

      (3) Plotting the proportion of each tadpole microbiome attributed to R. variabilis and the proportion attributed to O. sylvatica on the same plot is confusing, as these points are nonindependent and there is no way for the reader to figure out which points originated from the same tadpole. I would suggest replacing Figure 1D with Figure S2C, which (if I understand correctly) displays the same data, but is separated according to source.

      We agree with the reviewer that Figure S2C allows for clearer interpretation of our results. In response, we implemented the suggested change and replaced Figure 1D with the alternative visualization previously shown in Figure S2C, which displays the same data separated by source. To provide readers with a complementary overview of the full dataset, we have retained the original combined plot in the supplementary material as Figure S2D.

      (4) On the first read, I found the use of "transport" in the cross-fostering experiment confusing until I understood that they weren't being transported "to" anywhere in particular, just carried for 6 hours. A change of phrasing might help readers here.

      We acknowledge the reviewer’s concern and have replaced “transported” with “carried” to avoid confusion for readers who may be unfamiliar with the behavioral terminology. However, because “transport” is the term widely used by specialists to describe this behavior, we now introduce it in the context of the experimental design with the following phrasing:

      “For this design, sequence-based surveys of amplified 16S rRNA genes were used to assess the composition of skin-associated microbial communities on tadpoles and their adult caregivers (i.e., the frogs carrying the tadpoles, typically referred to as ‘transporting’ frogs).”

      (5) "Horizontal transfer" typically refers to bacteria acquired from other hosts, not environmental source pools (line 394).

      We addressed this concern by rephrasing the sentence in the Discussion to avoid potential confusion. The revised text now reads:

      “Across species, newborns might acquire bacteria not only through transfer from environmental source pools and other hosts (…)”  

      (6) The authors suggest that tadpole transport may have evolved in Rv and Af to promote microbial diversity because "increased microbial diversity is linked to better health outcomes" (lines 477-479). It is often tempting to assume that more diversity is always better/more adaptive, but this is not universally true. The fact that the Ll frogs seem to be doing fine in the same environment despite their lower microbiome diversity suggests that this interpretation might be too far of a reach based on the data here.

      We appreciate the reviewer’s concern, agree that increased microbial diversity is not inherently advantageous and have revised the paragraph to make this clearer.  

      “While increased microbial diversity is not inherently advantageous, it has been associated with beneficial outcomes such as improved immune function, lower disease risk, and enhanced fitness in multiple other vertebrate systems.”

      However, rather than claiming that greater diversity is always advantageous, we suggest that this possibility should not be excluded and consider it a relevant aspect of a comprehensive discussion. We also note that whether poison frog tadpoles perform equally well with lower microbial diversity remains an open question. Drawing such conclusions would require experimental validation and cannot be inferred from comparisons with an evolutionarily distant species that differs in life history.

      Reviewer #2:

      (1) Figure 2: Are the data points in C a subset (just the tadpoles for each species) of B? The numbers look a little different between them. The number of observed ASVs in panel B for Rv look a bit higher than the observed ASVs in panel C.

      The data shown in panel C are indeed a subset of the samples presented in panel B, focusing specifically on tadpoles of each species. The slight differences in the number of observed ASVs between panels result from differences in rarefaction depth between comparisons: due to variation in sequencing depth across species and life stages, we performed rarefaction separately for each comparison in order to retain the highest number of taxa while ensuring comparability within each group. Although we acknowledge that this is not a standard approach, we found that results were consistent when rarefying across the full dataset, but chose the presented approach to better accommodate variation in our sample structure. This methodological detail is described in the Methods section:

      “All alpha diversity analyses were conducted with datasets rarefied to 90% of the read number of the sample with the fewest reads in each comparison and visualized with boxplots.”

      It is also noted in the figure legend: “The dataset was separately rarefied to the lowest read depth f each comparison.” We hope this clarification adequately addresses the reviewer’s concern and therefore have not made additional changes.

      (2) Lines 304-305: in the Figure 4B plot, there appear to be 12 transported tadpoles and 8 non-transported tadpoles.

      Thank you for catching this. We have corrected the plot and the associated statistics (alpha and beta diversity) in the results section as well as in the figure. Importantly, the correction did not affect any other results, and the overall findings and interpretations remain unchanged.  

      (3) Line 311: I think this should be Figure 4B.

      (4) Line 430: tadpole transport.

      (5) Line 431: I believe commas need to surround this phrase "which range from a few hours to several days depending on the species (Lötters et al., 2007; McDiarmid & Altig, 1999; Pašukonis et al., 2019)".

      We thank the reviewer for the thorough review and have corrected all typographical and formatting errors noted in comments (3) – (5).

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors): 

      One minor question would be whether the authors could expand more on the application of END-Seq to examine the processive steps of the ALT mechanism? Can they speculate if the ssDNA detected in ALT cells might be an intermediate generated during BIR (i.e., is the ssDNA displaced strand during BIR) or a lesion? Furthermore, have the authors assessed whether ssDNA lesions are due to the loss of ATRX or DAXX, either of which can be mutated in the ALT setting?

      We appreciate the reviewer’s insightful questions regarding the application of our assays to investigate the nature of the ssDNA detected in ALT telomeres. Our primary aim in this study was to establish the utility of END-seq and S1-END-seq in telomere biology and to demonstrate their applicability across both ALT-positive and -negative contexts. We agree that exploring the mechanistic origins of ssDNA would be highly informative, and we anticipate that END-seq–based approaches will be well suited for such future studies. However, it remains unclear whether the resolution of S1-END-seq is sufficient to capture transient intermediates such as those generated during BIR. We have now included a brief speculative statement in the revised discussion addressing the potential nature of ssDNA at telomeres in ALT cells.

      Reviewer #2 (Recommendations for the authors):

      How can we be sure that all telomeres are equally represented? The authors seem to assume that END-seq captures all chromosome ends equally, but can we be certain of this? While I do not see an obvious way to resolve this experimentally, I recommend discussing this potential bias more extensively in the manuscript.

      We thank the reviewer for raising this important point. END-seq and S1-END-seq are unbiased methods designed to capture either double-stranded or single-stranded DNA that can be converted into blunt-ended double-stranded DNA and ligated to a capture oligo. As such, if a subset of telomeres cannot be processed using this approach, it is possible that these telomeres may be underrepresented or lost. However, to our knowledge, there are no proposed telomeric structures that would prevent capture using this method. For example, even if a subset of telomeres possesses a 5′ overhang, it would still be captured by END-seq. Indeed, we observed the consistent presence of the 5′-ATC motif across multiple cell lines and species (human, mouse, and dog). More importantly, we detected predictable and significant changes in sequence composition when telomere ends were experimentally altered, either in vivo (via POT1 depletion) or in vitro (via T7 exonuclease treatment). Together, these findings support the robustness of the method in capturing a representative and dynamic view of telomeres across different systems.

      That said, we have now included a brief statement in the revised discussion acknowledging that we cannot fully exclude the possibility that a subset of telomeres may be missed due to unusual or uncharacterized structures

      I believe Figures 1 and 2 should be merged.

      We appreciate the reviewer’s suggestion to merge Figures 1 and 2. However, we feel that keeping them as separate figures better preserves the logical flow of the manuscript and allows the validation of END-seq and its application to be presented with appropriate clarity and focus. We hope the reviewer agrees that this layout enhances the clarity and interpretability of the data.

      Scale bars should be added to all microscopy figures.

      We thank the reviewer for pointing this out. We have now added scale bars to all the microscopy panels in the figures and included the scale details in the figure legends.

      Reviewer #3 (Recommendations for the authors):

      Overall, the discussion section is lacking depth and should be expanded and a few additional experiments should be performed to clarify the results.

      We thank the reviewer for the suggestions. Based on this reviewer’s comments and comments for the other reviewers, we incorporated several points into the discussion. As a result, we hope that we provide additional depth to our conclusions.

      (1) The finding that the abundance of variant telomeric repeats (VTRs) within the final 30 nucleotides of the telomeric 5' ends is similar in both telomerase-expressing and ALT cells is intriguing, but the authors do not address this result. Could the authors provide more insight into this observation and suggest potential explanations? As the frequency of VTRs does not seem to be upregulated in POT1-depleted cells, what then drives the appearance of VTRs on the C-strand at the very end of telomeres? Is CST-Pola complex responsible?

      The reviewer raises a very interesting and relevant point. We are hesitant at this point to speculate on why we do not see a difference in variant repeats in ALT versus non-ALT cells, since additional data would be needed. One possibility is that variant repeats in ALT cells accumulate stochastically within telomeres but are selected against when they are present at the terminal portion of chromosome ends. However, to prove this hypothesis, we would need error-free long-read technology combined with END-seq. We feel that developing this approach would be beyond the scope of this manuscript.

      (2) The authors also note that, in ALT cells, the frequency of VTRs in the first 30 nucleotides of the S1-END-SEQ reads is higher compared to END-SEQ, but this finding is not discussed either. Do the authors think that the presence of ssDNA regions is associated with the VTRs? Along this line, what is the frequency of VTRs in the END-SEQ analysis of TRF1-FokI-expressing ALT cells? Is it also increased? Has TRF1-FokI been applied to telomerase-expressing cells to compare VTR frequencies at internal sites between ALT and telomerase-expressing cells?

      Similarly to what is discussed above, short reads have the advantage of being very accurate but do not provide sufficient length to establish the relative frequency of VTRs across the whole telomere sequence. The TRF1-FokI experiment is a good suggestion, but it would still be biased toward non-variant repeats due to the TRF1-binding properties. We plan to address these questions in a future study involving long-read sequencing and END-seq capture of telomeres.

      Finally, in these experiments (S1-END-SEQ or END-SEQ in TRF1-Fok1), is the frequency of VTRs the same on both the C- and the G-rich strands? It is possible that the sequences are not fully complementary in regions where G4 structures form.

      We thank the reviewer for this observation. While we do observe a higher frequency of variant telomeric repeats (VTRs) in the first 30 nucleotides of S1-END-seq reads compared to END-seq in ALT cells, we are currently unable to determine whether this difference is significant, as an appropriate control or matched normalization strategy for this comparison is lacking. Therefore, we refrain from overinterpreting the biological relevance of this observation.

      The reviewer is absolutely correct. Our calculation did not exclude the possibility of extrachromosomal DNA as a source of telomeric ssDNA. We have now addressed this point in our discussion.

      The reviewer is correct in pointing out that we still do not know what causes ssDNA at telomeres in ALT cells. Replication stress seems the most logical explanation based on the work of many labs in the field. However, our data did not reveal any significant difference in the levels of ssDNA at telomeres in non-ALT cells based on telomere length. We used the HeLa1.2.11 cell line (now clarified in the Materials section), which is the parental line of HeLa1.3 and has similarly long telomeres (~20 kb vs. ~23 kb). Despite their long telomeres and potential for replication-associated challenges such as G-quadruplex formation, HeLa1.2.11 cells did not exhibit the elevated levels of telomeric ssDNA that we observed in ALT cells (Figure 4B). Additional experiments are needed to map the occurrence of ssDNA at telomeres in relation to progression toward ALT.

      (3) Based on the ratio of C-rich to G-rich reads in the S1-END-SEQ experiment, the authors estimate that ALT cells contain at least 3-5 ssDNA regions per chromosome end. While the calculation is understandable, this number could be discussed further to consider the possibility that the observed ratios (of roughly 0.5) might result from the presence of extrachromosomal DNA species, such as C-circles. The observed increase in the ratio of C-rich to G-rich reads in BLM-depleted cells supports this hypothesis, as BLM depletion suppresses C-circle formation in U2OS cells. To test this, the authors should examine the impact of POLD3 depletion on the C-rich/G-rich read ratio. Alternatively, they could separate high-molecular-weight (HMW) DNA from low-molecular-weight DNA in ALT cells and repeat the S1-END-SEQ in the HMW fraction.

      The reviewer is absolutely correct. Our calculation did not exclude the possibility of extrachromosomal DNA as a source of telomeric ssDNA. We have now addressed this point in our discussion.

      (4) What is the authors' perspective on the presence of ssDNA at ALT telomeres? Do they attribute this to replication stress? It would be helpful for the authors to repeat the S1-END-SEQ in telomerase-expressing cells with very long telomeres, such as HeLa1.3 cells, to determine if ssDNA is a specific feature of ALT cells or a result of replication stress. The increased abundance of G4 structures at telomeres in HeLa1.3 cells (as shown in J. Wong's lab) may indicate that replication stress is a factor. Similar to Wong's work, it would be valuable to compare the C-rich/G-rich read ratios in HeLa1.3 cells to those in ALT cells with similar telomeric DNA content.

      The reviewer is correct in pointing out that we still do not know what causes ssDNA at telomeres in ALT cells. Replication stress seems the most logical explanation based on the work of many labs in the field. However, our data did not reveal any significant difference in the levels of ssDNA at telomeres in non-ALT cells based on telomere length. We used the HeLa1.2.11 cell line (now clarified in the Materials section), which is the parental line of HeLa1.3 and has similarly long telomeres (~20 kb vs. ~23 kb). Despite their long telomeres and potential for replication-associated challenges such as G-quadruplex formation, HeLa1.2.11 cells did not exhibit the elevated levels of telomeric ssDNA that we observed in ALT cells (Figure 4B). Additional experiments are needed to map the occurrence of ssDNA at telomeres in relation to progression toward ALT.

      Finally, Reviewer #3 raises a list of minor points:

      (1) The Y-axes of Figure 4 have been relabeled to account for the G-strand reads.

      (2) Statistical analyses have been added to the figures where applicable.

      (3) The manuscript has been carefully proofread to improve clarity and consistency throughout the text and figure legends

      (4) We have revised the text to address issues related to the lack of cross-referencing between the supplementary figures and their corresponding legends.

    1. Author Response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review): 

      Summary: 

      Genome-wide association studies have been an important approach to identifying the genetic basis of human traits and diseases. Despite their successes, for many traits, a substantial amount of variation cannot be explained by genetic factors, indicating that environmental variation and individual 'noise' (stochastic differences as well as unaccounted for environmental variation) also play important roles. The authors' goal was to address whether gene expression variation in genetically identical individuals, driven by historical environmental differences and 'noise', could be used to predict reproductive trait differences. 

      Strengths: 

      To address this question, the authors took advantage of genetically identical C. elegans individuals to transcriptionally profile 180 adult hermaphrodite individuals that were also measured for two reproductive traits. A major strength of the paper is its experimental design. While experimenters aim to control the environment that each worm experiences, it is known that there are small differences that each worm experiences even when they are grown together on the same agar plate - e.g. the age of their mother, their temperature, the amount of food they eat, and the oxygen and carbon dioxide levels depending on where they roam on the plate. Instead of neglecting this unknown variation, the authors design the experiment up front to create two differences in the historical environment experienced by each worm: 1) the age of its mother and 2) 8 8-hour temperature difference, either 20 or 25 {degree sign}C. This helped the authors interpret the gene expression differences and trait expression differences that they observed. 

      Using two statistical models, the authors measured the association of gene expression for 8824 genes with the two reproductive traits, considering both the level of expression and the historical environment experienced by each worm. Their data supports several conclusions. They convincingly show that gene expression differences are useful for predicting reproductive trait differences, predicting ~25-50% of the trait differences depending on the trait. Using RNAi, they also show that the genes they identify play a causal role in trait differences. Finally, they demonstrate an association with trait variation and the H3K27 trimethylation mark, suggesting that chromatin structure can be an important causal determinant of gene expression and trait variation. 

      Overall, this work supports the use of gene expression data as an important intermediate for understanding complex traits. This approach is also useful as a starting point for other labs in studying their trait of interest. 

      We thank the reviewer for their thorough articulation of the strengths of our study.  

      Weaknesses: 

      There are no major weaknesses that I have noted. Some important limitations of the work (that I believe the authors would agree with) are worth highlighting, however: 

      (1) A large remaining question in the field of complex traits remains in splitting the role of non-genetic factors between environmental variation and stochastic noise. It is still an open question which role each of these factors plays in controlling the gene expression differences they measured between the individual worms. 

      Yes, we agree that this is a major question in the field. In our study, we parse out differences driven between known historical environmental factors and unknown factors, but the ‘unknown factors’ could encompass both unknown environmental factors and stochastic noise.

      (2) The ability of the authors to use gene expression to predict trait variation was strikingly different between the two traits they measured. For the early brood trait, 448 genes were statistically linked to the trait difference, while for egg-laying onset, only 11 genes were found. Similarly, the total R2 in the test set was ~50% vs. 25%. It is unclear why the differences occur, but this somewhat limits the generalizability of this approach to other traits. 

      We agree that the difference in predictability between the two traits is interesting. A previous study from the Phillips lab measured developmental rate and fertility across Caenorhabditis species and parsed sources of variation (1). Results indicated that 83.3% of variation in developmental rate was explained by genetic variation, while only 4.8% was explained by individual variation. In contrast, for fertility, 63.3% of variation was driven by genetic variation and 23.3% was explained by individual variation. Our results, of course, focus only on predicting the individual differences, but not genetic differences, for these two traits using gene expression data. Considering both sets of results, one hypothesis is that we have more power to explain nongenetic phenotypic differences with molecular data if the trait is less heritable, which is something that could be formally interrogated with more traits across more strains.

      (3) For technical reasons, this approach was limited to whole worm transcription. The role of tissue and celltype expression differences is important to the field, so this limitation is important. 

      We agree with this assessment, and it is something we hope to address with future work.

      Reviewer #2 (Public review): 

      Summary: 

      This paper measures associations between RNA transcript levels and important reproductive traits in the model organism C. elegans. The authors go beyond determining which gene expression differences underlie reproductive traits, but also (1) build a model that predicts these traits based on gene expression and (2) perform experiments to confirm that some transcript levels indeed affect reproductive traits. The clever study design allows the authors to determine which transcript levels impact reproductive traits, and also which transcriptional differences are driven by stochastic vs environmental differences. In sum, this is a rather comprehensive study that highlights the power of gene expression as a driver of phenotype, and also teases apart the various factors that affect the expression levels of important genes. 

      Strengths: 

      Overall, this study has many strengths, is very clearly communicated, and has no substantial weaknesses that I can point to. One question that emerges for me is about the extent to which these findings apply broadly. In other words, I wonder whether gene expression levels are predictive of other phenotypes in other organisms. I

      think this question has largely been explored in microbes, where some studies (PMID: 17959824) but not others (PMID: 38895328) find that differences in gene expression are predictive of phenotypes like growth rate. Microbes are not the primary focus here, and instead, the discussion is mainly focused on using gene expression to predict health and disease phenotypes in humans. This feels a little complicated since humans have so many different tissues. Perhaps an area where this approach might be useful is in examining infectious single-cell populations (bacteria, tumors, fungi). But I suppose this idea might still work in humans, assuming the authors are thinking about targeting specific tissues for RNAseq. 

      In sum, this is a great paper that really got me thinking about the predictive power of gene expression and where/when it could inform about (health-related) phenotypes. 

      We thank the reviewer for recognizing the strengths of our study. We are also interested in determining the extent to which predictive gene expression differences operate in specific tissues.

      Reviewer #3 (Public review): 

      Summary: 

      Webster et al. sought to understand if phenotypic variation in the absence of genetic variation can be predicted by variation in gene expression. To this end they quantified two reproductive traits, the onset of egg laying and early brood size in cohorts of genetically identical nematodes exposed to alternative ancestral (two maternal ages) and same generation life histories (either constant 20C temperature or 8-hour temperature shift to 25C upon hatching) in a two-factor design; then they profiled genome-wide gene expression in each individual. 

      Using multiple statistical and machine learning approaches, they showed that, at least for early brood size, phenotypic variation can be quite well predicted by molecular variation, beyond what can be predicted by life history alone. 

      Moreover, they provide some evidence that expression variation in some genes might be causally linked to phenotypic variation. 

      Strengths: 

      (1) Cleverly designed and carefully performed experiments that provide high-quality datasets useful for the community. 

      (2) Good evidence that phenotypic variation can be predicted by molecular variation. 

      We thank the reviewer for recognizing the strengths of our study.

      Weaknesses:  

      What drives the molecular variation that impacts phenotypic variation remains unknown. While the authors show that variation in expression of some genes might indeed be causal, it is still not clear how much of the molecular variation is a cause rather than a consequence of phenotypic variation. 

      We agree that the drivers of molecular variation remain unknown. While we addressed one potential candidate (histone modifications), there is much to be done in this area of research. We agree that, while some gene expression differences cause phenotypic changes, other gene expression differences could in principle be downstream of phenotypic differences.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      I have a number of suggestions that I believe will improve the Methods section. 

      (1) Strain N2-PD1073 will probably be confusing to some readers. I recommend spelling out that this is the Phillips lab version of N2.

      Thank you for this suggestion; we have added additional explanation of this strain in the Methods.

      (2) I found the details of the experimental design confusing, and I believe a supplemental figure will help. I have listed the following points that could be clarified: 

      a. What were the biological replicates? How many worms per replicate?

      Biological replicates were defined as experiments set up on different days (in this case, all biological replicates were at least a week apart), and the biological replicate of each worm can be found in Supplementary File 1 on the Phenotypic Data tab.

      b. I believe that embryos and L4s were picked to create different aged P0s, and eggs and L4s were picked to separate plates? Is this correct?

      Yes, this is correct.

      c. What was the spread in the embryo age?

      We assume this is asking about the age of the F1 embryos, and these were laid over the course of a 2-hour window.  

      d. While the age of the parents is different, there are also features about their growth plates that will be impacted by the experimental design. For example, their pheromone exposure is different due to the role that age plays in the combination of ascarosides that are released. It is worth noting as my reading of the paper makes it seem that parental age is the only thing that matters.

      The parents (P0) of different ages likely have differential ascaroside exposure because they are in the vicinity of other similarly aged worms, but the F1 progeny were exposed to their parents for only the 2-hour egg-laying window, in an attempt to minimize this type of effect as much as possible.  

      e. Were incubators used for each temperature?

      Yes.

      f. In line 443, why approximately for the 18 hours? How much spread?

      The approximation was based on the time interval between the 2-hour egg-laying window on Day 4 and the temperature shift on Day 5 the following morning. The timing was within 30 minutes of 18 hours either direction.

      g.  In line 444, "continually left" is confusing. Does this mean left in the original incubator?

      Yes, this means left in the incubator while the worms shifted to 25°C were moved. To avoid confusion, we re-worded this to state they “remained at 20°C while the other half were shifted to 25°C”.

      h. In line 445, "all worms remained at 20 {degree sign}C" was confusing to me as to what it indicated. I assume, unless otherwise noted, the animals would not be moved to a new temperature.

      This was an attempt to avoid confusion and emphasize that all worms were experiencing the same conditions for this part of the experiment.  

      i. What size plates were the worms singled onto?

      They were singled onto 6-cm plates.

      j. If a figure were to be made, having two timelines (with respect to the P0 and F1) might be useful.

      We believe the methods should be sufficient for someone who hopes to repeat the experiment, and we believe the schematic in Figure 1A labeling P0 and F1 generations is sufficient to illustrate the key features of the experimental design.

      k. Not all eggs that are laid end up hatching. Are these censored from the number of progeny calculations?

      Yes, only progeny that hatched and developed were counted for early brood.

      (3) For the lysis, was the second transfer to dH20 also a wash step?

      Yes.

      (4) What was used for the Elution buffer?

      We used elution buffer consisting of 10 mM Tris, 0.1 mM EDTA. We have added this to the “Cell lysate generation” section of the methods

      (5) The company that produced the KAPA mRNA-seq prep kit should be listed.

      We added that the kit was from Roche Sequencing Solutions.

      (6) For the GO analysis - one potential issue is that the set of 8824 genes might also be restricted to specific GO categories. Was this controlled for?

      We originally did not explicitly control for this and used the default enrichGO settings with OrgDB = org.Ce.eg.db as the background set for C. elegans. We have now repeated the analysis with the “universe” set to the 8824-gene background set. This did not qualitatively change the significant GO terms, though some have slightly higher or lower p-values. For comparison purposes, we have added the background-corrected sets to the GO_Terms tab of Supplementary File 1 with each of the three main gene groups appended with “BackgroundOf8824”.

      Reviewer #2 (Recommendations for the authors): 

      (1) The abstract, introduction, and experimental design are well thought through and very clear.

      Thank you.

      (2) Figure 1B could use a clearer or more intuitive label on the horizontal axis. The two examples help. Maybe the genes (points) on the left side should be blue to match Figure 1C, where the genes with a negative correlation are in the blue cluster.

      Thank you for these suggestions. We re-labeled the x-axis as “Slope of early brood vs. gene expression (normalized by CPM)”, which we hope gives readers a better intuition of what the coefficient from the model is measuring. We also re-colored the points previously colored red in Figure 1B to be color-coded depending on the direction of association to match Figure 1C, so these points are now color-coded as pink and purple.  

      (3) If red/blue are pos/neg correlated genes in 1C, perhaps different colors should be used to label ELO and brood in Figures 2 and 3. Green/purple?

      We appreciate this point, but since we ended up using the cluster colors of pink and purple in Figure 1, we opted to leave Figures 2 and 3 alone with the early brood and ELO colorcoding of red and blue.

      (4) I am unfamiliar with this type of beta values, but I thought the explanation and figure were very clear. It could be helpful to bold beta1 and beta2 in the top panels of Figure 2, so the readers are not searching around for those among all the other betas. It could also be helpful to add an English phrase to the vertical axes inFigures 2C and 2D, in addition to the beta1 and beta2. Something like "overall effect (beta1)" and"environment-controlled effect (beta2)". Or maybe "effect of environment + stochastic expression differences

      (beta1)" and "effect of stochastic expression differences alone (beta2)". I guess those are probably too big to fit on the figure, but it might be nice to have a label somewhere on this figure connecting them to the key thing you are trying to measure - the effect of gene expression and environment.

      Thank you for these suggestions. We increased the font sizes and bolded β1 and β2 in Figure 2A-B. In Figure 2C-D, we added a parenthetical under β1 to say “(env + noise)” and β2 to say “(noise)”. We agree that this should give the reader more intuition about what the β values are measuring.  

      Reviewer #3 (Recommendations for the authors): 

      The authors collected individuals 24 hours after the onset of egg laying for transcriptomic profiling. This is a well-designed experiment to control for the physiological age of the germline. However, this does not properly control for somatic physiological age. Somatic age can be partially uncoupled from germline age across individuals, and indeed, this can be due to differences in maternal age (Perez et al, 2017). This is because maternal age is associated with increased pheromone exposure (unless you properly controlled for it by moving worms to fresh plates), which causes a germline-specific developmental delay in the progeny, resulting in a delayed onset of egg production compared to somatic development (Perez et al. 2021). You control for germline age, therefore, it is likely that the progeny of day 1 mothers are actually somatically older than the progeny of day 3 mothers. This would predict that many genes identified in these analyses might just be somatic genes that increase or decrease their expression during the young adult stage. 

      For example, the abundance of collagen genes among the genes negatively associated (including col-20, which is the gene most significantly associated with early brood) is a big red flag, as collagen genes are known to be changing dynamically with age. If variation in somatic vs germline age is indeed what is driving the expression variation of these genes, then the expectation is that their expression should decrease with age. Vice versa, genes positively associated with early brood that are simply explained by age should be increasing.  So I would suggest that the authors first check this using time series transcriptomic data covering the young adult stage they profiled. If this is indeed the case, I would then suggest using RAPToR ( https://github.com/LBMC/RAPToR ), a method that, using reference time series data, can estimate physiological age (including tissue-specific one) from gene expression. Using this method they can estimate the somatic physiological age of their samples, quantify the extent of variation in somatic age across individuals, quantify how much of the observed differences in expressions are explained just by differences in somatic age and correct for them during their transcriptomic analysis using the estimated soma age as a covariate (https://github.com/LBMC/RAPToR/blob/master/vignettes/RAPToR-DEcorrection-pdf.pdf). 

      This should help enrich a molecular variation that is not simply driven by hidden differences between somatic and germline age. 

      To first address some of the experimental details mentioned for our paper, parents were indeed moved to fresh plates where they were allowed to lay embryos for two hours and then removed. Thus, we believe this minimizes the effects of ascarosides as much as possible within our design. As shown in the paper, we also identified genes that were not driven by parental age and for all genes quantified to what extent each gene’s association was driven by parental age. Thus, it is unlikely that differences in somatic and germline age is the sole explanatory factor, even if it plays some role. We also note that we accounted for egg-laying onset timing in our experimental design, and early brood was calculated as the number of progeny laid in the first 24 hours of egg-laying, where egg-laying onset was scored for each individual worm to the hour. The plot of each worm’s ELO and early brood traits is in Figure S1. Nonetheless, we read the RAPToR paper with interest, as we highlighted in the paper that germline genes tend to be positively associated with early brood while somatic genes tend to be negatively associated. While the RAPToR paper discusses using tissue-specific gene sets to stage genetically diverse C. elegans RILs, the RAPToR reference itself was not built using gene expression data acquired from different C. elegans tissues and is based on whole worms, typically collected in bulk. I.e., age estimates in RILs differ depending on whether germline or somatic gene sets are used to estimate age when the the aging clock is based on N2 samples. Thus, it is unclear whether such an approach would work similarly to estimate age in single worm N2 samples. In addition, from what we can tell, the RAPToR R package appears to implement the overall age estimate, rather than using the tissue-specific gene sets used for RILs in the paper. Because RAPToR would be estimating the overall age of our samples using a reference that is based on fewer samples than we collected here, and because we already know the overall age of our samples measured using standard approaches, we believe that estimating the age with the package would not give very much additional insight.  

      Bonferroni correction: 

      First, I think there is some confusion in how the author report their p-values: I don't think the authors are using a cut-off of Bonferroni corrected p-value of 5.7 x 10-6 (it wouldn't make sense). It's more likely that they are using a Bonferroni corrected p of 0.05 or 0.1, which corresponds to a nominal p value of 5.7 x 10-6, am I right?

      Yes, we used a nominal p-value of 5.7 x 10-6 to correspond to a Bonferroni-corrected p-value of 0.05, calculated as 0.05/8824. We have re-worded this wherever Bonferroni correction was mentioned.

      Second, Bonferroni is an overly stringent correction method that has now been substituted by the more powerful Benjamini Hochberg method to control the false discovery rate. Using this might help find more genes and better characterize the molecular variation, especially the one associated with ELO?

      We agree that Bonferroni is quite stringent and because we were focused on identifying true positives, we may have some false negatives. Because all nominal p-values are included in the supplement, it is straightforward for an interested reader to search the data to determine if a gene is significant at any other threshold.   

      Minor comments: 

      (1) "In our experiment, isogenic adult worms in a common environment (with distinct historical environments) exhibited a range of both ELO and early brood trait values (Fig S1A)" I think this and the figure is not really needed, Figure S1B is already enough to show the range of the phenotypes and how much variation is driven by the life history traits.

      We agree that the information in S1A is also included in S1B, but we think it is a little more straightforward if one is primarily interested in viewing the distribution for a single trait.

      (2) Line 105 It should be Figure S2, not S3.

      Thank you for catching this mistake.

      (3) Gene Ontology on positive and negatively associated genes together: what about splitting the positive and negative?

      We have added a split of positive and negative GO terms to the GO_Terms tab of Supplement File 1. Broadly speaking, the most enriched positively associated genes have many of the same GO terms found on the combined list that are germline related (e.g., involved in oogenesis and gamete generation), whereas the most enriched negatively associated genes have GO terms found on the combined list that are related to somatic tissues (e.g., actin cytoskeleton organization, muscle cell development). This is consistent with the pattern we see for somatic and germline genes shown in Figure 4.

      (4) A lot of muscle-related GOs, can you elaborate on that?

      Yes, there are several muscle-related GOs in addition to germline and epidermis. While we do not know exactly why from a mechanistic perspective these muscle-related terms are enriched, it may be important to note that many of these terms have highly overlapping sets of genes which are listed in Supplementary File 1. For example, “muscle system process” and “muscle contraction” have the exact same set of 15 genes causing the term to be significantly enriched. Thus, we tend to not interpret having many GO terms on a given tissue as indicating that the tissue is more important than others for a given biological process. While it is clear there are genes related to muscle that are associated with early brood, it is not yet clear that the tissue is more important than others.  

      (5) "consistent with maternal age affecting mitochondrial gene expression in progeny " - has this been previously reported?

      We do not believe this particular observation has been reported. It is important to note that these genes are involved in mitochondrial processes, but are expressed from the nuclear rather than mitochondrial genome. We re-worded the quoted portion of the sentence to say “consistent with parental age affecting mitochondria-related gene expression in progeny”.

      (6) PCA: "Therefore, the optimal number of PCs occurs at the inflection points of the graph, which is after only7 PCs for early brood (R2 of 0.55) but 28 PCs for ELO (R2 of 0.56)." 

      Not clear how this is determined: just graphically? If yes, there are several inflection points in the plot. How did you choose which one to consider? Also, a smaller component is not necessarily less predictive of phenotypic variation (as you can see from the graph), so instead of subsequently adding components based on the variance, they explain the transcriptomic data, you might add them based on the variance they explain in the phenotypic data? To this end, have you tried partial least square regression instead of PCA? This should give gene expression components that are ranked based on how much phenotypic variance they explain.  

      Thank you for this thoughtful comment. We agree that, unlike for Figure 3B, there is some interpretation involved on how many PCs is optimal because additional variance explained with each PC is not strictly decreasing beyond a certain number of PCs. Our assessment was therefore made both graphically and by looking at the additional variance explained with each additional PC. For example, for early brood, there was no PC after PC7 that added more than 0.04 to the R2. We could also have plotted early brood and ELO separately and had a different ordering of PCs on the x-axis. By plotting the data this way, we emphasized that the factors that explain the most variation in the gene expression data typically explain most variation in the phenotypic data.  

      (7) The fact that there are 7 PC of molecular variation that explain early brood is interesting. I think the authors can analyze this further. For example, could you perform separate GO enrichment for each component that explains a sizable amount of phenotypic variance? Same for the ELO.  

      Because each gene has a PC loading in for each PC, and each PC lacks the explanatory power of combined PCs, we believe doing GO Terms on the list of genes that contribute most to each PC is of minimal utility. The power of the PCA prediction approach is that it uses the entire transcriptome, but the other side of the coin is that it is perhaps less useful to do a gene-bygene based analysis with PCA. This is why we separately performed individual gene associations and 10-gene predictive analyses. However, we have added the PC loadings for all genes and all PCs to Supplementary File 1.

      (8) Avoid acronyms when possible (i.e. ELO in figures and figure legends could be spelled out to improve readability).

      We appreciate this point, but because we introduced the acronym both in Figure 1 and the text and use it frequently, we believe the reader will understand this acronym. Because it is sometimes needed (especially in dense figures), we think it is best to use it consistently throughout the paper.

      (9) Multiple regression: I see the most selected gene is col-20, which is also the most significantly differentially expressed from the linear mixed model (LMM). But what is the overlap between the top 300 genes in Figure 3F and the 448 identified by the LMM? And how much is the overlap in GO enrichment?

      Genes that showed up in at least 4 out of 500 iterations were selected more often than expected by chance, which includes 246 genes (as indicated by the red line in Figure 3F). Of these genes, 66 genes (27%) are found in the set of 448 early brood genes. The proportion of overlap increases as the number of iterations required to consider a gene predictive increases, e.g., 34% of genes found in 5 of 500 iterations and 59% of genes found in 10 of 500 iterations overlap with the 448 early brood genes. However, likely because of the approach to identify groups of 10 genes that are predictive, we do not find significant GO terms among the 246 genes identified with this approach after multiple test correction. We think this makes sense because the LMM identifies genes that are individually associated with early brood, whereas each subsequent gene included in multiple regression affects early brood after controlling for all previous genes. These additional genes added to the multiple regression are unlikely to have similar patterns as genes that are individually correlated with early brood.  

      (10) Elastic nets: prediction power is similar or better than multiple regression, but what is the overlap between genes selected by the elastic net (not presented if I am not mistaken) and multiple regression and the linear mixed model?

      For the elastic net models, we used a leave-one-out cross validation approach, meaning there were separate models fit by leaving out the trait data for each worm, training a model using the trait data and transcriptomic data for the other worms, and using the transcriptomic data of the remaining worm to predict the trait data. By repeating this for each worm, the regressions shown in the paper were obtained. Each of these models therefore has its own set of genes. Of the 180 models for early brood, the median model selects 83 genes (range from 72 to 114 genes). Across all models, 217 genes were selected at least once. Interestingly, there was a clear bimodal distribution in terms of how many models a given gene was selected for: 68 genes were selected in over 160 out of 180 models, while 114 genes were selected in fewer than 20 models (and 45 genes were selected only once). Therefore, we consider the set of 68 genes as highly robustly selected, since they were selected in the vast majority of models. This set of 68 exhibits substantial overlap with both the set of 448 early brood-associated genes (43 genes or 63% overlap) and the multiple regression set of 246 genes (54 genes or 79% overlap). For ELO, the median model selected 136 genes (range of 96 to 249 genes) and a total of 514 genes were selected at least once. The distribution for ELO was also bimodal with 78 genes selected over 160 times and 255 genes selected fewer than 20 times. This set of 78 included 6 of the 11 significant ELO genes identified in the LMM.  We have added tabs to Supplementary File 1 that include the list of genes selected for the elastic net models as well as a count of how many times they were selected out of 180 models.

      (11) In other words, do these different approaches yield similar sets of genes, or are there some differences?

      In the end, which approach is actually giving the best predictive power? From the perspective of R2, both the multiple regression and elastic net models are similarly predictive for early brood, but elastic net is more predictive for ELO. However, in presenting multiple approaches, part of our goal was identifying predictive genes that could be considered the ‘best’ in different contexts. The multiple regression was set to identify exactly 10 genes, whereas the elastic net model determined the optimal number of genes to include, which was always over 70 genes. Thus, the elastic net model is likely better if one has gene expression data for the entire transcriptome, whereas the multiple regression genes are likely more useful if one were to use reporters or qRTPCR to measure a more limited number of genes.  

      (12) Line 252: "Within this curated set, genes causally affected early brood in 5 of 7 cases compared to empty vector (Figure 4A).

      " It seems to me 4 out of 7 from Figure 4A. In Figure 4A the five genes are (1) cin-4, (2) puf5; puf-7, (3) eef-1A.2, (4) C34C12.8, and (5) tir-1. We did not count nex-2 (p = 0.10) or gly-13 (p = 0.07), and empty vector is the control.

      (13) Do puf-5 and -7 affect total brood size or only early brood size? Not clear. What's the effect of single puf-5 and puf-7 RNAi on brood?

      We only measured early brood in this paper, but a previous report found that puf-5 and puf-7 act redundantly to affect oogenesis, and RNAi is only effective if both are knocked down together(2). We performed pilot experiments to confirm that this was the case in our hands as well.  

      (14)  To truly understand if the noise in expression of Puf-5 and /or -7 really causes some of the observed difference in early brood, could the author use a reporter and dose response RNAi to reduce the level of puf-5/7 to match the lower physiological noise range and observe if the magnitude of the reduction of early brood by the right amount of RNAi indeed matches the observed physiological "noise" effect of puf-5/7 on early brood?

      We agree that it would be interesting to do the dose response of RNAi, measure early brood, and get a readout of mRNA levels to determine the true extent of gene knockdown in each worm (since RNAi can be noisy) and whether this corresponds to early brood when the knockdown is at physiological levels. While we believe we have shown that a dose response of gene knockdown results in a dose response of early brood, this additional analysis would be of interest for future experiments.

      (15) Regulated soma genes (enriched in H3K27me3) are negatively correlated with early brood. What would be the mechanism there? As mentioned before, it is more likely that these genes are just indicative of variation in somatic vs germline age (maybe due to latent differences in parental perception of pheromone).

      We can think of a few potential mechanisms/explanations, but at this point we do not have a decisive answer. Regulated somatic genes marked with H3K27me3 (facultative heterochromatin) are expressed in particular tissues and/or at particular times in development. In this study and others, genes marked with H3K27me3 exhibit more gene expression noise than genes with other marks. This could suggest that there are negative consequences for the animal if genes are expressed at higher levels at the wrong time or place, and one interpretation of the negative association is that higher expressed somatic genes results in lower fitness (where early brood is a proxy for fitness). Another related interpretation is that there are tradeoffs between somatic and germline development and each individual animal lands somewhere on a continuum between prioritizing germline or somatic development, where prioritizing somatic integrity (e.g. higher expression of somatic genes) comes at a cost to the germline resulting in fewer progeny. Additional experiments, including measurements of histone marks in worms measured for the early brood trait, would likely be required to more decisively answer this question.  

      (16) Line 151: "Among significant genes for both traits, β2 values were consistently lower than β1 (Figures 2CD), suggesting some of the total effect size was driven by environmental history rather than pure noise".

      We are interpreting this quote as part of point 17 below.

      (17) It looks like most of the genes associated with phenotypes from the univariate model have a decreased effect once you account for life history, but have you checked for cases where the life history actually masks the effect of a gene? In other words, do you have cases where the effect of gene expression on a phenotype is only (or more) significant after you account for the effect of life history (β2 values higher than β1)?

      This is a good question and one that we did not explicitly address in the paper because we focused on beta values for genes that were significant in the univariate analysis. Indeed, for the sets of 448 early brood genes ad 11 ELO genes, there are no genes for which β2 is larger than β1. In looking at the larger dataset of 8824 genes, with a Bonferroni-corrected p-value of 0.05, there are 306 genes with a significant β2 for early brood. The majority (157 genes) overlap with the 448 genes significant in the univariate analysis and do not have a higher β2 than β1. Of the remaining genes, 72 of these have a larger β2 than β1. However, in most cases, this difference is relatively small (median difference of 0.025) and likely insignificant. There are only three genes in which β1 is not nominally significant, and these are the three genes with the largest difference between β1 and β2 with β2 being larger (differences of 0.166, 0.155, and 0.12). In contrast, the median difference between β1 and β2 the 448 genes (in which β1 is larger) is 0.17, highlighting the most extreme examples of β2 > β1 are smaller in magnitude than the typical case of β1 > β2. For ELO, there are no notable cases where β2 > β1. There are eight genes with a significant β2 value, and all of these have a β1 value that is nominally significant. Therefore, while this phenomenon does occur, we find it to be relatively rare overall. For completeness, we have added the β1 and β2 values for all 8824 genes as a tab in Supplementary File 1.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary: Zhu et al., investigate the cellular defects in glia as a result of loss in DEGS1/ifc encoding the dihydroceramide desaturase. Using the strength of Drosophila and its vast genetic toolkit, they find that DEGS1/ifc is mainly expressed in glia and its loss leads to profound neurodegeneration. This supports a role for DEGS1 in the developing larval brain as it safeguards proper CNS development. Loss of DEGS1/ifc leads to dihydroceramide accumulation in the CNS and induces alteration in the morphology of glial subtypes and a reduction in glial number. Cortex and ensheathing glia appeared swollen and accumulated internal membranes. Astrocyte-glia on the other hand displayed small cell bodies, reduced membrane extension and disrupted organization in the dorsal ventral nerve cord. They also found that DEGS1/ifc localizes primarily to the ER. Interestingly, the authors observed that loss of DEGS1/ifc drives ER expansion and reduced TGs and lipid droplet numbers. No effect on PC and PE and a slight increase in PS.

      The conclusions of this paper are well supported by the data. The study could be further strengthened by a few additional controls and/or analyses.

      Strengths:

      This is an interesting study that provides new insight into the role of ceramide metabolism in neurodegeneration.

      The strength of the paper is the generation of LOF lines, the insertion of transgenes and the use of the UAS-GAL4/GAL80 system to assess the cell-autonomous effect of DEGS1/ifc loss in neurons and different glial subtypes during CNS development.

      The imaging, immunofluorescence staining and EM of the larval brain and the use of the optical lobe and the nerve cord as a readout are very robust and nicely done.

      Drosophila is a difficult model to perform core biochemistry and lipidomics but the authors used the whole larvae and CNS to uncover global changes in mRNA levels related to lipogenesis and the unfolded protein responses as well as specific lipid alterations upon DEGS1/ifc loss.

      Weaknesses:

      (1) The authors performed lipidomics and RTqPCR on whole larvae and larval CNS from which it is impossible to define the cell type-specific effects. Ideally, this could be further supported by performing single cell RNAseq on larval brains to tease apart the cell-type specific effect of DEGS1/ifc loss.

      We agree that using scRNAseq or pairing FACS-sorting of individual glial subtypes with bulk RNAseq would help tease apart the cell-type specific effects of DEGS1/ifc loss on glial cells. At this time, however, this approach extends beyond the scope of the current paper and means of the lab. 

      (2) It's clear from the data that the accumulation of dihydroceramide in the ER triggers ER expansion but it remains unclear how or why this happens. Additionally, the authors assume that, because of the reduction in LD numbers, that the source of fatty acids comes from the LDs. But there is no data testing this directly.

      As CERT, the protein that transports ceramide from the ER to the Golgi, is far more efficient at transporting ceramide than dihydroceramide, we speculate that dihydroceramide accumulates in the ER due to inefficient transport from the ER to the Golgi by CERT. We state this model more explicitly in the results under the subheading “Reduction of dihydroceramide synthesis suppresses the ifc CNS phenotype”.

      We agree with the point on lipid droplet. We observe a correlation, not a causation, between reduction of lipid droplets and a large expansion of ER membrane. We have tried to clarify the text in the last paragraph of the discussion to make this point more clearly. See also response to reviewer 2 point 3. 

      (3) The authors performed a beautiful EMS screen identifying several LOF alleles in ifc. However, the authors decided to only use KO/ifcJS3. The paper could be strengthened if the authors could replicate some of the key findings in additional fly lines.

      We agree. We replicated the observed cortex glia swelling, ER expansion in cortex glia, and observed increase in neuronal cell death markers in late-third instar larvae mutant for either the ifcjs1 or ifcjs2 allele. These data are now provided as Supplementary Figure 7.

      (4) The authors use M{3xP3-RFP.attP}ZH-51D transgene as a general glial marker. However, it would be advised to show the % overlap between the glial marker and the RFP since a lot of cells are green positive but not per se RFP positive and vice versa.

      We visually reexamined the expression of the 3xP3 RFP transgene relative to FABP labeling for cortex glia, Ebony for astrocyte-like glia, and the Myr-GFP transgene driven by glial-subtype specific GAL4 driver lines for perineurial, subperineurial, and ensheathing glia. We note that RFP localizes to the nucleus cytoplasm while FABP and Ebony localize to the cytoplasm and Myr-GFP to the cell membrane. Thus, an observed lack of overlap of expression between RFP and the other markers can arise to differential localization of the two markers in the same cells (see, for example, Fig. S2D where Myr-GFP expression in the nuclear envelope encircles that of RFP in the nucleus. Through visual inspection of five larval-brain complexes for each glial subtype marker, we found that essentially all cortex, SPG, and ensheathing glia expressed RFP. Similarly, nearly all astrocyte-like glia also expressed RFP, but they expressed RFP at significantly lower levels than that observed for cortex, SPG, or ensheathing glia. This analysis also confirmed that most perineurial glia do not express RFP. The 3xP3 M{3xP3-RFP.attP}ZH-51D transgene then labels most glia in the Drosophila CNS. We have added text to Supplementary Figure 2 noting the above observations as to which glial cells express RFP. 

      (5) The authors indicate that other 3xP3 RFP and GFP transgenes at other genomic locations also label most glia in the CNS. Do they have a preferential overlap with the different glial subtypes?

      We assessed three different types of 3xP3 RFP and GFP transgenes: M{3xP3RFP.attp} transgenes (n=4), Mi{GFP[E.3xP3]=ET1} transgenes (n=3), and

      Tl{GFP[3xP3.cLa]=CRIMIC.TG4} transgenes (n>6). All labeled cortex glia, but different lines exhibited differential labeling of astrocyte and ensheathing glia. These data are now included as Supplementary Figure 3.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Zhu et al. describes phenotypes associated with the loss of the gene ifc using a Drosophila model. The authors suggest their findings are relevant to understanding the molecular underpinnings of a neurodegenerative disorder, HLD-18, which is caused by mutations in the human ortholog of ifc, DEGS1.

      The work begins with the authors describing the role for ifc during fly larval brain development, demonstrating its function in regulating developmental timing, brain size, and ventral nerve cord elongation. Further mechanistic examination revealed that loss of ifc leads to depleted cellular ceramide levels as well as dihydroceramide accumulation, eventually causing defects in ER morphology and function. Importantly, the authors showed that ifc is predominantly expressed in glia and is critical for maintaining appropriate glial cell numbers and morphology. Many of the key phenotypes caused by the loss of fly ifc can be rescued by overexpression of human DEGS1 in glia, demonstrating the conserved nature of these proteins as well as the pathways they regulate. Interestingly, the authors discovered that the loss of lipid droplet formation in ifc mutant larvae within the cortex glia, presumably driving the deficits in glial wrapping around axons and subsequent neurodegeneration, potentially shedding light on mechanisms of HLD-18 and related disorders.

      Strengths:

      Overall, the manuscript is thorough in its analysis of ifc function and mechanism. The data images are high quality, the experiments are well controlled, and the writing is clear.

      Weaknesses:

      (1) The authors clearly demonstrated a reduction in number of glia in the larval brains of ifc mutant flies. What remains unclear is whether ifc loss leads to glial apoptosis or a failure for glia to proliferate during development. The authors should distinguish between these two hypotheses using apoptotic markers and cell proliferation markers in glia.

      To address this point, we used phospho-histone H3 to assess mitotic index in the thoracic CNS of wild-type versus ifc mutant late third instar larvae and found a mild, but significant reduction in mitotic index in ifc mutant relative to wild-type nerve cords. We also assessed the ability of glial-specific expression of the potent anti-apoptotic gene p35 to rescue the observed loss of cortex glia phenotype in the thoracic region of the CNS of otherwise ifc mutant larvae and observed a clear increase in cortex glia in the presence versus the absence of glial-specific p35 expression (p<3 x 10-4). These data are now provided as Supplementary Figure S8 in the paper and referred to on page 8.

      (2) It is surprising that human DEGS1 expression in glia rescues the noted phenotypes despite the different preference for sphingoid backbone between flies and mammals. Though human DEGS1 rescued the glial phenotypes described, can animal lethality be rescued by glial expression of human DEGS1? Are there longer-term effects of loss of ifc that cannot be compensated by the overexpression of human DEGS1 in glia (age-dependent neurodegeneration, etc.)?

      We note explicitly that while glial expression of human DEGS1 does provide rescuing activity, it only partially rescues the ifc mutant CNS phenotype in contrast to glial expression of Drosophila ifc, which fully rescues this phenotype. Thus, the relative activity of human DEGS1 is far below that of Drosophila ifc when assayed in flies. To quantify the functional difference between the two transgenes, we assessed the ability of glial expression of fly ifc or of human DEGS1 to rescue the lethality of otherwise ifc mutant larvae: Glial expression of ifc was sufficient to rescue the adult viability of 57.9% of ifc mutant flies based on expected Mendelian ratios (n=2452), whereas glial expression of DEGS1 was sufficient to rescue just 3.9% of ifc mutant flies (n=1303), uncovering a ~15-fold difference in the ability of the two transgenes to rescue the lethality of otherwise ifc mutant flies. In the absence of either transgene, no ifc mutant larvae reached adulthood (n=1030). These data are now provided in the text on page 9 of the revised manuscript. 

      (3) The mechanistic link between the loss of ifc and lipid droplet defects is missing. How do defects in ceramide metabolism alter triglyceride utilization and storage? While the author's argument that the loss of lipid droplets in larval glia will lead to defects in neuronal ensheathment, a discussion of how this is linked to ceramides needs to be added.

      We have revised the text to address this point. We speculate that the apparent increased demand for membrane phospholipid synthesis may drive the depletion of lipid droplets, providing a link to ifc function and ceramides. Below we provide the rewritten last paragraph; the underlined section is the new text.  

      “The expansion of ER membranes coupled with loss of lipid droplets in ifc mutant larvae suggests that the apparent demand for increased membrane phospholipid synthesis may drive lipid droplet depletion, as lipid droplet catabolism can release free fatty acids to serve as substrates for lipid synthesis. At some point, the depletion of lipid droplets, and perhaps free fatty acids as well, would be expected to exhaust the ability of cortex glia to produce additional membrane phospholipids required for fully enwrapping neuronal cell bodies. Under wild-type conditions, many lipid droplets are present in cortex glia during the rapid phase of neurogenesis that occurs in larvae. During this phase, lipid droplets likely support the ability of cortex glia to generate large quantities of membrane lipids to drive membrane growth needed to ensheathe newly born neurons. Supporting this idea, lipid droplets disappear in the adult Drosophila CNS when neurogenesis is complete and cortex glia remodeling stops. We speculate that lipid droplet loss in ifc mutant larvae contributes to the inability of cortex glia to enwrap neuronal cell bodies. Prior work on lipid droplets in flies has focused on stress-induced lipid droplets generated in glia and their protective or deleterious roles in the nervous system. Work in mice and humans has found that more lipid droplets are often associated with the pathogenesis of neurodegenerative diseases, but our work correlates lipid droplet loss with CNS defects. In the future, it will be important to determine how lipid droplets impact nervous system development and disease.”

      (4) On page 10, the authors use the words "strong" and "weak" to describe where ifc is expressed. Since the use of T2A-GAL4 alleles in examining gene expression is unable to delineate the amount of gene expression from a locus, the terms "broad" and "sparse" labeling (or similar terms) should be used instead.

      The ifc T2A-GAL4 insert in the ifc locus reports on the transcription of the gene. We agree that GAL4 system will not reflect amount of gene expression differences when the expression levels are not dramatically different. However, when the expression levels differ dramatically, as in our case, GAL4 system can reflect this difference in the expression of a reporter gene.  We reworded this section to suggest that ifc is transcribed at higher levels in glia as compared to neurons. We can’t use sparse or broad, as ifc is expressed in all, or at least in most, glia and neurons. The new text is as follows:” Using this approach, we observed strong nRFP expression in all glial cells (Figures 4D and S10A) and modest nRFP expression in all neurons (Figures 4E and S10B), suggesting ifc is transcribed at higher levels in glial cells than neurons in the larval CNS.”  

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors report three novel ifc alleles: ifc[js1], ifc[js2], and ifc[js3]. ifc[js1] and ifc[js2] encode missense mutations, V276D and G257S, respectively. ifc[js3] encodes a nonsense mutation, W162*. These alleles exhibit multiple phenotypes, including delayed progression to the late-third larval instar stage, reduced brain size, elongation of the ventral nerve cord, axonal swelling, and lethality during late larval or early pupal stages.

      Further characterization of these alleles the authors reveals that ifc is predominantly expressed in glia and localizes to the endoplasmic reticulum (ER). The expression of ifc gene governs glial morphology and survival. Expression of fly ifc cDNA or human DEGS1 cDNA specifically in glia, but not neurons, rescues the CNS phenotypes of ifc mutants, indicating a crucial role for ifc in glial cells and its evolutionary conservation. Loss of ifc results in ER expansion and loss of lipid droplets in cortex glia. Additionally, loss of ifc leads to ceramide depletion and accumulation of dihydroceramide. Moreover, it increases the saturation levels of triacylglycerols and membrane phospholipids. Finally, the reduction of dihydroceramide synthesis suppresses the CNS phenotypes associated with ifc mutations, indicating the key role of dihydroceramide in causing ifc LOF defects.

      Strengths:

      This manuscript unveils several intriguing and novel phenotypes of ifc loss-of-function in glia. The experiments are meticulously planned and executed, with the data strongly supporting their conclusions.

      Weaknesses:

      I didn't find any obvious weakness.

      Reviewer #1 (Recommendations For The Authors):

      Additional minor comments below:

      (1) The authors state that TGs are the building blocks of membrane phospholipids. This is not exactly true. The breakdown of TGs can result in free FAs which can be used for membrane phospholipid synthesis. Also, membrane phospholipids can also be generated from free FAs that were never in TGs.

      To address this point, we have reworked a number of sentences in the text. On page 12 we reworded two small sections to the following: 

      “In the CNS, lipid droplets form primarily in cortex glia[29] and are thought to contribute to membrane lipid synthesis through their catabolism into free fatty acids versus acting as an energy source in the brain.[41] Consistent with the possibility that increased membrane lipid synthesis drives lipid droplet reduction, RNA-seq assays of dissected nerve cords revealed that loss of ifc drove transcriptional upregulation of genes that promote membrane lipid biogenesis”

      As TG breakdown results in free fatty acids that can be used for membrane phospholipid synthesis, we asked if changes in TG levels and saturation were reflected in the levels or saturation of the membrane phospholipids phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS).

      (2) Figure 5J what does the dotted line indicate? Please specify in the figure legend or remove it.

      We have added the following text in the figure legend: Dotted line indicates a log2 fold change of 0.5 in the treatment group compared to the control group.

      (3) The text for your graphs is hard to read. Please make the font larger.

      We have increased font size to enhance the readability of the figures.

      (4) The authors mentioned that driving ifc expression in neurons rescues the phenotypes (ref 17). While the glial-specific role presented in this study is robust. I think some readers would appreciate some discussion of this study in light of the data presented here.

      We have added the below text on page 10 to address this point.

      “Results of our gene rescue experiments conflict with a prior study on ifc in which expression of ifc in neurons was found to rescue the ifc phenotype. In this context, we note that elav-GAL4 drives UASlinked transgene expression not just in neurons, but also in glia at appreciable levels, and thus needs to be paired with repo-GAL80 to restrict GAL4-mediated gene expression to neurons. Thus, “off-target” expression in glial cells may account for the discrepant results. It is, however, more difficult to reconcile how neuronal or glial expression of ifc would rescue the observed lethality of the ifc-KO chromosome given the presence additional lethal mutations in the 21E2 region of the second chromosome.”

      (5) While the analysis of fatty acid saturation is experimentally well done. I'm not really sure what the significance of this data is.

      We included this information as a reference for future analysis of additional genes in the ceramide biogenesis pathway, as we expect that alteration of the levels and saturation levels of PE, PC, and PS in cell membranes may underlie key changes in the biophysical properties of glial cell membranes and their ability to enwrap or infiltrate their targets. Thus, we expect the significance of these data to grow as more work is done on additional members of the ceramide pathway in the nervous system in flies and other systems.  

      Reviewer #2 (Recommendations For The Authors):

      (1) There is a typo at the top of page 11: "internal membranes and fail enwrap neurons" is missing the word "to" before "enwrap"

      The typo was fixed.

      (2)  PMID: 36718090 should be included in the discussion of SPT and ORMDL complex in human disease.

      The reference was added.

      Reviewer #3 (Recommendations For The Authors):

      In this manuscript, the authors report three novel ifc alleles: ifc[js1], ifc[js2], and ifc[js3]. ifc[js1] and ifc[js2] encode missense mutations, V276D and G257S, respectively. ifc[js3] encodes a nonsense mutation, W162*. These alleles exhibit multiple phenotypes, including delayed progression to the late-third larval instar stage, reduced brain size, elongation of the ventral nerve cord, axonal swelling, and lethality during late larval or early pupal stages.

      Further characterization of these alleles the authors reveals that ifc is predominantly expressed in glia and localizes to the endoplasmic reticulum (ER). The expression of ifc gene governs glial morphology and survival. Expression of fly ifc cDNA or human DEGS1 cDNA specifically in glia, but not neurons, rescues the CNS phenotypes of ifc mutants, indicating a crucial role for ifc in glial cells and its evolutionary conservation. Loss of ifc results in ER expansion and loss of lipid droplets in cortex glia. Additionally, loss of ifc leads to ceramide depletion and accumulation of dihydroceramide. Moreover, it increases the saturation levels of triacylglycerols and membrane phospholipids. Finally, the reduction of dihydroceramide synthesis suppresses the CNS phenotypes associated with ifc mutations, indicating the key role of dihydroceramide in causing ifc LOF defects.

      In summary, this manuscript unveils several intriguing and novel phenotypes of ifc loss-of-function in glia. The experiments are meticulously planned and executed, with the data strongly supporting their conclusions. I have no additional comments and fully support the publication of this manuscript in eLife.

      The authors also note that they added one paragraph to the discussion that addresses the possibility that the increased detection of cell death markers could arise due to the inability of glial cells to remove cellular debris. The text of this paragraph is provided below:

      We note that cortex glia are the major phagocytic cell of the CNS and phagocytose neurons targeted for apoptosis as part of the normal developmental process.23-26  Thus, while we favor the model that ifc triggers neuronal cell death due to glial dysfunction, it is also possible that increased detection of dying neurons arises due at least in part to a decreased ability of cortex glia to clear dying neurons from the CNS. At present, the large number of neurons that undergo developmentally programmed cell death combined with the significant disruption to brain and ventral nerve cord morphology caused by loss of ifc function render this question difficult to address.Additional evidence does, however, support the idea that loss of ifc function drives excess neuronal cell death: Clonal analysis in the fly eye reveals that loss of ifc drives photoreceptor neuron degeneration17, indicating that loss of ifc function drives neuronal cell death; cortex-glia specific depletion of CPES, which acts downstream of ifc, disrupts neuronal function and induces photosensitive epilepsy in flies59, indicating that genes in the ceramide pathway can act nonautonomously in glia to regulate neuronal function; recent genetic studies reveal that other glial cells can compensate for impaired cortex glial cell function by phagocytosing dying neurons62, and we observe that the cell membranes of subperineurial glia enwrap dying neurons in ifc mutant larvae (Fig. S14), consistent with similar compensation occurring in this background, and in humans, loss of function mutations in DEGS1 cause neurodegeneration.7-9 Clearly, future work is required to address this question for ifc/DEGS1 and perhaps other members of the ceramide biogenesis pathway.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors revisit the specific domains/signals required for the redirection of an inner nuclear membrane protein, emerin, to the secretory pathway. They find that epitope tagging influences protein fate, serving as a cautionary tale for how different visualisation methods are used. Multiple tags and lines of evidence are used, providing solid evidence for the altered fate of different constructs.

      Strengths:

      This is a thorough dissection of domains and properties that confer INM retention vs secretion to the PM/lysosome, and will serve the community well as a caution regarding the placement of tags and how this influences protein fate.

      Weaknesses:

      Biogenesis pathways are not explored experimentally: it would be interesting to know if the lysosomal pool arrives there via the secretory pathway (eg by engineering a glycosylation site into the lumenal domain) or by autophagy, where failed insertion products may accumulate in the cytoplasm and be degraded directly from cytoplasmic inclusions.

      This manuscript is a Research Advance that follows previous work that we published in eLife on this topic (Buchwalter et al., eLife 2019; PMID 31599721). In that prior publication, we showed that emerin-GFP arrives at the lysosome by secretion and exposure at the PM, followed by internalization. While we state these previous findings in this manuscript, we did not explicitly restate here how we came to that conclusion. In the 2019 study, we (i) engineered in a glycosylation site, which demonstrated that emerin-GFP receives complex, Endo H-resistant N-glycans, indicating passage through the Golgi; (ii) performed cell surface labeling, which confirmed that emerin accesses the PM; and interfered with (iii) the early secretory pathway using brefeldin A and with (iv) lysosomal function using bafilomycin A1. Further, we ruled out autophagy as a major contributor to emerin trafficking by treating cells with the PI3K inhibitor KU55933, which had no effect on emerin’s lysosomal delivery.

      It would be helpful if the topology of constructs could be directly demonstrated by pulse-labelling and protease protection. It's possible that there are mixed pools of both topologies that might complicate interpretation.

      We demonstrate that emerin’s TMD inserts in a tail-anchored orientation (C terminus in ER lumen) by appending a GFP tag to either the N or C terminus, followed by anti-GFP antibody labeling of unpermeabilized cells (Fig. 1G). This shows the preferred topology of emerin’s wild type TMD.

      As the reviewer points out, it is possible that our manipulations of the TMD sequence (Fig. 2D-E) alter its preferred topology of membrane insertion. We addressed this question by performing anti-GFP and anti-emerin antibody labeling of the less hydrophobic TMD mutant (EMD-TMDm-GFP) after selective permeabilization of the plasma membrane (Figure 2 supplement, panel F). If emerin biogenesis is normal, the GFP tag should face the ER lumen while the emerin antibody epitope should be cytosolic. If the fidelity of emerin’s membrane insertion is impaired, the GFP tag could be exposed to the cytosol (flipped orientation), which would be detected by anti-GFP labeling upon plasma membrane permeabilization. We find that the C-terminal GFP tag is completely inaccessible to antibody when the PM is selectively permeabilized with digitonin, but is readily detected when all intracellular membranes are permeabilized with Triton-X-100. These data confirm that mutating emerin’s TMD does not disrupt the protein’s membrane topology.

      Reviewer #2 (Public review):

      In this manuscript, Mella et al. investigate the effect of GFP tagging on the localization and stability of the nuclear-localized tail-anchored (TA) protein Emerin. A previous study from this group showed that C-terminally GFP-tagged Emerin protein traffics to the plasma membrane and reaches lysosomes for degradation. It is suggested that the C-terminal tagging of tail-anchored proteins shifts their insertion from the post-translational TRC/GET pathway to the co-translational SRP-mediated pathway. The authors of this paper found that C-terminal GFP tagging causes Emerin to localize to the plasma membrane and eventually reach lysosomes. They investigated the mechanism by which Emerin-GFP moves to the secretory pathway. By manipulating the cytosolic domain and the hydrophobicity of the transmembrane domain (TMD), the authors identify that an ER retention sequence and strong TMD hydrophobicity contribute to Emerin trafficking to the secretory pathway. Overall, the data are solid, and the knowledge will be useful to the field. However, the authors do not fully answer the question of why C-terminally GFP-tagged Emerin moves to the secretory pathway. Importantly, the authors did not consider the possible roles of GFP in the ER lumen influencing Emerin trafficking to the secretory pathway.

      Reviewer #2 (Recommendations for the authors):

      Major concerns:

      (1) The authors suggest that an ER retention sequence and high hydrophobicity of Emerin TMD contribute to its trafficking to the secretory pathway. However, these two features are also present in WT Emerin, which correctly localizes to the inner nuclear membrane. Additionally, the authors show that the ER retention sequence is normally obscured by the LEM domain. The key difference between WT Emerin and Emerin-GFP is the presence of GFP in the ER lumen. The authors missed investigating the role of GFP in the ER lumen in influencing Emerin trafficking to the secretory pathway. It is likely that COPII carrier vesicles capture GFP protein in the lumen as part of the bulk flow mechanism for transport to the Golgi compartment. The authors could easily test this by appending a KDEL sequence to the C-terminus of GFP; this should now redirect the protein to the nucleus.

      We agree with the reviewer’s point that the presence of lumenal GFP somehow promotes secretion of emerin from the ER, likely at the stage of enhancing its packaging into COPII vesicles. We struggle to think about how to interpret the KDEL tagging experiment that the reviewer proposes, as the KDEL receptor predominantly recycles soluble proteins from the Golgi to the ER, while emerin is a membrane protein; and we have shown that emerin already contains a putative COPI-interacting RRR recycling motif in its cytosolic domain.

      Nevertheless, we agree with the reviewer that it is worthwhile to test the possibility that addition of GFP to emerin’s C-terminus promotes capture by COPII vesicles. We have evaluated this question by performing temperature block experiments to cause cargo accumulation within stalled COPII-coated ER exit sites, then comparing the propensity of various untagged and tagged emerin variants to enrich in ER exit sites as judged by colocalization with the COPII subunit Sec31a. These data now appear in Figure 4 supplement 1. These experiments indicate that emerin-GFP samples ER exit sites significantly more than does untagged emerin. Further, the ER exit site enrichment of emerin-GFP is dampened by shortening emerin’s TMD. We do not see further enrichment of any emerin variant in ER exit sites when COPII vesicle budding is stalled by low temperature incubation, implying that emerin lacks any positive sorting signals that direct its selective enrichment in COPII vesicles. Altogether, these data indicate that both emerin’s long and hydrophobic TMD and the addition of a lumenal GFP tag increase emerin’s propensity to sample ER exit sites and undergo non-selective, “bulk flow” ER export.

      (2) The authors nicely demonstrate that the hydrophobicity of Emerin TMD plays a role in its secretory trafficking. I wonder if this feature may be beneficial for cells to degrade newly synthesized Emerin via the lysosomal pathway during mitosis, as the nuclear envelope breakdown may prevent the correct localization of newly synthesized Emerin. The authors could test Emerin localization during mitosis. Such findings could add to the physiological significance of their findings. At the minimum, they should discuss this possibility.

      We thank the reviewer for this insightful suggestion. It is attractive to speculate that secretory trafficking might enable lysosomal degradation of emerin during mitosis, when its lamin anchor has been depolymerized. However, we think it is unlikely that mitotic trafficking contributes significantly to the turnover flux of untagged emerin; if it did, we would expect to see higher steady state levels and/or slowed turnover of emerin mutants that cannot traffic to the lysosome. We did not observe this outcome. Instead, mutations that enhance (RA) or impair (TMDm) emerin trafficking had no effect on the untagged protein’s steady-state levels (Fig. 4G).

      Minor concerns:

      (1) On page 7, the authors note that "FLAG-RA construct was not poorly expressed relative to WR, in contrast with RA-GFP (Figures S3C, 2I)." The expression levels of these proteins cannot be compared across two different blots.

      We apologize for this confusion; we were implying two distinct comparisons to internal controls present on each blot. We have adjusted the text to read “FLAG-RA construct was not poorly expressed relative to FLAG-WT (Fig. S3C) in contrast to RA-GFP compared to WT-GFP (Fig. 2I).”

      (2) In the first paragraph of the discussion, the authors suggest that aromatic amino acids facilitate trafficking to lysosomes. However, they only replaced aromatic amino acids with alanine residues. If they want to make this claim, they should test other amino acids, particularly hydrophobic amino acids such as leucine.

      The reviewer may be inferring more import from our statement than we intended. We focused on these aromatic residues within the TMD because they contribute strongly to its overall hydrophobicity. Experimentally, we determined that nonconservative alanine substitutions of these aromatic residues inhibited trafficking. We do not state and do not intend to imply that the aromatic character of these residues specifically influences trafficking propensity, and we agree with the reviewer that to test such a question would require additional substitutions with non-aromatic hydrophobic amino acids.

      We realize that our phrasing may have been misleading by opening with discussion of the aromatic amino acids; in the revised discussion paragraph, we instead lead with discussion of TMD hydrophobicity, and then state how the specific substitutions we made affect trafficking.

      Reviewing Editor comments:

      While reviewer 1 did not provide any recommendations to the authors, I agree with this reviewer that the authors should validate the topology of their tagged proteins (at least for the one used to draw key conclusions). Given that Emerin is a tail-anchored protein, having a big GFP tag at the C-terminus could mess up ER insertion, causing the protein to take a wrong topology or even be mislocalized in the cytosol, particularly under overexpression conditions. In either case, it can be subject to quality control-dependent clearance via either autophagy, ERphagy, or ER-to-lysosome trafficking. I think that the authors should try a few straightforward experiments such as brefeldin A treatment or dominant negative Sar1 expression to test whether blocking conventional ER-to-Golgi trafficking affects lysosomal delivery of Emerin. I also think that the authors should discuss their findings in the context of the RESET pathway reported previously (PMID: 25083867). The ER stress-dependent trafficking of tagged Emerin to the PM and lysosomes appears to follow a similar trafficking pattern as RESET, although the authors did not demonstrate that Emerin traffic to lysosomes via the PM. In this regard, they should tone down their conclusion and discuss their findings in the context of the RESET pathway, which could serve as a model for their substrate.

      We agree that validating the topology of TMD mutants is important, and now include these experiments in the revised manuscript (please see our response to Reviewer 1 above).

      Please see our response to Reviewer 1’s public review; we previously determined that emerin-GFP undergoes ER-to-Golgi trafficking (see our 2019 study).

      We recognize the major parallels between our findings and the RESET pathway. In our 2019 study, we found that similarly to other RESET cargoes, emerin-GFP travels through the secretory pathway, is exposed at the PM, and is then internalized and delivered to lysosomes. We discussed these strong parallels to RESET in our 2019 study. In this revised manuscript, we now also point out the parallels between emerin trafficking and RESET and cite the 2014 study by Satpute-Krishnan and colleagues (PMID 25083867)

    1. Reviewer #2 (Public review):

      In 'Developmental constraints mediate the summer solstice reversal of climate effects on European beech bud set', Rebindaine and co-authors report on two experiments on Fagus sylvatica where they manipulated temperatures of saplings between day and night and at different times of year. I enjoyed reading this paper and found it well written. I think the experiments are interesting, but I found the exact methods somewhat extreme compared to how the authors present them. Further, given that much of the experiment happened outside, I am not sure how much we can generalize from one year for each experiment, especially when conducted on one population of one species. I next expand briefly on these concerns and a few others.

      Concerns:

      (1) As I read the Results, I was surprised the authors did not give more information on the methods here. For example, they refer to the 'effect of July cooling' but never say what the cooling was. Once I read the methods, I feared they were burying this as the methods feel quite extreme given the framing of the paper. The paper is framed as explaining observational results of natural systems, but the treatments are not natural for any system in Europe that I have worked in. For example, a low of 2 {degree sign}C at night and 7 {degree sign}C during the day through the end of May and then 7/13 {degree sign}C in July is extreme. I think these methods need to be clearly laid out for the reader so they can judge what to make of the experiment before they see the results.

      (2) I also think the control is confounded with the growth chamber experience in Experiment 1. That is, the control plants never experience any time in a chamber, but all the treatments include significant time in a chamber. The authors mention how detrimental chamber time can be to saplings (indeed, they mention an aphid problem in experiment 2), so I think they need to be more upfront about this. The study is still very valuable, but again, we may need to be more cautious in how much we infer from the results.

      (3) I suggest the authors add a figure to explain their experiments, as they are very hard to follow. Perhaps this could be added to Figure 1?

      (4) Given how much the authors extrapolate to carbon and forests, I would have liked to see some metrics related to carbon assimilation, versus just information on timing.

      (5) Fagus sylvatica is an extremely important tree to European forests, but it also has outlier responses to photoperiod and other cues (and leafs out very late), so using just this species to then state 'our results likely are generalisable across temperate tree species' seems questionable at best.

      (6) Another concern relates to measuring the end of season (EOS). It is well known that different parts of plants shut down at different times, and each metric of end of season - budset, end of radial expansion, leaf coloring, etc - relates to different things. Thus, I was surprised that the authors ignore all this complexity and seem to equate leaf coloring with budset (which can happen MONTHS before leaf coloring often) and with other metrics. The paper needs a much better connection to the physiology of end of season and a better explanation for the focus on budset. Relatedly, I was surprised that the authors cite almost none of the literature on budset, which generally suggests it is heavily controlled by photoperiod and population-level differences in photoperiod cues, meaning results may be different with a different population of plants.

      (7) I didn't fully see how the authors' results support the Solstice as Switch hypothesis, since what timing mattered seemed to depend on the timing of treatment and was not clearly related to the solstice. Could it be that these results suggest the Solstice as Switch hypothesis is actually not well supported (e.g., line 135) and instead suggest that the pattern of climate in the summer months affects end-of-season timing?

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Hall and colleagues investigate how the coupling of activity from ACC to CA1is altered by fear learning, showing that during sleep immediately before learning, there is evidence for increased coupling of ACC activity with neurons that will subsequently be inhibited during the learning process. They go on to show that this effect seems to be mediated most by a subpopulation of neurons in the superficial layer of CA1. This fits with previous reports suggesting that these superficial neurons are key for the flexible updating of memory. The authors then go on to show that artificial activation of ACC using optogenetics results in varied effects in CA1, including a subtle decrease in activity of superficial neurons that lasts longer than the stimulus itself. Finally, the authors present some preliminary data suggesting that different interneurons may be recruited by this optogenetic stimulation in different ways and at different times.

      Overall, this is an interesting paper, but much of the analysis is very preliminary, and much of the crucial data about the learning effects and alterations to cell firing are not presented clearly and fully. This is further confounded by a rather opaque description of the results and analysis in the text. Overall, there is something very interesting here, but there needs to be a substantial series of extra analyses to clearly say what this is. In many cases, more robust analysis may render the results underpowered, which could dramatically change the conclusions of the paper.

      Strengths:

      The authors performed difficult, dual-location recordings across a multi-day learning paradigm, which seems like it could be a really nice dataset. They delve into the circuit basis of an interesting finding regarding ACC to CA1 connectivity and how this changes before and after fear conditioning. They provide data to suggest this connectivity may be through specific and distinct subcircuits in CA1.

      Weaknesses:

      (1) There is essentially no information in the text or figures about what the actual learning was, how it was done, how individual animals performed, and how any of these metrics related to learning. Looking at the methods, the authors did a number of things never mentioned anywhere in the text or figures, including novel arena exposure, contextual reexposure in extinction after learning, etc. It seems that this is a very rich dataset that has not been presented at all. I would recommend at the very least:<br /> a) Plot all of the behavioural training data, and how each mouse relates to one another - did the mice learn? At this stage, we don't know!<br /> b) Explain in the text in detail exactly what was done and why, and what this tells us about the neuronal activity.<br /> c) If there is variance in learning and or conditioning, does this relate to features in the analysis, such as the GLM result.

      (2) Along similar lines, a key metric for most of the paper is that neurons most coupled with ACC are more likely to be inhibited during training. However, there is nothing anywhere in the paper showing these data. How do neurons in general respond to contextual shocks? The methods describe this as the average firing rate during training, normalised to pre-sleep activity. This metric seems a bit coarse and may obscure really important task-relevant dynamics. Are the neurons active at specific times, are they tuned to relevant parts of the task, and do any of these features of the cell activity also relate to the coupling with ACC? Similarly, how did the authors mitigate the influence of electrical artefacts caused by the foot shock in their recordings? Again, there is a huge amount of data here that is not being described, and likely holds very valuable information about what is actually happening. The paper would really benefit from the inclusion of these data in an accessible form, such as heatmaps of spiking, how these patterns change over time, and around e.g., foot shock, etc. Also key is how these features are altered by the variability of learning across subjects.

      (3) A number of the effects are presented by comparing a statistically significant effect to a non-statistically significant effect (e.g. in Figure 2b, Figure 2d, Figure 4 b,c, and others). This isn't really valid - the key test that the two groups are different is either with a direct test of the difference or an interaction term in an e.g., ANOVA test. In some places, I am not sure the same conclusions will be drawn from the data with these tests.

      (4) To what extent is defining superficial and deep CA1 neurons solely by ripple waveform an accepted method? Of the two papers referenced for this approach, one is a 2-photon calcium imaging paper that does not do electrical recordings (as far as I am aware), and the second uses this as a descriptor after defining the positions of units on an array. It would be good to clarify how accepted this is, and also how robust this is. At the very least, some kind of metric or walkthrough in the supplement as to how this was done, and how well each cell was classified and with what confidence, or some metric of how distinct and separate the two populations were (or was it just a smudge).

      (5) In the optogenetic experiment in Figure 5, the effect on the CA1 sup neurons seems to be driven by changes in a small subpopulation of this group, with no change in the others. Related to point 2, is there anything else in the data that can pull out what these cells are? More detailed analysis of the firing of these neurons might pull out something really interesting.

      (6) Related to this - a number of comparisons simply pool neurons across mice and analyse them as if independent. This is done a lot in the past, but it would be better if an approach that included the interdependence of neurons recorded from the same mouse at the same time were used (such as a hierarchical model). While this is complex, a simpler approach would just be to plot the summary data also per mouse. For example, in Figure 5, how do the neurons inhibited by ACC activation spread across the different mice? Is the level of inhibition related to how well the mice learned the CS-US association?

      (7) Figure 6 is interesting, but very preliminary. None of the effects are quantified, and one of the cell types is not identified. I think some proper analysis needs to be done, again across mice, to be able to draw conclusions from these data.

      (8) Finally, in general, I felt that the way the paper was written was very hard to follow, often relying on very processed levels of analysis that were hard to relate back to the raw traces and their biological meaning. In general taking more words to really simply and fully explain each analysis, and taking the words and figures to walk through how each analysis was done and what it tells us about the neuronal data/biology would be really beneficial, especially to someone who is not an extracellular electrophysiologist or immersed in the immediate field.

      In summary, while this manuscript explores an intriguing hypothesis about pre-learning circuit dynamics, it is currently held back by insufficient clarity in behavioural analysis, data presentation, and statistical quantification. Addressing these core issues would greatly improve interpretability and confidence in the findings.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang et al. addressed the question of whether hyperaltruistic preference is modulated by decision context and tested how oxytocin (OXT) may modulate this process. Using an adapted version of a previously well-established moral decision-making task, healthy human participants in this study undergo decisions that gain more (or lose less, termed as context) meanwhile inducing more painful shocks to either themselves or another person (recipient). The alternative choice is always less gain (or more loss) meanwhile less pain. Through a series of regression analyses, the authors reported that hyperaltruistic preference can only be found in the gain context but not in the loss context, however, OXT reestablished the hyperaltruistic preference in the loss context similar to that in the gain context.

      Strengths:

      This is a solid study that directly adapted a previously well-established task and the analytical pipeline to assess hyperaltruistic preference in separate decision contexts. Context-dependent decisions have gained more and more attention in literature in recent years, hence this study is timely. It also links individual traits (via questionnaires) with task performance, to test potential individual differences. The OXT study is done with great methodological rigor, including pre-registration. Both studies have proper power analysis to determine the sample size.

      Weaknesses:

      Despite the strengths, multiple analytical decisions have to be explained, justified, or clarified. Also, there is scope to enhance the clarity and coherence of the writing - as it stands, readers will have to go back and forth to search for information. Last, it would be helpful to add line numbers in the manuscript during the revision, as this will help all reviewers to locate the parts we are talking about.

      Introduction:<br /> (1) The introduction is somewhat unmotivated, with key terms/concepts left unexplained until relatively late in the manuscript. One of the main focuses in this work is "hyperaltruistic", but how is this defined? It seems that the authors take the meaning of "willing to pay more to reduce other's pain than their own pain", but is this what the task is measuring? Did participants ever need to PAY something to reduce the other's pain? Note that some previous studies indeed allow participants to pay something to reduce other's pain. And what makes it "HYPER-altruistic" rather than simply "altruistic"? Plus, in the intro, the authors mentioned that the "boundary conditions" remain unexplored, but this idea is never touched again. What do boundary conditions mean here in this task? How do the results/data help with finding out the boundary conditions? Can this be discussed within wider literature in the Discussion section? Last, what motivated the authors to examine decision context? It comes somewhat out of the blue that the opening paragraph states that "We set out to [...] decision context", but why? Are there other important factors? Why decision context is more important than studying those others?

      Experimental design:<br /> (2) The experiment per se is largely solid, as it followed a previously well-established protocol. But I am curious about how the participants got instructed? Did the experimenter ever mention the word "help" or "harm" to the participants? It would be helpful to include the exact instructions in the SI.

      (3) Relatedly, the experimental details were not quite comprehensive in the main text. Indeed, Methods come after the main text, but to be able to guide readers to understand what was going on, it would be very helpful if the authors could include some necessary experimental details at the beginning of the Results section.

      Statistical analysis<br /> (3) One of the main analyses uses the harm aversion model (Eq1) and the results section keeps referring to one of the key parameters of it (ie, k). However, it is difficult to understand the text without going to the Methods section below. Hence it would be very helpful to repeat the equation also in the main text. A similar idea goes to the delta_m and delta_s terms - it will be very helpful to give a clear meaning of them, as nearly all analyses rely on knowing what they mean.

      (4) There is one additional parameter gamma (choice consistency) in the model. Did the authors also examine the task-related difference of gamma? This might be important as some studies have shown that the other-oriented choice consistency may differ in different prosocial contexts.

      (5) I am not fully convinced that the authors included two types of models: the harm aversion model and logistic regression models. Indeed, the models look similar, and the authors have acknowledged that. But I wonder if there is a way to combine them? For example:<br /> Choice ~ delta_V * context * recipient (*Oxt_v._placebo)<br /> The calculation of delta_V follows Equation 1.<br /> Or the conceptual question is, if the authors were interested in the specific and independent contribution of dalta_m and dalta_s to behavior, as their logistic model did, why the authors examine the harm aversion first, where a parameter k is controlling for the trade-off? One way to find it out is to properly run different models and run model comparison. In the end, it would be beneficial to only focus on the "winning" model to draw inferences.

      (6) The interpretation of the main OXT results needs to be more cautious. According to the operationalization, "hyperaltruistic" is the reduction of pain of others (higher % of choosing the less painful option) relative to the self. But relative to the placebo (as baseline), OXT did not increase the % of choosing the less painful option for others, rather, it decreased the % of choosing the less painful option for themselves. In other words, the degree of reducing other's pain is the same under OXT and placebo, but the degree of benefiting self-interest is reduced under OXT. I think this needs to be unpacked, and some of the wording needs to be changed. I am not very familiar with the OXT literature, but I believe it is very important to differentiate whether OXT is doing something on self-oriented actions vs other-oriented actions. Relatedly, for results such as that in Fig5A, it would be helpful to not only look at the difference, but also the actual magnitude of the sensitivity to the shocks, for self and others, under OXT and placebo.

      Comments on revisions:

      I did not change my original public review, as I think it can still be helpful for the field to see the reasoning and argument.

      For the revision, the authors have done a thorough job of addressing my previous comments and questions.

      The only aspect I would like to ask is that, it would still be great to have a clear definition of hyperaltruism. As it stands, hyperaltruism refers to "people's willingness to pay more to reduce other's pain than<br /> their own pain", ie, this means the "hyper" bit is considered with respect to "self". But shouldn't hyperaltruism be classified contrasting "normal" altruism?

      It is fine that it follows a previously published work (Crockett et al., 2014), but it would still be necessary to explain/define the construct being tested in a standalone fashion rather than letting readers to go back to the original work.

    2. Reviewer #3 (Public review):

      Summary:

      In this study, the authors aimed to index individual variation in decision-making when decisions pit the interests of the self (gains in money, potential for electric shock) against the interests of an unknown stranger in another room (potential for unknown shock). In addition, the authors conducted an additional study in which male participants were either administered intranasal oxytocin or placebo before completing the task to identify the role of oxytocin in moderating task responses. Participants' choice data was analyzed using a harm aversion model in which choices were driven by the subjective value difference between the less and more painful options.

      Strengths:

      Overall, I think this is a well-conducted, interesting, and novel set of research studies exploring decision-making that balances outcomes for the self versus a stranger, and the potential role of the hormone oxytocin (OT) in shaping these decisions. The pain component of the paradigm is well designed, as is the decision-making task, and overall the analyses were well suited to evaluating and interpreting the data. Advantages of the task design include the absence of deception, e.g., the use of a real study partner and real stakes, as a trial from the task was selected at random after the study and the choice the participant made were actually executed. 

      Weaknesses:

      The primary weakness of the paper concerns its framing. Although it purports to be measuring "hyper-altruism," which is the same term used in prior similar (although not identical) designs, I do not believe the task constitutes altruism, but rather the decision to engage, or not engage, in instrumental aggression.

      I continue to believe that when in the "other" trials the only outcome possible for the study partner is pain, and the only outcome possible for the participant is monetary gain, these trials measure decisions about instrumental aggression. That is the exact definition of instrumental aggression is: causing others harm for personal gain. Altruism is not equivalent to refraining from engaging in instrumental aggression, although some similar mechanisms may support both. True altruism would be to accept shocks to the self for the other's benefit (e.g., money).  The interpretation of this task as assessing instrumental aggression is supported by the fact that only the Instrumental Harm subscale of the OUS was associated with outcomes in the task, but not the Impartial Benevolence subscale. By contrast, the IB subscale is the one more consistently associated with altruism (e.g,. Kahane et al 2018; Amormino at al, 2022) I believe it is important for scientific accuracy for the paper, including the title, to be rewritten to reflect what it is testing.

      Although I recognize similar tasks have been previously characterized as "hyper-altruism" I do not believe that is sufficient justification for continuing to promulgate this descriptor without any caveats. I hope the authors will engage more seriously with the idea that this is what the task is measuring.

      Relatedly, in the introduction, I believe it would be important to discuss the non-symmetry of moral obligations related to help/harm--we have obligations not to harm strangers but no obligation to help strangers. This is another reason I do not think the term "hyper altruism" is a good description for this task--given it is typically viewed as morally obligatory not to harm strangers, choosing not to harm them is not "hyper" altruistic (and again, I do not view it as obviously altruism at all).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      General Statement

      *Our lab was totally destroyed on June 15th by an Iranian missile. All stocks, equipment and reagents were lost. While we performed many of the experiments requested by the reviewers, unfortunately some were never completed. We thank you for your understanding. *

      We thank the three reviewers for their thoughtful comments and useful suggestions on how to improve our paper. Some of the reviewers claimed that the paper is “preliminary”. We would like to highlight that in our opinion “preliminary” has two possible meanings in this context: 1) the data does not yet support the claims that the authors wrote; 2) the story is short and should be extended. While we totally agree that type 1 “preliminary” should be addressed (and we have addressed that to the best of our abilities), type 2 “preliminary” is a matter of scope, the length of the paper/project and the publication home. We believe that this story, which has been led by an outstanding master’s student (and as such has had a limited timespan) is worthwhile of publication in its current scope.

      2. Point-by-point description of the revisions

      Reviewers’ comments are in BLUE while our responses are in BLACK.

      Reviewer 1 Summary: This study reports a role for matrix metalloproteinases (MMPs) in the developmental pruning of gamma Kenyon cells (KCs) in the fruit fly Mushroom Body during larval-pupal metamorphosis. The authors show through gene expression studies that MMP genes are upregulated in late larval stages as part of the early program for this type of neuronal pruning. They show through cell-targeted RNAi studies of both secreted MMP-1 and membrane-anchored MMP-2, that both genes are required in glial cells and to a lesser extent within KCs.

      Both MMPs have secreted and membrane-anchored isoforms and we did not assess whether the secreted/anchored isoforms are involved; e.g. see LaFever et al. 2017.

      The authors show that MMP secreted from glial is required for normal levels of Mushroom Body developmental neuronal pruning. They mention that MMP genes have been identified in schizophrenic patient screens in patients, and that perhaps a comparable pruning mechanism could be involved in the loss of grey matter (loss of synapses) in patients. The authors propose that MMP levels may be a potential therapeutic marker in the future.

      We thank the reviewer for his comments. We find it important to clarify that we do not think our work suggests that the MMPs levels may be a potential therapeutic marker without much additional work in the future. In the original text we added a claim from another paper suggesting MMPs as therapeutic target. However, due to the arising confusion, we decided to delete this statement from the text (original line 198). We also added a general disclaimer towards the end of the discussion regarding the genetic power of Drosophila but its limited implication into human health (new lines 276-278).

      Major Comments: Overall, the work is of a reasonable standard, but very preliminary

      Please see general note on two types of “preliminary” – we thank the reviewer for helping us substantiate our claims and strengthen our paper but we do not plan to significantly increase its scope.

      The study lacks the substance to completely convince me of any of the results. There is SUBSTANTIAL work that needs to be done to make this publishable. There are a lot of writing mistakes; so many that I do not list them in detail here

      We are not absolutely sure that we understand to which mistakes this reviewer is eluding. However, we carefully rewrote the manuscript, streamlined many of our claims and added many new and more recent references.

      The references citations are fairly old, but I do not list update replacements here

      Thanks – we added many newer and relevant citations.

      The text is very brief, and the overall writing needs to include significantly more description and detail

      We have included more descriptions and details, as will be elaborated later on, but – again - this is a short report and will remain as such.

      This is evident in all aspects of the manuscript, but especially notable in the Methods and Figure Legends

      Thanks for raising this comment, which was reverberated also by other reviewers – we have now included more details, with a particular focus on the genotypes (Table 2), that somehow were erroneously not included in the original submission, as well as more detailed figure legends.

      None of the Figure Legends include full genotypes of any of the fly lines, and these full fly lines are also not included in the Methods. This is vital to compare the experimental lines to the controls

      True – our apologies for this mistake, we now added the full genotypes in Table 2.

      Major points are listed below:

      1. Figure 2: It is important to note of the specific age of animals in these images when talking about the loss of genes in development. Are all the animals age-matched? High levels of synaptic pruning occur post-eclosion), and it is important to understand when these pruning defects occur. It is mentioned that that overlap for the gene expression data is upregulated during 6-18h APF is this when these images are taken? This is very important in the context of pruning as SCZ symptom presentation is very late relative to these early events.

      We thank the reviewer for this comment which suggests we were not clear enough in our description. We do not claim to have generated an SCZ model and have clarified this better in the text (lines 275-278). Furthermore, axon pruning happens during pupal development, but in all the main figures in this manuscript we dissected young adult flies (3-5 days post eclosion) and show the remnants of unpruned axons (as we have done in numerous studies). To make sure that initial development occurred normally, we also include larval brains in the Figure S7. We now clarified the fact that we are imaging adult brains as a readout to investigate whether pruning occurred during metamorphosis or not (line 124-126).

      1. Figure 2: In the figure legend, it is indicated that the arrows are unpruned axons, however in the controls these areas appear to be highly innervated. Further explanation is needed about the context of the arrows, as there are clear visual differences between these images and the controls, but they appear to have a more expansive phenotype than "unpruned axons". The data does not match the visual representation in comparison to the control.

      We apologize for this confusion. Unfortunately, the driver which we use to label the γ-axons, R71G10-QF2, is not absolutely specific to the γ type KCs but also expressed (sometimes) in the ɑ/β KCs. As the ɑ/β axons are very stereotypic in shape and also express high levels of FasII (which we stain for), we can easily distinguish between the ɑ lobe and unpruned γ axons. To clarify this point, we now clearly demarcate all lobes in the control images and specifically the ɑ lobe in all panels. Additionally, we added new schemes in Figure 2A and 2O to better clarify the anatomy and experimental design.

      1. Figure 2: There needs to be more descriptive definitions and clarifications to the defects labeled in panel K. This could be done in the figure legend, but it would be more useful to label the images provided. For example, if Mmp2 is a "mild pruning affect, put that in the pie chart somewhere, to help guide the description of the phenotype to what those confocal images look like.

      We understand that the pie chart in Figure 2 was confusing and therefore simplified it in the current version (Fig. 2B and 2P). Also, thanks to this great point, we now include a new Figure S3 that includes examples for the ranking categories, which were now performed by two independent investigators in a blind manner.

      Figure 3: The time points of the images of the Mushroom Body (MB) are vital to understanding the process and regulation of these genes.

      Please see our comment to point #1 – unless specifically stated otherwise, all images are MBs of adult flies, as now clearly mentioned in the figure legends, in the text and in the Material and Methods section.

      1. Figure 3D: Significant description of this graph needs to be added for clarity. What parameters separate each phenotypic defect? Labeling the images and showing images that belong in different groups would be very helpful and improve the paper significantly.

      We now included a new Figure S3 (also see our response to comment #3).

      1. Figure S1: Additional experiments would help answer the strength of the phenotype for the ALG-Gal 4 driver. The authors need to perform the rescue experiment. Use a MMP-2 null and then drive it back in the ALG-GAL4 to see if this is sufficient to rescue the neuron pruning. This also isolates the mechanisms to one subtype of glia.

      These are excellent suggestions that are, unfortunately, not doable. To perform a rescue experiment, one would need a viable loss-of-function phenotype of an Mmp2 mutant. There is one published Mmp2 loss-of-function null allele which is lethal during pupal development (Page-McCaw et al, 2003). Our previous data, using tissue specific (ts)CRISPR, suggested the involvement of Mmp2 in neurons for their remodeling (Meltzer et al, 2019). We therefore independently generated an Mmp2 germline mutant using CRISPR (harboring an indel resulting in a premature stop codon and predicted to encode a truncated, 77 amino-acid long protein), now described in Fig. S5A (and in the Materials and Methods). This allele is, as expected, unfortunately also lethal. We attempted to overcome lethality by generating MARCM (mosaic) clones in neurons, but as expected, because Mmp2 is largely secreted, there was no pruning defect phenotype (Fig. S5B-C). Unfortunately, it is not yet possible to generate glial clones.

      Figure 3 and 4: The other glial subtypes need to be analyze to make any conclusion about their involvement, as well as the involvement of the astrocytes. Running these exact same experiments on the cortex glial and ensheathing glia will provide essential insight into what glial subtype is involved. The presumed lack of phenotypes in these other glial subtypes will also strengthen the argument that the astrocytes are specifically involved in this process. These are vital experiments.

      We currently limited our analysis (and conclusions) to astrocytes. Despite the fact that this experiment is beyond our initial scope, we obtained reagents and performed preliminary experiments (using the R77A03-Gal4 driver for cortex glia, and the R83E12-Gal4 for ensheathing glia). In both cases, we observed extremely mild pruning defects, not comparable to those with Repo- or Alrm-Gal4. In these preliminary experiments we lacked a proper control, and now, unfortunately, due to the loss of our lab, we are unable to complete these experiments in a reasonable amount of time.

      1. Figure 4: Again, description of the phenotypes and examples of these would improve the quality of this figure substantially.

      Absolutely agree – see our response to comment #3 (and Fig. S3).

      1. Figure 5: An improvement on the quantifications of these phenotypes would strengthen the paper substantially. More detailed description of the phenotypes and how they related to the control would significantly improve the overall quality of the work.

      Thanks again for highlighting that we neglected to include the full genotypes that are now added (Table 2). We also thank the reviewer for raising the point regarding quantification. First, we generated a new Fig. S3A-E to show examples of the ranking by two independent rankers. Second, ranking was performed by looking at TdTomato positive vertical axons that are outside of the ɑ lobe (high FasII) – this is now better explained in the materials and methods. Additionally, while we would love to have a better scoring, and automatic, system – and even published a semi-automated scoring algorithm in Alyagor et al. 2018 (Figure 3O in the Alyagor paper), because the driver also labels vertical axons (ɑ/β) and because unpruned γ axons often express FasII, this quantification method does not always work. What we have done in previous cases, as we have also done here, is to provide independent ranking by two investigators and compare their ranking (Fig. S3F-G). Finally, we are working with our AI hub to develop automatic scoring systems that will not require human ranking – however this is beyond the scope for this manuscript.

      Minor Comments: 1. Figure 1A: I would suggest labeling the KC (gamma) and potentially one of the others (a/B, a'/B') to orient the reader to the differences between these two subsets of the KCs, and to emphasize which neurons are undergoing pruning and where the cell bodies are and where the axons project.

      Thanks for the suggestions – we now better annotated the scheme in Figure 1A as well as additional schematics in Figure 2 and, finally, better annotations in selected panels. Specifically, the ɑ lobe is outlined in magenta throughout all relevant panels.

      1. Figure 1C: This panel needs further labeling to explain the findings in the heat map. Labeling some of the genes that were found and where they were would be helpful. This could also be done in the figure legend, however without any further labeling or context the heatmap is confusing.

      We apologize for the incomplete figure. We did not want to overload the figure with data, which is why we are showing only the important clusters and did not include gene names. To keep the figure simple, but at the same time provide the complete information, we now include the full data in Fig. S1 (that includes the original heatmap with all the dynamic clusters I-IX, and including all the gene names). For the full raw data, including non-dynamic clusters, the reader is referred to look in Supplemental excel file 1. We hope this provides the clarity that this reviewer rightfully asks for.

      1. Figure 3B,C: The full genotypes need to be labeled. What is the exact genotype used for the control?

      The full genotypes of all figure panels are now included in Table 2 in the Materials and Methods.

      1. Figure S1: The stock number for the ALG-GAL4 is missing, there are multiple different drivers, therefore this could be helpful in understanding this phenotype, as some are better than others.

      Indeed, Alrm-Gal4 comes on two chromosomes – we used BDSC #67032, which is on chromosome III and this is now clearly mentioned the Materials and Methods section.

      1. Figures 3 and 4: Labeling needs to remain consistent; Figure 3 "Glia-Gal4", Figure 4 "glia-gal4".

      Thanks, done.

      Reviewer #1 (Significance (Required)):

      General Assessment: An interesting study on MMP function during an unusual type of neural development (axon pruning). Most of the MMP function appears to be in glia, although the MMP role in this context in unclear. The MMP function in the neurons being pruned is unexpected and even less clear. The study is somewhat poorly described in terse language lacking essential information, which gives the overall impression of a preliminary report.

      Advance: Glial MMP function has been described for neuronal clearance mechanisms following injury. The main advance here is to describe a similar function during normal development. Audience: Developmental neuroscientists, MMP biologists, possibly schizophrenia clinician researchers

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Neuropsychiatric conditions are often influenced by genetic factors. Schizophrenia is a complex mental disorder characterised by a mixture of hallucinations, delusions and disorganised thinking that causes lifelong problems in daily life. GWAS have identified a number of genes associated with the risk of developing schizophrenia, although genetic predisposition alone is not sufficient and additional environmental factors are required. In the current manuscript, the authors aim to exploit the strength of the Drosophila system to explore a link between schizophrenia-associated genes and neuronal remodelling during development. They focus on the mushroom body in the adult brain, where pronounced neuronal remodelling occurs during metamorphosis. To assess the potential role of the genes identified by the GWAS, they performed a targeted RNAi-based screen. They focus on the role of metalloproteases and find that they are required in neurons and in glia for the pruning of mushroom body axons. The study starts with a selection of 32 genes, 29 of which are listed (a bit hidden) in materials and methods and the identification of the Drosophila orthologs. The expression patterns of these genes in Kenyon cells are presented in Figure 1 - but unfortunately no information is given on who is expressed when

      We apologize for the confusion. We attempted to keep Figure 1 simple but this resulted in the absence of critical information, as the reviewer suggests. We now include a Figure S1 that includes the entire heatmap of the dynamically expressed clusters I-IX with all the gene names. Additionally, we now augmented the information in Table 1 to include the screen phenotypes. Finally, Supplemental excel file 1, also included in our original submission, includes all the data, and is now better referred to throughout the text.

      In a next step, Kenyon cell specific RNAi knockdown experiments are shown that identify a pruning phenotype for several genes. They demonstrate that Mmp2 (and similarly Mmp1) is also required in glia. Although Mmp2 was identified by neuronal RNAi-based knockdown, double knockdown experiments led the authors conclude that its primary function is in glia. The study emphasises the use of the advanced genetic model to understand complex human diseases. However, the paper does not go far enough in making use of the excellent genetics available. Basically, the report is about the identification of a few hits in a small RNAi screen, which is fine in itself, but leaves many questions unanswered. Do mmp1/2 mutants have a phenotype?

      This is a very important question that cannot be answered, unfortunately. There is one published Mmp2 loss of function null allele which is lethal during pupal development (Page-MaCaw et al, 2003). Our previous data, using tissue specific (ts)CRISPR, suggested the involvement of Mmp2 in neurons for their remodeling (Meltzer et al, 2019). We therefore independently generated an Mmp2 germline mutant using CRISPR (harboring an indel resulting in a premature stop codon and predicted to encode a truncated, 77 amino-acid long protein), now described in Fig. S5A (and in the Materials and Methods). This allele is, as expected, unfortunately also lethal. We attempted to overcome lethality by generating MARCM (mosaic) clones in neurons, but as expected, because Mmp2 is largely secreted, there was no pruning defect phenotype (Fig. S5B-C). Unfortunately, it is not yet possible to generate glial clones. Additionally, available Mmp1 mutants are, sadly, also homozygous lethal. That said, in our revised manuscript we now include data demonstrating that expression of a dominant negative variant of Mmp1 inhibits pruning (Fig. 3J-K). We strengthened the evidence regarding the reliability of Mmp1 RNAi using an antibody mix (Fig. S4), and for Mmp2 – we refer to a manuscript that tested its efficiency (Harmansa et al., 2023). Lastly, we added new data using an additional RNAi line targeting Mmp2 from the VDRC collection (Fig. 3L).

      Can the phenotype be rescued?

      Unfortunately, without a viable mutant LOF phenotype, a rescue experiment is impossible. Regardless, in an attempt to rescue the RNAi phenotype, we designed and generated an RNAi-resistant Mmp2 overexpression transgene. Unfortunately, due to the destruction of our lab – several days after we received this transgenic line from Bestgene – this experiment is not included in the revision.

      Does TIMP expression lead to similar phenotypes?

      This is an interesting question which we addressed in our experiments but did not include in the text. Unfortunately, overexpression of TIMP did not have any effect on MB development. We are adding this figure here as Reviewer Figure 1, but we think that adding this information to the paper will not improve it for several reasons. The lack of phenotype by overexpression of Timp can result from a technical issue such as low expression or mislocalization of the protein, or a biological issue such as more complicated involvement of TIMP or other MMP inhibitors.

      What is the temporal requirement for Mmp1/2?

      This is an excellent suggestion, not an easy experiment, but one that we initiated, using a temperature sensitive Gal80 to control the expression of the RNAi only during metamorphosis. However, to the unfortunate destruction of our lab, this experiment was never completed.

      What are the target proteins of Mmp2?

      This is the million-dollar question – but unfortunately is beyond the scope of this short report.

      Is Mmp2 still required when astrocyte motility is blocked? What is the morphology of glia after Mmp1/2 knockdown?

      Thank you for this wonderful suggestion. We initiated two types of experiments using sparse labeling techniques (both MARCM and SPARC) to identify the morphology of single astrocytes in WT vs. MMP KD. However, these are complicated crosses that were not completed prior to the destruction of our lab.

      Reviewer #2 (Significance (Required)):

      The strength of the study is to identify a pruning phenotype after RNAi-based knockdown. The limitations is that this study is very superficial, it is the beginning of a paper. The initial claim to use Drosophila because to its advanced genetics is not met. The results section is shorter than the discussion.

      While we agree with much of the reviewer’s statement this also relates to our general comment about “preliminary” type 1 and type 2 – True, this could be the beginning of a big paper and it would definitely be a more comprehensive and deep story. Most of the papers from my lab are indeed a 5 year endeavor. However, this short report (which is now longer, more detailed, and includes additional experiments) is a result of the work of an outstanding master’s student who came up with the idea for the project entirely by herself. Thus – given the data that she has acquired, and the fact that my lab will not continue to study MMPs or schizophrenia, the question needs to be whether the data supports the claims and whether this is an advance of science worthwhile of publication in a respectable journal. Our clear and decisive opinion is that the answer to that question is yes.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this work, Schuldiner and colleagues explore the role of Mmp1 and Mmp2 in neuronal remodeling in the mushroom body of Drosophila. Overall, this work is very interesting, but in its current form seems quite preliminary. The biggest limitation of the study is that single RNAi lines are used with no validation that the lines are working, despite the fact that Mmp antibodies are available as are endogenously tagged Mmp lines that could have been used to validate the genetic manipulations. Specific concerns are listed below.

      We thank reviewer 3 for his generally positive assessment of our work and we now performed additional experiments to strengthen and validate the original RNAi findings – for specifics see our reply to the points below.

      Major concerns 1) The scoring system for pruning of mushroom body neurons seems very variable, even in controls (where scoring can range from very mild to moderate), and it is very hard to assess from the images what one is looking at (rather than using our own judgment, we rely on the authors' words). It would be necessary to have better labeling and examples of what phenotypes are considered "mild", "severe", "wild type-like". It would also help to understand how phenotype assessment is guided by the overlap between the signals from TdTomato fluorescence and FasII stain.

      We thank the reviewer for raising this point, that has also been highlighted by other reviewers in some form. First, we have generated Figure S3A-E to show examples of the ranking, which was now performed by two independent investigators. Second, ranking was performed by looking at TdTomato positive vertical axons that are outside of the αlobe (high FasII) – this is now better explained in the materials and methods. Additionally, while we would love to have a better scoring, and automatic, system – and even published a semi-automated scoring algorithm in Alyagor et al. 2018 (Figure 3O in the Alyagor paper), because the driver also labels vertical axons (ɑ/β) and because unpruned γ axons often express FasII, this quantification method does not always work. What we have done in previous cases, as we have also done here, is to provide independent ranking by two investigators and compare their ranking (Fig. S3F-G). Finally, we are working with our AI hub to develop automatic scoring systems that will not require human ranking – however this is beyond the scope for this manuscript.

      2) The biggest limitations of the approach are that single RNAi lines are used to screen, with no accompanying validation of the tool (see above)

      We agree. Unfortunately not all RNAis are “equal” and thus not all of them work. To support the RNAi data, we have better clarified previous experiments that demonstrate the importance of neuronal Mmp2 via tissue specific (ts) CRISPR (Meltzer, et al, 2019). Unfortunately, the Mmp2 null mutant that is available is lethal during pupal development (Page-MaCaw et al, 2003). We therefore independently generated an Mmp2 germline mutant using CRISPR (harboring an indel resulting in a premature stop codon and predicted to encode a truncated, 77 amino-acid long protein), now described in Fig. S5A (and in the Materials and Methods). This allele is, as expected, unfortunately also lethal. We attempted to overcome lethality by generating MARCM (mosaic) clones in neurons, but as expected, because Mmp2 is largely secreted, there was no pruning defect phenotype (Fig. S5B-C). Unfortunately, it is not yet possible to generate glial clones. Additionally, available Mmp1 mutants are, sadly, also homozygous lethal. That said, in our revised manuscript we now include data demonstrating that expression of a dominant negative variant of Mmp1 inhibits pruning (Fig. 3J-K). We strengthened the evidence regarding the reliability of Mmp1 RNAi using an antibody mix (Fig. S4), and for Mmp2 – we refer to a manuscript that tested its efficiency (Harmansa et al., 2023). Lastly, we added new data using an additional RNAi line targeting Mmp2 from the VDRC collection (Fig. 3L).

      3) RNAi-based knockdown is used to infer epistatic information-this is not appropriate as epistasis experiments need to be done with null alleles to make firm conclusions. Additional concerns: ● Even with the same driver, knockdown efficiency for 2 different genes could be variable and dependent of the specific RNAi used. ● The comparison between drivers is even harder, as driver strength varies greatly. ● The knockdown efficiency drops with increasing numbers of RNAi used. ● The specific genotypes used for this experiment should be clarified, as it would be very important to ensure that the UAS dosage is equal across conditions.

      We agree that RNAi is not optimal to assess epistasis. And indeed, we did not mean to claim epistasis relationship between Mmp1 and Mmp2, nor between neurons and glia. We now use better language to clarify this. To define epistatic relationships, the use of mutants would be required, unfortunately the use of nulls is not possible because they are lethal and secreted (thus not enabling mosaic analyses). We agree that increasing the number of RNAi lines is expected to reduce their efficiency – this is why it is even more significant when we see an increased defective phenotype in the double knockdown experiments. Finally, we totally agree about the genotype comment and apologize that it was erroneously omitted in the original submission– all of which have been now added (Table 2 in materials and methods).

      4) To further deepen the rigor of this work, a few simple yet important things could have been done. First, it would be important to rule out that knocking down Mmps does not affect astrocyte numbers and health (could be assessed by counting numbers and observing their morphology). Also, the authors previously showed that astrocytes actively infiltrate the axon bundle prior to pruning to facilitate axon defasciculation and pruning (Marmor-Kollet et al., 2023). It would have provided an important insight to examine if astrocytes can infiltrate the axon bundle if Mmp2 and/or Mmp1 are knocked down.

      Thank you for these wonderful suggestions. We embarked on a few experiments as detailed below, unfortunately these are complicated crosses that were not completed prior to the destruction of our lab. 1) We initiated two types of experiments using sparse labeling techniques (both MARCM and SPARC) to identify the morphology of single astrocytes in WT vs. MMP KD. 2) Testing astrocytic infiltrations requires three binary systems, we obtained and generated stocks required for these experiments, but these were prematurely terminated. 3) We initiated experiments to count the number of glial nuclei in the vicinity of the degenerating axonal lobe (at the onset of pruning). Preliminary experiments with a small n (3 controls, 4 Mmp1 RNAi, and 5 Mmp2 RNAi) suggest that the number of glial nuclei is not significantly different between these conditions.

      Minor The introduction puts big emphasis on the role of glia, but then to narrows down candidate genes for the screen a γ-KCs transcriptional data set is used, and the initial screen is done via knockdown of those candidates in neurons (there is a disconnect between rationale and approach).

      We totally agree with this reviewer which is why we now changed the paper to include both neuronal and glial loss-of-function screens. Figure 1 is now augmented with the glial data.

      Rationale for looking into axon pruning and how that translates into insights about synaptic pruning defects in schizophrenia should be more clearly stated.

      Indeed, our belief that synapse pruning and axon pruning share molecular mechanisms remains yet unproven. However, both are steps during neuronal remodeling, which has been previously implicated in schizophrenia. That said, we now added an additional disclaimer to acknowledge the limitation of our findings in the context of human disease and synapse elimination (lines 275-279).

      Figure 1C: data visualization for this heat map should be improved. Parts of the data are faded, and the differences between gene clusters are unclear.

      We apologize for the incomplete figure. We did not want to overload the figure with data, which is why we are showing only the important clusters and did not include gene names. To keep the figure simple, but at the same time provide the complete information, we now include the full data in Fig. S1 (that includes the original heatmap with all the dynamic clusters I-IX, and including all the gene names). For the full raw data, including non-dynamic clusters, the reader is referred to look in Supplemental excel file 1. We hope this provides the clarity that this reviewer rightfully asks for.

      Reviewer #3 (Significance (Required)):

      In this work, Schuldiner and colleagues explore the role of Mmp1 and Mmp2 in neuronal remodeling in the mushroom body of Drosophila. Overall, this work is very interesting, but in its current form seems quite preliminary. The biggest limitation of the study is that single RNAi lines are used with no validation that the lines are working, despite the fact that Mmp antibodies are available as are endogenously tagged Mmp lines that could have been used to validate the genetic manipulations.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for providing us the opportunity to revise our manuscript titled “Identifying regulators of associative learning using a protein-labelling approach in C. elegans.” We appreciate the insightful feedback that we received to improve this work. In response, we have extensively revised the manuscript with the following changes: we have (1) clarified the criteria used for selecting candidate genes for behavioural testing, presenting additional data from ‘strong’ hits identified in multiple biological replicates (now testing 26 candidates, previously 17), (2) expanded our discussion of the functional relevance of validated hits, including providing new tissue-specific and neuron class-specific analyses, and (3) improved the presentation of our data, including visualising networks identified in the ‘learning proteome’, to better highlight the significance of our findings. We also substantially revised the text to indicate our attempts to address limitations related to background noise in the proteomic data and outlined potential refinements for future studies. All revisions are clearly marked in the manuscript in red font. A detailed, point-by-point response to each comment is provided below.

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Rahmani et al., utilize the TurboID method to characterize the global proteome changes in the worm's nervous system induced by a salt-based associative learning paradigm. Altogether, Rahmani et al., uncover 706 proteins that are tagged by the TurboID method specifically in samples extracted from worms that underwent the memory inducing protocol. Next, the authors conduct a gene enrichment analysis that implicates specific molecular pathways in salt-associative learning, such as MAP-kinase and cAMP-mediated pathways. The authors then screen a representative group of the hits from the proteome analysis. The authors find that mutants of candidate genes from the MAP-kinase pathway, namely dlk-1 and uev-3, do not affect the performance in the learning paradigm. Instead multiple acetylcholine signaling mutants significantly affected the performance in the associative memory assay, e.g., acc-1, acc-3, gar-1, and lgc-46. Finally, the authors demonstrate that the acetylcholine signaling mutants did not exhibit a phenotype in similar but different conditioning paradigms, such as aversive salt-conditioning or appetitive odor conditioning, suggesting their effect is specific to appetitive salt conditioning.

      Major comments:

      1. The statistical approach and analysis of the behavior assay: The authors use a 2-way ANOVA test which assumes normal distribution of the data. However, the chemotaxis index used in the study is bounded between -1 and 1, which prevents values near the boundaries to be normally distributed.

      Since most of the control data in this assay in this study is very close to 1, it strongly suggests that the CI data is not normally distributed and therefore 2-way ANOVA is expected to give skewed results.

      I am aware this is a common mistake and I also anticipate that most conclusions will still hold also under a more fitting statistical test.

      We appreciate the point raised by Reviewer 1 and understand the importance of performing the correct statistical tests.

      The statistical tests used in this study were chosen since parametric tests, particularly ANOVA tests to assess differences between multiple groups, are commonly used to assess behaviour in the C. elegans learning and memory field. Below is a summary of the tests used by studies that perform similar behavioural tests cited in this work, as examples:

      Table 1 | A summary for the statistical tests performed by similar studies for chemotaxis assay data. References (listed in the leftmost column) were observed to (A) use parametric tests only or (B) performed either a parametric or non-parametric test on each chemotaxis assay dataset depending on whether the data passed a normality test. Listings for ANOVA tests are in bold to demonstrate their common use in the C. elegans learning and memory field.

      Reference

      Parametric test/s used in the reference

      Non-parametric test/s used in the reference

      Beets et al., 2020

      Two-way ANOVA

      None

      Hiroki & Iino 2022

      One-way ANOVA

      None

      Hiroki et al., 2022

      One-way ANOVA

      None

      Hukema et al., 2006

      T-tests

      None

      Hukema et al., Learn. Mem. 2008

      T-tests

      None

      Jang et al., 2019

      ANOVA

      None

      Kitazono et al., 2017

      Two-way ANOVA and t-tests

      None

      Lans et al., 2004

      One-way ANOVA

      None

      Lim et al., 2018

      Two-way ANOVA

      Wilcoxon rank sum test adjusted with the Benjamini–Hochberg method

      Lin et al., 2010

      Two-way or three-way ANOVA

      None

      Nagashima et al., 2019

      One-way ANOVA

      None

      Ohno et al., 2014

      None

      Sakai et al., 2017

      One-way ANOVA or t-tests

      None

      Stein & Murphy 2014

      Two-way ANOVA and t-tests

      None

      Tang et al., 2023

      One-way ANOVA or t-tests

      None

      Tomioka et al., 2006

      T tests

      None

      Watteyne et al., 2020

      One-way ANOVA

      Two-sided Kruskal–Wallis

      We note Reviewer 1's concern that this may stem from a common mistake. As stated, Two-way ANOVA generally relies on normally distributed data. We used GraphPad Prism to perform the Shapiro-Wilk normality test on our chemotaxis assay data as it is generally appropriate for sample sizes Table 2 | Shapiro-Wilk normality test results for chemotaxis assay data in Figure S8C. Chemotaxis assay data was generated to assess salt associative learning capacity for wild-type (WT) versus lgc-46(-) mutant C. elegans. Three experimental groups were prepared for each C. elegans strain (naïve, high-salt control, and trained). From top-to-bottom, the data below displays the ‘W’ value, ‘P value’, a binary yes/no for whether the data passes the Shapiro-Wilk normality test, and a ‘P value summary’ (ns = non-significant). W values measure the similarity between a normal distribution and the chemotaxis assay data. Data is considered normal in the Shapiro-Wilk normality test when a W value is near 1.0 and the null hypothesis is not rejected (i.e., P value > 0.05).*

      WT naïve

      WT high-salt control

      WT trained

      lgc-46 naïve

      lgc-46 high-salt control

      lgc-46 trained

      W

      0.9196

      0.9114

      0.8926

      0.8334

      0.8151

      0.8769

      P value

      0.5272

      0.4758

      0.3705

      0.1475

      0.1070

      0.2954

      Passed normality test (alpha=0.05)?

      Yes

      Yes

      Yes

      Yes

      Yes

      Yes

      P value summary

      ns

      ns

      ns

      ns

      ns

      ns

      The manuscript now includes the use of the Shapiro-Wilk normality test to assess chemotaxis assay data before using two-way ANOVA on page 51.

      Nevertheless an appropriate statistical analysis should be performed. Since I assume the authors would wish to take into consideration both the different conditions and biological repeats, I can suggest two options:

      • Using a Generalized linear mixed model, one can do with R software.
      • Using a custom bootstrapping approach. We thank Reviewer 1 for suggesting these two options. We carefully considered both approaches and consulted with the in-house statistician at our institution (Dr Pawel Skuza, Flinders University) for expert advice to guide our decision. In summary:

      • Generalised linear mixed models: Generalised linear mixed models (GLMMs) are generally most appropriate for nested/hierarchal data. However, our chemotaxis assay data does not exhibit such nesting. Each biological replicate (N) consists of three technical replicates, which are averaged to yield a single chemotaxis index per N. Our statistical comparisons are based solely on these averaged values across experimental groups, making GLMMs less applicable in this context.

      • __Bootstrapping: __Based on advice from our statistician, while bootstrapping can be a powerful tool, its effectiveness is limited when applied to datasets with a low number of biological replicates (N). Bootstrapping relies on resampling existing data to simulate additional observations, which may artificially inflate statistical power and potentially suggest significance where the biological effect size is minimal or not meaningful. Increasing the number of biological replicates to accommodate bootstrapping could introduce additional variability and compromise the interpretability of the results. The total number of assays, especially controls, varies quite a bit between the tested mutants. For example compare the acc-1 experiment in Figure 4.A., and gap-1 or rho-1 in Figure S4.A and D. It is hard to know the exact N of the controls, but I assume that for example, lowering the wild type control of acc-1 to equivalent to gap-1 would have made it non significant. Perhaps the best approach would be to conduct a power analysis, to know what N should be acquired for all samples.

      We thoroughly evaluated performing the power analysis: however, this is typically performed with the assumption that an N = 1 represents a singular individual/person. An N =1 in this study is one biological replicate that includes hundreds of worms, which is why it is not typically employed in our field for this type of behavioural test.

      Considering these factors, we have opted to continue using a two-way ANOVA for our statistical analysis. This choice aligns with recent publications that employ similar experimental designs and data structures. Crucially, we have verified that our data meet the assumptions of normality, addressing key concerns regarding the suitability of parametric testing. We believe this approach is sufficiently rigorous to support our main conclusions. This rationale is now outlined on page 51.

      To be fully transparent, our aim is to present differences between wild-type and mutant strains that are clearly visible in the graphical data, such that the choice of statistical test does not become a limiting factor in interpreting biological relevance. We hope this rationale is understandable, and we sincerely appreciate the reviewer’s comment and the opportunity to clarify our analytical approach.

      We hope that Reviewer 1 will appreciate these considerations as sufficient justification to retain the statistical tests used in the original manuscript. Nevertheless, to constructively address this comment, we have performed the following revisions:

      1. __Consistent number of biological replicates: __We performed additional biological replicates of the learning assay to confirm the behavioural phenotypes for the key candidates described (KIN-2 , F46H5.3, ACC-1, ACC-3, LGC-46). We chose N = 5 since most studies cited in this paper that perform similar behavioural tests do the same (see the table below). Table 3 | A summary for sample sizes generated by similar studies for chemotaxis assay data. References (listed in the leftmost column) were observed to the sample sizes (N) below corresponding to biological replicates of chemotaxis assay data. N values are in bold when the study uses N ≤ 5.

      Reference

      N used in the study for chemotaxis assay data

      Beets et al., 2020

      8

      Hiroki & Iino 2022

      5-8

      Hiroki et al., 2022

      6-7

      Hukema et al., 2006

      ≥ 4

      Hukema et al., Learn. Mem. 2008

      ≥ 4

      Jang et al., 2019

      ≥ 4

      Kitazono et al., 2017

      ≥ 4

      Kauffman et al., 2010

      ≥ 3

      Kauffman et al., J. Vis. Exp. 2011

      ≥ 3

      Lans et al., 2004

      2

      Lim et al., 2018

      2-4

      Lin et al., 2010

      ≥ 4

      Nagashima et al., 2019

      ≥ 7

      Ohno et al., 2014

      ≥ 11

      Sakai et al., 2017

      ≥ 4

      Stein & Murphy 2014

      3-5

      Tang et al., 2023

      ≥ 9

      Watteyne et al., 2020

      ≥ 10

      __Grouped presentation of behavioural data: __We now present all behavioural data by grouping genotypes tested within the same biological replicate, including wild-type controls, rather than combining genotypes tested separately. This ensures that each graph displays data from genotypes sharing the same N, also an important consideration for performing parametric tests. Accordingly, we re-performed statistical analyses using this reduced Nfor relevant graphs. As anticipated, this rendered some comparisons non-significant. All statistical comparisons are clearly indicated on each graph. Improved clarity of figure legends: __We revised figure legends for __Figures 5, 6, S7, S8, & S9 to make clear how many biological replicates have been performed for each genotype by adding N numbers for each genotype in all figures.

      The authors use the phrasing "a non-significant trend", I find such claims uninterpretable and should be avoided. Examples: Page 16. Line 7 and Page 18, line 16.

      This is an important point. While we were not able to find the specific phrasing "a non-significant trend" from this comment in the original manuscript, we acknowledge that referring to a phenotype as both a trend and non-significant may confuse readers, which was originally stated in the manuscript in two locations.

      The main text has been revised on pages 27 & 28 when describing comparisons between trained groups between two C. elegans lines, by removing mentions of trends and retaining descriptions of non-significance.

      Neuron-specific analysis and rescue of mutants:

      Throughout the study the authors avoid focusing on specific neurons. This is understandable as the authors aim at a systems biology approach, however, in my view this limits the impact of the study. I am aware that the proteome changes analyzed in this study were extracted from a pan neuronally expressed TurboID. Yet, neuron-specific changes may nevertheless be found. For example, running the protein lists from Table S2, in the Gene enrichment tool of wormbase, I found, across several biological replicates, enrichment for the NSM, CAN and RIG neurons. A more careful analysis may uncover specific neurons that take part in this associative memory paradigm. In addition, analysis of the overlap in expression of the final gene list in different neurons, comparing them, looking for overlap and connectivity, would also help to direct towards specific circuits.

      This is an important and useful suggestion. We appreciate the benefit in exploring the data from this study from a neuron class-specific lens, in addition to the systems-level analyses already presented.

      The WormBase gene enrichment tool is indeed valuable for broad transcriptomic analyses (the findings from utilising this tool are now on page 16); however, its use of Anatomy Ontology (AO) terms also contains annotations from more abundant non-neuronal tissues in the worm. To strengthen our analysis and complement the Wormbase tool, we also used the CeNGEN database as suggested by Reviewer 3 Major Comment 1 (Taylor et al., 2021), which uses single cell RNA-Seq data to profile gene expression across the C. elegans nervous system. We input our learning proteome data into CeNGEN as a systemic analysis, identifying neurons highly represented by the learning proteome (on pages 16-20). To do this, we specifically compared genes/proteins from high-salt control worms and trained worms to identify potential neurons that may be involved in this learning paradigm. Briefly, we found:

      • WormBase gene enrichment tool: Enrichment for anatomy terms corresponding to specific interneurons (ADA, RIS, RIG), ventral nerve cord neurons, pharyngeal neurons (M1, M2, M5, I4), PVD sensory neurons, DD motor neurons, serotonergic NSM neurons, and CAN.
      • CeNGEN analysis: Representation of neurons previously implicated in associative learning (e.g., AVK interneurons, RIS interneurons, salt-sensing neuron ASEL, CEP & ADE dopaminergic neurons, and AIB interneurons), as well as neurons not previously studied in this context (pharyngeal neurons I3 & I6, polymodal neuron IL1, motor neuron DA9, and interneuron DVC). Methods are detailed on pages 50 & 51. These data are summarised in the revised manuscript as Table S7 & Figure 4.

      To further address the reviewer’s suggestion, we examined the overlap in expression patterns of the validated learning-associated genes acc-1, acc-3, lgc-46, kin-2, and F46H5.3 across the neuron classes above, using the CeNGEN database. This was done to explore potential neuron classes in which these regulators may act in to regulate learning. This analysis revealed both shared and distinct expression profiles, suggesting potential functional connectivity or co-regulation among subsets of neurons. To summarise, we found:

      • All five learning regulators are expressed in RIM interneurons and DB motor neurons.
      • KIN-2 and F46H5.3 share the same neuron expression profile and are present in many neurons, so they may play a general function within the nervous system to facilitate learning.
      • ACC-3 is expressed in three sensory neuron classes (ASE, CEP, & IL1).
      • In contrast, ACC-1 and LGC-46 are expressed in neuron classes (in brackets) implicated in gustatory or olfactory learning paradigms (AIB, AVK, NSM, RIG, & RIS) (Beets et al., 2012, Fadda et al., 2020, Wang et al., 2025, Zhou et al., 2023, Sato et al., 2021), neurons important for backward or forward locomotion (AVE, DA, DB, & VB) (Chalfie et al., 1985), and neuron classes for which their function is yet detailed in the literature (ADA, I4, M1, M2, & M5). These neurons form a potential neural circuit that may underlie this form of behavioural plasticity, which we now describe in the main text on pages 16-20 & 34-35 and summarise in Figure 4.

      OPTIONAL: A rescue of the phenotype of the mutants by re-expression of the gene is missing, this makes sure to avoid false-positive results coming from background mutations. For example, a pan neuronal or endogenous promoter rescue would help the authors to substantiate their claims, this can be done for the most promising genes. The ideal experiment would be a neuron-specific rescue but this can be saved for future works.

      We appreciate this suggestion and recognise its potential to strengthen our manuscript. In response, we made many attempts to generate pan-neuronal and endogenous promoter re-expression lines. However, we faced several technical issues in transgenic line generation, including poor survival following microinjection likely due to protein overexpression toxicity (e.g., C30G12.6, F46H5.3), and reduced animal viability for chemotaxis assays, potentially linked to transgene-related reproductive defects (e.g., ACC-1). As we have previously successfully generated dozens of transgenic lines in past work (e.g. Chew et al., Neuron 2018; Chew et al., Phil Trans B 2018; Gadenne/Chew et al., Life Science Alliance 2022), we believe the failure to produce most of these lines is not likely due to technical limitations. For transparency, these observations have been included in the discussion section of the manuscript on pages 39 & 40 as considerations for future troubleshooting.

      Fortunately, we were able to generate a pan-neuronal promoter line for KIN-2 that has been tested and included in the revised manuscript. This new data is shown in Figure 5B __and described on __pages 23 & 24. Briefly, this shows that pan-neuronal expression of KIN-2 from the ce179 mutant allele is sufficient to reproduce the enhanced learning phenotype observed in kin-2(ce179) animals, confirming the role of KIN-2 in gustatory learning.

      To address the potential involvement of background mutations (also indicated by Reviewer 4 under ‘cross-commenting’), we have also performed experiments with backcrossed versions of several mutants. These experiments aimed to confirm that salt associative learning phenotypes are due to the expected mutation. Namely, we assessed kin-2(ce179) mutants that had been backcrossed previously by another laboratory, as well as C30G12.6(-) and F46H5.3(-) animals backcrossed in this study. Although not all backcrossed mutants retained their original phenotype (i.e., C30G12.6) (Figure 6D, a newly added figure), we found that backcrossed versions of KIN-2 and F46H5.3 both robustly showed enhanced learning (Figures 5A & 6B). This is described in the text on pages 23-26.

      __Minor comments: __

      1. Lack of clarity regarding the validation of the biotin tagging of the proteome. The authors show in Figure 1 that they validated that the combination of the transgene and biotin allows them to find more biotin-tagged proteins. However there is significant biotin background also in control samples as is common for this method. The authors mention they validated biotin tagging of all their experiments, but it was unclear in the text whether they validated it in comparison to no-biotin controls, and checked for the fold change difference.

      This is an important point: We validated our biotin tagging method prior to mass spectrometry by comparing ‘no biotin’ and ‘biotin’ groups. This is shown in Figure S1 in the revised manuscript, which includes a western blot comparing untreated and biotin treated animals that are non-transgenic or expressing TurboID. As expected, by comparing biotinylated protein signal for untreated and treated lanes within each line, biotin treatment increased the signal 1.30-fold for non-transgenic and 1.70-fold for TurboID C. elegans. This is described on __page 8 __of the revised manuscript.

      To clarify, for mass spectrometry experiments, we tested a no-TurboID (non-transgenic) control, but did not perform a no-biotin control. We included the following four groups: (1) No-TurboID ‘control’ (2) No-TurboID ‘trained’, (3) pan-neuronal TurboID ‘control’ and (4) pan-neuronal TurboID ‘trained’, where trained versus control refers to whether ‘no salt’ was used as the conditioned stimulus or not, respectively (illustrated in Figure 1A). Due to the complexity of the learning assay (which involves multiple washes and handling steps, including a critical step where biotin is added during the conditioning period), and the need to collect sufficient numbers of worms for protein extraction (>3,000 worms per experimental group), adding ‘no-biotin’ controls would have doubled the number of experimental groups, which we considered unfeasible for practical reasons. This is explained on __pages 8 & 9 __of the revised manuscript.

      Also, it was unclear which exact samples were tested per replicate. In Page 9, Lines 17-18: "For all replicates, we determined that biotinylated proteins could be observed ...", But in Page 8, Line 24 : "We then isolated proteins from ... worms per group for both 'control' and 'trained' groups,... some of which were probed via western blotting to confirm the presence of biotinylated proteins".

      • Could the authors specify which samples were verified and clarify how?

      Thank you for pointing out these unclear statements: We have clarified the experimental groups used for mass spectrometry experiments as detailed in the response above on pages 8 &____ 9. In addition, western blots corresponding to each biological replicate of mass spectrometry data described in the main text on page 10 and have been added to the revised manuscript (as Figure S3). These western blots compare biotinylation signal for proteins extracted from (1) No-TurboID ‘control’ (2) No-TurboID ‘trained’, (3) pan-neuronal TurboID ‘control’ and (4) pan-neuronal TurboID ‘trained’. These blots function to confirm that there were biotinylated proteins in TurboID samples, before enrichment by streptavidin-mediated pull-down for mass spectrometry.

      OPTIONAL: include the fold changes of biotinylated proteins of all the ones that were tested. Similar to Figure 1.C.

      This is an excellent suggestion. As recommended by the reviewer, we have included fold-changes for biotinylated protein levels between high-salt control and trained groups (on pages 9 & 10 for replicate #1 and in __Table S2 __for replicates #2-5). This was done by measuring protein levels in whole lanes for each experimental group per biological replicate within western blots (__Figure 1C __for replicate #1 and __Figure S3 __for replicates #2-5) of protein samples generated for mass spectrometry (N = 5).

      Figure 2 does not add much to the reader, it can be summarized in the text, as the fraction of proteins enriched for specific cellular compartments.

      • I would suggest to remove Figure 2 (originally written as figure 3) to text, or transfer it to the supplementry material.

      As noted in cross-comment response to Reviewer 4, there were typos in the original figure references, we have corrected them above. Essentially, this comment is referring to Figure 2.

      We appreciate this feedback from Reviewer 1. We agree that the original __Figure 2 __functions as a visual summary from analysis of the learning proteome at the subcellular compartment level. However, it also serves to highlight the following:

      • Representation for neuron-specific GO terms is relatively low, but even this small percentage represents entire protein-protein networks that are biologically meaningful, but that are difficult to adequately describe in the main text.
      • TurboID was expressed in neurons so this figure supports the relevance of the identified proteome to biological learning mechanisms.
      • Many of these candidates could not be assessed by learning assay using single mutants since related mutations are lethal or substantially affect locomotion. These networks therefore highlight the benefit in using strategies like TurboID to study learning. We have chosen to retain this figure, moving it to the supplementary material as Figure S4 in the revised manuscript, as suggested.

      • OPTIONAL- I would suggest the authors to mark in a pathway summary figure similar to Figure 3 (originally written as Figure 4) the results from the behavior assay of the genetic screen. This would allow the reader to better get the bigger picture and to connect to the systemic approach taken in Figures 2 and 3.

      We think this is a fantastic suggestion and thank Reviewer 1 for this input. In the revised manuscript, we have added Figure 7, which summarises the tested candidates that displayed an effect on learning, mapped onto potential molecular pathways derived from networks in the learning proteome. This figure provides a visual framework linking the behavioural outcomes to the network context. This is described in the main text on pages 32-33.

      Typo in Figure 3: the circle of PPM1: The blue right circle half is bigger than the left one.

      We thank the Reviewer for noticing this, the node size for PPM-1.A has been corrected in what is now Figure 2 in the revised work.

      Unclarity in the discussions. In the discussion Page 24, Line 14, the authors raise this question: "why are the proteins we identified not general learning regulators?. The phrasing and logic of the argumentation of the possible answers was hard to follow. - Can you clarify?

      We appreciate this feedback in terms of unclarity, as we strive to explain the data as clearly and transparently as possible. Our goal in this paragraph was to discuss why some candidates were seen to only affect salt associative learning, as opposed to showing effects in multiple learning paradigms (i.e., which we were defining as a ‘general learning regulator’). We have adjusted the wording in several places in this paragraph now on pages 36 & 37 to address this comment. We hope the rephrased paragraph provides sufficient rationalisation for the discussion regarding our selection strategy used to isolate our protein list of potential learning regulators, and its potential limitations.

      ***Cross-Commenting** *

      Firstly, we would like to express our appreciation for the opportunity for reviewers to cross-comment on feedback from other reviewers. We believe this is an excellent feature of the peer review process, and we are grateful to the reviewers for their thoughtful engagement and collaborative input.

      I would like to thank Reviewer #4 for the great cross comment summary, I find it accurate and helpful.

      I also would like to thank Reviewer #4 for spotting the typos in my minor comments, their page and figure numbers are the correct ones.

      We have corrected these typos in the relevant comments, and have responded to them accordingly.

      Small comment on common point 1 - My feeling is that it is challanging to do quantitative mass spectrometry, especially with TurboID. In general, the nature of MS data is that it hints towards a direction but a followup validation work is required in order to assess it. For example, I am not surprised that the fraction of repeats a hit appeared in does not predict well whether this hit would be validated behavioraly. Given these limitations, I find the authors' approach reasonable.

      We thank Reviewer 1 for this positive and thoughtful feedback. We also appreciate Reviewer 4’s comment regarding quantitative mass spectrometry and have addressed this in detail below (see response to Reviewer 4). However, we agree with Reviewer 1 that there are practical challenges to performing quantitative mass spectrometry with TurboID, primarily due to the enrichment for biotinylated proteins that is a key feature of the sample preparation process.

      Importantly, we whole-heartedly agree with Reviewer 1’s statement that “In general, the nature of MS data is that it hints towards a direction but a follow-up validation work is required in order to assess it”. This is the core of our approach: however, we appreciate that there are limitations to a qualitative ‘absent/present’ approach. We have addressed some of these limitations by clarifying the criteria used for selecting candidate genes, based additionally on the presence of the candidate in multiple biological replicates (categorised as ‘strong’ hits). Based on this method, we were able to validate the role of several novel learning regulators (Figures 5, 6, & S7). We sincerely hope that this manuscript can function as a direction for future research, as suggested by this Reviewer.

      I also would like to highlight this major comment from reviewer 4:

      "In Experimental Procedures, authors state that they excluded data in which naive or control groups showed average CI 0.5499 for N2 (page 36, lines 5-7). "

      This threshold seems arbitrary to me too, and it requires the clarifications requested by reviewer 4.

      As detailed in our response to Reviewer 4, Major Comment 2, data were excluded only in rare cases, specifically when N2 worms failed to show strong salt attraction prior to training, or when trained N2 worms did not exhibit the expected behavioural difference compared to untrained controls – this can largely be attributed to clear contamination or over-population issues, which are visible prior to assessing CTX plates and counting chemotaxis indices.

      These criteria were initially established to provide an objective threshold for excluding biological replicates, particularly when planning to assay a large number of genetic mutants. However, after extensive testing across many replicates, we found that N2 worms (that were not starved, or not contaminated) consistently displayed the expected phenotype, rendering these thresholds unnecessary. We acknowledge that emphasizing these criteria may have been misleading, and have therefore removed them from page 50 in the revised manuscript to avoid confusion and ensure clarity.

      Reviewer #1 (Significance (Required)):

      This study does a great job to effectively utilize the TurboID technique to identify new pathways implicated in salt-associative learning in C. elegans. This technique was used in C. elegans before, but not in this context. The salt-associative memory induced proteome list is a valuable resource that will help future studies on associative memory in worms. Some of the implicated molecular pathways were found before to be involved in memory in worms like cAMP, as correctly referenced in the manuscript. The implication of the acetylcholine pathway is novel for C. elgeans, to the best of my knowledge. The finding that the uncovered genes are specifically required for salt associative memory and not for other memory assays is also interesting.

      However overall I find the impact of this study limited. The premise of this work is to use the Turbo-ID method to conduct a systems analysis of the proteomic changes. The work starts by conducting network analysis and gene enrichment which fit a systemic approach. However, since the authors find that ~30% of the tested hits affect the phenotype, and since only 17/706 proteins were assessed, it is challenging to draw conclusive broad systemic claims. Alternatively, the authors could have focused on the positive hits, and understand them better, find the specific circuits where these genes act. This could have increased the impact of the work. Since neither of these two options are satisfied, I view this work as solid, but not wide in its impact and therefore estimate the audience of this study would be more specialized.

      My expertise is in C. elegans behavior, genetics, and neuronal activity, programming and machine learning.

      We thank the Reviewer for these comments and appreciate the recognition of the value of the proteomic dataset and the identification of novel molecular pathways, including the acetylcholine pathway, as well as the specificity of the uncovered genes to salt-associative memory.

      Regarding the reviewer’s concern about the overall impact and scope of the study, we respectfully offer the following clarification. Our aim was to establish a systems-level approach for investigating learning-related proteomic changes using TurboID, and we acknowledge that only a subset of the identified proteins was experimentally tested (now 26/706 proteins in the revised manuscript). Although only five of the tested single gene mutants showed a robust learning phenotype in the revised work (after backcrossing, more stringent candidate selection, improved statistical analysis in addressing reviewer comments), our proteomic data provides us a unique opportunity to define these candidates within protein-protein networks (as illustrated in Figure 7). Importantly, our functional testing focused on single-gene mutants, which may not reveal phenotypes for genes that act redundantly (now mentioned on pages 28-30). This limitation is inherent to many genetic screens and highlights the value of our proteomic dataset, which enables the identification of broader protein-protein interaction networks and molecular pathways potentially involved in learning.

      To support this systems-level perspective, we have added Figure 7, which visually integrates the tested candidates into molecular pathways derived from the learning proteome for learning regulators KIN-2 and F46H5.3. We also emphasise more explicitly in the text (on pages 32-33) the value of our approach by highlighting the functional protein networks that can be derived from our proteomics dataset.

      We fully acknowledge that the use of TurboID across all neurons limits the resolution needed to pinpoint individual neuron contributions, and understand the benefit in further experiments to explore specific circuits. Many circuits required for salt sensing and salt-based learning are highly explored in the literature and defined explicitly (see Rahmani & Chew, 2021), so our intention was to complement the existing literature by exploring the protein-protein networks involved in learning, rather than on neuron-neuron connectivity. However, we recognise the benefit in integrating circuit-level analyses, given that our proteomic data suggests hundreds of candidates potentially involved in learning. While validating each of these candidates is beyond the scope of the current study, we have taken steps to suggest candidate neurons/circuits by incorporating tissue enrichment analyses and single-cell transcriptomic data (Table S7 & Figure 4). These additions highlight neuron classes of interest and suggest possible circuits relevant to learning.

      We hope this clarification helps convey the intended scope and contribution of our study. We also believe that the revisions made in response to Reviewer 1’s feedback have strengthened the manuscript and enhanced its significance within the field.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      __Summary: __

      In this study by Rahmani in colleagues, the authors sought to define the "learning proteome" for a gustatory associative learning paradigm in C. elegans. Using a cytoplasmic TurboID expressed under the control of a pan-neuronal promoter, the authors labeled proteins during the training portion of the paradigm, followed by proteomics analysis. This approach revealed hundreds of proteins potentially involved in learning, which the authors describe using gene ontology and pathways analysis. The authors performed functional characterization of some of these genes for their requirement in learning using the same paradigm. They also compared the requirement for these genes across various learning paradigms, and found that most hits they characterized appear to be specifically required for the training paradigm used for generating the "learning proteome".

      Major Comments:

      1. The definition of a "hit" from the TurboID approach is does not appear stringent enough. According to the manuscript, a hit was defined as one unique peptide detected in a single biological replicate (out of 5), which could give rise to false positives. In figure S2, it is clear that there relatively little overlap between samples with regards to proteins detected between replicates, and while perhaps unintentional, presenting a single unique peptide appears to be an attempt to inflate the number of hits. Defining hits as present in more than one sample would be more rigorous. Changing the definition of hits would only require the time to re-list genes and change data presented in the manuscript accordingly. We thank Reviewer 2 for this valuable comment, and the following related suggestion. We agree with the statement that “Defining hits as present in more than one sample would be more rigorous”. Therefore, to address this comment, we have now separated candidates into two categories in Table 2 __in the revised manuscript: ‘__strong’ (present in 3 or more biological replicates) and ‘weak’ candidates (present in 2 or fewer biological replicates). However, we think these weaker candidates should still be included in the manuscript, considering we did observe relationships between these proteins and learning. For example, ACC-1, which influences salt associative learning in C. elegans, was detected in one replicate of mass spectrometry as a potential learning regulator (Figure S8A). We describe this classification in the main text on pages 21-22.

      We also agree with Reviewer 2 that the overlap between individual candidate hits is low between biological replicates; the inclusion of Figure S2 __in the original manuscript serves to highlight this limitation. However, it is also important to consider that there is notable overlap for whole molecular pathways between biological replicates of mass spectrometry data as shown in __Figure 2 __in the revised manuscript (this consideration is now mentioned on __pages 13-14). We have included Figure 3 to illustrate representation for two metabolic processes across several biological replicates normally indispensable to animal health, as an example to provide additional visual aid for the overlap between replicates of mass spectrometry. We provide this figure (described on pages 13 & 15) to demonstrate the strength of our approach in that it can detect candidates not easily assessable by conventional forward or reverse genetic screens.

      We also appreciate the opportunity to explain our approach. The criteria of “at least one unique peptide” was chosen based on a previous work for which we adapted for this manuscript (Prikas et al., 2020). It was not intended to inflate the number of hits but rather to ensure sensitivity in detecting low-abundance neuronal proteins. We have clarified this in our Methods (page 46).

      The "hits" that the authors chose to functionally characterize do not seem like strong candidate hits based on the proteomics data that they generated. Indeed, most of the hits are present in a single, or at most 2, biological replicate. It is unclear as to why the strongest hits were not characterized, which if mutant strains are publicly available, would not be a difficult experiment to perform.

      We thank the reviewer for this important suggestion. To address this, we have described two molecular pathways with multiple components that appear in more than one biological replicate of mass spectrometry data in Figure 3 (main text on page 13). In addition, we have included __Figures 6 & S7 __where 9 additional single mutants corresponding to candidates in three or more biological replicates of mass spectrometry were tested for salt associative learning. Briefly, we found the following (number of replicates that a protein was unique to TurboID trained animals is in brackets):

      • Novel arginine kinase F46H5.3 (4 replicates) displays an effect in both salt associative learning and salt aversive learning in the same direction (Figures 6A, 6B, & S9A, pages 31-32 & 37-38).
      • Worms with a mutation for armadillo-domain protein C30G12.6 (3 replicates) only displayed an enhanced learning phenotype when non-backcrossed, not backcrossed. This suggests the enhanced learning phenotype was caused by a background mutation (Figure 6, pages 24-25).
      • We did not observe an effect on salt associative learning when assessing mutations for the ciliogenesis protein IFT-139 (5 replicates), guanyl nucleotide factors AEX-3 or TAG-52 (3 replicates), p38/MAPK pathway interactor FSN-1 (3 replicates), IGCAM/RIG-4 (3 replicates), and acetylcholine components ACR-2 (4 replicates) and ELP-1 (3 replicates) (Figure S7, on pages 27-30). However, we note throughout the section for which these candidates are described that only single gene mutants were tested, meaning that genes that function in redundant or compensatory pathways may not exhibit a detectable phenotype. Because of the lack of strong evidence that these are indeed proteins regulated in the context of learning based on proteomics, including evidence of changes in the proteins (by imaging expression changes of fluorescent reporters or a biochemical approach), would increase confidence that these hits are genuine.

      We thank Reviewer 2 for this suggestion – we agree that it would have been ideal to have additional evidence suggesting that changes in candidate protein levels are associated directly with learning. Ideally, we would have explored this aspect further; however, as outlined in response to Reviewer 1 Major Comment 2 (OPTIONAL), this was not feasible within the scope of the current study due to several practical challenges. Specifically, we attempted to generate pan-neuronal and endogenous promoter rescue lines for several candidates, but encountered significant challenges, including poor survival post-microinjection (likely due to protein overexpression toxicity) and reduced viability for behavioural assays, potentially linked to transgene-related reproductive defects. This information is now described on pages 39 & 40 of the revised work.

      To address these limitations, we performed additional behavioural experiments where possible. We successfully generated a pan-neuronal promoter line for kin-2, which was tested and included in the revised manuscript (Figure 5B, pages 30 & 31). In addition, to confirm that observed learning phenotypes were due to the expected mutations and not background effects, we conducted experiments using backcrossed versions of several mutant lines as suggested by Reviewer 4 Cross Comment 3 (Figure 6, pages 23-24 & 24-26). Briefly, this shows that pan-neuronal expression of KIN-2 from the ce179 mutant allele is sufficient to repeat the enhanced learning phenotype observed in backcrossed kin-2(ce179) animals, providing additional evidence that the identified hits are required for learning. We also confirmed that F46H5.3 modulates salt associative learning, given both non-backcrossed and backcrossed F46H5.3(-) mutants display a learning enhancement phenotype. The revised text now describes this data on the page numbers mentioned above.

      Minor Comments:

      1. The authors highlight that the proteins they discover seem to function uniquely in their gustatory associative paradigm, but this is not completely accurate. kin-2, which they characterize in figure 4, is required for positive butanone association (the authors even say as much in the manuscript) in Stein and Murphy, 2014. We appreciate this correction and thank the Reviewer for pointing this out. We have amended the wording appropriately on page 31 to clarify our meaning.

      2. “Although kin-2(ce179) mutants were not shown to impact salt aversive learning, they have been reported previously to display impaired intermediate-term memory (but intact learning and short-term memory) for butanone appetitive learning (Stein and Murphy, 2014).”*

      Reviewer #2 (Significance (Required)):

      • General Assessment: The approach used in this study is interesting and has the potential to further our knowledge about the molecular mechanisms of associative behaviors. Strengths of the study include the design with carefully thought out controls, and the premise of combining their proteomics with behavioral analysis to better understand the biological significance of their proteomics findings. However, the criteria for defining hits and prioritization of hits for behavioral characterizations were major wweaknesses of the paper.
      • Advance: There have been multiple transcriptomic studies in the worm looking at gene expression changes in the context of behavioral training (Lakhina et al., 2015, Freytag 2017). This study compliments and extends those studies, by examining how the proteome changes in a different training paradigm. This approach here could be employed for multiple different training paradigms, presenting a new technical advance for the field.
      • Audience: This paper would be of interest to the broader field of behavioral and molecular neuroscience. Though it uses an invertebrate system, many findings in the worm regarding learning and memory translate to higher organisms.
      • I am an expert in molecular and behavioral neuroscience in both vertebrate and invertebrate models, with experience in genetics and genomics approaches. We appreciate Reviewer 2’s thoughtful assessment and constructive feedback. In response to concerns regarding definition and prioritisation of hits, we have revised our approach as detailed above to place more consideration on ‘strong’ hits present in multiple biological replicates. We have also added new behavioural data for additional mutants that fall into this category (Figures 6 & S7). We hope these revisions strengthen our study and enhance its relevance to the behavioural/molecular neuroscience community.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      __Summary: __

      In the manuscript titled "Identifying regulators of associative learning using a protein-labelling approach in C. elegans" the authors attempted to generate a snapshot of the proteomic changes that happen in the C. elegans nervous system during learning and memory formation. They employed the TurboID-based protein labeling method to identify the proteins that are uniquely found in samples that underwent training to associate no-salt with food, and consequently exhibited lower attraction to high salt in a chemotaxis assay. Using this system they obtained a list of target proteins that included proteins represented in molecular pathways previously implicated in associative learning. The authors then further validated some of the hits from the assay by testing single gene mutants for effects on learning and memory formation.

      Major Comments:

      In the discussion section, the authors comment on the sources of "background noise" in their data and ways to improve the specificity. They provide some analysis on this aspect in Supplementary figure S2. However, a better visualization of non-specificity in the sample could be a GO analysis of tissue-specificity, and presented as a pie chart as in Figure 2A. Non-neuronal proteins such as MYO-2 or MYO-3 repeatedly show up on the "TurboID trained" lists in several biological replicates (Tables S2 and S3). If a major fraction of the proteins after subtraction of control lists are non-specific, that increases the likelihood that the "hits" observed are by chance. This analysis should be presented in one of the main figures as it is essential for the reader to gauge the reliability of the experiment.

      We agree with this assessment and thank Reviewer 3 for this constructive suggestion. In response, we have now incorporated a comprehensive tissue-specific analysis of the learning proteome in the revised manuscript. Using the single neuron RNA-Seq database CeNGEN, we identified the proportion of neuronal vs non-neuronal proteins from each biological replicate of mass spectrometry data. Specifically, we present Table 1 __on page 17 (which we originally intended to include in the manuscript, but inadvertently left out), which shows that 87-95% (i.e. a large majority) of proteins identified across replicates corresponded to genes detected in neurons, supporting that the TurboID enzyme was able to target the neuronal proteome as expected. __Table 1 is now described in the main text of the revised work on page 16.

      In addition, we performed neuron-specific analyses using both the WormBase gene enrichment tool and the CeNGEN single-cell transcriptomic database, which we describe in detail on our response to Reviewer 1 Major Comment 2. To summarise, these analyses revealed enrichment of several neuron classes, including those previously implicated in associative learning (e.g., ASEL, AIB, RIS, AVK) as well as neurons not previously studied in this context (e.g., IL1, DA9, DVC) (summarised in Table S7). By examining expression overlap across neuron types, we identified shared and distinct profiles that suggest potential functional connectivity and candidate circuits underlying behavioural plasticity (Figure 4). Taken together, these data show that the proteins identified in our dataset are (1) neuronal and (2) expressed in neurons that are known to be required for learning. Methods are detailed on pages 50-51.

      Other than the above, the authors have provided sufficient details in their experimental and analysis procedures. They have performed appropriate controls, and their data has sufficient biological and technical replaictes for statistical analysis.

      We appreciate this positive feedback and thank the Reviewer for acknowledging the clarity of our experimental and analysis procedures.

      Minor Comments:

      There is an error in the first paragraph of the discussion, in the sentences discussing the learning effects in gar-1 mutant worms. The sentences in lines 12-16 on page 22 says that gar-1 mutants have improved salt-associative learning and defective salt-aversive learning, while in fact the data and figures state the opposite.

      We appreciate the Reviewer noting this discrepancy. As clarified in our response to Reviewer 1, Major Comment 1 above, we reanalysed the behavioural data to ensure consistency across genotypes by comparing only those tested within the same biological replicates (thus having the same N for all genotypes). Upon this reanalysis, we found that the previously reported phenotype for gar-1 mutants in salt-associative learning was not statistically different from wild-type controls. Therefore, we have removed references to GAR-1 from the manuscript.

      __Reviewer #3 (Significance (Required)): __Strengths and limitations: This study used neuron-specific TurboID expression with transient biotin exposure to capture a temporally restricted snapshot of the C. elegans nervous system proteome during salt-associative learning. This is an elegant method to identify proteins temporally specific to a certain condition. However, there are several limitations in the way the experiments and analyses were performed which affect the reliability of the data. As the authors themselves have noted in the discussion, background noise is a major issue and several steps could be taken to improve the noise at the experimental or analysis steps (use of integrated C. elegans lines to ensure uniformity of samples, flow cytometry to isolate neurons, quantitative mass spec to detect fold change vs. strict presence/absence). Advance: Several studies have demonstrated the use of proximity labeling to map the interactome by using a bait protein fusion. In fact, expressing TurboID not fused to a bait protein is often used as a negative control in proximity labeling experiments. However, this study demonstrates the use of free TurboID molecules to acquire a global snapshot of the proteome under a given condition. Audience: Even with the significant limitations, this study is specifically of interest to researchers interested in understanding learning and memory formation. Broadly, the methods used in this study could be modified to gain insights into the proteomic profiles at other transient developmental stages. The reviewer's field of expertise: Cell biology of C. elegans neurons.

      We thank the reviewer for their thoughtful evaluation of our work. We appreciate the recognition of the novelty and potential of using neuron-specific TurboID to capture a temporally restricted snapshot of the C. elegans nervous system proteome during learning. We agree that this approach offers a unique opportunity to identify proteins associated with specific behavioural states in future studies.

      We also appreciate the reviewer’s comments regarding limitations in experimental and analytical design. In revising the manuscript, we have taken several steps to address these concerns and improve the clarity, rigour, and interpretability of our data. Specifically:

      • We now provide a frequency-based representation of proteomic hits (Table 2), which helps clarify how candidate proteins were selected and highlights differences between trained and control groups.
      • We have added neuron-specific enrichment analyses using both WormBase and CenGEN databases (Table S7 & Figure 4), which help identify candidate neurons and potential circuits involved in learning (methods on pages 50-51).
      • We have clarified the rationale for using qualitative proteomics in the context of TurboID, in addition to acknowledging the challenges of integrating quantitative mass spectrometry with biotin-based enrichment (page 39). Additional methods for improving sample purity, such as using integrated lines or FACS-enrichment of neurons, could further refine this approach in future studies. For transparency, we did attempt to integrate the TurboID transgenic line to improve the strength and consistency of biotinylation signals. However, despite four rounds of backcrossing, this line exhibited unexpected phenotypes, including a failure to respond reliably to the established training protocol. As a result, we were unable to include it in the current study. Nonetheless, we believe our current approach provides a valuable proof-of-concept and lays the groundwork for future refinement. By addressing the major concerns of peer reviewers, we believe our study makes a significant and impactful contribution by demonstrating the feasibility of using TurboID to capture learning-induced proteomic changes in the nervous system. The identification of novel learning-related mutants, including those involved in acetylcholine signalling and cAMP pathways, provides new directions for future research into the molecular and circuit-level mechanisms of behavioural plasticity.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this manuscript, authors used a learning paradigm in C. elegans; when worms were fed in a saltless plate, its chemotaxis to salt is greatly reduced. To identify learning-related proteins, authors employed nervous system-specific transcriptome analysis to compare whole proteins in neurons between high-salt-fed animals and saltless-fed animals. Authors identified "learning-specific genes" which are observed only after saltless feeding. They categorized these proteins by GO analyses and pathway analyses, and further stepped forward to test mutants in selected genes identified by the proteome analysis. They find several mutants that are defective or hyper-proficient for learning, including acc-1/3 and lgc-46 acetylcholine receptors, gar-1 acetylcholine receptor GPCR, glna-3 glutaminase involved in glutamate biosynthesis, and kin-2, a cAMP pathway gene. These mutants were not previously reported to have abnormality in the learning paradigm.

      Major comments:

      1) There are problems in the data processing and presentation of the proteomics data in the current manuscript which deteriorates the utility of the data. First, as the authors discuss (page 24, lines 5-12), the current approach does not consider amount of the peptides. Authors state that their current approach is "conservative", because some of the proteins may be present in both control and learned samples but in different amounts. This reviewer has a concern in the opposite way: some of the identified proteins may be pseudo-positive artifacts caused by the analytical noise. The problem is that authors included peptides that are "present" in "TurboID, trained" sample but "absent" in the "Non-Tg, trained" and "TurboID, control" samples in any one of the biological replicates, to identify "learning proteome" (706 proteins, page 8, last line - page 9, line 8; page 32, line 21-22). The word "present" implies that they included even peptides whose amounts are just above the detection threshold, which is subject to random noise caused by the detector or during sample collection and preparation processes. This consideration is partly supported by the fact that only a small fraction of the proteins are common between biological replicates (honestly and respectably shown in Figure S2). Because of this problem, there is no statistical estimate of the identity in "learning proteome" in the current manuscript. Therefore, the presentation style in Tables S2 and S3 are not very useful for readers, especially because authors already subtracted proteins identified in Non-Tg samples, which must also suffer from stochastic noise. I suggest either quantifying the MS/MS signal, or if authors need to stick to the "present"/"absent" description of the MS/MS data, use the number of appearances in biological replicates of each protein as estimate of the quantity of each protein. For example, found in 2 replicates in "TurboID, learned" and in 0 replicates in "Non-Tg, trained". One can apply statistics to these counts. This said, I would like to stress that proteins related to acquisition of memory may be very rare, especially because learning-related changes likely occur in a small subset of neurons. Therefore, 1 time vs 0 time may be still important, as well as something like 5 times vs 1 time. In summary, quantitative description of the proteomics results is desired.

      We thank the reviewer for these valuable comments and suggestions.

      We acknowledge that quantitative proteomics would provide beneficial information; however, as also indicated by Reviewer 1 (in cross-comment), it is practically challenging to perform with TurboID. We have included discussion of potential future experiments involving quantitative mass spectrometry, as well as a comprehensive discussion of some of the limitations of our approach as summarised by this Reviewer, in the Discussion section (page 39). However, we note that our qualitative approach also provides beneficial knowledge, such as the identification of functional protein networks acting within biological pathways previously implicated in learning (Figure 2), and novel learning regulators ACC-1/3, LGC-46, and F46H5.3.

      We agree with the assessment that the frequency of occurrence for each candidate we test per biological replicate is useful to disclose in the manuscript as a proxy for quantification. This was also highlighted by Reviewer 2 (Major Comment 1). As detailed above in response to R2, we have now separated candidates into two categories: ‘strong’ (present in 3 or more biological replicates) and ‘weak’ candidates (present in 2 or fewer biological replicates). We have also added behavioural data after testing 9 of these strong candidates in Figures 6 & S7.

      We have also added Table 2 to the revised manuscript, which summarises the frequency-based representation of the proteomics results, as suggested. This is described on pages 22-23. Briefly, this shows the range of candidates further explored using single mutant testing. Specifically, this data showed that many of the tested candidates were more frequently detected in trained worms compared to high-salt controls. This includes both strong and weak candidates, providing a clearer view of how proteomic frequency informed our selection for functional testing.

      2) There is another problem in the treatment of the behavioural data. In Experimental Procedures, authors state that they excluded data in which naive or control groups showed average CI 0.5499 for N2 (page 36, lines 5-7). How were these values determined? One common example for judging a data point as an outlier is > mean + 1.5, 2 or 3 SD, or Thank you for pointing this out. As mentioned by both Reviewer 1 and Reviewer 4, the original manuscript states the following: “Data was excluded for salt associative learning experiments when wild-type N2 displayed (1) an average CI ≤ 0.6499 for naïve or control groups and/or (2) an average CI either 0.5499 for trained groups.”

      To clarify, we only excluded experiments in rare cases where N2 worms did not display robust high salt attraction before training, or where trained N2 did not display the expected behavioural difference compared to untrained or high-salt control N2. These anomalies were typically attributable to clear contamination or starvation issues that could clearly be observed prior to counting chemotaxis indices on CTX plates.

      We established these exclusion criteria in advance of conducting multiple learning assays to ensure an objective threshold for identifying and excluding assays affected by these rare but observable issues. However, these criteria were later found to be unnecessary, as N2 worms robustly displayed the expected untrained and trained phenotypes for salt associative learning when not compromised by starvation or contamination.

      We understand that the original criteria may have appeared to introduce arbitrary bias in data selection. To address this concern, we have removed these criteria from the revised manuscript from page 50.

      Minor comments:

      1) Related to Major comments 1), the successful effect of neuron-specific TurboID procedure was not evaluated. Authors obtained both TurboID and Non-Tg proteome data. Do they see enrichment of neuron-specific proteins? This can be easily tested, for example by using the list of neuron-specific genes by Kaletsky et al. (http://dx.doi.org/10.1038/nature16483 or http://dx.doi.org/10.1371/journal.pgen.1007559), or referring to the CenGEN data.

      We thank this Reviewer for this helpful suggestion, which was echoed by Reviewer 3 (Major Comment 1). As indicated in the response to R3 above, the revised manuscript now includes Table 1 as a tissue-specific analysis of the learning proteome, using the single neuron RNA-Seq database CeNGEN to identify the proportion of neuronal proteins from each biological replicate of mass spectrometry data. Generally, we observed a range of 87-95% of proteins corresponded to genes from the CeNGEN database that had been detected in neurons, providing evidence that the TurboID enzyme was able to target the neuronal proteome as expected. Table 1 is now described in the main text of the revised work on pages 16 & 17.

      2) The behavioural paradigm needs to be described accurately. Page 5, line 16-17, "C. elegans normally have a mild attraction towards higher salt concentration": in fact, C. elegans raised on NGM plates, which include approximately 50mM of NaCl, is attracted to around 50mM of NaCl (Kunitomo et al., Luo et al.) but not 100-200 mM.

      We thank the Reviewer for pointing this out. We agree that clarification is necessary. The revised text reads as follows on page 5: “C. elegans are typically grown in the presence of salt (usually ~ 50 mM) and display an attraction toward this concentration when assayed for chemotaxis behaviour on a salt gradient (Kunitomo et al., 2013, Luo et al., 2014). Training/conditioning with ‘no salt + food’ partially attenuates this attraction (group referred to ‘trained’).”

      Authors call this assay "salt associative learning", which refers to the fact that worms associate salt concentration (CS) and either presence or absence of food (appetitive or aversive US) during conditioning (Kunitomo et al., Luo et al., Nagashima et al.) but they are looking at only association with presence of food, and for proteome analysis they only change the CS (NaCl concentration, as discussed in Discussion, p24, lines 4-5). It is better to attempt to avoid confusion to the readers in general.

      Thank you Reviewer 4 for highlighting this clarity issue. We clarify our definition of “salt associative learning” for the purpose of this study in the revised manuscript on page 6 with the following text:

      “Similar behavioural paradigms involving pairings between salt/no salt and food/no food have been previously described in the literature (Nagashima et al. 2019). Here, learning experiments were performed by conditioning worms with either ‘no salt + food’ (referred to as ‘salt associative learning’) or ‘salt + no food’ (called ‘salt aversive learning’).”

      3) page 32, line 23: the wording "excluding" is obscure and misleading because the elo-6 gene was included in the analysis.

      We appreciate this Reviewer for pointing out this misleading comment, which was unintentional. We have now removed it from the text (on page 21).

      4) Typo at page 24, line 18: "that ACC-1" -> "than ACC-1".

      This has been corrected (on page 37).

      5) Reference. In "LEO, T. H. T. et al.", given and sir names are flipped for all authors. Also, the paper has been formally published (http://dx.doi.org/10.1016/j.cub.2023.07.041).

      We appreciate the Reviewer drawing our attention to this – the reference has been corrected and updated.

      I would like to express my modest cross comments on the reviews:

      1) Many of the reviewers comment on the shortage in the quantitative nature of the proteome analysis, so it seems to be a consensus.

      Thank you Reviewer 4 for this feedback. We appreciate the benefit in performing quantitative mass spectrometry, in that it provides an additional way to parse molecular mechanisms in a biological process (e.g., fold-changes in protein expression induced by learning). However, we note that quantitative mass spectrometry is challenging to integrate with TurboID due to the requirement to enrich for biotinylated peptides during sample processing (we now mention this on page 39). Nevertheless, it would be exciting to see this approach performed in a future study.

      To address the limitations of our original qualitative approach and enhance the clarity and utility of our dataset, we have made the following revisions in the manuscript:

      • Candidate selection criteria: We now clearly define how candidates were selected for functional testing, based on their frequency across biological replicates. Specifically, “strong candidates” were detected in three or more replicates, while “weak candidates” appeared in two or fewer.
      • Frequency-based representation (_Table 2_):__We appreciate the suggestion by Reviewer 4 (Major Comment 1) to quantify differences between high-salt control and trained groups. We now provide the frequency-based representation of the candidates tested in this study within our proteomics data in __Table 2. This data showed that many of the tested candidates were more frequently detected in trained worms compared to high-salt controls. This includes both strong and weak candidates We hope these additions help clarify our approach and demonstrate the value of the dataset, even within the constraints of qualitative proteomics.

      2) Also, tissue- or cell-specificity of the identified proteins were commonly discussed. In reviewer #3's first Major comment, appearance of non-neuronal protein in the list was pointed out, which collaborate with my (#4 reviewer's) question on successful identification of neuronal proteins by this method. On the other hand, reviewer #1 pointed out subset neuron-specific proteins in the list. Obviously, these issues need to be systematically described by the authors.

      We agree with Reviewer 4 that these analyses provide a critical angle of analysis that is not explored in the original manuscript.

      Tissue analysis (Reviewer 3 Major Comment 1): We have used the single neuron RNA-Seq database CeNGEN, to identify that 87-95% (i.e. a large majority) of proteins identified across replicates corresponded to genes detected in neurons. These findings support that the TurboID enzyme was able to target the neuronal proteome as expected. Table 1 provides this information as is now described in the main text of the revised work on page 16.

      __Neuron class analyses (Reviewer 1 Major Comment 2): __In response, we have used the suggested Wormbase gene enrichment tool and CeNGEN. We specifically input proteins from the learning proteome into Wormbase, after filtering for proteins unique to TurboID trained animals. For CeNGEN, we compared genes/proteins from control worms and trained worms to identify potential neurons that may be involved in this learning paradigm.

      Briefly, we found highlight a range of neuron classes known in learning (e.g., RIS interneurons), cells that affect behaviour but have not been explored in learning (e.g., IL1 polymodal neurons), and neurons for which their function/s are unknown (e.g., pharyngeal neuron I3). Corresponding text for this new analysis has been added on pages 16-20, with a new table and figure added to illustrate these findings (Table S7 & Figure 4). Methods are detailed on pages 50-51.

      3) Given reviewer #1's OPTIONAL Major comment, as an expert of behavioral assays in C. elegans, I would like to comment based on my experience that mutants received from Caenorhabditis Genetics Center or other labs often lose the phenotype after outcrossing by the wild type, indicating that a side mutation was responsible for the observed behavioral phenotype. Therefore, outcrossing may be helpful and easier than rescue experiments, though the latter are of course more accurate.

      Thank you for this suggestion. To address the potential involvement of background mutations, we have done experiments with backcrossed versions of mutants tested where possible, as shown in Figure 6. We found that F46H5.3(-) mutants maintained enhanced learning capacity after backcrossing with wild type, compared to their non-backcrossed mutant line. This was in contrast to C30G12.6(-) animals which lost their enhanced learning phenotype following backcrossing using wild type worms. This is described in the text on pages 24-26.

      4) Just let me clarify the first Minor comment by reviewer #2. Authors described that the kin-2 mutant has abnormality in "salt associative learning" and "salt aversive learning", according to authors' terminology. In this comment by reviewer #2, "gustatory associative learning" probably refers to both of these assays.

      Reviewer 4 is correct. We have amended the wording appropriately on page 31 to clarify our meaning to address Reviewer 2’s comment.

      • “Although kin-2(ce179) mutants were not shown to impact salt aversive learning, they have been reported previously to display impaired intermediate-term memory (but intact learning and short-term memory) for butanone appetitive learning (Stein and Murphy, 2014).”*

      5) There seem to be several typos in reviewer #1's Minor comments.

      "In Page 9, Lines 17-18" -> "Page 8, Lines 17-18".

      "Page 8, Line 24" -> "Page 7, Line 24".

      "I would suggest to remove figure 3" -> "I would suggest to remove figure 2"

      "summary figure similar to Figure 4" -> "summary figure similar to Figure 3"

      "In the discussion Page 24, Line 14" -> "In the discussion Page 23, Line 14"

      (I note that because a top page was inserted in the "merged" file but not in art file for review, there is a shift between authors' page numbers and pdf page numbers in the former.)

      It would be nice if reviewer #1 can confirm on these because I might be wrong.

      We appreciate Reviewer 4 noting this, and can confirm that these are the correct references (as indicated by Reviewer 1 in their cross-comments)

      Reviewer #4 (Significance (Required)):

      1) Total neural proteome analysis has not been conducted before for learning-induced changes, though transcriptome analysis has been performed for odor learning (Lakhina et al., http://dx.doi.org/10.1016/j.neuron.2014.12.029). This guarantees the novelty of this manuscript, because for some genes, protein levels may change even though mRNA levels remain the same. We note an example in which a proteome analysis utilizing TurboID, though not the comparison between trained/control, has led to finding of learning related proteins (Hiroki et al., http://dx.doi.org/10.1038/s41467-022-30279-7). As described in the Major comments 1) in the previous section, improvement of data presentation will be necessary to substantiate this novelty.

      We appreciate this thoughtful feedback. We agree that while the neuronal transcriptome has been explored in Lakhina et al., 2015 for C. elegans in the context of memory, our study represents the first to examine learning-induced changes in the total neuronal proteome. We particularly agree with the statement that “for some genes, protein levels may change even though mRNA levels remain the same”. This is essential rationale that we now discuss on page 42.

      Additionally, we acknowledge the relevance of the study by Hiroki et al., 2022, which used TurboID to identify learning-related proteins, though not in a trained versus control comparison. Our work builds on this by directly comparing trained and control conditions, thereby offering new insights into the proteomic landscape of learning. This is now clarified on page 36.

      To substantiate the novelty and significance of our approach, we have revised the data presentation throughout the manuscript, including clearer candidate selection criteria, frequency-based representation of proteomic hits (Table 2), and neuron-specific enrichment analyses (Table S7 & Figure 4). We hope these improvements help convey the unique contribution of our study to the field.

      2) Authors found six mutants that have abnormality in the salt learning (Fig. 4). These genes have not been described to have the abnormality, providing novel knowledge to the readers, especially those who work on C. elegans behavioural plasticity. Especially, involvement of acetylcholine neurotransmission has not been addressed. Although site of action (neurons involved) has not been tested in this manuscript, it will open the venue to further determine the way in which acetylcholine receptors, cAMP pathway etc. influences the learning process.

      Thank you Reviewer 4, for this encouraging feedback. To further strengthen the study and expand its relevance, we have tested additional mutants in response to Reviewer 3’s comments, as shown in Figures 6 & S7. These results provide even more candidate genes and pathways for future exploration, enhancing the significance and impact of our study.

  5. www.tripleeframework.com www.tripleeframework.com
    1. where the technology may simply be replacing a traditional method of instruction

      I think it is very important to remember this as an educator and parent. We have to be sure to maximize use and make it beneficial and worthwhile, not just replacing other instruction.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      A) The presentation of the paper must be strengthened. Inconsistencies, mislabelling, duplicated text, typos, and inappropriate colour code should be changed.

      We spotted and corrected several inconsistencies and mislabelling issues throughout the text and figures. Thanks!  

      B) Some claims are not supported by the data. For example, the sentence that says that "adolescent mice showed lower discrimination performance than adults (l.22) should be rewritten, as the data does not show that for the easy task (Figure 1F and Figure 1H).

      We carefully reviewed the specific claims and fixed some of the wording so it adheres to the data shown.

      C) In Figure 7 for example, are the quantified properties not distinct across primary and secondary areas?

      We now carried out additional analysis to test this. We found that while AUDp and AUDv exhibit distinct tuning properties, they show similar differences between adolescent and adult neurons (see Supplementary Table 6, Fig. S7-1a-h). Note that TEa and AUDd could not be evaluated due to low numbers of modulated neurons in this protocol.

      D) Some analysis interpretations should be more cautious. (..) A lower lick rate in general could reflect a weaker ability to withhold licking- as indicated on l.164, but also so many other things, like a lower frustration threshold, lower satiation, more energy, etc).

      That is a fair comment, and we refined our interpretations. Moreover, we also addressed whether impulsiveness impacted lick rates. In the Educage, we found that adolescent mice had shorter ITIs only after FAs (Fig. S2-1). In the head-fixed setup, we examined (1) the proportion of ITIs where licks occurred (Fig. S3-1c) and (2) the number of licks in these ITIs (Fig. S3-1d). We found no differences between adolescents and adults, indicating that the differences observed in the main task are not due to general differences in impulsiveness (Fig. S2-1, Fig. S3-1c, d). Finally, we note that potential differences in satiation were already addressed in the original manuscript by carefully examining the number of trials completed across the session. See also Review 3, comment #1 below.

      Reviewer #2 (Public review):

      A) For some of the analyses that the authors conducted it is unclear what the rationale behind them is and, consequently, what conclusion we can draw from them.

      We reviewed the manuscript carefully and revised the relevant sections to clarify the rationale behind the analyses. See detailed responses to all the reviewer’s specific comments.

      B) The results of optogenetic manipulation, while very interesting, warrant a more in-depth discussion.

      We expanded our discussion on these experiments (L495-511) and also added an additional analysis to strengthen our findings (Fig. S3-2e).

      Reviewer #3 (Public review):

      (1) The authors report that "adolescent mice showed lower auditory discrimination performance compared to adults" and that this performance deficit was due to (among other things) "weaker cognitive control". I'm not fully convinced of this interpretation, for a few reasons. First, the adolescents may simply have been thirstier, and therefore more willing to lick indiscriminately. The high false alarm rates in that case would not reflect a "weaker cognitive control" but rather, an elevated homeostatic drive to obtain water. Second, even the adult animals had relatively high (~40%) false alarm rates on the freely moving version of the task, suggesting that their behavior was not particularly well controlled either. One fact that could help shed light on this would be to know how often the animals licked the spout in between trials. Finally, for the head-fixed version of the task, only d' values are reported. Without the corresponding hit and false alarm rates (and frequency of licking in the intertrial interval), it's hard to know what exactly the animals were doing.

      irst, as requested, we added the Hit rates and FA rates for the head-fixed task (Fig. S3-1a). Second, as requested by the reviewr, we performed additional analyses in both the Educage and head-fixed versions of the task. Specifically, we analyzed the ITI duration following each trial outcome. We found that adolescent mice had shorter ITIs only after Fas (Fig. S2-1). In the head-fixed setup, we examined (1) the proportion of ITIs during which licks occurred (Fig. S3-1c) and (2) the number of licks in these ITIs (Fig. S3-1d). We found no differences between adolescents and adults, indicating that the differences observed in the main task are not due to general differences in impulsiveness (Fig. S2-1, Fig. S3-1c, d). See also comment #D of reviewer #1 above.

      B) There are some instances where the citations provided do not support the preceding claim. For example, in lines 64-66, the authors highlight the fact that the critical period for pure tone processing in the auditory cortex closes relatively early (by ~P15). However, one of the references cited (ref 14) used FM sweeps, not pure tones, and even provided evidence that the critical period for this more complex stimulus occurred later in development (P31-38). Similarly, on lines 72-74, the authors state that "ACx neurons in adolescents exhibit high neuronal variability and lower tone sensitivity as compared to adults." The reference cited here (ref 4) used AM noise with a broadband carrier, not tones.

      We carefully checked the text to ensure that each claim is accurately supported by the corresponding reference.

      C) Given that the authors report that neuronal firing properties differ across auditory cortical subregions (as many others have previously reported), why did the authors choose to pool neurons indiscriminately across so many different brain regions?

      We appreciate the reviewer’s concern. While we acknowledge that pooling neurons across auditory cortical subregions may obscure region-specific effects, our primary focus in this study is on developmental differences between adolescents and adults, which were far more pronounced than subregional differences.

      To address this potential limitation: (1) We analyzed firing differences across subregions during task engagement (see Fig. S4-1, S4-2, S4-3; Supplementary Tables 2 and 3). (2) We have now added new analyses for the passive listening condition in AUDp and AUDv (Fig. S7-1; Supplementary Table 6).

      These analyses support our conclusion that developmental stage has a greater impact on auditory cortical activity than subregional location in the contexts examined. For clarity and cohesion, the main text emphasizes developmental differences, while subregional analyses are presented in the Supplement.

      D) And why did they focus on layers 5/6? (Is there some reason to think that age-related differences would be more pronounced in the output layers of the auditory cortex than in other layers?)

      We agree that other cortical layers, particularly supragranular layers, are important for auditory processing and plasticity. Our focus on layers 5/6 was driven by both methodological and biological considerations. Methodologically, our electrode penetrations were optimized to span multiple auditory cortical areas, and deeper layers provided greater mechanical stability for chronic recordings. Biologically, layers 5/6 contain the principal output neurons of the auditory cortex and are well-positioned to influence downstream decision-making circuits. We acknowledge the limitation of our recordings to these layers in the manuscript (L268; L464-8).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The presentation of the paper must be strengthened. As it is now, it makes it difficult to appreciate the strengths of the results. Here are some points that should be addressed:

      a) The manuscript is full of inconsistencies that should be fixed to improve the reader's understanding. For example, the description on l.217 and the Figure. S3-1b, the D' value of 0 rounded to 0.01 on l. 735 (isn't it rather the z-scored value that is rounded? A D' of 0 is not a problem), the definition of lick bias on l. 750 and the values in Fig.2, the legend of Figure 7F and what is displayed on the graph (is it population sparseness or responsiveness?), etc.

      We adjusted the legend and description of former Fig. S3-1b (now Fig. S3-2b).

      We now clarify that the rounded values refer to z-scored hit and false alarm rates that we used in the d’ calculation. We adjusted the definition of the lick bias in Fig. 2 and Fig. S3-1b (L804).

      We replaced ‘population responsiveness’ with ‘population sparseness’ throughout the figures, legend and the text.

      b) References to figures are sometimes wrong (for example on l. 737,739).

      c) Some text is duplicated (for example l. 814 and l. 837).

      d) Typos should be corrected (for example l. 127, 'the', l. 787, 'upto').

      We deleted the incorrect references of this section, removed the duplicated text, and corrected the typos.

      e) Color code should be changed (for example the shades of blue for easy and hard tasks - they are extremely difficult to differentiate).

      After consideration, we decided to retain the blue color code (i.e., Fig. 1d, Fig. 3d, Fig. 4e-g, Fig. 5c, Fig. 6d–g), where the distinction between the shades of blue appears sufficiently clear and maintains visual consistency and aesthetic appeal. We did however, made changes in the other color codes (Fig. 4, Fig. 5, Fig. 6, Fig. 7).

      f) Figure design should be improved. For example, why is a different logic used for displaying Figure 5A or B and Figure 1E?

      We adjusted the color scheme in Fig. 5. We chose to represent the data in Fig. 5 according to task difficulty, as this arrangement best illustrates the more pronounced deficits in population decoding in adolescents during the hard task.

      f) Why use a 3D representation in Figure 4G? (2)

      The 3D representation in Fig. 4g was chosen to illustrate the 3-way interactions between onset-latency, maximal discriminability, and duration of discrimination.

      g) Figure 1A, lower right panel- should "response" not be completed by "lick", "no lick"?

      We changed the labels to “Lick” and “No Lick” in Fig. 1a.

      h) l.18 the age mentioned is misleading, because the learning itself actually started 20 days earlier than what is cited here.

      Corrected.

      i) Explain what AAV5-... is on l.212.

      We added an explanation of virus components (see L216-220).

      (2) The comparison of CV in Figure 2 H-J is interesting. I am curious to know whether the differences in the easy and hard tasks could be due to a decrease in CV in adults, rather than an increase in CV in adolescents? Also, could the difference in J be due to 3 outliers?

      We agree that the observed CV differences may reflect a reduction in variability in adults rather than an increase in adolescents. We have revised the Results section accordingly to acknowledge this interpretation.

      Regarding the concern about potential outliers in Fig. 2J, we tested the data for outliers using the isoutlier function in MATLAB (defining outliers as values exceeding three standard deviations from the mean) and found no such cases.

      (3) Figure 2c shows that there is no difference in perceptual sensitivity between adolescents and adults, whereas the conclusion from Figure 4 is that adolescents exhibit lower discriminability in stimulus-related activity. Aren't these results contradictory?

      This is a nuanced point. The similar slopes of the psychometric functions (Fig. 2c) indicating comparable perceptual sensitivity and the lower AUC observed in the ACx of adolescents (Fig. 4) do not necessarily contradict each other. These two measures capture related but distinct issues: psychometric slopes reflect behavioral output, which integrates both sensory encoding and processing downstream to ACx, while the AUC analysis reflects stimulus-related neural activity in ACx, which may still include decision-related components.<br /> Note that stimulus-related neural discriminability outside the context of the task is not different between adolescent and adult experts (Fig. 7h; p = 0.9374, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). This suggests that there are differences that emerge when we measure during behavior. Also note that behavior may rely on processing beyond ACx, and it is possible that downstream areas compensate for weaker cortical discriminability in adolescents — but this issue merits further investigation.

      (4) Why do you think that the discrimination in hard tasks decreases with learning (Figure 6D vs Figure 6F)?

      This is another nuanced point, and we can only speculate at this stage. While it may appear counterintuitive that single-neuron discriminability (AUC) for the hard task is reduced after learning (Fig. 6D vs. 6F), we believe this may reflect a shift in sensory coding in expert animals. In a recent study (Haimson et al., 2024; Science Advances), we found that learning alters single-neuron responses in the easy versus hard task in complex and distinct ways, which may account for this result. It is also possible that, in expert mice, top-down mechanisms such as feedback from higher-order areas act to suppress or stabilize sensory responses in auditory cortex, reducing the apparent stimulus selectivity of single neurons (e.g., AUC), even as behaviorally relevant information is preserved or enhanced at the population level.

      Reviewer #2 (Recommendations for the authors):

      This is very interesting work and I enjoyed reading the manuscript. See below for my comments, queries and suggestions, which I hope will help you improve an already very good paper.

      We thank the reviewer for the meticulous and thoughtful review.

      (1) Line 107: x-axis of panel 1e says 'pre-adolescent'.

      (2) Line 130: replace 'less' with 'fewer'.

      (3) Line 153: 'both learned and catch trials': I find the terminology here a bit confusing. I would typically understand a catch trial to be a trial without a stimulus but these 'catch' trials here have a stimulus. It's just that they are not rewarded/punished. What about calling them probe trials instead?

      We corrected the labelling (1), reworded to ‘fewer’ and ‘probe trials’ (2,3).

      (4) Line 210: The results of the optogenetics experiments are very interesting. In particular, because the effect is so dramatic and much bigger than what has been reported in the literature previously, I believe. Lick rates are dramatically reduced suggesting that the mice have pretty much stopped engaging in the task and the authors very rightly state that the 'execution' of the behavior is affected. I think it would be worth discussing the implications of these results more thoroughly, perhaps also with respect to some of the lesion work. Useful discussions on the topic can be found, for instance, in Otchy et al., 2015; Hong et al., 2018; O'Sullivan et al., 2019; Ceballo et al., 2019 and Lee et al., 2024. Are the mice unable to hear anything in laser trials and that is why they stopped licking? If they merely had trouble distinguishing them then we would perhaps expect the psychometric curves to approach chance level, i.e. to be flat near the line indicating a lick rate of 0.5. Could the dramatic decrease in lick rate be a motor issue? Can we rule out spillover of the virus to relevant motor areas? (I understand all of the 200nL of the virus were injected at a single location) Or are the effects much more dramatic than what has been reported previously simply because the GtACR2 is much more effective at silencing the auditory cortex? Could the effect be down to off-target effects, e.g. by removing excitation from a target area of the auditory cortex, rather than the disruption of cortical processing?

      We have now expanded the discussion in the manuscript to more thoroughly consider alternative interpretations of the strong behavioral effect observed during ACx silencing (L495–511). In particular, we acknowledge that the suppression of licking may reflect not only impaired sensory discrimination but also broader disruptions to arousal, motivation, or motor readiness. We also discuss the potential impact of viral spread, circuit-level off-target effects, and the potency of GtACR2 as possible contributors. We highlight the need for future work using more graded or temporally precise manipulations to resolve these issues.

      (5) Line 226: Reference 19 (Talwar and Gerstein 2001) is not particularly relevant as it is mostly concerned with microstimulation-induced A1 plasticity. There are, however, several other papers that should be cited (and potentially discussed) in this context. In particular, O'Sullivan et al., 2019 and Ceballo et al., 2019 as these papers investigate the effects of optogenetic silencing on frequency discrimination in head-fixed mice and find relatively modest impairments. Also relevant may be Kato et al., 2015 and Lee et al., 2024, although they look at sound detection rather than discrimination.

      We changed the references and pointed the reader to the (new section) Discussion.

      (6) Line 253: 'engaged [in] the task.

      (7) Figure 4: It appears that panel S4-1d is not referred to anywhere in the main text.

      Fixed.

      (8) Line 260: Might be useful to explain a bit more about the motivation behind focusing on L5/L6. Are there mostly theoretical considerations, i.e. would we expect the infragranular layers to be more relevant for understanding the difference in task performance? Or were there also practical considerations, e. g. did the data set contain mostly L5/L6 neurons because those were easier to record from given the angle at which the probe was inserted? If those kinds of practical considerations played a role, then there is nothing wrong with that but it would be helpful to explain them for the benefit of others who might try a similar recording approach.

      There were no deep theoretical considerations for targeting L5/6.  Our focus on layers 5/6 was driven by both methodological and biological considerations. Methodologically, our electrode penetrations were optimized to span multiple auditory cortical areas, and deeper layers provided greater mechanical stability for chronic recordings. Biologically, layers 5/6 contain the principal output neurons of the auditory cortex and are well-positioned to influence downstream decision-making circuits. We acknowledge the limitation of our recordings to these layers in the manuscript (L268; L463–467). See also comment D of reviewer 3.

      (9) Supplementary Table 2: The numbers in brackets indicate fractions rather than percentages.

      Fixed.

      (10) Figure S4-3: The figure legend implies that the number of neurons with significant discriminability for the hard stimulus and significant discriminability for choice was identical. (adolescent neurons = 368, mice = 5, recordings = 10; adult n = 544, mice = 6, recordings = 12 in both cases). Presumably, that is not actually the case and rather the result of a copy/paste operation gone wrong. Furthermore, I think it would be helpful to state the fractions of neurons that can discriminate between the stimuli and between the choices that the animal made in the main text.

      Thank you for spotting the mistake. We corrected the n’s and added the percentage of neurons that discriminate stimulus and choice in the main text and the figure legend.

      (11) Line 301: 'We used a ... decoder to quantify hit versus correct reject trial outcomes': I'm not sure I understand the rationale here. For the single unit analysis hit and false alarm trials were compared to assess their ability to discriminate the stimuli. FA and CR trials were compared to assess whether neurons can encode the choice of the mice. But the hit and CR trials which are contrasted here differ in terms of both stimulus and behavior/choice so what is supposed to be decoded here, what is supposed to be achieved with this analysis?

      Thank you for this important point. You're correct that comparing hit and CR trials captures differences in both stimulus and choice, or task-related differences. We chose this contrast for the population decoding analysis to achieve higher trial counts per session and similar number of trials which are necessary for the reliability of the analysis. While this approach does not isolate stimulus from choice encoding, it provides an overall measure of how well population activity distinguishes task-relevant outcomes. We explicitly acknowledge this issue in L313-314.

      (12) Line 332: What do you mean when you say the novice mice were 'otherwise fully engaged' in the task when they were not trained to do the task and are not doing the task?

      By "otherwise fully engaged," we mean that novice mice were actively participating in the task environment, similar to expert mice — they were motivated by thirst and licked the spout to obtain water. The key distinction is that novice mice had not yet learned the task rules and likely relied on trial-and-error strategies, rather than performing the task proficiently.

      (13) Line 334: 'regardless of trial outcome': Why is the trial outcome not taken into account? What is the rationale for this analysis? Furthermore, in novice mice a substantial proportion of the 'go' trials are misses. In expert mice, however, the proportion of 'miss trials' (and presumably false alarms) will by definition be much smaller. Given this, I find it difficult to interpret the results of this section.

      This approach was chosen to reliably decode a sufficient number of trials for each task difficulty (i.e. expert mice predominantly performed CRs on No-Go trials and novice mice often showed FAs). Utilizing all trial outcomes ensured that we had enough trials for each stimulus type to accurately estimate the AUCs. This approach avoids introducing biases due to uneven trial numbers across learning stages.

      (14) Line 378: 'differences between adolescents and adults arise primarily from age': Are there differences in any of the metrics shown in 7e-h between adolescents and adults?

      We confirm that differences between adolescents and adults are indeed present in some metrics but not others in Figure 7e–h. Specifically, while tuning bandwidth was similar in novice animals, it was significantly lower in adult experts (Fig. 7e; novice: p = 0.0882; expert: p = 0.0001 Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The population sparseness was similar in both novice and expert adolescent and adult neurons (Fig. 7f; novice: p = 0.2873; expert: p = 0.1017, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The distance to the easy go stimulus was similar in novice animals, but lower in adult experts (Fig. 7g; novice: p = 0.7727; expert: p = 0.0001, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The neuronal d-prime was similar in both novice and expert adolescent and adult neurons (Fig. 7h; novice: p = 0.7727; expert: p = 0.0001, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript).

      (15) Line 475: '...well and beyond...': something seems to be missing in this statement.

      (16) Line 487: 'onto' should be 'into', I think.

      (17) Line 610 and 613: '3 seconds' ... '2.5 seconds': Was the response window 3s or 2.5s?

      (18) Line 638: 'set' should be 'setup', I believe.

      All the mistakes mentioned above, were fixed. Thanks.

      (19) Line 643: 'Reward-reinforcement was delayed to 0.5 seconds after the tone offset': Presumably, if they completed their fifth lick later than 0.5 seconds after the tone, the reward delivery was also delayed?

      Apologies for the lack of clarity. In the head-fixed version, there was no lick threshold. Mice were reinforced after a single lick. If that lick occurred after the 0.5-second reinforcement delay following tone offset, the reward or punishment was delivered immediately upon licking.

      (20) Line 661: 'effect [of] ACx'.

      (21) Line 680: 'a base-station connected to chassis'. The sentence sounds incomplete.

      (22) Line 746: 'infliction', I believe, should say 'inflection'.

      (23) Line 769: 'non-auditory responsive units': Shouldn't that simply say 'non-responsive units'? The way it is currently written I understand it to mean that these units were responsive (to some other modality perhaps) but not to auditory stimulation.

      (24) Line 791: 'bins [of] 50ms'.

      (25) Line 811: 'all of' > 'of all'.

      (26) Line 814: Looks like the previous paragraph on single unit analysis was accidentally repeated under the wrong heading.

      (27) Line 817: 'encoded' should say 'calculated', I believe.

      All the mistakes mentioned above were fixed. Thanks.

      (28) Line 869: 'bandwidth of excited units': Not sure I understand how exactly the bandwidth, i.e. tuning width was measured.

      We acknowledge that our previous answer was unclear and expanded the Methods section. To calculate bandwidth, we identified significant tone-evoked responses by comparing activity during the tone window to baseline firing rates at 62 dB SPL (p < 0.05). For each neuron, we counted the number of contiguous frequencies with significant excitatory responses, subtracting isolated false positives to correct for chance. We then converted this count into an octave-based bandwidth by multiplying the number of frequency bins by the octave spacing between them (0.1661 octaves per step).

      (29) Line 871: 'population sparseness': Is that the fraction of tone frequencies that produced a significant response? I would have thought that this measure is very highly correlated to your measure of bandwidth, to the point of being redundant, but I may have misunderstood how one or the other is calculated. Furthermore, the Y label of Figure 7f says 'responsiveness' rather than sparseness and that would seem to be the more appropriate term because, unless I am misunderstanding this, a larger value here implies that the neuron responded to more frequencies, i.e. in a less sparse manner.

      We have clarified the use of the term "population sparseness" and updated the Y-axis label in Figure 7f to better reflect this measure. This metric reflects the fraction of tone–attenuation combinations that elicited a significant excitatory response across the entire population of neurons, not within individual units.

      While this measure is related to bandwidth, it captures a distinct property of the data. Bandwidth quantifies how broadly or narrowly a single neuron responds across frequencies at a fixed intensity, whereas population sparseness reflects how distributed responsiveness is across the population as a whole. Although the two measures are related, since broadly tuned neurons often contribute to lower population sparseness, they capture distinct aspects of neural coding and are not redundant.

      (30) Line 881: I think this line should refer to Figure 7h rather than 7g.

      Fixed.

      Reviewer #3 (Recommendations for the authors):

      (1) In the Educage, water was only available when animals engaged in the task; however, there is no mention of whether/how animal weight was monitored.

      In the Educage, mice had continuous access to water by voluntarily engaging in the task, which they could perform at any time. Although body weight was not directly monitored, water access was essentially ad libitum, and mice performed hundreds of trials per day, thereby ensuring sufficient daily intake. This approach allowed us to monitor hydration (ad libitum food is supplied in the home cage). The 24/7 setup, including automated monitoring of trial counts and water consumption, was reviewed and approved by our institutional animal care and use committee (IACUC).

      (2) In Figure 2B-C and Figure 2E, the y-axis reads "lick rate". At first glance, I took this to mean "the frequency of licking" (i.e. an animal typically licks at a rate of 5 Hz). However, what the authors actually are plotting here is the proportion of trials on which an animal elicited >= 5 licks during the response window (i.e. the proportion of "yes" responses). I recommend editing the y-axis and the text for clarity.

      We replaced the y-label and adjusted the figure legend (Fig. 2).

      (3) I didn't see any examples of raw (filtered) voltage traces. It would be worth including some to demonstrate the quality of the data.

      We have added an example of a filtered voltage trace aligned to tone onset in Fig. S4-1a to illustrate data quality. In addition, all raw and processed voltage traces, along with relevant analysis code, are available through our GitHub repository and the corresponding dataset on Zenodo.

      (4) The description of the calculation of bias (C) in the methods section (lines 749-750) is incorrect. The correct formula is C = -0.5 * [z(hit rate) + z(fa rate)]. I believe this is the formula that the authors used, as they report negative C values. Please clarify or correct.

      Thanks for spotting this. It is now corrected.

      (5) The authors use the terms 'naïve' and 'novice' interchangeably. I suggest sticking with one term to avoid potential confusion.

      (6) Multiple instances: "less trials/day" should be "fewer trials/day"

      (7) Supplementary Table 2: The values reported are proportions, not percentages. Please correct.

      (8) Line 270: Table 2 does not show the number of neurons in the dataset categorized by region. Perhaps the authors meant Supplementary Table 2?

      Fixed. Thank you for pointing these mistakes out.

      (9) Figure 5C: the data from the hard task are entirely obscured by the data from the easy task. I recommend splitting it into two different plots.

      We agree and split the decoding of the easy and the hard task into two graphs (left: easy task; right: hard task). Thank you!

      (10) How many mice contributed to each analyzed data set? Could the authors provide a breakdown in a table somewhere of how many neurons were recorded in each mouse and which ones were included in which analyses?

      We added an overview of the analyzed datasets in supplementary Table 7. Please note that the number of mice and neurons used in each analysis is also reported in the main text and legends. Importantly, all primary analyses were conducted using LME models, which explicitly account for hierarchical data structure and inter-mouse variability, thereby addressing potential concerns about data imbalance or bias.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary:

      The authors use analysis of existing data, mathematical modelling, and new experiments, to explore the relationship between protein expression noise, translation efficiency, and transcriptional bursting.

      Strengths:

      The analysis of the old data and the new data presented is interesting and mostly convincing.

      Thank you for the constructive suggestions and comments. We address the individual comments below. 

      Weaknesses:

      (1) My main concern is the analysis presented in Figure 4. This is the core of mechanistic analysis that suggests ribosomal demand can explain the observed phenomenon. I am both confused by the assumptions used here and the details of the mathematical modelling used in this section. Firstly, the authors' assumption that the fluctuations of a single gene mRNA levels will significantly affect ribosome demand is puzzling. On average the total level of mRNA across all genes would stay very constant and therefore there are no big fluctuations in the ribosome demand due to the burstiness of transcription of individual genes. Secondly, the analysis uses 19 mathematical functions that are in Table S1, but there are not really enough details for me to understand how this is used, are these included in a TASEP simulation? In what way are mRNA-prev and mRNA-curr used? What is the mechanistic meaning of different terms and exponents? As the authors use this analysis to argue ribosomal demand is at play, I would like this section to be very much clarified.

      Thank you for raising two important points. Regarding the first point, we agree that the overall ribosome demand in a cell will remain mostly the same even with fluctuations in mRNA levels of a few genes. However, what we refer to in the manuscript is the demand for ribosomes for translating mRNA molecules of a single gene. This demand will vary with the changes in the number of mRNA molecules of that gene. When the mRNA copy number of the gene is low, the number of ribosomes required for translation is low. At a subsequent timepoint when the mRNA number of the same gene goes up rapidly due to transcriptional bursting, the number of ribosomes required would also increase rapidly. This would increase ribosome demand. The process of allocation of ribosomes for translation of these mRNA molecules will vary between cells, and this process can lead to increased expression variation of that gene among cells. We have now rephrased the section between the lines 321 and 331 to clarify this point.

      Regarding the second point, each of the 19 mathematical functions was individually tested in the TASEP model and stochastic simulation. The parameters ‘mRNA-curr’ and ‘mRNA-prev’ are the mRNA copy numbers at the present time point and the previous time point in the stochastic simulations, respectively. These numbers were calculated from the rate of production of mRNA, which is influenced by the transcriptional burst frequency and the burst size, as well as the rate of mRNA removal. We have now incorporated more details about the modelling part along with explanation for parameters and terms in the revised manuscript (lines 390 to 411; lines 795 to lines 807). 

      (2) Overall, the paper is very long and as there are analytical expressions for protein noise (e.g. see Paulsson Nature 2004), some of these results do not need to rely on Gillespie simulations. Protein CV (noise) can be written as three terms representing protein noise contribution, mRNA expression contribution, and bursty transcription contribution. For example, the results in panel 1 are fully consistent with the parameter regime, protein noise is negligible compared to transcriptional noise. 

      Thank you for referring to the paper on analytical expressions for protein noise. We introduced translational bursting and ribosome demand in our model, and these are linked to stochastic fluctuations in mRNA and ribosome numbers. In addition, our model couples transcriptional bursting with translational bursting and ribosome demand. Since these processes are all stochastic in nature, we felt that the stochastic simulation would be able to better capture the fluctuations in mRNA and protein expression levels originating from these processes. For consistency, we used stochastic simulations throughout even when the coupling between transcription and translation were not considered. 

      Reviewer #1 (Recommendations for the authors):  

      (1) Figure 1B shows noise as Distance to Median (DM) that can be positive or negative. It is therefore misleading that the authors say there is a 10-fold increase in noise (this would be relevant if the quantity was strictly positive). How is the 10-fold estimated? Similar comments apply to Figure 1F and the estimated 37-fold. I also wonder if the datasets combined from different studies are necessarily compatible.

      We have now changed the statements and mentioned the actual noise values for different classes of genes rather than the fold-changes (lines 111-113 and 143-145). We agree that the measurements for mRNA expression levels, protein synthesis rates and protein noise were obtained from experiments done by different research labs, and this could introduce more variation in the data. However, it is unlikely the experimental variations are likely to be random and do not bias any specific class of genes (in Fig. 1B and Fig. 1F) more than others.  

      (2)   How Figure 1D has been generated seems confusing, the authors state this is based on the Gillespie algorithm, but in panel 1C and also in the methods, they are writing ODEs and Equations 3 and 4 stating the Euler method for the solution of ODEs. Also, I am concerned if this has been done at steady-state. The protein noise for the two-state model can be analytically obtained, and instead of simulations, the authors could have just used the expression. Also, Figure 1D shows CV while the corresponding data Figure 1B is showing mean adjusted DM. So, I am not sure if the comparison is valid. I am also very confused about the fact that the authors show CV does not depend on the mean expression of proteins and mRNA. Analytical solutions suggested there is always an inverse relationship exists between CV and mean and this has also been experimentally observed (see for example Newman et al 2006).

      We used Gillespie algorithm for stochastic simulations and identified the time points when an event (for example, switching to ON or OFF states during transcriptional bursting) occurred. If an event occurred at a time point, the rates of the reactions were guided by the equations 3 and 4, as the rates of reactions were dependent on the number of mRNA (or protein) molecules present, production rates and removal rates. 

      For all published datasets where we had measurements from many genes/promoters, we used the measures of adjusted noise (for mRNA noise) and Distance-to-median (DM, for protein noise). These measures of noise are corrected mean-dependence of expression noise (Newman et al., 2006). For simulations, which we performed for a single gene, and for experiments that we performed on a limited number of promoters, we used the measure of coefficient of variation (CV) to quantify noise, as calculation of adjusted noise or DM was not possible for a single gene. 

      The work of Newman et al. (2006) measures noise values of different genes with different transcriptional burst characteristics and different mRNA and protein removal rates. We also see similar results in our simulations (Fig. 1E), where as we increase the mean expression by changing the transcriptional burst frequency, the protein noise goes down.     

      (3) Estimating parameters of gene expression using reference 44 ignores the effect of variability in capture efficiency and cell size. In a recent paper, Tang et al Bioinformatics 39 (7), btad395 2023 addressed this issue.

      Thank you for referring to the work of Tang et al. (2023). We note that the cell size and capture efficiency have a small effect on the burst frequency (Kon) but has a more pronounced effect on burst size (Tang et al., 2023). In our analysis, we considered only burst frequency and even with likely small inaccuracies in our estimation of Kon, we can capture interesting association of burst frequency with noise trends. 

      (4) In the methods "αp = 0.007 per mRNA molecule per unit time", I believe it should be per protein molecule per unit time.

      Corrected.

      (5)  Figure 3 uses TASEP modelling but the details of this modelling are not described well.

      We have now expanded the description of the modelling approach in the revised manuscript (lines 391-412; lines 693-776 and lines 797-809). In addition, we have also added more details in the figure captions. 

      (6) Another overall issue is that when the authors talk about changes in burst frequency or changes in translation efficiency, it is not always clear, is this done while keeping all the other parameters constant therefore changing mean expressions, or is this done by keeping the mean expressions constant?

      To test for the association between mean protein expression and protein noise, we have varied the mean expression by changing the translation initiation rate (TLinit) for the most part of the manuscript while keeping other parameters constant. In figure 5, where we decoupled TLinit from ribosome traversal rate (V), we changed the mean protein expression by changing the ribosome traversal rate while keeping other parameters constant. We have now mentioned this in the manuscript. 

      (7)   I believe Figures 5 and 6 present the same data in different ways, I wonder if these can be combined or if some aspect of the data in Figure 5 could go to supplementary. Also, the statistical tests in Figure 5E and F are not clear what they are testing.

      We have now moved figures 5E and 5F to the supplement (Fig. S20). We have also added details of the statistical test in the figure caption. 

      Reviewer #2 (Public review): 

      This work by Pal et al. studied the relationship between protein expression noise and translational efficiency. They proposed a model based on ribosome demand to explain the positive correlation between them, which is new as far as I realize. Nevertheless, I found the evidence of the main idea that it is the ribosome demand generating this correlation is weak. Below are my major and minor comments.

      Thank you for your helpful suggestions and comments. We note that the direct experimental support required for the ribosome demand model would need experimental setups that are beyond the currently available methodologies. We address the individual comments below. 

      Major comments: 

      (1) Besides a hypothetical numerical model, I did not find any direct experimental evidence supporting the ribosome demand model. Therefore, I think the main conclusions of this work are a bit overstated.

      Direct experimental evidence of the hypothesis would require generation of ribosome occupancy maps of mRNA molecules of specific genes at the level of single cells and at time intervals that closely match the burst frequency of the genes. This is beyond the currently available methodologies. However, there are other evidences that support our model. For example, earlier work in cell-free systems have showed that constraining cellular resources required for transcription or translation can increase expression heterogeneity (Caveney et al., 2017). In addition, the ribosome demand model had two predictions both of which could be validated through modelling as well as from our experiments. 

      To further investigate whether removing ribosome demand from our model could eliminate the positive mean-noise correlation for a gene, we have now tested two additional sets of models where we decoupled the translation initiation rate (TLinit) from the ribosome traversal speed (V). In the first model, we changed the mean protein expression by changing the translation initiation rate but keeping the ribosome traversal speed constant. Thus, in this scenario, ribosome demand varied according to the variation in the translation initiation rate. As expected, the positive correlation between mean expression and protein noise was maintained in this condition (Fig. 5B). In the second model, we changed the mean expression by changing the ribosome traversal speed but keeping the translation initiation rate (and therefore, the ribosome demand) constant. In this situation, the relationship between mean expression and protein noise turned negative (Fig. 5B and fig. S16). These results further pointed that the ribosome demand was indeed driving the positive relationship between mean expression and protein noise. 

      (2) I found that the enhancement of protein noise due to high translational efficiency is quite mild, as shown in Figure 6A-B, which makes the biological significance of this effect unclear.

      We agree with the reviewer’s comment that the effect of translational efficiency on protein noise may not be as substantial as the effect of transcriptional bursting, but it has been observed in studies across bacteria, yeast, and Arabidopsis (Ozbudak et al., 2003; Blake et al., 2003; Wu et al., 2022). In addition, the relationship between translational efficiency and protein noise is in contrast with the inverse relationship observed between mean expression and noise (Newman et al., 2006; Silander et al., 2012). We also note that the goal of the manuscript was not to evaluate the relative strength of these associations, but to understand the molecular basis of the influence of translational efficiency on protein noise. 

      (3) The captions for most of the figures are short and do not provide much explanation, making the figures difficult to read.

      We have revised the figure captions to include more details as per the reviewer’s suggestion. 

      (4)  It would be helpful if the authors could define the meanings of noise (e.g., coefficient of variation?) and translational efficiency in the very beginning to avoid any confusion. It is also unclear to me whether the noise from the experimental data is defined according to protein numbers or concentrations, which is presumably important since budding yeasts are growing cells. 

      For all published datasets where we had measurements from many genes/promoters, we used the measures of adjusted noise (for mRNA noise) and Distance-tomedian (DM, for protein noise). These measures of noise are corrected mean-dependence of expression noise. For simulations, which we performed for a single gene, and for experiments that we performed on a limited number of promoters, we used the measure of coefficient of variation (CV) to quantify noise, as calculation of adjusted noise or DM was not possible for a single gene. We now mention this in line 123-124. We used the measure of protein synthesis rate per mRNA as the measure of translational efficiency (Riba et al., 2019; line 100). Alternatively, we also used tRNA adaptation index (tAI) as a measure of translational efficiency, as codon choice could also influence the translation rate per mRNA molecule (Tuller et al., 2010) (line 193). 

      The protein noise was quantified from the signal intensity of GFP tagged proteins (Newman et al., 2006; and our data), which was proportional to protein numbers without considering cell volume. For quantification of noise at the mRNA level, single-cell RNA-seq data was used, which provided mRNA numbers in individual cells.  

      (5) The conclusions from Figures 1D and 1E are not new. For example, the constant protein noise as a function of mean protein expression is a known result of the two-state model of gene expression, e.g., see Equation (4) in Paulsson, Physics of Life Reviews 2005.

      Yes, they may not be new, but we included these results for setting the baseline for comparison with simulation results that appear in the later part of the manuscript where we included translational bursting and ribosome demand in our models. 

      (6) In Figure 4C-D, it is unclear to me how the authors changed the mean protein expression if the translation initiation rate is a function of variation in mRNA number and other random variables.

      The translation initiation rate varied from a basal translation initiation rate depending on the mRNA numbers and other variables. We changed the basal translation initiation rate to alter the mean protein expression levels. We have now elaborated the modelling section to incorporate these details in the revised manuscript (lines 404 to 412). 

      (7) If I understand correctly, the authors somehow changed the translation initiation rate to change the mean protein expression in Figures 4C-D. However, the authors changed the protein sequences in the experimental data of Figure 6. I am not sure if the comparison between simulations and experimental data is appropriate.

      It is an important observation. Even though we changed the basal translation initiation rate to change the mean expression (Fig. 4C-D), we noted in the description of the model that the changes in the translation initiation rate were also linked to changes in the translation elongation rate (Fig. 3D). Thus, an increase in the translation initiation rate was associated with faster ribosome traversal through an mRNA molecule. This has also been observed in an experimental study by Barrington et al. (2023). Therefore, the models can also be expressed in terms of the translation elongation rate or ribosome traversal speed, instead of the translation initiation rate, and this modification will not change the results of the simulations due to interconnectedness of the initiation rate and the elongation rate.  

      Reviewer #2 (Recommendations for the authors):

      Minor comments:

      (1)  The discussion from lines 180 to 182 appears consistent with Figure 1E. It seems that the twostate model can already explain why the genes with high burst frequency and high protein synthesis rate showed a small protein noise. It is unclear to me the purpose of this discussion.

      Yes, the results from Fig. 1E were from stochastic simulations, whereas the results discussed in the lines 191 to 193 (in the revised manuscript) were based on our analysis of experimental data that is shown in Fig. 2D.

      (2)  If I understand correctly, "translational efficiency" is the same as "protein synthesis rate" in this work. It would be helpful if the authors could keep the same notation throughout the paper to avoid confusion.

      The protein synthesis rate per mRNA molecule is the best measure of translational efficiency, and we used the experimental data from Riba et al. (2019) for this purpose (line 99-100). Alternatively, we also used tRNA Adaptation Index (tAI) as a measure of translational efficiency, as the codon choice also influences the rate at which an mRNA molecule is translated (Tuller et al., 2010) (line 192). 

      (3) On line 227, does "higher translation rate" mean "higher translation initiation rate"? The same issues happen in a few places in this paper.

      Corrected now (line 243 in the revised manuscript and throughout the manuscript). 

      (4) The discussion from lines 296 to 301 is unclear. It is not obvious to me how the authors obtained the conclusion that lowering translational efficiency would decrease the protein expression noise.

      High translational efficiency will require more ribosomes and hence, will increase ribosome demand. If ribosome demand is the molecular basis of high expression noise for genes with bursty transcription and high translational efficiency, then we can expect a reduction in ribosome demand and a reduction in noise if we lower the translational efficiency. We have rephrased this section for clarity between the lines 334 and 339 in the revised manuscript.   

      (5)  On line 324, should slower translation mean a shorter distance between neighboring ribosomes? One can imagine the extreme limit in which ribosomes move very slowly so that the mRNA is fully packed with ribosomes. 

      Slower translation or ribosome traversal rate would also lower the translation initiation rate (Barrington et al., 2023). Slower traversal of ribosomes reduces the chances of collision in case of transient slow-down of ribosomes due to occurrence of one or more non-preferred codons. We have now clarified this part in the lines 360 to 369 in the revised manuscript.

      (6) The text from lines 423 to 433 can be put in Methods.

      We have already added this part to the methods section (lines 900 to 910) and now minimize this discussion in the results section. 

      (7)  The discussion from lines 128 to 130 is unclear, and the statement appears to be consistent with the two-state model (see Figure 1E). The meaning of "initial mRNA numbers" is also unclear.

      An earlier study has proposed that essential genes in yeast employs high transcription and low translation strategy for expression, likely to maintain low expression noise in these genes and to prevent detrimental effects of high expression noise (Fraser et al., 2004). However, there has been no direct supportive evidence. Therefore, we were testing whether the differences in mRNA levels and translational efficiency of genes can lead to differences in protein noise through stochastic simulations. The discussion between the lines 130 and 132 in the revised manuscript summarises the results of the simulations. 

      Initial mRNA numbers - mRNA copy numbers that are present in the cell at the start of stochastic simulations. However, we have now changed it to ‘mRNA levels’ in the revised manuscript for clarity (line 131 in the revised manuscript).

      (8)  On line 212, is the translation initiation rate TL_init the same thing as beta_p in Figure 3A?

      βp refers to the rate of protein synthesis, which is influenced by the translational burst kinetics as well as the translation initiation rate, whereas TLinit refers to the translation initiation rate. So, these parameters are related, but are not the same.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this study, Floedder et al report that dopamine ramps in both Pavlovian and Instrumental conditions are shaped by reward interval statistics. Dopamine ramps are an interesting phenomenon because at first glance they do not represent the classical reward prediction errors associated with dopamine signaling. Instead, they seem somewhat to bridge the gap between tonic and phasic dopamine, with an intense discussion still being held in the field about what is their actual behavioral role. Here, in tests with head-fixed mice, and dopamine being recorded with a genetically encoded fluorescent sensor in the nucleus accumbens, the authors find that dopamine ramps were only present when intertrial intervals were relatively short and the structure of the task (Pavlovian cue or progression in a VR corridor) contained elements that indicated progression towards the reward (e.g., a dynamic cue). The authors show that these findings are well explained by their previously published model of Adjusted Net Contingency of Causal Relation (ANCCR).

      Strengths:

      This descriptive study delineates some fundamental parameters that define dopamine ramps in the studied conditions. The short, objective, and to-the-point format of the manuscript is great and really does a service to potential readers. The authors are very careful with the scope of their conclusions, which is appreciated by this reviewer.

      We thank the reviewer for their overall support of the formatting and scope of the manuscript. 

      Weaknesses:

      The discussion of the results is very limited to the conceptual framework of the authors' preferred model (which the authors do recognize, but it still is a limitation). The correlation analysis presented in panel l of Figure 3 seems unnecessary at best and could be misleading, as it is really driven by the categorical differences between the two conditions that were grouped for this analysis. There are some key aspects of the data and their relationship with each other, the previous literature, and the methods used to collect them, that could have been better discussed and explored.

      We agree with the reviewer that a weakness of the discussion was the limited framing of the results within the ANCCR model. To address this, we have expanded our introduction and discussion sections to provide a more thorough explanation of our model and possible leading alternatives.

      We thank the reviewer for pointing out that Figure 3l may be misleading for readers; we removed this panel from the revised Figure 4.

      We have further addressed the specific concerns raised by the reviewer in their comments to the authors. Indeed, we agree with the reviewer that the original manuscript was narrow in its focus regarding relationships between different aspects of the data. To more thoroughly explore how key variables – including dopamine ramp slope and onset response as well as licking behavior slope – could relate to each other, we have added Extended Data Figure 8. In this figure, we show that no correlations exist between any of these key variables in either dynamic tone condition; it is our hope that this additional analysis highlights the significance of the clear relationship between dopamine ramp slope and ITI duration. 

      Reviewer #2 (Public Review):

      In this manuscript by Floeder et al., the authors report a correlation between ITI duration and the strength of a dopamine ramp occurring in the time between a predictive conditioned stimulus and a subsequent reward. They found this relationship occurring within two different tasks with mice, during both a Pavlovian task as well as an instrumental virtual visual navigation task. Additionally, they observed this relationship only in conditions when using a dynamic predictive stimulus. The authors relate this finding to their previously published model ANCCR in which the time constant of the eligibility trace is proportionate to the reward rate within the task.

      The relationship between ITI duration and the extent of a dopamine ramp which the authors have reported is very intriguing and certainly provides an important constraint for models for dopamine function. As such, these findings are potentially highly impactful to the field. I do have a few questions for the authors which are written below.

      We thank the reviewer for their interest in our findings and belief in their potential to be impactful in the field. 

      (1) I was surprised to see a lack of counterbalance within the Pavlovian design for the order of the long vs short ITI. Ramping of the lick rate does increase from the long-duration ITIs to the short-duration ITI sessions. Although of course, this increase in ramping of the licking across the two conditions is not necessarily a function of learning, it doesn't lend support to the opposite possibility that the timing of the dynamic CS hasn't reached asymptotic learning by the end of the long-duration ITI. The authors do reference papers in which overtraining tends to result in a reduction of ramping, which would argue against this possibility, yet differential learning of the dynamic CS would presumably be required to observe this effect. Do the authors have any evidence that the effect is not due to heightened learning of the timing of the dynamic CS across the experiment?

      We appreciate the reviewer expressing their surprise regarding the lack of counterbalance in our Pavlovian experimental design. We previously did not explicitly do this because the ramps disappeared in the short ITI/fixed tone condition, indicating that their presence is not just a matter of total experience in the task. However, we agree that this is incidental, but not direct evidence. To address this drawback, we repeated the Pavlovian experiment in a new cohort of animals with a revised training order, switching conditions such that the short ITI/dynamic tone (SD) condition preceded the long ITI/dynamic tone (LD) condition (see revised Figure 2a). Despite this change in the training order, the main findings remain consistent: positive dLight slopes (i.e., dopamine ramps) are only observed in the SD condition (Figure 2b-d). 

      We thank the reviewer for raising these questions regarding licking behavior and learning and their relationship with dopamine ramps. Indeed, a closer look at the average licking behavior reveals subtle differences across conditions (Figure 1f and Extended Data Figure 5a). While the average lick rate during the ramp window does not differ across conditions (Extended Data Figure 5c), the ramping of the lick rate during this window is higher for dynamic tone conditions compared to fixed tone conditions (Extended Data Figure 5d). Despite these differences, we still believe that the main comparison between the dopamine slope in the SD vs LD condition remains valid given their similar lick ramping slopes. Furthermore, our primary measure of learning is not lick slope, but anticipatory lick rate during the 1 s trace preceding reward delivery, which is robustly nonzero across cohorts and conditions (Figure 1g and Extended Data Figure 5b). 

      Taken together, we hope that the results from our counterbalanced Pavlovian training and more rigorous analysis of lick behavior across conditions provide sufficient evidence to assuage concerns that the differences in ramping dopamine simply reflect differences in learning. 

      (2) The dopamine response, as measured by dLight, seems to drop after the reward is delivered. This reduction in responding also tends to be observed with electrophysiological recordings of dopamine neurons. It seems possible that during the short ITI sessions, particularly on the shorter ITI duration trials, that dopamine levels may still be reduced from the previous trial at the onset of the CS on the subsequent trial. Perhaps the authors can observe the dynamics of the recovery of the dopamine response following a reward delivery on longer-duration ITIs in order to determine how quickly dopamine is recovering following a reward delivery. Are the trials with very short ITIs occurring within this period that dopamine is recovering from the previous trial? If so, how much of the effect may be due to this effect? It should be noted that the lack of observance of a ramp on the condition of shortduration ITIs with fixed CSs provides a potential control for this effect, yet the extent to which a natural ramp might occur following sucrose deliveries should be investigated.

      We thank the reviewer for highlighting the possibility that ramps may be due to the dopamine response recovery following reward delivery. Given that peak reward dopamine responses tend to be larger in long ITI conditions, however, we felt that it was inappropriate to compare post-reward dopamine recovery times across conditions. Instead, we decided to directly compare the dLight slope 2s before cue onset (“pre-cue window,” a proxy for recovery from previous trial) with the dLight slope during our ramp window from 3 to 8s after cue onset (Extended Data Figure 6a). There were no significant differences in pre-cue dLight slope across conditions (Extended Data Figure 6b); this suggests that the ramping slopes seen in the SD condition, but not other conditions, is not simply due to the natural dopamine recovery response following reward delivery. Furthermore, if the dopamine ramps observed in the SD condition were a continuation of the post-reward dopamine recovery from the previous trial, we would expect to see a positive correlation between the dLight slope before and during the cue. However, there is no such correlation between the dLight slopes in the ramp window vs. pre-cue window in the SD condition (Extended Data Figure 6c-d). We believe that this observation, along with the builtin control of the SF condition mentioned by the reviewer, serves as evidence against the possibility of our ramp results being due to a natural ramp after reward delivery.

      (3) The authors primarily relate the finding of the correlation between the ITI and the slope of the ramp to their ANCCR model by suggesting that shorter time constants of the eligibility trace will result in more precisely timed predictors of reward across discrete periods of the dynamic cue. Based on this prediction, would the change in slope be more gradual, and perhaps be more correlated with a broader cumulative estimate of reward rate than just a single trial?

      To clarify, we do not propose that a smaller eligibility trace time constant results in more precise timing per se. Instead, we believe that the rapid eligibility trace decay from smaller time constants gives greater causal predictive power for later periods in the dynamic cue (see Extended Data Figure 1) since the memory of the earlier periods of the cue is weaker. 

      We appreciate the reviewer’s curiosity regarding the influence of a broader cumulative estimate of reward vs. only the immediately preceding ITI on dopamine ramp slopes. Indeed, in several instrumental tasks (e.g., Krausz et al., Neuron, 2023), recent reward rate modulates the magnitude of dopamine ramps, making this an important variable to investigate. We chose to use linear regression for each mouse separately to analyze the relationship between the trial dopamine slope and the average previous ITI for the past 1 through 10 most recent trials. In the SD condition, as reported in our earlier manuscript, there was a significantly negative dependence of trial dopamine slope with the single previous ITI (i.e., if the previous ITI was long, the next trial tends to have a weaker ramp). This negative dependence, however, only held for a single previous trial; there was no clear relationship between the per-trial dopamine slope and the average of the past 2 through 10 ITIs (Extended Data Figure 7a). For the LD condition, on the other hand, there is no clear relationship between the per-trial dopamine slope and the average previous ITI for any of the past 1 through 10 trials, with one exception: there is a significantly negative dependence of trial dopamine slope with the average ITI of the previous 2 trials (Extended Data Figure 7b). This longer timescale relationship in the LD condition suggests that the adaptation of the eligibility trace time constant is nuanced and depends on the general ITI length. 

      In general, though we reason that the eligibility trace time constant should depend on overall event rates, we do not currently propose a real-time update rule for the eligibility trace time constant depending on recent event rates. Accordingly, we are currently agnostic about the actual time scale of history of recent event rate calculation that mediates the eligibility trace time constant. Our experimental results suggest that when the ITI is generally short for Pavlovian conditioning, the eligibility trace time constant adapts to ITI on a rapid timescale. However, only a small fraction of the variability of this rapid fluctuation is captured by recent ITI history. A more thorough investigation of this real-time update rule would need to be done in the future.

      Reviewer #3 (Public Review):

      Summary:

      Floeder and colleagues measure dopamine signaling in the nucleus accumbens core using fiber photometry of the dLight sensor, in Pavlovian and instrumental tasks in mice. They test some predictions from a recently proposed model (ANCCR) regarding the existence of "ramps" in dopamine that have been seen in some previous research, the characteristics of which remain poorly understood.

      They find that cues signaling a progression toward rewards (akin to a countdown) specifically promote ramping dopamine signaling in the nucleus accumbens core, but only when the intertrial interval just experienced was short. This work is discussed in the context of ongoing theoretical conceptions of dopamine's role in learning.

      Strengths:

      This work is the clearest demonstration to date of concrete training factors that seem to directly impact whether or not dopamine ramps occur. The existence of ramping signals has long been a feature of debates in the dopamine literature and this work adds important context to that. Further, as a practical assessment of the impact of a relatively simple trial structure manipulation on dopamine patterns, this work will be important for guiding future studies. These studies are well done and thoughtfully presented.

      We thank the reviewer for recognizing the context that our study adds to the dopamine literature and the potential for our experiments to guide future work. 

      Weaknesses:

      It remains somewhat unclear what limits are in place on the extent to which an eligibility trace is reflected in dopamine signals. In the current study, a specific set of ITIs was used, and one wonders if the relative comparison of ITI/history variables ("shorter" or "longer") is a factor in how the dopamine signal emerges, in addition to the explicit length ("short" or "long") of the ITI. Another experimental condition, where variable ITIs were intermingled, could perhaps help clarify some remaining questions.

      Though we used ITIs of fixed means, due to the exponential nature of their distribution, we did intermingle ITIs of various durations in both our long and short ITI conditions. The distribution of ITI durations is visualized in Figure 1c for Pavlovian conditioning and Extended Data Figure 9b for VR navigation. 

      The relative comparison between consecutive ITIs was not something we originally explored, so we thank the reviewer for wondering how it impacts the dopamine signal. To investigate this, we quantified both the change in ITI (+ or - Δ ITI for relatively longer or shorter, respectively) and the change in dopamine ramp slope between consecutive trials in the SD condition (Figure 3d). Across each mouse separately, we found a significantly negative relationship between Δ slope and Δ ITI (Figure 3e-f). Also, the average Δ slope was significantly greater for consecutive trials with a Δ ITI below -1 s compared to trials with a Δ ITI above +1 s (Figure 3g). Altogether, these findings suggest that relative comparison of ITIs does correlate with changes in the dopamine signal; a relatively longer ITI tends to have a weaker ramp, which fits in nicely with the expected inverse relationship between ITI and dopamine ramp slope from our ANCCR model.

      In both tasks, cue onset responses are larger, and longer on long ITI trials. One concern is that this larger signal makes seeing a ramp during the cue-reward interval harder, especially with a fluorescence method like photometry. Examining the traces in Figure 1i - in the long, dynamic cue condition the dopamine trace has not returned to baseline at the time of the "ramp" window onset, but the short dynamic trace has. So one wonders if it's possible the overall return to baseline trend in the long dynamic conditions might wash out a ramp.

      This is a good point, and we thank the reviewer for raising it. Certainly, the cue onset response is significantly larger in long ITI conditions (see Figure 1i-j and Figure 4h-j). To avoid any bleed over effect, we intentionally chose ramp window periods during later portions of the trial (in line with work from others e.g., Kim et al., Cell, 2020). While the cue onset dopamine pulse seems to have flatlined by the start of the ramp window period, the dopamine levels clearly remain elevated relative to pre-cue baseline. This type of signal has been observed with fiber photometry in other Pavlovian conditioning paradigms with long cue durations (e.g., Jeong et al., Science, 2022). Because of the persistently elevated dopamine levels, it is certainly possible that a ramping signal during the cue is getting washed out; with the bulk fluorescence photometry technique we employed in this study, this possibility is unfortunately difficult to completely rule out. However, the long ITI/fixed tone (LF) condition could serve as a potential control given the overall similarity in the dopamine signal between the LF and LD conditions: both conditions have large cue onset responses with elevated dopamine throughout the duration of the cue (see Extended Data Figures 2c and 3c). Critically, the LD condition lacks a noticeable ramp despite the dynamic tone providing information on temporal proximity to reward, which is thought to be necessary for dopamine ramps to occur. Importantly, regardless of whether a ramp is masked in the long ITI dynamic condition, most studies investigate such a condition in isolation and would report the absence of dopamine ramps. Thus, at a descriptive level, we believe it remains true that observable dopamine ramps are only present when the ITI is short. 

      Not a weakness of this study, but the current results certainly make one ponder the potential function of cue-reward interval ramps in dopamine (assuming there is a determinable function). In the current data, licking behavior was similar on different trial types, and that is described as specifically not explaining ramp activity.

      We agree that this work naturally raises the question of the function of dopamine ramps. However, selective and precise manipulation of only the dopamine ramps without altering other features such as phasic responses, or inducing dopamine dips, is highly technically challenging at this moment; due to this challenge, we intentionally focused on the conditions that determine the presence or absence of dopamine ramps rather than their function. We agree with the reviewer that studying the specific function of dopamine ramps is an interesting future question. 

      Reviewing Editor:

      The reviewers felt the results are of considerable and broad interest to the neuroscience community, but that the framing in terms of ANCCR undermined the scope of the findings as did the brief nature of the formatting of the manuscript. In addition, the reviewers felt that the relationship between ramp dynamics, behavior, and ITI conditions requires more in-depth analyses. Relatedly, the lack of counterbalancing of the ITI durations was considered to be a drawback and needs to be addressed as it may affect the baseline. Addressing these issues in a satisfactory manner would improve the assessment of the manuscript to important/convincing.

      We truly appreciate the valuable feedback provided on this manuscript by all three reviewers and the reviewing editor. Based on this input, we have significantly revised the manuscript to address the issues brought up by the reviewers. Firstly, we have conducted additional experiments to counterbalance the ITI conditions for Pavlovian conditioning; this strengthened our results by confirming our original findings that ITI duration, rather than training order, is the key variable controlling the presence or absence of dopamine ramps. Secondly, we completed more rigorous analyses to further explore the relationship between dopamine dynamics, animal behavior, and ITI duration; we generally found no significant correlations between these variables, with a notable exception being our main finding between ITI duration and dopamine ramp slope. Finally, we revised and expanded our writing to both explain predictions from our ANCCR model in less technical language and explore how alternative theoretical frameworks could potentially explain our findings. In doing so, we hope that our manuscript is now more accessible and of interest to a broad audience of neuroscience readers.

      Reviewer #1 (Recommendations For The Authors):

      The study could be improved if the authors performed a more detailed comparison of how other theoretical frameworks, beyond ANCCR could account for the observed findings. Also, the correlation analysis presented in the panel I of Figure 3 seems unnecessary and potentially spurious, as the slope of the correlation is clearly mostly driven by the categorical differences between the two ITI conditions, which were combined for the analysis - it's not clear what is the value of this analysis beyond the group comparison presented in the following panel.

      Again, we thank the reviewer for elaborating on their concern regarding Figure 3l – we have removed it from the revised Figure 4. 

      The relationship between ramp dynamics with the behavior and the large differences in cue onset responses between short and long ITI conditions could have been better explored. If I understand correctly the overarching proposal of this and other publications by this group, then the differences in cue responses is determined by the spacing of rewards in a somewhat similar way that the ramps are. So, is there a trial-by-trial correlation between the amplitude of the cue responses and the slope of the ramps? Is there a correlation between any of these two measures with the licking behavior, and if so, does it change with the ITI condition? A more thorough exploration of these relationships would help support the proposal of the primacy of inter-event spacing in determining the different types of dopamine responses in learning.

      There are certainly interesting relationships between dopamine dynamics, behavior, and ITI that we failed to explore in our original manuscript – we appreciate the reviewer bringing them up. We found no correlation between dopamine ramp slope and cue onset response in either the SD or LD condition (Extended Data Fig 8a-b). Moreover, we found no correlation between either of these variables and the trial-by-trial licking behavior (Extended Data Fig 8c-f). Finally, there is no relationship between licking behavior and previous ITI duration (Extended Data Fig 8g-h), suggesting that behavioral differences do not account for differences in the dopamine ramp slope. Together, the lack of significant relationships between these other variables highlights the specific, clear relationship between ITI duration and dopamine ramp slope. 

      Finally, another issue I feel could have been better discussed is how the particular settings of both tasks might be biasing the results. For example, there is an issue to be considered about how the dopamine ramp dynamics reported here, especially the requirement of a dynamic cue for ramps to be present, square with the previous published results by one of the authors - Mohebi et al, Nature, 2019. In that manuscript, rats were executing a bandit task where, to this reviewer's understanding, there was no explicit dynamic cue aside from the standard sensory feedback of the rats moving around in the behavior boxes to approach a nose poke port. Is the idea that this sensory feedback could function as a dynamic cue? If that's the case, then this short-scale, movement-related feedback should also function as a dynamic cue in a freely moving Pavlovian condition, when the animals must also move towards a reward delivery port, right? Therefore, could it be that the experimental "requirement" of a dynamic cue is only present in a head-fixed condition? One could phrase this in a different way to Steelman and potentially further the authors' proposal: perhaps in any slightly more naturalistic setting, the interaction of the animals with their environment always functions as a dynamic cue indicating proximity to reward, and this relationship was experimentally isolated by the use of head fixation (but not explicitly compared with a freely moving condition) in the present study. I think that would be an interesting alternative to consider and discuss, and perhaps explore experimentally at some point.

      We thank the reviewer for raising this important point regarding the influence of our experimental settings on our results. At first glance, it could appear that our results demonstrating the necessity of a dynamic cue for ramps in a head-fixed setting do not fit neatly with other results in a freely moving setup (e.g., Collins et al., Scientific Reports, 2016; Mohebi et al., Nature, 2019). Exactly as the reviewer states though, we believe that sensory feedback from the environment in freely moving preparations serves the same function as a dynamic progression of cues. We have considered the implications of methodological differences between head-fixed and freely moving preparations in the discussion section. 

      Reviewer #2 (Recommendations For The Authors):

      This comment relates indirectly to comment 3, in that the authors intermix theory throughout the manuscript. I think this would be fine if the experiment was framed directly in terms of ANCCR, but the authors specifically mention that this experiment wasn't developed to distinguish between different theories. As such, it seems difficult to assess the scope of the comments regarding theory within the paper because they tend to be specifically related to ANCCR. For instance, the last comment has broad implications of how the ramp might be related to the overall reward rate, an interesting finding that constrains classes of dopamine models rather than evidence just for ANCCR. Perhaps adding a discussion section that allows the authors to focus more on theory would be beneficial for this manuscript.

      We appreciate this suggestion by the reviewer. We have updated both our introduction and discussion sections to elaborate more thoroughly on theory.

      Reviewer #3 (Recommendations For The Authors):

      The paper could potentially benefit from the use of more accessible language to describe the conceptual basis of the work, and the predictions, and a bit of reformatting away from the brief structure with lots of supplemental discussion.

      For example, in the introduction, the line - "Varying the ITI was critical because our theory predicts that the ITI is a variable controlling the eligibility trace time constant, such that a short ITI would produce a small time constant relative to the cue-reward interval (Supplementary Note 1)". As far as I can tell, this is meant to get across the notion that dopamine represents some aspect of the time between rewards - dopamine signals will differ for cues following short vs long intervals between rewards.

      As written, the language of the paper takes a fair bit of parsing, but the notions are actually pretty simple. This is partly due to the brief format the paper is written in, where familiarity with the previous papers describing ANCCR is assumed.

      From a readability standpoint, and the potential impact of the paper on a broad audience, perhaps this could be considered as a point for revision.

      We thank the reviewer for pointing out the drawbacks of our technical language and brief formatting. To address this, we have removed the majority of the supplementary notes and expanded our introduction and discussion sections. In doing so, we hope that the conceptual foundations of this work, and potential alternative theoretical explanations, are accessible and impactful for a broad audience of readers.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Early and accurate diagnosis is critical to treating N. fowleri infections, which often lead to death within 2 weeks of exposure. Current methods-sampling cerebrospinal fluid are invasive, slow, and sometimes unreliable. Therefore, there is a need for a new diagnostic method. Russell et al. address this need by identifying small RNAs secreted by Naegleria fowleri (Figure 1) that are detectable by RT-qPCR in multiple biological fluids including blood and urine. SmallRNA-1 and smallRNA-2 were detectable in plasma samples of mice experimentally infected with 6 different N. fowleri strains, and were not detected in uninfected mouse or human samples (Figure 4). Further, smallRNA-1 is detectable in the urine of experimentally infected mice as early as 24 hours post-infection (Figure 5). The study culminates with testing human samples (obtained from the CDC) from patients with confirmed N. fowleri infections; smallRNA-1 was detectable in cerebrospinal fluid in 6 out of 6 samples (Figure 6B), and in whole blood from 2 out of 2 samples (Figure 6C). These results suggest that smallRNA-1 could be a valuable diagnostic marker for N. fowleri infection, detectable in cerebrospinal fluid, blood, or potentially urine. 

      Strengths: 

      This study investigates an important problem, and comes to a potential solution with a new diagnostic test for N. fowleri infection that is fast, less invasive than current methods, and seems robust to multiple N. fowleri strains. The work in mice is convincing that smallRNA1 is detectable in blood and urine early in infection. Analysis of patient blood samples suggest that whole blood (but not plasma) could be tested for smallRNA-1 to diagnose N. fowleri infections. 

      Thank you for comments regarding the strengths of this study. We agree that our data for detecting the biomarker in biofluids from mice is convincing. In addition, our spike-in studies with human cerebrospinal fluid, plasma, and urine (Figure 6) suggest these biofluids from humans could be used for diagnosis.

      We appreciate the comment regarding plasma and recognize this was not fully explained in the manuscript. We do believe that plasma can be used to assess the biomarker. Firstly, we demonstrated equivalent sensitivity of the method to detect smallRNA-1 in plasma and urine in mice with end-stage PAM (Figure 5). In addition, spike in samples of human plasma, cerebrospinal fluid, and urine demonstrated equivalent sensitivity of detecting the biomarker (Figure 6). 

      The negative result for human plasma in Figure 6C requires clarification; this sample was convalescent plasma from a survivor. The patient presented to the hospital on August 7, 2016, was treated, made a remarkable recovery, and was released from the hospital later that month. The plasma sample in Figure 6C was collected September 7, 2016, which is a month after treatment was initiated and weeks after the patient was symptom free. Our interpretation of the convalescent plasma result is the patient had cleared the active amoeba infection and that is why we did not detect the biomarker. We have added text in the discussion and in the legend for Figure 6 to clarify the convalescent plasma result. 

      One additional caveat for consideration is that many of the samples we received from amoebaeinfected humans were stored at room temperatures for undefined periods of time before being moved to <-20°C (see details in Table S9). We can’t rule out possible sample degradation, but this is an unfortunate reality of obtaining human samples from individuals later confirmed to be infected with pathogenic free-living amoebae.

      Weaknesses: 

      (1) There are not many N. fowleri cases, so the authors were limited in the human samples available for testing. It is difficult to know how robust this biomarker is in whole blood (only 2 samples were tested, both had detectable smallRNA-1), serum (1 out of 1 sample tested negative), or human urine (presumably there is no material available for testing). This limitation is openly discussed in the last paragraph of the discussion section. 

      We agree the extremely limited availability of human samples is a limitation of this study. Given the rarity of these infections in the United States, even prospective studies to systematically collect samples would be very challenging. We hope that by publishing the details of this biomarker detection is that the method can be used by diagnostic reference centers, especially in areas where outbreaks of multiple cases per year have been reported.

      (2) There seems to be some noise in the data for uninfected samples (Figures 4B-C, 5B, and 6C), especially for those with serum (2E). While this is often orders of magnitude lower than the positive results, it does raise questions about false positives, especially early in infection when diagnosis would be the most useful. A few additional uninfected human samples may be helpful. 

      We agree; however, we would like to point out the progression of disease in humans and mice are similar. Typically, patients survive between 10-14 days after presumed exposure and mice have similar survival times following instillation of N. fowleri amoebae into a nare of the mouse. Therefore, detection of this biomarker as early as 72 h in mice is seemingly equivalent to the onset of initial symptoms in humans.  

      Reviewer #2 (Public review): 

      Summary: 

      The authors sought to develop a rapid and non-invasive diagnostic method for primary amoebic meningoencephalitis (PAM), a highly fatal disease caused by Naegleria fowleri. Due to the challenges of early diagnosis, they investigated extracellular vesicles (EVs) from N. fowleri, identifying small RNA biomarkers. They developed an RT-qPCR assay to detect these biomarkers in various biofluids. 

      Strengths: 

      (1)  This study has a clear methodological approach, which allows for the reproducibility of the experiments. 

      (2) Early and Non-Invasive Diagnosis - The identification of a small RNA biomarker that can be detected in urine, plasma, and cerebrospinal fluid (CSF) provides a non-invasive diagnostic approach, which is crucial for improving early detection of PAM. 

      (3) High Sensitivity and Rapid Detection - The RT-qPCR assay developed in the study is highly sensitive, detecting the biomarker in 100% of CSF samples from human PAM cases and in mouse urine as early as 24 hours post-infection. Additionally, the test can be completed in ~3 hours, making it feasible for clinical use. 

      (4)  Potential for Disease Monitoring - Since the biomarker is detectable throughout the course of infection, it could be used not only for early diagnosis but also for tracking disease progression and monitoring treatment efficacy. 

      (5)  Strong Experimental Validation - The study demonstrates biomarker detection across multiple sample types (CSF, urine, whole blood, plasma) in both animal models and human cases, providing robust evidence for its clinical relevance. 

      (6) Addresses a Critical Unmet Need - With a >97% case fatality rate, PAM urgently requires improved diagnostics. This study provides one of the first viable liquid biopsy-based diagnostic approaches, potentially transforming how PAM is detected and managed. 

      Thank you for summarizing the strengths of the study.

      Weaknesses: 

      (1) Limited Human Sample Size - While the biomarker was detected in 100% of CSF samples from human PAM cases, the number of human samples analyzed (n=6 for CSF) is relatively small. A larger cohort is needed to validate its diagnostic reliability across diverse populations. 

      As noted in response to Reviewer #1 above, we agree this is a limitation of the study; however, we were fortunate to obtain even 15 µL samples of cerebrospinal fluid, plasma, serum, or whole blood from as many patients as we did. There is an urgent need for more systematic collection and storage of samples for rare diseases like primary amoebic meningoencephalitis so that advancements in diagnostics and biomarker discovery can be conducted. It is our sincere hope that by publishing our detailed methods and experimental results in this manuscript, that additional hospitals and research centers can replicate our studies and help advance this or other techniques for early diagnosis of PAM.

      (2) Lack of Pre-Symptomatic or Early-Stage Human Data - Although the biomarker was detected in mouse urine as early as 24 hours post-infection, there is no data on whether it can be reliably detected before symptoms appear in humans, which is crucial for early diagnosis and treatment initiation. 

      It is difficult to envision a method to obtain these biofluids from infected humans prior to onset of symptoms. More likely the best we can hope for is that physicians include primary amoebic meningoencephalitis in their assessment of patients that present with prodromal symptoms of meningitis.

      (3)  Plasma Detection Challenges - While the biomarker was detected in whole blood, it was not detected in human plasma, which could limit the ease of clinical implementation since plasma-based diagnostics are more common. Further investigation is needed to understand why it is absent in plasma and whether alternative blood-based approaches (e.g., whole blood assays) could be optimized. 

      See response to Reviewer #1 above.

      Reviewer #1 (Recommendations for the authors): 

      (1) What is the evidence that these small RNAs are secreted specifically in EVs? I believe that they are, and ultimately it doesn't impact the conclusions, but I think the evidence here could be either stronger or presented in a more obvious way. 

      Our data demonstrates that smallRNA-1 is present in N. fowleri-derived EVs (Figures 2 and Supplemental Figure 7) and in the intact amoebae (Figure 3B).  Initial sequencing data to identify these smallRNA biomarkers came from PEG-precipitated EVs (Figure S1), by using methods we previously published (22). The PEG-precipitated EVs were extracted specifically for spike in studies. Finally, the smallRNAs in EVs were confirmed after extraction of EVs from 7 N. fowleri strains (Figure 2). We do not have evidence that they are secreted outside of EVs.

      (2) The figure legends would be more useful with some additional information. For example: why are there two points for Nf69 in Fig 2B? In Figure 3A-B, please add more detail as to what the graphs are showing (are they histograms binned by a number of amoebae? This does not seem obvious to me). 

      We agree the Figure legends should be edited for clarity and to add additional information. Both Figure legends have been updated.

      In Figure 2B, each point represents the mean of three technical replicates of EV preps for each N. fowleri strain.

      In Figure 3 the points indicate the Copy#/µL of a well from a 96-well plate. The histograms show the mean of these observations for each condition. 

      (3)  In Figure 2E, the FBS seems like it has near detectable levels of smallRNA-1 compared to Ac and Bm (albeit N. fowleri has 4 orders of magnitude higher levels than the FBS). Because cows are likely exposed to N. fowleri and have documented infections (e.g. doi: 10.1016/j.rvsc.2012.01.002), is it possible this signal is real? 

      Thank you for making this interesting observation. We agree that cows are likely to have significant exposure to N. fowleri, yet documented infections are rare. In this case we do not believe the near detectable levels of smallRNA-1 in FBS was due to an infected donor animal. This noise was likely due to extracting RNA from concentrated FBS rather than FBS diluted in cell culture media. In addition, as shown in Supplemental Figure 4, the qPCR product from EVs extracted from FBS were not the same as that from the N. fowleri-derived EVs. Please note we used a PEG extraction reagent that separates lipid particles, so this is additional evidence the smallRNAs are present in EVs.

      (4)  In Figure 6A, why was the sample size greater for water and unspiked urine? Similarly, why is the number of infected mice so variable in Figure 4B? 

      In Figure 6A we assayed de-identified biofluids provided by Advent Hospital in Orlando, Florida. The plasma and serum samples were pooled from multiple individuals; whereas, individual urine samples (n=8) were provided for this experiment. We have updated the legend for Figure 6A to include these details.

      For Figure 4B we used plasma collected at the end-stage of disease following infections with five different strains of N. fowleri. The sample sizes varied for two reasons. First, Nf69 was the strain used most by our lab and we had plasma from several in vivo experiments. The lower sample sizes for the other strains came from an experiment with 8 mice per group. Some of these strains were less virulent and did not succumb to disease with the number of amoebae inoculated in this experiment. Thus, plasma was only collected from animals that were euthanized due to severe N.

      fowleri infections. In follow up studies (e.g., Figure 5B), plasma was collected every 24 hr for analysis.

      Very minor points: 

      (1)  The number of acronyms (FLA, PAM, EVs, CNS, CSF, LOD) could be reduced to make this paper more reader-friendly. 

      Acronyms that were used infrequently in the manuscript (FLA, CNS, LOD, mNGS, UC) have been edited to spell out the complete names. We kept the acronyms EVs and CSF because they are each used more than twenty times in the manuscript.

      (2)  The decimal point in the Cq values is formatted strangely. 

      The decimal points have been edited to normal format in both the manuscript and supplementary material.

      (3)  Figure 3C is not intuitive. I do not understand the logic for the placement of the different samples (was row A only amoebae, B only Veros, C blank, D a mix, and F more Veros?). 

      Thank you for this comment; we agree the microtiter plate schematic (Fig 3C) was misleading. We have revised Figure 3C to make the point that we tested amoebae alone, Vero cells alone, and we combined supernatants from Vero cells (alone) plus amoebae (alone) to confirm that 1) smallRNA-1 was only detected in amoeba-conditioned media, and 2) that Vero-conditioned media does not affect detection of smallRNA-1.

      Reviewer #2 (Recommendations for the authors): 

      Minor corrections: 

      The abbreviation 'Nf' for Naegleria fowleri is not appropriate in a scientific publication. According to taxonomic conventions, the correct way to abbreviate a scientific name is as follows: 

      The first mention should be written in full: Naegleria fowleri. 

      In subsequent mentions, the genus name should be abbreviated to its initial in uppercase, followed by a period, while the species name remains in lowercase: N. fowleri. 

      The same rule applies to Balamuthia mandrillaris and Acanthamoeba species, which should be abbreviated as B. mandrillaris and Acanthamoeba spp. after their first mention. 

      We agree and each of the scientific names have been updated to the proper format. Please note Nf69 is the accepted nomenclature for this N. fowleri strain, so no changes were made when referring to this specific strain.

      Temperatures should be expressed in international units (°C). Please update the temperatures reported in Fahrenheit (°F) in the 'Materials and Methods' section, specifically in the 'Animal Studies' subsection. 

      These changes were made in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      This paper summarises responses from a survey completed by around 5,000 academics on their manuscript submission behaviours. The authors find several interesting stylised facts, including (but not limited to):

      - Women are less likely to submit their papers to highly influential journals (*e.g.*, Nature, Science and PNAS).

      - Women are more likely to cite the demands of co-authors as a reason why they didn't submit to highly influential journals.

      - Women are also more likely to say that they were advised not to submit to highly influential journals.

      Recommendation

      This paper highlights an important point, namely that the submissions' behaviours of men and women scientists may not be the same (either due to preferences that vary by gender, selection effects that arise earlier in scientists' careers or social factors that affect men and women differently and also influence submission patterns). As a result, simply observing gender differences in acceptance rates---or a lack thereof---should not be automatically interpreted as as evidence of for or against discrimination (broadly defined) in the peer review process. I do, however, make a few suggestions below that the authors may (or may not) wish to address.

      We thank the author for this comment and for the following suggestions, which we take into account in our revision of the manuscript.

      Major comments

      What do you mean by bias?

      In the second paragraph of the introduction, it is claimed that "if no biases were present in the case of peer review, then 'we should expect the rate with which members of less powerful social groups enjoy successful peer review outcomes to be proportionate to their representation in submission rates." There are a couple of issues with this statement.

      - First, the authors are implicitly making a normative assumption that manuscript submission and acceptance rates *should* be equalised across groups. This may very well be the case, but there can also be important reasons why not -- e.g., if men are more likely to submit their less ground-breaking work, then one might reasonably expect that they experience higher rejection rates compared to women, conditional on submission.

      We do assume that normative statement: unless we believe that men’s papers are intrinsically better than women’s papers, the acceptance rate should be the same. But the referee is right: we have no way of controlling for the intrinsic quality of the work of men and women. That said, our manuscript does not show that there is a different acceptance rate for men and women; it shows that women are less likely to submit papers to a subset of journals that are of a lower Journal Impact Factor, controlling for their most cited paper, in an attempt to control for intrinsic quality of the manuscripts.

      - Second, I assume by "bias", the authors are taking a broad definition, i.e., they are not only including factors that specifically relate to gender but also factors that are themselves independent of gender but nevertheless disproportionately are associated with one gender or another (e.g., perhaps women are more likely to write on certain topics and those topics are rated more poorly by (more prevalent) male referees; alternatively, referees may be more likely to accept articles by authors they've met before, most referees are men and men are more likely to have met a given author if he's male instead of female). If that is the case, I would define more clearly what you mean by bias. (And if that isn't the case, then I would encourage the authors to consider a broader definition of "bias"!)

      Yes, the referee is right that we are taking a broad definition of bias. We provide a definition of bias on page 3, line 92. This definition is focused on differential evaluation which leads to differential outcomes. We also hedge our conversation (e.g., page 3, line 104) to acknowledge that observations of disparities may only be an indicator of potential bias, as many other things could explain the disparity. In short, disparities are a necessary but insufficient indicator of bias. We add a line in the introduction to reinforce this. The only other reference to the term bias comes on page 10, line 276. We add a reference to Lee here to contextualize.

      Identifying policy interventions is not a major contribution of this paper

      In my opinion, the survey evidence reported here isn't really strong enough to support definitive policy interventions to address the issue and, indeed, providing policy advice is not a major -- or even minor -- contribution of your paper, so I would not mention policy interventions in the abstract. (Basically, I would hope that someone interested in policy interventions would consult another paper that much more thoughtfully and comprehensively discusses the costs and benefits of various interventions!)

      We thank the referee for this comment. While we agree that our results do not lead to definitive policy interventions, we believe that our findings point to a phenomenon that should be addressed through policy interventions. Given that some interventions are proposed in our conclusion, we feel like stating this in the abstract is coherent.

      Minor comments

      - What is the rationale for conditioning on academic rank and does this have explanatory power on its own---i.e., does it at least superficially potentially explain part of the gender gap in intention to submit?

      The referee is right: academic rank was added to control for career age of researchers, with the assumption that this variable would influence submission behavior. However, the rank information we collected was for the time that the individual respondent took the survey, which could be different from the rank they held concerning their submission behaviors mentioned in the survey. That is why we didn't consider rank as an independent variable of interest. But I do also agree with the reviewer that it could be related to their submission behaviors in some cases. Our initial analysis shows that academic rank is not a significant predictor of whether researchers submitted to SNP, but does contribute significantly to the SNP acceptance rates and desk rejection rates of individuals in Medical Sciences.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Basson et al. study the representation of women in "high-impact" journals through the lens of gendered submission behavior. This work is clear and thorough, and it provides new insights into gender disparities in submissions, such as that women were more likely to avoid submitting to one of these journals based on advice from a colleague/mentor. The results have broad implications for all academic communities and may help toward reducing gender disparities in "high-impact" journal submissions. I enjoyed reading this article, and I have several recommendations regarding the methodology/reporting details that could help to enhance this work.

      We thank the referee for their comments.

      Strengths:

      This is an important area of investigation that is often overlooked in the study of gender bias in publishing. Several strengths of the paper include:

      (1) A comprehensive survey of thousands of academics. It is admirable that the authors retroactively reached out to other researchers and collected an extensive amount of data.

      (2) Overall, the modeling procedures appear thorough, and many different questions are modeled.

      (3) There are interesting new results, as well as a thoughtful discussion. This work will likely spark further investigation into gender bias in submission behavior, particularly regarding the possible gendered effect of mentorship on article submission.

      Thank you for those comments.

      Weaknesses:

      (1) The GitHub page should be further clarified. A detailed description of how to run the analysis and the location of the data would be helpful. For example, although the paper says that "Aggregated and de-identified data by gender, discipline, and rank for analyses are available on GitHub," I was unable to find such data.

      We added the link to the Github page, as well as more details on the how to run the statistical analysis. Unfortunately, our IRB approval does not allow for the sharing of the raw data.

      (2) Why is desk rejection rate defined as "the number of manuscripts that did not go out for peer review divided by the number of manuscripts rejected for each survey respondent"? For example, in your Grossman 2020 reference, it appears that manuscripts are categorized as "reviewed" or "desk-rejected" (Grossman Figure 2). If there are gender differences in the denominator, then this could affect the results.

      We thank the referee for pointing this out. Actually, what the referee is proposing is how we calculated it in the manuscript; the calculation mentioned in the manuscript was a mistake. We corrected the manuscript.

      (3) Have you considered correcting for multiple comparisons? Alternatively, you could consider reporting P-values and effect sizes in the main text. Otherwise, sometimes the conclusions can be misleading. For example, in Figure 3 (and Table S28), the effect is described as significant in Social Sciences (p=0.04) but not in Medical Sciences (p=0.07).

      We highly appreciate the suggestion. We’ve added Odds Ratio values and p-values to the main manuscript.

      (4) More detail about the models could be included. It may be helpful to include this in each table caption so that it is clear what all the terms of the model were. For instance, I was wondering if journal or discipline are included in the models.

      We appreciate the suggestion. We’ve added model details to the figure and table captions in the manuscript and the supplemental materials.

      Reviewer #3 (Public Review):

      Summary:

      This is a strong manuscript by Basson and colleagues which contributes to our understanding of gender disparities in scientific publishing. The authors examine attitudes and behaviors related to manuscript submission in influential journals (specifically, Science, Nature and PNAS). The authors rightly note that much attention has been paid to gender disparities in work that is already published, but this fails to capture the unseen hurdles that occur prior to publication (which include decisions about where to publish, desk rejections, revisions and resubmissions, etc.). They conducted a survey study to address some of these components and their results are interesting:

      They find that women are less likely to submit their manuscript to Science, Nature or PNAS. While both men and women feel their work would be better suited for more specialized journals, women were more likely to think their work was 'less novel or groundbreaking.'

      A smaller proportion of respondents indicated that they were actively discouraged from submitting their manuscripts to these journals. In this instance, women were more likely to receive this advice than men.

      Lastly, the authors also looked at self-reported acceptance and rejection rates and found that there were no gender differences in acceptance or rejection rates.

      These data are helpful in developing strategies to mitigate gender disparities in influential journals.

      We thank the referee for their comments

      Comments:

      The methods the authors used are appropriate for this study. The low response rate is common for this type of recruitment strategy. The authors provide a thoughtful interpretation of their data in the Discussion.

      We thank the referee for their comments

      Reviewer #4 (Public Review):

      This manuscript covers an important topic of gender biases in the authorship of scientific publications. Specifically, it investigates potential mechanisms behind these biases, using a solid approach, based on a survey of researchers.

      Main strengths

      The topic of the MS is very relevant given that across sciences/academia representation of genders is uneven, and identified as concerning. To change this, we need to have evidence on what mechanisms cause this pattern. Given that promotion and merit in academia are still largely based on the number of publications and impact factor, one part of the gap likely originates from differences in publication rates of women compared to men.

      Women are underrepresented compared to men in journals with high impact factor. While previous work has detected this gap, as well as some potential mechanisms, the current MS provides strong evidence, based on a survey of close to 5000 authors, that this gap might be due to lower submission rates of women compared to men, rather than the rejection rates. The data analysis is appropriate to address the main research aims. The results interestingly show that there is no gender bias in rejection rates (desk rejection or overall) in three high-impact journals (Science, Nature, PNAS). However, submission rates are lower for women compared to men, indicating that gender biases might act through this pathway. The survey also showed that women are more likely to rate their work as not groundbreaking, and be advised not to submit to prestigious journals

      With these results, the MS has the potential to inform actions to reduce gender bias in publishing, and actions to include other forms of measuring scientific impact and merit.

      We thank the referee for their comments.

      Main weakness and suggestions for improvement

      (1) The main message/further actions: I feel that the MS fails to sufficiently emphasise the need for a different evaluation system for researchers (and their research). While we might act to support women to submit more to high-impact journals, we could also (and several initiatives do this) consider a broader spectrum of merits (e.g. see https://coara.eu/ ). Thus, I suggest more space to discuss this route in the Discussion. Also, I would suggest changing the terms that imply that prestigious journals have a better quality of research or the highest scientific impact (line 40: journals of the highest scientific impact) with terms that actually state what we definitely know (i.e. that they have the highest impact factor). And think this could broaden the impact of the MS

      We agree with the referee. We changed the wording on impact, and added a few lines were added on this in the discussion.

      (2) Methods: while methods are all sound, in places it is difficult to understand what has been done or measured. For example, only quite late (as far as I can find, it's in the supplement) we learn the type of authorship considered in the MS is the corresponding authorship. This information should be clear from the very start (including the Abstract).

      We performed the suggested edits.

      Second, I am unclear about the question on the perceived quality of research work. Was this quality defined for researchers, as quality can mean different things (e.g. how robust their set-up was, how important their research question was)? If researchers have different definitions of what quality means, this can cause additional heterogeneity in responses. Given that the survey cannot be repeated now, maybe this can be discussed as a limitation.

      We agree that this can mean something different for researchers—probably varies by discipline, but also by gender. But that was precisely the point: whether men/women considered their “best work” to be published in higher impact venue. While there may be heterogeneity in those perceptions, the fact that 1) men and women rate their research at the same level and 2) we control for disciplinary differences should mitigate some of that.

      I was surprised to see that discipline was considered as a moderator for some of the analyses but not for the main analysis on the acceptance and rejection rates.

      We appreciate the attention to detail. In our analysis of acceptance and rejection rates, we conducted separate regression analyses for each discipline to capture any field-specific patterns that might otherwise be obscured.

      We added more details on this to clarify.

      I was also suppressed not to see publication charges as one of the reasons asked for not submitting to selected journals. Low and middle-income countries often have more women in science but are also less likely to support high publication charges.

      That is a good point. However, both Science and Nature have subscription options, which do not require any APCs.

      Finally, academic rank was asked of respondents but was not taken as a moderator.

      Academic rank is included in the regression as a control variable (Figure 1).

      Reviewer #2 (Recommendations For The Authors):

      In addition to the points in the "Weaknesses" section of the my Public Review above, I have several suggestions to improve this work.

      (1) Can you please indicate what the error bars mean in each plot? I am assuming that they are 95% confidence intervals.

      We appreciate the attention to detail. Yes, they are 95% confidence intervals. We’ve clarified this in the captions of the corresponding figures. 

      (2) Can you provide a more detailed explanation for why the 7 journals were separated? I see that on page 3 of the supporting information you write that "Due to limited responses, analysis per journal was not always viable. The results pertaining to the journals were aggregated, with new categories based on the shared similarities in disciplinary foci of the journals and their prestige." Specifically, why did you divide the data into (somewhat arbitrary) categories as opposed to using all the data and including a journal term in your model?

      The survey covered 7 journals:

      • Science, Nature, and PNAS (S.N.P.)

      • Nature Communications and Science Advances (NC.SA.)

      • NEJM and Cell (NEJM.C.)

      We believe that the first three are a class of their own: they cover all fields (while NEJM and Cell are limited to (bio)medical sciences), and have a much higher symbolic capital than both Nature Comms and Science Advances (which are receiving cascading papers from Nature and Science, respectively). We believe that factors leading to submission to S.N.P. are much different than those leading to submission to the other groups of journals, which is why we separated the analysis in that manner.

      (3) You included random effects for linear regression but not for logistic regression. Please justify this choice or include additional logistic regression models with random effects.

      We used mixed-effect models for linear regressions (where number of submissions, acceptance rate, or rejection rate is the dependent variable). As mentioned in the previous comment, we tested using rank as the control variable and found it had a potential impact on the variables we analyzed using linear regressions in some disciplines. Therefore, we introduced it as a random effect for all the linear regression models.

      Reviewer #3 (Recommendations For The Authors):

      The limitations of this work are currently described in the Supplement. It may be helpful to bring several of these items into the Discussion so that they can be addressed more prominently.

      Added content

      Reviewer #4 (Recommendations For The Authors):

      (1) Line 40: add 'as leading authors of papers published in' before ' 'journals'

      Done

      (2) Explain what the direction in the ' relationship between' line 62 is

      Added

      (3) Lines 101-102 - this is a bit unclear. Please, provide some more info, also including what did these studies find.

      Added

      (4) Is 'sociodemographic' the best term in line 120

      Yes, we believe so.

      (5) Results would benefit from a short intro with the info on the number of respondents, also by gender.

      Those are present at the end of the intro (and in the methods, at the end). We nonetheless added gender.

      (6) Line 134 add how many woman and man did submit to Science, Nature, and PNAS

      Added. In all disciplines combined, 552 women and 1,583 men ever submitted to these three elite journals. More details can be found in SI Table 9

      (7) Add 'Self-' before reported, line 141

      Added

      (8) Add sample sizes to Figs 1 and 2

      Those are in the appendix

      (9) Line 168 - unclear if this is ever or as their first choice

      We do not discriminate – it is whether the considered it at all.

      (10) Add sample size in line 177

      Added. 480 women and 1404 men across all disciplines reported desk rejections by S.N.P. journals.

      (11) I would like to see some discussion on the fact that the highest citation paper will also be a paper that the authors have submitted earlier in their careers given that citations will pile up over time.

      Those are actually quite evenly distributed. We modified the supplementary materials.

      (12) Data availability - be clear that supporting info contains only summary data. Also, while the Data availability statement refers to de-identified data on Github, the Github page only contains the code, and the note that 'The STAT code used for our analyses is shared.

      We are unable to share the survey response details publicly per IRB protocols.' Why were de-identified data shared? This is extremely important to allow for the reproducibility of MS results. I would also suggest sharing data in a trusted repository (e.g. Dryad, ZENODO...) rather than on Github, as per current recommendations on the best practices for data sharing.

      Thank you for your careful reading and for highlighting the importance of clear data availability. We will revise our Data Availability Statement to explicitly state that the supporting information contains only summary data and that the complete analysis code is available on GitHub.

      We understand the importance of sharing de-identified data for reproducibility. However, our IRB strictly prohibits the sharing of any individual-level data, including de-identified files, to protect participant confidentiality. Consequently, the summary data included in the supporting information, together with the provided code, is intended to facilitate the verification of our core findings. Our previous statement regarding “de-identified” data sharing was inaccurate and thus has been removed. We apologize for the confusion.

      In light of your suggestion, we are also exploring depositing the summary data and code in a trusted repository (e.g., Dryad or Zenodo) to further align with current best practices for data sharing.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Functional lateralization between the right and left hemispheres is reported widely in animal taxa, including humans. However, it remains largely speculative as to whether the lateralized brains have a cognitive gain or a sort of fitness advantage. In the present study, by making use of the advantages of domestic chicks as a model, the authors are successful in revealing that the lateralized brain is advantageous in the number sense, in which numerosity is associated with spatial arrangements of items. Behavioral evidence is strong enough to support their arguments. Brain lateralization was manipulated by light exposure during the terminal phase of incubation, and the left-to-right numerical representation appeared when the distance between items gave a reliable spatial cue. The light-exposure induced lateralization, though quite unique in avian species, together with the lack of intense inter-hemispheric direct connections (such as the corpus callosum in the mammalian cerebrum), was critical for the successful analysis in this study. Specification of the responsible neural substrates in the presumed right hemisphere is expected in future research. Comparable experimental manipulation in the mammalian brain must be developed to address this general question (functional significance of brain laterality) is also expected.

      We sincerely appreciate the Reviewer's insightful feedback and his/her recognition of the key contributions of our study.

      Reviewer #2 (Public review):

      Summary:

      This is the first study to show how a L-R bias in the relationship between numerical magnitude and space depends on brain lateralisation, and moreover, how is modulated by in ovo conditions.

      Strengths:

      Novel methodology for investigating the innateness and neural basis of an L-R bias in the relationship between number and space.

      We would like to thank the Reviewer for their valuable feedback and for highlighting the key contributions of our study.

      Weaknesses:

      I would query the way the experiment was contextualised. They ask whether culture or innate pre-wiring determines the 'left-to-right orientation of the MNL [mental number line]'.

      We thank the Reviewer for raising this point, which has allowed us to provide a more detailed explanation of this aspect. Rather than framing the left-to-right orientation of the mental number line (MNL) as exclusively determined by either cultural influences or innate pre-wiring, our study highlights the role of environmental stimulation. Specifically, prenatal light exposure can shape hemispheric specialization, which in turn contributes to spatial biases in numerical processing. Please see lines 115-118.

      The term, 'Mental Number Line' is an inference from experimental tasks. One of the first experimental demonstrations of a preference or bias for small numbers in the left of space and larger numbers in the right of space, was more carefully described as the spatial-numerical association of response codes - the SNARC effect (Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General, 122, 371-396).

      We have refined our description of the MNL and SNARC effect to ensure conceptual accuracy in the revised manuscript; please see lines 53-59.

      This has meant that the background to the study is confusing. First, the authors note, correctly, that many other creatures, including insects, can show this bias, though in none of these has neural lateralisation been shown to be a cause. Second, their clever experiment shows that an experimental manipulation creates the bias. If it were innate and common to other species, the experimental manipulation shouldn't matter. There would always be an L-R bias. Third, they seem to be asserting that humans have a left-to-right (L-R) MNL. This is highly contentious, and in some studies, reading direction affects it, as the original study by Dehaene et al showed; and in others, task affects direction (e.g. Bachtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36, 731-735, not cited). Moreover, a very careful study of adult humans, found no L-R bias (Karolis, V., Iuculano, T., & Butterworth, B. (2011), not cited, Mapping numerical magnitudes along the right lines: Differentiating between scale and bias. Journal of Experimental Psychology: General, 140(4), 693-706). Indeed, Rugani et al claim, incorrectly, that the L-R bias was first reported by Galton in 1880. There are two errors here: first, Galton was reporting what he called 'visualised numerals', which are typically referred to now as 'number forms' - spontaneous and habitual conscious visual representations - not an inference from a number line task. Second, Galton reported right-to-left, circular, and vertical visualised numerals, and no simple left-to-right examples (Galton, F. (1880). Visualised numerals. Nature, 21, 252-256.). So in fact did Bertillon, J. (1880). De la vision des nombres. La Nature, 378, 196-198, and more recently Seron, X., Pesenti, M., Noël, M.-P., Deloche, G., & Cornet, J.-A. (1992). Images of numbers, or "When 98 is upper left and 6 sky blue". Cognition, 44, 159-196, and Tang, J., Ward, J., & Butterworth, B. (2008). Number forms in the brain. Journal of Cognitive Neuroscience, 20(9), 1547-1556.

      We sincerely appreciate the opportunity to discuss numerical spatialization in greater detail. We have clarified that an innate predisposition to spatialize numerosity does not necessarily exclude the influence of environmental stimulation and experience. We have proposed an integrative perspective, incorporating both cultural and innate factors, suggesting that numerical spatialization originates from neural foundations while remaining flexible and modifiable by experience and contextual influences. Please see lines 69–75.

      We have incorporated the Reviewer’s suggestions and cited all the recommended papers; please see lines 47–75.

      If the authors are committed to chicks' MN Line they should test a series of numbers showing that the bias to the left is greater for 2 and 3 than for 4, etc.

      What does all this mean? I think that the paper should be shorn of its misleading contextualisation, including the term 'Mental Number Line'. The authors also speculate, usefully, on why chicks and other species might have a L-R bias. I don't think the speculations are convincing, but at least if there is an evolutionary basis for the bias, it should at least be discussed.

      In the revised version of the manuscript, we have resorted to adopt the Spatial Numerical Association (SNA). We thank the Reviewer for this valuable comment.

      We appreciated the Reviewer’s suggestion regarding the evolutionary basis of lateralization and have included considerations of its relevance in chicks and other species; please see lines 143-151 and 381-386.

      This paper is very interesting with its focus on why the L-R bias exists, and where and why it does not.

      We wish to thank the Reviewer again for his/her work.

      Reviewer #1(Public review)

      (1) Introduction needs to be edited to make it much more concise and shorter. Hypotheses (from line 67 to 81) and predictions (from line 107 to 124) must be thoroughly rephrased, because (a) general readers are not familiar with the hypotheses (emotional valence and BAFT), (b) the hypotheses may or may not be mutually exclusive, and therefore (c) the logical linkage between the hypotheses and the predicted results are not necessarily clear. Most general readers may be embarrassed by the apparently complicated logical constructs of this study. Instead, it is recommended that focal spotlight should be given to the issue of functional contributions of brain lateralization to the cognitive development of number sense.

      We thank the Reviewer for these comments, which allowed us to improve the clarity of our hypotheses and predictions. We thoroughly rephrased them to ensure they are accessible to general readers and specified that the models may or may not be mutually exclusive. Additionally, we highlighted the functional contributions of brain lateralization to the cognitive development of number sense, addressing the suggested focal point. While we have shortened the introduction, we opted to retain essential background information to ensure readers are well-informed about the relevant scientific literature. Please review the entire introduction, particularly lines 84–118 and 218.

      (2) In relation to the above (a), abbreviations need to be reexamined. MNL (mental number line) appears early on lines 27 and 49, whereas the possibly related conceptual term SNA appeared first on line 213, without specification to "spatial numerical association".

      We thank the Reviewer for bringing this to our attention. We have addressed the suggestions, and the term SNA has been used specifically to refer to numerical spatialization in non-human animals. Please see lines 27-30.

      (3) By the way, what difference is there between MNL and SNA? Please specify the difference if it is important. If not important, is it possible that one of these two is consistently used in this report, at least in the Introduction?

      We clarified the distinction between MNL and SNA and have consistently used SNA in this report; please see lines 47-75.

      (4) In relation to the above (a and b), clarification of the hypotheses and their abbreviations in the form of a table or a graphical representation will strongly reinforce the general readers' understanding. It is also possible that some of these hypotheses are discussed later in the Discussion, rather than in Introduction.

      We appreciated this suggestion and have now clarified the hypotheses, also providing a table/graphical representation, aiming to enhance accessibility for general readers; please see lines 110-118, and 218.

      (5) Figures 1 and 2 are transparent and easily understandable; however, the statistical details in the Results may bother the readers as the main points are doubly represented in Figures 1, 2, and Table 1. These (statistics and Table 1) may go to the supplementary file, if the editor agrees.

      We would prefer to keep Table 1 and the statistical details as part of the main article to provide readers with a comprehensive overview of the experimental results. However, if the editors also suggest to move them to the supplementary file, we are open to making this adjustment.

      (6) In Figure 1D and E, and text lines 139-140. Figure 1D shows that the chick is looking monocularly by the right eye, but the text (line 139) says "left eye in use. Is it correct?

      We thank the reviewer for pointing out this incongruity. We have corrected the text to align with Figure 1D and E; please see lines 180-181.

      (7) Methods. The behavioral experiment was initiated on Wednesday (8 a.m.; line 479), but at what age? At what post-hatch day was the experiment terminated? A simple graphical illustration of the schedule will be quite helpful.

      We have added the requested details, specifying that experiments began on the third post-hatch day and ended on the fifth day; please see lines 533-539.

      Additionally, we have included a graphical illustration of the schedule to enhance clarity; please see line 666.  

      (8) Methods. How many chicks were excluded from the study in the course of Pre-training (line 525) and Training (line 535-536)? Was the exclusion rate high, or just negligible?

      We appreciate the reviewer's suggestion. We have now included the number of subjects excluded during the training phase; please see lines 593-597.

      We wish to thank the Reviewer again for his/her work.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      This work integrates two timepoints from the Adolescent Brain Cognitive Development (ABCD) Study to understand how neuroimaging, genetic, and environmental data contribute to the predictive power of mental health variables in predicting cognition in a large early adolescent sample. Their multimodal and multivariate prediction framework involves a novel opportunistic stacking model to handle complex types of information to predict variables that are important in understanding mental health-cognitive performance associations. 

      Strengths: 

      The authors are commended for incorporating and directly comparing the contribution of multiple imaging modalities (task fMRI, resting state fMRI, diffusion MRI, structural MRI), neurodevelopmental markers, environmental factors, and polygenic risk scores in a novel multivariate framework (via opportunistic stacking), as well as interpreting mental health-cognition associations with latent factors derived from partial least squares. The authors also use a large well-characterized and diverse cohort of adolescents from the ABCD Study. The paper is also strengthened by commonality analyses to understand the shared and unique contribution of different categories of factors (e.g., neuroimaging vs mental health vs polygenic scores vs sociodemographic and adverse developmental events) in explaining variance in cognitive performance 

      Weaknesses: 

      The paper is framed with an over-reliance on the RDoC framework in the introduction, despite deviations from the RDoC framework in the methods. The field is also learning more about RDoC's limitations when mapping cognitive performance to biology. The authors also focus on a single general factor of cognition as the core outcome of interest as opposed to different domains of cognition. The authors could consider predicting mental health rather than cognition. Using mental health as a predictor could be limited by the included 9-11 year age range at baseline (where many mental health concerns are likely to be low or not well captured), as well as the nature of how the data was collected, i.e., either by self-report or from parent/caregiver report. 

      Thank you so much for your encouragement.

      We appreciate your comments on the strengths of our manuscript.

      Regarding the weaknesses, the reliance on the RDoC framework is by design. Even with its limitations, following RDoC allows us to investigate mental health holistically. In our case, RDoC enabled us to focus on a) a functional domain (i.e., cognitive ability), b) the biological units of analysis of this functional domain (i.e., neuroimaging and polygenic scores), c) potential contribution of environments, and d) the continuous individual deviation in this domain (as opposed to distinct categories). We are unaware of any framework with all these four features.

      Focusing on modelling biological units of analysis of a functional domain, as opposed to mental health per se, has some empirical support from the literature. For instance, in Marek and colleagues’ (2022) study, as mentioned by a previous reviewer, fMRI is shown to have a more robust prediction for cognitive ability than mental health. Accordingly, our reasons for predicting cognitive ability instead of mental health in this study are motivated theoretically (i.e., through RDoC) and empirically (i.e., through fMRI findings). We have clarified this reason in the introduction of the manuscript.

      We are aware of the debates surrounding the actual structure of functional domains where the originally proposed RDoC’s specific constructs might not fit the data as well as the data-driven approach (Beam et al., 2021; Quah et al., 2025). However, we consider this debate as an attempt to improve the characterisation of functional domains of RDoC, not an effort to invalidate its holistic, neurobiological and basicfunctioning approach. Our use of a latent-variable modelling approach through factor analyses moves towards a data-driven direction. We made the changes to the second-to-last paragraph in the introduction to make this point clear:

      “In this study, inspired by RDoC, we a) focused on cognitive abilities as a functional domain, b) created predictive models to capture the continuous individual variation (as opposed to distinct categories) in cognitive abilities, c) computed two neurobiological units of analysis of cognitive abilities: multimodal neuroimaging and PGS, and d) investigated the potential contributions of environmental factors. To operationalise cognitive abilities, we estimated a latent variable representing behavioural performance across various cognitive tasks, commonly referred to as general cognitive ability or the gfactor (Deary, 2012). The g-factor was computed from various cognitive tasks pertinent to RDoC constructs, including attention, working memory, declarative memory, language, and cognitive control. However, using the g-factor to operationalise cognitive abilities caused this study to diverge from the original conceptualisation of RDoC, which emphasises studying separate constructs within cognitive abilities (Morris et al., 2022; Morris & Cuthbert, 2012). Recent studies suggest an improvement to the structure of functional domains by including a general factor, such as the g-factor, in the model, rather than treating each construct separately (Beam et al., 2021; Quah et al., 2025). The g-factor in children is also longitudinally stable and can forecast future health outcomes (Calvin et al., 2017; Deary et al., 2013). Notably, our previous research found that neuroimaging predicts the g-factor more accurately than predicting performance from separate individual cognitive tasks (Pat et al., 2023). Accordingly, we decided to conduct predictive models on the g-factor while keeping the RDoC’s holistic, neurobiological, and basic-functioning characteristics.”

      Reviewer #2 (Public review):

      Summary: 

      This paper by Wang et al. uses rich brain, behaviour, and genetics data from the ABCD cohort to ask how well cognitive abilities can be predicted from mental-health-related measures, and how brain and genetics influence that prediction. They obtain an out-ofsample correlation of 0.4, with neuroimaging (in particular task fMRI) proving the key mediator. Polygenic scores contributed less. 

      Strengths: 

      This paper is characterized by the intelligent use of a superb sample (ABCD) alongside strong statistical learning methods and a clear set of questions. The outcome - the moderate level of prediction between the brain, cognition, genetics, and mental health - is interesting. Particularly important is the dissection of which features best mediate that prediction and how developmental and lifestyle factors play a role. 

      Thank you so much for the encouragement. 

      Weaknesses: 

      There are relatively few weaknesses to this paper. It has already undergone review at a different journal, and the authors clearly took the original set of comments into account in revising their paper. Overall, while the ABCD sample is superb for the questions asked, it would have been highly informative to extend the analyses to datasets containing more participants with neurological/psychiatric diagnoses (e.g. HBN, POND) or extend it into adolescent/early adult onset psychopathology cohorts. But it is fair enough that the authors want to leave that for future work. 

      Thank you very much for providing this valuable comment and for your flexibility.

      For the current manuscript, we have drawn inspiration from the RDoC framework, which emphasises the variation from normal to abnormal in normative samples (Morris et al., 2022). The ABCD samples align well with this framework.

      We hope to extend this framework to include participants with neurological and psychiatric diagnoses in the future. We have begun applying neurobiological units of analysis for cognitive abilities, assessed through multimodal neuroimaging and polygenic scores (PGS), to other datasets containing more participants with neurological and psychiatric diagnoses. However, this is beyond the scope of the current manuscript. We have listed this as one of the limitations in the discussion section:

      “Similarly, our ABCD samples were young and community-based, likely limiting the severity of their psychopathological issues (Kessler et al., 2007). Future work needs to test if the results found here are generalisable to adults and participants with stronger severity.”

      In terms of more practical concerns, much of the paper relies on comparing r or R2 measures between different tests. These are always presented as point estimates without uncertainty. There would be some value, I think, in incorporating uncertainty from repeated sampling to better understand the improvements/differences between the reported correlations. 

      This is a good suggestion. We have now included bootstrapped 95% confidence intervals in all of our scatter plots, showing the uncertainty of predictive performance.

      The focus on mental health in a largely normative sample leads to the predictions being largely based on the normal range. It would be interesting to subsample the data and ask how well the extremes are predicted. 

      We appreciate this comment. Similar to our response to Reviewer 2’s Weakness #1, our approach has drawn inspiration from the RDoC framework, which emphasises the variation from normal to abnormal in normative samples (Morris et al., 2022). Subsampling the data would make us deviate from our original motivation. 

      Moreover, we used 17 mental healh variables in our predictive models: 8 CBCL subscales, 4 BIS/BAS subscales and 5 UPSS subscales. It is difficult to subsample them. Perhaps a better approach is to test the applicability of our neurobiological units of analysis for cognitive abilities (multimodal neuroimaging and PGS) in other datasets that include more extreme samples. We are working on this line of studies at the moment, and hope to show that in our future work. 

      Reviewer 2’s Weakness #4

      A minor query - why are only cortical features shown in Figure 3? 

      We presented both cortical and subcortical features in Figure 3. The cortical features are shown on the surface space, while the subcortical features are displayed on the coronal plane. Below is an example of these cortical and subcortical features from the ENBack contrast. The subcortical features are presented in the far-right coronal image.

      We separated the presentation of cortical and subcortical features because the ABCD uses the CIFTI format (https://www.humanconnectome.org/software/workbenchcommand/-cifti-help). CIFTI-format images combine cortical surface (in vertices) with subcortical volume (in voxels). For task fMRI, the ABCD parcellated cortical vertices using Freesurfer’s Destrieux atlas and subcortical voxels using Freesurfer’s automatically segmented brain volume (ASEG).

      Due to the size of the images in Figure 3, it may have been difficult for Reviewer 2 to see the subcortical features clearly. We have now added zoomed-in versions of this figure as Supplementary Figures 4–13.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the autors):

      (1) In the abstract, could the authors mention which imaging modalities contribute most to the prediction of cognitive abilities (e.g., working memory-related task fMRI)? 

      Thank you for the suggestion. Following this advice, we now mention which imaging modalities led to the highest predictive performance. Please see the abstract below.

      “Cognitive abilities are often linked to mental health across various disorders, a pattern observed even in childhood. However, the extent to which this relationship is represented by different neurobiological units of analysis, such as multimodal neuroimaging and polygenic scores (PGS), remains unclear. 

      Using large-scale data from the Adolescent Brain Cognitive Development (ABCD) Study, we first quantified the relationship between cognitive abilities and mental health by applying multivariate models to predict cognitive abilities from mental health in children aged 9-10, finding an out-of-sample r\=.36 . We then applied similar multivariate models to predict cognitive abilities from multimodal neuroimaging, polygenic scores (PGS) and environmental factors. Multimodal neuroimaging was based on 45 types of brain MRI (e.g., task fMRI contrasts, resting-state fMRI, structural MRI, and diffusion tensor imaging). Among these MRI types, the fMRI contrast, 2-Back vs. 0-Back, from the ENBack task provided the highest predictive performance (r\=.4). Combining information across all 45 types of brain MRI led to the predictive performance of r\=.54. The PGS, based on previous genome-wide association studies on cognitive abilities, achieved a predictive performance of r\=.25. Environmental factors, including socio-demographics (e.g., parent’s income and education), lifestyles (e.g., extracurricular activities, sleep) and developmental adverse events (e.g., parental use of alcohol/tobacco, pregnancy complications), led to a predictive performance of r\=.49. 

      In a series of separate commonality analyses, we found that the relationship between cognitive abilities and mental health was primarily represented by multimodal neuroimaging (66%) and, to a lesser extent, by PGS (21%). Additionally, environmental factors accounted for 63% of the variance in the relationship between cognitive abilities and mental health. The multimodal neuroimaging and PGS then explained 58% and 21% of the variance due to environmental factors, respectively. Notably, these patterns remained stable over two years. 

      Our findings underscore the significance of neurobiological units of analysis for cognitive abilities, as measured by multimodal neuroimaging and PGS, in understanding both a) the relationship between cognitive abilities and mental health and b) the variance in this relationship shared with environmental factors.”

      (2) Could the authors clarify what they mean by "completing the transdiagnostic aetiology of mental health" in the introduction? (Second paragraph). 

      Thank you. 

      We intended to convey that understanding the transdiagnostic aetiology of mental health would be enhanced by knowing how neurobiological units of cognitive abilities, from the brain to genes, capture variations due to environmental factors. We realise this sentence might be confusing. Removing it does not alter the intended meaning of the paragraph, as we clarified this point later. The paragraph now reads:

      “According to the National Institute of Mental Health’s Research Domain Criteria (RDoC) framework (Insel et al., 2010), cognitive abilities should be investigated not only behaviourally but also neurobiologically, from the brain to genes. It remains unclear to what extent the relationship between cognitive abilities and mental health is represented in part by different neurobiological units of analysis -- such as neural and genetic levels measured by multimodal neuroimaging and polygenic scores (PGS). To fully comprehend the role of neurobiology in the relationship between cognitive abilities and mental health, we must also consider how these neurobiological units capture variations due to environmental factors, such as sociodemographics, lifestyles, and childhood developmental adverse events (Morris et al., 2022). Our study investigated the extent to which a) environmental factors explain the relationship between cognitive abilities and mental health, and b) cognitive abilities at the neural and genetic levels capture these associations due to environmental factors. Specifically, we conducted these investigations in a large normative group of children from the ABCD study (Casey et al., 2018). We chose to examine children because, while their emotional and behavioural problems might not meet full diagnostic criteria (Kessler et al., 2007), issues at a young age often forecast adult psychopathology (Reef et al., 2010; Roza et al., 2003). Moreover, the associations among different emotional and behavioural problems in children reflect transdiagnostic dimensions of psychopathology (Michelini et al., 2019; Pat et al., 2022), making children an appropriate population to study the transdiagnostic aetiology of mental health, especially within a framework that emphasises normative variation from normal to abnormal, such as the RDoC (Morris et al., 2022).“

      (3) It is unclear to me what the authors mean by this statement in the introduction: "Note that using the word 'proxy measure' does not necessarily mean that the predictive model for a particular measure has a high predictive performance - some proxy measures have better predictive performance than others". 

      We added this sentence to address a previous reviewer’s comment: “The authors use the phrasing throughout 'proxy measures of cognitive abilities' when they discuss PRS, neuroimaging, sociodemographics/lifestyle, and developmental factors. Indeed, the authors are able to explain a large proportion of variance with different combinations of these measures, but I think it may be a leap to call all of these proxy measures of cognition. I would suggest keeping the language more objective and stating these measures are associated with cognition.” 

      Because of this comment, we assumed that the reviewers wanted us to avoid the misinterpretation that a proxy measure implies high predictive performance. This term is used in machine learning literature (for instance, Dadi et al., 2021). We added the aforementioned sentence to ensure readers that using the term 'proxy measure' does not necessarily mean that the predictive model for a particular measure has high predictive performance. However, it seems that our intention led to an even more confusing message. Therefore, we decided to delete that sentence but keep an earlier sentence that explains the meaning of a proxy measure (see below).

      “With opportunistic stacking, we created a ‘proxy’ measure of cognitive abilities (i.e., predicted value from the model) at the neural unit of analysis using multimodal neuroimaging.”

      (4) Overall, despite comments from reviewers at another journal, I think the authors still refer to RDoC more than needed in the intro given the restructuring of the manuscript. For instance, at the end of page 4 and top of page 5, it becomes a bit confusing when the authors mention how they deviated from the RDoC framework, but their choice of cognitive domains is still motivated by RDoC. I think the chosen cognitive constructs are consistent with what is in ABCD and what other studies have incorporated into the g factor and do not require the authors to further justify their choice through RDoC. Also, there is emerging work showing that RDoC is limited in its ability to parse apart meaningful neuroimaging-based patterns; see for instance, Quah et al., Nature 2025 (https://doi.org/10.1038/s41467-025-55831-z). 

      Thank you very much for your comment. We have addressed it in our Response to Reviewer 1’s summary, strengths, and weaknesses above. We have rewritten the paragraph to clarify the relevance of our work to the RDoC framework and to recent studies aiming to improve RDoC constructs (including that from Quah and colleagues).

      (5) I am still on the fence about the use of 'proxy measures of cognitive abilities' given that it is defined as the predictive performance of mental health measures in predicting cognition - what about just calling these mental health predictors? Also, it would be easier to follow this train of thought throughout the manuscript. But I leave it to the authors if they decide to keep their current language of 'proxy measure of cognition'. 

      Thank you so much for your flexibility. As we explained previously, this ‘proxy measures’ term is used in machine learning literature (for instance, Dadi et al., 2021). We thought about other terms, such as “score”, which is used in genetics, i.e., polygenic scores (Choi et al., 2020). and has recently been used in neuroimaging, i.e., neuroscore (Rodrigue et al., 2024). However, using a ‘score’ is a bit awkward for mental health and socio-demographics, lifestyle and developmental adverse events. Accordingly, we decided to keep the term ‘proxy measures’.

      (6) It is unclear which cognitive abilities are being predicted in Figure 1, given the various domains that authors describe in their intro. Is it the g-factor from CFA? This should be clarified in all figure captions. 

      Yes, cognitive abilities are operationalised using a second-order latent variable, the g-factor from a CFA. We now added the following sentence to Figure 1, 2, 4 to make this point clearer. Thank you for the suggestion:

      “Cognitive abilities are based on the second-order latent variable, the g-factor, based on a confirmatory factor analysis of six cognitive tasks.”

      (7) I think it may also be worthwhile to showcase the explanatory power cognitive abilities have in predicting mental health or at least comment on this in the discussion. Certainly, there may be a bidirectional relationship here. The prediction direction from cognition to mental health may be an altogether different objective than what the paper currently presents, but many researchers working in psychiatry may take the stance (with support from the literature) that cognitive performance may serve as premorbid markers for later mental health concerns, particularly given the age range that the authors are working with in ABCD. 

      Thank you for this comment. 

      It is important to note that we do not make a directional claim in these cross-sectional analyses. The term "prediction" is used in a machine learning sense, implying only that we made an out-of-sample prediction (Yarkoni & Westfall, 2017). Specifically, we built predictive models on some samples (i.e., training participants) and applied our models to test participants who were not part of the model-building process. Accordingly, our predictive models cannot determine whether mental health “causes” cognitive abilities or vice versa, regardless of whether we treat mental health or cognitive abilities as feature/explanatory/independent variables or as target/response/outcome variables in the models. To demonstrate directionality, we would need to conduct a longitudinal analysis with many more repeated samples and use appropriate techniques, such as a cross-lagged panel model. It is beyond the scope of this manuscript and will need future releases of the ABCD data.

      We decided to use cognitive abilities as a target variable here, rather than a feature variable, mainly for theoretical reasons. This work was inspired by the RDoC framework, which emphasises functional domains. Cognitive abilities is the functional domain in the current study. We created predictive models to predict cognitive abilities based on a) mental health, b) multimodal neuroimaging, c) polygenic scores, and d) environmental factors. We could not treat cognitive abilities as a functional domain if we used them as a feature variable. For instance, if we predicted mental health (instead of cognitive abilities) from multimodal neuroimaging and polygenic scores, we would no longer capture the neurobiological units of analysis for cognitive abilities.

      We now made it clearer in the discussion that our use of predictive models cannot provide the directional of the effects

      “Our predictive modelling revealed a medium-sized predictive relationship between cognitive abilities and mental health. This finding aligns with recent meta-analyses of case-control studies that link cognitive abilities and mental disorders across various psychiatric conditions (Abramovitch et al., 2021; East-Richard et al., 2020). Unlike previous studies, we estimated the predictive, out-of-sample relationship between cognitive abilities and mental disorders in a large normative sample of children. Although our predictive models, like other cross-sectional models, cannot determine the directionality of the effects, the strength of the relationship between cognitive abilities and mental health estimated here should be more robust than when calculated using the same sample as the model itself, known as in-sample prediction/association (Marek et al., 2022; Yarkoni & Westfall, 2017). Examining the PLS loadings of our predictive models revealed that the relationship was driven by various aspects of mental health, including thought and externalising symptoms, as well as motivation. This suggests that there are multiple pathways—encompassing a broad range of emotional and behavioural problems and temperaments—through which cognitive abilities and mental health are linked.”

      (8) There is a lot of information packed into Figure 3 in the brain maps; I understand the authors wanted to fit this onto one page, and perhaps a higher resolution figure would resolve this, but the brain maps are very hard to read and/or compare, particularly the coronal sections. 

      Thank you for this suggestion. We agree with Reviewer 1 that we need to have a better visualisation of the feature-importance brain maps. To ensure that readers can clearly see the feature importance, we added a Zoom-in version of the feature-importance brain maps as Supplementary Figures 4 – 13.

      (9) It would be helpful for authors to cluster features in the resting state functional connectivity correlation matrices, and perhaps use shorter names/acronyms for the labels. 

      Thank you for this suggestion. 

      We have now added a zoomed-in version of the feature importance for rs-fmri as Supplementary Figure 7 (for baseline) and 12 (for follow-up).

      (10) Figures 4a) and 4b): please elaborate on "developmental adverse" in the title. I am assuming this is referring to childhood adverse events, or "developmental adversities". 

      Thank you so much for pointing this out. We meant ‘developmental adverse events’. We have made changes to this figure in the current manuscript.

      (11) For the "follow-up" analyses, I would recommend the authors present this using only the features that are indeed available at follow-up, even if the list of features is lower, otherwise it becomes a bit confusing with the mix of baseline and follow-up features. Or perhaps the authors could make this more clear in the figures by perhaps having a different color for baseline vs follow-up features along the y-axis labels. 

      Thank you for this advice. We have now added an indicator in the plot to show whether the features were collected in the baseline or follow-up. We also added colours to indicate which type of environmental factors they were. It is now clear that the majority of the features that were collected at baseline, but were used for the followup predictive model, were developmental adverse events.

      (12) Minor: Makowski et al 2023 reference can be updated to Makowski et al 2024, published in Cerebral Cortex. 

      Thank you for pointing this out. We have updated the citation accordingly. 

      References

      Abramovitch, A., Short, T., & Schweiger, A. (2021). The C Factor: Cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clinical Psychology Review, 86, 102007. https://doi.org/10.1016/j.cpr.2021.102007

      Beam, E., Potts, C., Poldrack, R. A., & Etkin, A. (2021). A data-driven framework for mapping domains of human neurobiology. Nature Neuroscience, 24(12), 1733–1744. https://doi.org/10.1038/s41593-021-00948-9

      Calvin, C. M., Batty, G. D., Der, G., Brett, C. E., Taylor, A., Pattie, A., Čukić, I., & Deary, I. J. (2017). Childhood intelligence in relation to major causes of death in 68 year follow-up: Prospective population study. BMJ, j2708. https://doi.org/10.1136/bmj.j2708

      Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. C., Dick, A. S., Bjork, J. M., Thomas, K. M., … ABCD Imaging Acquisition Workgroup. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 43–54. https://doi.org/10.1016/j.dcn.2018.03.001

      Choi, S. W., Mak, T. S.-H., & O’Reilly, P. F. (2020). Tutorial: A guide to performing polygenic risk score analyses. Nature Protocols, 15(9), Article 9. https://doi.org/10.1038/s41596-020-0353-1

      Dadi, K., Varoquaux, G., Houenou, J., Bzdok, D., Thirion, B., & Engemann, D. (2021). Population modeling with machine learning can enhance measures of mental health. GigaScience, 10(10), giab071. https://doi.org/10.1093/gigascience/giab071

      Deary, I. J. (2012). Intelligence. Annual Review of Psychology, 63(1), 453–482. https://doi.org/10.1146/annurev-psych-120710-100353

      Deary, I. J., Pattie, A., & Starr, J. M. (2013). The Stability of Intelligence From Age 11 to Age 90 Years: The Lothian Birth Cohort of 1921. Psychological Science, 24(12), 2361–2368. https://doi.org/10.1177/0956797613486487

      East-Richard, C., R. -Mercier, A., Nadeau, D., & Cellard, C. (2020). Transdiagnostic neurocognitive deficits in psychiatry: A review of meta-analyses. Canadian Psychology / Psychologie Canadienne, 61(3), 190–214. https://doi.org/10.1037/cap0000196

      Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. American Journal of Psychiatry, 167(7), 748–751. https://doi.org/10.1176/appi.ajp.2010.09091379

      Kessler, R. C., Amminger, G. P., Aguilar-Gaxiola, S., Alonso, J., Lee, S., & Üstün, T. B. (2007). Age of onset of mental disorders: A review of recent literature. Current Opinion in Psychiatry, 20(4). https://journals.lww.com/co-psychiatry/fulltext/2007/07000/age_of_onset_of_mental_disorders_a_review_of .10.aspx

      Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., Donohue, M. R., Foran, W., Miller, R. L., Hendrickson, T. J., Malone, S. M., Kandala, S., Feczko, E., Miranda-Dominguez, O., Graham, A. M., Earl, E. A., Perrone, A. J., Cordova, M., Doyle, O., … Dosenbach, N. U. F. (2022). eproducible brain-wide association studies require thousands of individuals. Nature, 603(7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9

      Michelini, G., Barch, D. M., Tian, Y., Watson, D., Klein, D. N., & Kotov, R. (2019). Delineating and validating higher-order dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) study. Translational Psychiatry, 9(1), 261. https://doi.org/10.1038/s41398-019-0593-4

      Morris, S. E., & Cuthbert, B. N. (2012). Research Domain Criteria: Cognitive systems, neural circuits, and dimensions of behavior. Dialogues in Clinical Neuroscience, 14(1), 29–37.

      Morris, S. E., Sanislow, C. A., Pacheco, J., Vaidyanathan, U., Gordon, J. A., & Cuthbert, B. N. (2022). Revisiting the seven pillars of RDoC. BMC Medicine, 20(1), 220. https://doi.org/10.1186/s12916-022-02414-0

      Pat, N., Riglin, L., Anney, R., Wang, Y., Barch, D. M., Thapar, A., & Stringaris, A. (2022). Motivation and Cognitive Abilities as Mediators Between Polygenic Scores and Psychopathology in Children. Journal of the American Academy of Child and Adolescent Psychiatry, 61(6), 782-795.e3. https://doi.org/10.1016/j.jaac.2021.08.019

      Pat, N., Wang, Y., Bartonicek, A., Candia, J., & Stringaris, A. (2023). Explainable machine learning approach to predict and explain the relationship between task-based fMRI and individual differences in cognition. Cerebral Cortex, 33(6), 2682–2703. https://doi.org/10.1093/cercor/bhac235

      Quah, S. K. L., Jo, B., Geniesse, C., Uddin, L. Q., Mumford, J. A., Barch, D. M., Fair, D. A., Gotlib, I. H., Poldrack, R. A., & Saggar, M. (2025). A data-driven latent variable approach to validating the research domain criteria framework. Nature Communications, 16(1), 830. https://doi.org/10.1038/s41467-025-55831-z

      Reef, J., Diamantopoulou, S., van Meurs, I., Verhulst, F., & van der Ende, J. (2010). Predicting adult emotional and behavioral problems from externalizing problem trajectories in a 24-year longitudinal study. European Child & Adolescent Psychiatry, 19(7), 577–585. https://doi.org/10.1007/s00787-010-0088-6

      Rodrigue, A. L., Hayes, R. A., Waite, E., Corcoran, M., Glahn, D. C., & Jalbrzikowski, M. (2024). Multimodal Neuroimaging Summary Scores as Neurobiological Markers of Psychosis. Schizophrenia Bulletin, 50(4), 792–803. https://doi.org/10.1093/schbul/sbad149

      Roza, S. J., Hofstra, M. B., Van Der Ende, J., & Verhulst, F. C. (2003). Stable Prediction of Mood and Anxiety Disorders Based on Behavioral and Emotional Problems in Childhood: A 14-Year Follow-Up During Childhood, Adolescence, and Young Adulthood. American Journal of Psychiatry, 160(12), 2116–2121. https://doi.org/10.1176/appi.ajp.160.12.2116

      Yarkoni, T., & Westfall, J. (2017). Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Perlee et al. sought to generate a zebrafish line where CRISPR-based gene editing is exclusively limited to the melanocyte lineage, allowing assessment of cell-type restricted gene knockouts. To achieve this, they knocked in Cas9 to the endogenous mitfa locus, as mitfa is a master regulator of melanocyte development. The authors use multiple candidate genes - albino, sox10, tuba1a, ptena/ptenb, tp53 - to demonstrate their system induces lineagerestricted gene editing. This method allows researchers to bypass embryonic lethal and non-cell autonomous phenotypes emerging from whole body knockout (sox10, tuba1a), drive directed phenotypes, such as depigmentation (albino), and induce lineage-specific tumors, such as melanomas (ptena/ptenb, tp53, when accompanied with expression of BRAFV600E). While the genetic approaches are solid, the argued increase in efficiency of this model compared to current tools was untested, and therefore unable to be assessed. Furthermore, the mechanistic explanations proposed to underlie their phenotypes are mostly unfounded, as discussed further in the Weaknesses section. Despite these concerns, there is still a clear use for this genetic methodology and its implementation will be of value to many in vivo researchers.

      Strengths:

      The strongest component of this manuscript is the genetic control offered by the mitfa:Cas9 system and the ability to make stable, lineage-specific knockouts in zebrafish. This is exemplified by the studies of tuba1a, where the authors nicely show non-cell autonomous mechanisms have obfuscated the role of this gene in melanocyte development. In addition, the mitfa:Cas9 system is elegantly straightforward and can be easily implemented in many labs. Mostly, the figures are clean, controls are appropriate, and phenotypes are reproducible. The invented method is a welcomed addition to the arsenal of genetic tools used in zebrafish.

      Weaknesses:

      The major weaknesses of the manuscript include the overly bold descriptions of the value of the model and the superficial mechanistic explanations for each biological vignette.

      The authors argue that a major advantage of this system is its high efficiency. However, no direct comparison is made with other tools that achieve the same genetic control, such as MAZERATI. This is a missed opportunity to provide researchers the ability to evaluate these two similar genetic approaches. In addition, Fig.1 shows that not all melanocytes express Cas9. This is a major caveat that goes unaddressed. It is of paramount importance to understand the percentage of mitfa+ cells that express Cas9. The histology shown is unclear and too zoomed out of a scale to make any insightful conclusions, especially in Fig.S1. It would also be beneficial to see data regarding Cas9 expression in adult melanocytes, which are distinct from embryonic melanocytes in zebrafish. Moreover, this system still requires the injection of a plasmid encoding gRNAs of interest, which will yield mosaicism. A prime example of this discrepancy is in Fig.6, where sox10 is clearly still present in "sox10 KO" tumors.

      We agree with these points. While our method has the advantage of endogenous knockin (thus keeping all regulatory elements), you are correct that we did not make a direct comparison with existing technologies like MAZERATI, and therefore we cannot make comparative claims about efficiency. Based on this, we have revised the manuscript to remove these points, reduce the strength/boldness of the claims, and make it more clear what our system achieves in comparison to existing systems. In reference to the other specific points you raise above about mosaicism and extent of Cas9 expression:

      - We have added a paragraph to address the advantages and disadvantages of mitfaCas9 compared to expression of Cas9 with lineage-specific promoters including MAZERATI in the discussion.  

      - Figure 1C has been revised to more clearly show the overlap of mitfa and Cas9 in melanocytes. 

      - We then quantified the percentage of mitfa+ cells expressing Cas9 from the in situ hybridizations (Supplemental Figure S1D). We did attempt to look at Cas9 protein expression in both embryonic and adult melanocytes by immunofluorescence. Unfortunately, the Cas9 antibodies commercially available did not work on the zebrafish embryos or adult tailfins, so we are limited in proper quantification to the in situs in the embryos.

      The authors argue that their model allows rapid manipulation of melanocyte gene expression. Enthusiasm for the speed of this model is diminished by minimal phenotypes in the F0, as exemplified in Fig.2. Although the authors say >90% of fish have loss of pigmentation, this is misleading as the phenotype is a very weak, partial loss. Only in the F1 generation do robust phenotypes emerge, which takes >6 months to generate. How this is more efficient than other tools that currently exist is unclear and should be discussed in more detail.

      This needed clarification, and we have now modified the Discussion to reflect this more accurately. What we were trying to show is that both F0 and F1 fish can be useful in screening for the effect of any given gene. In the F0, while you are correct that the phenotype is indeed weak/partial, it is also quantifiable and therefore can be used as a rapid screen for potential effects of knockout, so it can help with speed. The major advantage of the F1 generation is that we can generate fully penetrant phenotypes for recessive genes since the fish just needs to have 1 copy of the Cas9/sgRNA instead of 2. This means we do not have to go to F2 or F3 generations, which really does save time. But we agree this could be achieved using MAZERATI, and so we have added these considerations to the manuscript, as we feel these are important.

      In Figure 3, the authors find that melanocyte-specific knockout of sox10 leads to only a 25% reduction in melanocytes in the F1 generation. This is in contradiction to prior literature cited describing sox10 as indispensable for melanocyte development. In addition, the authors argue that sox10 is required for melanocyte regeneration. This claim is not accurate, as >50% of melanocytes killed upon neocuproine treatment can regenerate. This data would indicate that sox10 is required for only a subset of melanocytes to develop (Fig.3C) and for only a subset to regenerate (Fig.3G). This is an interesting finding that is not discussed or interrogated further.

      We too were initially very puzzled by this result. We do not completely understand it, but we have two thoughts about it. First could be timing. sox10 usually starts to be expressed around the 1-somite stage, and so in the original sox10/colourless mutant (which truly has no melanocytes), sox10 will be lost during those early stages. In contrast, mitf comes on later (around 18hpf) so this might indicate that there is a subset of melanocytes that are dependent upon this early expression of sox10. This may indicate that there could be different functions of sox10 early in melanocyte development versus later timepoints after melanocytes have already been specified. This might also help explain our findings during regeneration.  Second could be genetic compensation. Since in the other parts of the paper we seem to see a somewhat reciprocal relationship between sox10 and sox9, it is conceivable that loss of sox10 in the melanocytes could be compensated for by sox9 (or even other genes) in our CRISPR approach (as opposed to the ENU allele in colourless). Since we really do not fully understand this, we have added a section to the Discussion about this issue, mentioning these possibilities but leaving open other yet to be defined mechanisms.

      Tumor induction by this model is weak, as indicated by the tumor curves in Figs.5,6. This might be because these fish are mitfa heterozygous. Whereas the avoidance of mitfa overexpression driven by other models including MAZERATI is a benefit of this system, the effect of mitfa heterozygosity on tumor incidence was untested. This is an essential question unaddressed in the manuscript.

      We agree that in the BRAF;p53 group especially tumor incidence is very low, although PTEN loss does accelerate it. One possibility is exactly as you stated, and that mitfa heterozygosity is the etiology. The other possibility is that in the MAZERATI approach (https://pubmed.ncbi.nlm.nih.gov/30385465/) the authors used the casper background as opposed to the wild-type T5D as we did in our study. In unpublished observations, we have found that casper (with miniCoopR rescue) is markedly more sensitive to melanoma induction compared to WT fish in this setting. In fact, in looking at our BRAF;p53 curves compared to the original Patton paper curves (https://pubmed.ncbi.nlm.nih.gov/15694309/) which were also done in a WT background with no miniCoopR, they are fairly similar. This might indicate that casper + miniCoopR particularly sensitizes the fish to melanoma. However, because we do not fully know the reasons for this, we have now included both of these possible reasons in the Discussion.

      In Fig.6, the authors recapitulate previous findings with their model, showing sox10 KO inhibits tumor onset. The tumors that do develop are argued to be highly invasive, have mesenchymal morphology, and undergo phenotypic switching from sox10 to sox9 expression. The data presented do not sufficiently support these claims. The histology is not readily suggestive of invasive, mesenchymal melanomas. Sox10 is still present in many cells and sox9 expression is only found in a small subset (<20%). Whether sox10-null cells are the ones expressing sox9 is untested. If sox9-mediated phenotypic switching is the major driver of these tumors, the authors would need to knockout sox9 and sox10 simultaneously and test whether these "rare" types of tumors still emerge. Additional histological and genetic evaluation is required to make the conclusions presented in Fig.6. It feels like a missed opportunity that the authors did not attempt to study genes of unknown contribution to melanoma with their system.

      We did not mean to overstate the admittedly early observations from these fish. Invasiveness in the fish models can be difficult to precisely quantify, and therefore is somewhat qualitative. While we did not mean to imply that every cell that loses sox10 will become sox9 positive (which is clearly not the case), the human single-cell RNA-seq data does suggest these are somewhat mutually exclusive populations (https://pubmed.ncbi.nlm.nih.gov/32753671/). This phenomenon has also long been observed even prior to single-cell approaches (https://pubmed.ncbi.nlm.nih.gov/25629959/). So while we agree our data is not definitive in this regard, it is consistent with the literature and was presented mainly to provide areas for future exploration with the model. 

      Overall, this manuscript introduces a solid method to the arsenal of zebrafish genetic tools but falls short of justifying itself as a more efficient and robust approach than what currently exists. The mechanisms provided to explain observed phenotypes are tenuous. Nonetheless, the mitfa:Cas9 approach will certainly be of value to many in vivo biologists and lays the foundation to generate similar methods using other tissue-specific regulators and other Cas proteins.

      We hope that by toning down the language around what we have observed, and providing as honest an assessment as possible as to what might be occurring, that the manuscript will be helpful for future studies aiming to knock out genes in the melanocyte lineage.

      Reviewer #2 (Public review):

      Summary:

      This manuscript describes a genetic tool utilizing mutant mitfa-Cas9 expressing zebrafish to knockout genes to analyze their function in melanocytes in a range of assays from developmental biology to tumorigenesis. Overall, the data are convincing and the authors cover potential caveats from their model that might impact its utility for future work.

      Strengths:

      The authors do an excellent job of characterizing several gene deletions that show the specificity and applicability of the genetic mitfa-Cas9 zebrafish to studying melanocytes.

      Weaknesses:

      Variability across animals not fully analyzed.

      To more clearly show variability across animals, we calculated the percentage of mitfa+ cells that express Cas9 across n=7 mitfaCas9 embryos. We also expanded Supplemental Figure 2 to show loss of pigmentation across n=7 individual adult MG-albino F2 fish instead of one representative image.

      Reviewer #3 (Public review):

      Summary:

      Perlee et al. present a method for generating cell-type restricted knockouts in zebrafish, focusing on melanocytes. For this method, the authors knock-in a Cas9 encoding sequence into the mitfa locus. This mitfaCas9 line has restricted Cas9 expression, allowing the authors to generate melanocyte-specific knockouts rapidly by follow-up injection of sgRNA expressing transposon vectors.

      The paper presents some interesting vignettes to illustrate the utility of their approach. These include 1) a derivation of albino mutant fish as a demonstration of the method's efficiency, 2) an interrogation and novel description of tuba1a as a potential non-autonomous contributor to melanocyte dispersion, and 3) the generation of sox10 deficient melanoma tumors that show "escape" of sox10 loss through upregulation of sox9. The latter two examples highlight the usefulness of cell-type targeted knockouts (Body-wide sox10 and tuba1a loss elicit developmental defects). Additionally, the tumor models involve highly multiplexed sgRNAs for tumor initiation which is nicely facilitated by the stable Cas9.

      Strengths:

      The approach is clever and could prove very useful for studying melanocytes and other cell types. As the authors hint at in their discussion, this approach would become even more powerful with the generation of other Cas9-restricted lineages so a single sgRNA construct can be screened across many lineages rapidly (or many sgRNA and fish lines screened combinatorially).

      The biological findings used to demonstrate the power of the approach are interesting in their own right. If it proves true, tuba1a's non-autonomous effects on melanosome dispersion are striking, and this example demonstrates very nicely how one could use Perlee et al.'s approach to search for other non-autonomous mechanisms systematically. Similarly, the observation of the sox9 escape mechanism with sox10 loss is a beautiful demonstration of the relevance of SOX10/SOX9's reciprocal regulation in vivo. This system would be a very nice model for further interrogating mechanisms/interventions surrounding Sox10 in melanoma.

      Finally, the figure presentation is very nice. This work involves complex genetic approaches including multiple fish generations and multiplexed construct injections. The vector diagrams and breeding schemes in the paper make everything very clear/"grok-able," and the paper was enjoyable to read.

      Weaknesses:

      The mitfa-driven GFP on their sgRNA-expressing cassette is elegant, but it makes one wonder why the endogenous knock-in is necessary. It would strengthen the motivation of the work if the authors could detail the potential advantages and disadvantages of their system compared to expressing Cas9 with a lineage-specific promoter from a transposon in their introduction or discussion.

      We agree this needed a better and more clear explanation. There are many excellent examples of promoter driven Cas9 approaches. Within melanocytes, Ablain and others have developed the MAZERATI system (https://pubmed.ncbi.nlm.nih.gov/30385465/) which is very powerful, especially for melanoma development. In our minds, the major advantage of endogenous knockin is that we retain all of the natural regulatory elements (many of which are not known) and so small promoter fragments always run the risk of missing certain types of regulation. While these regulatory elements may not matter under homeostatic conditions, they may become very important under perturbation, stress or disease states. This is why it is common, for example, in the mouse field, to knock in things like Cre into endogenous loci. We have now added a clarification of this to the manuscript.

      Related to the above - is mitfa haplosufficient? If the mitfaCas9/+ fish have any notable phenotypes, it would be worth noting for others interested in using this approach to study melanoma and pigmentation.

      In normal melanocytes, mitfa is haplosufficient. There are no visible differences between mitfaCas9/+ and wild-type fish at any stages of development (Figure S1C). Although we did not directly compare tumor growth in mitfa-/+ and mitfa+/+ fish in this study, it is possible that the disruption of mitfa in mitfaCas9/+ fish affects melanoma development. Most zebrafish melanoma models involve the overexpression of mitfa with MiniCoopR vectors and it would be interesting in future studies to determine how mitfa heterozygosity affects melanoma initiation or progression. 

      A core weakness (and also potential strength) of the system is that introduced edits will always be non-clonal (Fig 2H/I). The activity of individual sgRNAs should always be validated in the absence of any noticeable phenotype to interpret a negative result. Additionally, caution should be taken when interpreting results from rare events involving positive outgrowth (like tumorogenesis) to account for the fact many cells in the population might not have biallelic null alleles (i.e., 100% of the gene product removed).

      Along those lines: in my opinion, the tuba1a results are the most provocative finding in the paper, but they lack key validation. With respect to cutting activity, the Alt-R and transgenic sgRNA expression approaches are not directly comparable. Since there is no phenotype in the melanocyte specific tuba1a knockouts, the authors must confirm high knockout efficiency with this set of reagents before making the claim there is a non-autonomous phenotype. This can be achieved with GFP+ sorting and NGS like they performed with their albino melanocytes.

      The whole-body tuba1a knockout phenotype is expected to be pleiotropic, and this expectation might mask off-target effects. Controls for knockout specificity should be included. For instance, confidence in the claims would greatly increase if the dispersed melanosome phenotype could be recovered with guide-resistant tuba1a re-expression and if melanocyte-restricted tuba1a reexpression failed to rescue. As a less definitive but adequate alternative, the authors could also test if another guide or a morpholino against tuba1a phenocopies the described Alt-R edited fish.

      Thank you for your thoughtful suggestions, which led us to an important discovery. While validating the original tuba1a guide RNA, we found that tuba1a sg1 also targets tuba1c, a gene that shares 99.78% homology with tuba1a in zebrafish. To determine which gene was responsible for the melanocyte phenotype, we designed multiple new guide RNAs specifically targeting either tuba1a or tuba1c and used Alt-R to globally knock them out in zebrafish embryos. However, none of these guides successfully replicated the phenotype (Sanger sequencing validation for the most efficient tuba1a and tuba1c guides is provided below).

      Ultimately, we identified a new guide RNA (5’-GGTCTACAAAGACAGCCCTA-3’) that successfully phenocopied the original tuba1a sg1 melanocyte phenotype. Tuba1c—but not tuba1a—was predicted to have a mismatch at the 3’ end of the guide sequence, which is typically expected to inhibit target cleavage. Surprisingly, despite this mismatch, we observed robust cleavage in both tuba1a and tuba1c. Since the melanocyte phenotype was only reproducible when both tuba1a and tuba1c were targeted, this suggests potential compensatory interactions between these highly similar genes. We have updated the text and figures to reflect this finding and have included validation of this second guide RNA (tuba1a/c sg2) in Supplemental Figure 3.

      As you suggested, we also conducted GFP+ sorting and NGS to confirm knockout of both tuba1a and tuba1c in melanocytes of mitfaCas9 fish (Figure S3G). The knockout percentages were comparable to those observed in our previous experiment with MG_-albino_ fish. This also confirms that this method can be used to sort and sequence GFP+ cells even when pigmentation is retained, which was not the case for albino fish. 

      I have similar questions about the sox10 escapers, but these suggestions are less critical for supporting the authors claims (especially given the nice staining). Are the sox10 tumors relatively clonal with respect to sox10 mutations? And are the sox10 tumor mutations mostly biallelic frameshifts or potential missense mutations/single mutations that might not completely remove activity? I am particularly curious as SOX10 doesn't seem to be completely absent (and is still very high in some nuclei) in the immunohistochemistry.

      We attempted to address this question by performing DNA sequencing on the FFPE blocks that we had retained from the original study. While our sequencing facility said this should be possible, we could not consistently generate high enough quality DNA to make a definitive statement either way. While we are very curious to know what the nature of the mutations are in these “escapers”, the student who performed these studies has now graduated, and it would take us several additional months to a year to fully address it. Given this, we would prefer to leave this open question to a future paper, but have addressed this limitation in the Discussion.

      Recommendations for the authors:

      Reviewing Editor:

      Overall, the reviewers felt and eLife concurs that your manuscript is insightful and appropriate for publication. Reviewers were impressed by your generating a zebrafish line where CRISPRbased gene editing is exclusively limited to the melanocyte lineage, allowing assessment of celltype restricted gene knockouts. Your use of multiple candidate genes to demonstrate that your system induces lineage-restricted gene editing is compelling and will be of interest to the broad readership of eLife. This method will allow researchers to bypass embryonic lethal and non-cell autonomous phenotypes emerging from whole body knockout, drive directed phenotypes, such as depigmentation, and induce lineage-specific tumors, such as melanomas. This said, the argued increase in efficiency of this model compared to current tools was untested, and therefore it remains difficult for a reader to assess the extent to which your new model represents a major advance over prior ones. Of additional concern are the mechanistic explanations proposed to underlie the phenotypes, as these are largely unfounded. Thus, in preparing your final publication version of the paper, eLife strongly encourages you to fully address the reviewers' thoughtful comments. In particular, the boldness of the claims made in the manuscript should be reduced. Terms like "highly efficient" and "rapid" are unsupported due to the lack of comparison with other well-established methods, like MAZERATI.

      As discussed above in each of the reviewer points above, we agree with both of these points. We have reduced the boldness of the claims, with a better discussion of the different approaches. We also address the potential mechanisms of our observations, and where and why we still lack an understanding of what gives rise to those phenotypes. 

      There are also some minor discrepancies that should be edited in the manuscript: Fig.2A plasmid description is written oppositely in text; Fig.3 labels G-H are swapped in the legend description; Fig.5A MTdT is unexplained. This is a non-exhaustive list, and the authors are encouraged to carefully read through their manuscript to revise other minor mistakes and formatting errors.

      Figure 2A was revised to show the correct orientation of mitfa:GFP and the guide RNA cassette as described in the text. Figure 3 legend was fixed. We have gone through the manuscript again to make sure we have not made any other errors, to the best of our knowledge.

      The biggest concern is the expression of cas9 and the weak histological support shown in Fig.1 and Fig.S1. It would be a benefit to all readers and potential future users to know how robust cas9 expression is in the melanocyte lineage. It would be helpful if there is a way to analyze the percentage of cells that are mutated in each animal to understand the variability that can exist across animals with the method.

      We have revised Figure 1C to show additional melanocytes and added a new quantification of Cas9 RNA expression in melanocytes (S1D). 

      The analysis of the scRNA sequencing could also be described more fully.

      More details have been added to the scRNA sequencing analysis including the functions that were used. 

      The final major concern is whether this model is genuinely more valuable than MAZERATI. A more elaborate discussion would benefit potential future users to guide their decisions regarding which tool best suits their experimental goals.

      As noted above, we agree with this statement. The reviewers are correct in that we did not directly compare our system to MAZERATI, and therefore cannot make any claims about efficiency in a comparative regard. Therefore, in our revised Discussion, we talk about the relative strengths and weaknesses of each approach, and emphasize that our approach mainly has the advantage of retaining endogenous regulatory elements for mitfa, but that each user should decide which is the best approach for their problem.

      There are also some minor concerns that should be addressed.

      Are the mitfaCas9 fish used as homozygotes before the first cross? If so, might be nice to include their nacre-like phenotype in diagrams like Fig 2A.

      For these studies, heterozygous mitfaCas9 fish were used for all breedings and progeny were sorted for BFP+ eyes. This enabled the comparison to sibling controls without Cas9 expression. 

      BFP+ eye screening for mitfaCas9 is elegant and included nicely in the diagrams. Are germline sgRNA integrants identified in F1 with melanocyte GFP? Or present at a high enough efficiency that this is not relevant? This would be good to include in the diagrams.

      Germline sgRNA integrants are identified with melanocyte GFP in embryos. Figure 2A has been edited to show GFP expression. 

      Most cells are GFP positive in S3C (the F0 "mosaic"). It might be nice to show a single GFP stripe like in the other panels for direct comparison of edited/non-edited in the same fish.

      This figure (now S3E) has been edited to show a clear comparison between GFP+ and GFP- cells in the same fish. 

      177 - CRISPR-Seq is basically amplicon sequencing. This would measure efficiency but not "specificity" as described. Off-target activity would have to be measured at other loci etc. Not necessary to do, but I don't think measured.

      In this case, “specificity” refers to cell type specificity, not genomic specificity. We are measuring cell type specificity by comparing on-target cutting in GFP+ cells (melanocytes) versus GFP- cells (non-mitfa expressing cells). We did not look at off-target activity of Cas9 in this study and have edited the text to make this clearer. 

      219 -"several gaps were visible"

      Fixed

      286 - TUBA1A should be italicized

      Fixed

      399 - SOX9's most enriched dependency in DepMap is cutaneous melanoma and its top coessential gene is SOX10. I'm not sure the SOX9/SOX10 interaction couldn't be parsed from DepMap alone.

      This is true, and the DepMap was actually somewhat of an inspiration for our own studies. We have modified the line to acknowledge this and explain the main advantage of our system is in vivo confirmation of what the DepMap had alluded to.

      433 - "fewer animals since all F1 animals (even those for recessive alleles) are informative."

      The fact that this is approach is faster and more efficient per animal is important to highlight (and very believable), but is this technically true given not all F1 fish will have Cas9 or a germline sgRNA integration?

      In considering this statement, we agree with you and decided to remove it from the text.

      We hope the comments in both the public and private reviews will help improve the manuscript.

      Reviewer #1 (Recommendations for the authors):

      Overall, the boldness of the claims made in the manuscript should be reduced. Terms like "highly efficient" and "rapid" are unsupported due to the lack of comparison with other wellestablished methods, like MAZERATI.

      As discussed above, we agree with this and have now modified the manuscript to better reflect what our system achieves in comparison to the well developed systems such as MAZERATI. Because we have not done a direct comparison, we are not able to make any claims about comparative efficiency, and instead focus on the potential benefits of a knockin approach, which is the maintenance of endogenous regulatory elements.

      There are some minor discrepancies that should be edited in the manuscript: Fig.2A plasmid description is written oppositely in text; Fig.3 labels G-H are swapped in the legend description; Fig.5A MTdT is unexplained. This is a non-exhaustive list, and the authors are encouraged to carefully read through their manuscript to revise other minor mistakes and formatting errors.

      Figure 2A was revised to show the correct orientation of mitfa:GFP and the guide RNA cassette as described in the text. Figure 3 legend was fixed. We have gone through the manuscript again to make sure we have not made any other errors, to the best of our knowledge.

      The biggest concern is the expression of cas9 and the weak histological support shown in Fig.1 and Fig.S1. It would be a benefit to all readers and potential future users to know how robust cas9 expression is in the melanocyte lineage.

      We have revised Figure 1C to show additional melanocytes and added a new quantification of Cas9 RNA expression in melanocytes (S1D). 

      The second major concern is whether this model is genuinely more valuable than MAZERATI. A more elaborate discussion would benefit potential future users to guide their decision regarding which tool best suits their experimental goals.

      As noted above, we agree with this statement. The reviewers are correct in that we did not directly compare our system to MAZERATI, and therefore cannot make any claims about efficiency in a comparative regard. Therefore, in our revised Discussion, we talk about the relative strengths and weaknesses of each approach, and emphasize that our approach mainly has the advantage of retaining endogenous regulatory elements for mitfa, but that each user should decide which is the best approach for their problem.

      We hope the comments in both the public and private reviews will help improve the manuscript.

      Reviewer #2 (Recommendations for the authors):

      While that authors show the indel charts for the Crispr mutations generated in the supplement. However, I wonder if there is a way to analyze the percentage of cells that are mutated in each animal to understand the variability that can exist across animals with the method.

      We have revised Figure 1C to show additional melanocytes and added a new quantification of Cas9 RNA expression in melanocytes (S1D). 

      The analysis of the scRNA sequencing could be described more fully.

      More details have been added to the scRNA sequencing analysis including the functions that were used. 

      Reviewer #3 (Recommendations for the authors):

      This was an excellent read, and I'm very interested in seeing it in its final form. Congratulations! My larger critiques are outlined in the public reviews. A few smaller points:

      Are the mitfaCas9 fish used as homozygotes before the first cross? If so, might be nice to include their nacre-like phenotype in diagrams like Fig 2A.

      For these studies, heterozygous mitfaCas9 fish were used for all breedings and progeny were sorted for BFP+ eyes. This enabled the comparison to sibling controls without Cas9 expression. 

      BFP+ eye screening for mitfaCas9 is elegant and included nicely in the diagrams. Are germline sgRNA integrants identified in F1 with melanocyte GFP? Or present at a high enough efficiency that this is not relevant? This would be good to include in the diagrams.

      Germline sgRNA integrants are identified with melanocyte GFP in embryos. Figure 2A has been edited to show GFP expression. 

      Most cells are GFP positive in S3C (the F0 "mosaic"). It might be nice to show a single GFP stripe like in the other panels for direct comparison of edited/non-edited in the same fish.

      This figure (now S3E) has been edited to show a clear comparison between GFP+ and GFP- cells in the same fish. 

      177 - My understanding is that CRISPR-Seq is basically amplicon sequencing. This would measure efficiency but not "specificity" as described. Off-target activity would have to be measured at other loci etc. Not necessary to do in my opinion, but I don't think measured.

      In this case, “specificity” refers to cell type specificity, not genomic specificity. We are measuring cell type specificity by comparing on-target cutting in GFP+ cells (melanocytes) versus GFP- cells (non-mitfa expressing cells). We did not look at off-target activity of Cas9 in this study and have edited the text to make this clearer. 

      219 -"several gaps were visible"

      Fixed

      286 - TUBA1A should be italicized

      Fixed

      399 - I think I understand the logic of the DepMap argument, and the importance of studying tumor initiation in vivo stands for itself. But here is maybe not the best example (or might need clarification)? - SOX9's most enriched dependency in DepMap is cutaneous melanoma and its top co-essential gene is SOX10. I'm not sure the SOX9/SOX10 interaction couldn't be parsed from DepMap alone.

      This is true, and the DepMap was actually somewhat of an inspiration for our own studies. We have modified the line to acknowledge this and explain the main advantage of our system is in vivo confirmation of what the DepMap had alluded to.

      433 - "fewer animals since all F1 animals (even those for recessive alleles) are informative."

      The fact that this is approach is faster and more efficient per animal is important to highlight (and very believable), but is this technically true given not all F1 fish will have Cas9 or a germline sgRNA integration?

      In considering this statement, we agree with you and decided to remove it from the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors present a new protocol to assess social dominance in pairs and triads of C57BL/6j mice, based on a competition to access a hidden food pellet. Using this new protocol, the authors have been able to identify stable ranking among male and female pairs, while reporting more fluctuant hierarchies among triads of males. Ranking readouts identified with this new apparatus were compared to the outcomes obtained with the same animals competing in the tube and in the warm spot tests, which have been both commonly used during the last decade to identify social ranks in rodents under laboratory conditions.

      Strengths:

      FPCT allows for easy and fast identification of a winner and a loser in the context of food competition. The apparatus and the protocol are relatively easy and quick to implement in the lab and free from any complex post-processing/analysis, which qualifies it for wide distribution, particularly within laboratories that do not have the resources to implement more sophisticated protocols. Hierarchical readouts identified through the FPCT correlate with social ranks identified with the tube and the warm spot tests, which have been widely adopted during the last decade and allow for study comparison.

      Weaknesses:

      While the FPCT is validated by the tube and the warm spot test, this paper would have gained strength by providing a more ethologically based validation. Tube and warm spot tests have been shown to provide conflicting results and might not been a sufficient measurement for social ranking (see Varholik et al, Scientific reports, 2019; Battivelli et al, Biological psychiatry, 2024). Instead, a general consensus pushing toward more ethological approaches for neuroscience studies is emerging.

      We appreciate all the reviewers for recognizing the strength of the FPCT setup and the data. We also appreciate the reviewers for pointing out weakness and giving us valuable suggestions that help us to improve the quality of our manuscript through revision.

      In this manuscript, we found the ranking results of the FPCT were largely consistent with the tube and the warm spot tests. Such a finding was unexpected by us as we considered that different competitive targets of different paradigms should provide the mice with distinct appeals and enable them to exert their specific advantages. However, the consistency between the FPCT and tube test was observed in the pairs of female mice, pairs of male mice and triads of male mice. The consistency between the FPCT, tube test and warm spot test was observed in pairs of male mice and triads of male mice. Thus, we concluded that there is a social rank-order stability of mice. 

      We acknowledge that it’d better if this conclusion could be validated by more ethological approaches like urine-marking analysis and water competition test. Whereas, we did not rule out inconsistency of ranking results between two or more paradigms. Actually, there were inconsistent cases in our experiments. The inconsistency of ranking results between paradigms, even between FPCT and tube test, could be amplified if the tests were operated with other details of experimental protocols and conditions. This is in that too many factors and aspects can affect the readouts, such as formation of colony, tasks, test protocols, habituation and training. Using tube test itself, both stable 1,2 and unstable 3 ranking results have been reported.

      Other papers already successfully identified social ranks dyadic food competition, using relatively simple scoring protocol (see for example Merlot et al., 2006), within a more naturalistic set-up, allowing the 2 opponents to directly interact while competing for the food. A potential issue with the FPCT, is that the opponents being isolated from each other, the normal inhibition expected to appear in subordinates in the presence of a dominant to access food, could be diminished, and usually avoiding subordinates could be more motivated to push for the access to the food pellet.

      The hierarchical structure of mice colony could be established on the basis of physical aspects—such as muscular strength, vigorousness of fighting—and psychological aspects— such as boldness, focused motivation, active self-awareness of status. In the contexts of currently available food contest paradigms where the mice compete with bodily interaction, the physical and psychological aspects are intermingled in the interpretation of the mice’s winning/losing. In the FPCT, the opponents are isolated from each other so that the importance of direct bodily interaction in a competition is minimized, facilitating the exposure of psychological factors contributing to the establishment and/or expression of social status of the mice. In this study, the overall stable ranking results across the FPCT, tube test and warm spot test indicate that the status sense of animals is part of a comprehensive identify of self-recognition of individuals in an established mice social colony.

      There are issues with use of the English language throughout the text. Some sentences are difficult to understand and should be clarified and/or synthesized.

      We thank the reviewer for pointing out language issues. We have carefully corrected the grammar errors.

      Open question:

      Is food restriction mandatory? Palatable food pellet is not sufficient to trigger competition? Food restriction has numerous behavioral and physiological consequences that would be better to prevent to be able to clearly interpret behavioral outcomes in FPCT (see for example Tucci et al., 2006).

      We thank the reviewer for raising this question. In the preliminary experiments, we noticed that food restriction was mandatory and palatable food pellet was not sufficient to trigger competition. In order to limit the potential influence of food restriction on competitive behavior, the mice underwent only a 24-hour food deprivation period at the beginning of training, followed by mild restriction of food supply to meet basic energy requirement.

      Conclusive remarks:

      Although this protocol attempts to provide a novel approach to evaluate social ranks in mice, it is not clear how it really brings a significant advance in neuroscience research. The FPCT dynamic is very similar to the one observed in the tube test, where mice compete to navigate forward in a narrow space, constraining the opponent to go backward. The main difference between the FPCT and the tube test is the presence of food between the opponents. In the tube test, a food reward was initially used to increase motivation to cross the tube and push the opponent upon the testing day. This component has been progressively abandoned, precisely because it was not necessary for the mice to compete in the tube.

      This paper would really bring a significant contribution to the field by providing a neuronal imaging or manipulation correlate to the behavioral outcome obtained by the application of the FPCT.

      Thank the reviewer for this comment on the significance of the FPCT paradigm. In this manuscript, we think it is interesting to report that the ranking results were consistent across the FPCT, tube test and warm spot test. This finding indicates that the status sense of animals might be a part of a comprehensive identify of self-recognition of individuals in an established social colony. 

      Moreover, we are conducting researches on biological consequences and mechanisms of social competition. Hopefully, the results of the on-going project will be published in the near future.

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors have devised a novel assay to measure relative social rank in mice that is aimed at incorporating multiple aspects of social competition while minimizing direct contact between animals. Forming a hierarchy often involves complex social dynamics related to competitive drives for different fundamental resources including access to food, water, territory, and sexual mates. This makes the study of social dominance and its neural underpinnings hard, warranting the development of new tools and methods that can help understand both social functions as well as dysfunction.

      Strengths:

      This study showcases an assay called the Food Pellet Competition Test where cagemate mice compete for food, without direct contact, by pushing a block in a tube from opposite directions. The authors have attempted to quantify motivation to obtain the food independent of other factors such as age, weight, sex, etc. by running the assay under two conditions: one where the food is accessible and one where it isn't. This assay results in an impressive outcome consistency across days for females and males paired housed and for male groups of three. Further, the determined social ranks correlate strongly with two common assays: the tube test and the warm spot test.

      Weaknesses:

      This new assay has limited ethological validity since mice do not compete for food without touching each other with a block in the middle. In addition, the assay may only be valid for a single trial per day making its utility for recording neural recordings and manipulations limited to a single sample per mouse. Although the authors attempt to measure motivation as a factor driving who wins the social competition, the data is limited. This novel assay requires training across days with some mice reaching criteria before others. From the data reported, it is unclear what effects training can have on the outcome of social competition. Beyond the data shown, the language used throughout the manuscript and the rationale for the design of this novel assay is difficult to understand.

      We appreciate the reviewers for the valuable comments on the strength and weakness of our manuscript. 

      The design mentality of the FPCT was to (1) provide researchers with a choice of new food competition paradigm and (2) expose psychological factors influencing the establishment and/or expression social status in mice by avoiding direct physical competition between contenders (see revised Abstract and the last paragraph in the Introduction).

      As a result, the consistent ranking across the FPCT, tube test and warm spot test might indicate that the status sense of animals is part of a comprehensive identify of self-recognition of individuals in an established social colony. 

      We suggest to perform the FPCT test one trial per day per mouse as the mice might lose interest in the food pellet if it is tested frequently in a day, but it is practical to perform the FPCT assay for several days. 

      Regarding the training, we suggest 4-5 days for training as we did. In this revision, we add training data which show the progressing latency of food-getting of mice (Figure 1). At the last day of training, the mice would go directly to push the block and eat the food after they entered the arena.

      We thank the reviewer for pointing out language issues. We have carefully corrected the errors.

      Reviewer #3 (Public review):

      Summary:

      The laboratory mouse is an ideal animal to study the neural and psychological underpinnings of social dominance behavior because of its economic cost and the animals' readiness to display dominant and subordinate behaviors in simple and testable environments. Here, a new and novel method for measuring dominance and the individual social status of mice is presented using a food competition assay. Historically, food competition assays have been avoided because they occur in an open arena or the home cage, and it can be difficult to assess who gets priority access to the resource and to avoid aggressive interactions such as bite wounding. Now, the authors have designed a narrow rectangular arena separated in half by a sliding floor-to-ceiling obstacle, where the mice placed at opposite sides of the obstacle compete by pushing the obstacle to gain priority access to a food pellet resting on the arena floor under the obstacle. One can also place the food pellet within the obstacle to restrict priority access to the food and measure the time or effort spent pushing the obstacle back and forth. As hypothesized, the outcomes in the food competition test were significantly consistent with those of the more common tube test (space competition) and warm spot competition test. This suggests that these animals have a stereotypic dominance organization that exists across multiple resource domains (i.e., food, space, and temperature). Only male and female C57 mice in same-sex pairs or triads were tested.

      Strengths:

      The design of the apparatus and the inclusion of females are significant strengths within the study.

      Weaknesses:

      There are at least two major weaknesses of the study: neglecting the value of test inconsistency and not providing the mice time to recognize who they are competing with.

      Several studies have demonstrated that although inbred mice in laboratory housing share similar genetics and environment, they can form diverse types of hierarchical organizations (e.g., loose, stable, despotic, linear, etc.) and there are multiple resource domains in the home cage that mice compete over (e.g., space, food, water, temperature, etc.). The advantage of using multiple dominance assays is to understand the nuances of hierarchical organizations better. For example, some groups may have clear dominant and subordinate individuals when competing for food, but the individuals may "change or switch" social status when competing for space. Indeed, social relationships are dynamic, not static. Here, the authors have provided another test to measure another dimension of dominance: food competition. Rather than highlight this advantage, the authors highlight that the test is in agreement with the standard tube test and warm spot test and that C57 mice have stereotypic dominance across multiple domains. While some may find this great, it will leave many to continue using the tube test only (which measures the dimension of space competition) and avoid measuring food competition. If the reader looks at Figures 6E, F, and G they will see examples of inconsistency across the food competition test, tube test, and warm spot test in triads of mice. These groups are quite interesting and demonstrate the diversity of social dynamics in groups of inbred mice in highly standardized environmental conditions. Scientists interested in dominance should study groups that are consistent and inconsistent across multiple dimensions of dominance (e.g., space, food, mates, etc.).

      Unlike the tube test and warm spot test, the food competition test presented here provides no opportunity for the animals to identify their opponent. That is, they cannot sniff their opponent's fur or anogenital region, which would allow them an opportunity to identify them individually. Thus, as the authors state, the test only measures psychological motivation to get a food reward. Notably, the outcome in the direct and indirect testing of food competition is in agreement, leaving many to wonder whether they are measuring the social relationship or the effort an individual puts forth in attaining a food reward regardless of the social opponent. Specifically, in the direct test, an individual can retrieve the food reward by pushing the obstacle out of the way first. In the indirect test, the animals cannot retrieve the reward and can only push the obstacle back and forth, which contains the reward inside. In Figure 4E, you can see that winners spent more time pushing the block in the indirect test. Thus, whether the test measures a social relationship or just the likelihood of gaining priority access to food is unclear. To rectify this issue, the authors could provide an opportunity for the animals to interact before lowering the obstacle and raising(?) a food reward. They may also create a very long one-sided apparatus to measure the amount of effort an individual mouse puts forth in the indirect test with only one individual - or any situation with just one mouse where the moving obstacle is not pushed back, and the animal can just keep pushing until they stop. This would require another experiment. It also may not tell us much more since it remains unclear whether inbred mice can individually identify one another

      (see https://doi.org/10.1098/rspb.2000.1057 for more details).

      A minor issue is that the write-up of the history of food competition assays and female dominance research is inaccurate. Food competition assays have a long history since at least the 1950s and many people study female dominance now.

      Food competition: https://doi.org/10.1080/00223980.1950.9712776, https://psycnet.apa.org/fullte xt/1953-03267-

      001.pdf, https://doi.org/10.1016/j.bbi.2003.11.007, https://doi.org/10.1038/s41586-02204507-5

      Female dominance: history  https://doi.org/10.1016/j.cub.2023.03.020,  https://doi.org/10.1016/S0 031-9384(01)00494-2,  https://doi.org/10.1037/0735-7036.99.4.411

      We thank the reviewers very much for so many helpful comments and suggestions.

      In this manuscript, we want to address the overall and averagely consistency of ranking results between FPCT, tube test and warm spot test) as an unexpected finding. We agree that the inconsistency of social ranking occurred between trials and between paradigms should not be ignored. In the revision, we added description and discussion of inconsistent part of the different test paradigms (paragraph 2 in the section 3 of the Result, last 2 sentences of paragraph 4 in the Discussion)

      Although the two opponents were separated each other, they were able to see and sniff each other because the block is transparency, there are holes in the lower portion of the block, and there is the gap between the block and chamber (Supplementary figures 1 and 2). In the female but not male groups, the presence of a cagemate opponent during the test 1 could significantly disturb the female mice and increase the its latency to get the food, comparing with last day of training when there was no opponent (Figure 3A). This indicates that one mouse, at least female mouse, could identify the existence of the opponent in the opposite side of the chamber. To further see whether social relation was influential to readouts of the FPCT, we performed additional experiments using two groups of non-cagemate mice to perform the competition. We did not detect obviously different ranks between the two groups (Figure 1H-1J), suggesting that establishment of social colony is necessary for FPCT to distinguish social ranks of mice.

      Thank the reviewer for reminding us to recognize the history of food competition assays. We have added the citations and discussions of related literatures, both for male (paragraph 2 in the Introduction; paragraph 3 in the Discussion) and female (paragraph 1 of section 3 in the Results; paragraph 4 in the Discussion) mice. 

      Reviewer #1 (Recommendations for the authors):

      There are issues with use of the English language throughout the text. Some sentences are difficult to understand and should be clarified and/or synthesized.

      We appreciate the reviewer for constructive comments and helpful corrections.

      “Despite that 6 in 9 groups of mice display some extent of flipped ranking (Figures 6B-6G) and only 3 in 9 groups displayed continuously unaltered ranking (Figure 6H) during a total of 9 trials consisting of 3 trials of FPCT, 3 trials of tube test and 1 trial of WST, an obvious stable linear intragroup hierarchy was observed throughout all the trials and tasks"

      The above sentence has been re-written as: The ranking result showed that 6 in 9 groups of mice displayed some extent of flipped ranking (Figures 4B-4G), and only 3 in 9 groups displayed continuously unaltered ranking (Figure 4H). Averagely, in the totally 27 trials consisting of 12 trials of FPCT, 12 trials of tube test and 3 trials of WST, an obvious stable linear intragroup hierarchy was observed across all the trials and tasks (paragraph 1 of section 4 in the Results).

      "it is hard to attribute winning a competition in a shared space to stronger motivation rather than muscular superiority".

      The above sentence has been deleted and re-written in paragraph 1 of section 4 in the Results and paragraph 3 in the Discussion.

      "Unexpectedly, in most of the trials the mice preserved the winner or loser identity acquired in FPCT into tube test and WST (Figures 5L-5O)".

      Why this is unexpected? Instead, it looks like this result is expected (tube test has been successfully applied to identify ranks in females, see Leclair et al, eLife, 2021).

      We thank the reviewer for raising this point. FPCT is different from tube test and warm spot test at least in two aspects: competition for food vs space; presence vs absence of direct bodily interaction during competition. Some mice might be active in food competition, but not in space competition, while others might be on the contrary. Some mice might be good at physical contest, while others might be good at play tricks. Therefore, these factors made us expect task-specific outcomes of ranking results.

      Vocabulary issues:

      "Stereotypic", to talk about rank stability in a different context does not look appropriate. In behavioral neuroscience, stereotypy is more excepted to intend abnormal repetitive behaviors. The stability that the authors seem to indicate with the word "stereotype" refers rather to the concept of "consistency" or "stability".

      We thank the reviewer for this detailed explanation. We have chosen to use "stability" to describe the data.

      "Society", to talk about groups or colonies of animals sounds a bit odd. Society evokes more abstract concepts more likely to fit with human organization. I suggest the use of "group" or "colony".

      "Hide" to qualify the block preventing access to the food pellet. It is said that the block is transparent. We suggest the use of "inaccessible" instead of hidden.

      We strongly encourage the authors to further edit the entire script to improve language.

      Thank the reviewer for kind correction. We have corrected the above vocabulary misuse. 

      Technical issues / typos:

      Figure 1. The picture does not seem optimal to visualize the apparatus.

      Missing unit legend in Figure 4E.

      Supplementary videos 2 and 4 are missing.

      We have added a frontal view of the apparatus in the figure (Supplementary Figure 1), added a unit to the Figure 2F (previous Figure 4E), and we will make sure to upload the missing videos.

      Reviewer #2 (Recommendations for the authors):

      While the assay shows promise as a tool for studying social dominance, the study suffers from some limitations such as lack of ethological relevance. In addition, there is a lack of rationale and methodological clarity in the manuscript that can impact the ability of other scientists to be able to perform this novel assay.

      (1) Related to lack of scientific rigor:

      a. In the first paragraph of the introduction, the authors mention that "disability in social recognition and unsatisfied social status are associated with brain diseases such as autism, depression and schizophrenia". Both papers that they cited refer to mouse models, not humans (which is the species that is attributed these diagnoses clinically). In addition, neither citation discusses schizophrenia. While social dysfunctions can indeed be related to these diseases, to my knowledge this is not caused by a change in "social status" and there is no human data with patient populations and social status. Therefore, this sentence is inaccurate and there is no research that demonstrates that.

      We thank the reviewer for raising this point. To express the opinion and cite literatures more accurately, we improved the sentence in the 1st paragraph of Introduction as follows: “Impaired awareness of social competition has been documented in individuals with autism spectrum disorder (ASD)4,5, and reduced social interaction has been characterized in corresponding animal models6. Similarly, maladaptive responses to social status loss has been associated with patient depressive disorders7,8 and animal models of depression1,9”. The reviewer is right that no patient disease is causally related with social status, and only depression has been proposedly associated with change of social status7,8.

      b. In the second paragraph of the introduction, the authors mention a scarcity of research papers with designs for food competition-based social hierarchy assays for mice. At least two such papers have been published in the past few years (DOIs https://doi.org/10.1038/s41586-

      021-04000-5 and https://doi.org/10.1038/s41586-022-04507-5). The authors should acknowledge the existence of these and other assays and discuss how their work would be related. In the same paragraph, they also mention that existing assays suffer from "hierarchy instability" and "complex calculations" without showing any citations or details for these claims.

      We thank the reviewer for raising this point. We acknowledged that there are some available food competitions to measure social hierarchy for mice. But relative to space competition, food competition tests have not been used so commonly and widely. No food competition paradigm has been accepted as generally as some space competition paradigms like tube test and warm spot test. To improve the language and scientific expression, we revised the sentences as follows: “Relative to space competition, food competition tests for mice have been designated and applied less commonly in animal studies despite its long history 28-30. Several issues could be thought to be the underlying limitations for the application of food competition paradigms. First, there are methodological issues in some of these approaches, such as long video recording duration and difficulty in analyzing animal’s behaviors during competitive physical interaction in videos, hindering their application by laboratories that cannot afford sophisticated equipment and analysis”. Corresponding citations have been updated (see paragraph 3 in the Introduction).

      c. The authors say that their study is the first to demonstrate that female mice follow social ranks. This is not the first study to do so and the authors should acknowledge existing publications that have done the same (eg DOI https://doi.org/10.7554/eLife.71401).

      We have followed the reviewer’s suggestion to increase citations regarding social ranking of female mice tested by competition paradigms, especially food competition paradigms (see paragraph 1 of section 3 in the Results; paragraph 4 in the Discussion).

      (2) Related to problems with interpretation of data:

      a. The authors showed the assay works for females and males in pairwise housing, but two mice don't make a hierarchy, as hierarchies require a minimum of three individuals. Therefore, whether the assay works for females caged in three is an important question that is unaddressed in this study and is a caveat. extended the competition assay to male mice that are housed in cages of three. It would be important to show whether the assay generalizes well for female mice with this three-animal housing as well as discuss the effect of using even bigger groups of mice on the results of the assay.

      We thank the reviewer for raising questions related to the interpretation of data and giving us the insightful the suggestions. We agree that it is interesting and important to probe if FPCT works for a group of three female mice. Although social rankings of pairs of male and female mice were not significantly different (new Figure 2D-2F and 3F-3H), that of triads of male and female mice could be different. We have tested trads of male mice and found that the mice displayed an overall linear hierarchical ranking. We would like to use FPCT to investigate the rankings of trads of female mice and even bigger group of mice in the future. In the present manuscript we’d like to address the feasible application of the FPCT in smaller groups. In the Discussion, we add contents commenting group size effect on social competition tests (see paragraph 4 in the Discussion).

      b. The authors claim that "test 2" of their assay helps assert the motivation of mice for social competition as in Figure 4E. This could simply be a readout of how strong the mice are (muscle mass). To claim that this is indeed related to motivation during the FPCT assay, the authors should show the correlation of this readout with the latency to push the block during the social competition task.

      We appreciate the reviewer for raising this question. The dimensions establishing the social structures include physical and psychological factors. In the FPCT paradigm, the two contenders are separated so that physical factors are minimized in this context and psychological factors should play more important role in competition in comparison with previous reported food competition paradigms. Therefore, in the revised manuscript we consider to attribute the ranking results mainly to psychological factors, rather than only motivation which is just one of the numerous psychological factors (paragraph 3 of Discussion). Moreover, in the Discussion we point out that we could not exclude physical factors still participate in the determination of competitive outcomes since some of mice pairs pushed the block simultaneously (paragraph 3 of Discussion).

      c.The authors mention that they are interested to understand which factors lead to the outcome of the competition such as age, sex, physical strength, training level, and intensity of psychological motivation. However, in all their runs of the assay, they always matched these variables between the competitors. They should clarify that they were instead controlling for these variables. Another thing to note here is that while they controlled the body mass of the animals, that isn't the same as physical strength, as a lighter mouse can have more muscle mass than a heavier mouse. They should either specify this limitation or quantify the additional metric of "muscle mass" which is a much better proxy for physical strength. Thus, the claim that the outcome of the competition is solely affected by motivation is not convincing since they didn't rule out the others such as quantifying the rate of learning during training and strength.

      We thank the reviewer for addressing this question. As our response to the question in (c), we acknowledge that it is not accurate to ascribe the outcomes of FPCT to psychological motivation. In the revised manuscript, the dimensions of contributing factors to the outcomes of FPCT have been simplified to physical and psychological factors. We consider that the psychological factor could be the main driver of mice participating in FPCT (see paragraph 3 of Discussion).

      d. In the discussion, the authors mention that their task only requires a single day of food deprivation (the day before the first trial) while other assays suffer from a continued food deprivation protocol. However, the authors also use 10g per cage as the amount of food instead of giving them ad libitum access. Limited food is a food deprivation method. Thus, this is an inaccurate claim.

      We thank the reviewer for raising this point. We have clarified the requirement of food restriction for FPCT in the revision. The mice were deprived of food for 24 hours while water consumption remained normally to enhance the appeal of the food pellet to the mice. Then, after 24 hours of food deprivation, each cage of mice was given 10 g of food every morning to meet their daily food requirements until the end of the test (see FPCT procedure section in Methods and materials).

      e.In the second section of the results, the authors run their assay with female mice that are housed in cages of two. This section suffers from the same limitations as the first and can be improved by showing the training data, correlations of competition outcome with "motivation" and ruling out the other factors that could contribute to the outcome. Further, the authors saying that their FPCT assay is enough to show that female mice follow a social hierarchy by itself is a weak claim. They should instead include their cross-validation with the others to strengthen it.

      We appreciate the reviewer for raising this question. We have taken the reviewer’s suggestion to show the training data (Figures 1E, 2A and 3A). As the factors contributing to the outcomes of FPCT are diverse, we’d like not to control and determine the exact factor in the current manuscript. We agree with the reviewer that cross-validation with different paradigms is suggested for the studies to rank social hierarchy as the ranking results could be variable with tasks, procedures and operations.

      f.  In the last paragraph of the introduction, the authors mention how their assay involves "peaceful competition" since the mice are not in direct contact and hence cannot exhibit aggression. The authors do not address the limitation that a lack of physical contact actually makes the assay less ethological. Further, since the mice are housed in groups of two and three, it is not guaranteed that the mice will not be aggressive during their time in the home cage, which could affect their behavior during the competition assay. Whether the assay causes more aggression in the cage due to the lack of physical contact during the competition is not addressed in this study.

      We thank the reviewer for raising this point. Diverse factors affect the outcomes of a food competition test, some of which belong to psychological factors and others belong to physical factors. We agree that a lack of physical contact makes the assay less naturally ethological. However, when the social statuses have been established during habituation housing a group of mice for enough time, the win/lose outcomes in the FPCT could be a readout of the expression of social statuses since the mice cannot exhibit aggression in the test. We have revised the Introduction and Discussion (paragraph 3 of Discussion). Thank you.

      (3) Related to lack of methodological rigor and rationale clarity:

      a. In the first section of the results, the authors run their assay with male mice that are housed in cages of two. While the data that they display is promising, we do not see how mice change behavior across days of training and how that relates to the outcome of the competition. It would be valuable to also show the training data for the mice, answering questions related to competency and any inter-animal variabilities prior to rank assessment. Plotting the training data across all days would be helpful for the other parts of the results as well. This is especially important because the methods mention that mice are trained until they get to the criterium, so this means that different individuals get different amounts of training.

      We appreciate the reviewer for addressing the importance of showing training data. We have taken the reviewer’s suggestion and shown the training data (Figures 1E, 2A and 3A).

      b.  It is unclear why the assay was run only once per mouse pair per day since most protocols for the tube test involve multiple repetitions each day while alternating the side from which the mice enter. The authors should address whether a single trial per day is enough to show consistent results and that it wouldn't vary with more.

      We suggest to run the FPCT once or twice per mouse per day under conditions of mild food restriction, training and test procedures in this manuscript. Frequent tests might make the mice’s interest in the food pellet gradually diminished because the food supply was not fully deprived. According to our data, the outcomes of FPCT in 4 consecutive days were overall stable.

      c.  In the results the authors say that they "raised 3 male mice" which may be incorrect because they report in the methods buying the mice buy mice and they housed all their mice for only three days before running the assay which might be too little for the hierarchy to stabilize. The authors should comment on what was the range of the cohabitation across different cages and whether it had an impact on the results.

      According to our experiments, housing the mice for 3 days is enough to establish a mice social colony with relative stable status structure. Prolonged housing may produce either similar, stabler or more dynamic social colony.

      d. There are also some formatting and/or convention issues in the results. The first figure callout in the results is for Figure 4 instead of Figure 1 (which is the standard). This is because the authors do not explain how the mice are trained for the task in the results section and show limited data about the training of the task. Not showing comprehensive training data would make replication of this study very difficult.

      We appreciate the reviewer for raising this question. We have re-arranged the figures. The new arrangement of figures started with schematic drawing of FPCT procedure and training data (Figure 1).

      e. The authors don't report the exact p-values in the figures

      We reported the difference level in the figures in the revised manuscript. Thank you.

      4. The writing of the manuscript suffers from a lack of clarity in most sections of the manuscript.

      Here are several examples that are critical:

      a. In the title and abstract, it isn't clear what the authors mean by "stereotype". It could be a behavior during the competition, or that the social ranks across assays are correlated or that the rank for the new assay is consistent across days.

      b. There are several instances where the authors anthropomorphize mice using human features such as "urbanization" and "society" which are not established factors affecting mouse hierarchy. This further extends to anthropomorphizing mice in ways that are not standard such as an animal being "timid" or "bold" which would be hard to measure in mice, if not impossible.

      c. Across the social dominance literature, relative social rank is described using more general "dominant" and "subordinate" titles instead of "superior" and "inferior" that are sometimes used in the manuscript. The authors should follow the standard language so that readers understand.

      d.  In the third paragraph of the introduction, the authors say "Thus, it is more likely expected that different paradigms to weigh the social competency and status may lead to diverse readouts, given that competitive factors are included in competition paradigms." This sentence suffers from multiple syntax errors thereby reducing clarity

      e. There are several typos in the manuscript such as using "dominate" instead of "dominant", "grades" instead of "outcomes" and "forth" instead of "fourth", to give a few examples.

      We thank the reviewer for careful reading of the manuscript and very helpful comments. We have taken the above suggestions and improved the writing of the manuscript. For examples, "stereotype" was replaced by “stability”, mice "society" was expressed by "colony", the sentence “Thus, it is more.... in competition paradigms” has been deleted.

      Reviewer #3 (Recommendations for the authors):

      (1) The justification for the design of this new test paradigm is unclear. In the abstract, you state that the field needs a reliable, valid, and easily executable test. Your test provides this, as you state, but how is it better than the tube test? Does the tube test suffer from taskspecific win-or-lose outcomes? Can you provide evidence for this? The nature methods protocol for the tube test (https://doi.org/10.1038/s41596-018-0116-4) "strongly suggest using more than two dominance measures, for example, by also carrying out the warm spot test, or territory urine marking or ultrasonic courtship vocalization assays." This would suggest that results from the tube test can be task-specific, but I am not convinced that you have demonstrated that results from your food competition test are not task-specific. Indeed, by your title, one must run multiple tests.

      This same problem is apparent in the introduction. In the second paragraph, there is a discussion of the tube test, warm spot test, and food competition tests. What is the problem with these tests?

      I believe that social dominance relationships are complex and dynamic social relationships indicating who has priority access to a resource between multiple animals that live together. In these living situations, several resources can often be capitalized competed over-for example, space, food, mates, temperature, etc. Currently, we have tests to measure space via the tube test or urine marking, mates via ultrasonic vocalization, temperature via warm spot test, and food via food competition assays. The tube test, urine marking assay, and ultrasonic vocalization test have been demonstrated to be reliable, valid, and easily executable. However, the food competition assays are often difficult to execute because it is difficult to interpret the dominant behaviors and aggressive behaviors like bite wounding can occur during the test. Here, you present a new food competition assay to address these issues and show that it can be used in conjunction with other assays to measure social dominance across multiple resources easily. In doing so, you revealed that many same-sex groups of C57 mice have a stereotypic pattern of dominance behavior when competing across multiple types of resources: space, temperature, and food.

      I ask that you please rebut if you disagree with me, and adjust your abstract, introduction, and discussion accordingly.

      We thank the reviewer for all the constructive comments. We have adjusted the Abstract, Introduction and Discussion of the manuscript.

      We recognize and appreciate the valuable tube test, warm spot test and many other competition tests, including food competitions. Tube test and warm spot test are space competition tasks. Relative to space competition, food competition tests for mice have been designated and applied less commonly in animal studies. Several issues (such as methodological issue, aggressive behaviors occurring in competition, and prolonged food deprivation) could be thought to be the underlying limitations of the application of food competition paradigms (paragraph 3 in the Introduction). Therefore, we clarify that the justification for the design of FPCT was “to have a new choice of food competition paradigm for mice, and to facilitate the exposure of psychological aspects contributing to the winning/losing outcomes in competitions” (last paragraph in the Introduction).

      FPCT is different from tube test and warm spot test at least in two ways. FPCT is food completion task where the mice need no physical contact during competition, while tube test and WST are space competition tasks where the mice need direct physical contact during competition. Therefore, we expected inconsistent evaluation results of competitiveness and rankings if we compared FPCT with typically available competition paradigms—tube test and WST (last paragraph in the Introduction).

      (2)  The design of the test needs to be described before the results. You can either move the methods section before the results or add a paragraph in the introduction to better describe the test. Here, you can also reference Figures 1 through 3 so that the figures are presented in the order of which they are mentioned in the paper. (It is very confusing that the first reference to a figure is Figure 4, when it should be Figure 1).

      We appreciate the reviewer for raising this point and giving us suggestions. We have added a new section (section 1) in the Results. In the revised manuscript, the figures in the Results start with Figure 1 which shows schematic drawing of FPCT procedure, training data and some test results (Figure 1).

      (3)  The sentence describing Figure 4H. You argue that this shows that the mice are well and equally trained. It also shows that they have the same motivation or preference for the food.

      We appreciate the reviewer for this helpful comment. Data in previous Figures 4H and 5I have been presented as new Figures 2A and 3A, respectively, of revised manuscript. These retrospect analysis of training data displayed similar training level of food-getting and craving state for food (Sections 2 and 3 in the Results).

      (4)  "Social ranking of multiple cagemate mice using FPCT, tube test and WST"

      Here, you claim that "comparison of inter-task consistency revealed that the ranks evaluated by FPCT, tube test and WST did not differ from each other...Figure 6K." Okay, however, it is important to discuss the three cases when there wasn't consistency between the tests! Figure 6E-G.

      We appreciate the reviewer for raising this point. In the revised manuscript, we add description and discussion of inconsistent part of the different test paradigms (paragraph 2 in the section 3 of the Result, last 2 sentences of paragraph 4 in the Discussion)

      (5)  Replace all instances of "gender" with "sex". Animals do not have a gender.

      (6)  Adjust the strain of the mice to C57BL/6JNifdc.

      We have replaced "gender" with "sex" and “C57BL/6J” with “C57BL/6JNifdc”. Thank you for your careful correction.

      (7)  What is the justification for running the warm spot test for one day and the other tests for four days?

      From the consecutive FPCT and tube test, we already knew that the ranking results were overall stable. This stability was still observed in the day of warm spot test. A bad point for frequent warm spot test is that mice get much stress due to exposure in ice-cold environment. Therefore, we terminated the competition test after only one trial of warm spot test.

      (8)  Grammar

      The second sentence of the abstract: ...recognized as a valuable...

      Results, sentence after "...was observed (Figure 4G)." it should be "Fourth"

      We have corrected these and other grammar errors. We appreciate the reviewers for very careful review and all helpful comments.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      The authors survey the ultrastructural organization of glutamatergic synapses by cryo-ET and image processing tools using two complementary experimental approaches. The first approach employs so-called "ultra-fresh" preparations of brain homogenates from a knock-in mouse expressing a GFP-tagged version of PSD-95, allowing Peukes and colleagues to specifically target excitatory glutamatergic synapses. In the second approach, direct in-tissue (using cortical and hippocampal regions) targeting of the glutamatergic synapses employing the same mouse model is presented. In order to ascertain whether the isolation procedure causes any significant changes in the ultrastructural organization (and possibly synaptic macromolecular organization) the authors compare their findings using both of these approaches. The quantitation of the synaptic cleft height reveals an unexpected variability, while the STA analysis of the ionotropic receptors provides insights into their distribution with respect to the synaptic cleft.

      The main novelty of this study lies in the continuous claims by the authors that the sample preservation methods developed here are superior to any others previously used. This leads them as well to systematically downplay or directly ignore a substantial body of previous cryo-ET studies of synaptic structure. Without comparisons with the cryo-ET literature, it is very hard to judge the impact of this work in the field. Furthermore, the data does not show any better preservation in the so-called "ultra-fresh" preparation than in the literature, perhaps to the contrary as synapses with strangely elongated vesicles are often seen. Such synapses have been regularly discarded for further analysis in previous synaptosome studies (e.g. Martinez-Sanchez 2021). Whilst the targeting approach using a fluorescent PSD95 marker is novel and seems sufficiently precise, the authors use a somewhat outdated approach (cryo-sectioning) to generate in-tissue tomograms of poor quality. To what extent such tomograms can be interpreted in molecular terms is highly questionable. The authors also don't discuss the physiological influence of 20% dextran used for high-pressure freezing of these "very native" specimens.

      Lastly, a large part of the paper is devoted to image analysis of the PSD which is not convincing (including a somewhat forced comparison with the fixed and heavy-metal staining room temperature approach). Despite being a technically challenging study, the results fall short of expectations. 

      Our manuscript contains a discussion of both conventional EM and cryoET of synapses. We apologise if we have omitted referencing or discussing any earlier cryoET work. This was certainly not our intention, and we include a more complete discussion of published cryoET work on synapses in our revised manuscript.

      The reviewer is concerned that the synaptic vesicles in some synapse tomograms are “stretched” and that this may reflect poor preservation.  We would like to point out that such non-spherical synaptic vesicles have also been previously reported in cryoET of primary neurons grown on EM grids (Tao et al., J. Neuro, 2018). Indeed, there is no reason per se to suppose synaptic vesicles are always spherical and there are many diverse families of proteins expressed at the synapse that shape membrane curvature (BAR domain proteins, synaptotagmin, epsins, endophilins and others). We will add further discussion of this issue in the revised manuscript.

      The reviewer regards ‘cryo-sectioning’ as outdated and cryoET data from these preparations as “poor quality”. We respectfully disagree. Preparing brain tissues for cryoET is generally considered to be challenging. The first successful demonstration of preparing such samples was before the advent of the cryoEM resolution revolution (with electron counting detectors) by Zuber et al (Proc. Natl. Acad. Sci.,2005) preparing cryo-sections/CEMOVIS of in vitro brain cultures. We followed this technique to prepare tissue cryo-sections for cryoET in our manuscript. Recently, cryoFIB-SEM liftout has been developed as an alternative method to prepare tissue samples for cryoET (Mahamid et al., J. Struct. Biol., 2015) and only more recently this method became available to more laboratories. Both techniques introduce damage as has been described (Han et al., J. Microsc., 2008; Lucas et al., Proc. Natl. Acad. Sci., 2023). Importantly no like-for-like, quantitative comparison of these two methodologies has yet been performed. We have recently demonstrated that the molecular structure of amyloid fibrils within human brain is preserved down to the protein fold level in samples prepared by cryo-sectioning (Gilbert et al., Nature, 2024). We will add further detail on the process by which we excluded poor quality tomograms from our analysis, which we described in detail in our methods section.

      The reviewer asks what the physiological effect is of adding 20% w/v ~40,000 Da dextran? This is a reasonable concern since this could in principle exert osmotic pressure on the tissue sample. While we did not investigate this ourselves, earlier studies have (Zuber et al, 2005) showing cell membranes were not damaged by and did not have any detectable effect on cell structure in the presence of this concentration of dextran.

      The reviewer is not convinced by our analysis of the apparent molecular density of macromolecules in the postsynaptic compartment that in conventional EM is called the postsynaptic density. However, the reviewer provides no reasoning for this assessment nor alternative approaches that could be attempted. We would like to add that we have tested multiple different approaches to objectively measure molecular crowding in cryoET data, that give comparable results. We believe that our conclusion – that we do not observe an increased molecular density conserved at the postsynaptic membrane, and that the PSD that we and others observed by conventional EM does not correspond to a region of increased molecular density - is well supported by our data.  We and the other reviewers consider this an important and novel observation.

      Reviewer #2 (Public review)

      Summary: 

      The authors set out to visualize the molecular architecture of the adult forebrain glutamatergic synapses in a near-native state. To this end, they use a rapid workflow to extract and plunge-freeze mouse synapses for cryo-electron tomography. In addition, the authors use knockin mice expression PSD95-GFP in order to perform correlated light and electron microscopy to clearly identify pre- and synaptic membranes. By thorough quantification of tomograms from plunge- and high-pressure frozen samples, the authors show that the previously reported 'post-synaptic density' does not occur at high frequency and therefore not a defining feature of a glutamatergic synapse.

      Subsequently, the authors are able to reproduce the frequency of post-synaptic density when preparing conventional electron microscopy samples, thus indicating that density prevalence is an artifact of sample preparation. The authors go on to describe the arrangement of cytoskeletal components, membraneous compartments, and ionotropic receptor clusters across synapses.

      Demonstrating that the frequency of the post-synaptic density in prior work is likely an artifact and not a defining feature of glutamatergic synapses is significant. The descriptions of distributions and morphologies of proteins and membranes in this work may serve as a basis for the future of investigation for readers interested in these features.

      Strengths: 

      The authors perform a rigorous quantification of the molecular density profiles across synapses to determine the frequency of the post-synaptic density. They prepare samples using two cryogenic electron microscopy sample preparation methods, as well as one set of samples using conventional electron microscopy methods. The authors can reproduce previous reports of the frequency of the post-synaptic density by conventional sample preparation, but not by either of the cryogenic methods, thus strongly supporting their claim. 

      We thank the reviewer for their generous assessment of our manuscript.

      Reviewer #3 (Public review): 

      Summary: 

      The authors use cryo-electron tomography to thoroughly investigate the complexity of purified, excitatory synapses. They make several major interesting discoveries: polyhedral vesicles that have not been observed before in neurons; analysis of the intermembrane distance, and a link to potentiation, essentially updating distances reported from plastic-embedded specimen; and find that the postsynaptic density does not appear as a dense accumulation of proteins in all vitrified samples (less than half), a feature which served as a hallmark feature to identify excitatory plastic-embedded synapses. 

      Strengths: 

      (1)The presented work is thorough: the authors compare purified, endogenously labeled synapses to wild-type synapses to exclude artifacts that could arise through the homogenation step, and, in addition, analyse plastic embedded, stained synapses prepared using the same quick workflow, to ensure their findings have not been caused by way of purification of the synapses. Interestingly, the 'thick lines of PSD' are evident in most of their stained synapses.

      (2)I commend the authors on the exceptional technical achievement of preparing frozen specimens from a mouse within two minutes.

      (3)The approaches highlighted here can be used in other fields studying cell-cell junctions.

      (4)The tomograms will be deposited upon publication which will enable neurobiologists and researchers from other fields to carry on data evaluation in their field of expertise since tomography is still a specialized skill and they collected and reconstructed over 100 excellent tomograms of synapses, which generates a wealth of information to be also used in future studies.

      (5) The authors have identified ionotropic receptor positions and that they are linked to actin filaments, and appear to be associated with membrane and other cytosolic scaffolds, which is highly exciting.

      (6) The authors achieved their aims to study neuronal excitatory synapses in great detail, were thorough in their experiments, and made multiple fascinating discoveries. They challenge dogmas that have been in place for decades and highlight the benefit of implementing and developing new methods to carefully understand the underlying molecular machines of synapses.

      Weaknesses: 

      The authors show informative segmentations in their figures but none have been overlayed with any of the tomograms in the submitted videos. It would be helpful for data evaluation to a broad audience to be able to view these together as videos to study these tomograms and extract more information. Deposition of segmentations associated with the tomgrams would be tremendously helpful to Neurobiologists, cryo-ET method developers, and others to push the boundaries.

      Impact on community: 

      The findings presented by Peukes et al. pertaining to synapse biology change dogmas about the fundamental understanding of synaptic ultrastructure. The work presented by the authors, particularly the associated change of intermembrane distance with potentiation and the distinct appearance of the PSD as an irregular amorphous 'cloud' will provide food for thought and an incentive for more analysis and additional studies, as will the discovery of large membranous and cytosolic protein complexes linked to ionotropic receptors within and outside of the synaptic cleft, which are ripe for investigation. The findings and tomograms available will carry far in the synapse fields and the approach and methods will move other fields outside of neurobiology forward. The method and impactful results of preparing cryogenic, unlabelled, unstained, near-native synapses may enable the study of how synapses function at high resolution in the future.

      We thank the reviewer for their supportive assessment of our manuscript.  We thank the reviewer for suggesting overlaying segmentations with videos of the raw tomographic volumes. We will include this in our revised manuscript.

      Reviewer #1 (Recommendations for the authors): 

      Major comments: 

      (1) The previous literature on synaptic cryo-ET studies is systematically ignored. The results presented here (and their novelty) must be compared directly with this body of work, rather than with classical EM.

      Our submitted manuscript included a 3-paragraph discussion of earlier synaptic cryoET studies, albeit we apologize that a seminal citation was missing, which we have corrected in our revised manuscript. We have now also included an additional brief discussion related to several more recent cryoET studies (see citations below) that were published after our pre-print was first deposited in 2021.

      (1) Held, R.G., Liang, J., and Brunger, A.T. (2024). Nanoscale architecture of synaptic vesicles and scaffolding complexes revealed by cryo-electron tomography. Proc. Natl. Acad. Sci. 121, e2403136121. https://doi.org/10.1073/pnas.2403136121.

      (2) Held, R.G., Liang, J., Esquivies, L., Khan, Y.A., Wang, C., Azubel, M., and Brunger, A.T. (2024). In-Situ Structure and Topography of AMPA Receptor Scaffolding Complexes Visualized by CryoET. bioRxiv, 2024.10.19.619226. https://doi.org/10.1101/2024.10.19.619226.

      (3)Matsui, A., Spangler, C., Elferich, J., Shiozaki, M., Jean, N., Zhao, X., Qin, M., Zhong, H., Yu, Z., and Gouaux, E. (2024). Cryo-electron tomographic investigation of native hippocampal glutamatergic synapses. eLife 13, RP98458. https://doi.org/10.7554/elife.98458.

      (4)Glynn, C., Smith, J.L.R., Case, M., Csöndör, R., Katsini, A., Sanita, M.E., Glen, T.S., Pennington, A., and Grange, M. (2024). Charting the molecular landscape of neuronal organisation within the hippocampus using cryo electron tomography. bioRxiv, 2024.10.14.617844. https://doi.org/10.1101/2024.10.14.617844.

      We discuss the above papers in our revised manuscript with the following:

      “Since submission of our manuscript, several reports of synapse cryoET from within cultured primary neurons (Held et al., 2024a, 2024b)  and mouse brain(Glynn et al., 2024; Matsui et al., 2024) were prepared by cryoFIB-milling. These new datasets are largely consistent with the data reported here. CryoFIB-SEM has the advantage of overcoming the local knife damage caused by cryo-sectioning but introduces amorphization across the whole sample that diminishes the information content (Al-Amoudi et al., 2005; Lovatt et al., 2022; Lucas and Grigorieff, 2023). We have recently shown cryoET data is capable of revealing subnanometer resolution in-tissue protein structure from vitreous cryo-sections (Gilbert et al., 2024) and near-atomic structures within cryo-sections has recently been demonstrated (Elferich et al., 2025).”

      Although there is variation between individual synapses, PSDs are clearly visible in several previous cryo-ET studies (even if it's not as striking as in heavy-metal stained samples). In fact, although the contrast of the images is generally poor, PSDs are also visible in several examples shown in Figure 1 - Supplement 3. Not being able to detect them seems more of a problem of the workflow used here than of missing features. The authors should also discuss why heavy-metal stains would accumulate on a non-existing structure (PSD) in conventional EM.

      We agree that apparent higher molecular density can be observed in example tomographic data of earlier cryoET studies. We also report individual examples of similar synapses in our dataset. A key strength of our approach is that we have assessed the molecular architecture of large numbers of adult brain synapses acquired by an unbiased approach (solely guided by PSD95 cryoCLEM), which indicate that a higher molecular density proximal to the postsynaptic membrane is not a conserved feature of glutamatergic synapses in the adult brain. There is no rationale for our cryoCLEM approach being a ‘problem of the workflow’.

      The reviewer misunderstands the weaknesses of conventional/room temperature EM workflows (including resin-embedding and freeze substitution). It is unavoidable that most proteins are damaged by denaturation and/or washed away by washing samples in organic solvents (methanol/acetone that directly denature most proteins) during tissue preparation for conventional EM. It is therefore conceivable that in such preparations a relative increase in contrast proximal to the postsynaptic membrane (‘PSD’) would appear if cytoplasmic proteins were washed away during these harsh organic solved washing steps, leaving only those denatured proteins that are tethered to the postsynaptic membrane. It is not that the PSD is absent in cryoEM, rather that this difference in molecular crowding is not evident when tissues are imaged directly by cryoEM and have not undergone the harsh sample preparation required for conventional/room temperature EM.

      (2) Whether the synapses examined here are in a more physiological state than those analyzed in other papers remains absolutely unclear. For example, the quality of the tomographic slice shown in Figure 1C is poor, with the majority of synaptic vesicles looking suspiciously elongated. 

      We addressed this in our public reviews.

      (3) How were actin filaments segmented and quantified (e.g. for Fig 1E)? Apart from actin, can the authors show some examples of other macromolecular complexes (e.g. ribosomes) that they are able to identify in synapses (based on the info in supplementary tables)? Also, the mapping of glutamatergic receptors is not convincing, as the molecules were picked manually. To analyze their distribution, they should be mapped as comprehensively as possible by e.g. template matching.

      Actin filaments identified by ~7 nm diameter with ~70° branch points were manually segmented in IMOD. The number of filaments was counted per postsynaptic compartment. We have amended the methods section to include this description.

      “In the PoSM, F-actin formed a network with ~70° branch points (Figure 1–figure supplement 1C) likely formed by Arp2/3, as expected(Pizarro-Cerdá 2017,Fäßler 2020) . Putative filament copy number in the PoSM was estimated by manual segmentation in IMOD.” Manual picking was validated by the quality of the subtomogram average, which although only reached modest resolution (25 Å) is consistent with the identification of ionotropic glutamate receptors.

      (4) In the section "Synaptic organelles" the authors should provide some general information on the average number and size of synaptic vesicles (for the in-tissue tomograms).

      We have provided this information in the methods section:

      “The average diameter of synaptic vesicles was 40.2 nm and the minimum and maximum dimensions ranged from 20 to 57.8 nm, measured from the outside of the vesicle that included ellipsoidal synaptic vesicles similar to those previously reported (Tao et al., 2018).” A detailed survey of the presynaptic compartment, including the number of presynaptic vesicles was not the focus of our manuscript. We have deposited all tomograms from our dataset for any further data mining.

      Can the "flat tubular membranes compartments" be attributed to ER? The angular vesicles certainly have a typical ER appearance, as such morphology has been seen in several cryo-ET studies of neuronal and non-neuronal cells.

      In neuronal cells we regard it as unsafe to describe an intracellular organelle as being endoplasmic reticulum on the basis of morphology alone (eg. Smooth ER described widely in conventional EM) because of the apparent diversity of distinct organelles. As described in our methods section, we could have confidence that a membrane compartment is ER when we observe ribosomes tethered to the membrane. In instances where flat/tubular membranes did not have associated ribosomes, we take the cautious view that there is not sufficient evidence to define these as ER.

      Importantly, polyhedral vesicles were distinct from the flat/tubular membranes that resembled ER and are at present organelles of unknown identity. It will be important in future experiments to determine what are the protein constituents of these distinct organelle types to understand both their functions and how these distinct membrane architectures are assembled.

      Therefore, the sentences in lines 198-199 are simply wrong. Additionally, features of even higher membrane curvature are common in the ER (e.g. Collado et al., Dev Cell 2019). 

      We thank the reviewer for bringing our attention to this excellent paper (Collado et al.). We agree that the sentence describing the curvature being higher than all other membranes except mitochondrial cristae is wrong. We have removed this sentence in the revised manuscript.

      (5)The quality of the tomographic data for the in-tissue sample is low, likely due to cryo-sectioning-induced artifacts, as extensively documented in the literature. Additionally, the authors used 20% dextran as cryo-protectant for high-pressure freezing, which contrasts with statements like those in lines 342-344. Given that several publications describing the in-tissue targeting of synapses (e.g. from Eric Gouaux's lab) are available, the quality of the tomographic data presented in this work is underwhelming and limits the conclusions that can be drawn, not providing a solid basis for future studies of in-tissue synapse targeting. However, the complete workflow (excluding the sectioning part) can be adapted for a cryo-FIB approach. The authors should discuss the limitations of their approach. 

      Our manuscript preprint was deposited in the Biorxiv several years before Matsui/Gouaux’s recent ELife paper that reported a novel work-flow for in-tissue cryoET. It is difficult to directly compare data from our and Matsui/Gouaux’s approach because the latter reported a dataset of only 3 tomograms. Note also that Matsui/Gouaux followed our approach of using 20% dextran 40,000 as a cryo-preservative. The use of 20% dextran 40,000 as a cryo-protectant was first established by Zuber et al., 2005 (PMID: 16354833) and shown avoid hyper-osmotic pressure and cell membrane rupture. However, Matsui/Gouaux additionally included 5% sucrose in their cryoprotectant. We did not include sucrose as cryo-preservative because this exerts osmotic pressure and was not necessary to achieve vitreous tissues in our workflow.

      Before high-pressure freezing, Matsui/Gouaux also incubated tissue slices in a HEPES-buffered artificial cerebrospinal fluid (that included 2 mM CaCl2 but did not include glucose as an energy source) for 1 h at room temperature to label AMPA receptors with Fab fragment-Au conjugates. Under these conditions, neurons can elicit both physiological and excitotoxic action potentials (even though AMPARs were themselves antagonised with ZK-200775). The absence of glucose is a concern, and it is unclear to what extent tissue viability is affected by this incubation step. In contrast, we chose to use an NMDG-based artificial cerebrospinal fluid for slice preparation and high-pressure freezing that is a well-established method for preserving neuronal viability (Ting et al., 2018).

      We addressed the supposed limitations of cryo-sectioning versus cryoFIB-SEM in our public response. In particular, we have recently shown that cryo-sectioning produced a  subnanometer resolution in-tissue structure of a protein, that has so far only been achieved for ribosome within cryoFIB-SEM sample preparations. A discussion of cryo-sectioning versus cryoFIB-SEM must be informed by new data that directly compares these methods, which is not the subject of our eLife paper. We also cite a recent preprint directly comparing cryoFIB-milled lamellae with cryo-sections and showing that near atomic resolution structures can also be obtained from the latter sample preparations (Elferich et al., 2025).

      (6) The authors show (in Supplementary) putative tethers connecting SV and the plasma membrane. Is it possible to improve the image quality (e.g. some sort of filtering or denoising) so that the tethers appear more obvious? Can the authors observe connectors linking synaptic vesicles? 

      We have tested multiple iterative reconstruction and denoising approaches, including SIRT and noise2noise filtering in Isonet. We observed instances of macromolecular complexes linking one synaptic vesicle with another. However, there was no question we sought to answer by performing a quantitative analysis of these linkers.

      (7) Figure 4F is missing. 

      Thank you for spotting this omission. We have corrected this in the revised manuscript.

      (8) Most quantifications lack statistical analyses. These need to be included, and only statistically significant findings should be discussed. Terms like "significantly" (e.g. Line 144) should only be used in these cases.

      We used the term ‘significantly’ in the results section (line 143 and line 166 in revised text, we cite figure 1H and 2F showing analyses in which we have in fact performed statistical tests (t-tests with Bonferroni correction) comparing the voxel intensities in regions of the cytoplasm that are proximal versus distal to the postsynaptic membrane. We have amended the main text to include the details of the statistical test that we performed. Also, we neglected to include a description of the statistical test in line 241, which cites Figure 3G. We have corrected this in the revised text.

      Minor comments: 

      (1) Can the authors comment on why only 1-2 grids are prepared per mouse brain (in M&M -section)?

      We prepared only two grids in order to have prepared samples within 2 minutes, to limit deterioration of the sample.

      (2) Figure 1 Supplement 2 and its legend are confusing (averaging of non-aligned versus aligned post-synaptic membrane). Can the authors describe more clearly their molecular density profile analysis?

      We apologise that this figure legend was insufficient. We have included a detailed description of our molecular density profile analysis in the methods section entitled ‘Molecular density profile analysis’. In the revised manuscript we have now also included a citation to this methods section in Figure – figure 1 supplement 2 legend.

      (3) Please clarify with higher precision the areas were recorded in relation to the fluorescent spots (e.g. Figures 3A-C).

      We have included a white rectangular annotation in the cryoCLEM inset panels of Figures 3A-C to indicate the field of view of each corresponding tomographic slice. This shows that PSD95-GFP puncta localise to the postsynaptic compartments in each tomogram.

      (4) Figure 4 Supplement 2D is not clear: the connection between receptors and actin should be shown in a segmentation.

      We agree with the reviewer. A ‘connection’ is not clear, which is expected because the cytoplasmic domain of ionotropic glutamate receptor subunits is composed of a non-globular/intrinsically disordered sequence. We have amended our description of the proximity of actin cytoskeleton to ionotropic glutamate receptor clusters in the main text replacing “associated with” to “adjacent to”.

      (5) Line 341: the reference is referred to by a number (56) at the end of the sentence, rather than by name.

      Good spot. We have corrected this in the revised manuscript.

      (6) Line 968: tomograms is misspelled. 

      Good spot. We have corrected this error (line 1018 in our revised manuscript).

      Reviewer #2 (Recommendations for the authors): 

      (1) On page 11: "The position of (i)onotropic receptor...". 

      Good spot. We have corrected this.

      (2) On page 13: "Slightly higher relative molecular density..." this line ends with a citation to reference '56', but the works cited are not numbered.

      Good spot. We have corrected this in the revised manuscript.

      (3) On page 46: "as described in (69)..." the works cited are not numbered. 

      Good spot. We have corrected this in the revised manuscript.

      Reviewer #3 (Recommendations for the authors): <br /> (1) The title does not do the work justice. The authors make many exciting discoveries, e.g. PSD appearance, new polyhedral vesicles, ionotropic receptor positions, and intermembrane distance changes even within the synaptic cleft, but title their manuscript "The molecular infrastructure of glutamatergic synapses in the mammalian forebrain". It is also a bit misleading, since one would have expected more molecular detail and molecular maps as part of the work, so the authors may think about updating the title to reflect their exciting work. 

      We thank the reviewer for recognising the exciting discoveries in our manuscript. Summarising all these in a title is challenging. We intend ‘molecular infrastructure’ to mean a structure composed of many molecules including proteins (by analogy ‘transport infrastructure’ is composed of many roads, ports and train lines).

      (2) It would be in the spirit of eLife and open science if the authors could submit their segmentations alongside the tomographic data to either EMPIAR or pdb-dev (if they accept it) or the new CZII cryoET data portal for neurobiologists, method developers, and others to use. 

      We agree with the reviewer. We have deposited in subtomogram averaged map of AMPA receptor in EMDB, and all tilt series and 4x binned tomographic reconstructions described in our manuscript (figure 1- table1 and figure 2 -table 2), together with segmentations in EMPIAR.  

      (3) Methods: the authors establish an exciting new workflow to get from living mice to frozen specimens within 2 minutes and perform many unique analyses that would be useful to different fields. Their methods section overall is well described and contains criteria and details that should allow others to apply experiments to their scientific problems. However, it would be very helpful to expand on the methods in the 'annotation and analysis [...]' and "Subtomogram averaging" sections, to at least in short describe the steps without having to embark on a reference journey for each method and generally provide more detail. For the annotation section, the software used for annotation is not listed. Table 1 only contains the list of the counts of organelles etc. identified in each tomogram, no processing details. 

      We have revised the methods section ‘annotation and analysis’ including software used (IMOD). We have also included a slightly more detailed description of subtomogram averaging. We did not include ‘processing details’ because there are none - identification of constituents in each tomogram was carried out manually, as described in the methods section.

      (4) Some of the tomograms submitted as videos may have slipped through as an early version since they appear to be originating from not perfectly aligned tiltseries; vesicles and membranes can be observed 'rubberbanding'. The authors should go through and check their videos. 

      We thank the referee for suggesting we double check our tomogram videos. All movies are representative tomographic reconstructions from ultra-fresh synapse preparations (Figure 1 – videos 1-7) and synapses in tissue cryo-sections (Figure 2 – videos 1-2). We have double checked that the videos correspond to tomograms that were aligned as good as possible. In general, tissue cryo-section tomograms reconstructed less well than ultra-fresh synapse tomograms, which limits the information content of these data, as expected. Consequently, the reconstructions shown in these videos were all reconstructed as best we could (testing multiple approaches in IMOD, and more recent software packages, eg. AreTomo). While we think it is important to share all tomograms, regardless of quality, we were careful to exclude tomograms for analysis that did not contain sufficient information for analysis (as described in the methods section).

      Minor suggestions: 

      (1) Page 13, line 341, reference 56, but references are not numbered. Please update.

      Good spot. We have corrected this in the revised manuscript.

      (2) Page 33, line 746, the figure legend is not referencing the correct figure panels G-K should be I-K;

      We have amended the Figure 3 legend to “(G-K) Snapshots and quantification of membrane remodeling within glutamatergic synapses”.

      (3) Page 33, line 750; reads 'same as E', but should be 'same as G'. 

      Good spot. We have corrected this in the revised manuscript.

      (4) Page 35, Figure 4: Please use more labels: Figure 4B: it would be helpful to use different colors for each view and match to the tomogram - then non-experts could easily relate the projections and real data; Figure 4C: please label domains; Figure 4F: the figure panel got lost. 

      This is an interesting idea. While our subtomgram average of 2522 subvolumes provided decent evidence that these are ionotropic receptors, we are reluctant to label specific putative domains of individual subvolumes in the raw tomographic slice because the resolution of the raw tomogram (particularly in the Z-direction) is worse and may not be sufficient to resolve definitely each domain layer. We hope the reviewer appreciates our cautious approach.

      (5) Page 42, line 933: incomplete sentence. 

      Good spot. We have corrected this in the revised manuscript.

      (6) Page 46, line 1038; Reference 69 is in brackets, but references are not numbered. Please update.

      Good spot. We have corrected this in the revised manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Note : The original preprint version of our manuscript has been reviewed by 3 subject experts for Review Commons. All the three reviewers’ comments on the original version of our manuscript have been fully addressed. Their input was extremely valuable in helping us clarify and refine the presentation of our results and conclusions. Their feedback contributed to making the study both more thoroughly developed and more accessible to a broad readership, while preserving its mechanistic depth. We believe that this revised version more effectively highlights the conceptual advances brought by our findings.

      Reviewer #1

      Evidence, reproducibility and clarity

      The manuscript "Key roles of the zona pellucida and perivitelline space in promoting gamete fusion and fast block to polyspermy inferred from the choreography of spermatozoa in mice oocytes" by Dr. Gourier and colleagues explores the poorly understood process of gamete fusion and the subsequent block to polyspermy by live-cell imaging of mouse oocytes with intact zona pellucida in vitro. The new component in this study is the presence of the ZP, which in prior studies of live-cell imaging had been removed before. This allowed the authos to examine contributions of the ZP to the block in polyspermy in relation to the timing of sperm penetrating the ZP and sperm fusing with the oocyte. By carefully analysing the timing of the cascade of events, the authors find that the first sperm that reaches the membrane of the mouse oocyte is not necessarily the one that fertilizes the oocytes, revealing that other mechanisms post-ZP-penetration influence the success of individual sperm. While the rate of ZP penetration remains constant in unfertilized oocytes, it decreases upon fertilization for subsequent sperm, providing direct evidence for the known 'slow block to polyspermy' provided by changes to the ZP adhesion/ability to be penetrated. Careful statistical analyses allow the authors to revisit the role of the ZP in preventing polyspermy: They show that the ZP block resulting from the cortical reaction is too slow (in the range of an hour) to contribute to the immediate prevention of polyspermy in mice. The presented analyses reveal that the ZP does contribute to the block to polyspermy in two other ways, namely by effectively limiting the number of sperm that reach the oocyte surface in a fertilization-independent manner, and by retaining components like JUNO and CD9, that are shed from the oocyte plasma membrane after fertilization, in the perivitelline space, which may help neutralize surplus spermatozoa that are already present in the PVS. Lastly, the authors report that the ZP may also contribute to channeling the flagellar oscillations of spermatozoa in the PVS to promote their fusion competence.

      Major comments:

      • Are the key conclusions convincing?

      The authors provide a careful analysis of the dynamics of events, though the analyses are correlative, and can only be suggestive of causation. While this is a limitation of the study, it provides important analysis for future research. Moreover, by analysing also control oocytes without fertilization and the timing of events, the authors have in some instances clear 'negative controls' for comparison.

      Some claims would benefit from rewording or rephrasing to put the findings better in the context of what is already known and what is novel:

      • the phrasing 'challenging prior dogma' might be too strong since it had been observed before that it is not necessarily the first sperm that gets through the ZP that fertilizes the egg (though I am afraid that I do not have any citations or references for this). However, given that in the field people generally think it is not necessarily and always the first sperm, the authors may want to consider weakening this claim.

      Only real-time imaging of in vitro fertilization of zona pellucida-intact oocytes, as performed in our study, is capable of determining which spermatozoon crossing the zona pellucida fuses with the oocyte. However, such studies are rare, and most do not specifically address this question. As Reviewers 1 & 3, we have not found any citation or reference telling or showing that it is not necessarily the first spermatozoon to penetrate the zona pellucida that fertilizes the egg. In contrast, at least one reference (Sato et al., 1979) explicitly reports the opposite. If, as suggested by Reviewer 1 and 3, it has indeed been observed before that the first sperm to pass the ZP is not always the one that fertilizes, and if this idea is generally accepted in the field, then it is all the more important that a study demonstrates and publishes this point. This is precisely what our study makes possible. However, in case we may have overlooked a previous reference making the same observation as ours, we have removed the phrasing ‘challenging prior dogma’. That being said, the key issue is not so much that it is not necessarily the first spermatozoon penetrating the perivitelline space that fertilizes, but rather why spermatozoa that successfully reach the PVS of an unfertilized oocyte may fail to achieve fertilization. This is one of the central questions our study sought to address.

      • I do think the cortical granule release could still contribute to the block to polyspermy though - as the authors here nicely show - at a later time-point only, and thus not the major and not the immediate block as previously thought. The wording in the abstract should therefore be adjusted (since it could still contribute...)

      We are concerned that we may disagree on this point. The penetration block resulting from cortical granule release progressively reduces the permeability of the zona pellucida to spermatozoa, relative to its baseline permeability prior to sperm–oocyte fusion. Any decrease in this baseline permeability occurring before the fusion block becomes fully effective can contribute to the prevention of polyspermy by limiting the number of sperm that can access the oolemma at a time when fusion is still possible. In contrast, once the fusion block is fully established, limiting the number of spermatozoa traversing the ZP becomes irrelevant regarding the block to polyspermy, as the fusion block alone is sufficient to prevent additional fertilizations, rendering the penetration block obsolete. The only scenario that could challenge this obsolescence is if the fusion block were transient. In that case, as Reviewer 1 suggests, the penetration block could indeed play a role at a later time-point. However, taken together, our study and that of Nozawa et al. (2018) support the conclusion that this is not the case in mice:

      • Our in vitro study using kinetic tracking shows that the time constant for completion of the fusion block is typically 6.2 ± 1.3 minutes. During this time window, we observe that the permeability of the zona pellucida to spermatozoa does not yet decrease significantly from the baseline level it exhibited prior to sperm–oocyte fusion (see Figures 5B and S1B in the revised manuscript, and Figures 5A and 5B in the initial version). Consequently, before the fusion block is fully established, the penetration block can contribute only marginally—if at all—to the prevention of polyspermy. In contrast, the naturally low baseline permeability of the ZP—independent of any fertilization-triggered penetration block—as well as the relatively long timing of fusion ( minutes on average) after sperm penetration in the perivitelline space, are factors that contribute to the preservation of monospermic while the fusion block is still being established.
      • Our in vitro study using kinetic tracking shows that once the fusion block is completed following the first fusion event, no additional spermatozoa are able to fuse with the oocyte until the end of the experiment, 4 hours post-insemination (see blue points and fitting curve in Figure 5C). Meanwhile, one or more additional spermatozoa—most of them motile and therefore viable—are present in the perivitelline space in 50% of the oocytes analyzed (purple point in Figure 5C). This demonstrates that, once established, the fusion block remains effective for at least the entire duration of the experiment, supporting the idea of a fully functional and long-lasting fusion block.
      • Nozawa et al. (2018) found that female mice lacking ovastacin—the protease released during the cortical reaction that renders the zona pellucida impenetrable—are normally fertile. They additionally reported that the oocytes recovered from these females after mating are monospermic despite the systematic presence of additional spermatozoa in the perivitelline space. These findings further support the conclusion that in mice the fusion block is both permanent and sufficient to prevent polyspermy. For all these reasons, we believe that even at a later time-point, the penetration block does not contribute to the prevention of polyspermy in mice.

      To clarify the fact that the penetration block does not necessarily contribute to prevent polyspermy, which indeed challenges the commonly accepted view, we have substantially revised the discussion. Furthermore, Figure 9 from the initial version of the manuscript has been replaced by Figure 8 in the revised version. This new figure provides a more didactic illustration of the inefficacy of the penetration block in preventing polyspermy in mice, by showing the respective impact of the fusion block, the penetration block, as well as fusion timing and the natural baseline permeability of the zona pellucida, on the occurrence of polyspermy.

      As for the abstract, it has also been thoroughly revised. The content related to this section is now expressed in a way that emphasizes the factors that actively contribute to the prevention of polyspermy in mice, rather than those with no or marginal contribution (such as the penetration block in this case).

      • release of OPM components - in the abstract it's unclear what the authors mean by this - in the results part it becomes clear. Please already make it clear in the abstract that it is the fertility factors JUNO/CD9 that could bind to sperm heads upon their release and thus 'neutralize' them? I would also recommend not referring to it as 'outer' plasma membrane (there is no 'inner plasma membrane'). Moreover, in the abstract please clarify that this release is happening only after fusion of the first sperm and not all the time. In the abstract it sounds as if this was a completely new idea, but there is good prior evidence that this is in fact happening (as also then cited in the results part) - maybe frame it more as the retention inside the PVS as new finding.

      We thank reviewer 1 for pointing out the lack of precision in the abstract regarding the “components” released from the oolemma, and the fact that our phrasing may have given the impression that the post-fertilization release of CD9 and JUNO is a novel observation. The new observation is that CD9 and JUNO, which are known to be massively released from the oolemma after fertilization, bind to spermatozoa in the perivitelline space. However, we cannot rule out the possibility that other oocyte-derived molecules not investigated here may undergo a similar process. This is why we employed the broader term “components”, which encompasses both CD9 and JUNO as well as potential additional molecules. That said, we acknowledge the lack of precision introduced by this terminology. To address this, we have revised the corresponding sentence in the abstract to better reflect our new findings relative to previous ones, and to eliminate the ambiguity introduced by the word “component”.

      The revised sentence of the abstract reads as follows:

      “Our observation that non-fertilizing spermatozoa in the perivitelline space are coated with CD9 and JUNO oocyte’s proteins, which are known to be massively released from the oolemma after gamete fusion, supports the hypothesis that the fusion block involves an effective perivitelline space-block contribution consisting in the neutralization of supernumerary spermatozoa in the perivitelline space by these and potentially other oocyte-derived factors.”

      Moreover, we cannot state in the abstract that the release of CD9 and JUNO occurs only after the fusion of the first spermatozoon and not before, since some CD9 and JUNO are already detectable in the perivitelline space (PVS) prior to fusion. What our study shows is that, before fertilization, CD9 and JUNO are predominantly localized at the oocyte membrane. In contrast, after fusion (four hours post-insemination), oocyte CD9 is distributed between the membrane and the PVS, and the only JUNO signal detectable in the oocyte is found in the PVS. This is what we describe in the Results section on page 15.

      Regarding the acronym “OPM” in the initial version of the manuscript, although it was defined in the introduction as referring to the oocyte plasma membrane and not the outer plasma membrane (which, indeed, would not be meaningful), we acknowledge that it may have caused confusion to people in the field due to its resemblance to the commonly used meaningful acronym “OAM” for outer acrosomal membrane. To avoid any ambiguity, we have replaced the acronym “OPM” throughout the revised manuscript with the term “oolemma”, which unambiguously refers to the plasma membrane of the oocyte.

      It is unclear to me what the relevance of dividing the post-fusion/post-engulfment into different phases as done in Fig 2 (phase 1, and phase 2) - also for the conclusions of this paper this seems rather irrelevant and overly complicated, since the authors never get back to it and don't need it (it's not related to the polyspermy block analyses). I would remove it from the main figures and not divide into those phases since it is distracting from the main focus.

      Sperm engulfment and PB2 extrusion are two processes that follow sperm–oocyte fusion. As such, they are clear indicators that fusion has occurred and that meiosis has resumed. Their progression over time is readily identifiable in bright-field imaging: sperm engulfment is characterized by the gradual disappearance of the spermatozoon head from the oolemma, whereas PB2 extrusion is observed as the progressive emergence of a rounded protrusion from the oocyte membrane (Figure 2 in the initial manuscript and Figure S2 A&B in the revised version). The kinetics of these events, measured from the arrest of “push-up–like” movement of the sperm head against the oolemma —assumed to coincide with sperm-oocyte fusion, as further justified in a later response to Reviewer 1—provide reliable temporal landmarks for estimating the timing of fusion when the fusion event itself is not directly observed in real time (Figure S2 C&D).

      The four landmarks used in this estimation are:

      (i) the disappearance of the sperm head from the oolemma due to internalization (28 ± 2 minutes post-arrest, mean ± SD);

      (ii) the onset of PB2 protrusion from the oolemma (28 ± 2 minutes post-arrest);

      (iii) the moment when the contact angle between the PB2 protrusion and the oolemma shifts from greater than to less than 90° (49 ± 6 minutes post-arrest);

      (iv) the completion of PB2 extrusion (73 ± 10 minutes post-arrest).

      The approach used to determine the fusion time window of a fertilizing spermatozoon from these landmarks is detailed in the “Determination of the Fertilization Time Windows” section of the Materials and Methods. Compared to the initial version of the manuscript, we have added a paragraph explaining the rationale for using the arrest of the push-up–like movement as a reliable indicator for sperm–oocyte fusion and have clarified the description of the approach used to determine fertilization timing.

      The timed characterization of sperm engulfment and PB2 extrusion kinetics is highly relevant to the analysis of the penetration and fusion blocks, however we agree that its place is more appropriate in the Supplementary Information than in the main text. In accordance with the reviewer’s recommendation, this section has therefore been moved to the Supplementary Information SI2.

      For the statistical analysis, I am not sure whether the assumption "assumption that the probability distribution of penetration or fertilization is uniform within a given time window" is in fact true since the probability of fertilizing decreases after the first fertilization event.... Maybe I misunderstood this, but this needs to be explained (or clarified) better, or the limitation of this assumption needs to be highlighted.

      During in vitro fertilization experiments with kinetic tracking, each oocyte is observed sequentially in turn. As a result, sperm penetration into the perivitelline space or fusion with the oolemma may occur either during an observation round or in the interval between two rounds. In the former case, penetration or fusion is directly observed in real time, allowing for high temporal precision in determining the moment of the event. In contrast, when penetration or fusion occurs between two observation rounds, the precise timing cannot be directly determined. We can only ascertain that the event took place within the time window we have determined. Because, within a given penetration or fusion time window, we do not know the exact moment at which the event occurred, there is no reason to favor one time over another. This justifies the assumption that all time points within the window are equally probable. This explanation has been added in the section Statistical treatment of penetration and fertilization chronograms to study the kinetics of fertilization, penetration block and fusion block of the main text and in the section Statistical treatment of penetrations and fertilizations chronograms to study penetration and fusion blocks of the material and methods.

      -Suggestion for additional experiments:

      If I understood correctly, the onset of fusion in Fig 2C is defined by stopping of sperm beating? If it is by the sudden stop of the beating flagellum, this should be confirmed in this situation (with the ZP intact) that it correctly defines the time-point of fusion since this has not been measured in this set-up before as far as I understand. In order to measure this accurately, the authors will need to measure this accurate to be able to acquire those numbers (of time from fusion to end of engulfment), e.g. by pre-loading the oocyte with Hoechst to transfer Hoechst to the fusing sperm upon membrane fusion.

      The nuclear dye Hoechst is widely used as a marker of gamete fusion, as it transfers from the ooplasm—when preloaded with the dye—into the sperm nucleus upon membrane fusion, thereby signaling the happening of the fusion event. This technique is applicable in the context of in vitro fertilization using ZP-free oocytes. However, it is not suitable when cumulus–oocyte complexes are inseminated, as is the case in both in vitro experimental conditions of the present study (standard IVF and IVF with kinetic tracking). Indeed, when cumulus–oocyte complexes are incubated with Hoechst to preload the oocytes, the numerous surrounding cumulus cells also take up the dye. Consequently, upon insemination, spermatozoa acquire fluorescence while traversing and dispersing the cumulus mass—before reaching the ZP—thus rendering Hoechst labeling ineffective as a specific marker of membrane fusion. This remains true even under optimized conditions involving brief Hoechst incubation of cumulus–oocyte complexes ( Nonetheless, we have strong evidence supporting the use of the arrest of sperm movement as a surrogate marker for the moment of fusion. In our previous study (Ravaux et al., 2016; ref. 4 in the revised manuscript), we investigated the temporal relationship between the abrupt cessation of sperm head movement on the oolemma—resulting from strong flagellar beating arrest—and the fusion event, using ZP-free oocytes preloaded with Hoechst. That study revealed a temporal delay of less than one minute between the cessation of sperm oscillations and the actual membrane fusion, thereby supporting the conclusion that in ZP-free oocytes, the arrest of vigorous sperm movement at the oolemma is a reliable indicator of the moment at which fusion occurs. In the same study, the kinetics of sperm head internalization into the ooplasm were also characterized, typically concluding within 20–30 minutes after movement cessation. These findings are fully consistent with our current observations in ZP-intact oocytes, where sperm head engulfment was completed approximately 24 ± 3 minutes after the arrest of sperm oscillations. Taken together, these results strongly support the conclusion that, in both ZP-free and ZP-intact oocytes, the arrest of sperm movement is a reliable indicator of the fusion event. This assumption formed the basis for our determination of fertilization time points in the present study.

      These justifications were not fully detailed in the original version of the manuscript. We have addressed this in the revised version by explicitly presenting this rationale in the Materials and Methods section under Determination of the Fertilization Time Windows.

      Fig 8: 2 comments

      • To better show JUNO/CD9 pre-fusion attachment to the oocyte surface and post-fusion loss from the oocyte surface (but persistence in the PVS), an image after removal of the ZP (both for pre-fertilization and post-fertilization) would be helpful - the combination of those images with the ones you have (ZP intact) would make your point more visible.

      We have followed this recommendation. Figure 8 of the initial manuscript has been replaced by Figure 6 in the revised manuscript, which illustrates the four situations encountered in this study: fertilized and unfertilized oocytes, each with and without unfused spermatozoa in their PVS. To better show JUNO/CD9 pre-fusion presence to the oocyte plasma membrane, as well as their post-fusion partial (for CD9) and near-complete (for JUNO) loss from the oocyte membrane (but persistence in the PVS), paired images of the same oocyte before and after of ZP removal are now provided, both for unfertilized (Figure 6A) and fertilized oocytes (Figure 6C).

      • You show that the heads of spermatozoa post fusion are covered in CD9 and JUNO, yet I was missing an image of sperm in the PVS pre-fertilization (which should then not yet be covered).

      As staining and confocal imaging of the oocytes were performed 4 hours after insemination, images of sperm in the PVS of an oocyte “pre-fertilization” cannot be strictly obtained. However, we can have images of spermatozoa present in the PVS of oocytes that remained unfertilized. This situation, now illustrated in Figure 6B of the revised manuscript, shows that these spermatozoa are also covered in JUNO and CD9, which they may have progressively acquired over time from the baseline presence of these proteins in the PVS of unfertilized oocytes. This also may provide a mechanistic explanation for their inability to fuse with the oolemma, and, consequently, for the failure of fertilization in these oocytes.

      Minor comments:

      • The videos were remarkable to look at, and great to view in full. However, for the sake of time, the authors might want to consider cropping them for the individual phases to have a shorter video (with clear crop indicators) with the most important different stages visible in a for example 1 min video (e.g. video.

      We have followed this recommendation. The videos have been cropped and annotated in order to highlight the key events that support the points made in the result section from page 9 to 11 in the revised manuscript.

      • In general, given that the ZP, PVS and oocyte membrane are important components, a general scheme at the very beginning outlining the relative positioning of each before and during fertilization (and then possibly also including the second polar body release) would be extremely helpful for the reader to orient themselves.

      A general scheme addressing Reviewer 1 request, summarizing the key components and concepts discussed in the article and intended to help guide the reader, has been added to the introduction of the revised manuscript as Figure 1.

      • first header results "Multi-penetration and polyspermy under in vivo conditions and standard and kinetics in vitro fertilization conditions" is hard to understand - simplify/make clearer (comparison of in vivo and in vitro conditions? Establishing the in vitro condition as assay?)

      The title of the first Results section has been revised in accordance with Reviewer 1 suggestion. It now reads: Comparative study of penetration and fertilization rates under in vivo and two distinct in vitro fertilization conditions.

      • Large parts of the statistical analysis (the more technical parts) could be moved to the methods part since it disrupts the flow of the text.

      In the revised version of our manuscript, we have restructured this part of the analysis to ensure that more technical or secondary elements do not disrupt the flow of the main text. Accordingly, the equations have been reduced to only what is strictly necessary to understand our approach, their notation has been greatly simplified, and the statistical analysis of unfertilized oocytes whose zona pellucida was traversed by one or more spermatozoa has been moved to the Supplementary Information (SI1).

      • To me, one of the main conclusions was given in the text of the results part, namely that "This suggests that first fertilization contributes effectively to the fertilization-block, but less so to the penetration block". I would suggest that the authors use this conclusion to strengthen their rationale and storyline in the abstract.

      We agree with Reviewer 1 suggestion. Accordingly, we have not only thoroughly revised our abstract, but also the introduction and discussion, in order to better highlight the rationale of our study, its storyline, and the new findings which not only challenge certain established views but also open new research directions in the mechanisms of gamete fusion and polyspermy prevention.

      • Wording: To characterize the kinetics with which penetration of spermatozoa in the PVS falls down after a first fertilization," falls down should be replaced with decreases (page 10 and page 12)

      Falls down has been removed from the new version and replaced with decreases


      Significance

      Overall, this manuscript provides very interesting and carefully obtained data which provides important new insights particularly for reproductive biology. I applaud the authors on first establishing the in vivo conditions (how often do multiple sperm even penetrate the ZP in vivo) since studies have usually just started with in vitro condition where sperm at much higher concentration is added to isolated oocyte complexes. Thank you for providing an in vivo benchmark for the frequency of multiple sperm being in the PVS. While this frequency is rather low (somewhat expectedly, with 16% showing 2-3 sperm in the PVS), this condition clearly exists, providing a clear rationale for the investigation of mechanisms that can prevent additional sperm from entering.

      My own expertise is experimentally - thus I don't have sufficient expertise to evaluate the statistical methods employed here.

      __ __


      Reviewer #2

      Evidence, reproducibility and clarity

      Overall, this is a very interesting and relevant work for the field of fertilization. In general, the experimental strategies are adequate and well carried out. I have some questions and suggestions that should be considered before the work is published.

      1) Why are the cumulus cells not mentioned when the AR is triggered before or while the sperms cross it? It seems the paper assumes from previous work that all sperm that reach ZP and the OPM have carried out the acrosome reaction. This, though probably correct, is still a matter of controversy and should be discussed. It is in a way strange that the authors do not make some controls using sperm from mice expressing GFP in the acrosome, as they have used in their previous work.

      We do not mention the cumulus cells or whether the acrosome reaction is triggered before, during, or after their traversal (i.e., upon sperm binding to the ZP), as this question, while scientifically relevant, pertains to a distinct line of investigation that lies beyond the scope of the present study. Even with the use of spermatozoa expressing GFP in the acrosome, addressing this question would require a complete redesign of our kinetic tracking protocol, which was specifically conceived to monitor in bright field the dynamic behavior of spermatozoa from the moment they begin to penetrate the perivitelline space of an oocyte. Accordingly, we imaged oocytes that were isolated 15 minutes after insemination of the cumulus–oocyte complexes, by which time most (if not all) cumulus cells had detached from the oocytes, as explained in the fourth paragraph of the material and methods of both the initial and revised versions of the manuscript. The spermatozoa we had access to were therefore already bound to the zona pellucida at the time of removal from the insemination medium, and had thus necessarily passed through the cumulus layer. It is unclear for us why Reviewer 2 believes that we “assume from previous work that all sperm that reach ZP has carried out the acrosome reaction”. We could not find any statement in our manuscript suggesting, let alone asserting, such an assumption, which we know to be incorrect. Based on both published work from Hirohashi’s group in 2011 (Jin et al., 2011, DOI: 10.1073/pnas.1018202108) and our own unpublished observation (both involving cumulus-oocyte masses inseminated with spermatozoa expressing GFP in the acrosome), it is established that only a subset of spermatozoa reaching the ZP after crossing the cumulus layer has undergone acrosome reaction. Moreover, from the same sources—as well as from a recent publication by Buffone’s group (Jabloñsky et al., 2023 DOI: 10.7554/eLife.93792 ) which is the one to which reviewer 2 refers in her/his 3rd comment, it is also well established that spermatozoa have all undergone acrosome reaction when they enter the PVS. To the best of our knowledge, this latter point has long been widely accepted and is not questioned. Therefore, stating this in the first paragraph of the Discussion in the revised manuscript, while referencing the two aforementioned published studies, should be appropriate. What remains a matter of ongoing debate, however, is the timing and the physiological trigger(s) of the acrosome reaction in fertilizing spermatozoa. The 2011 study by Hirohashi’s group challenged the previously accepted view that ZP binding induces the acrosome reaction, showing instead that most spermatozoa capable of crossing the ZP and fertilizing the oocyte had already undergone the acrosome reaction prior to ZP binding. However, as this issue lies beyond the scope of our study, we do not consider it appropriate to include a discussion of it in the manuscript.

      2) In the penetration block equations, it is not clear to me why (𝑡𝑃𝐹1) refers to both PIPF1 and 𝜎𝜎𝑃I𝑃𝐹1. Is it as function off?

      That is correct: (tPF1) means function of the time post-first fertilization. Both the post-first fertilization penetration index (i.e. PIPF1) and its incertainty (i.e. 𝜎𝑃I𝑃𝐹1 ) vary as a function of this time. However, as mentioned in a previous response to Reviewer 1, this section has been rewritten to improve clarity and readability. The equations have been limited to those strictly necessary for understanding our approach, and their notation has been significantly simplified.

      3) Why do the authors think that the flagella stops. The submission date was 2024-10-01 07:27:26 and there has been a paper in biorxiv for a while that merits mention and discussion in this work (bioRxiv [Preprint]. 2024 Jul 2:2023.06.22.546073. doi: 10.1101/2023.06.22.546073.PMID: 37904966).

      Our experimental approach allows us to determine when the spermatozoon stops moving, but not why it stops. We thank Reviewer 3 for pointing out this very relevant paper from Buffone’s group (doi: 10.7554/eLife.93792) which shows the existence of two distinct populations of live, acrosome-reacted spermatozoa. These correspond to two successive stages, which occur either immediately upon acrosome reaction in a subset of spermatozoa, or after a variable delay in others, during which the sperm transitions from a motile to an immotile state. The transition from the first to the second stage was shown to follow a defined sequence: an increase in the sperm calcium concentration, followed by midpiece contraction associated with a local reorganization of the helical actin cortex, and ultimately the arrest of sperm motility. For fertilizing spermatozoa in the PVS, this transition was shown to occur upon fusion. However, it was also reported in some non-fertilizing spermatozoa that this transition took place within the PVS. These findings are consistent with the requirement for sperm motility in order to achieve fusion with the oolemma. Moreover, the fact that some spermatozoa may prematurely transition to the immotile state within the PVS can therefore be added to the list of possible reasons why a spermatozoon that penetrates the PVS of an oocyte might fail to fuse.

      This discussion has been added to the first paragraph of the Discussion section of our revised manuscript.

      4) Please correct at the beginning of Materials and Methos: Sperm was obtained from WT male mice, it should say were.

      Thank you, the correction has been done.

      5) This is also the case in the fourth paragraph of this section: oocyte were not was.

      The sentence in question has been modified as followed: “In the in vitro fertilization experiments with kinetic tracking, a subset of oocytes—together with their associated ZP-bound spermatozoa—was isolated 15 minutes post-insemination and transferred individually into microdrops of fertilization medium to enable identification.”


      Significance

      Understanding mammalian gamete fusion and polyspermy inhibition has not been fully achieved. The authors examined real time brightfield and confocal images of inseminated ZP-intact mouse oocytes and used statistical analyses to accurately determine the dynamics of the events that lead to fusion and involve polyspermy prevention under conditions as physiological as possible. Their kinetic observations in mice gamete interactions challenge present paradigms, as they document that the first sperm is not necessarily the one that fertilizes, suggesting the existence of other post-penetration fertilization factors. The authors find that the zona pellucida (ZP) block triggered by the cortical reaction is too slow to prevent polyspermy in this species. In contrast, their findings indicate that ZP directly contributes to the polyspermy block operating as a naturally effective entry barrier inhibiting the exit from the perivitelline space (PVS) of components released from the oocyte plasma membrane (OPM), neutralizing unwanted sperm fusion, aside from any block caused by fertilization. Furthermore, the authors unveil a new important ZP role regulating flagellar beat in fertilization by promoting sperm fusion in the PVS.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      SUMMARY: This study by Dubois et al. utilizes live-cell imaging studies of mouse oocytes undergoing fertilization. A strength of this study is their use of three different conditions for analyses of events of fertilization: (1) eggs undergoing fertilization retrieved from females at 15 hr after mating (n = 211 oocytes); (2) cumulus-oocyte complexes inseminated in vitro (n = 220 oocytes), and (3) zona pellucida (ZP)-intact eggs inseminated in vitro, transferred from insemination culture once sperm were observed bound to the ZP for subsequent live-cell imaging (93 oocytes). This dataset and these analyses are valuable for the field of fertilization biology. Limitations of this manuscript are challenges arise with some conclusions, and the presentation of the manuscript. There are some factual errors, and also some places where clearer explanations should to be provided, in the text and potentially augmented with illustrations to provide more clarity on the models that the authors interpret from their data.

      MAJOR COMMENTS:

      The authors are congratulated on their impressive collection of data from live-cell imaging. However, the writing in several sections is challenging to understand or seems to be of questionable accuracy. The lack of accuracy is suspected to be more an effect of overly ambitious attempts with writing style, rather than to mislead readers. Nevertheless, these aspects of the writing should be corrected. There also are multiple places where the manuscript contradicts itself. These contradictions should be corrected. Finally, there are factual points from previous studies that need correction.

      Second, certain claims and the conclusions as presented are not always clearly supported by the data. This may be connected to the issues with writing style, word and phrasing choices, etc. The conclusions could be expressed more clearly, and thus may not require additional experiments or analyses to support them. The authors might also consider illustrations as ways to highlight the points they wish to make. (Figure 7 is a strong example of how they use illustrations to complement the text).

      In response to Reviewer 3's concern about the writing style, which made several sections difficult to understand, we have thoroughly revised the entire manuscript to improve clarity, and precision. To further enhance comprehension, we have added illustrations in the revised version of the manuscript:

      • Figure 1A presents the gamete components; Figure 1B depicts the main steps of fertilization considered in the present study; and Figure 1C illustrates the penetration and fusion blocks, along with the respective contributing mechanisms: the ZP-block for the penetration block, and the membrane-block and PVS-block for the fusion block

      • Figure 2A provides a description of the three experimental protocols used in this study: Condition 1, in vivo fertilization after mating; Condition 2, standard in vitro fertilization following insemination of cumulus-oocyte complexes; and Condition 3, in vitro fertilization with kinetic tracking of oocytes isolated from the insemination medium 15 min after insemination of the cumulus-oocyte complexes.

      • Figure 4 (formerly Figure 7 in the initial version) now highlights all fusing and non-fusing situations documented in videos 1-6 and associated paragraphs of the Results section.

      • In the Discussion, Figure 9 from the original version has been replaced by Figure 8, which now provides a more pedagogical illustration of the inefficacy of the penetration block in preventing polyspermy in mice. This figure illustrates the respective contributions of the fusion block, the penetration block, fusion timing, and the intrinsic permeability of the zona pellucida to the occurrence of polyspermy.

      We hope that this revised version of the article will guide the reader smoothly throughout, without causing confusion.

      Regarding the various points that Reviewer 3 perceives as contradictions or factual errors, or the claims and the conclusions which, as presented, should not always supported by the data, we will provide our perspective on each of them as they are raised in the review.

      SPECIFIC COMMENTS:

      (1) The authors should use greater care in describing the blocks to polyspermy, particularly because they appear to be wishing to reframe views about prevention of polyspermic fertilization. The title mentions of "the fast block to polyspermy;" this problematic for a couple of different reasons. There is no strong evidence for block to polyspermy in mammals that occurs quickly, particularly not in the same time scale as the first-characterized fast block to polyspermy. To many biologists, the term "fast block to polyspermy" refers to the block that has been described in species like sea urchins and frogs, meaning a rapid depolarization of the egg plasma membrane. However, such depolarization events of the egg membrane have not been detected in multiple mammalian species. Moreover, the change in the egg membrane after fertilization does not occur in as fast a time scale as the membrane block in sea urchins and frogs (i.e., is not "fast" per se), and instead occurs in a comparable time frame as the conversation of the ZP associated with the cleavage of ZP2. Thus, it is misleading to use the terms "fast block" and "slow block" when talking about mammalian fertilization. This also is an instance of where the authors contradict themselves in the manuscript, stating, "the membrane block and the ZP block are established in approximatively the same time frame" (third paragraph of Introduction). This statement is indeed accurate, unlike the reference to a fast block to polyspermy in mammals.

      We fully agree with Reviewer 3 on the importance of clearly defining the two blocks examined in the present study—the penetration block and the fusion block (as referred to in the revised version) —and of situating them in relation to the three blocks described in the literature: the ZP-block, membrane-block, and PVS-block. We acknowledge that this distinction was not sufficiently clear in the original version of the manuscript. In the revised version, these two blocks and their relationship to the ZP-, membrane-, and PVS-blocks are now clearly introduced in the second paragraph of the Introduction section and illustrated in the first figure of the manuscript (Fig. 1C). They are then discussed in detail in two dedicated paragraphs of the Discussion, entitled Relation between the penetration block and the ZP-block and Relation between the fusion block and the membrane- and PVS-blocks.

      The penetration block refers to the time-dependent decrease in the number of spermatozoa penetrating the perivitelline space (PVS) following fertilization, whereas the fusion block refers to the time-dependent decrease in sperm-oolemma fusion events after fertilization. It is precisely to the characterization of these two blocks that our in vitro fertilization experiments with kinetic tracking allow us to access.

      In this study, as in the literature, fusion-triggered modifications of the ZP that hinder sperm traversal of the ZP are referred to as the ZP-block (also known as ZP hardening). The ZP-block thus contributes to the post-fertilization reduction in sperm penetration into the PVS and thereby underlies the penetration block. Similarly, fusion-triggered alterations of the PVS and the oolemma that reduce the likelihood of spermatozoa that have reached the PVS successfully to fuse with the oolemma are referred to as the PVS-block and membrane-block, respectively. These two blocks act together to reduce the probability of sperm-oolemma fusion after fertilization, and thus contribute to the fusion block.

      The time constant of the penetration block was found to be 48.3 ± 9.7 minutes, which is consistent with the typical timeframe of ZP-block completion—approximately one hour post-fertilization in mice—as reported in the literature. By contrast, the time constant of the fusion block was determined to be 6.2 ± 1.3 minutes, which is markedly faster than the time typically reported in the literature for the completion of the fusion-block (more than one hour in mice). This strongly suggests that the kinetics of the fusion block are not primarily governed by its membrane-block component, but rather by its PVS-block component—about which little to nothing was previously known.

      Contrary to what Reviewer 3 appears to have understood from our initial formulation, there is therefore no contradiction or error in stating that "the membrane block and the ZP block are established within approximately the same timeframe", while the fusion block, which proceeds much more rapidly, is likely to rely predominantly on the PVS-block. We have thoroughly revised the manuscript to clarify this key message of the study.

      However, we understand Reviewer 3’s objection to referring to the fusion block (or the PVS-block) as a fast block, given that this term is conventionally reserved for the immediate fertilization-triggered membrane depolarization occurring in sea urchins and frogs. Although the kinetics we report for the fusion block are considerably faster than those of the penetration block, they occur on the scale of minutes, and not seconds. In line with the reviewer's recommendation, we have therefore modified both the title and the relevant passages in the text to remove all references to the term fast block in the revised version.

      (2) The authors aim to make the case that events occurring in the perivitelline space (PVS) prevent polyspermic fertilization, but the data that they present is not strong enough to make this conclusion. Additional experiments would optional for this study, but data from such additional experiments are needed to support the authors' claims regarding these functions in fertilization. Without additional data, the authors need to be much more conservative in interpretations of their data. The authors have indeed observed phenomena (the presence of CD9 and JUNO in the PVS) that could be consistent with a molecular basis of a means to prevent fertilization by a second sperm. However, the authors would need additional data from additional experimental studies, such as interfering with the release of CD9 and JUNO and showing that this experimental manipulation leads to increased polyspermy, or creating an experimental situation that mimics the presence of CD9 and JUNO (in essence, what the authors call "sperm inhibiting medium" on page 20) and showing that this prevents fertilization.

      A major section of the Results section here (starting with "The consequence is that ... ") is speculation. Rather than be in the Results section, this should be in the Discussion. The language should be also softened regarding the roles of these proteins in the perivitelline space in other portions of the manuscript, such as the abstract and the introduction.

      Finally, the authors should do more to discuss their results with the results of Miyado et al. (2008), which interestingly, posited that CD9 is released from the oocytes and that this facilitates fertilization by rendering sperm more fusion-competent. There admittedly are two reports that present data that suggest lack of detection of CD9-containing exosomes from eggs (as proposed by Miyado et al.), but nevertheless, the authors should put their results in context with previous findings.

      We generally agree with all the remarks and suggestions made here. In the revised version of the manuscript, we have retained in the Results section (pp. 14–15) only the factual data concerning the localization of CD9 and JUNO in unfertilized and fertilized oocytes, as well as in the spermatozoa present in the PVS of these oocytes. We have taken care not to include any interpretive elements in this section, which are now presented exclusively in a dedicated paragraph of the Discussion, entitled “Possible molecular bases of the membrane-block and ZP-block contributing to the fusion block” (p. 21). There, we develop our hypothesis and discuss it in light of both the findings from the present study and previous work by other groups. In doing so, we also address the data reported by Miyado et al. (2008, https://doi.org/10.1073/pnas.0710608105), as well as subsequent studies by two other groups—Gupta et al. (2009, https://doi.org/10.1002/mrd.21040) and Barraud-Lange et al. (2012, https://doi.org/10.1530/REP-12-0040)—that have challenged Miyado’s findings.

      We are fully aware that our interpretation of the coverage of unfused sperm heads in the perivitelline space (PVS) by CD9 and JUNO, released from the oolemma—as a potential mechanism of sperm neutralization contributing to the PVS block—remains, at this stage, a plausible hypothesis or working model that, as such, warrants further experimental investigation. It is precisely in this spirit that we present it—first in the abstract (p.1), then in the Discussion section (p. 21), and subsequently in the perspective part of the Conclusion section (p. 22).

      (3) Many of the authors' conclusions focus on their prior analyses of sperm interaction - beautifully illustrated in Figure 7. However, the authors need to be cautious in their interpretations of these data and generalizing them to mammalian fertilization as a whole, because mouse and other rodent sperm have sperm head morphology that is quite different from most other mammalian species.

      In a similar vein, the authors should be cautious in their interpretations regarding the extension of these results to mammalian species other than mouse, given data on numbers of perivitelline sperm (ranging from 100s in some species to virtually none in other species), suggesting that different species rely on different egg-based blocks to polyspermy to varying extents. While these observations of embryos from natural matings are subject to numerous nuances, they nevertheless suggest that conclusions from mouse might not be able to be extended to all mammalian species.

      It is not clear to us whether Reviewer 3’s comment implies that we have, at some point in the manuscript, generalized conclusions obtained in mice to other mammalian species—which we have not—or whether it is simply a general, common-sense remark with which we fully agree: that findings established in one species cannot, by default, be assumed to apply to another.

      We would like to emphasize that throughout the manuscript, we have taken care to restrict our interpretations and conclusions to the mouse model, and we have avoided any unwarranted extrapolation to other species.

      To definitively close this matter—if there is indeed a matter—we have added the following clarifying statements in the revised version of the manuscript:

      In the introduction, second paragraph (pp. 2–3):"The variability across mammalian species in both the rate of fertilized oocytes with additional spermatozoa in their PVS (from 0 to more than 80%) after natural mating and the number of spermatozoa present in the PVS of these oocytes (from 0 to more than a hundred) suggests that the time for completion of the penetration block and thus its efficiency to prevent polyspermy can vary significantly between species."

      At the end of the preamble to the Results section (p. 4):"This experimental study was conducted in mice, which are the most widely used model for studying fertilization and polyspermy blocks in mammals. While there are many interspecies similarities, the findings presented here should not be directly extrapolated to humans or other mammalian species without species-specific validation."

      In the Conclusion, the first sentence is (p.22) : “This study sheds new light on the complex mechanisms that enable fertilization and ensure monospermy in mouse model.”

      Within the Conclusion section, among the perspectives of this work (p. 22):"In parallel, comparative studies in other mammalian species will be needed to assess the generality of the PVS-block and its contribution relative to the membrane-block and ZP-blocks, as well as the generality of the mechanical role played by flagellar beating and ZP mechanical constraint in membrane fusion."

      (4) Results, page 4 - It is very valuable that the authors clearly define what they mean by a penetrating spermatozoon and a fertilizing spermatozoon. However, they sometimes appear not to adhere to these definitions in other parts of the manuscript. An example of this is on page 10; the description of penetration of spermatozoon seems to be referring to membrane fusion with the oocyte plasma membrane, which the authors have alternatively called "fertilizing" or fertilization - although this is not entirely clear. The authors should go through all parts of the manuscript very carefully and ensure consistent use of their intended terminology.

      Overall, while these definitions on page 4 are valuable, it is still recommended that the authors explicitly state when they are addressing penetration of the ZP and fertilization via fusion of the sperm with the oocyte plasma membrane. This help significantly in comprehension by readers. An example is the section header in the middle of page 9 - this could be "Spermatozoa can penetrate the ZP after the fertilization, but have very low chances to fertilize."

      We chose to define our use of the term penetration at the beginning of the Results section because, as readers of fertilization studies, we have encountered on multiple occasions ambiguity as to whether this term was referring to sperm entry into the perivitelline space following zona pellucida traversal, or to the fusion of the sperm with the oolemma. To avoid such ambiguity, we were particularly careful throughout the writing of our original manuscript to use the term penetration exclusively to describe sperm entry into the PVS. The terms fertilizing and fusion were reserved specifically for membrane fusion between the gametes. However, as occasional lapses are always possible, we followed Reviewer 3’s recommendation and carefully re-examined the entire manuscript to ensure consistent use of our intended terminology. We did not identify any inconsistencies, including on page 10, which was cited as an example by Reviewer 3. We therefore confirm that, in accordance with our predefined terminology, all uses of the term penetration, on that page and anywhere else in our original manuscript, refer exclusively to sperm entry into the PVS and do not pertain to fusion with the oolemma.

      That said, it is important that all readers— including those who may only consult selected parts of the article—are able to understand it clearly. Therefore, despite the potential risk of slightly overloading the text, Reviewer 3’s suggestion to systematically associate the term penetration with ZP seems to us a sound one. However, we have opted instead to associate penetration with PVS, as our study focuses on the timing of sperm penetration into the perivitelline space, rather than on the traversal of the zona pellucida itself. Accordingly, except in a few rare instances where ambiguity seemed impossible, we have systematically used the phrasing “penetration into the PVS” throughout the revised version of the manuscript.

      Another variation of this is in the middle of page 9, where the authors use the terms "fertilization block" and "penetration block." These are not conventional terms, and venture into being jargon, which could leave some readers confused. The authors could clearly define what they mean, particularly with respect to "penetration block,"

      This point has already been addressed in our response to Comment 1 from Reviewer 3. We invite Reviewer 3 to refer to that response.

      This extends to other portions of the manuscript as well, such as Figure 2C, with the label on the y-axis being "Time after fertilization." It seems that what the authors actually observed here was the cessation of sperm tail motility. (It is not evident they they did an assessment of sperm-oocyte fusion here.)

      Regarding Figure 2C (original version), it has been merged with Figure 2B (original version) to form a single figure (Figure S2D), now included in Supplementary Information SI2. This new figure retains all the information originally presented in Figure 2C and indicates the time axis origin as the time when oscillatory movements of the sperm cease.

      That said, for the reasons detailed in our response to Reviewer 1 and in the Materials and Methods, we explain why it is legitimate to use the cessation of sperm head oscillations on the oolemma as a marker for the timing of the fusion event. We invite the reviewers to refer to that response for a full explanation of our rationale.

      (5) Several points that the authors try to make with several pieces of data do not come across clearly in the text, including Figure 2 on page 6, Figure 4 on page 9, and the various states utilized for the statistical treatment, "post-first penetration, post-first fertilization, no fertilization, penetration block and polyspermy block" on page 10. Either re-writing and clearer definitions'explanations are needed, and/or schematic illustrations could be considered to augment re-written text. Illustrations could be a valuable way present the intended concepts to readers more clearly and accurately. For example, Figure 4 and the associated text on page 9 get particularly confusing - although this sounds like a quite impressive dataset with observations of 138 sperm. Illustrations could be helpful, in the spirit of "a picture is worth 1000 words," to show what seem to be three different situations of sequences of events with the sperm they observed. Finally, the text in the Results about the 138 sperm is quite difficult to follow. It also might help comprehension to augment the percentages with the actual numbers of sperm - e.g., is 48.6% referring 67 of the total 138 sperm analyzed? Does the 85.1% refer to 57 of these 67 sperm?

      Figure 2 in the original version of our manuscript concerns sperm engulfment and PB2 extrusion. As already mentioned in our response to Reviewer 1, the characterization of sperm engulfment and PB2 extrusion kinetics is highly relevant to the analysis of the penetration and fusion blocks. However, we agree that its presence in the main text may distract the reader from the main focus of the study. Therefore, this figure and the associated text have been moved to the Supplementary Information in the revised manuscript (SI 2, pages 26–27).

      Regarding Figure 4 (original version), in response to Reviewer 3’s concern about the difficulty in grasping the message conveyed in its three graphs and associated text we have completely rethought the way these data are presented. Since the three graphs of Figure 4 were directly derived from the experimental timing data of sperm entry in the PVS and fusion with the oolemma in fertilized oocytes (originally shown in Figure 3A), we have combined them into a single figure in the revised manuscript: Figure 3 (page 8). This new Figure 3 now comprises three components:

      • Figure 3A remains unchanged from the original version and shows the timing of sperm penetration and fusion in fertilized oocytes. Each sperm category (fused or non-fused , penetrated in the PVS before fusion or after fusion) is represented using a color code clearly explained in the main text (last paragraph of page 7).
      • Figure 3B focuses specifically on the first spermatozoon to penetrate the PVS of each oocyte. It reports how many of these first-penetrating spermatozoa succeeded in fusing versus how many failed to do so, highlighting that being the first to arrive is not sufficient for fusion—other factors are involved. This is explained simply in the first paragraph of page 9.
      • Figure 3C considers all spermatozoa that entered the PVS of fertilized oocytes, classifying them into three categories: those that penetrated the PVS before fertilization, those that did so after fertilization, and those for which the timing could not be precisely determined. Such classification makes it apparent that the number of spermatozoa penetrating before and after fertilization is of the same order of magnitude, indicating that fertilization is not very effective at preventing further sperm entry into the PVS for the duration of our observations (~4 hours). To facilitate the identification of these three categories, the same color code used in Figure 3A is applied. In addition, within each category, the number of spermatozoa that successfully fused are indicated in black. This allows the reader to quickly assess the fertilization probability for each category—high for sperm entering before fertilization, very low or null for those entering after fertilization. This analysis shows that fertilization is far more effective at blocking sperm fusion than at blocking sperm penetration. This is clearly explained in the second paragraph of page 9. Regarding__ statistical analysis__, as already mentioned in our responses to Reviewers 1 and 2, this section has been rewritten to improve clarity and readability. The notation has also been significantly simplified. To improve the overall fluidity of the text related to the statistical analysis, Figure 3B (original version), which presented the timing of penetration into the perivitelline space of oocytes that remained unfertilized, along with its associated statistical analysis previously in Figure 5B), have been revised and transferred together in a single Figure S1 of the Supplementary Information (SI1, pages 26; now Figures S1A and S1B).

      (6) Introduction, page 2 - it is inaccurate to state that only diploid zygotes can develop into a "new being." Triploid zygotes typically fail early in develop, but can survive and, for example, contribute to molar pregnancies. Additionally, it would be beneficial to be more scientifically precise term than saying "development into a new being." This is recommended not only for scientific accuracy, but also due to current debates, including in lay public circles, about what defines "life" or human life.

      In response to Reviewer 3’s comment, we no longer state in the revised version of the manuscript that only diploid zygotes can develop into a new being. We have modified our wording as follows, on page 2, second paragraph: “In mammals, oocytes fertilized by more than one spermatozoon cannot develop into viable offspring.”

      (7) Introduction, page 2 - The mammalian sperm must pass through three layers, not just two as stated in the first paragraph of the Introduction. The authors should include the cumulus layer in this list of events of fertilization.

      The sentence from the introduction from the original manuscript mentioned by Reviewer 3 was: “To fertilize, a spermatozoon must successively pass two oocyte’s barriers.” This statement is accurate in the sense that the cumulus cell layer is not part of the oocyte itself, unlike the two oocyte’s barriers: the zona pellucida and the oolemma. Moreover, the traversal of the cumulus layer is not within the scope of our study, unlike the traversal of the zona pellucida and fusion with the oolemma. However, it is also correct that in our study the spermatozoa have passed through the cumulus layer before reaching the oocyte. Therefore, in response to Reviewer 3’s comment, we have revised the sentence to clarify this point as follows:

      “Once a spermatozoon has passed through the cumulus cell layer surrounding the oocyte, it still must overcome two oocyte’s barriers to complete fertilization.”

      (8) Introduction, page 2 - While there is evidence that zinc is released from mouse egg upon fertilization, the evidence is not convincing or conclusive that zinc is released from cortical granules or via cortical granule exocytosis.

      To better highlight the rationale, storyline, and scope of our study, the introduction has been thoroughly streamlined. In this context, the section discussing the cortical reaction and zinc release seemed more appropriate in the Discussion, specifically within the paragraph titled “Relationship between the penetration block and the ZP-block.”

      To address the uncertainty raised by Reviewer 3 regarding the origin of the zinc spark release, we have rephrased this part as follows:

      “The fertilization-triggered processes responsible for the changes in ZP properties are generally attributed to the cortical reaction—a calcium-induced exocytosis of secretory granules (cortical granules) present in the cortex of unfertilized mammalian oocytes—and to zinc sparks. As a result, proteases, glycosidases, lectins, and zinc are released into the perivitelline space (PVS), where they act on the components of the zona pellucida. This leads to a series of modifications collectively referred to as ZP hardening or the ZP-block”.

      (9) The authors inaccurately state, "only if monospermic multi-penetrated oocytes are able to develop normally, which to our knowledge has never been proven in mice" (page 4) - This was demonstrated with the Astl knockout, assuming that the authors use of "multi-penetrated oocytes" here refers to the definition of penetration that they use, namely penetrating the ZP. This also is one of the instances where the authors contradict themselves, as they note the results with this knockout on page 18.

      Thank you for bringing this point to our attention. Nozawa et al. (2018) found that female mice lacking ovastacin (Astl)—the protease released during the cortical reaction that plays a key role in rendering the zona pellucida impenetrable—are normally fertile. They also reported that oocytes recovered from these females after mating were monospermic, despite the consistent presence of additional spermatozoa in the perivitelline space. We can indeed consider that taken together these findings demonstrate that the presence of multiple spermatozoa in the PVS does not impair normal development, as long as the oocyte remains monospermic. In our study, we re-demonstrated this in a different way (by reimplantation of monospermic oocytes with additional spermatozoa in their PVS) in a more physiological context of WT oocytes, but we agree that we cannot state: “which to our knowledge has never been proven in mice.” This part of the sentence has therefore been removed. In the revised version of the manuscript, the sentence is now formulated in the first paragraph of page 5 as follows: “However, the contribution of the fusion block to prevent polyspermy has physiological significance only if monospermic oocytes with additional spermatozoa in their PVS can develop into viable pups.”

      Minor comments:

      There are numerous places where this reader marked places of confusion in the text. A sample of some of these:

      We will indicate hereinafter how we have modified the text in the specific examples provided by Reviewer 3. Beyond these, however, we would like to emphasize that we have thoroughly revised the entire manuscript to improve clarity and precision.

      Page 4 - "continuously relayed by other if they detach" - don't know what this means

      Replaced now p 5 by “can be replaced by others if they detach”

      Page 6 - "hernia" - do the authors mean "protrusion" on the oocyte surface?

      The paragraph from the Results section in question has now been moved to the Supplementary Information, on pages 26 and 27. The term hernia has been systematically replaced with protrusion, including in the Materials and Methods section on page 24.

      Page 10 - "penetration of spermatozoa in the PVS falls down" - don't know what this means

      Falls down has been removed from the new version and replaced with decreases

      Page 12 - "spermatozoa linked to the oocyte ZP" - not clear what "linked" means here

      Replaced now page 16 by “spermatozoa bound to the oocyte ZP”

      Page 14 - "by dint of oscillations" - don't know what this means

      Replaced now page 10 by “the persistent flagellum movements”

      Specifics for Materials and Methods:

      Exact timing of females receiving hCG and then being put with males for mating - assume this was immediate but this is an important detail regarding the timing for the creation of embryos in vivo.

      That is correct: females were placed with males for mating immediately after receiving hCG. This clarification has been added in the revised version of the manuscript.

      Please provide the volumes in which inseminations occurred, and how many eggs were placed in this volume with the 10^6 sperm/ml.

      The number of eggs may vary from one cumulus–oocyte complex to another. It is therefore not possible to specify exactly how many eggs were inseminated. However, we now indicate on page 23 the number of cumulus–oocyte complexes inseminated (4 per experiment), the volume in which insemination was performed (200 mL), and the sperm concentration used 106 sperm/mL.

      **Referees cross-commenting**

      I concur with Reviewer 1's comment, that the 'challenging prior dogma' about the first sperm not always being the one to fertilize the egg is too strong. As Reviewer 1 notes, "it had been observed before that it is not necessarily the first sperm that gets through the ZP that fertilizes the egg." I even thought about adding this comment to my review, although held off (I was hoping to find references, but that was taking too long).

      Please refer to our response to Reviewer 1 regarding this point.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewing Editor Comments:

      Focus and Scope:

      The paper attempts to address too many topics simultaneously, resulting in a lack of focus and insufficient depth in the treatment of individual components.

      We have moved this selective clinical review section that was previously Part I in the paper now to Part II, given the importance of leading off with the meta-analysis and resource before doing a selective review, which are now Part I. In the lead in to Part II, we now indicate that the review is not intended to be comprehensive, because there are other recent comprehensive reviews, which we cite. This part of the paper merely aims to generate hypotheses on the directionality of effects ripe for testing on how TUS could be used to excite or suppress function, illustrated with specific clinical examples. The importance of this section, even though not comprehensive, is that it should provide the reader with examples on how the directionality of TUS could be used specifically in a range of clinical applications. The reader will find that the same hypotheses do not apply to different clinical disorder. Therefore, patient specific hypotheses need to be motivated and then subsequently tested with empirical application of TUS, which Part II provides.

      Part II. Selective TUS clinical applications review and TUS directionality hypotheses starts at line 458. Part I, the meta-analysis and resource section starts at line 199, after the Introduction on TUS and the importance on understanding how the directionality of TUS effects could be better understood.

      Strengthening the Meta-Analysis:

      The meta-analysis is the strongest aspect of the paper and should be expanded to include the relevant statistics. However, it currently omits several key concepts, studies, and discussion points, particularly related to replication and the dominance of results from specific groups. These omissions should be addressed even with a focus on meta-analysis.

      We thank the reviewer for their enthusiasm about the meta-analysis, which we have now promoted to Part I in the revised paper. We have substantially updated the latest database (inTUS_DATABASE_1-2025.csv) and ensured that the R markdown script can re-generate all of the results and statistical values. We have inserted additional statistical values in the main manuscript, as requested. The inTUS Resource is located here (https://osf.io/arqp8/ under Cafferatti_et_al_inTUS_Resource), and we have aimed to make it as user friendly to use and contribute to as possible. For instance, the reader can find them all in the HTML link summarizing the R markdown output with all statistical values here: https://rpubs.com/BenSlaterNeuro/1268823, a part of the inTUS resource.

      Since the last submission, there has been a tremendous increase in the number of TUS studies in healthy participants. We have curated and included all of the relevant studies we could find in the 1-2025 database, as the next large expansion of the database (now including 52 experiments in healthy participants). We then reran and report the results of the statistical tests via the R markdown script (starting at line 336). Finally, the online database (inTUS_DATABASE_1-2025.csv) has additional columns, suggested by the reviewers, including one to identify the same groups that conducted the TUS study, based on a social network analysis. The manuscript figures (Table 1 and Table 2) did not have the space to expand the data tables, but these additional columns are available in the database online. Finally, we have ensured that the resource is as easy to use as possible (line 862 has the Introduction to the inTUS Resource – which is also the online READ ME file), and we have been in contact with the iTRUSST consortium leads who are interested in discussing hosting the resource and helping it to become self-sustaining.

      Conceptual Development:

      The more conceptual part of the paper is underdeveloped. It lacks sufficient supporting data, a well-articulated argument, and a clear derivation or development of a concrete model.

      To ensure that the conceptual sections are well developed, we have revised the introduction, including the background on TUS and bases for the interest in the directionality of effects. We have also revised the TUS mechanisms background as suggested by the reviewers. For Part I, the meta-analysis basis and hypotheses we have ensured the rationale is clearer. The hypotheses are based on several lines of research in the animal model and human literature as cited (starting with line 211). For Part II, the selective clinical review, we have revised this section as well to have each section on lowintensity TUS and end in a hypothesis on the directionality of TUS effects. Starting at line 199 we have clarified the scope of the review and ensured that all the relevant experiments in healthy participants (n = 52 experiments) have now been included in the next key update of the resource and meta-analysis in this key paper update.

      Database Curation:

      The authors should provide more detailed information about how the database will be curated and made accessible. They may consider collaborating with ITRUSST.

      We have expanded the information on the Resource documents (starting at line 862) to make the resource as user friendly as possible. At the beginning of the resource development stage we had contacted but not heard from the ITRUSST consortium. Encouraged by this comment we again reached out and are now in contact with the ITRUSST consortium leads who are interested in discussing sustaining the resource. It would be wonderful to have the resource linked to other ITTRUST tools, since it was inspired by the organization. Practically what this means is that the resource rather than being hosted on Open Science Framework, would potentially be hosted on the ITRUSST web site (https://itrusst.com/). These discussions are in progress, but the next key update to the database (1-2025) is already available and reported in this key update to our original paper.

      Reviewer #1: (Public Review)

      Summary:

      This paper is a relevant overview of the currently published literature on lowintensity focussed ultrasound stimulation (TUS) in humans, with a meta-analysis of this literature that explores which stimulation parameters might predict the directionality of the physiological stimulation effects.

      The pool of papers to draw from is small, which is not surprising given the nascent technology. It seems nevertheless relevant to summarize the current field in the way done here, not least to mitigate and prevent some of the mistakes that other non-invasive brain stimulation techniques have suffered from, most notably the theory- and data-free permutation of the parameter space.

      The meta-analysis concludes that there are, at best, weak trends toward specific parameters predicting the direction of the stimulation effects. The data have been incorporated into an open database, that will ideally continue to be populated by the community and thereby become a helpful resource as the field moves forward.

      Strengths:

      The current state of human TUS is concisely and well summarized. The methods of the meta-analysis are appropriate. The database is a valuable resource.

      Weaknesses:

      These are not so much weaknesses but rather comments and suggestions that the authors may want to consider.

      We thank the reviewer for their support of the resource and meta-analysis. We have implemented the suggestions next as follows.

      I may have missed this, but how will the database be curated going forward? The resource will only be as useful as the quality of data entry, which, given the complexity of TUS can easily be done incorrectly.

      We have added a paragraph on how authors could use the Qualtrics form to submit their data and the curation process involved (from line 891). Currently, this process cannot be automated because we continue to find that reported papers do not report the TUS parameters that ITRUSST has encouraged the community to report (Martin et al., 2024). We can dedicate for a TUS expert to ensure that every 6 or 12 months the data base is curated and expanded. The current version is the latest 1-2025 update to the data base. Longer term we are in discussion with ITRUSST on whether the resource could become self sustaining when TUS papers regularly reporting all the relevant parameters such that the database expansion becomes trivial, and then the Resource R markdown script and other tools can be used to re-evaluate the statistical tests and the user can conduct secondary hypothesis testing on the data.

      It would be helpful to report the full statistics and effect sizes for all analyses. At times, only p-values are given. The meta-analysis only provides weak evidence (judged by the p-values) for two parameters having a predictive effect on the direction of neuromodulation. This reviewer thinks a stronger statement is warranted that there is currently no good evidence for duty cycle or sonication direction predicting outcome (though I caveat this given the full stats aren't reported). The concern here is that some readers may gallop away with the impression that the evidence is compelling because the p-value is on the correct side of 0.05.

      We have ensured that the R script can generate the full statistics from the tests and the effect sizes for all the analyses, and now also report more of the key statistical values in the revised paper (starting at line 336). As suggested, we have also ensured that the interpretation is sufficiently nuanced given the small sample sizes and the p-values below 0.1 but above 0.05 are interpreted as a statistical trend.

      This reviewer thinks the issue of (independent) replication should be more forcefully discussed and highlighted. The overall motivation for the present paper is clearly and thoughtfully articulated, but perhaps the authors agree that the role that replication has to play in a nascent field such as TUS is worth considering.

      We completely agree and have added additional columns to the online database to identify unique groups, using a social network analysis, and independent replications. These expanded tables did not fit in the manuscript versions of Tables 1 and 2 but are fully available in the Resource data tables ready for further analysis by interested resource users.

      A related point is that many of the results come from the same groups (the so-called theta-TUS protocol being a clear example). The analysis could factor this in, but it may be helpful to either signpost independent replications, which studies come from the same groups, or both.

      In the expanded database tables (inTUS_DATABASE_1-2025.csv: https://osf.io/arqp8/ under Cafferatti_et_al_inTUS_Resource) we have added a column to identify independent replication.

      The recent study by Bao et al 2024 J Phys might be worth including, not least because it fails to replicate the results on theta TUS that had been limited to the same group so far (by reporting, in essence, the opposite result).

      Thank you. We have added this study and over a dozen recent TUS studies in healthy participants to the database and redone the analyses.

      The summary of TUS effects is useful and concise. Two aspects may warrant highlighting, if anything to safeguard against overly simplistic heuristics for the application of TUS from less experienced users. First, could the effects of sonication (enhancing vs suppressing) depend on the targeted structure? Across the cortex, this may be similar, but for subcortical structures such as the basal ganglia, thalamus, etc, the idiosyncratic anatomy, connectivity, and composition of neurons may well lead to different net outcomes. Do the models mentioned in this paper account for that or allow for exploring this? And is it worth highlighting that simple heuristics that assume the effects of a given TUS protocol are uniform across the entire brain risk oversimplification or could be plain wrong? Second, and related, there seems to be the implicit assumption (not necessarily made by the authors) that the effects of a given protocol in a healthy population transfer like for like to a patient population (if TUS protocol X is enhancing in healthy subjects, I can use it for enhancement in patient group Y). This reviewer does not know to which degree this is valid or not, but it seems simplistic or risky. Many neurological and psychiatric disorders alter neurotransmission, and/or lead to morphological and structural changes that would seem capable of influencing the impact of TUS. If the authors agree, this issue might be worth highlighting.

      We agree that given the divergence in circuits and cellular constituents between cortical and subcortical areas, it is important to distinguish studies that have focused on cortical or subcortical brain areas. The online data tables identify the target region. The analyses can be used to focus on the cortical or subcortical sites for analysis, although for the current version of the database there are too few subcortical sites with which to conduct analyses on subcortical sites. On the second point, that pathology may have affected the results, we completely agree and have clarified that the current database only includes healthy participant experiments for this reason. We are considering future updates to the resource may include clinical patient results (Line 247).

      Reviewer #1 (Recommendations for the authors):

      Minor edits (I wouldn't call them "corrections").

      We sincerely appreciate the constructive comments and have aimed to address them all as suggested.

      Perhaps the most relevant edit pertains to the statistics.

      We now report the more complete statistical results (line 336) and the R markdown script can re-generate all the statistical values for the tests.

      The issue of replication also seems relevant and ought to be raised. This reviewer does not want to prescribe what to do or impose the view the authors ought to adopt.

      In the online version of the data tables for the latest dataset, we have added a column in the data table as suggested that identifies independent groups and replications.

      The other points are left to the authors' discretion.

      We have aimed to address all of the reviewer’s points. Thank you for the constructive input which has helped to improve the expanded database and resource.

      Reviewer #2: (Public Review)

      Summary:

      This paper describes a number of aspects of transcranial ultrasound stimulation (TUS) including a generic review of what TUS might be used for; a meta-analysis of human studies to identify ultrasound parameters that affect directionality; a comparison between one postulated mechanistic model and results in humans; and a description of a database for collecting information on studies.

      Strengths:

      The main strength was a meta-analysis of human studies to identify which ultrasonic parameters might result in enhancement or suppression of modulation effects. The meta-analysis suggests that none of the US parameters correlate significantly with effects. This is a useful result for researchers in the field in trying to determine how the parameter space should be further investigated to identify whether it is possible to indeed enhance or suppress brain activity with ultrasound.

      The database is a good idea in principle but would be best done in collaboration with ITRUSST, an international consortium, and perhaps should be its own paper.

      Weaknesses:

      The paper tries to cover too many topics and some of the technical descriptions are a bit loose. The review section does not add to the current literature. The comparison with a mechanistic model is limited to comparing data with a single model at a time when there is no general agreement in the field as to how ultrasound might produce a neuromodulation effect. The comparison is therefore of limited value.

      We appreciate the reviewer’s assessment and interest in the meta-analysis and database to guide the development of TUS for more systematic control of the directionality of neuromodulation. With this next key expansion of the database (inTUS_DATABASE_1-2025.csv) we have added over a dozen new studies that have been published since our original submission (n = 52 experiments). We have also moved the ‘review’ part of the paper below the meta-analysis and resource description. We have clarified that the clinical review section (now Part II in the revised manuscript) is not intended as a comprehensive review but as a selective review showing how hypotheses on the directionality of TUS effects need to be carefully developed for specific patient groups that require different effects to be induced at specific brain areas. Finally, we have gotten in contact with the ITRUSST consortium leads, as suggested, and are in discussion on whether the inTUS resource could be hosted by ITRUSST. Since these discussions are ongoing practically what this might mean is moving the resource from the Open Science Framework to ITRUSST webpages, which would be a trivial update of the link to the resource in OSF.

      We also sincerely appreciate the time and care the reviewer has given to provide us with the below guidance, all of which we have aimed to take on board in the revised paper.

      Reviewer #2 (Recommendations for the authors):

      Line 24/25 - I suggest avoiding using the term "deep brain stimulation" in reference to TUS as the term is normally used to describe electrically implanted electrodes.

      We have removed the term “deep” brain stimulation in reference to TUS to avoid confusion with electrical DBS for patient treatment [Line 24].

      Line 25 - I don't think "computational modelling" has changed how TUS can be done. There is still much to be understood about mechanisms. I think the modelling aspects of the paper should be toned down. Indeed the NICE data that is presented later appears to have a weak, if any, correlation to the outcomes.

      We have revised the manuscript text throughout to ensure that the computational modeling contributions are not overstated, as noted, given the lack of strong correlation to the NICE model outcomes by the meta-analysis including in the latest results with the more extensive database (n = 52).

      Line 32 - "exponentially increasing" is a well-defined technical term and the increase in studies should be quantified to ensure it is indeed exponential. I agree that TUS studies in humans are increasing but a quick tally of the data by year in the meta-analysis reported here doesn't suggest that it follows an "exponential" growth.

      We have changed “exponential” to “to increase”. [Line 32]

      Line 50 - I would suggest using the term sub-MHz rather than 100-1,000 kHz as it is challenging to deliver ultrasound at 1 MHz through the skull. The highest frequency in the meta-analysis is 850 kHz; but the majority are in the 200-500 kHz range.

      We have made this correction to sub-MHz. [Line 54]

      Line 58/59 - Is the FDA publication on diagnostic imaging relevant for saying that 50 W/cm2 is a lowintensity TUS? I think it's perhaps reasonable to say that intensities below diagnostic thresholds are "low intensities" but that is not clear in the text. I would refer to ITRUSST on what is appropriate for defining what is low, medium, or high.

      We have cut the reference to the FDA here since it is, as noted, not as relevant as pointing to the ITRUSST definition.

      Line 65/66 - I agree that ultrasound for neuromodulation is gaining traction and there is an increase in activity, but it also has a long history with the work of the Fry brothers published in the 1950s; and extensive work of Gavrilov in humans starting in the 1970s.

      We have added citations to the Fry brothers and Gavrilov to the text in this section. [Line 69/70]

      Line 75 - I think the intermembrane cavitation mechanism is unlikely to be due to "microbubbles" in a lipid membrane. The predicted displacements are on the order of nanometres, so they are unlikely to generate microbubbles. The work on comparing with NICE is limited. Note there are a number of experimental papers that have reported an absence of intra-membrane cavitation, including the Yoo et al 2022 which is referenced later in the paragraph. Also, there are other models, such as Liao et al 2021 (https://www.nature.com/articles/s41598020-78553-2).

      As suggested, we have removed this phrase on microbubble formation as a likely mechanism. We have also added the Liao paper to this paragraph as it is relevant.

      Line 83 - "At the lower intensities..." it is not clear whether this means all TUS intensities or the lower end of intensities used in TUS.

      We now use the following wording here: “low intensities”. [Line 86]  

      Line 85/86 - "more continuous stimulation" the modulation paradigms haven't been described yet and so pulse vs continuous hasn't been made clear to the reader. Also "more continuous" is very loose terminology. Something is either continuous or it isn't.

      We agree and have removed “more” to be clear that the stimulation is continuous. [Line 88]

      Line 87/88 - "TUS does not .. cavitation ..when ..ISPTA...<14 W/cm2". You can't use ISPTA to determine cavitation. It is the peak negative pressure which is the key driver for cavitation and the MI which is the generally accepted (although grudgingly by some) metric for assessing cavitation risk. You can link the negative pressure to ISPPA but not really to ISPTA. In histotripsy for example the ISPTA is low due to the low duty cycles to avoid heating but the cavitation is a huge effect. Technical terminology is loose.

      We have corrected this to “TUS does not appear to cause significant heating or cavitation of brain tissue when the intensity remains low, based on Mechanical and Thermal Index values and recommendations of use”. [Line 90/91]

      Line 89 - What is meant by "low intensity TUS"? I think all TUS used in the literature counts as low intensity - in that it is below the level allowed for diagnostic imaging.

      We have ensured that the text is focused on TUS being low-intensity and only in the introduction do we distinguish low intensity TUS from moderate and high intensity TUS, such as used for thermal ablation [Lines 62-66].

      Line 88/89 - Most temperature rises in brain tissue in TUS are well below 1 C - will this really change membrane capacitance significantly? If so it would have been good to consider a model for it.

      We have revised this statement as “thermal effects could at least minimally alter cell membrane capacitance…”. [Line 93]

      Line 111 - The text refers to "recent studies" but then the next two references are from 1990 and 2005 which I would argue don't count as "recent".

      We have corrected this wording to “previous studies”. [Line 114]

      Lines 122/129 - This paragraph on TMS pulsing should be linked to the TUS paragraph on pulsing (lines 109/116). The intervening paragraph on anaesthesia is relevant but breaks the flow.

      We have merged the paragraph on anesthesia to the prior one on TUS so that the TMS paragraph is linked more closely to it [starting on line 112].

      Line 130/131 - It is not clear to me that current studies are being guided by computational models. I think there is still no generally accepted theory for mechanisms. If the authors want to do a mechanisms paper then they should compare a few.

      We have revised this as suggested to not overstate the contribution of the limited computational modeling studies throughout the manuscript.

      Line 132 on - There are a number of studies that suggest that NICE is likely not the mechanism by which TUS produces neuromodulation.

      We have revised this sentence as follows: “Although it remains questionable whether intramembrane cavitation is a key mechanism for TUS, the NICE model simulations explored a broad set of TUS parameters, including TUS intensity and the continuity of stimulation (duty cycle) on modelled neuronal responses.” [Lines 139/142]

      Lines 137-140 - Terms are defined after their use. Things like ISPPTA, PRF, TI, and MI have been discussed already and so the terms should have been defined earlier. The authors should think carefully about how the material is presented to make it more logical for the reader.

      We have ensured that the definitions precede the use of abbreviations and have added abbreviations to the tables.

      Part I Line 180-437 - The review of potential applications for TUS reads like an introductory chapter of a thesis. It is entirely proper for a thesis to have a chapter like this, but it is not really relevant for a peer-reviewed research article. There are also numerous applications, e.g. mapping areas associated with decisions, or treating patients with addiction, which are not included, so it is not exhaustive. I would suggest this part be removed.

      We have moved the ‘review’ part of the paper to Part II, given the metaanalysis and resource should be more prominent as Part I. In the review now Part II of the paper we also now make it clear that there are recent comprehensive reviews of the clinical literature ( line 465/467). Namely, the purpose of our selective review is to demonstrate how directionality of TUS effects need to be specific for the clinical application intended, given the great variability in clinical effects that might be desired, brain areas targeted and pathology being treated. We have also aimed to ensure that each section summary is scholarly and academically written to a high level. All the co-authors contributed to these sections so we have also edited to have some consistency across sections, with sections ending with directionality of TUS hypotheses that could be developed for empirical testing.

      Line 453 - It is stated that "ISPTA, which mathematically integrates ISSPA by the sonication DC" It sounds rather grand to mathematically integrate but you can't integrate with respect to DC, you can integrate with respect to time. If you integrate intensity with respect to time over pulse and over the sonication time then one finds that ISPTA = DC x ISPPA, multiplication is also an important mathematical function and should be given its due. Lastly, I think there is a typo and ISSPA should read ISPPA

      We have corrected the typo and the statement to “mathematically multiplies ISPPA by the continuity of sonication”. [Line 221/222]

      Line 454 - I don't think ISPTA is a good measure of "dose." In radiation physics dose is well defined in terms of absorbed energy. The equivalent has yet to be defined for TUS so I would avoid using dose. The ISPTA does relate to TI - although it depends not just on the spatial peak but also on the spatial distribution and the frequency-dependent absorption coefficient of the tissue. I would just avoid the use of "dose" until the field has a better idea of what is going on.

      We have cut this phrase on dose as suggested.

      Page 16 Box 1 - TI is defined as diagnostic ultrasound imaging it is based on. Also, I think TI is dimensionless; it is referenced to a 1-degree temperature rise and so it can be interpreted in terms of celsius or kelvin; but to be technically accurate it is dimensionless.

      We have made TI dimensionless in Box 1

      Page 17 Box 2 - Here you have no units for TI - which is correct but inconsistent with Box 1. But the legend suggests a 2 K temperature rise where as your Box allows for 6 K. The value of 6 is consistent with FDA but my understanding of the BMUS guidelines is the TI must be less than or equal to 0.7 for unlimited time or less than 3 if the duration is less than 1 minute. I accept that the table is labelled FDA limits, but the bold table caption is "Recommendations for TUS parameters" I think you should give the ITRUSST values rather than FDA.

      We have revised this Box legend to better distinguish the FDA and ITRUSST recommendation where they differ (e.g., the importance of ISPTA and the TI values). See revised legend for Box 2.

      Page 18 Box 3 - Not sure what this is trying to show? Also, what is "higher intensity" and "lower intensity"?

      Why not just give a range of values in each box?

      We agree that the higher and lower intensities likely to lead to enhancement or suppression are poorly defined and have noted this in the legend: “Note that the threshold for ISPPA qualifying as ‘higher’ or ‘lower’ intensity is currently poorly understood, or may non-linearly interact with other factors” [Line 751/754, Box 3].

      Line 444 - The hypotheses should be stated more clearly. Maybe I am just dense, but it is not obvious to me from box 3.

      We provide the basis for the hypotheses in the manuscript text on the paragraph [Lines 106-179].

      Line 481/482 - The intensity of a diagnostic ultrasound system is very well characterised. It just might be that the authors didn't report it. It is not clear what is meant by the "continuity." I guess it's to do with pulsing - which is also well defined but perhaps also not reported.

      We agree and have revised this as follows “For the meta-analysis, we only included studies that either reported a basic set of TUS stimulation parameters or those sufficient for estimating the required parameters or those sufficient for estimating the required parameters necessary for the meta-analysis” [Lines 256/258]

      Figure 2 - What is the purpose of this figure? Did you carry out simulations for all the studies? It doesn't seem to be relevant to the data here.

      This figure illustrates the TUS targeting approach and simulations, in this case conducted in k-plan. These were conducted to evaluate approximations to ISPPA in brain values from the studies that did not report these values [Lines 264/268]).  

      Figure 4 - The data in these figures is nice (and therefore doesn't need to have a NICE curve) To me it clearly shows that the data in the literature does not obviously segment into enhancement vs suppression with DC. I suspect it is the same with PRF. I think it would have been better if C and D had PRF on the horizontal axis for on-line and off-line so that effect could be seen more clearly.

      We have kept the NICE curve only for a reference that some readers familiar with the NICE model might want to see overlaid in the figure, but have ensured that the text throughout makes clear that the NICE model predictions are not as statistically robust as initially anecdotally thought. PRF results are not significant but we do show a panel with the PRF measures on one axis (Fig. 4D). Figure 5 also shows box plot results with PRF as well as the other key TUS parameters. Moreover, in the inTUS resource we have provided an app for users to explore the data (https://benslaterneuro.shinyapps.io/Caffaratti_inTUS_Resource/).

      Figure 5 - The text on the axes is too small to read. Was the DC significant for both on-line and offline? What about ISPPA for off-line. At least by eye, it looks as different as DC. Figure 5C doesn't add anything.

      We have boosted the font for Figure 5 and have cut panel 5C since it was not adding much. We have also checked whether DC parameter was significant separately for on-line and off-line effects, but the sample sizes were too small for significance, and the statistical test was not significantly different for Online and Offline effects even in the 12025 database. Therefore they might look stronger for Offline effects in some of the plots in Figure 5, but are currently statistically indistinguishable [Lines 347/348].

      Table 1 - There is a typo in the 3rd column. FF should have units of kHz, not KHz. In addition, SD should have units of s as that is the SI symbol for seconds. I would swap columns 9 and 10 so that ISPPA in water and ISPPA in the brain are next to each other.

      We have corrected the typo in the 3rd column and ensured that units are kHz. SD in the tables has units of ‘s’ for seconds and have put ISPPA in water and in brain next to each other in the data tables.

      Line 767 - "M.K. was supported..." There are TWO MKs in the author list.

      We have changed this to M.Ka. for Marcus Kaiser.

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the reviewers and editors for their careful consideration of our work and pointing out areas where the current version lacked clarity or necessary experiments. Based on the reviews we have made the following significant changes to the revised version:

      (1) Revised the text to focus on the distinct pathogen responses to indole in isolation versus fecal material.

      We believe the key takeaway from this work is that the native context of a given effector, in this case indole, can elicit markedly different bacterial responses compared to the pure compound in isolation. This is because natural environments contain multiple, often conflicting, stimuli that complicate predictions of overall chemotactic behavior. For example, while indole has been proposed to mediate chemorepulsion and contribute to colonization resistance against enteric pathogens, our findings challenge this model. We provide evidence that feces, the intestinal source of indole, actually induces attraction, and that indole taxis may in fact benefit the pathogen through prioritizing niches with low microbial competition. Put another way, the biological reservoir of indole, fecal material, generates an attraction response but indole regulated the degree of attraction.

      Most current understanding of chemotaxis is based on responses to individual, purified effectors. Our study highlights the need to investigate chemotactic responses in the presence of native mixtures, which better reflect the complexity of natural environments and may reveal new functional insights relevant for disease.

      Reviewer comments indicated that these core points above were not clearly conveyed in the previous version, and that the manuscript's logical flow needed improvement. In this revised version, we have substantially rewritten the text and removed extraneous content to sharpen the focus on these central findings. We have also aligned our discussion more closely with the experimental data. While we appreciated the reviewers’ thoughtful suggestions, we chose not to expand on topics that fall outside the scope of our current experiments.

      (2) Provide new chemotaxis data with mixtures of fecal effectors (Fig. 5).

      Related to the above, the reviewers and editors brought up concerns that our discovery of pathogen fecal attraction was underexplored. Although we showed Tsr to be important for mediating fecal attraction, even the tsr mutant showed attraction to a lesser degree, and the reviewers noted that we did not identify what other fecal attractants could be involved.

      Fecal material is a complex biological material (as noted by Reviewer 3) and contains effectors already characterized as chemoattractants and chemorepellents. It would be ideal to be able to perform some experiment where individual effectors are removed from fecal material and then quantify chemotaxis. We considered methods to do this but ultimately found this approach unfeasible. Instead, we employed a reductionist approach and developed a synthetic approximate of fecal material containing a mixture of known chemoeffectors at fecal-relevant concentrations (Fig. 5). We used this defined system as a way to test the specific roles of the Tsr effectors L-Ser (attractant) and indole (repellent) in relation to glucose, galactose, and ribose (sensed through the chemoreceptor Trg), and L-Asp (sensed through the chemoreceptor Tar). We chose these effectors as they have reasonable structure-function relationships established in prior work, and had information available about their concentrations in fecal material. We present these data as a new Figure 5, and also provide videos clearly showing the responses to each treatment (Movies 7-10).

      This defined system provided several new insights that help understand and model indole taxis amidst other fecal effectors. First, the complete effector mixture, like fecal treatment, elicits attraction. Second, L-Ser is able to negate indole chemorepulsion in cotreatments of the two effectors, and also other chemoattractants in the absence of L-Ser also negate this repulsion, albeit to a lesser degree, helping to explain why the tsr mutant still shows attraction to fecal material. Lastly, we also show that the degree of attraction in this system is controlled by indole, with mixtures containing greater indole showing less attraction. We feel this is an important addition to the study because it provides a new view on how indole-taxis functions in pathogen colonization; rather than causing the pathogen to swim away (like pure indole does) indole helps the pathogen rank and prioritize its attraction to fecal effector mixtures, biasing navigation toward lower indolecontaining niches.

      We also acknowledge that this defined system does not capture all possible interactions. Indeed, there are even a few chemoreceptors in Salmonella for which the sensing functions remain poorly understood. Nonetheless, we believe the data offer mechanistic context for understanding fecal attraction and suggest that factors beyond Tsr, L-Ser, and indole also contribute to the observed behaviors, aligning with other data we present.

      (3) Provide new data that show that E. coli MG1655, and disease-causing clinical isolate strains of the Enterobacteriaceae Tsr-possessing species E. coli, Citrobacter koseri, and Enterobacter cloacae exhibit fecal attraction (Fig. 4).

      An important new finding from this study is our direct test of whether indole-rich fecal material elicits repulsion. Contrary to expectations, given that for E. coli indole is a wellcharacterized strong chemorepellent, we show that fecal material instead elicits attraction in non-typhoidal Salmonella.

      Reviewers raised the question of whether our observations regarding indole taxis and attraction to indole-rich feces in Salmonella are similar or relevant to E. coli. While a full dissection of indole taxis in E. coli is beyond the scope of this study and has been the focus of extensive prior research, we sought to address this point by examining whether other enteric pathogens respond similarly to the native indole reservoir, fecal material. To this end, we present new data demonstrating that, like S. Typhimurium, E. coli and other representative enteric pathogens and pathobionts possessing Tsr are also attracted to indole-rich feces (Fig. 4, Movies 4–6, Fig. S4).

      Notably, these new results represent some of the first characterizations of chemotactic behavior in the clinical isolates we examined, including E. coli NTC 9001 (a urinary tract infection isolate), Citrobacter koseri, and Enterobacter cloacae, adding another element of novelty to this work.

      (4) Repeated all of the explant Salmonella Typhimurium infection studies and added a new experimental control competition between WT and an invasion-deficient mutant (invA).

      Although our new colonic explant system was noted as a novelty and strength of this work, it was also seen as a weakness in that some of the results were surprising and difficult to link to chemotactic behavior. Reviewer 3 also brought up the need to be clear about our usage of the term ‘invasion’ in reference to S. Typhimurium entering nonphagocytic host cells, and requested we test an invasion-inhibited mutant (which we do in new experiments, now Fig. S1). We also note that some of the interpretations of these data were made challenging by result variability.

      To help address these issues we performed additional replicates for all of our explant experiments (contained within Figure 1, Fig. S1-S2, and Data S1), to provide greater power for our analyses. These new data provide a clearer view of this system that revise our interpretations from the prior version of this study. While treatment with indole alone does suppress the WT advantage over chemotactic mutants for both total colonization and cellular invasion, essentially all other treatments have a similar result with a timedependent increase in both colonization and invasion, dependent on chemotaxis and Tsr. A remaining unique feature of fecal treatment is an increase in the cellular invaded population of the cells at 3 h post-infection. As requested by Reviewer 3, we provide new experimental data showing that in competitions between WT and an invasion-deficient mutant (invA), with fecal material pretreatment, we see the WT has an advantage only for the gentamicin-treated qualifications, providing some support that our model selects for the invaded sub-population. Although we note that the invA still can invade through alternative mechanisms (as discussed in earlier work such as here: https://doi.org/10.1111/1574-6968.12614), so the relative amount of presumed cellular invasion is less than WT, and not zero, in our experiments (Fig. S1).

      One point of confusion in the previous version of the text was the assay design for the explant experiments, which is important to understand in order to interpret the results. During the explant infection bacteria are not immersed in the effector treatment solution, rather the tissue is soaked in the effector solution beforehand and then exposed to a 300 µl buffer solution containing the bacteria. This means that the bacteria experience only the residue of that treatment at concentrations far lower. We have added clarity about this through revising Fig. 1 to include a conceptual diagram of the assay (Fig. 1C), and added a new supplementary Fig. S5 that summarizes the explant data in this same conceptual model. We provide detail on the method in the text in lines 115-137. In describing the results, and synthesizing them in the discussion, we now state:

      Line 112: “This establishes a chemical gradient which we can use to quantify the degree to which different effector treatments are permissive of pathogen association with, and cellular invasion of, the intestinal mucosa (Fig. 1C).”

      And, a new section in the discussion devoted to describing the explant infections:

      Line: 366: “Our explant experiments can be thought of as testing whether a layer of effector solution is permissive to pathogen entry to the intestinal mucosa, and whether chemotaxis provides an advantage in transiting this chemical gradient to associate with, and invade, the tissue (Fig. 1C, Fig. S5).”

      As mentioned above, we have honed the text to focus on the disparity between the effects of indole alone versus treatments with indole-rich feces to help clarify how these data advance our understanding of the indole taxis in directing pathogenesis. While our explant studies still confirm the role of factors other than L-Ser, indole, and Tsr in directing Salmonella infection and cellular invasion, we now include further analyses of other fecal effectors (described above) that provide some insights into how fecal effectors have some redundancy in their impact.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study shows, perhaps surprisingly, that human fecal homogenates enhance the invasiveness of Salmonella typhimurium into cells of a swine colonic explant. This effect is only seen with chemotactic cells that express the chemoreceptor Tsr. However, two molecules sensed by Tsr that are present at significant concentrations in the fecal homogenates, the repellent indole and the attractant serine, do not, either by themselves or together at the concentrations in which they are present in the fecal homogenates, show this same effect. The authors then go on to study the conflicting repellent response to indole and attractant response to serine in a number of different in vitro assays.

      Strengths:

      The demonstration that homogenates of human feces enhance the invasiveness of chemotactic Salmonella Typhimurium in a colonic explant is unexpected and interesting. The authors then go on to document the conflicting responses to the repellent indole and the attractant serine, both sensed by the Tsr chemoreceptor, as a function of their relative concentration and the spatial distribution of gradients.

      Thank you for your summary and acknowledgement of the strengths of this work. We hope the revised text and additional data we provide further improve your view of the study.

      Weaknesses:

      The authors do not identify what is the critical compound or combination of compounds in the fecal homogenate that gives the reported response of increased invasiveness. They show it is not indole alone, serine alone, or both in combination that have this effect, although both are sensed by Tsr and both are present in the fecal homogenates. Some of the responses to conflicting stimuli by indole and serine in the in vitro experiments yield interesting results, but they do little to explain the initial interesting observation that fecal homogenates enhance invasiveness.

      Thank you for noting these weaknesses. We have provided new data using a defined mixture of fecal effectors to further investigate the roles of L-Ser, indole, and other effectors present in feces that we did not initially study. We have refined our discussion of these results to hopefully improve the clarity of our conclusions. We show now both in explant studies (Fig. 1I) and chemotaxis responses to a defined fecal effector system (Fig. 5) that L-Ser is able to abolish both the suppression of indole-mediated WT advantage and also indole chemorepulsion, respectively. We also show the latter can be accomplished by other fecal chemoattractants (Fig. 5). This is in line with our earlier finding that Tsr, the sensor of indole and L-Ser, is an important mediator of fecal attraction but not the sole mediator.

      As this reviewer points out, there are indeed other factors mediating invasion that we do not elucidate here, but we do note these possibilities in the text (lines: 125-127):

      “This benefit may arise from a combination of factors, including sensing of host-emitted effectors, redox or energy taxis, and/or swimming behaviors that enhance infection [5,30,31,35].”

      Reviewer #2 (Public review):

      Summary:

      The manuscript presents experiments using an ex vivo colonic tissue assay, clearly showing that fecal material promotes Salmonella cell invasion into the tissue. It also shows that serine and indole can modulate the invasion, although their effects are much smaller. In addition, the authors characterized the direct chemotactic responses of these cells to serine and indole using a capillary assay, demonstrating repellent and attractant responses elicited by indole and serine, respectively, and that serine can dominate when both are present. These behaviors are generally consistent with those observed in E. coli, as well as with the observed effects on cell invasion.

      Strengths:

      The most compelling finding reported here is the strong influence of fecal material on cell invasion. Also, the local and time-resolved capillary assay provides a new perspective on the cell's responses.

      Thank you for acknowledging these aspects of the study.

      Weaknesses:

      The weakness is that indole and serine chemotaxis does not seem to control the fecal-mediated cell invasion and thus the underlying cause of this effect remains unclear.

      In addition, the fact that serine alone, which clearly acts as a strong attractant, did not affect cell invasion (compared to buffer) is somewhat puzzling. Additionally, wild-type cells showed nearly a tenfold advantage even without any ligand (in buffer), suggesting that factors other than chemotaxis might control cell invasion in this assay, particularly in the serine and indole conditions. These observations should probably be discussed.

      Addressed above.

      Final comment. As shown in reference 12, Tar mediates attractant responses to indole, which appear to be absent here (Figure 3J). Is it clear why? Could it be related to receptor expression?

      Thank you for noting this. We now mention this in the discussion. In the course of this work, we encountered a number of apparent inconsistencies, or differences, between what we were observing with S. Typhimurium and what had been reported previously in studies of Tsr function in E. coli. We indeed noted that some studies had investigated a role of Tar for indole taxis (in E. coli), hence why we determined whether, and confirmed, that Tsr is required for indole taxis for S. Typhimurium (Fig. 6).

      We do not know the reason for this apparent difference between the two bacteria, but we have previously shown with our same strain of S. Typhimurium IR715, under the same growth assay, and preparation protocol, that L-Asp is a strong chemoattractant for both WT and the tsr mutant (see Glenn et al. 2024, eLife, Fig. 5G: https://iiif.elifesciences.org/lax:93178%2Felife-93178-fig5-v1.tif/full/1500,/0/default.jpg).

      This supports that this strain of Salmonella indeed has a functional Tar present and is expressed at a level sufficient for sensing L-Asp. So, if Tar generally mediates indole sensing we do not know why we would not see that in Salmonella. Hence, we do not see any role for Tar in indole chemorepulsion in our strain of study, which is different than reported for E. coli, but we cannot confirm the reason.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript, Franco and colleagues describe careful analyses of Salmonella chemotactic behavior in the presence of conflicting environmental stimuli. By doing so, the authors describe that this human pathogen integrates signals from a chemoattractant and a chemorepellent into an intermediate "chemohalation" phenotype.

      Strengths:

      The study was clearly well-designed and well-executed. The methods used are appropriate and powerful. The manuscript is very well written and the analyses are sound. This is an interesting area of research and this work is a positive contribution to the field.

      Thank you for your comments.

      Weaknesses:

      Although the authors do a great job in discussing their data and the observed bacterial behavior through the lens of chemoattraction and chemorepulsion to serine and indole specifically, the manuscript lacks, to some extent, a deeper discussion on how other effectors may play a role in this phenomenon. Specifically, many other compounds in the mammalian gut are known to exhibit bioactivity against Salmonella. This includes compounds with antibacterial activity, chemoattractants, chemorepellers, and chemical cues that control the expression of invasion genes. Therefore, authors should be careful when making conclusions regarding the effect of these 2 compounds on invasive behavior.

      Thank you for this comment, and we agree with your point. We hope we have revised the text and provided new data to address your concern. We have also chosen for clarity to keep our text close to our experimental data and so have refrained from speculating about some topics, even though you are absolutely correct about the immense complexity of these systems.

      It is important that the word invasion is used in the manuscript only in its strictest sense, the ability displayed by Salmonella to enter non-phagocytic host cells. With that in mind, authors should discuss how other signals that feed into the control of Salmonella invasion can be at play here.

      Thank you for your recommendation. We have revised the text to hopefully be clearer on our meaning of invasion in regard to Salmonella entering non-phagocytic host cells, essentially changing our usage to ‘cellular invasion’ throughout.

      It is also a commonly-used phrase in reference to enteric infections and the colonization resistance conferred by the microbiome to refer to ‘invading pathogens’ (i.e. invasion in the sense of a new microbe colonizing the intestines), For instance, this recent review on Salmonella makes use of the term invading pathogen (https://www.nature.com/articles/s41579-021-00561-4). We acknowledge the confusion by this dual use of the term. We have mostly removed our statements using invasion in this context. We hope our language is clearer in this revised version.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      It was difficult to understand the true intent or importance of the study described in this manuscript. The first figure in the paper showed that a Salmonella Typhimurium strain lacking either CheY, and thus incapable of any chemotaxis, or the Tsr chemoreceptor, and thus incapable of sensing serine or indole, was modestly inferior to the wild-type version of that strain in invading the cells of a swine colonic explant. It then showed that, in the presence of a human fecal homogenate, the wild-type strain had a much greater advantage in invading the colonic cells. Thus, the presence of the fecal homogenate significantly increased invasiveness in a way that depends on chemotaxis and the Tsr chemoreceptor.

      As human feces were determined to contain 882 micromolar indole and 338 micromolar serine, the effects of those concentrations of either indole or serine alone or in combination were tested. The somewhat surprising finding was that neither indole nor serine alone nor in combination changed the result from the experiment done with just buffer in the colonic explant.

      The clear conclusion of this initial study is that both chemotaxis in general and chemotaxis mediated by Tsr improve the invasiveness of S. Typhimurium. They provide a much bigger advantage in the presence of human feces. However, two molecules present in the feces that are sensed by Tsr, serine, and indole, seem to have no effect on invasiveness either alone or in combination.

      At this point, the parsimonious interpretation is that there is something else in human feces that is responsible for the increased invasiveness, and the authors acknowledge this possibility. However, they do not take what appears to be the obvious approach: to look for additional factors in human feces that might be responsible, either by themselves or in combination with indole and/or serine, for the increased invasiveness. Instead, they carry out a detailed examination of the counteracting effects of indole as a repellent and of serine as an attractant as a function of their relative concentrations and their spatial distributions.

      Thank you for your comments. In our revised version, we have undertaken some additional studies of other fecal effectors that help better understand the relationship between L-Ser and indole, but also the roles of other chemoattractants (glucose, galactose, ribose, L-Asp) in mediating fecal attraction (Fig. 5). We agree with the reviewer and conclude that fecal attraction and the cell invasion phenotype mediated by fecal treatment are influenced by factors other than only Tsr, indole, and L-Ser. Our new data do show that L-Ser is sufficient to block both the invasion suppression effects of indole (negating the WT advantage) and also indole chemorepulsion, therefore making our detailed examination of the counteracting effects more relevant for understanding this system.

      What they find is what other studies have shown, primarily with S. Typhimurium's relative, the gamma-proteobacterium Escherichia coli.

      At high indole and low serine concentrations, the repulsion by indole wins out. At low indole and high serine concentrations, attraction by serine wins out. What is perhaps novel is what happens at an intermediate ratio of concentrations. Repulsion by indole dominates at short distances from the source, so there is a zone of clearing. At longer distances, attraction by serine dominates, so there is an accumulation of cells in a "halo" around the zone of clearing. Thus, assuming that serine and indole diffuse equally, the repulsive effect of indole dominates until its concentration falls below some critical level at which the concentration of serine is still high enough to exert an attractive effect.

      They go on to show, using ITC, that serine binds to the periplasmic ligand-binding domain (LBD) of Tsr, something that has been studied extensively with very similar E. coli Tsr.

      They also show that indole does not bind to the Tsr LBD, which also is known for E. coli Tsr.

      This would be newsworthy only if the results were different for S. Typhimurium than for E. coli. As it is, it is merely confirmatory of something that was already known about Tsr of enteric bacteria.

      An idea that the authors introduce, if I understand it correctly, is that a repellent response to something in feces, perhaps indole, drives S. Typhimurium chemotactically competent cells out of the colonic lumen and promotes invasion of the bacteria into the cells of the colonic lining. If the feces contain both an attractant and a repellent, bacteria might be attracted by the feces to the lining of the intestine and then enter the colonic cells to escape a repellent, perhaps indole. That is an interesting proposition.

      In summary, I think that the initial experimental approach is fine. I do not understand the failure to follow up on the effect of the fecal homogenates in promoting invasion by chemotactic bacteria possessing Tsr. It seems there must be something else in the homogenates that is sensed by Tsr. Other amino acids and related compounds are also sensed by Tsr. Perhaps it is energy or oxygen taxis, which is partially mediated by Tsr, as the authors acknowledge.

      Much of the work reported here is quasi-repetitive with work done with E. coli Tsr. Minimally, previous work on E. coli Tsr should be explained more thoroughly rather than dealt with only as a citation.

      Thank you for your comments.

      We would like to confirm our agreement that E. coli and S. enterica indeed possess similarities. They are Gammaproteobacteria and inhabit/infect the gut. But also we note they diverged evolutionarily during the Jurassic period (ca. 140 million years ago, see: PMC94677). In the context of colonizing humans, the former is a pathobiont, indoleproducer, and a native member of the microbiome, whereas the latter is a frank pathogen and does not produce indole. Hence, there are many reasons to believe one is not an approximate of the other, especially when it comes to causing disease.

      We agree that much of what is known about indole taxis has come from excellent studies in well-behaved laboratory strains of E. coli, a powerful model. We believe that expanding this work to include clinically relevant pathogens is important for understanding its role in human disease. In this study, we contribute to that broader understanding by providing new mechanistic insights into Tsr-mediated indole taxis in S. Typhimurium, along with data demonstrating fecal attraction in other enteric pathogens and pathobionts. These findings help define a more general role for Tsr in enteric colonization and disease. While some of our results indeed confirm and extend prior findings, we respectfully believe that such confirmation in relevant pathogenic strains adds value to the field.

      Regarding our ITC studies, to our knowledge no other study has investigated, using ITC whether indole does or does not bind the LBD (which we show it does not), nor investigated whether it interferes with L-Ser sensing (which we show it does not). Hence, these are not duplicate findings, although we do acknowledge this leaves the mechanism of indolesensing undiscovered. If we are incorrect in this regard, please provide us a citation and we will be happy to include it and revise our comments.

      We now clarify in the text on lines 378-381: “While these leave the molecular mechanism of indole-sensing unresolved, it does eliminate two possibilities that have not, to our knowledge, been tested previously. Overall, our data add support to the hypothesis that a non-canonical sensing mechanism is employed by Tsr to respond to indole [8,18,69].”

      Lastly, as noted by the reviewer, and which we mention in the text, essentially all prior studies on indole taxis were conducted in E. coli, and this is not what is new and novel about the work we present, which is focused on S. Typhimurium and testing the prediction that fecal indole protects against pathogen invasion. We have added in a few additional points of comparisons between our results and prior studies. While we appreciate that much understanding has come from E. coli as a model for indole taxis, we feel discussing prior work in extensive detail would be more suitable for a review and would occlude our new findings about Salmonella, and other enterics.

      In an earlier version of the manuscript, we included more background on E. coli indole taxis. However, we found that the historical literature in this area was somewhat inconsistent, with different assays using varying time points and indole concentrations, often leading to results that were difficult to reconcile. Providing sufficient context to explain these discrepancies required considerable space and, ultimately, detracted from the focus of our current study. Hence, we have only brought in comparisons with E. coli where most relevant to the present work. Also, we provide new data that E. coli also exhibits fecal attraction, and so there is reason to believe the mechanisms we study here are also relevant to that system.

      Some minor points

      (1) Hyphens are not needed with constructs like "naturally occurring" or "commonly used".

      Thank you. Revisions made throughout.

      (2) The word "frank" as in "frank pathogen" seems odd. It seems "potent" would be better.

      Thank you for this comment. Per your recommendation, we have removed this term.

      The term ‘frank pathogen’ is standard usage in the field of bacterial pathogenesis in reference to a microbe that always causes disease in its host (in this case humans) and causes disease in otherwise healthy hosts (example: https://www.sciencedirect.com/science/article/pii/S1369527420300345). We actually used this specific term to distinguish an aspect of novelty of our study because E. coli can, sometimes, be a pathogen (i.e. a pathobiont) and of course E. coli indole taxis has been previously studied. Ours is the first study of indole taxis in a frank pathogen.

      (3) It is unnecessary to coin a new word, chemohalation, to describe a phenomenon that is a simple consequence of repulsion by higher concentrations of a repellent and attraction by lower concentrations of attractant to generate a halo pattern of cell distribution.

      Thank you for your opinion on this. We have softened our statements on this point, and in the newly revised version of the text less space is devoted to this idea. We now state in line 304-307:

      “There exists no consensus descriptor for taxis of this nature, and so we suggest expanding the lexicon with the term “chemohalation,” in reference to the halo formed by the cell population, and which is congruent with the commonly-used terms chemoattraction and chemorepulsion.”

      We appreciate the reviewer’s perspective and agree that the behavior we describe can be viewed as the result of competing attractant and repellent cues. However, we find that the traditional framework of “chemoattraction” and “chemorepulsion” is often insufficient to describe the spatial positioning behaviors we observe in our system. In our experience presenting and discussing this work, especially with audiences outside the chemotaxis field, it has been challenging to convey these dynamics clearly using only those two terms.

      For this reason, we introduced the term chemohalation to describe this more nuanced behavior, which appears to reflect a balance of signals rather than a simple unidirectional response. More bacteria enter the field of view, but they are clearly positioned differently than regular ‘chemoattraction.’ We also note that Reviewers 2 and 3 did not raise concerns about the term, and after careful consideration, we have opted to retain it in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      Lines 143-156 seem somewhat overcomplicated and may be confusing. For example: in line 143: "However, when colonic tissue was treated with purified indole at the same concentration, the competitive advantage of WT over the chemotactic mutants was abolished compared to fecaltreated tissue...". But indole was tested alone, so it did not abolish the response; rather the absence of fecal material did.

      We appreciate your point. We have made revisions throughout to help improve the clarity of how we discuss the explant infection data and provide new visuals to help explain the experiment and data (Fig. 1C, Fig. S5).

      Reviewer #3 (Recommendations for the authors):

      (1) Line 46 - Are references 9-11 really about topography?

      Thank you. You are correct. Revised and eliminated this statement.

      (2) Lines 87-89 - It seems to me that a bit more information on this would be helpful to the reader.

      In our revision of the text, to make it more centered on our primary findings of the differences between indole taxis when indole is the sole effector versus amidst other effectors, we have removed this section.

      (3) Line 112 - When mentioning the infection of the cecum and colon, authors should specify that this is in mice.

      Thank you for this comment. In our revised version we provide references both for animal model infections and work in human patients (ex: https://www.sciencedirect.com/science/article/abs/pii/S0140673676921000)

      We have revised our statement to be (Line 99-100: “Salmonella Typhimurium preferentially invades tissue of the distal ileum but also infects the cecum and colon in humans and animal models [42–46].”

      (4) Lines 122-123 - Authors state that "This experimental setup simulates a biological gradient in which the effector concentration is initially highest near the tissue and diffuses outward into the buffer solution.". Was this experimentally demonstrated? If not, authors should tone this down.

      We have removed this comment and instead present a conceptual diagram illustrating this idea (Fig. 1C). Also, addressed by above.

      (5) When looking at the results in Figure 1, I wonder what the results of this experiment would be if the authors tested an invasion mutant of Salmonella. In a strain that is able to perform chemotaxis (attraction and repulsion) but unable to actively invade, would there be a phenotype here? Is it possible that the fecal material affects cellular uptake of Salmonella, independently of active invasion? I don't think the authors necessarily need to perform this experiment, but I think it could be informative and this possibility should at least be discussed.

      Thank you for your comments and suggestions. We have included new data of an explant co-infection experiment with WT and an invasion-deficient mutant invA (Fig. S1). Under these conditions, WT exhibits an advantage in the gentamicin-treated homogenate, but not the untreated homogenate, suggestive of an advantage in cellular invasion.

      However, we did not repeat all experiments with this genetic background. We felt that would be outside the scope of this work, and would probably require dual chemotaxis/invA deletions to assess the impact of each, which also could be difficult to interpret. The hypothesis mentioned by the Reviewer is possible, but we were not able to devise a way to test this idea, as it seems we would need to deactivate all other mechanisms of Salmonella invasion.

      (6) Lines 137-140 - Because this is a competition experiment and results are plotted as CI, the reader can't readily assess the impact of human feces on invasion by WT Salmonella.

      Thank you for pointing this out. We want to mention that the data are plotted as CI in the main text, but the supplemental contains the disaggregated CFU data (Fig. S1-2) and the numerical values (Data S1).

      Please include the magnitude of induction in this sentence, compared to the buffer control.

      The text of this section has been changed to account for new data.

      Additionally, although unlikely, the presence of the chemotaxis mutants in the same infection may be a confounding factor. In order to irrefutably ascertain that feces induces invasion, I suggest authors perform this experiment with the wildtype strain (and mutant) alone in different conditions.

      Thank you for this suggestion, although after careful consideration we have decided not to repeat these explant studies with monoinfections. Coinfections are a common tool in Salmonella pathogenesis studies, including prior chemotaxis studies which our work builds upon (ex: https://pmc.ncbi.nlm.nih.gov/articles/PMC3630101/). The explant experiments, even controlling as many aspects as we did, still show lots of variability and one way to mitigate this is through competition experiments so that each strain experiences the same environment.

      We agree that a cost of this approach is that one strain may affect the other, or may alter the environment in a way that impacts the other. Thus, the resulting data must also be understood through this lens. We have revised the text to stay closer to the competitive advantage phenotype.

      (7) Line 150 - Authors state that bacterial loads are similar. However, authors should perform and report statistical analyses of these comparisons, at least in the supplementary data.

      We have removed this statement as requested. We do note, however, that the mean CFU values across treatments at identical time points appear qualitatively similar, which is an observation that does not require statistical testing.

      (8) Lines 154-154 - This seems incorrect, as the effect observed with the mixture of indole and serine is very similar to the addition of serine alone. Therefore, there was no "neutralization" of their individual effects.

      We have revised this statement.

      (9) Line 159-161 - I strongly suggest authors reword this sentence. I don't think this is the best way to describe these results. The stronger phenotype observed was with the fecal material. Therefore, it is the indole (alone) condition that does not "elicit a response". Focusing on indole too much here ignores everything else that is present in feces and also the fact that there was a drastic phenotype when feces were used.

      Thank you for your opinion on this. We believe this is one of the ways in which our earlier draft was unclear. It was actually a primary motivation of this work to test whether there were differences in pathogen infection, mediated by chemotaxis, in the presence of indole as a singular effector or in its near-native context in fecal material, and our revised text centers our study around this question. We believe this distinction is important for the reasons mentioned earlier.

      Relative to buffer treatment, indole changes the behavior of the system, eliminating the WT advantage, and this is the effect we refer to. We have made many revisions to the text of these sections and hope it better conveys this idea. We expect we may still have differences regarding the interpretation of these results, but regardless, thank you for your suggestions and we have tried to implement them to improve the clarity of the text.

      (10) Line 162 - Again, I disagree with this. Indole does not have an effect to be cancelled out by serine.

      Addressed above, and this text has been changed. Also, we provide new chemotaxis data that at fecal-relevant concentrations of indole and L-Ser, indole chemorepulsion is overridden (Fig. 5).

      (11) Lines 166-168 - Again, this is a skewed analysis. Indole and serine could not possibly provide an "additive effect" since they do not provide an effect alone. There is nothing to be added.

      This text has been deleted.

      (12) Lines 168-170 - Most of the citations provided to this sentence are inadequate. Our group has previously shown that the mammalian gut harbors thousands of small molecules (Antunes LC et al. Antimicrob Agents Chemother 2011). You obviously do not have to cite our work, but there is significant literature out there about the complexity of the gut metabolome.

      Thank you for this comment. We have revised this particular text, but do make mention of potential other effectors driving these effects, which was also requested by the other reviewers.

      Your work and others indeed support there being thousands of molecules in the gut, but our work centers on chemotaxis, and bacteria have a small number of chemoreceptors and only sense a very tiny fraction of these molecules as effectors. Since the impacts of infection of the explants depends on chemotaxis, we keep our comments restricted to those, but agree that there are likely many interactions involved, such as those impacting gene expression.

      Please note our more detailed description of the explant infection assay (and shown in Fig. 1C) that may change your view on the significance of non-chemotaxis effects. The bacteria only experience the effectors at low concentration, not the high concentration that is used to soak and prepare the tissue prior to infection.

      (13) Figure 2 - The letter 'B' from panel B is missing.

      Thank you very much for bringing this oversite to our attention. We have fixed this.

      (14) Legend of Figure 3 - Panel J is missing a proper description. Figure legends need improvement in general, to increase clarity.

      Thank you for noting this. This is now Fig. 6E. We have provided an additional description of what this panel shows. We have edited the legend text to read: “E. Shows a quantification of the relative number of cells in the field of view over time following treatment with 5 mM indole for a competition experiment with WT and tsr (representative image shown in F).”

      We also have made other edits to figure legends to improve their clarity and add additional experimental details and context. By breaking up larger figures into smaller figures, we also hope to have improved the clarity of our data presentation.

      (15) Lines 264-265 - Maybe I am missing something, but I do not see the ITC data for serine alone.

      We have clarified in the text that this was measured in our previous study https://elifesciences.org/articles/93178). The present study is a ‘Research Advance’ article format, and so builds on our prior observation.

      We have revised the text to read: “To address these possibilities, we performed ITC of 50 μM Tsr LBD with L-Ser in the presence of 500 μM indole and observed a robust exothermic binding curve and KD of 5 µM, identical to the binding of L-Ser alone, which we reported previously (Fig. 6H) [36].”

      (16) Lines 296-297 - What is the effect of these combinations of treatments on bacterial cells? I commend the authors for performing the careful growth assays, but I wonder if bacterial lysis could be a factor here. I am not doubting the effect of chemotaxis, but I am wondering if toxic effects could be a confounding factor. For instance, could it be that the "avoidance" close to the compound source and subsequent formation of a halo suggest bacterial death and lysis? I suggest the authors perform a very simple experiment, where bacteria are exposed to the compounds at various concentrations and combinations, and cells are observed over time to ensure that no bacterial lysis occurs.

      Thank you for mentioning this possibility. If we understand correctly, the Reviewer is asking if the chemohalation effect we report could be from the bacteria lysing near the source. Our data actually argue against this possibility through a few lines of evidence.

      First, if this were the case in experiments with the cheY mutant, we would also see an effect near the source. But actually, in experiments with either the cheY mutant or the tsr mutant, neither of which can sense indole, the bacteria just ignore the stimulus and show an even distribution (see current Fig. 6F).

      Second, our calculations suggest that in the chemotaxis assay (CIRA), the bacteria only experience rather low local concentration of indole, mostly I the nM concentration range, because as soon as the effector treatment is injected into the greater volume, it is immediately diluted. This means the local concentration is far below what we see inhibits growth of the cells in the long run and may not be toxic (Fig. 7, Fig. S3).

      Lastly, in the representative video presented we can observe individual cells approach and exit the treatment (Movie 11). Due to the above we have not performed additional experiments to test for lysis.

      (17) Lines 310-311 - Isn't this the opposite of the model you propose in Figure 5? The higher the concentration of indole in the lumen the more likely Salmonella is to swim away from it and towards the epithelium, favoring invasion, no?

      We appreciate the opportunity to clarify this point and apologize for any confusion caused. In response, we have revised the text to place less emphasis on chemohalation, and the specific statement and model in question have now been removed. Instead, we provide a summary of our explant data in light of the other analyses in the study (Fig. S5).

      What we meant here was in relation to the microscopic level, not whether or not a host/intestine is colonized. To put it another way, we think our data supports that the pathogen colonizes and infects the host regardless of indole presence, but it uses indole as a means to prioritize which tissues are optimal for colonization at the microscopic level. The prediction made by others was that bacteria swim away from indole source and therefor this could prevent or inhibit pathogen colonization of the intestines, which our data does not support.

      (18) Lines 325-326 - Maybe, but feces also contain several compounds with antibacterial activity, as well as other compounds that could elicit chemorepulsion. This should be stated and discussed.

      We have removed this statement since we did not explicitly test the growth of the bacteria with fecal treatments. We have refrained from speculating further in the text since we do not have direct knowledge of how that relationship with differing effectors could play out.

      We agree with the reviewer that the growth assays are reductionist and give insight only into the two effectors studied. We provide evidence from several different types of enterics that they all exhibit fecal attraction, and it seems unlikely the bacteria would be attracted to something deleterious, but we have not confirmed.

      (19) Lines 371-374 - How preserved (or not) is the mucus layer in this model? The presence of an inhibitory molecule in the lumen does not necessarily mean that it will protect against invasion. It is possible that by sensing indole in the lumen Salmonella preferentially swims towards the epithelium, thus resulting in enhanced evasion.

      The text in question has been removed. However, we acknowledge the reviewer’s point, and that these explant tissues do not fully model an in vivo intestinal environment. Other than a gentle washing with PBS to remove debris prior to the experiment the tissue is not otherwise manipulated, and feasibly the mucus layer is similar to its in vivo state.

      In mentioning this hypothesis about indole, which our data do not support, we were echoing a prediction from the field, proposed in the studies we cite. We agree with the reviewer that there were other potential outcomes of indole impacting chemotaxis and invasion, and indeed our data supports that.

      (20) Lines 394-395 - The authors need to remember that the ability to invade the intestinal epithelium is not only a product of chemoattraction and repulsion forces. Several compounds in the gut are used by Salmonella as cues to alter invasion gene expression. See PMID: 25073640, 28754707, 31847278, and many others.

      Thank for you for this point, and we now include these citations. We have revised the text in question, stating:

      “In addition to the factors we have investigated, it is already well-established in the literature that the vast metabolome in the gut contains a complex repertoire of chemicals that modulate Salmonella cellular invasion, virulence, growth, and pathogenicity [79–81].”

      Our intent is not to diminish the role of other intestinal chemicals but rather to put our new findings into the context of bacterial pathogenesis. We do provide evidence that specific chemoeffectors present in fecal material alter where bacteria localize through chemotaxis, which is one method of control over colonization.

      (21) Line 408 - I think it could be hard to observe this using your experimental approach.

      Because you need to observe individual cells, the number of cells you observe is relatively small. If, in a bet-hedging strategy, the proportion of cells that were chemoattracted to indole was relatively low you likely would not be able to distinguish it from an occasional distribution close to the repellent source. You may or may not want to discuss this.

      Thank you for this observation. It is indeed challenging to both observe large scale population behaviors and also the behaviors of individual cells in the same experiment. Our ability to make this distinction is similar to the approach used in the study we cite, so that is our comparison.

      But, if there was a subpopulation that was attracted we would predict a ‘bull’s-eye’ population structure, with some cells attracted and other avoiding the source, which we do not see - we see the halo. So, we find no evidence of the bet-hedging response seen in a different study using E. coli and using different time scales than we have.

      (22) Lines 410-411 - What could the other attractants be? Would it be possible/desirable to speculate on this?

      We have changed the text here, but we present new data that examines some of these other attractants (Fig. 5).

      (23) Line 431 - What exactly do you mean by "running phenotype"? Please, provide a brief explanation.

      We have removed this text, but a running phenotype means the swimming bacteria rarely make direction changes (i.e. tumbles), which has been associated with promoting contact with the epithelium, described in the references we cite. Hence, this type of swimming behavior could contribute to the effects we observe in the explant studies, potentially explaining some of the Tsr-mediated advantage that was not dependent on L-Ser/indole.

      (24) Line 441 - Other work has shown that feces contain inhibitors of invasion gene expression. The authors should integrate this knowledge into their model. In fact, indole has been shown to repress host cell invasion by Salmonella, so it is important that authors understand and discuss the fact that the impact of indole is multifaceted and not only a reflection of its action as a chemorepellent. PMID: 29342189, 22632036.

      We agree with the reviewer about this point, and mention this in the text (lines 55-57): “Indole is amphipathic and can transit bacterial membranes to regulate biofilm formation and motility, suppress virulence programs, and exert bacteriostatic and bactericidal effects at high concentrations [16–18,20–22].”

      We have added in the references suggested.

      What we test here is the specific hypothesis made by others in the field about indole chemorepulsion serving to dissuade pathogens from colonizing.

      For instance, the statement from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190613

      “Since indole is also a chemorepellent for EHEC [23], it is intriguing to speculate that in addition to attenuating Salmonella virulence, indole also attenuates the recruitment and directed migration of Salmonella to its infection niche in the GI tract.”

      And from: https://doi.org/10.1073/pnas.1916974117

      “We propose that indole spatially segregates cells based on their state of adaptation to repel invaders while recruiting beneficial resident bacteria to growing microbial communities within the GI tract.”

      And

      “Thus, foreign ingested bacteria, including invading pathogens such as E. coli O157:H7 and S. enterica, are likely to be prevented by indole from gaining a foothold in the mucosa.”

      As shown by others, indole certainly does have many roles in controlling pathogenesis, and there are other chemicals we do not investigate that control invasion and bacterial growth, but we keep our statements here restricted to chemotaxis since that is what are experiments and data show.

      (25) Line 472 - "until fully motile". How long did this take, how variable was it, and how was it determined?

      Thank you for asking for this clarification. We have added that the time was between 1-2 h, and confirmed visually. Our methods are similar to those described in earlier chemotaxis studies (ex: 10.1128/jb.182.15.4337-4342.2000).

      (26) Line 487 - I worry that the fact fecal samples were obtained commercially means that compound stability/degradation may be a factor to consider here. How long had the sample been in storage? Is this information available?

      Thank you for this question. We agree that the fecal sample we used serves as a model system and we cannot rule out that handling by the supplier could potentially alter its contents in some way that would impact bacterial chemosensing. However, we note that the measurements of L-Ser and indole we obtained are in the appropriate range for what other studies have shown.

      The fecal sample used for all work in the study were from a single healthy human donor, obtained from Lee Biosolutions (https://www.leebio.com/product/395/fecal-stool-samplehuman-donor-991-18). The supplier did not state the explicit date of collection, nor indicated any specific handline or storage methods that would obviously degrade its native metabolites, but we cannot rule that out. In our hands, the fecal sample was collected and kept frozen at -20 C. For research purposes, portions were extracted and thawed as needed, maintaining the frozen state of the original sample to limit degradation from freeze-thaws.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Recommendations for the authors:

      Reviewing Editor Comments:

      The resubmitted version of the manuscript adequately addressed several initial comments made by reviewing editors, including a more detailed analysis of the results (such as those of bilayer thickness). This version was seen by 2 reviewers. Both reviewers recognize this work as being an important contribution to the field of BK and voltage-dependent ion channels in general. The long trajectories and the rigorous/novel analyses have revealed important insights into the mechanisms of voltage-sensing and electromechanical coupling in the context of a truncated variant of the BK channel. Many of these observations are consistent with structural and functional measurements of the channel, available thus far. The authors also identify a novel partially expanded state of the channel pore that is accessed after gating-charge displacement, which informs the sequence of structural events accompanying voltage-dependent opening of BK.

      However, there are key concerns regarding the use of the truncated channel in the simulations. While many gating features of BK are preserved in the truncated variant, studies have suggested that opening of the channel pore to voltage-sensing domain rearrangement is impaired upon gating-ring deletion. So the inferences made here might only represent a partial view of the mechanism of electromechanical coupling.

      It is also not entirely clear whether the partially expanded pore represents a functionally open, sub-conductance, or another closed state. Although the authors provide evidence that the inner pore is hydrated in this partially open state, in the absence of additional structural/functional restraints, a confident assignment of a functional state to this structure state is difficult. Functional measurements of the truncated channel seem to suggest that not only is their single channel conductance lower than full-length channels, but they also appear to have a voltage-independent step that causes the gates to open. It is unclear whether it is this voltage-independent step that remains to be captured in these MD trajectories. A clean cut resolution of this conundrum might not be feasible at this time, but it could help present the various possibilities to the readers.

      We appreciate the positive comments and agree that there will likely be important differences between the mechanistic details of voltage activation between the Core-MT and full-length constructs of BK channels. We also agree that the dilated pore observed in the simulation may not be the fully open state of Core-MT.

      Nonetheless, the notion that the simulation may not have captured the full pore opening transition or the contribution of the CTD should not render the current work “incomplete”, because a complete understanding of BK activation would be an unrealistic goal beyond the scope of this work. We respectfully emphasize that the main insights of the current simulations are the mechanisms of voltage sensing (e.g., the nature of VSD movements, contributions of various charged residues, how small charge movements allow voltage sensing, etc.) as well as the role of the S4-S5-S6 interface in VSD-pore coupling. As noted by the Editor and reviewers, these insights represent important steps towards establishing a more complete understanding of BK activation.

      Below are the specific comments of the two experts who have assessed the work and made specific suggestions to improve the manuscript.

      Reviewer #1 (Recommendations for the authors):

      (1) Although the successful simulation of V-dependent K+ conduction through the BK channel pore and analysis of associated state dependent VSD/pore interactions and coupling analysis is significant, there are two related questions that are relevant to the conclusions and of interest to the BK channel community which I think should be addressed or discussed.

      One key feature of BK channels is their extraordinarily large conductance compared to other K+ selective channels. Do the simulations of K+ conductance provide any insight into this difference? Is the predicted conductance of BK larger than that of other K+ channels studied by similar methods? Is there any difference in the conductance mechanism (e.g., the hard and soft knock-on effects mentioned for BK)?

      The molecular basis of the large conductance of BK channels is indeed an interesting and fundamental question. Unfortunately, this is beyond the scope of this work and the current simulation does not appear to provide any insight into the basis of large conductance. It is interesting to note, though, the conductance is apparently related to the level of pore dilation and the pore hydration level, as increasing hydration level from ~30 to ~40 waters in the pore increases the simulated conductance from ~1.5 to 6 pS (page 8). This is consistent with previous atomistic simulations (Gu and de Groot, Nature Communications 2023; ref. 33) showing that the pore hydration level is strongly correlated with observed conductance. As noted in the manuscript, the conductance mechanism through the filter appears highly similar to previous simulations of other K+ channels (Page 8). Given the limit conductance events observed in the current simulations, we will refrain from discussing possible basis of the large conductance in BK channels except commenting on the role of pore hydration (page 8; also see below in response to #5).

      The pore in the MD simulations does not open as wide as the Ca-bound open structure, which (as the authors note) may mean that full opening requires longer than 10 us. I think that is highly likely given that the two 750 mV simulations yielded different degrees of opening and that in BK channels opening is generally much slower than charge movement. Therefore, a question is - do any of the conclusions illustrated in Figures 6, S5, S6 differ if the Ca-bound structure is used as the open state? For example, I expect the interactions between S5 and S6 might at least change to some extent as S6 moves to its final position. In this case, would conclusions about which residues interact, and get stronger or weaker, be the same as in Figures S6 b,c? Providing a comparison may help indicate to what extent the conclusions are dependent on achieving a fully open conformation.

      We appreciate the reviewer’s suggestion and have further analyzed the information flow and coupling pathways using the simulation trajectory initiated from the Ca<sup>2+</sup>-bound cryo-EM structure (sim 7, Table S1). The new results are shown in two new SI Figures S7 and S8, and new discussion has been added to pages 14-15. Comparing Figures 5 and S7, we find that dynamic community, coupling pathways, and information flow are highly similar between simulation of the open and closed states, even though there are significant differences in S5 contacts in the simulated open state vs Ca<sup>2+</sup>-bound open state (Figure S8). Interestingly, there are significant differences in S4-S5 packing in the simulated and Ca<sup>2+</sup>-bound open states (Figure S8 top panel), which likely reflect important difference in VSD/pore interactions during voltage vs Ca<sup>2+</sup> activation.

      (2) P4 Significance -"first, successful direct simulation of voltage-activation"

      This statement may need rewording. As noted above Carrasquel-Ursulaez et al.,2022 (reference 39) simulated voltage sensor activation under comparable conditions to the current manuscript (3.9 us simulation at +400 mV), and made some similar conclusions regarding R210, R213 movement, and electric field focusing within the VSD. However, they did not report what happens to the pore or simulate K+ movement. So do the authors here mean something like "first, successful direct simulation of voltage-dependent channel opening"?

      We agree with the reviewer and have revised the statement to “ … the first successful direct simulation of voltage-dependent activation of the big potassium (BK) channel, ..”

      (3) P5 "We compare the membrane thickness at 300 and 750 mV and the results reveal no significant difference in the membrane thickness (Figure S2)"

      The figure also shows membrane thickness at 0 mV and indicates it is 1.4 Angstroms less than that at 300 or 750 mV. Whether or not this difference is significant should be stated, as the question being addressed is whether the structure is perturbed owing to the use of non-physiological voltages (which would include both 300 and 750 mV).

      We have revised the Figure S2 caption to clarify that one-way ANOVA suggest the difference is not significant.

      (4) P7 "It should be noted that the full-length BK channel in the Ca2+ bound state has an even larger intracellular opening (Figure 2f, green trace), suggesting that additional dilation of the pore may

      occur at longer timescales."

      As noted above, I agree it is likely that additional pore dilation may occur at longer timescales. However, for completeness, I suppose an alternative hypothesis should be noted, e.g. "...suggesting that additional dilation of the pore may occur at longer timescales, or in response to Ca-binding to the full length channel."

      This is a great suggestion. Revised as suggested.

      (5) Since the authors raise the possibility that they are simulating a subconductance state, some more discussion on this point would be helpful, especially in relation to the hydrophobic gate concept. Although the Magleby group concluded that the cytoplasmic mouth of the (fully open) pore has little impact on single channel conductance, that doesn't rule out that it becomes limiting in a partially open conformation. The simulation in Figure 3A shows an initial hydration of the pore with ~15 waters with little conductance events, suggesting that hydration per se may not suffice to define a fully open state. Indeed, the authors indicate that the simulated open state (w/ ~30-40 waters) has 1/4th the simulated conductance of the open structure (w/ ~60 waters). So is it the degree of hydration that limits conductance? Or is there a threshold of hydration that permits conductance and then other factors that limit conductance until the pore widens further? Addressing these issues might also be relevant to understanding the extraordinarily large conductance of fully open BK compared to other K channels.

      We agree with the reviewer’s proposal that pore hydration seems to be a major factor that can affect conductance. This is also well in-line with the previous computational study by Gu and de Groot (2023). We have now added a brief discussion on page 8, stating “Besides the limitation of the current fixed charge force fields in quantitively predicting channel conductance, we note that the molecular basis for the large conductance of BK channels is actually poorly understood (78). It is noteworthy that the pore hydration level appears to be an important factor in determining the apparent conductance in the simulation, which has also been proposed in a previous atomistic simulation study of the Aplysia BK channel (33).”

      Minor points

      (1) P5 "the fully relaxed pore profile (red trace in Figure S1d, top row) shows substantial differences compared to that of the Ca2+-free Cryo-EM structure of the full-length channel."

      For clarity, I suggest indicating which is the Ca-free profile - "... Ca2+-free Cryo-EM structure of the full-length channel (black trace)."

      We greatly appreciate the thoughtful suggestion. Revised as suggested.

      (2) P8 "Consistent with previous simulations (78-80), the conductance follows a multi-ion mechanism, where there are at least two K+ ions inside the filter"

      For clarity, I suggest indicating these are not previous simulations of BK channels (e.g., "previous simulations of other K+ channels ...").

      Author response: Revised as suggested. Thank you.

      (3) Figure 2, S1 - grey traces representing individual subunits are very difficult to see (especially if printed). I wonder if they should be made slightly darker. Similar traces in Figure 3 are easier to see.

      The traces in Figure S1 are actually the same thickness in Figure 3 and they appear lighter due to the size of the figure. Figure 2 panels a-c have been updated to improve the resolution.

      (4) Figure 2 - suggest labeling S6 as "S6 313-324" (similar to S4 notation) to indicate it is not the entire segment.

      Figure 2 panel d) has been updated as suggested.

      (5) Figure 2 legend - "Voltage activation of Core-MT BK channels. a-d)..."

      It would be easier to find details corresponding to individual panels if they were referenced individually. For example:

      "a-d) results from a 10-μs simulation under 750 mV (sim2b in Table S1). Each data point represents the average of four subunits for a given snapshot (thin grey lines), and the colored thick lines plot the running average. a) z-displacement of key side chain charged groups from initial positions. The locations of charged groups were taken as those of guanidinium CZ atoms (for Arg) and sidechain carboxyl carbons (for Asp/Glu) b) z-displacement of centers-of-mass of VSD helices from initial positions, c) backbone RMSD of the pore-lining S6 (F307-L325) to the open state, and d) tilt angles of all TM helices. Only residues 313-324 of S6 were included inthe tilt angle calculation, and the values in the open and closed Cryo-EM structures are marked using purple dashed lines. "

      We appreciate the thoughtful suggestion and have revised the caption as suggested.

      (6) Figure S1 - column labels a,b,c, and d should be referenced in the legend.

      The references to column labels have been added to Figure S1 caption.

      (7) References need to be double-checked for duplicates and formatting.

      a) I noticed several duplicate references, but did not do a complete search: Budelli et al 2013 (#68, 100), Horrigan Aldrich 2002 (#22,97), Sun Horrigan 2022 (#40, 86), Jensen et al 2012 (#56,81).

      b) Reference #38 is incorrectly cited with the first name spelled out and the last name abbreviated.

      We appreciate the careful proofreading of the reviewer. The duplicated references were introduced by mistake due to the use of multiple reference libraries. We have gone through the manuscript and removed a total of 5 duplicated references.

      Response to additional reviewer comments

      My only new comment is that the numbering of residues in Fig. S8 does not match the standard convention for hSlo and needs to be doublechecked. For the residues I checked, the numbers appear to be shifted 3 compared hSlo (e.g. Y315, P317, E318, G324 should be Y318, P320, E321, G327).

      We greatly appreciate the reviewer for catching the errors in residue labels. Figure S8 has now been updated to include correct residue labels. Thanks!

      Reviewer #2 (Recommendations for the authors):

      This manuscript has been through a previous level of review. The authors have provided their responses to the previous reviewers, which appear to be satisfactory, and I have no additional comments, beyond the caveats concerning interpretations based on the truncated channel, which are noted above.

      We greatly appreciate the constructive comments and insightful advice. Please see above response to the Reviewing Editor’s comments for response and changes regarding the caveats concerning interpretations of the current simulations.

    1. Background Characterising genetic and epigenetic diversity is crucial for assessing the adaptive potential of populations and species. Slow-reproducing and already threatened species, including endangered sea turtles, are particularly at risk. Those species with temperature-dependent sex determination (TSD) have heightened climate vulnerability, with sea turtle populations facing feminisation and extinction under future climate change. High- quality genomic and epigenomic resources will therefore support conservation efforts for these flagship species with such plastic traits.Findings We generated a chromosome-level genome assembly for the loggerhead sea turtle (Caretta caretta) from the globally important Cabo Verde rookery. Using Oxford Nanopore Technology (ONT) and Illumina reads followed by homology-guided scaffolding, we achieved a contiguous (N50: 129.7 Mbp) and complete (BUSCO: 97.1%) assembly, with 98.9% of the genome scaffolded into 28 chromosomes and 29,883 annotated genes. We then extracted the ONT-derived methylome and validated it via whole genome bisulfite sequencing of ten loggerheads from the same population. Applying our novel resources, we reconstructed population size fluctuations and matched them with major climatic events and niche availability. We identified microchromosomes as key regions for monitoring genetic diversity and epigenetic flexibility. Isolating 191 TSD-linked genes, we further built the largest network of functional associations and methylation patterns for sea turtles to date.Conclusions We present a high-quality loggerhead sea turtle genome and methylome from the globally significant East Atlantic population. By leveraging ONT sequencing to create genomic and epigenomic resources simultaneously, we showcase this dual strategy for driving conservation insights into endangered sea turtles.

      This work has been peer reviewed in GigaScience (https://doi.org/10.1093/gigascience/giaf054), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer: Victor Quesada

      This work offers a in improved version of the reference genome for the loggerhead sea turtle. The authors have also analyzed the methylation patterns of blood obtained from different individuals and with two methods. The resulting data set includes gene annotations, methylation levels and the specific analysis of methylation levels of genes involved in temperature-dependent sex determination (TSD). While the improvements offered by this work seem modest, I think that the data sets may provide important resources for future works.-In my opinion, the use of a previous version of the same genome in the assembly process should be noted in the abstract. It would be enough to write "... followed by homolgy-guided scaffolding to GSC_CCare_1.0...".-If possible, the authors should clarify the taxonomic relationship between the reference individual in this work and the reference individual for the previous version of the genome (ref. 26). Is it the same NCBI taxid?-There is a mention to "lateral terminal repeats" at the "Genome annotation" section (page 7). I think it is a typo and it should read "long terminal repeats".-In the same section, at page 9, reference 73 refers to StringTie, not gffread. In addition, it is not clear how "in-frame stop codons were removed". A simple way to unambiguously explain this would be to provide the options that were used, as with other programs.-I would revise the use of "coverage" versus "depth". For instance, the expression "...a coverage of 9.2(...)X" would be more precise as "...a sequencing depth of 9.2(...)X". Coverage should be a fraction or a percentage. However, this is only a piece of advice, as there is no strong consensus at the moment.-The interpretation of methylation patterns is always difficult. In my opinion, the manuscript should discuss several limitations about the results:First, using blood as the starting tissue is convenient but not ideal, as many methylation patterns are tissue-specific. The authors may want to add a reference to preliminary evidence that some methylation changes in blood cells are related to TSD (Bock et al., Mol Ecol. 2022; 31:5487-5505).Second, the work examines broad patterns of methylation (all promoters, all coding sequences,...). While this may be interesting for descriptive purposes, it may also drown significant signals. The manuscript should mention this limitation.*Figure 2B shows methylation per gene. If the aim is to compare both kinds of sequencing, there should be at least one comparison of methylation per CpG, which might even be cathegorial or downsampled.-The origin of the duplication of EP300 seems outside the scope of the manuscript. Nevertheless, given that the question is posed, the authors may want to perform a simple phylogenetic analysis of the sequences. Even the basic analysis of the annotated copies plus an outgroup is likely to give a robust answer to this question.-For the benefit of non-specialists, the manuscript might include a brief mention of how microchromosomes allow a larger number of combinations of variants without chromosome recombination.-Some expressions may be edited for clarity and precission. Examples are "which should be verified whether they are true" (page 17) and "microchromosomes have greater methylation potential and realised levels...".

    1. Background Variant Call Format (VCF) is the standard file format for interchanging genetic variation data and associated quality control metrics. The usual row-wise encoding of the VCF data model (either as text or packed binary) emphasises efficient retrieval of all data for a given variant, but accessing data on a field or sample basis is inefficient. Biobank scale datasets currently available consist of hundreds of thousands of whole genomes and hundreds of terabytes of compressed VCF. Row-wise data storage is fundamentally unsuitable and a more scalable approach is needed.Results Zarr is a format for storing multi-dimensional data that is widely used across the sciences, and is ideally suited to massively parallel processing. We present the VCF Zarr specification, an encoding of the VCF data model using Zarr, along with fundamental software infrastructure for efficient and reliable conversion at scale. We show how this format is far more efficient than standard VCF based approaches, and competitive with specialised methods for storing genotype data in terms of compression ratios and single-threaded calculation performance. We present case studies on subsets of three large human datasets (Genomics England: n=78,195; Our Future Health: n=651,050; All of Us: n=245,394) along with whole genome datasets for Norway Spruce (n=1,063) and SARS-CoV-2 (n=4,484,157). We demonstrate the potential for VCF Zarr to enable a new generation of high-performance and cost-effective applications via illustrative examples using cloud computing and GPUs.Conclusions Large row-encoded VCF files are a major bottleneck for current research, and storing and processing these files incurs a substantial cost. The VCF Zarr specification, building on widely-used, open-source technologies has the potential to greatly reduce these costs, and may enable a diverse ecosystem of next-generation tools for analysing genetic variation data directly from cloud-based object stores, while maintaining compatibility with existing file-oriented workflows.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf049), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer: Nezar Abdennur

      The authors present VCF Zarr, a specification that translates the variant call format (VCF) data model into an array-based representation for the Zarr storage format. They also present the vcf2zarr utility to convert large VCFs to Zarr. They provide data compression and analysis benchmarks comparing VCF Zarr to existing variant storage technologies using simulated genotype data. They also present a case study on real world Genomics England aggV2 data.The authors' benchmarks overall show that VCF Zarr has superior compression and computational analysis performance at scale relative to data stored as roworiented VCF and that VCF Zarr is competitive with specialized storage solutions that require similarly specialized tools and access libraries for querying. An attractive feature is that VCF Zarr allows for variant annotation workflows that do not require full dataset copy and conversion. Another key point is that Zarr is a high-level spec and data model for the chunked storage of n-d arrays, rather than a bytelevel encoding designed specifically around the genomic variant data type. I personally have used Zarr productively for several applications unrelated to statistical genetics. While Zarr VCF mildly underperforms some of the specialized formats (Savvy in compute, Genozip in compression) in a few instances, I believe the accessibility, interoperability, and reusability gains of Zarr make the small tradeoff well worthwhile.Because Zarr has seen heavy adoption in other scientific communities like the geospatial and Earth sciences, and is well integrated in the scientific Python stack, I think it holds potential for greater reusability across the ecosystem. As such, I think the VCF Zarr spec is a highly valuable if not overdue contribution to an entrenched field that has recently been confronted by a scalability wall.Overall, the paper is clear, comprehensive, and well written. Some high-level comments: The benefits for large scientific datasets to be analysis-ready cloud-optimized (ARCO) have been well articulated by Abernathey et al., 2021. However, I do think that the "local"/HPC single-file use case is still important and won't disappear any time soon, and for some file system use cases, expansive and deep hierarchies can be performance limiting (this was hinted at in one of the benchmarks). In this scenario would a large Zarr VCF perform reasonably well (or even better on some file systems) via a single local zip store? The description of the intermediate columnar format (ICF) used by vcf2zarr is missing some detail. At first I got the impression it might be based on something like Parquet, but running the provided code showed that it consists of a similar file-based chunk layout to Zarr. This should be clarified in the manuscript. The authors discuss the possibility of storing an index mapping genomic coordinates to chunk indexes. Have Zarr-based formats in other fields like geospatial introduced their own indexing approaches to take inspiration from? Since VCF Zarr is still a draft proposal, it could be useful to indicate where community discussions are happening and how potential new contributors can get involved, if possible. This doesn't need to be in the paper per se, but perhaps documented in the spec repo.Minor comments: In the background: "For the representation to be FAIR, it must also be accessible," -- A is for "accessible", so "also" doesn't make sense. "There is currently no efficient, FAIR representation...". Just a nit and feel free to ignore, but the solution you present is technically "current".* In Figure 2, the zarr line is occluded by the sav line and hard to see.

    1. Author response:

      Reviewer #1 (Public review):

      The usefulness of the proposed new metric of "variant consistency" and how it can guide users in selecting demultiplexing methods seems a little unclear. It correlates with the level of ambient RNA/DNA contamination, which makes it look like a metric on data quality. However, it does depend on the exact demultiplexing method, yet it's not clear how it directly connects to the "accuracy" of each demultiplexing method, which is the most important property that users of these methods care about. Since the simulated data has ground truth of donor identities available, I would suggest using the simulated data to show whether "variant consistency" directly indicates the accuracy of each method, especially the accuracy within those "C2" reads.

      I also think the tool and analyses presented in this paper need some further clarification and documentation on the details, such as how the cell-type gene and peak probabilities are determined in the simulation, and how doublets from different cell types are handled in the simulation and analysis. A few analyses and figures also need a more detailed description of the exact methods used. 

      We thank the reviewer for their suggestions. We plan on revising the manuscript to reflect their suggestions, which will include clarification of the variant consistency metric and its relationship with demultiplexing accuracy based on the simulations and additional detail regarding ambisim’s generation of multiplexed snRNA/snATAC.

      Reviewer #2 (Public review):

      (1) Throughout the manuscript, the figure legends are difficult to understand, and this makes it difficult to interpret the graphs.

      (2) Since this is both a new tool and a benchmark, it would be worthwhile in the Discussion to comment on which demultiplexing tools one may want to choose for their dataset, especially given the warning against ensemble methods. From this extensive benchmarking, one may want to choose a tool based on the number of donors one has pooled, the modalities present, and perhaps even the ambient RNA (if it has been estimated previously).

      (3) What are the minimal computational requirements for running ambisim? What is the time cost? 

      We thank the reviewer for their suggestions. We plan on updating the manuscript to better clarify figure legends. We will also outline a set of concrete recommendations in our discussion section based on different multiplexed experimental designs. Finally, we will also include extra computational benchmarks for ambisim.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2:

      Minor reviews:

      The caveats are (1) the particular point will perhaps only be interesting to a small slice of the eQTL research community; (2) the authors provide no statistical controls/error estimate or independent validation of the variance partitioning analysis in Figure 3, and (3) the authors don't seem to use the single-cell growth/fitness estimates for anything else, as Figure 4 uses loci mapped to growth from a previously published, standard culture-by-culture approach. It would be appropriate for the manuscript to mention these caveats.

      We have added two small mention of these caveats – mainly that the study may not generalize, and that the study does not attempt to try the variance partitioning on other traits or other system where the values of the partitions are better established.

      I also think it is not appropriate for the manuscript to avoid a comparison between the current work and Boocock et al., which reports single-cell eQTL mapping in the same yeast system. I recommend a citation and statement of the similarities and differences between the papers.

      We have added this reference and a clear statement of similarities between the two studies. It was not our intention to avoid this; we had simply not seen that study in the initial submission.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, Reproducibility, and Clarity)

      Reviewer comment: This is a very well conceived study of responses to plasma membrane stresses in yeast that signal through the conserved TORC2 complex. Physical stress through small molecular intercalators in the plasma membrane is shown to be independent of their biochemistry and then studies for its effect on plasma membrane morphology and the distribution of free ergosterol (the yeast equivalent of cholesterol), with free being the pool of cholesterol that is available to probes and/or sterol transfer proteins. Experiments nicely demonstrate a negative feedback loop consisting of: stress -> increased free sterol and TORC2 inhibition -> activation of LAM proteins (as demonstrated by Relents and co-workers previously) -> removal of free sterol -> return to unstressed state of PM and TORC2.

      Author response: We thank the reviewer for their positive and encouraging feedback. We are pleased to submit our revised manuscript and have addressed all points raised below.

      Comment: Fig 2A: Is detection of PIP/PIP2/PS linear for target, or possibly just showing availability that is increased due to local positive curvature?

      Response: This is an excellent and fundamental question. While FLARE signal likely reflects lipid availability, its detection is indeed influenced by factors such as membrane curvature and lipid composition, due to varying insertion depths of the lipid-binding domains. For example, studies using NMR suggest that the PLCδ PH domain partially inserts into membranes, potentially conferring curvature sensitivity (Flesch et al., 2005; Uekama et al., 2009). Similarly, curvature influences lactadherin binding, though it's unclear if this extends to its isolated C2 domain (Otzen et al., 2012; Shao et al., 2008; Shi et al., 2004). We could not find direct evidence for curvature sensitivity of P4C(SidC), but assume some influence exists.

      To avoid overinterpreting these limitations, we now describe our data based solely on the FLAREs used, rather than inferring enrichment of specific lipid species. We refer to these PM structures as "PI(4,5)P₂-containing", consistent with prior literature (Riggi et al., 2018) and have revised our manuscript accordingly.

      Comment: Can any marker be identified for the D4H spots at 2 minutes? In particular, are they early endosomes (shown by brief pre-incubation with FM4-64)?

      Response: We appreciate the reviewer's suggestion and have now added new data (Fig. S2E-H). We tested colocalization of D4H spots with FM4-64 (early endosomes), GFP-VPS21 (early endosome marker), and LipidSpot{trade mark, serif} 488 (lipid droplets), but found no overlap. This later observation was not unexpected given that D4H does not recognize Sterol esters. D4H foci also did not overlap with ER (dsRED-HDEL), though they were frequently adjacent to it. While their exact identity remains unknown, we agree this is an intriguing direction for future investigation.

      Comment: Is there any functional (& direct) link between Arp inhibition (as in the Pombe study of LAMs by the lab of Sophie Martin) and PM disturbance by amphipathic molecules?

      Response: We have explored this connection and now present new data (see final paragraph of Results). Briefly, we show that CK-666 induces internalization of PM sterols in a Lam2/4-dependent manner, and that TORC2 activity is more strongly reduced in lam2Δ lam4Δ cells compared to WT. These findings support the idea that, like PalmC, Arp2/3 inhibition triggers a PM stress that is counteracted by sterol internalization.

      Minor Comment: Fig 2A: Labels not clear. Say for each part what FP is used for pip2.

      Response: As noted above, we revised image labels to clarify which FLAREs were used, and refer to data accordingly throughout.

      Minor Comment: Move fig s2d to main ms. The 1 min and 2 min data are integral to the story.

      Response: We agree and have incorporated the 1-min and 2-min data into the main figures. Vehicle-treated controls were moved to Fig. S2.

      Minor Comment: The role of Lam2 and Lam4 in retrograde sterol transport has in vivo only been linked to one of their two StART domains not both, as mentioned in the text.

      Response: Thank you for pointing this out. We have corrected the text to:

      "[...]Lam2 and Lam4[...] contain two START domains, of which at least one has been demonstrated to facilitate sterol transport between membranes (Gatta et al., 2015; Jentsch et al., 2018; Tong et al., 2018)."

      Minor Comment: Throughout, images of tagged D4H should be labelled as such, not as "Ergosterol".

      Response: We have updated all relevant figure labels and text to refer to "D4H" rather than "Ergosterol", in line with this recommendation.

      Reviewer #1 (Significance):

      These results in budding yeast are likely to be directly applicable to a wide range of eukaryotic cells, if not all of them. I expect this paper to be a significant guide of research in this area. The paper specifically points out that the current experiments do not distinguish the precise causation among the two outcomes of stress: increased free sterol and TORC2 inhibition. Of these two outcomes which causes which is not yet known. If data were added that shed light on this causation that would make this work much more signifiant, but I can understand 100% that this extra step lies beyond - for a later study for which the current one forms the bedrock.

      Response:

      We thank the reviewer for their generous assessment. We agree that understanding the causality between increased free sterol and TORC2 inhibition is a critical next step.

      Based on our current data, we believe the increase in free ergosterol precedes TORC2 inhibition. For example, TORC2 inhibition alone (e.g., via pharmacological means) does not initially increase free sterol, while it does enhance Lam2/4 activity, promoting sterol internalization (Fig. 3A). Baseline TORC2 activity also inversely correlates with free PM sterol levels in lam2Δ lam4Δ versus LAM2T518A LAM4S401A cells (Figs. 2D, S2C).

      Additionally, during sterol depletion, we observe an initial increase in TORC2 activity before growth inhibition occurs, after which activity declines-likely due to compromised PM integrity (Fig. S2M). We now also show that adaptation to several other stresses (e.g., osmotic shock, heat shock, CK-666) partially depends on sterol internalization, which correlates with TORC2 activation (Fig. 4, S4B).

      While these findings strengthen the model that PM stress perturbs sterol availability and secondarily impacts TORC2, we cannot yet definitively demonstrate causality. As suggested by Reviewer 3, we tested cholesterol-producing yeast (Souza et al., 2011), but found their response to PalmC indistinguishable from WT, making it difficult to draw mechanistic conclusions (Rebuttal Fig. 2).

      Taken together, we favour a model where sterols affect PM properties sensed by TORC2, probably lipid-packing, rather than acting as direct effectors. We hope our revised manuscript more clearly conveys this model and serves as a strong foundation for future mechanistic studies.

      Reviewer #2 (Evidence, Reproducibility, and Clarity)

      Reviewer comment: This manuscript describes multiple effects of positively-charged membrane-intercalating amphipaths (palmitoylcarnitine, PalmC, in particular) on TORC2 in yeast plasma membranes. It is a "next step" in the Loewith laboratory's characterization of the effect of this agent on this system. The study confirms the findings of Riggi et al.(2018) that PalmC inhibits TORC2 and drives the formation of membrane invaginations that contain phosphatidylinositol-bis-phosphate (PIP2) and other anionic phospholipids. It also demonstrates that PalmC intercalates into the membrane, acts directly (rather than through secondary metabolism) and is representative of a class of cationic amphipaths. The interesting finding here is that PalmC causes a rapid initial increase in the plasma membrane ergosterol accessible to the DH4 sterol probe followed by a decrease caused by its transfer to the cytoplasm through its transporter, LAM2/4. TORC2 is implicated in these processes. Loewith et al. have pioneered in this area and this study clearly shows their expertise. Several of the findings reported here are novel. However, I am concerned that PalmC may not be revealing the physiology of the system but rather adding tangential complexity. (This concern applies to the precursor studies using PalmC to probe the TORC2 system.) In particular, I am not confident that the data justify the authors' conclusions "...that TORC2 acts in a feedback loop to control active sterol levels at the PM and [the results] introduce sterols as possible TORC2 signalling modulators."

      Author response:

      We thank Reviewer #2 for the constructive and critical evaluation of our work. We appreciate the acknowledgment of the novelty and technical strength of several of our findings, and we understand the concern that PalmC could be eliciting non-physiological effects. Our study was designed precisely to use PalmC and similar membrane-active amphipaths as tools to strongly perturb the plasma membrane (PM) in a controlled and tractable way. We now state this intention explicitly in both the Introduction and Discussion sections. To address concerns about the specificity and physiological relevance of PalmC, we have expanded our dataset to include additional PM stressors (hyperosmotic shock, Arp2/3 inhibition, and heat shock), all of which reproduce key features observed with PalmC-namely, TORC2 inhibition, PM invaginations, and retrograde sterol transport (Fig. 4, S4).

      We hope this more comprehensive dataset, along with revised discussion and clarified claims, addresses the reviewer's concerns regarding physiological interpretation and artifact.

      Major issues 1 and 2: 1. The invaginations induced by PalmC may not be physiologic but simply the result of the well-known "bilayer couple" bending of the bilayer due to the accumulation of cationic amphipaths in the inner leaflet of the plasma membrane bilayer which is rich in anionic phospholipids. Such unphysiological effects make the observed correlation of invagination with TORC2 inhibition etc. hard to interpret.

      Electrostatic/hydrophobic association of PIP2 with PalmC could sequester the anionic phospholipid(s). Such associations could also drive the accumulation of PIP2 in the invaginations. This could explain PalmC inhibition of TORC2 through a simple physical rather than biological process. So, it is difficult to draw any physiological conclusion about PIP2 from these experiments.

      Response to major issues 1 and 2:

      We agree that amphipath-induced bilayer stress, including via the bilayer-couple mechanism, may contribute to PM curvature changes. However, the reviewer's assumption that PalmC inserts preferentially into the inner leaflet appears inconsistent with both literature and our observations. PalmC is zwitterionic, not cationic, and is unlikely to electrostatically sequester anionic lipids such as PIP2. For clarification, we included a short summary of our proposed mechanism of PalmC in the context of the current literature in our Discussion:

      "[...] study it was also demonstrated that addition of phospholipids to the outer PM leaflet causes an excess of free sterol at the inner PM leaflet, and its subsequent retrograde transport to lipid droplets (Doktorova et al., 2025). Although we cannot exclude that it is the substrate of a flippase or scramblase, PalmC is not a metabolite found in yeast, nor, given its charged headgroup, is it likely to spontaneously flip to the inner leaflet (Goñi, Requero and Alonso, 1996). Thus, we propose that PalmC accumulates in the outer leaflet, disrupts the lipid balance with the inner leaflet which is, similarly to the mammalian cell model (Doktorova et al., 2025), rectified by sterol mobilization, flipping and internalization (Fig. 5B)."

      While we agree that PM invaginations per se are not the central focus of this study, they are indeed a reproducible and biologically intriguing phenomenon. We emphasize that similar invaginations occur not only during PalmC treatment but also in response to other physiological stresses, such as hyperosmotic shock and Arp2/3 inhibition (Fig. 4), and have been reported independently by others (Phan et al., 2025). Furthermore, related structures have been documented in yeast mutants with altered PIP2 metabolism or TORC2 hyperactivity (Rodríguez-Escudero et al., 2018; Sakata et al., 2022; Stefan et al., 2002), and even in mammalian neurons with SJ1 phosphatase mutations (Stefan et al., 2002). These observations support our interpretation that the observed invaginations represent an exaggerated manifestation of a physiologically relevant stress-adaptive process. In our previous study we indeed proposed that PI(4,5)P2 enrichment in PM invaginations was important for PalmC-induced TORC2 inactivation, using the heat sensitive PI(4,5)P2 kinase allele mss4ts - a rather blunt tool (Riggi et al., 2018). We have now come to the conclusion that different mechanisms other than, or in addition to, PIP2 changes drive TORC2 inhibition in our system. In this study, we use the 2xPH(PLC) FLARE exclusively as a generic PM marker, not as a readout of PIP2 biology. Rather, we propose that sterol redistribution and/or the biophysical impact that this has on the PM are central drivers, with TORC2 acting as a signaling node that senses and adjusts PM composition accordingly.

      We now clarify these arguments in the revised Discussion and have reframed our use of PalmC as a probe to explore the capacity of the PM to adapt to acute stress via dynamic lipid rearrangements.

      Major issue 3:

      As the authors point out, a large number of intercalated amphipaths displace sterols from their association with bilayer phospholipids. This unphysiologic mechanism can explain how PalmC causes the transient increase in the availability of plasma membrane ergosterol to the D4H probe and its subsequent removal from the plasma membrane via LAM2/4. TORC2 regulation may not be involved. In fact, the authors say that "TORC2 inhibition, and thereby Lam2/4 activation, cannot be the only trigger for PalmC induced sterol removal." Furthermore, the subsequent recovery of plasma membrane ergosterol could simply reflect homeostatic responses independent of the components studied here.

      Response:

      We agree that increased free sterols in the inner leaflet likely initiate retrograde transport. Our results suggest that TORC2 inhibition facilitates this process by disinhibiting Lam2/4, allowing more efficient clearance of ergosterol from the PM (Fig. 3A, S2C). However, the process is not exclusively dependent on TORC2, and we state this explicitly.

      We do not observe recovery of PM ergosterol on the timescales measured, while TORC2 activity recovers, suggesting that restoration likely occurs later via biosynthetic or anterograde trafficking pathways, which are outside the scope of this study. These points are clarified in the revised Discussion.

      Major issue 3a:

      The data suggest that LAM2/4 mediates the return of cytoplasmic ergosterol to the plasma membrane. To my knowledge, this is a nice finding that not been reported previously and is worth confirming more directly.

      Response:

      We thank the reviewer for this observation but would like to clarify a misunderstanding: our data do not suggest that Lam2/4 mediates anterograde sterol transport. Our results and prior work (Gatta et al., 2015; Roelants et al., 2018) show that Lam2/4 mediate retrograde transport from the PM to the ER, and TORC2 inhibits this process. We now clarify this point in the revised manuscript, stating:

      "In vivo, Lam2/4 seem to predominantly transport sterols from the PM to the ER, following the concentration gradient (Gatta et al., 2015; Jentsch et al., 2018; Tong et al., 2018)."

      Major issue 4:

      I agree with the authors that "It is unclear if the excess of free sterols itself is part of the inhibitory signal to TORC2..." Instead, the inhibition of TORC2 by PalmC may simply result from its artifactual aggregation of the anionic phospholipids (especially, PIP2) needed for TORC2 activity. This would not be biologically meaningful. If the authors wish to show that accessible ergosterol inhibits TORC2 activity or vice versa, they should use more direct methods. For example, neutral amphipaths that do not cause the aforementioned PalmC perturbations should still increase plasma membrane ergosterol and send it through LAM2/4 to the ER.

      Response:

      We now provide evidence that three orthologous treatments (hyperosmotic shock, heat shock and Arp2/3 inhibition) similarly cause sterol mobilization and, in the absence of sterol clearance from the PM, prolonged TORC2 inhibition. These results do not support the reviewer's contention that the inhibition of TORC2 by PalmC is simply resulting from its artifactual aggregation of the anionic phospholipids. Furthermore, PalmC is zwitterionic, and its interaction with anionic lipids should be somewhat limited.

      In our experimental setup, neutral amphipaths did not trigger TORC2 inhibition or D4H redistribution While this differs from prior in vitro work (Lange et al., 2009), we attribute this in part to a discrepancy to experimental setup differences, including flow chamber artifacts that we discuss in the methods section.

      Importantly, only amphipaths with a charged headgroup, including zwitterionic (PalmC) and positively charged analogs, produced robust effects. A negatively charged derivative also seemed to have a minor effect on TORC2 activity and PM sterol internalization (Palmitoylglycine (Fig. 1D, Rebuttal Fig. 1). This suggests that in vivo, charge-based membrane perturbation is required to alter PM sterol distribution and TORC2 activity.

      Major issue 5.:

      The mechanistic relationship between TORC2 activity and ergosterol suggested in the title, abstract, and discussion is not secure. I agree with the concluding section of the manuscript called "Limitations of the study". It highlights the need for a better approach to the interplay between TORC2 and ergosterol.

      Response:

      This may have been true of the previous submission, but we now demonstrate that provoking PM stress in four orthogonal ways triggers mobilization of sterols, which left uncleared, prevents normal (re)activation of TORC2 activity. We thus conclude that free sterols, directly or more likely indirectly, inhibit TORC2. The role that TORC2 plays in sterol retrotranslocation has been demonstrated previously (Roelants et al., 2018). We believe our expanded data and clarified framework make a compelling case for a stress-adaptive role of sterol retrograde transport that is supervised and modulated-but not fully driven-by TORC2 activity.

      Thus, we feel in the present version of this manuscript that the title is now justified.

      Minor issue: Based on earlier work using the reporter fliptR, the authors claim that PalmC reduces membrane tension. They should consider that this intercalated dye senses many variables including membrane tension but also lipid packing. I suspect that, by intercalating into and thereby altering the bilayer, PalmC is affecting the latter rather than the former.

      Response:

      We thank the reviewer for this important point regarding the multifactorial sensitivity of intercalating dyes such as Flipper-TR®, including to membrane tension and lipid packing.

      We respectfully note, however, that our current study does not include any new data generated using Flipper-TR®. We referred to earlier work (Riggi et al., 2018) for context, where Flipper-TR® was used as a membrane tension reporter.

      We fully agree that the response of such "smart" membrane probes integrates multiple biophysical parameters-including tension, packing, and hydration-which are themselves interrelated as consequences of membrane composition (Colom et al., 2018; Ragaller et al., 2024; Torra et al., 2024). Indeed, this interconnectedness is central to our interpretation of PalmC's pleiotropic effects on the plasma membrane (PM). In our previous study, we observed that PalmC treatment not only reduced apparent PM tension (as measured by Flipper-TR®) but also increased membrane order ((Riggi et al., 2018); see laurdan GP, Fig. 6C), and here we show that it promotes the redistribution of free sterol away from the PM.

      Furthermore, PalmC's effect on membrane tension was supported by orthogonal in vitro data: its addition to giant unilamellar vesicles (GUVs) led to a measurable increase in membrane surface area and decreased tension, as shown by pipette aspiration ((Riggi et al., 2018), Fig. 3F). This provides complementary evidence that the membrane tension reduction is not merely an artifact of Flipper-TR® reporting.

      That said, we agree with the reviewer that in the case of TORC2 inhibition or hyperactivation, the observed changes in PM tension are based solely on Flipper-TR® data, without additional orthogonal validation. To address this concern, we have revised the relevant text in the manuscript to more cautiously reflect this complexity. The revised sentence now reads:

      "Consistent with this role, data generated with the lipid packing reporter dye Flipper-TR® suggest that acute chemical inhibition of TORC2 increases PM tension, while Ypk1 hyperactivation decreases it."

      This revised phrasing acknowledges both the utility and the limitations of Flipper-TR® as a probe of membrane biophysics.

      Reviewer #2 Significance:

      This is an interesting topic. However, use of the exogenous probe, palmitoylcarnitine, could be causing multiple changes that complicate the interpretation of the data.

      Reviewers #1 and #3 were much more impressed by this study than I was. I am not a yeast expert and so I may have missed or confused something. I would therefore welcome their expert feedback regarding my comments (#2). Ted Steck

      Response:

      Thank you for your constructive feedback.

      We believe that the manuscript is now much improved, and we hope to have convinced you that the mechanisms that we've elucidated using PalmC represent a general adaptation response to physiological PM stressors.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Reviewer comment: The authors describe the effects of surfactant-like molecules on the plasma membrane (PM) and its associated TORC2 complex. Addition of the surfactants with a positively-charged headgroup and a hydro-carbon tail of at least 16 caused the rapid clustering of PI-4,5P2 together with PI-4P and phosphatidylserine in large membrane invaginations. The authors convincingly demonstrate that this effect of the surfactants on the PM is likely caused by a direct disturbance of the PM organization and/or lipid composition. Interestingly, upon PalmC treatment, free ergosterol of the PM was found to first concentrate in the clusters, but within The kinetics of the changes in free ergosterol levels and the changes in TORC2 activity do not match. Ergosterol is rapidly depleted after PalmC treatment (The Lam2/4 data support the idea that ergosterol transport plays a role in the TORC2 recovery, but what role this is, is not clear to me. I think the data fit better with a model in which PalmC causes low tension of the PM which in turn disrupts normal lipid organization and thus causes TORC2 to shut down, maybe not by changes in free ergosterol but by changes, for instance, in lipid raft formation (which is in part effected by ergosterol levels). The transport of ergosterol is only one mechanism that is involved in restoring PM tension and TORC2 activity. However, sensing free ergosterol alone is most likely not the mechanism explaining how TORC2 senses PM tension.

      Therefore, I recommend that the model is revised (or supported by more data), reflecting the fact that free ergosterol levels do not directly correlate with the TORC2 activity, but instead might be only one of the PM parameters that regulate TORC2.

      Author response:

      We thank the reviewer for their thoughtful assessment and constructive suggestions. As described in more detail above, we have included in our revised version of this manuscript a variety of new data, including the sterol-internalization dependent adaptation of the PM and regulation of TORC2 during additional stresses. We think that these data vastly improve on our previous manuscript version. We have addressed each point risen by the reviewer below and revised the manuscript accordingly, including a rewritten discussion and updated model to better reflect the limitations of our current understanding of how TORC2 senses changes in the plasma membrane (PM). It is true that the appearance of PM invaginations tracks well with TORC2 inhibition, but it is not clear to us if they are upstream of this inhibition or merely another symptom of the preceding PM perturbation (PalmC-induced free sterol increase can be observed after 10s (Fig. S2A), but PM invaginations become visible only after ~1 min - meanwhile we can observe near complete TORC2 inhibition after 30s). In this study, we are mostly interested in the role of PM sterol redistribution in stress response. Indeed we think that the role of free sterol clearance during stresses is to adapt the PM to these stresses - thus restoring PM parameters which in turn reactivates TORC2. This can be seen for hyperosmotic stress and the newly introduced PM stressors, Arp2/3 inhibition and heat shock response (Fig. 4). We have therefore softened our model and updated discussion and final figure (Fig. 5) to reflect that TORC2 likely responds to broader changes in PM organization or tension, with sterol redistribution representing one of several contributing factors rather than the sole signal.

      Comment: - If TORC2 is indeed inhibited by free ergosterol, the addition of ergosterol to the growth medium should be able to trigger similar effects as PalmC. If this detection of free ergosterol is very specific (e.g. if TORC2 has a binding pocket for ergosterol) we would expect that addition of other sterols such a cholesterol or ergosterol precursors should not inhibit TORC2.

      Response:

      We appreciate this suggestion and agree that testing whether exogenous ergosterol can mimic PalmC effects would help assess specificity. However, yeast do not readily take up sterols under aerobic conditions, which renders artificial sterol enrichment at the yeast PM rather difficult. We have now included additional data characterizing our Lam2/4 mutants (see below), and pharmacological sterol synthesis inhibition, showing that a depletion of free sterols from the PM correlates with lower TORC2 activity (Fig. 2D, S2C). Additionally, as suggested, we tried to probe if ergosterol directly interacts with TORC2 through a specific binding pocket, by treating a yeast strain expressing cholesterol rather than ergosterol (Souza et al., 2011) with PalmC. However, the response of TORC2 activity in these cells was very similar to that of WT cells (Rebuttal Fig. 2). In conclusion, we agree that at present we do not know mechanistically how sterols affect TORC2 activity, although it does indeed seem more likely to be through an indirect mechanism linked to changes in PM parameters. The nature of such a mechanism will be subject to further studies. We hope that the introduced changes to the manuscript adequately reflect these considerations.

      Rebuttal Fig. 2: WT yeast cells which produce ergosterol as main sterol, and mutant cells which produce cholesterol instead were treated with 5 µM PalmC, and TORC2 activity was assessed by relative phosphorylation of Ypk1 on WB. One representative experiment out of two replicates.

      Comment: - The experiment in Figure 1C is not controlled for differences in membrane intercalation of the different compounds. For instance, does C16 choline and C16 glycine accumulate at the same rate in the PM (measure similar to experiment in Figure 1B). Maybe the positive charge at the headgroup of the surfactants increases the local concentration at the PM and therefore can explain the difference in effect on the PM.

      Response:

      We agree with the reviewer that the effects of the various PalmC derivatives are not directly controlled for differences in membrane intercalation. Our structure-activity screen was intended to demonstrate the general biophysical mode of action of PalmC-like compounds and to define minimal structural requirements for activity.

      We now note in the manuscript that differential membrane insertion could contribute to the observed variation in efficacy, particularly in relation to tail length. While we considered this additional suggested experiment, it was ultimately judged to be outside the scope of this study due to its complexity and limited impact on the central conclusions.

      A clarifying sentence has been added to the relevant results section to explicitly acknowledge this limitation:

      "We did not control for differences in PM intercalation efficiency."

      We also include a discussion here to further clarify our interpretation. Prior in vitro studies have shown that while intercalation is necessary, it is not sufficient for PM perturbation. For example, palmitoyl-CoA intercalates into membranes but does not induce the same biophysical effects as PalmC (Goñi et al., 1996; Ho et al., 2002). Thus, we believe that intercalation is only part of the story, and that the intrinsic propensity of different headgroups to perturb the PM plays a key role in the disruption of PM lipid organization.

      Comment: - Are the intracellular ergosterol structures associated (or in close proximity) with lipid droplets (ergosterol being modified and delivered into a lipid droplet)?

      Response:

      We thank the reviewer for raising this point. We now include additional data (Fig. S2H) showing that intracellular D4H-positive structures do not reside near or colocalize with lipid droplets. The latter is not entirely unexpected as D4H does not recognize esterified sterols. However, we do observe an increase in overall LD volume following PalmC treatment, consistent with the idea that internalized PM sterols may be stored in LDs as sterol esters over time - although we did not test if this increase in LD volume is Lam2/4 dependent. This increase is mentioned in the revised results text. An increase in cellular LDs has also been recently reported during hyperosmotic shock (Phan et al., 2025).

      For more attempts to identify a marker for intracellular D4H foci, see reply to reviewer 1.

      Comment:

      • How does the AA and DD mutations in Lam2/4 change the localization of the ergosterol sensor (before and after PalmC treatment).

      Response:

      We thank the reviewer for this question, as in the course of generating these data we realized that our "inhibited" DD mutant was in fact not phosphomimetic but displayed the same D4H distribution as the "hyperactive" AA mutant, i.e. a marked inwards shift of D4H signal away from the PM to internal structures due to increased PM-ER retrograde transport of sterols (Fig. S2C). This led us to critically re-evaluate and ultimately repeat our TORC2 activity WB experiments for PalmC treatment in LAM2/4 mutants. In this new set of experiments, the faster TORC2 recovery after PalmC treatment in the LAM2T518A LAM4S401A mutant did unfortunately not repeat robustly. It is possible that such differences can be observed under specific conditions. Nevertheless, the improved overall quality of the Western blot data allowed us to make the observation that baseline activity was already slightly different in these strains. The Lam2/4 centered part of the results section has subsequently been updated in the manuscript:

      "Using a phosphospecific antibody, we did not observe an increase in baseline TORC2 activity in lam2Δ lam4Δ cells, which had been previously reported by electrophoretic mobility shift (Murley et al., 2017). Instead, baseline TORC2 activity was consistently slightly decreased in these cells (Fig. 2D). Ypk1, activated directly by TORC2, inhibits Lam2 and Lam4 through phosphorylation on Thr518 and Ser401, respectively (Roelants et al., 2018; Topolska et al., 2020). We substituted these residues with alanine, generating a strain in which Lam2/4 were no longer inhibited by phosphorylation (Roelants et al., 2018). In these cells, yeGFP-D4H showed that free sterols were constitutively shifted away from the PM to intracellular structures (Fig. S2C, bottom panel). Intriguingly, in opposition to lam2Δ lam4Δ cells, basal TORC2 activity was increased in LAM2T518A LAM4S401A cells (Fig. 2D). This suggests that a decrease in free PM sterols stimulates TORC2 activity [...]"

      "In LAM2T518A LAM4S401A cells, TORC2 activity recovers with similar kinetics as the WT (Fig. 2D, bottom blot), suggesting that Lam2/4 release from TORC2 dependent inhibition during PalmC treatment is a fast and efficient process in WT cells, not further expedited by these constitutively active Lams."

      As suggested, we also observed D4H localization in LAM2T518A LAM4S401A after PalmC treatment, and implemented these data to further demonstrate that PalmC causes an increase in the fraction of free ergosterol at the PM, which is subsequently removed:

      "PalmC addition to LAM2T518A LAM4S401A cells likewise resulted first in a transient increase and then a further decrease in PM yeGFP-D4H signal (Fig. 3C, S3D)."

      Comment: - Does Lam2/4 localize to ER-PM contact sites near the large PM invaginations, which could allow for efficient transport of the free ergosterol that accumulates in these structures.

      Response:

      We were curious about this too, and have now added the requested data in our supplementary material and added a sentence in our results:

      "Indeed, in cells expressing GFP-Lam2 we observed that PalmC induced PM invaginations often formed at sites with preexisting GFP-Lam2 foci (Fig. S2K, cyan arrow), although GFP-Lam2 foci did not always colocalize with invaginations (Fig. S2K, yellow arrow) and vice versa. "

      Additionally, in the effort to characterize intracellular D4H foci during PalmC as requested by reviewer 1, we also looked at the localization of these foci relative to ER, and found that

      "During early timepoints, intracellular foci are usually in close vicinity to ER (Fig. S2E)"

      Reviewer #3 (Significance (Required)): The manuscript describes the effects of small molecule surfactants on the PM organization and on TORC2 activity. This is an important set of observation that helps understanding the response of cells to environmental stressors that affect the PM. This field of study is very challenging because of the limited tools available to directly observe lipids and their movements. I consider the data and most of its interpretations of high importance, but I am not convinced of the larger model that tries to link the ergosterol data with TORC2 activity. With adjustments of the model or additional experimental support, this manuscript will be of general interest for cell biologists, especially for researchers studying membrane stress response pathways.

      Response:

      We thank the reviewer for highlighting the importance of studying PM stress responses and acknowledging the technical challenges involved. We hope the applied changes and additional data succeed in softening our claims about TORC2 regulation while convincing the reviewer that free sterol levels at the PM are one of several contributing factors that correlate with changes in TORC2 activity.

      Colom, A., Derivery, E., Soleimanpour, S., Tomba, C., Dal Molin, M., Sakai, N., González-Gaitán, M., Matile, S., Roux, A., 2018. A Fluorescent Membrane Tension Probe. Nat. Chem. 10, 1118-1125. https://doi.org/10.1038/s41557-018-0127-3

      Flesch, F.M., Yu, J.W., Lemmon, M.A., Burger, K.N.J., 2005. Membrane activity of the phospholipase C-δ1 pleckstrin homology (PH) domain. Biochem. J. 389, 435-441. https://doi.org/10.1042/BJ20041721

      Gatta, A.T., Wong, L.H., Sere, Y.Y., Calderón-Noreña, D.M., Cockcroft, S., Menon, A.K., Levine, T.P., 2015. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. eLife 4. https://doi.org/10.7554/eLife.07253

      Goñi, F.M., Requero, M.A., Alonso, A., 1996. Palmitoylcarnitine, a surface-active metabolite. FEBS Lett. 390, 1-5. https://doi.org/10.1016/0014-5793(96)00603-5

      Ho, J.K., Duclos, R.I., Hamilton, J.A., 2002. Interactions of acyl carnitines with model membranes: a (13)C-NMR study. J. Lipid Res. 43, 1429-1439. https://doi.org/10.1194/jlr.m200137-jlr200

      Jentsch, J.-A., Kiburu, I., Pandey, K., Timme, M., Ramlall, T., Levkau, B., Wu, J., Eliezer, D., Boudker, O., Menon, A.K., 2018. Structural basis of sterol binding and transport by a yeast StARkin domain. J. Biol. Chem. 293, 5522-5531. https://doi.org/10.1074/jbc.RA118.001881

      Murley, A., Yamada, J., Niles, B.J., Toulmay, A., Prinz, W.A., Powers, T., Nunnari, J., 2017. Sterol transporters at membrane contact sites regulate TORC1 and TORC2 signaling. J. Cell Biol. 216, 2679-2689. https://doi.org/10.1083/jcb.201610032

      Otzen, D.E., Blans, K., Wang, H., Gilbert, G.E., Rasmussen, J.T., 2012. Lactadherin binds to phosphatidylserine-containing vesicles in a two-step mechanism sensitive to vesicle size and composition. Biochim. Biophys. Acta BBA - Biomembr., Protein Folding in Membranes 1818, 1019-1027. https://doi.org/10.1016/j.bbamem.2011.08.032

      Phan, J., Silva, M., Kohlmeyer, R., Ruethemann, R., Gay, L., Jorgensen, E., Babst, M., 2025. Recovery of plasma membrane tension after a hyperosmotic shock. Mol. Biol. Cell 36, ar45. https://doi.org/10.1091/mbc.E24-10-0436

      Ragaller, F., Sjule, E., Urem, Y.B., Schlegel, J., El, R., Urbancic, D., Urbancic, I., Blom, H., Sezgin, E., 2024. Quantifying Fluorescence Lifetime Responsiveness of Environment-Sensitive Probes for Membrane Fluidity Measurements. J. Phys. Chem. B 128, 2154-2167. https://doi.org/10.1021/acs.jpcb.3c07006

      Riggi, M., Niewola-Staszkowska, K., Chiaruttini, N., Colom, A., Kusmider, B., Mercier, V., Soleimanpour, S., Stahl, M., Matile, S., Roux, A., Loewith, R., 2018. Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nat. Cell Biol. 20, 1043-1051. https://doi.org/10.1038/s41556-018-0150-z

      Rodríguez-Escudero, I., Fernández-Acero, T., Cid, V.J., Molina, M., 2018. Heterologous mammalian Akt disrupts plasma membrane homeostasis by taking over TORC2 signaling in Saccharomyces cerevisiae. Sci. Rep. 8, 7732. https://doi.org/10.1038/s41598-018-25717-w

      Roelants, F.M., Chauhan, N., Muir, A., Davis, J.C., Menon, A.K., Levine, T.P., Thorner, J., 2018. TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites. Mol. Biol. Cell 29, 2128-2136. https://doi.org/10.1091/mbc.E18-04-0229

      Sakata, K.-T., Hashii, K., Yoshizawa, K., Tahara, Y.O., Yae, K., Tsuda, R., Tanaka, N., Maeda, T., Miyata, M., Tabuchi, M., 2022. Coordinated regulation of TORC2 signaling by MCC/eisosome-associated proteins, Pil1 and tetraspan membrane proteins during the stress response. Mol. Microbiol. 117, 1227-1244. https://doi.org/10.1111/mmi.14903

      Shao, C., Novakovic, V.A., Head, J.F., Seaton, B.A., Gilbert, G.E., 2008. Crystal Structure of Lactadherin C2 Domain at 1.7Å Resolution with Mutational and Computational Analyses of Its Membrane-binding Motif*. J. Biol. Chem. 283, 7230-7241. https://doi.org/10.1074/jbc.M705195200

      Shi, J., Heegaard, C.W., Rasmussen, J.T., Gilbert, G.E., 2004. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim. Biophys. Acta 1667, 82-90. https://doi.org/10.1016/j.bbamem.2004.09.006

      Souza, C.M., Schwabe, T.M.E., Pichler, H., Ploier, B., Leitner, E., Guan, X.L., Wenk, M.R., Riezman, I., Riezman, H., 2011. A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab. Eng. 13, 555-569. https://doi.org/10.1016/j.ymben.2011.06.006

      Stefan, C.J., Audhya, A., Emr, S.D., 2002. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol. Biol. Cell 13, 542-557. https://doi.org/10.1091/mbc.01-10-0476

      Tong, J., Manik, M.K., Im, Y.J., 2018. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Proc. Natl. Acad. Sci. 115, E856-E865. https://doi.org/10.1073/pnas.1719709115

      Topolska, M., Roelants, F.M., Si, E.P., Thorner, J., 2020. TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae. Biomolecules 10, 1598. https://doi.org/10.3390/biom10121598

      Torra, J., Campelo, F., Garcia-Parajo, M.F., 2024. Tensing Flipper: Photosensitized Manipulation of Membrane Tension, Lipid Phase Separation, and Raft Protein Sorting in Biological Membranes. J. Am. Chem. Soc. 146, 24114-24124. https://doi.org/10.1021/jacs.4c08580

      Uekama, N., Aoki, T., Maruoka, T., Kurisu, S., Hatakeyama, A., Yamaguchi, S., Okada, M., Yagisawa, H., Nishimura, K., Tuzi, S., 2009. Influence of membrane curvature on the structure of the membrane-associated pleckstrin homology domain of phospholipase C-δ1. Biochim. Biophys. Acta BBA - Biomembr. 1788, 2575-2583. https://doi.org/10.1016/j.bbamem.2009.10.009

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all the reviewers for their helpful and constructive comments and for their time.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      Summary: Dady et al have developed fluorescent reporters to enable live imaging of cell behaviour and morphology in human pluripotent stem cell lines (PSCs). These reporters target 3 main features, the plasma membrane, nucleus and cytoskeleton. Reporter PSCs have been generated using a piggyBac transposon-mediated stable integration strategy, using a hyperactive piggyBac transposase (HyPBase). The same constructs were also used for mosaic labelling of cells within 2D cultures using lipofectamine transfection.

      The reporters used are tagged with either eGFP or mKate2 (far red) and tag the plasma membrane (pm) via the addition of a 20 amino-acid sequence from rat GAP-43 to the N-terminus of the fluorescent protein, the nucleus via Histone 2B with a laser-mediated photo-conversion option (H2B-mEos3.2), and the cytoskeleton via F-Tractin. In total, the authors produced lines with the following:

      • pm-mKate2 (far red) • pm-eGFP (green) • H2B-mEos3.2 (green to red) • F-tractin-mKate2 (far red) • H2B-mEos3.2 and pm-mKate2 (green to red, plus far red)

      The cell lines used to generate these were the human embryonic stem cell line H9 and human induced pluripotent cell line ChiPS4. The constructs were also used to label cells in a mosaic fashion, using lipofectamine transfection of the original cell lines once they had formed neural rosettes.

      Using these cells, Dady et al then performed live imaging in vitro of human spinal cord rosettes and assessed cell behaviour. In particular they analysed mitotic cleavage planes and apical positioning of neural progenitor cells (NPCs), and assessed actin dynamics within these cells. They showed a slowing of the cell cycle length after the initial expansion phase, an increase in the rate of asymmetric division of these NPCs, and abscission of the apical membrane during these divisions. The F-tractin reporter showed enrichment at the basal nuclear membrane during these cell divisions, suggested to help prevent basal chromosome displacement during mitosis.

      Major comments: The data presented are convincing and could be strengthened by the following additions and clarifications:*

      1. How long do the fluorescent reports take to be visible when transfected via lipofectamine? How efficiently are they expressed? And what concentrations were tested to enable the mosaic expression presented? * We followed the manufacturer’s instructions for Lipofectamine 3000 transfection, using the protocol recommended for set up for a 6 wells plate. We detected fluorescence the following morning ~16h. We did not assess earlier time points or optimise efficiency as we observed the mosaic pattern of expression we set out to achieve, with small groups of labelled cells and single cells as shown in Figure 3 and movies 2 and 3. This information and the detailed protocol provided below are now included in the Methods section “Labelling individual cells in human spinal cord rosettes by lipofection”.

      Manufacturer’s instructions for Lipofectamine 3000 transfection (6 well plate):

      • 1 tube containing 125 ul of Opti-MEM and 7.5 ul of Lipofectamine 3000
      • 1 tube containing 250 ul of Opti-MEM with 5 ug of DNA (total mix DNAs of 2 ug/ul) and P3000 Reagent
      • Add diluted DNA to diluted Lipofectamine 3000 (Ratio 1:1) and incubate for 10 to 15 min at Room Temperature.
      • 20 ul of DNA-Lipid complex was added to neural rosettes growing in 8 well IBIDI dishes (20 ul/well).
      • The ratio of DNA (PiggyBac plasmid) and HypBase transposase was kept at 5:1 (for a final concentration of 2ug/ul).
      • Cells in IBIDI dishes were left to develop in a sterile incubator overnight and mosaic fluorescence was observed the following morning (~16h post-lipofection).

      • Will these cell lines and constructs be made publicly available after publication?*

      The cell lines can be made available: for those reporters made in the H9 WiCell line an MTA will first have to be signed between the requesting PI and WiCell and permission for us to share the line(s) confirmed by WiCell; similarly, for reporters in ChiPS4 line an MTA will first need to be signed between the requesting PI and Cellartis/TakaraBio Europe. We will need to make a charge to cover costs. Constructs will be deposited with Addgene.

      • Were the H9 and ChiPS4 lines characterised after the reporters were added to show they still proliferate/differentiate as they did prior to the reporter integration*?

      In the Results we make clear that all lines created are polyclonal, with exception of a pm-eGFP ChiPS4 line, which is a monoclonal line (lines 145-150). We do not have direct data measuring cell proliferation but collected cell passaging data for all the reporter lines. This showed that they grow to similar densities at each passage compared to the parental line (this metadata is now provided as Supplementary data 1 and is cited in the Methods, line 348).

      As a proof of principle for this approach, we created one monoclonal line from a polyclonal line ChIPS4-pm-eGFP. The latter was made by selecting an individual clone and this was then expanded and characterised for expression of pluripotency markers (immunocytochemistry data Figure S4), and the ability to differentiate into 3 germ layers (qPCR Supplementary data 1). This information is already cited in the Methods (Lines 358-362).

      • Can the novel actin dynamics described be quantified? How many cells imaged show these novel dynamics?* Some of this quantification data was already reported in the paper (in figure 4 legend and in the Methods); we have now updated this and provide the detailed metadata in an Excel spread sheet, Supplementary data 4 (cited in the Methods, line 489)

      Minor comments: 1. Some images in the figures and supplemental movies are low in resolution, for example the DAPI in Fig 4B, making it hard to distinguish individual cells. Please increase this.

      We consider the DAPI labelling in Figure 4b to be clear, however, we wonder whether the reviewer was expecting to also see this combined with the other markers. We have therefore now provided these merged additional images in a revised Figure 4.

      • Please show a merge of Phalloidin and F-Tractin in Fig4, this will help the colocalization to be fully appreciated.*

      This has now been provided in revised Figure 4B.

      • Some additional annotation on the supplemental movies would be useful to indicate to the **reader exactly what cell to follow. *

      We have added indicative arrows to the movies, and note that more detailed labelling of the series of still images from these movies are provided in the main figures (Figures 3D and 4E & F).

      *Reviewer #1 (Significance (Required)):

      Human neurogenesis is currently poorly understood compared to many model systems used, yet key differences have already been identified between the human and the mouse, prompting the need for further investigation of human neural development. A major reason that human neurogenesis has been difficult to study is a lack of tools to enable cell morphology and behaviours to be analysed in real time.

      The reporters and reporter PSC lines generated by Dady et al will allow many of these cell characteristics to be observed using live imaging. For example, the morphology of neural progenitors during and after cell divisions, how the apical and basal processes and membranes are divided, and how the actin cytoskeleton helps to regulate these processes.

      *Importantly, PSC lines can be very heterogeneous, making generating reporter lines costly and time intensive. The use of these reporters with lipofectamine transfection, for a mosaic labelling, allows the visualisation of the plasma membrane, nucleus and cytoskeleton in any human PSC/NPC line, or even in human tissue cultures, without the need to generate each specific reporter line, making it a valuable tool for many labs in the field.

      We strongly agree with this final point; this is a major reason for our study.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):*

      The manuscript describes the generation of novel lines of human pluripotent stem cells bearing fluorescent reporters, engineered through piggyBac transposon-mediated integration. The cells are differentiated into neuronal organoids, allowing to capture cellular behaviors associated to cell division. A replating protocol allows the observation of aging neurons by reducing the thickness of the tissue thereby facilitating live imaging. The authors also leverage the transposon technology to create mosaically-labelled organoids which allows visualizing aspects of neuronal delamination, notably cytoskeleton dynamics. They discover an undescribed pattern of F-actin enrichment at the basal nuclear membrane prior to nuclear envelope breakdown.

      L104-109: "Moreover, the transposon system obviates drawbacks of directly engineering endogenous proteins...". Despite the risk of endogenous protein dysfunction, directly tagging allows the full regulation of gene expression (including the promoter, the enhancers and other regulatory regions rather than a strong constitutive promoter such as CAG). In addition, the number of copies integrated and the genomic regions are variable with PB, which does not reflect the endogenous expression. This could be rephrased by nuancing the advantages and drawbacks of each approach. The PiggyBac method is easier and faster, but it results in overexpression of a tagged protein that will be expressed since the hESC state and might not reflect the expression dynamics of the endogenous protein.* We agree and have now revised this in the Introduction L109-118.

      *L124-126: "To monitor cell shape and dynamics we used a plasma membrane (pm) localized protein tagged with eGFP or mKate2 (pm-eGFP or pm-mKate2)." Could the authors provide more details and a reference on the palmitoylated rat peptide use to force membrane expression? *

      This information, including the peptide sequence, is provided in the Methods (L330-331), we have now added a reference addressing its role in membrane localisation PMID: 2918027.

      L132-133: " Finally, to observe actin cytoskeletal dynamics we selected F-tractin, for its minimal impact on cytoskeletal homeostasis".

      A recent JCB paper (https://doi.org/10.1083/jcb.202409192) suggests that "F-tractin alters actin organization and impairs cell migration when expressed at high levels". Whether the overexpression of F-tractin in hESC using a CAG promoter reflects the physiological F-actin dynamics and/or if the high levels could lead to an alteration of cell behavior should be addressed or at least discussed. The paper we cite in this sentence (Belin et al 2014) evaluates F-tractin expression against other approaches to labelling and monitoring the actin cytoskeleton and concludes that in comparison F-tractin has minimal impact.

      We do appreciate that expression above the endogenous level has the potential to alter cell behaviour and have revised the paper to more explicitly acknowledge this: in the Introduction (L109-112), and in the Discussion/conclusion (L289-293) where we now note the recent advances reported in Shatskiy et al. 2025 PMID: 39928047.

      “A further potential limitation of this approach is that over-expression driven by the CAG promoter might not reflect physiological protein dynamics and/or alter cell behaviour; for example, high levels of F-Tractin can impair cell migration and induce actin bundling, interestingly, this can now be minimised by removing the N-terminal region (Shatskiy et al 2025)”.

      L146-147: "...to generate polyclonal cell lines selected for expression of easily detectable (medium level) fluorescence for live imaging studies". What are the criteria used to define medium level? Number of copies integrated into the genome? Or levels by FACS during clone selection?

      To clarify, all the lines presented here are polyclonal, except for one clonal line, pm-eGFP in ChiPS4. The numbers of copies integrated may vary from cell to cell in polyclonal lines. In this study, we selected cells for all lines with a FACS gate and this data is presented in Figure S1 (see line 147).

      L260-263: "Efficient stable integration and moderate expression levels were achieved by optimising, i) the quantity and ratio of piggyBac plasmids and transposase and ii) subsequent FACS to exclude high expressing cells, as well as iii) transfection methods, including temporally defined lipofection in hiPSC-derived tissues." The ration 5:1 is classically used for PB Transposase delivery, however there is still high variability in the number of copies integration. Lipofection in derived tissues has been shown to be challenging. Could the authors should provide quantitative data regarding the efficiency of their approaches, notably the level of mosaicism one could expect?

      We provide quantitative data for the efficiency of transfection using nucleoporation assays (FACS data presented in Supplementary figure S1), which shows more than 80-90% efficiency for eGFP in 82.82% of cells, mKate2 in 92.74% of cells, and H2B-mEos3 22.75% of cells, while 13.79% of cells co-expressed pm-Kate and H2B-mEos3.2. No comparative data regarding the efficiency of the tissue Lipofection assay was collected: our goal was to label single/small numbers of cells in order to monitor individual cell behaviours, and this “inefficient labelling” was readily achieved following the manufacturer’s instructions (please see response to Review 1 point 1), further details are now provided in the Methods.

      L191-194: "We further wished to monitor sub-cellular behaviour within the developing neuroepithelium. To achieve this, we devised a strategy to target a mosaic of cells in established neural rosettes using lipofection. PiggyBac constructs and HyPBase transposase were transfected into D8/D9 human spinal cord neural progenitors using lipofectamine (Felgner, et al., 1987)(Fig. 3A)." The mosaicism is not an all or nothing in this method but also leads to variations in expression levels among the positive cells. The protocol for lipofection could be better detailed to allow easy reproduction by other teams, and its expected efficiency should be discussed. It would be interesting to explore the relationship between individual cells phenotype and expression levels. Please see response to Reviewer 1 point 1 above for more detailed lipofection protocol which generated mosaic expression, this is now also included in the Methods. We agree that investigating the relationship between individual cell phenotypes and expression levels would be interesting, but we think this is beyond the scope of this paper.

      Additional comments: -Did the authors perform karyotyping of the hPSCs prior to use in the differentiation protocol?

      As these are polyclonal lines, we did not undertake karyotyping. This could be done for the one monoclonal line described here (pm-eGFP ChiPS4 line): we lack funds for commercial options, but we are exploring other possibilities.

      -Were pluripotency assays performed after reporter lines generation?

      These were carried out for the clonal pm-eGFP ChiPS4 line (lines 145-150). The latter was made by selecting an individual clone and this was then expanded and characterised for expression of pluripotency markers by IF (Figure S4), and the ability to differentiate into 3 germ layers by qPCR (Supplementary data 2). This information is provided in the Methods (Lines 358-362).

      *-Did the authors measure the cell proliferation rate in H2B-overexpressing cells and controls? Since H2B plays an important role in cytokinesis, it could interfere in cell division when H2B is overexpressed (see doi: 10.3390/cells8111391). *

      We did not directly measure cell division when H2B is over-expressed. However, we assessed cell -passaging time of all the transfected cell lines. This showed that they grow to similar densities at each passage compared to the parental line (this is now provided as Supplementary data 1 and is cited in the Methods, line 348). We also found no difference between apical visiting time of progenitors in spinal cord rosettes expressing pm-eGFP or H2B-mEoS3.2, further supporting the conclusion that levels of H2B-mEoS3.2 expression achieved in this line did not interfere with cell division (metadata provided in Supplementary data 3).

      The authors should provide data concerning the efficiency of expression of the distinct markers after electroporation. This is provided in Supplementary Figure S1 (FACS data) and detailed above for this reviewer.

      *At Fig 1C, the schematic representation describes clone selection, however in the methods it is stated (L348-349): "Sorted cells expressing medium levels of fluorescence were expanded and frozen then representative lots of each polyclonal cell line...". There is some confusion regarding which experiments were performed using polyclonal medium-level mixed populations or monoclonal populations. *

      We apologise for any confusion and have revised the Figure 1C schematic to indicate that cells can be selected to either make polyclonal lines or clonal lines.

      *Reviewer #2 (Significance (Required)):

      The study provides novel tools, as well as elements regarding neuroepithelium biology. It is well conducted and written, and the quality of images is excellent. It reads more as a resource paper in its current version, since the observation regarding neural cell division and delamination are interesting but not deeply explored, so this review will focus on those technical aspects rather than the novelty of the biological findings.

      This study would be of interests for researchers in stem cells and organoids, developmental biology, and neurosciences.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In the manuscript, "Engineering fluorescent reporters in human pluripotent cells and strategies for live imaging human neurogenesis" the authors Dady et al. describe the adaptation of a recent advancement in transposase technology (HyPBase) as a method to integrate live reporters in human pluripotent stem cells. They show that these florescent reporters paired with new imaging strategies can be used to confirm the existence cellular behaviour described in other species such as the interkinetic nuclear migration (IKNM) of dividing progenitors in neural tube development. Finally, they demonstrate that this live imaging system is also able to discover novel biology by identifying previously undescribed actin polymerization at the basal nuclear surface of cortical progenitors undergoing cell division. Overall, the study presents two examples in which this adapted tool will aid in live-imaging studies of cellular biology.

      Major Concerns: 1. This work needs more controls to properly demonstrate claims that their engineering strategy provides an advancement to current Piggyback methods. Their HyPBase strategy needs to be compared and quantified in terms of efficiency with other methods to support their claims (increased detection and reduced phototoxicity).*

      We do not make specific claims for our experiments with respect to the superiority of HyPBase strategy. Our comments on this approach referred to by the reviewer here are in the Introduction (L 94-103), are supported by the literature (e.g. more stable gene expression than native piggyBac or the Tc1/mariner transposase Sleeping Beauty (Doherty, et al., 2012, Yusa, et al., 2011) and serve to explain our selection of HyPBase for our experiments. We make a case for using HyPBase as opposed to another transposase and although it would be interesting to compare efficiencies, this comment does not specify what “other methods” might be informative.

      2.Throughout the manuscript more quantification is needed of the results. How many rosettes were examined? Were all the reported cells within one rosette? Were there differences between rosettes? This should be done for both the spinal and cortical differentiations.

      The reviewer appears to have missed this information – we placed detailed quantifications in the figure legends (numbers of independent experiments and rosettes) and in the Methods in a specific section on Quantification of cell behaviour (L465-486), rather than in the main text. These has since been further updated and we now also provide additional metadata in the form of Excel spreadsheets for quantifications and analyses made for both spinal cord and cortical rosettes (Supplementary data 3 and 4 respectively).

      Minor Comments: 1. Line 246 needs quantification shown in figures of the statements made. Specifically, how many cells were measured to get this number?

      This information was provided in the figure 4 legend and we have since added numbers to these data; we were able to monitor 169 divisions in 21 rosettes; 154/166 divisions had vertical cleavage planes (symmetric) and 12/166 had horizontal cleavage planes (asymmetric).

      These detailed observations were made in two independent experiments, along with observations of basal nuclear membrane F-Tractin localisation. This is noted in figure 4 legend, Methods and detailed metadata is provided in Supplementary data 4.

      2.How many cells in the cortical rosettes had the enriched actin at the basal nuclear surface?

      We confidently observed basal nuclear membrane F-Tractin enrichment in 141/146 divisions, for the remaining 20 cases (166-146), we could not tell whether F-Tractin is enriched or not at the basal nuclear membrane either because of low expression levels or because the basal nuclear membrane was out of focus at NEB. In 5 cases, we did not see the basal nuclear enrichment despite sufficient F-Tractin expression levels and the nucleus being in focus. We have updated the Fig4 legend excluding the non-analysable cases and see detailed metadata is provided in Supplementary data 4.

      *Reviewer #3 (Significance (Required)):

      General Assessment: This manuscript makes a very minor advancement in the field of stem cell engineering and developmental biology, but one that is worthy of publication with a few edits.

      Advance: While PiggyBac reporters are widely used in stem cell engineering, Dady et al. demonstrate a new workflow using HyPBase which would be beneficial to the field. However, to increase this benefit, much more description and quantification of the methods would be needed. The biological advances of this manuscript are also very minor, but interesting as most of them confirm that human neural rosettes mimic many of the observed cell behaviours seen in animal models. Along these lines is the actin dynamics observation in cortical rosettes is interesting, but a preliminary observation and in need of follow up experiments.

      Audience: Regardless, this technique would be of interest to the wider field of stem cell engineering.

      My Expertise: Human Stem Cell Engineering, Neural Tube Development*

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors have assembled a cohort of 10 SiNET, 1 SiAdeno, and 1 lung MiNEN samples to explore the biology of neuroendocrine neoplasms. They employ single-cell RNA sequencing to profile 5 samples (siAdeno, SiNETs 1-3, MiNEN) and single-nuclei RNA sequencing to profile seven frozen samples (SiNET 4-10).

      They identify two subtypes of siNETs, characterized by either epithelial or neuronal NE cells, through a series of DE analyses. They also report findings of higher proliferation in non-malignant cell types across both subtypes. Additionally, they identify a potential progenitor cell population in a single-lung MiNEN sample.

      Strengths:

      Overall, this study adds interesting insights into this set of rare cancers that could be very informative for the cancer research community. The team probes an understudied cancer type and provides thoughtful investigations and observations that may have translational relevance.

      Weaknesses:

      The study could be improved by clarifying some of the technical approaches and aspects as currently presented, toward enhancing the support of the conclusions:

      (1) Methods: As currently presented, it is possible that the separation of samples by program may be impacted by tissue source (fresh vs. frozen) and/or the associated sequencing modality (single cell vs. single nuclei). For instance, two (SiNET1 and SiNET2) of the three fresh tissues are categorized into the same subtype, while the third (SiNET9) has very few neuroendocrine cells. Additionally, samples from patient 1 (SiNET1 and SiNET6) are separated into different subtypes based on fresh and frozen tissue. The current text alludes to investigations (i.e.: "Technical effects (e.g., fresh vs. frozen samples) could also impact the capture of distinct cell types, although we did not observe a clear pattern of such bias."), but the study would be strengthened with more detail.

      We thank the reviewer for the thoughtful and constructive review. Due to the difficulty in obtaining enough SiNET samples, we used two platforms to generate data - single cell analysis of fresh samples, and single nuclei analysis of frozen samples. We opted to combine both sample types in our analysis while being fully aware of the potential for batch effects. We therefore agree that this is a limitation of our work, and that differences between samples should be interpreted with caution.

      Nevertheless, we argue that the two SiNET subtypes that we have identified are very unlikely to be due to such batch effect. First, the epithelial SiNET subtype was not only detected in two fresh samples but also in one frozen sample (albeit with relatively few cells, as the reviewer correctly noted). Second, and more importantly, the epithelial SiNET subtype was also identified in analysis of an external and much larger cohort of bulk RNA-seq SiNET samples that does not share the issue of two platforms (as seen in Fig. 2f). Moreover, the proportion of samples assigned to the two subtypes is similar between our data and the external data. We therefore argue that the identification of two SiNET subtypes cannot be explained by the use of two data platforms. However, we agree that the results should be further investigated and validated by future studies.

      The reviewer also commented that two samples from the same patient which were profiled by different platforms (SiNET1 and SiNET6) were separated into different subtypes. We would like to clarify that this is not the case, since SiNET6 was not included in the subtype analysis due to too few detected Neuroendocrine cells, and was not assigned to any subtype, as noted in the text and as can be seen by its exclusion from Figure 2 where subtypes are defined. We apologize that our manuscript may have given the wrong impression about SiNET6 classification (it was labeled in Fig. 4a in a misleading manner). In the revised manuscript, we corrected the labeling in Fig. 4a and clarified that SiNET6 is not assigned to any subtype. We also further acknowledge the limitation of the two platforms and the arguments in favor of the existence of two SiNET subtypes.     

      (Additional specific recommendations for the authors are provided below)

      (2) Results:

      Heterogeneity in the SiNET tumor microenvironment: It is unclear if the current analysis of intratumor heterogeneity distinguishes the subtypes. It may be informative if patterns of tumor microenvironment (TME) heterogeneity were identified between samples of the same subtype. The team could also evaluate this in an extension cohort of published SiNET tumors (i.e. revisiting additional analyses using the SiNET bulk RNAseq from Alvarez et al 2018, a subset of single-cell data from Hoffman et al 2023, or additional bulk RNAseq validation cohorts for this cancer type if they exist [if they do not, then this could be mentioned as a need in Discussion])

      We agree that analysis of an independent cohort will assist in defining the association between TME and the SiNET subtype. However, the sample size required for that is significantly larger than the data available. In the revised manuscript we note that as a direction for future studies.

      (3) Proliferation of NE and immune cells in SiNETs: The observed proliferation of NE and immune cells in SiNETs may also be influenced by technical factors (including those noted above). For instance, prior studies have shown that scRNA-seq tends to capture a higher proportion of immune cells compared to snRNA-seq, which should be considered in the interpretation of these results. Could the team clarify this element?

      We agree that different platforms could affect the observed proportions of immune cells, and more generally the proportions of specific cell types. However, the low proliferation of Neuroendocrine cells and the higher proliferation of immune cells (especially B cells, but also T cells and macrophages) is consistently observed in both platforms, as shown in Fig. 4a, and therefore appears to be reliable despite the limitations of our work. We clarify this consistency in the revised manuscript. 

      (4) Putative progenitors in mixed tumors: As written, the identification of putative progenitors in a single lung MiNEN sample feels somewhat disconnected from the rest of the study. These findings are interesting - are similar progenitor cell populations identified in SiNET samples? Recognizing that ideally additional validation is needed to confidently label and characterize these cells beyond gene expression data in this rare tumor, this limitation could be addressed in a revised Discussion.

      We do not find evidence for similar progenitors in the SiNET samples, but they also do not contain two co-existing lineages of cancer cells within the same tumor, so this is harder to define. We agree about the need for additional validation for this specific finding and have noted that in the revised Discussion.

      Reviewer #2 (Public review):

      Summary:

      The research identifies two main SiNET subtypes (epithelial-like and neuronal-like) and reveals heterogeneity in non-neuroendocrine cells within the tumor microenvironment. The study validates findings using external datasets and explores unexpected proliferation patterns. While it contributes to understanding SiNET oncogenic processes, the limited sample size and depth of analysis present challenges to the robustness of the conclusions.

      Strengths:

      The studies effectively identified two subtypes of SiNET based on epithelial and neuronal markers. Key findings include the low proliferation rates of neuroendocrine (NE) cells and the role of the tumor microenvironment (TME), such as the impact of Macrophage Migration Inhibitory Factor (MIF).

      Weaknesses:

      However, the analysis faces challenges such as a small sample size, lack of clear biological interpretation in some analyses, and concerns about batch effects and statistical significance.

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors set out to profile small intestine neuroendocrine tumors (siNETs) using single-cell/nucleus RNA sequencing, an established method to characterize the diversity of cell types and states in a tumor. Leveraging this dataset, they identified distinct malignant subtypes (epithelial-like versus neuronal-like) and characterized the proliferative index of malignant neuroendocrine cells versus non-malignant microenvironment cells. They found that malignant neuroendocrine cells were far less proliferative than some of their non-malignant counterparts (e.g., B cells, plasma cells, epithelial cells) and there was a strong subtype association such that epithelial-like siNETs were linked to high B/plasma cell proliferation, potentially mediated by MIF signaling, whereas neuronal-like siNETs were correlated with low B/plasma cell proliferation. The authors also examined a single case of a mixed lung tumor (neuroendocrine and squamous) and found evidence of intermediate/mixed and stem-like progenitor states that suggest the two differentiated tumor types may arise from the same progenitor.

      Strengths:

      The strengths of the paper include the unique dataset, which is the largest to date for siNETs, and the potentially clinically relevant hypotheses generated by their analysis of the data.

      Weaknesses:

      The weaknesses of the paper include the relatively small number of independent patients (n = 8 for siNETs), lack of direct comparison to other published single-cell NET datasets, mixing of two distinct methods (single-cell and single-nucleus RNA-seq), lack of direct cell-cell interaction analyses and spatially-resolved data, and lack of in vitro or in vivo functional validation of their findings.

      The analytical methods applied in this study appear to be appropriate, but the methods used are fairly standard to the field of single-cell omics without significant methodological innovation. As the authors bring forth in the Discussion, the results of the study do raise several compelling questions related to the possibility of distinct biology underlying the epithelial-like and neuronal-like subtypes, the origin of mixed tumors, drivers of proliferation, and microenvironmental heterogeneity. However, this study was not able to further explore these questions through spatially-resolved data or functional experiments.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Methods:

      a) Could the team clarify the discrepancy in subtype assignment between two samples from the same patient? i.e. are these samples from the same tumor? If so, what does the team think is the explanation for the difference in subtype assignment?

      As noted above in response to the public review of reviewer #1, SiNET6 was in fact not assigned to any subtype (due to insufficient NE cells) and hence there was no discrepancy. We apologize for the misleading labeling of SiNET6 in the previous version and have corrected this In the revised version of Figure 4.

      b) What is the rationale for scoring tumor-derived programs on samples with no tumor cells? For instance, SiNET3 does not contain NE cells, and SiNET9 has a very low fraction of NE cells. Please clarify how the scoring was performed on these samples, as the program assignments may be driven by other cell types in samples with little to no NE cells.

      Scoring for tumor-derived programs was done only for the NE cells. Accordingly, SiNET3 was not scored or assigned to any of the programs. SINET9 was included in this analysis - although it had a relatively small fraction of NE cells, the absolute number of profiled cells was particularly high in this sample and therefore the number of NE cells was 130, higher than our cutoff of 100 cells.

      c) Given the heterogeneity of cell types within each sample, would there be a way to provide a refined sense of confidence for certain cell type annotations? This would be helpful given the heterogeneity in marker gene expression and the absence of gold-standard markers for fibroblasts and endothelial cells in this cancer type. Additionally, there seems to be an unusually large proportion of NK and T cells - was there selection for this (given that these tumors are largely not immune infiltrated)?

      Author Response: Except for the Neuroendocrine cells, there are six TME cell types that we consistently find in multiple SiNET samples: macrophages, T cells, B/plasma cells, fibroblasts, endothelial and epithelial cells. Each of these cell types are identified as discrete clusters in analysis of the respective tumors (as shown in Fig. 1a,b and Fig. S1), and these are exactly the six most common non-malignant cell types that we and others found in single cell analysis across various other tumor types (e.g. see Gavish et al. 2023, ref. #15). The signatures used to annotate these cell types are shown in Table S2, and they primarily consist of classical markers that are traditionally used to define those cell types. We therefore believe that the annotation of these typical tumor-associated cell types is robust and does not include major uncertainties. In addition to these five common cell types, there are three cell types that we find only in 1-2 of the samples – epithelial cells, plasma cells and NK cells. Again, we believe that their annotation is robust, and these cell types are primarily not used for further analysis.

      There was no selection for any specific cell types in this study. Nevertheless, single cell (or single nuclei) analysis may lead to biases towards specific cell types, that we cannot evaluate directly from the data. NK cells were detected only in one tumor. T cells were detected in eight of the ten samples; but in four of those samples the frequency of T cells was lower than 5% and only in one sample the frequency was above 20%. Therefore, while we cannot exclude a technical bias towards high frequency of T/NK cells, we do not consider these frequencies as high enough to suggest this specific type of bias. In the revised manuscript, we clarify that the commonly observed cell types in SiNETs are the same as those commonly observed in other tumors and we acknowledge the possibility of a technical bias in cell type capture.  

      d) Evaluating the expression of one gene at a time may not effectively demonstrate subtype-specific patterns, particularly when comparing NE cells from one tumor to non-NE cells from another, which may not be an appropriate approach for identifying differentially expressed genes. DE analysis coupled with concordance analysis, for example, could strengthen the results.

      We apologize, but we do not fully understand this comment. We note that the initial normalization by non-NE cells was done in order to decrease batch effects when combining the data of the two platforms. We also note that the two subtypes were identified by two distinct approaches, as shown in Fig. 2c and in Fig. 2f.

      (2) Results:

      See the above public review.

      (3) Minor Comments:

      a) Results: Single cell and single nuclei RNA-seq profiling of SiNETs

      The results say ten primary tumor samples from eight patients. Later in the paragraph it says, "After initial quality controls, we retained 29,198 cells from the ten patients." Please clarify to either ten samples or eight patients.

      Indeed these are ten samples rather than ten patients. We corrected that in the revised version and thank the reviewer for noticing our error.

      b) Methods:

      - Please specify which computational tools were used to perform quality control, signature scoring, etc.

      The approaches for quality control, scoring etc. are described in the methods. We implemented these approaches with R code and did not use other computational tools.

      - Minor point but be consistent with naming convention (ie, siAdeno vs SiAdeno) throughout the paper. For example, under "Sample Normalization, Filtering and annotations" change "siAdeno" to "SiAdeno."

      Thank you for noting this, we corrected that.

      - Add processing and analysis of MiNEN sample to the methods section. It is not mentioned in the methods at all.

      As noted in the revised manuscript, the MiNEN sample was analyzed in the same way as the SiNET fresh samples.

      c) Supplementary Figures:

      Figure S1: Change (A-H) to (A-I) to account for all panels in the figure.

      Figure S4: Add (C) after "the siAdeno sample" in the legend.

      Thank you for noting this, we corrected that.

      (4) Font size is quite small in the main figures.

      We enlarged the font in selected figure panels.

      Reviewer #2 (Recommendations for the authors):

      (1) The small number of samples used in some analyses affects the robustness of the findings. Increasing the sample size or including more validation data could improve the statistical reliability and make the results more convincing. The authors should consider expanding the cohort size or integrating additional external datasets to increase statistical power.

      We agree with the reviewer that adding more samples would improve the reliability of the results. However, the external data that we found was not comparable enough to enable integration with our data, and we are unable to profile additional SiNET samples in our lab. We hope that future studies would support our results and extend them further.

      (2) The biological significance of differentially expressed genes needs more depth, limiting the insights into SiNET biology. The authors should perform a comprehensive pathway enrichment analysis and integrate findings with existing literature. Tools like Gene Set Enrichment Analysis (GSEA) or Overrepresentation Analysis (ORA) could provide a more holistic view of altered biological processes.

      We thank the reviewer for this suggestion. We did examine the functional enrichment of differentially expressed genes and did not find additional enrichments that we felt were important to highlight beyond what we described. We report the genes in supplementary tables, enabling other researchers to examine these lists further. 

      (3) The unexpected finding of higher proliferation in non-malignant cells requires further investigation and plausible biological explanation. The authors should perform additional analyses to explore potential mechanisms, such as investigating cell cycle regulators or performing in vitro validation experiments. The authors should consider single-cell trajectory analysis to explore these highly proliferative non-malignant cells' potential differentiation or activation states.

      We agree that our results are descriptive and that we do not fully explain the mechanism for the high level of non-malignant cell proliferation. We did attempt to perform follow up computational analysis. These analyses raised the hypothesis that high levels of MIF are causing the proliferation of immune cells. Additional analyses that we performed were not sufficient to conclusively identify a mechanism, and we felt that they were not informative enough to be included in the manuscript. Further in vitro (or in vivo) studies are beyond the scope of the current work.

      (3) More details are required on methods used for p-value adjustment, and criteria for statistical significance should be clearly defined. Additionally, integrating scRNA-seq and snRNA-seq data needs a more thorough explanation, including batch effect mitigation and more explicit cell clustering representation. The authors should clearly describe p-value adjustments (e.g., FDR) and batch correction methods (e.g., Harmony, FastMNN integration) and include additional figures showing corrected UMAP plots or heatmaps post-batch correction to enhance the confidence in results.

      We now clarify in the Methods our use of FDR for p-value adjustments. As for batch correction, we have avoided the use of integration methods as we believe that they tend to distort the data and decrease tumor-specific signals. Instead, we primarily analyzed one tumor at a time and never directly compared cell profiles across distinct tumors but only compared the differences between subpopulations; specifically, we normalized the expression of NE cells by subtracting the expression of reference non-NE cells from the same tumor as a method to decrease batch effects. We now clarify this point in the Methods section.

      (4) The lack of analysis of interactions between different cell types limits understanding of tumor microenvironment dynamics. The authors should employ cell-cell interaction analysis tools (e.g., CellPhoneDB, NicheNet) to explore potential communication networks within the tumor microenvironment. This could provide valuable insights into how different cell types influence tumor progression and maintenance.

      We thank the reviewer for this suggestion. We have tried to use such methods but found the results difficult to interpret since these approaches generated very long lists of potential cell-cell interactions that are largely not unique to the SiNET context and their relevance remains unclear without follow up experiments, which are beyond the scope of this work. We therefore focused only on ligand/receptors that came up robustly through specific analyses such as the differences between SiNET subtypes. In particular, MIF is highly expressed in the epithelial subtype, and remarkably, MIF upregulation is shared across multiple cell types. Thus, the cell-cell interactions that are suggested by the SiNET data as somewhat unique to this context are those involving MIF and its receptor (CD74 on immune cell types), while other interactions detected by the proposed methods primarily reflect the generic ligand/receptors expressed by corresponding TME cell types.   

      Reviewer #3 (Recommendations for the authors):

      (1) For a relatively small dataset, the mixing of single-cell versus single-nucleus RNA-seq should be discussed more. It would be nice to have 1-2 tumors that are analyzed by both methods to compare and increase our understanding of how these different approaches may affect the results. This could be accomplished by splitting a fresh tumor into two parts, processing it fresh for single-cell RNA-seq, and freezing the other part for single-nucleus RNA-seq.

      We agree with the reviewer that the different techniques may bias our results and we refer to this limitation in the Results and Discussion sections. However, it is important to note that we do not directly integrate the primary data across these modalities, but rather analyze each tumor separately and only combine the results across tumors. For example, we first compare the NE cells from each tumor to control non-NE cells from the same tumor and then only compare the sets of NE-specific genes across tumors. Moreover, the subtypes that we detect cannot be explained by these modalities, as the first subtype contains samples from both methods and these subtypes are further demonstrated in external bulk data. Similarly, the results regarding low proliferation of NE cells and high proliferation of B/plasma cells are observed across both modalities. We therefore argue that while the combination of methods is a limitation of this work it does not account for the main results.  

      (2) The authors state that they defined the siNET transcriptomic signature by comparing their siNET single-cell/nucleus data to other NETs profiled by bulk RNA-seq. Some of the genes in the signature, such as CHGA, are widely used as markers for NETs (and not specific for siNET). The authors should address this in more detail.

      To define the SiNET transcriptomic signature we first analyzed each tumor separately and compared the expression of Neuroendocrine (NE) cells to that of non-NE cells to detect NE-specific genes. Next, we compared the lists of NE-specific genes across the 8 SiNET patients and found a subset of 26 genes which were shared across most of the analyzed SiNET samples (Fig. 2a). Thus, the signature was defined only from analysis of SiNETs and not based on comparison to other types of NETs and hence it is expected that the signature could contain both SiNET-specific genes and more generic NET genes such as CHGA.

      Only after defining this signature, we went on to compare it between SiNETs and other types of NETs (pancreatic and rectal) based on external bulk RNA-seq data. In this comparison, we observed that the signature was clearly higher in SiNETs than in the other NETs (Fig. 2b). This result supports the accuracy of the signature and further suggests that it contains a fraction of SiNET-specific genes and not only generic NET genes such as CHGA. Thus, we would expect this signature to perform well also for distinguishing between SiNET and types of NETs, but it does contain a subset of genes that would be high in the other NETs. Finally, we note that even though CHGA is a generic NET marker, the bulk RNA-seq data would suggest that, at least at the mRNA level, this gene is still higher expressed in SiNETs than in other NETs. To avoid confusion regarding the definition and specificity of the SiNET transcriptomic signature we have extended the description of this section in the revised manuscript.

      (3) The authors only compare their data to bulk transcriptomic data on NETs. While in some instances this makes sense given the bulk dataset has >80 tumors, they should at least cite and do some comparison to other published single-cell RNA-seq datasets of NETs (e.g., PMID: 37756410, 34671197). The former study listed has 3 siNETs, 4 pNETs, and 1 gNET. Do the epithelial-like and neuronal-like signatures show up in this dataset too?

      We examined these studies but concluded that their data was inadequate to identify the two SiNET subtypes. The latter study was of pNETs, while the former study had 3 SiNET samples but only from 2 patients, and furthermore it was enriching for immune cells with only very low amounts of NE cells. Therefore, we now cite this work in the discussion but cannot use it to extend the results from our work.

      (4) How did the authors statistically handle patients with more than one tumor sample (true for n = 2)? These tumor samples would not be truly independent.

      In both cases where we had two distinct samples of the same patient, only one sample had sufficient NE cells to be included in NE-related analysis and therefore the other samples (SiNET3 and SiNET6) were excluded from all analysis of NE differential expression and subtypes. These samples were only included in the initial analysis (Fig. 1) and in TME-related analysis (Fig. 3-4) in which there was no statistical analysis of differences between patients and hence no problem with the inclusion of 2 samples for the same patient. We clarified this issue in the revised version.

      (5) The association between siNET subtype and B/plasma cell proliferation is very interesting, as is the hypothesis regarding MIF signaling. It would be illuminating for the authors to perform cell-cell interaction analyses with methods such as CellChat in this context rather than just relying on DE. Spatial mapping would be helpful too and while this may be outside the scope of this study, it should at least be expounded upon in the Discussion section.

      Indeed, spatial transcriptomic analysis would add interesting insight to our data and to SiNET biology. Unfortunately, this is not within the scope of the current project but we note this interesting possibility in the Discussion. Regarding additional methods for cell-cell interactions, we have performed such analysis but found it not informative as it highlighted a large number of interactions that are not unique SiNETs and are difficult to interpret, and therefore we do not include this in the revised version. 

      (6) The authors note that in the mixed lung tumor, the NE component was more proliferative than that observed with siNETs. How does the proliferation compare to pNETs, gNETs, in other published studies? How about assessing the clonality of the SCC and LNET malignant cells with various genomic or combined genomic/transcriptomic methods?

      The percentage of proliferating NE cells in the mixed lung tumor was higher than 60%. This is extremely high, approximately four-fold higher than the average that we found in a pan-cancer analysis and higher than the average of any of the >20 cancer types that we analyzed (Gavish et al. 2023, ref. #15). This remarkably high proliferation serves as a control for the low proliferation that we found in SiNET NE cells.

      (7) In the Discussion on page 13, the authors write "Second, proliferation of NE cells may be inhibited by prior treatments with somatostatin analogues." How many patients were treated in this manner? This information should be made more explicit in the manuscript.

      Details on pretreatment with somatostatin analogues are provided in Table S1. All patients were pre-pretreated with somatostatin analogues, with the possible exception of one patient (P8, SiNET10) for which we could not confidently obtain this information.

      (8) On page 5, "bone-fide" is misspelled.

      (9) On page 8, "exact identify" is misspelled.

      We thank the reviewer and have corrected the typos.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors provide a study among healthy individuals, general medical patients and patients receiving haematopoietic cell transplants (HCT) to study the gut microbiome through shotgun metagenomic sequencing of stool samples. The first two groups were sampled once, while the patients receiving HCT were sampled longitudinally. A range of metadata (including current and previous (up to 1 year before sampling) antibiotic use) was recorded for all sampled individuals. The authors then performed shotgun metagenomic sequencing (using the Illumina platform) and performed bioinformatic analyses on these data to determine the composition and diversity of the gut microbiota and the antibiotic resistance genes therein. The authors conclude, on the basis of these analyses, that some antibiotics had a large impact on gut microbiota diversity, and could select opportunistic pathogens and/or antibiotic resistance genes in the gut microbiota.

      Strengths:

      The major strength of this study is the considerable achievement of performing this observational study in a large cohort of individuals. Studies into the impact of antibiotic therapy on the gut microbiota are difficult to organise, perform and interpret, and this work follows state-of-the-art methodologies to achieve its goals. The authors have achieved their objectives and the conclusion they draw on the impact of different antibiotics and their impact on the gut microbiota and its antibiotic resistance genes (the 'resistome', in short), are supported by the data presented in this work.

      Weaknesses:

      The weaknesses are the lack of information on the different resistance genes that have been identified and which could have been supplied as Supplementary Data.

      We have now supplied a list of individual resistance genes as supplementary data.

      In addition, no attempt is made to assess whether the identified resistance genes are associated with mobile genetic elements and/or (opportunistic) pathogens in the gut. While this is challenging with short-read data, alternative approaches like long-read metagenomics, Hi-C and/or culture-based profiling of bacterial communities could have been employed to further strengthen this work.

      We agree this is a limitation, and we now refer to this in the discussion. Unfortunately we did not have funding to perform additional profiling of the samples that would have provided more information about the genetic context of the AMR genes identified.

      Unfortunately, the authors have not attempted to perform corrections for multiple testing because many antibiotic exposures were correlated.

      The reviewer is correct that we did not perform formal correction for multiple testing. This was because correlation between antimicrobial exposures meant we could not determine what correction would be appropriate and not overly conservative. We now describe this more clearly in the statistical analysis section.

      Impact:

      The work may impact policies on the use of antibiotics, as those drugs that have major impacts on the diversity of the gut microbiota and select for antibiotic resistance genes in the gut are better avoided. However, the primary rationale for antibiotic therapy will remain the clinical effectiveness of antimicrobial drugs, and the impact on the gut microbiota and resistome will be secondary to these considerations.

      We agree that the primary consideration guiding antimicrobial therapy will usually be clinical effectiveness. However antimicrobial stewardship to minimise microbiome disruption and AMR selection is an increasingly important consideration, particularly as choices can often be made between different antibiotics that are likely to be equally clinically effective.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript by Peto et al., the authors describe the impact of different antimicrobials on gut microbiota in a prospective observational study of 225 participants (healthy volunteers, inpatients and outpatients). Both cross-sectional data (all participants) and longitudinal data (a subset of 79 haematopoietic cell transplant patients) were used. Using metagenomic sequencing, they estimated the impact of antibiotic exposure on gut microbiota composition and resistance genes. In their models, the authors aim to correct for potential confounders (e.g. demographics, non-antimicrobial exposures and physiological abnormalities), and for differences in the recency and total duration of antibiotic exposure. I consider these comprehensive models an important strength of this observational study. Yet, the underlying assumptions of such models may have impacted the study findings (detailed below). Other strengths include the presence of both cross-sectional and longitudinal exposure data and the presence of both healthy volunteers and patients. Together, these observational findings expand on previous studies (both observational and RCTs) describing the impact of antimicrobials on gut microbiota.

      Weaknesses:

      (1) The main weaknesses result from the observational design. This hampers causal interpretation and corrects for potential confounding necessary. The authors have used comprehensive models to correct for potential confounders and for differences between participants in duration of antibiotic exposure and time between exposure and sample collection. I wonder if some of the choices made by the authors did affect these findings. For example, the authors did not include travel in the final model, but travel (most importantly, south Asia) may result in the acquisition of AMR genes [Worby et al., Lancet Microbe 2023; PMID 37716364). Moreover, non-antimicrobial drugs (such as proton pump inhibitors) were not included but these have a well-known impact on gut microbiota and might be linked with exposure to antimicrobial drugs. Residual confounding may underlie some of the unexplained discrepancies between the cross-sectional and longitudinal data (e.g. for vancomycin).

      We agree that the observational design means there is the potential for confounding, which, as the reviewer notes, we attempt to account for as far as possible in the multivariable models presented. We cannot exclude the possibility of residual confounding, and we highlight this as a limitation in the  discussion. We have expanded on this limitation, and mention it as a possible explanation for inconsistencies between longitudinal and cross sectional models. Conducting randomised trials to assess the impacts of multiple antimicrobials in sick, hospitalised patients would be exceptionally difficult, and so it is hard to avoid reliance on observational data in these settings.

      We did record participants’ foreign travel and diet, but these exposures were not included in our models as they were not independently associated with an impact on the microbiome and their inclusion did not materially affect other estimates. However, because most participants were recruited from a healthcare setting, few had recent foreign travel and so this study was not well powered to assess the effects of travel on AMR carriage. We have added this as a limitation.

      In addition, the authors found a disruption half-life of 6 days to be the best fit based on Shannon diversity. If I'm understanding correctly, this results in a near-zero modelled exposure of a 14-day-course after 70 days (purple line; Supplementary Figure 2). However, it has been described that microbiota composition and resistome (not Shannon diversity!) remain altered for longer periods of time after (certain) antibiotic exposures (e.g. Anthony et al., Cell Reports 2022; PMID 35417701). The authors did not assess whether extending the disruption half-life would alter their conclusions.

      The reviewer is correct that the best fit disruption half-life of 6 days means the model assumes near-zero exposure by 70 days. We appreciate that antimicrobials can cause longer-term disruption than is represented in our model, and we refer to this in the discussion (we had cited two papers supporting this, and we are grateful for the additional reference above, which we have added). We agree that it is useful to clarify that the longer term effects may be seen in individual components of the microbiome or AMR genes, but not in overall measures of diversity, so have added this to the discussion.

      (2) Another consequence of the observational design of this study is the relatively small number of participants available for some comparisons (e.g. oral clindamycin was only used by 6 participants). Care should be taken when drawing any conclusions from such small numbers.

      We agree. Although our participants received a large number of different antimicrobial exposures, these were dependent on routine clinical practice at our centre and we lack data on many potentially important exposures. We had mentioned this in relation to antimicrobials not used at our centre, and have now clarified in the discussion that this also limits reliability of estimates for antimicrobials that were rarely used in study participants.

      (3) The authors assessed log-transformed relative abundances of specific bacteria after subsampling to 3.5 million reads. While I agree that some kind of data transformation is probably preferable, these methods do not address the compositional data of microbiome data and using a pseudocount (10-6) is necessary for absent (i.e. undetected) taxa [Gloor et al., Front Microbiol 2017; PMID 29187837]. Given the centrality of these relative abundances to their conclusions, a sensitivity analysis using compositionally-aware methods (such as a centred log-ratio (clr) transformation) would have added robustness to their findings.

      We agree that using a pseudocount is necessary for undetected taxa, which we have done assuming undetected taxa had an abundance of 10<sup>-6</sup> (based on the lower limit of detection at the depth we sequenced). We refer to this as truncation in the methods section, but for clarity we have now also described this as a pseudocount.  Because our analysis focusses on major taxa that are almost ubiquitous in the human gut microbiome, a pseudocount was only used for 3 samples that had no detectable Enterobacteriaciae.

      We are aware that compositionally-aware methods are often used with microbiome data, and for some analyses these are necessary to avoid introducing spurious correlations. However the flaws in non-compositional analyses outlined in Gloor et al do not affect the analyses in this paper:

      (1) The problems related to differing sequence depths or inadequate normalisation do not apply to our dataset, as we took a random subset of 3.5 million reads from all samples (Gloor et al correctly point out that this method has the drawback of losing some information, but it avoids problems related to variable sequencing depth)

      (2) The remainder Gloor et al critiques multivariate analyses that assess correlations between multiple microbiome measurements made on the same sample, starting with a dissimilarity matrix. With compositional data these can lead to spurious correlations, as measurements on an individual sample are not independent of other measurements made on the same sample. In contrast, our analyses do not use a dissimilarity matrix, but evaluate the association of multiple non-microbiome covariates (e.g. antibiotic exposures, age) with single microbiome measures. We use a separate model for each of 11 specified microbiome components, and display these results side-by side. This does not lead to the same problem of spurious correlation as analyses of dissimilarity matrices. However, it does mean that estimates of effects on each taxa outcome have to be interpreted in the context of estimates on the other taxa. Specifically, in our models, the associations of antimicrobial exposure with different taxa/AMR genes are not necessarily independent of each other (e.g. if an antimicrobial eradicated only one taxon then it would be associated with an increase in others). This is not a spurious correlation, and makes intuitive sense when using relative abundance as outcome. However, we agree this should be made more explicit.

      For these reasons, at this stage we would prefer not to increase the complexity of the manuscript by adding a sensitivity analysis.

      (4) An overall description of gut microbiota composition and resistome of the included participants is missing. This makes it difficult to compare the current study population to other studies. In addition, for correct interpretation of the findings, it would have been helpful if the reasons for hospital visits of the general medical patients were provided.

      We have added a summary of microbiome and resistome composition in the results section and new supplementary table 2), and we also now include microbiome and resistome profiles of all samples in the supplementary data. We also provide some more detail about the types of general medical patients included. We are not able to provide a breakdown of the initial reason for admission as this was not collected.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Provide a supplementary table with information on the abundance of individual genes in the samples.

      This supplementary data is now included.

      (2) Engage with an expert in statistics to discuss how statistical analyses can be improved.

      A experienced biostatistician has been involved in this study since its conception, and was involved in planning the analysis and in the responses to these comments.

      (3) Typos and other minor corrections:

      Methods: it is my understanding that litre should be abbreviated with a lowercase l.

      Different journals have different house styles: we are happy to follow Editorial guidance.

      p. 9: abuindance should be corrected to abundance.

      Corrected

      p. 9: relative species should be relevant species?  

      Yes, corrected. Thank you.

      p. 9 - 10: can the apparent lack of effect of beta-lactams on beta-lactamase gene abundance be explained by the focus on a small number of beta-lactamase resistance genes that are found in Enterobacteriaceae and which are not particularly prevalent, while other classes of resistance genes (e.g. Bacteroidal beta-lactamases) were excluded?

      It is possible that including other beta-lactamases would have led to different results, but as a small number of beta-lactamases in Enterobacteriaceae are of major clinical importance we decided to focus on these (already justified in the Methods). A full list of AMR genes identified is now provided in the supplementary data.

      p. 10: beta-lactamse should be beta-lactamase

      Corrected

      Figure 3A: could the data shown for tetracycline resistance genes be skewed by tetQ, which is probably one of the most abundant resistance genes in the human gut and acts through ribosome protection?

      TetQ was included, but only accounted for 23% of reads assigned to tetracycline resistance genes so is unlikely to have skewed the overall result. We limited the analysis to a few major categories of AMR genes and, other than VanA, have avoided presenting results for single genes to limit the degree of multiple testing. We now include the resistome profile for each sample in the supplementary data so that readers can explore the data if desired.

      Reviewer #2 (Recommendations For The Authors):

      (1) Given the importance of obligate anaerobic gut microbiota for human health, it might be interesting to divide antibiotics into categories based on their anti-anaerobic activity and assess whether these antibiotics differ in their effects on gut microbiota.

      The large majority of antibiotics used in clinical practice have activity against aerobic bacteria and anaerobic bacteria, so it is not possible to easily categorise them this way. There are two main exceptions (metronidazole and aminoglycosides) but there was insufficient use of these drugs to clearly detect or rule out a difference between them, even when categorising antimicrobials by class, so we prefer not to frame the results in these terms. Also see our comments on this categorisation below.

      (2) For estimating the abundance of anaerobic bacteria, three major groups were assessed: Bacteroidetes, Actinobacteria and Clostridia. To me, this seems a bit aspecific. For example, the phylum Bacteroidetes contains some aerobic bacteria (e.g. Flavobacteriia). Would it be possible to provide a more accurate estimation of anaerobic bacteria?

      We think that an emphasis on a binary aerobic/anaerobic classification is less biologically meaningful that the more granular genetic classification we use, and its use largely reflects the previous reliance on culture-based methods for bacterial identification. Although some important opportunistic human pathogens are aerobic, it is not clear that the benefit or harm of most gut commensals relates to their oxygen tolerance, and all luminal bacteria exist in an anaerobic environment. As such we prefer not to perform an additional analysis using this category. We are also not sure that this could be done reliably, as many of the taxa are characterised poorly, or not at all.

      We appreciate that Bacteroidetes, Actinobacteria and Clostridia are diverse taxa that include many different species, so may seem non-specific, but these were chosen because:

      i) they are non-overlapping with Enterobacteriaceae and Enterococcus, the major opportunistic pathogens of clinical relevance, so could be used in parallel, and

      ii) they make up the large majority of the gut microbiome in most people and most species are of low pathogenicity, so it is plausible that their disruption might drive colonisation with more pathogenic organisms (or those carrying important AMR genes).

      We have more clearly stated this rationale.

      (3) A statement on the availability of data and code for analysis is missing. I would highly recommend public sharing of raw sequence data and R code for analysis. If possible, it would be very valuable if processed microbiome data and patient metadata could be shared.

      We agree, and these have been submitted as supplementary data. We have added the following statement “The data and code used to produce this manuscript are available in the supplementary material, including processed microbiome data, and pseudonymised patient metadata. The sequence data for this study have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB86785.”

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study by Cao et al. provides a compelling investigation into the role of mutational input in the rapid evolution of pesticide resistance, focusing on the two-spotted spider mite's response to the recent introduction of the acaricide cyetpyrafen. This well-documented introduction of the pesticide - and thus a clearly defined history of selection - offers a powerful framework for studying the temporal dynamics of rapid adaptation. The authors combine resistance phenotyping across multiple populations, extensive resequencing to track the frequency of resistance alleles, and genomic analyses of selection in both contemporary and historical samples. These approaches are further complemented by laboratory-based experimental evolution, which serves as a baseline for understanding the genetic architecture of resistance across mite populations in China. Their analyses identify two key resistance-associated genes, sdhB and sdhD, within which they detect 15 mutations in wild-collected samples. Protein modeling reveals that these mutations cluster around the pesticide's binding site, suggesting a direct functional role in resistance. The authors further examine signatures of selective sweeps and their distribution across populations to infer the mechanisms - such as de novo mutation or gene flow-driving the spread of resistance, a crucial consideration for predicting evolutionary responses to extreme selection pressure. Overall, this is a well-rounded, thoughtfully designed, and well-written manuscript. It shows significant novelty, as it is relatively rare to integrate broad-scale evolutionary inference from natural populations with experimentally informed bioassays, however, some aspects of the methods and discussion have an opportunity to be clarified and strengthened.

      Strengths:

      One of the most compelling aspects of this study is its integration of genomic time-series data in natural populations with controlled experimental evolution. By coupling genome sequencing of resistant field populations with laboratory selection experiments, the authors tease apart the individual effects of resistance alleles along with regions of the genome where selection is expected to occur, and compare that to the observed frequency in the wild populations over space and time. Their temporal data clearly demonstrates the pace at which evolution can occur in response to extreme selection. This type of approach is a powerful roadmap for the rest of the field of rapid adaptation.

      The study effectively links specific genetic changes to resistance phenotypes. The identification of sdhB and sdhD mutations as major drivers of cyetpyrafen resistance is well-supported by allele frequency shifts in both field and experimental populations. The scope of their sampling clearly facilitated the remarkable number of observed mutations within these target genes, and the authors provide a careful discussion of the likelihood of these mutations from de novo or standing variation. Furthermore, the discovered cross-resistance that these mutations confer to other mitochondrial complex II inhibitors highlights the potential for broader resistance management and evolution.

      Weaknesses:

      (1) Experimental Evolution:

      - Additional information about the lab experimental evolution would be useful in the main text. Specifically, the dose of cyetpyrafen used should be clarified, especially with respect to the LD50 values. How does it compare to recommended field doses? This is expected to influence the architecture of resistance evolution. What was the sample size? This will help readers contextualize how the experimental design could influence the role of standing variation.

      The experimental design involved sampling approximately 6,000 individuals from the wild population ZJSX1, which were subsequently divided into two parallel cohorts under controlled laboratory conditions. The selection group (LabR) was subjected to continuous selection pressure using cyetpyrafen, while the control group (LabS) was maintained under identical laboratory conditions without exposure to acyetpyrafen. A dynamic selection regime was implemented wherein the acaricide dosage was systematically adjusted every two generations to maintain a consistent selection intensity, achieving a mortality rate of 60% ± 10% in the LabR population. This adaptive dosage strategy ensured sustained evolutionary pressure while preventing population collapse. The LC<sub>50</sub> values were tested at F1, F32, F54, F60, F62, and F66 generations using standardized bioassay protocols to quantify resistance development trajectories and optimize dosage for subsequent selection cycles. We provided the additional information in subsection 4.1 of the materials and methods section.

      - The finding that lab-evolved strains show cross-resistance is interesting, but potentially complicates the story. It would help to know more about the other mitochondrial complex II inhibitors used across China and their impact on adaptive dynamics at these loci, particularly regarding pre-existing resistance alleles. For example, a comparison of usage data from 2013, 2017, and 2019 could help explain whether cyetpyrafen was the main driver of resistance or if previous pesticides played a role. What happened in 2020 that caused such rapid evolution 3 years after launch?

      Although the introduction of the other two SDHI acaricides complicates the story, we would like to provide a complete background on the usage of acaricides with this mode of action in China. Although cyflumetofen was released in 2013 before cyetpyrafen, and cyenopyrafen was released in 2019 after cyetpyrafen, their market share is minor (about 3.2%) compared to cyetpyrafen (about 96.8%, personal communication). Since cross-resistance is reported among SDHIs, we could not exclude the contribution of cyflumetofen to the initial accumulation of resistance alleles, but the effect should be minor, both because of their minimal market share and because of the independent evolution of resistance in the field as found in our study. Although the contribution of cyflumetofen and cyenopyrafen cannot be entirely excluded, the rapid evolution of resistance seems likely to be mainly explained by the intensive application of cyetpyrafen. To clarify this issue, we added relevant information in the first paragraph of the discussion section.

      (2) Evolutionary history of resistance alleles:

      - It would be beneficial to examine the population structure of the sampled populations, especially regarding the role of migration. Though resistance evolution appears to have had minimal impact on genome-wide diversity (as shown in Supplementary Figure 2), could admixture be influencing the results? An explicit multivariate regression framework could help to understand factors influencing diversity across populations, as right now much is left to the readers' visual acuity.

      The genetic structure of the populations was examined by Treemix analysis. We detected only one migration event from JXNC to SHPD (no resistance data available for these two populations), suggesting a limited role for migration to resistance evolution. The multiple regression analysis revealed that overall genetic diversity and Tajima’s D across the genome were not significantly associated with resistance levels, genetic structure or geographic coordinates (P > 0.05), which all support a limited role of migration in resistance development.

      - It is unclear why lab populations were included in the migration/treemix analysis. We might suggest redoing the analysis without including the laboratory populations to reveal biologically plausible patterns of resistance evolution.

      Thank you for the constructive suggestion. The Treemix analysis was redone by removing laboratory populations and is now reported.

      - Can the authors explore isolation by distance (IBD) in the frequency of resistance alleles?

      Thank you for the constructive suggestion. No significant isolation-by-distance pattern was detected for resistance allele frequencies across all surveyed years (2020: P=0.73; 2021: P=0.52; 2023: P=0.16; Mantel test). We added these results to the text.

      - Given the claim regarding the novelty of the number of pesticide resistance mutations, it is important to acknowledge the evolution of resistance to all pesticides (antibiotics, herbicides, etc.). ALS-inhibiting herbicides have driven remarkable repeatability across species based on numerous SNPs within the target gene.

      We appreciate this comment, which highlights the need to place our findings within the broader evolutionary context of pesticide resistance. We have investigated references relevant to the evolution of resistance to diverse pesticides. As far as we can tell, the 15 target mutations in eight amino acid residues are among the highest number of pesticide resistance mutations detected, especially within the context of animal studies. We have added relevant text to the second paragraph of the discussion.

      - Figure 5 A-B. Why not run a multivariate regression with status at each resistance mutation encoded as a separate predictor? It is interesting that focusing on the predominant mutation gives the strongest r2, but it is somewhat unintuitive and masks some interesting variation among populations.

      We conducted a multiple regression analysis to explore the influence of multiple mutations on resistance levels of field populations. However of 15 putative resistant mutations, only five were detected in more than three populations where bioassay data are available, i.e. I260T, I260V, D116G, R119C, R119L. The frequency of three of these mutations, I260T (P = 0.00128), I260V (P = 0.00423) and D116G (P = 0.00058), are significantly correlated with the resistance level of field populations. This has been added.

      (3) Haplotype Reconstruction (Line 271-):

      - We are a bit sceptical of the methods taken to reconstruct these haplotypes. It seems as though the authors did so with Sanger sequencing (this should be mentioned in the text), focusing only on homozygous SNPs. How many such SNPs were used to reconstruct haplotypes, along what length of sequence? For how many individuals were haplotypes reconstructed? Nonetheless, I appreciated that the authors looked into the extent to which the reconstructed haplotypes could be driven by recombination. Can the authors elaborate on the calculations in line 296? Is that the census population size estimate or effective?

      Because haplotypes could not be determined when more than two loci were heterozygous, we detected haplotypes from sequencing data with at most one heterozygous locus. In total 844 individuals and 696 individuals were used to detect haplotypes of sdhB and sdhD. We detected 11 haplotypes (with 8 SNPs) and 24 haplotypes (with 11 SNPs) along 216 bp of the sdhB and 155 bp of the sdhD genes, respectively. Please see the fifth paragraph of subsection 2.4. We used ρ = 4 × Ne × d (genetic distance) (Li and Stephens, 2003) to calculate the number of effective individuals for one recombination event.

      (4) Single Mutations and Their Effect (line 312-):

      - It's not entirely clear how the breeding scheme resulted in near-isogenic lines. Could the authors provide a clearer explanation of the process and its biological implications?

      To investigate the effect of single mutations or their combination on resistance levels, we isolated the females and males with the same homozygous/ hemizygous genotypes for creating homozygous lines. Females from these lines were not near-isogenic, but homozygous for the critical mutations. We revised the description in the methods section to clearly define these lines.

      - If they are indeed isogenic, it's interesting that individual resistance mutations have effects on resistance that vary considerably among lines. Could the authors run a multivariate analysis including all potential resistance SNPs to account for interactions between them? Given the variable effects of the D116G substitution (ranging from 4-25%), could polygenic or epistatic factors be influencing the evolution of resistance?

      We couldn’t conduct multivariate analysis because most lines have only one resistant SNP. The four lines homozygous for 116G were from the same population. The variable mortality may reflect other unknown mechanisms but these are beyond the scope of this study.

      - Why are there some populations that segregate for resistance mutations but have no survival to pesticides (i.e., the green points in Figure 5)? Some discussion of this heterogeneity seems required in the absence of validation of the effects of these particular mutations. Could it be dominance playing a role, or do the authors have some other explanation?

      We didn’t investigate the degree of dominance of each mutation. The mutation I260V shows incompletely dominant inheritance (Sun, et al. 2022). To investigate survival rate of different populations, the two-spotted spider mite T. urticae was exposed to 1000 mg/L of cyetpyrafen, higher than the recommended field dose of 100 mg/L. Such a high concentration may lead to death of an individual heterozygous for certain mutations, such as I260V.

      - The authors mention that all resistance mutations co-localized to the Q-site. Is this where the pesticide binds? This seems like an important point to follow their argument for these being resistance-related.

      Yes. We revised Fig. 3c to show the Q-site.

      (5) Statistical Considerations for Allele Frequency Changes (Figure 3):

      - It might be helpful to use a logistic regression model to assess the rate of allele frequency changes and determine the strength of selection acting on these alleles (e.g., Kreiner et al. 2022; Patel et al. 2024). This approach could refine the interpretation of selection dynamics over time.

      Thank you for this suggestion. A logistic regression model was used to track allele frequencies trajectories. The selection coefficient of each allele and their joint effects were estimated.

      Reviewer #2 (Public review):

      Summary:

      This paper investigates the evolution of pesticide resistance in the two-spotted spider mite following the introduction of an SDHI acaricide, cyatpyrafen, in China. The authors make use of cyatpyrafen-naive populations collected before that pesticide was first used, as well as more recent populations (both sensitive and resistant) to conduct comparative population genomics. They report 15 different mutations in the insecticide target site from resistant populations, many reported here for the first time, and look at the mutation and selection processes underlying the evolution of resistance, through GWAS, haplotype mapping, and testing for loss of diversity indicating selective sweeps. None of the target site mutations found in resistant populations was found in pre-exposure populations, suggesting that the mutations may have arisen de novo rather than being present as standing variation, unless initially present at very low frequencies; a de novo origin is also supported by evidence of selective sweeps in some resistant populations. Furthermore, there is no significant evidence of migration of resistant genotypes between the sampled field populations, indicating multiple origins of common mutations. Overall, this indicates a very high mutation rate and a wide range of mutational pathways to resistance for this target site in this pest species. The series of population genomic analyses carried out here, in addition to the evolutionary processes that appear to underlie resistance development in this case, could have implications for the study of resistance evolution more widely.

      Strengths:

      This paper combines phenotypic characterisation with extensive comparative population genomics, made possible by the availability of multiple population samples (each with hundreds of individuals) collected before as well as after the introduction of the pesticide cyatpyrafen, as well as lab-evolved lines. This results in findings of mutation and selection processes that can be related back to the pesticide resistance trait of concern. Large numbers of mites were tested phenotypically to show the levels of resistance present, and the authors also made near-isogenic lines to confirm the phenotypic effects of key mutations. The population genomic analyses consider a range of alternative hypotheses, including mutations arising by de novo mutation or selection from standing genetic variation, and mutations in different populations arising independently or arriving by migration. The claim that mutations most likley arose by multiple repeated de novo mutations is therefore supported by multiple lines of evidence: the direct evidence of none of the mutations being found in over 2000 individuals from naive populations, and the indirect evidence from population genomics showing evidence of selective sweeps but not of significant migration between the sampled populations.

      Weaknesses:

      As acknowledged within the discussion, whilst evidence supports a de novo origin of the resistance-associated mutations, this cannot be proven definitively as mutations may have been present at a very low frequency and therefore not found within the tested pesticide-naive population samples.

      We agree that we could not definitively exclude the presence of a very low incidence of favoured mutations before the introduction of this novel acaricide.

      Near-isofemale lines were made to confirm the resistance levels associated with five of the 15 mutations, but otherwise, the genotype-phenotype associations are correlative, as confirmation by functional genetics was beyond the scope of this study.

      We hope that future functional studies will validate the effects of these mutations on resistance in both the two-spotted spider mite T. urticae and other spider mite species. This could be done by creating near-isogenic female lines or using CRISPR-Cas9 technology, as gene knockouts have recently been established for T. urticae.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Could the authors elaborate on the environmental context (e.g., climate, geography) of the sampled populations to give more nuance to the analysis of genetic differentiation and resistance evolution?

      We have explored the influence of geographic isolation on the frequency of resistance alleles by Mantel tests (isolation by distance). We didn’t investigate the influence of climate, because most of the samples were from greenhouses, where the climate to which the pest is exposed is unclear.

      (2) Line 161: is this supposed to be one R and one S?

      Yes, we added this information (LabR and LabS).

      (3) Line 207: variation is not saturated at the first two sites because the different combinations are not seen. This is a bit misleading.

      What we wanted to indicate was that the two codon positions are saturated, rather than their combinations. We revised this sentence by adding “of each codon position”.

      (4) Line 376: continuous selection did not "result in a new mutation arising". Rather, the mutation arose and was subsequently selected on.

      We revised the expression of this de novo mutation and selection process.

      (5) Line 402: can the authors explore what Ne would be necessary to drive the number of mutational origins they observe, as in (Karasov et al. 2010)?

      It is challenged to estimate Ne, especially when mutation rate data from the two-spotted spider mite T. urticae is unavailable. We observed 2.7 resistant mutations per population in samples collected in 2024, seven years after the release of cyetpyrafen. The estimated mutation rate (Θ) is  0.0193, given 20 generations per year for T. urticae. An effective population size (Ne) of 2.29*10<sup>6</sup> would be necessary to reach the number of de novo mutations observed in this study, given Θ  =  3Neμ (haplodiploid sex determination of T. urticae) and a mutation rate of μ  =  2.8*10<sup>-9</sup> per base pair per generation as estimated for Drosophila melanogaster (Keightley et al., 2014). The high reproductive capacity of T. urticae (> 100 eggs per female) and short generation time makes it easier to reach such a population size in the field as we now note.

      (6) Line 482: how did the authors precisely kill 60% of samples with their selection? What was the applied rate? In general, listing the rates of insecticide used in dose response would be useful to decipher if LD50s are projected outside of the doses used (seems like they are). In this case, authors should limit their estimates to those > the highest rate used in the dose response.

      It is difficult to control mortality precisely. We applied cyetpyrafen every two generations but did not determine the LC<sub>50</sub> every two generations. When mortality was lower than 60%, another round of spraying was applied by increasing the dosage of the pesticide. The LC<sub>50</sub> values were tested at F<sub>1</sub>, F<sub>32</sub>, F<sub>54</sub>, F<sub>60</sub>, F<sub>62</sub>, and F<sub>66</sub> generations to establish the trajectories around resistance.

      (7) The light pink genomic region in Figure 2 was distracting. Why is it included if there is no discussion of genomic regions outside the sdh genes? Generally, there was a lot going on in this figure, and some guiding categories (i.e., lab selected vs wild population) on the figure itself could help orient the reader.

      We included chromosome 2 colored in light pink/ red to show the selection signal across a wider genomic region. In the figure legend, we added a description of the lab selected, field resistant and field susceptible populations. Very little common selection signal was detected among resistant populations on chromosome 2, indicating this region was less likely to be involved in resistance evolution of T. urticae to cyetpyrafen. We also described the result briefly in the figure legend.

      Reviewer #2 (Recommendations for the authors):

      (1) The most significant aspect of this study is the use of multiple pest population samples taken before as well as after the introduction of a class of pesticides, allowing a thorough comparative population genomics study in a species where a range of resistance mutations have appeared within a few years. I would prefer to see a title conveying this significance, rather than the current study, which focuses on the total number of mutations and claimed notoriety of the (at that point unnamed) study species. Similarly, I would prefer an abstract that relies less on superlative claims and includes more details: the scientific name of the study species; the number of years in which resistance evolved; the number of historical specimens; how the resistance levels for single mutations were shown.

      (1) The title was changed by adding “the two-spotted spider mite Tetranychus urticae” and removing the “unprecedented number” to emphasize that “recurrent mutations drive rapid evolution”, i.e., “Recurrent Mutations Drive the Rapid Evolution of Pesticide Resistance in the Two-spotted Spider Mite Tetranychus urticae.”

      (2) The scientific name of the study species was added.

      (3) The number of years in which resistance evolved was added.

      (4) The number of historical specimens was added (2666).

      (5) Because we used homozygous lines but not iso-genic lines or gene-edited lines, our bioassay data could not provide direct evidence on the level of resistance conferred by each mutation. We revised our description of the results and removed this content from the abstract.

      Line 29: if you want to claim the number is unprecedented, please specify the context: unprecedented for a pesticide target in an arthropod pest? (more resistance mutations may have been found in bacteria/fungi...).

      We revised the sentence by adding “in an arthropod pest”.

      Line 30: rather than a claim of notoriety, it may be better to specify what damage this pest causes.

      Revised by describing it as an arthropod pest.

      Line 34: please clarify, was this all in different haplotypes, or were some mutations found in combination?

      Done: We identified 15 target mutations, including six mutations on five amino acid residues of subunit sdhB, and nine mutations on three amino acid residues of subunit sdhD, with as many as five substitutions on one residue.

      (2) The introduction begins by framing the context as resistance evolution in invertebrate pests. However, the evolutionary processes examined in the study are applicable to resistance in other systems, and potentially to other cases of rapid contemporary evolution. The authors could show wider significance for their work beyond the subfield of invertebrate pests by including more of this wider context in their introduction and discussion: even if this means they can no longer claim novelty based on the number of mutations alone, the study is a strong example of the use of population genomics combined with functional and phenotypic characterisation to investigate the evolutionary processes underlying the emergence of resistance, so could have wider importance than within its current framing.

      The background was revised as mentioned above to take this into account.

      For example, in lines 48-50, please clarify what is meant by pesticides here (insects/arthropods? weeds and pathogens too?) In lines 69-73, the opposite is sometimes seen in fungal pathogens, with large numbers of mutations generated in lab-evolved strains.

      We extended pesticides to those targeting arthropods, weeds and pathogens. We still emphasize the situation mainly with respect to arthropod pests.

      (3) Lines 91-93: how many modes of action? How recently were SDHI acaricides introduced?

      Added: at least 11 groups of acaricides based on their modes of action. SDHI was launched in 2007.

      (4) Line 98-102: Use in China is a useful background for the study populations, but the global context should be included too.

      Yes, four SDHI acaricides developed around the globe were introduced.

      (5) Line 113: They show diverse mutations, but all within the mechanism of target-site point mutations.

      We agree to your suggestion. This sentence has been removed as it repeats information stated above it.

      (6) Line 115-116: Yes, agreed; I think this is the main strength of the current study and should be emphasised sooner.

      Thanks.

      (7) Line 158: Selective sweep signals were clear in half of the resistant populations but not in the others. The suggestion that the others had undergine soft sweeps, with multiple mutations increasing in frequency simultaneously but no one reaching fixation, seems reasonable; but the authors could compare the populations that did show a sweep with those that did not (for example, was there greater diversity or evenness of genotypes in those that did not?).

      Five resistant populations with selection signals identified by PBE analysis (Figure 2b) showed corresponding decreases in π and Tajima’s D near the two SDH genes but not across the genome (Figure S1).

      (8) Line 313: please clarify "in combination with other mutations" within a mixed population or combined in one individual/haplotype? Also, the phrase "characterised the function" may be a little misleading, as this is a correlative analysis, not functional confirmation.

      None of the combinations of different resistant mutations was observed in a single haplotype. Here, we examine resistance levels associated with a single mutation or two mutations on sdhB and sdhD in one individual, i.e. sdhB_I260V and sdhD_R119C. We revised the sentences to avoid any implication of functional confirmation.

      (9) Line 358: again, please clarify the context: among arthropod pests?

      Done.

      (10) Line 360-363: please give some background on when and where these related compounds were introduced.

      Added.

      (11) Line 410: yes fitness costs may be a factor, but you could also give an example of a cost expressed in the absence of any pesticides, as well as the given example of negative cross-resistance.

      We added the example of the H258Y mutation which causes both fitness costs and negative cross-resistance.

      (12) Lines 419-438: this is one aspect where the situation for insecticides is in contrast with some other resistance areas.

      Yes, we restricted these statements to arthropod pests.

      (13) Line 466: some more detail could be given here: for example, SNP-specific monitoring would be less effective, but amplicon sequencing would be more suitable.

      Yes, revised.

      (14) Lines 472-475: Please list the numbers of field/lab, pre/post exposure, and sensitive/resistant populations within the main text.

      Done. The number of sensitive/resistant populations was reported in the result section.

      (15) Line 483: randomly selected individuals?

      Yes, added randomly selected individuals.

      (16) Line 556: Sanger sequencing to characterise populations? Or a number of individuals from each population?

      Revised.

      (17) References: there are some duplicate entries, please check this.

      Checked.

      (18) Figure 1e: consider a log(10) scale to better show large fold changes and avoid multiple axis breaks.

      Thanks for your suggestions. However we didn’t scale the LC<sub>50</sub> value, because we wanted to show the specific impact of 1,000 mg/L. The breaks in the Y axis around 30 mg/L -1,000 mg/L reveal that the LC50s of the resistant populations were all greater than 1000 mg/L, while those of the susceptible populations were all below 30 mg/L. This justified the use 1000 mg/L as a discriminating dose to investigate resistance status and level in subsequent work.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for the GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Comments on latest version:

      The authors have attempted to address my initial concerns with additional experiments and refutations. Unfortunately, my concerns, especially my specific comments 1-3, remain unaddressed. The present manuscript is descriptive and fails to describe the molecular mechanism by which Sakura exerts its function in the germline. Nevertheless, this reviewer acknowledges that the observed defects in sakura mutant ovaries and the possible physiological significance of the Sakura-Out interaction are worth sharing with the research community, as they may lay the groundwork for future research in functional analysis.

      We thank the reviewer for valuable comments. We would like to investigate the molecular mechanism by which Sakura exerts its function in the germline in near future studies. 

      Reviewer #2 (Public review):

      In this study, the authors identified CG14545 (named it sakura), as a key gene essential for Drosophila oogenesis. Genetic analyses revealed that Sakura is vital for both oogenesis progression and ultimate female fertility, playing a central role in the renewal and differentiation of germ stem cells (GSC).

      The absence of Sakura disrupts the Dpp/BMP signaling pathway, resulting in abnormal bam gene expression, which impairs GSC differentiation and leads to GSC loss. Additionally, Sakura is critical for maintaining normal levels of piRNAs. Also, the authors convincingly demonstrate that Sakura physically interacts with Otu, identifying the specific domains necessary for this interaction, suggesting a cooperative role in germline regulation. Importantly, the loss of otu produces similar defects to those observed in sakura mutants, highlighting their functional collaboration.

      The authors provide compelling evidence that Sakura is a critical regulator of germ cell fate, maintenance, and differentiation in Drosophila. This regulatory role is mediated through modulation of pMad and Bam expression. However, the phenotypes observed in the germarium appear to stem from reduced pMad levels, which subsequently trigger premature and ectopic expression of Bam. This aberrant Bam expression could lead to increased CycA levels and altered transcriptional regulation, impacting piRNA expression. In this revised manuscript, the authors further investigated whether Sakura affects the function of Orb, a binding partner they identified, in deubiquitinase activity when Orb interacts with Bam.

      We appreciate the authors' efforts to address all our comments. While these revisions have greatly improved the clarity of certain sections, some of the concerns remain unclear, while details mentioned in the responses about these studies should be incorporated in the manuscript. Specifically, the manuscript still lacks the demonstration that Sakura co-localizes with Orb/Bam despite having the means for staining and visualization. This would bring insight into the selective binding of Orb with Bam vs. Sakura perhaps at different stages of oogenesis. Such analyses would allow for more specific conclusions, further alluding to the underlying mechanism, rather than the general observations currently presented.

      This elaborate study will be embraced by both germline-focused scientists and the developmental biology community.

      We thank the reviewer for valuable comments. We believe that the author meant Otu, not Orb, for the binding partner of Sakura that we identified. We would like to investigate the colocalization of Sakura with other proteins including Otu and the molecular mechanism by which Sakura exerts its function in the germline in near future studies. 

      Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field.

      Comments on latest version:

      With these revisions, the authors have addressed my main concerns.

      We thank the reviewer for valuable comments.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      The manuscript is much improved based on the changes made upon recommendations from the reviewers.

      Though most of our comments have been addressed, we have a few more we wish to recommend. For previous points we made, we replied with further clarification for the authors.

      Figure 1

      (1) B should be the supplemental figure.

      We moved the former Fig 1B to Supplemental Figure 1.

      • Previous Fig1B (sakura mRNA expression level) is now Fig S2, not S1. Please make this data as Fig S1.

      We moved Fig S1 to main Fig7A and renumbered Fig S2-S16 to Fig S1-S15.

      (2) C - How were the different egg chamber stages selected in the WB? Naming them 'oocytes' is deceiving. Recommend labeling them as 'egg chambers', since an oocyte is claimed to be just the one-cell of that cyst.

      We changed the labeling to egg chambers.

      • The labels on lanes for Stages 12-13 and Stage 14, still only say "chambers", not "egg chambers". Also there is no Stage 1-3 egg chamber. More accurately, the label should be "Germarium - Stage 11 egg chambers".

      We updated the lables on lanes as suggested by the reviewer.

      (3) Is the antibody not detecting Sakura in IF? There is no mention of this anywhere in the manuscript.

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain (which fully rescues sakuranull phenotypes) to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies for IF.

      • Please put this info into the Methods section.

      We added this info into the Methods section.

      (4) Expand on the reliance of the sakura-EGFP fly line. Does this overexpression cause any phenotypes?

      sakura-EGFP does not cause any phenotypes in the background of sakura[+/+] and sakura[+/-].

      • Please add this detail into the manuscript.

      We added this info into the Methods section.

      Figure 5

      (1) D - It might make more sense if this graph showed % instead of the numbers.

      We did not understand the reviewer's point. We think using numbers, not %, makes more sense.

      • Having a different 'n' number for each experiment does not allow one to compare anything except numbers of the egg chambers. This must be normalized.

      We still don’t agree with the reviewer. In Fig 5D, we are showing the numbers of stage 14 oocytes per fly (= per a pair of ovaries). ‘n’ is the number of flies (= number of a pair of ovaries) examined. We now clarified this in the figure legend. Different ‘n’ number does not prevent us from comparing the numbers of stage 14 oocytes per fly. Therefore, we would like to show as it is now.

      (2) Line 213 - explain why RNAi 2 was chosen when RNAi 1 looks stronger.

      Fly stock of RNAi line 2 is much healthier than RNAi line 1 (without being driven Gal4) for some reasons. We had a concern that the RNAi line 1 might contain an unwanted genetic background. We chose to use the RNAi 2 line to avoid such an issue.

      • Please add this information to the manuscript.

      We added this info into the Methods section.

      Figure 7/8 - can go to Supplemental.

      We moved Fig 8 to supplemental. However, we think Fig 7 data is important and therefore we would like to present them as a main figure.

      • Current Fig S1 should go to Fig 7, to better understand the relationship between pMad and Bam expression.

      We moved Fig S1 to main Fig7A and renumbered Fig S2-S16 to Fig S1-S15.

      Figure 9C - Why the switch to S2 cells? Not able to use the Otu antibody in the IP of ovaries?

      We can use the Otu antibody in the IP of ovaries. However, in anti-Sakura Western after anti Otu IP, antibody light chain bands of the Otu antibodies overlap with the Sakura band. Therefore, we switched to S2 cells to avoid this issue by using an epitope tag.

      • Please add this info to the Methods section.

      We added this info into the Methods section.

      Figure 10- Some images would be nice here to show that the truncations no longer colocalize.

      We did not understand the reviewer's points. In our study, even for the full-length proteins. We have not shown any colocalization of Sakura and Otu in S2 cells or in ovaries, except that they both are enriched in developing oocytes in egg chambers.

      • Based on your binding studies, we would expect them to colocalize in the egg chamber, and since there are antibodies and a GFP-line available, it would be important to demonstrate that via visualization.

      As we wrote in the response and now in the manuscript, our antibodies are not best for immunostaining. We will try to optimize the experimental conditions in the future studies.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment 

      The authors utilize a valuable computational approach to exploring the mechanisms of memorydependent klinotaxis, with a hypothesis that is both plausible and testable. Although they provide a solid hypothesis of circuit function based on an established model, the model's lack of integration of newer experimental findings, its reliance on predefined synaptic states, and oversimplified sensory dynamics, make the investigation incomplete for both memory and internal-state modulation of taxis.  

      We would like to express our gratitude to the editor for the assessment of our work. However, we respectfully disagree with the assessment that our investigation is incomplete, if the negative assessment is primarily due to the impact of AIY interneuron ablation on the chemotaxis index (CI) which was reported in Reference [1]. It is crucial to acknowledge that the CI determined through experimental means incorporates contributions from both klinokinesis and klinotaxis [1]. It is plausible that the impact of AIY ablation was not adequately reflected in the CI value. Consequently, the experimental observation does not necessarily diminish the role of AIY in klinotaxis. Anatomical evidence provided by the database (http://ims.dse.ibaraki.ac.jp/ccep-tool/) substantiates that ASE sensory neurons and AIZ interneurons, which have been demonstrated to play a crucial role in klinotaxis [Matsumoto et al., PNAS 121 (5) e2310735121], have the much higher number of synaptic connections with AIY interneurons. These findings provide substantial evidence supporting the validity of the presented minimal neural network responsible for salt klinotaxis.

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      This research focuses on C. elegans klinotaxis, a chemotactic behavior characterized by gradual turning, aiming to uncover the neural circuit mechanism responsible for the context-dependent reversal of salt concentration preference. The phenomenon observed is that the preferred salt concentration depends on the difference between the pre-assay cultivation conditions and the current environmental salt levels. 

      We would like to express our gratitude for the time and consideration you have dedicated to reviewing our manuscript.

      The authors propose that a synaptic-reversal plasticity mechanism at the primary sensory neuron, ASER, is critical for this memory- and context-dependent switching of preference. They build on prior findings regarding synaptic reversal between ASER and AIB, as well as the receptor composition of AIY neurons, to hypothesize that similar "plasticity" between ASER and AIY underpins salt preference behavior in klinotaxis. This plasticity differs conceptually from the classical one as it does not rely on any structural changes but rather synaptic transmission is modulated by the basal level of glutamate, and can switch from inhibitory to excitatory. 

      To test this hypothesis, the study employs a previously established neuroanatomically grounded model [4] and demonstrates that reversing the ASER-AIY synapse sign in the model agent reproduces the observed reversal in salt preference. The model is parameterized using a computational search technique (evolutionary algorithm) to optimize unknown electrophysiological parameters for chemotaxis performance. Experimental validity is ensured by incorporating constraints derived from published findings, confirming the plausibility of the proposed mechanism. 

      Finally. the circuit mechanism allowing C. elegans to switch behaviour to an exploration run when starved is also investigated. This extension highlights how internal states, such as hunger, can dynamically reshape sensory-motor programs to drive context-appropriate behaviors.  

      We would like to thank the reviewer for the appropriate summary of our work. 

      Strengths and weaknesses: 

      The authors' approach of integrating prior knowledge of receptor composition and synaptic reversal with the repurposing of a published neuroanatomical model [4] is a significant strength. This methodology not only ensures biological plausibility but also leverages a solid, reproducible modeling foundation to explore and test novel hypotheses effectively.

      The evidence produced that the original model has been successfully reproduced is convincing.

      The writing of the manuscript needs revision as it makes comprehension difficult.  

      We would like to thank the reviewer for recognizing the usefulness of our approach. In the revised version, we improved the explanation according to your suggestions.  

      One major weakness is that the model does not incorporate key findings that have emerged since the original model's publication in 2013, limiting the support for the proposed mechanism. In particular, ablation studies indicate that AIY is not critical for chemotaxis, and other interneurons may play partially overlapping roles in positive versus negative chemotaxis. These findings challenge the centrality of AIY and suggest the model oversimplifies the circuit involved in klinotaxis.

      We would like to express our gratitude for the constructive feedback we have received. We concur with some of your assertions. In fact, our model is the minimal network for salt klinotaxis, which includes solely the interneurons that are connected to each other via the highest number of synaptic connections. It is important to note that our model does not consider redundant interneurons that exhibit overlapping roles. Consequently, the model is not applicable to the study of the impact of interneuron ablation. In the reference [1], the influence of interneuron ablations on the chemotaxis index (CI) has been investigated. The experimentally determined CI value incorporates the contributions from both klinokinesis and klinotaxis. Consequently, it is plausible that the impact of AIY ablation was not significantly reflected in the CI value. The experimental observation does not necessarily diminish the role of AIY in klinotaxis. 

      Reference [1] also shows that ASER neurons exhibit complex, memory- and context-dependent responses, which are not accounted for in the model and may have a significant impact on chemotactic model behaviour. 

      As the reviewer has noted, our model does not incorporate the context-dependent response of the ASER. Instead, the impact of the salt concentration-dependent glutamate release from the ASER [S. Hiroki et al. Nat Commun 13, 2928 (2022)] as the result of the ASER responses was in detail examined in the present study.

      The hypothesis of synaptic reversal between ASER and AIY is not explicitly modeled in terms of receptor-specific dynamics or glutamate basal levels. Instead, the ASER-to-AIY connection is predefined as inhibitory or excitatory in separate models. This approach limits the model's ability to test the full range of mechanisms hypothesized to drive behavioral switching.  

      We would like to express our gratitude to the reviewer for their constructive feedback. As you correctly noted, the hypothesized synaptic reversal between ASER and AIY is not explicitly modeled in terms of the sensitivity of the receptors in the AIY and the glutamate basal levels by the ASER. On the other hand, in the present study, under considering a substantial difference in the sensitivity of the two glutamate receptors on the AIY, we sought to endeavored to elucidate the impact of salt-concentration-dependent glutamate basal levels on klinotaxis. To this end, we conducted a comprehensive examination of the full range gradual change in the ASER-to-AIY connection from inhibitory to excitatory, as illustrated in Figures S4 and S5.

      While the main results - such as response dependence on step inputs at different phases of the oscillator - are consistent with those observed in chemotaxis models with explicit neural dynamics (e.g., Reference [2]), the lack of richer neural dynamics could overlook critical effects. For example, the authors highlight the influence of gap junctions on turning sensitivity but do not sufficiently analyze the underlying mechanisms driving these effects. The role of gap junctions in the model may be oversimplified because, as in the original model [4], the oscillator dynamics are not intrinsically generated by an oscillator circuit but are instead externally imposed via $z_¥text{osc}$. This simplification should be carefully considered when interpreting the contributions of specific connections to network dynamics. Lastly, the complex and contextdependent responses of ASER [1] might interact with circuit dynamics in ways that are not captured by the current simplified implementation. These simplifications could limit the model's ability to account for the interplay between sensory encoding and motor responses in C. elegans chemotaxis. 

      We might not understand the substance of your assertions. However, we understand that the oscillator dynamics were not intrinsically generated by the oscillator neural circuit that is explicitly incorporated into our modeling. On the other hand, the present study focuses on how the sensory input and resulting interneuron dynamics regulate the oscillatory behavior of SMB motor neurons to generate klinotaxis. The neuron dynamics via gap junctions results from the equilibration of the membrane potential yi of two neurons connected by gap junctions rather than the zi. We added this explanation in the revised manuscript as follows.

      “The hyperpolarization signals in the AIZL are transmitted to the AIZR via the gap junction (Figs. S1d and S1f and Fig. 3d). This is because the neuron dynamics via gap junctions results from the equilibration of the membrane potential y<sub>i</sub> of two neurons connected by gap junctions rather than the z<sub>i</sub>.”

      In the limitation, we added the following sentence:

      “In the present study, the oscillator components of the SMB are not intrinsically generated by an oscillator circuit but are instead externally imposed via 𝑧<sub>i</sub><sup>OSC</sup>. Furthermore, the complex and context-dependent responses of ASER {Luo:2014et} were not taken into consideration. It should be acknowledged as a limitation of this study that these omitted factors may interact with circuit dynamics in ways that are not captured by the current simplified implementation.”

      Appraisal: 

      The authors show that their model can reproduce memory-dependent reversal of preference in klinotaxis, demonstrating that the ASER-to-AIY synapse plays a key role in switching chemotactic preferences. By switching the ASER-AIY connection from excitatory to inhibitory they indeed show that salt preference reverses. They also show that the curving/turn rate underlying the preference change is gradual and depends on the weight between ASER-AIY. They further support their claim by showing that curving rates also depend on cultivated (set-point).  

      We would like to thank the reviewer for assessing our work.

      Thus within the constraints of the hypothesis and the framework, the model operates as expected and aligns with some experimental findings. However, significant omissions of key experimental evidence raise questions on whether the proposed neural mechanisms are sufficient for reversal in salt-preference chemotaxis.  

      We agree with your opinion. The present hypothesis should be verified by experiments.

      Previous work [1] has shown that individually ablating the AIZ or AIY interneurons has essentially no effect on the Chemotactic Index (CI) toward the set point ([1] Figure 6). Furthermore, in [1] the authors report that different postsynaptic neurons are required for movement above or below the set point. The manuscript should address how this evidence fits with their model by attempting similar ablations. It is possible that the CI is rescued by klinokinesis but this needs to be tested on an extension of this model to provide a more compelling argument.  

      We would like to express our gratitude for the constructive feedback we have received. In the reference [1], the influence of interneuron ablations on the chemotaxis index (CI) has been investigated. It is important to acknowledge that the experimentally determined CI value encompasses the contributions of both klinokinesis and klinotaxis. It is plausible that the impact of AIY ablation was not reflected in the CI value. Consequently, these experimental observations do not necessarily diminish the role of AIY in klinotaxis. The neural circuit model employed in the present study constitutes a minimal network for salt klinotaxis, encompassing solely interneurons that are connected to each other via the highest number of synaptic connections. Anatomical evidence provided by the database (http://ims.dse.ibaraki.ac.jp/cceptool/) substantiates that ASE sensory neurons and AIZ interneurons, which have been demonstrated to play a crucial role in klinotaxis [Matsumoto et al., PNAS 121 (5) e2310735121], have the much higher number of synaptic connections with AIY interneurons. Our model does not take into account redundant interneurons with overlapping roles, thus rendering it not applicable to the study of the effects of interneuron ablation.

      The investigation of dispersal behaviour in starved individuals is rather limited to testing by imposing inhibition of the SMB neurons. Although a circuit is proposed for how hunger states modulate taxis in the absence of food, this circuit hypothesis is not explicitly modelled to test the theory or provide novel insights.  

      As the reviewer noted, the experimentally identified neural circuit that inhibits the SMB motor neurons in starved individuals is not incorporated in our model. Instead of incorporating this circuit explicitly, we examined whether our minimal network model could reproduce dispersal behavior under starvation conditions solely due to the experimentally demonstrated inhibitory effect of SMB motor neurons.

      Impact: 

      This research underscores the value of an embodied approach to understanding chemotaxis, addressing an important memory mechanism that enables adaptive behavior in the sensorimotor circuits supporting C. elegans chemotaxis. The principle of operation - the dependence of motor responses to sensory inputs on the phase of oscillation - appears to be a convergent solution to taxis. Similar mechanisms have been proposed in Drosophila larvae chemotaxis [2], zebrafish phototaxis [3], and other systems. Consequently, the proposed mechanism has broader implications for understanding how adaptive behaviors are embedded within sensorimotor systems and how experience shapes these circuits across species.

      We would like to express our gratitude for useful suggestion. We added this argument in Discussion of the revised manuscript as follows.    

      “The principle of operation, in which the dependence of motor responses to sensory inputs on the phase of motor oscillation, appears to be a convergent solution for taxis and navigation across species. In fact, analogous mechanisms have been postulated in the context of chemotaxis in Drosophila larvae chemotaxis {Wystrach:2016bt} and phototaxis in zebrafish {Wolf:2017ei}. Consequently, the synaptic reversal mechanism highlighted in this study offers the framework for understanding how the behaviors that are adaptive to the environment are embedded within sensorimotor systems and how experience shapes these neural circuits across species.”

      Although the reported reversal of synaptic connection from excitatory to inhibitory is an exciting phenomenon of broad interest, it is not entirely new, as the authors acknowledge similar reversals have been reported in ASER-to-AIB signaling for klinokinesis ( Hiroki et al., 2022). The proposed reversal of the ASER-to-AIY synaptic connection from inhibitory to excitatory is a novel contribution in the specific context of klinotaxis. While the ASER's role in gradient sensing and memory encoding has been previously identified, the current paper mechanistically models these processes, introducing a hypothesis for synaptic plasticity as the basis for bidirectional salt preference in klinotaxis.  

      The research also highlights how internal states, such as hunger, can dynamically reshape sensory-motor programs to drive context-appropriate behaviors.  

      The methodology of parameter search on a neural model of a connectome used here yielded the valuable insight that connectome information alone does not provide enough constraints to reproduce the neural circuits for behaviour. It demonstrates that additional neurophysiological constraints are required.  

      We would like to acknowledge the appropriate recognition of our work.

      Additional Context 

      Oscillators with stimulus-driven perturbations appear to be a convergent solution for taxis and navigation across species. Similar mechanisms have been studied in zebrafish phototaxis [3], Drosophila larvae chemotaxis [2], and have even been proposed to underlie search runs in ants. The modulation of taxis by context and memory is a ubiquitous requirement, with parallels across species. For example, Drosophila larvae modulate taxis based on current food availability and predicted rewards associated with odors, though the underlying mechanism remains elusive. The synaptic reversal mechanism highlighted in this study offers a compelling framework for understanding how taxis circuits integrate context-related memory retrieval more broadly.  

      We would like to express our gratitude for the insightful commentary. In the revised manuscript, we incorporated the argument that the similar oscillator mechanism with stimulus-driven perturbations has been observed for zebrafish phototaxis [3] and Drosophila larvae chemotaxis [2] into Discussion.

      As a side note, an interesting difference emerges when comparing C. elegans and Drosophila larvae chemotaxis. In Drosophila larvae, oscillatory mechanisms are hypothesized to underlie all chemotactic reorientations, ranging from large turns to smaller directional biases (weathervaning). By contrast, in C. elegans, weathervaning and pirouettes are treated as distinct strategies, often attributed to separate neural mechanisms. This raises the possibility that their motor execution could share a common oscillator-based framework. Re-examining their overlap might reveal deeper insights into the neural principles underlying these maneuvers. 

      We would like to acknowledge your thoughtfully articulated comment. As the reviewer pointed out, the anatomical database (http://ims.dse.ibaraki.ac.jp/ccep-tool/) shows that that the neural circuits underlying weathervaning and pirouettes in C. elegans are predominantly distinct but exhibit partial overlap. When we restrict our search to the neurons that are connected to each other with the highest number of synaptic connections, we identify the projections from the neural circuit of weathervaning to the circuit of pirouettes; however we observed no reversal projections. This finding suggests that the neural circuit of weathervaning, namely, our minimal neural network, is not likely to be affected by that of pirouettes, which consists of AIB interneurons and interneurons and motor neurons the downstream. 

      (1) Luo, L., Wen, Q., Ren, J., Hendricks, M., Gershow, M., Qin, Y., Greenwood, J., Soucy, E.R., Klein, M., Smith-Parker, H.K., & Calvo, A.C. (2014). Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron, 82(5), 1115-1128. 

      (2) Antoine Wystrach, Konstantinos Lagogiannis, Barbara Webb (2016) Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae eLife 5:e15504. 

      (3) Wolf, S., Dubreuil, A.M., Bertoni, T. et al. Sensorimotor computation underlying phototaxis in zebrafish. Nat Commun 8, 651 (2017). 

      (4) Izquierdo, E.J. and Beer, R.D., 2013. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS computational biology, 9(2), p.e1002890. 

      Reviewer #2 (Public review): 

      Summary: 

      This study explores how a simple sensorimotor circuit in the nematode C. elegans enables it to navigate salt gradients based on past experiences. Using computational simulations and previously described neural connections, the study demonstrates how a single neuron, ASER, can change its signaling behavior in response to different salt conditions, with which the worm is able to "remember" prior environments and adjust its navigation toward "preferred" salinity accordingly.  

      We would like to express our gratitude for the time and consideration the reviewer has dedicated to reviewing our manuscript.

      Strengths: 

      The key novelty and strength of this paper is the explicit demonstration of computational neurobehavioral modeling and evolutionary algorithms to elucidate the synaptic plasticity in a minimal neural circuit that is sufficient to replicate memory-based chemotaxis. In particular, with changes in ASER's glutamate release and sensitivity of downstream neurons, the ASER neuron adjusts its output to be either excitatory or inhibitory depending on ambient salt concentration, enabling the worm to navigate toward or away from salt gradients based on prior exposure to salt concentration.

      We would like to thank the reviewer for appreciating our research. 

      Weaknesses: 

      While the model successfully replicates some behaviors observed in previous experiments, many key assumptions lack direct biological validation. As to the model output readouts, the model considers only endpoint behaviors (chemotaxis index) rather than the full dynamics of navigation, which limits its predictive power. Moreover, some results presented in the paper lack interpretation, and many descriptions in the main text are overly technical and require clearer definitions.  

      We would like to thank the reviewer for the constructive feedback. As the reviewer noted, the fundamental assumptions posited in the study have yet to be substantiated by biological validation, and consequently, these assumptions must be directly assessed by biological experimentation. The model performance for salt klinotaxis has been evaluated by multiple factors, including not only a chemotaxis index but also the curving rate vs. bearing (Fig. 4a, the bearing is defined in Fig. A3) and the curving rate vs. normal gradient (Fig. 4c). These two parameters work to characterize the trajectory during salt klinotaxis. In the revised version, we meticulously revised the manuscript according to the reviewer’s suggestions. We would like to express our sincere gratitude for your insightful review of our work.

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors): 

      An interesting and engaging methodology combining theoretical and computational approaches. Overall I found the manuscript up to discussion a difficult read, and I would suggest revising it. I would also recommend introducing the general operating principle of the oscillator with sensory perturbations before jumping into the implementation details of signal propagation specific to C.

      elegans.  

      In order to elucidate the relation between the general operating principle of the oscillator with sensory perturbations and the results shown by the two graphs from the bottom in Fig. 3d, the following statement was added on page 12.

      “It is remarkable that this regulatory mechanism derived via the optimization of the CI has been observed in the context of chemotaxis in Drosophila larvae chemotaxis {Wystrach:2016bt} and phototaxis in zebrafish {Wolf:2017ei}. The principle of operation, in which the dependence of motor responses to sensory inputs on the phase of motor oscillation, therefore, may serve as a convergent solution for taxis and navigation across species.”

      The abstract could benefit from a clarification of terms to benefit a broader audience:  The term "salt klinotaxis" is used without prior introduction or definition. It would be beneficial to briefly explain this term, as it may not be familiar to all readers. 

      Due to the limitation of the word number in the abstract, the explanation of salt klinotaxis could not be included.

      Although ASER is introduced as a right-side head sensory neuron, AIY neurons are not similarly introduced. It may also benefit to introduce here that ASER integrates memory with current salt gradients, tuning its output to produce context-appropriate behaviour.  

      Due to the limitation of the word number in the abstract, we could add no more the explanations. 

      "it can be anticipated that the ASER-AIY synaptic transmission will undergo a reversal due to alterations in the basal glutamate Release": Where is this expectation drawn from? Is it derived from biophysical or is it a functional expectation to explain the network's output constraints?  

      As delineated before this sentence, it is derived from a comprehensive consideration of the sensitivity of excitatory/inhibitory glutamate receptors expressed on the postsynaptic AIY interneurons, in conjunction with varying the basal level of glutamate transmission from ASER.

      The statement that the model "revealed the modular neural circuit function downstream of ASE" could be more explicit. What specific insights about the downstream circuit were uncovered?

      Highlighting one or two key findings would strengthen the impact.  

      Due to the limitation of the word number in the abstract, no more details could be added here, while the sentence was revised as “revealed that the circuit downstream of ASE functions as a module that is responsible for salt klinotaxis.” This is because the salt-concentration dependent behaviors in klinitaxis can be reproduced through the modulation of the ASRE-AIY synaptic connections alone, despite the absence of alterations in the neural circuit downstream of AIY.

      I believe the authors should cite Luo et al. 2014, which also studies how chemotactic behaviours arise from neural circuit dynamics, including the dynamic encoding of salt concentration by ASER, and the crucial downstream interaction with AIY for chemotactic actions. 

      We would like to express our gratitude for useful suggestion. We cited Luo et al. 2014 in the discussion on the limitation of our work. 

      The introduction could also be improved for clarity. Specifically in the last paragraph authors should clarify how the observed synchrony of ASER excitation to the AIZ (Matsumoto et al., 2024), validates the resulting network.  

      We would like to express our gratitude for useful suggestion. We added the following explanation in the last paragraph of the introduction.

      “Specifically, the synchrony of the excitation of the ASER and AIZ {Matsumoto:2024ig} taken together with the experimentally identified inhibitory synaptic transmission between the AIY and AIZ revealed that the ASER-AIY synaptic connections should be inhibitory, which was consistent with the network obtained from the most evolved model.”

      In addition, we added the following explanation after “It was then hypothesized that the ASER-AIY inhibitory synaptic connections are altered to become excitatory due to a decrease in the baseline release of glutamate from the ASER when individuals are cultured under C<sub>cult</sub> < C<sub>test</sub>.”

      This is due to the substantial difference in the sensitivity of excitatory/inhibitory glutamate receptors expressed on the postsynaptic AIY interneurons.

      I would also strongly recommend replacing the term "evolved model", with "Optimized Model" or "Best-Performing Model" to clarify this is a computational optimization process with limitations - optimization through GAs does not guarantee finding global optima.  

      We revised "evolved model" as "optimized model" in the main and SI text.

      The text overall would benefit from editing for clarity and expression.  

      According to the revisions mentioned above, we revised “best optimized model” as “most optimized model” in the main and SI text.

      The font size on the plot axis in Figures 3 c&d should be increased for readability on the printed page. Label the left/right panel to indicate unconstrained / constrained evolution.  

      As you noted, the font size of the subscript on the vertical axis in Figs 3c and 3d was too small. We have revised the font size of the subscript in Figs. 3c and 3d and also in Fig. 5e. At your suggestion, “unconstrained” and “constrained” have been added as labels to the left and right panels in Fig. 3.

      There is no input/transmission to AIYR to step input in either model shown in Figure 3? 

      As shown in Fig. S1e and S1f, there are the transmissions to the AIYR from the ASEL and ASER. 

      Supplementary Figure 1 attempts to explain the interactions. There are inconsistent symbols used for inhibition and excitation between network schema (colours) and the z response plots (arrows vs circles), combined with different meanings for red/blue making it very confusing. 

      We could not address the inconsistency in the color of arrows and lines with an ending between Figs. S1c and S1d and Figs. S1a and S1b. On the other hand, Figs. S1e and S1f were revised so that the consistent symbols were used for inhibition, excitation, and electrical gap connections in Figs. S1c-S1f. The same revisions were made for Fig. S7c-S7f.

      Model parameters are given to 15 decimal precision, which seems excessive. Is model performance sensitive to that order? We would expect robustness around those values. The authors should identify relevant orders and truncate parameters accordingly. 

      We examined the influence of the parameter truncation on the trajectory and decided that the parameters with four decimal places were appropriate. According to this, we revised Table A4.

      Figure 3 caption typo "step changes I the salt concentration".  

      The typo was revised in Fig. 3 caption. 

      Reviewer #2 (Recommendations for the authors): 

      (1) Overall, the language of the paper is not properly organized, making the paper's logic and purpose hard to follow. In the Results Section, many observations or findings lack explicit interpretation. To address this issue, the authors should consider (1) adopting the contextcontent-conclusion scheme, (2) optimizing the logic flow by clearly identifying the context and goals prior to discussing their results and findings, (3) more explicitly interpreting their results, especially in a biological context.  

      We would like to express our gratitude for helpful suggestion. According to your suggestion listed below, we revised the main and SI texts.

      (2) In Figure 2, trajectories from the model with AIY-AIZ constraints show a faster convergence than those from the constraint-free model. However, in the corresponding texts in the Results section, the authors claimed no significant difference. It seems that the authors made this argument only based on CI (Chemotaxis Index). Therefore, in order to address such inconsistency, the authors need more explanation on why only relying on CI, which is an endpoint metric, instead of the whole navigation.  

      I would like to thank you for the helpful comment. In the present study, not only the CI but also the curving rate shown in Fig. 4 were applied to characterize the behavior in klinotaxis.

      According to your comments, we revised the related description in the main text as follows:

      “The difference between these CI values is slight, while the model optimized with the constraints exhibits a marginally accelerated attainment of the salt concentration peak, as shown by the trajectories. The slightly higher chemotaxis performance observed in the constrained model is not essentially attributed to the introduction of the AIY-AIZ synaptic constraints but rather depends on the specific individuals selected from the optimized individuals obtained from the evolutionary algorithm. In fact, even when the AIY-AIZ constraints are taken into consideration, the model retains a significant degree of freedom to reproduce salt klinotaxis due to the presence of a substantial parameter space. Consequently, the impact of the AIY-AIZ constraints on the optimization of the CI is expected to be negligible.”

      (3) In Figures 3a and b, some inter-neuron connections are relatively weak (e.g., AIYR to AIZR in Figure 3a) - thus it is unclear whether the polarity of such synapses would significantly influence the behavioral outcome or not. The authors could consider plotting the change of the connection strengths between neurons over the course of model optimization to get a sense of confidence in each inter-neuron connection. 

      In the evolutional algorithm, the parameters of individuals are subject to discontinuous variation due to the influence of selection, crossover, and mutations. Consequently, it is not straightforward to extract information regarding parameter optimization from parameter changes due to the non-systematic nature of parameter variation..

      (4) In Figure 3, the order of individual figure panels is incorrect: in the main text, Figure 3 a and b were mentioned after c and d. Also, the caption of Figure 3c "negative step changes I the" should be "in".  

      The main text underwent revision, with the description of Figures 3a and 3b being presented prior to that of Figures 3c and 3d. The typo was revised.

      (5) In Figure 4, the order of individual figure panels is messed up: in the main text, Figure 4 a was mentioned after b.  

      The main text underwent revision, with the description of Figure 4a being presented prior to that of Figure 4b.

      (6) Also in Figure 4, the authors need to provide a definition/explanation of "Bearing" and "Translational Gradient". In Figure 4d, the definition of positive and negative components is not clear.  

      Normal and Translational Salt Concentration Gradient in METHOD was referenced for the definition and explanation of the bearing and the translational gradient. We added the following explanation on the positive and negative components.

      “The positive and negative components of the curving rate are respectively sampled from the trajectory during leftward turns (as illustrated in Fig. 4b) and rightward turns, respectively.”

      (7) Figure 5: the authors need to explain why c has an error bar and how they were calculated, as this result is from a computational model. Figure 5d is experimental results - the authors need to add error bars to the data points and provide a sample size. 

      As explained in Analysis of the Salt Preference Behavior in Klinotaxis in METHOD, the ensemble average of these quantities was determined by performing 100,000 sets of the simulation with randomized initial orientation for a simulation time of T_sim=200 sec. The error bars for the experimental data were added in Figs. 5c, 6a, and S9a.

      (8) On Page 14, the authors said, "To this end, this end, we used the best evolved network with the constraints, in which we varied the synaptic connections between ASER and AIY from inhibitory to excitatory." How did the model change the ASER-AIY signaling specifically? The authors should provide more explanation or at least refer to the Methods Section.  

      The caption of Fig. S4 was referred as the explanation on the detailed method. 

      (9) Page 15: "a subset a subset exhibited a slight curve...". This observation from the model simulation is contradictory to experiments. However, their explanation of that is hard to understand.  

      I would like to thank you for the helpful comment. To improve this, we added the following explanation:

      “In the case of step increases in 𝑧OFF as illustrated in the second right panel from the bottom in Fig.3d, the turning angle φ is increased from its ideal oscillatory component to a value close to zero, causing the model worm to deviate from the ideal sinusoidal trajectory and gradually turn toward lower salt concentrations. On the other hand, in the case of step increases in 𝑧ON as illustrated in the second left panel from the bottom in Fig.3d, the turning angle φ is again increased from its ideal oscillatory component to a value close to zero, causing the model worm to deviate from the ideal sinusoidal trajectory and gradually turn toward higher salt concentrations. The behaviors that are consistent with these analyses are observed in the trajectory illustrated in Fig. S8b.”

      (10) Last result session: inhibited SMB in starved worms is due to a mechanism unrelated to their neural network model upstream to SMB. Therefore, their results recapitulating the worms' dispersal behaviors cannot strengthen the validity of their model.  

      We agree with your opinion. We think that the findings from the study of starved worms do not provide evidence to validate the neural network model upstream of SMB.   

      (11) Discussion: "in contrast, the remaining neurons...". This argument lacks evidence or references.  

      This argument is based on the results obtained from the present study. This sentence was revised as follows:

      “This regulatory process enables the reproduction of salt concentration memory-dependent reversal of preference behavior in klinotaxis, despite the remaining neurons further downstream of the ASER not undergoing alterations and simply functioning as a modular circuit to transmit the received signals to the motor systems. Consequently, the sensorimotor circuit allows a simple and efficient bidirectional regulation of salt preference behavior in klinotaxis.”

      (12) To increase the predictive power of their model, can the authors perform simulations on mutant worms, like those with altered glutamate basal level expression in ASER?  

      We would like to express our gratitude for useful suggestion. The simulations, in which the weight of the ASER-AIY synaptic connection is increased from negative (inhibitory connection) to positive (excitatory connection), as illustrated in Figure S4, provide valuable insights into the relationship between varying glutamate basal levels from ASER and behavior in klinotaxis, such as the chemotaxis index.

  6. Jun 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Comments for the authors of Review Commons Manuscript RC-2024-02804:

      The author of the Review Commons manuscript "Antigen flexibility supports the avidity of hemagglutinin-specific antibodies at low antigen densities", present their recent work evaluating hemagglutinin interactions with cellular receptors and antibodies. This manuscript focuses specifically on the avidity of the hemagglutinin using a fluorescence-based assay to measure dissociation kinetics and steady-state binding of antibodies to virions. Their findings confirm that bivalent interactions can offset weak monovalent affinity and that HA ectodomain flexibility is an additional determinant of antibody avidity. These findings are key for our understanding of neutralizing antibodies. Below are some comments that I would like the authors to address as they revise the manuscript.

      Comments:

      1. Can the authors provide justification for the two influenza viruses that they used.

      We selected the lab-adapted IAV strains A/WSN/1933 (H1N1) and A/Hong Kong/1968 (H3N2) for this work because they are well-studied, including in the context of the antibodies used here, S139/1 and C05. While both antibodies bind to more contemporary H3N2 strains, they no not bind to HA from pandemic H1N1. Another feature of these strains is that their HAs have high enough affinity to both antibodies to enable strong signal in our imaging assays. This context for our strain selection has been added in lines 85-88.

      1. The use of filamentous particles is a strength, but authors should detail the role of filamentous vs. spherical in nature and lab settings. This will help researchers that plan to repeat these assays.

      We have revised the text (lines 336-339) to include more context on the biology of filamentous and spherical influenza viruses. In our experiments, HK68 naturally produces filaments in cell culture whereas WSN33 does not. To produce filaments artificially, we replace the M1 sequence from WSN33 with that of M1 from A/Udorn/1972, an H3N2 strain that is closely related to HK68.

      1. Did the authors add the Udorn M1 to the HK68 as well?

      Since HK68 naturally forms filaments, we did not introduce Udorn M1 into this strain. We note that the amino acid sequences of Udorn M1 and HK68 M1 differ only at position 167 (Alanine in Udorn, Threonine in HK68), and that this residue has previously been found to not correlate with virus morphology (10.1016/j.virol.2003.12.009).

      Reviewer #1 (Significance (Required)):

      This manuscript focuses specifically on the avidity of the hemagglutinin using a fluorescence-based assay to measure dissociation kinetics and steady-state binding of antibodies to virions. Thie findings confirm that bivalent interactions can offset weak monovalent affinity and that HA ectodomain flexibility is an additional determinant of antibody avidity. These findings are key for our understanding of neutralizing antibodies.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary

      In this study, Benegal et al. investigate the binding kinetics of HA-head-specific antibodies (S139/1 and C05) to intact influenza virus particles using a fluorescence microscopy-based technique to measure the dissociation rate (koff) of the antibodies. By applying their proposed equilibrium model for bivalent antibody binding to HA, the authors calculated the crosslinking rate (kx), which represents the rate at which a single-bound antibody crosslinks to an additional HA molecule. Their experiments revealed that antigen crosslinking significantly slows koff, reducing it by up to two orders of magnitude. The authors further utilized streptavidin-coated beads conjugated with biotinylated HA or biotinylated BSA at varying concentrations to control HA surface density. Their results demonstrated that the two tested HA-head-specific antibodies retained the ability to crosslink HAs even at ~10-fold lower HA surface densities. In a complementary experiment, they employed an HA-anchor-specific antibody to restrict HA flexibility, which led to reduced binding of S139/1 and C05 IgGs but not their Fab fragments. This finding suggests that HA flexibility, rather than density, is the primary determinant of antibody crosslinking and avidity. Overall, the authors present an innovative approach to elucidating the dissociation and crosslinking kinetics of antibodies targeting intact virions or nanoparticles. The study is well-designed, with alternative interpretations of the results carefully considered and addressed throughout. I have only a few minor comments and suggestions for clarification.

      Minor comments:

      1. In Figure 1, does the grey color of each IgG in panel C indicate the Fc domain? If so, please add the description of the colors to the figure legend. In fact, it may be better to explain all the colors used here (for HA1, HA2, Fab heavy chain, light chain, etc.).

      We have included this information in panel C and the caption for Figure 1.

      1. Under the section," Bivalent binding of S139/1 and C05 persists after ~10-fold reductions in HA surface densities", the beginning of the second paragraph writes, "For both S139/1 and C05 Fab, binding increases linearly with HA density, as expected for a monovalent interaction dictated by absolute HA availability rather than density (Fig. 3D). Interestingly, the same relationship is observed for S139/1 IgG."

      Visually, I think the same relationship also seems to hold for C05 IgG. Would it be better to perform some linear regression and report the R2 value for the fitting so that this assessment can be quantitative?

      We agree with the reviewer's point. In Figure 3 of the revised manuscript, we include the results from a linear regression analysis to make this assessment more quantitative.

      1. At the end of the same page, in the same paragraph, the authors mentioned, "In contrast to the IgG, Fab binding measured at twice the molar concentration of the IgG is nearly undetectable under these conditions, confirming the IgG binding is not occurring through monovalent interactions (Fig. S2E)." What are the conditions you are referring to? In Fig. S2E, there is only the Ab intensity for the Ab binding at 100% HA (and not the other percentages). For the Ab intensity of S139/1 Fab, what is the concentration of the Fab used in Figure 3D? Why could the intensity in this experiment for S139/1 Fab reach ~100,000, whereas that of the 8 nM in Fig. S2E can only reach ~20,000?

      To clarify this point, we have updated Figure 3 to include the antibody concentration used for each experiment. The experiments in Fig 3 are conducted approximately around the respective KD of each IgG or Fab to ensure both consistency and strong signal-to-noise. For S139/1, we use 4nM of IgG, and 25nM of Fab. In Fig S2E, we use a concentration of Fab fragments double to that of the IgG, to reach an equivalent concentration of binding sites and confirm that the IgG binding we see is indeed due to bivalent binding. In this case, we use 4nM of IgG and 8nM of Fab.

      1. Under the section, "Tilting of HA about its membrane anchor contributes to C05 and S139/1 avidity", in the second paragraph, the authors wrote, "If this is correct, we reasoned that avidity could be reduced by constraining tilting of the HA ectodomain. To test this hypothesis, we used FISW84, an antibody that binds to the HA anchor epitope and biases the ectodomain into a tilted conformation (Fig. 4B)."

      Can you use some computational models (maybe the same one you used for Figure 4A) to show that when an HA trimer is bounded by FISW84 Fabs, the tilting of HA is constrained? I think this will help substantiate the assertion above.

      This is an important point. The model that we employ in Figure 4A is suited to predicting the angles sampled by HAs when they are bound by an IgG antibody, but it does not take into consideration clashes with the viral membrane. It is these clashes that we predict based on published structures (reference 35 in the revised manuscript) will constrain HA tilting when FISW84 binds to the HA anchor. We have revised the text (Lines 247-249) to clarify these points.

      1. It would be good if you could mention the strain of HA used in the experiments in Figure 4 in the actual Figure as well (as supposed to just in the figure legend).

      We have added this information to Figure 4 in the revised manuscript.

      1. I do not see a method section for the structure-based model you used in Figure 4. In the text, you cited your previous study (ref 28) for the model, but it would be good to write about this briefly (and how you specifically apply the model in this study) in this current manuscript.

      We have updated the methods to include a subsection ("Geometric Model for Preferred Crosslinking Geometry") on how the structure-based model was set up, along with a corresponding visual in Fig S3 of the angles of freedom given.

      1. In Figure S1 panel D, what is the unit of the antibody concentration? Could you please add it to the graph legend?

      We have updated the figure (S1E in the revised manuscript) to include this information.

      Reviewer #2 (Significance (Required)):

      Previously, this group utilized the same fluorescence-based method to investigate the potency of anti-HA IgG1 antibodies in preventing viral entry versus egress, as well as the tendency of antibodies targeting different HA epitopes to crosslink two HA trimers in cis or in trans (He et al., J Virol, 2024). In this study, they extend their work by evaluating, in-depth, how the density and flexibility of hemagglutinin (HA) on the viral surface influence the binding avidity of anti-HA antibodies. Using two human IgG1 antibodies targeting the HA head, the authors demonstrate that these antibodies can crosslink two HA trimers in cis, even when the trimers are further apart than adjacent HAs. Notably, the study reveals that HA flexibility, rather than density, is the key determinant modulating antibody crosslinking. Even at a 10-fold reduced HA density compared to the original, the antibodies retained their ability to crosslink trimers.

      This study provides critical insights into the relationship between HA density, flexibility, and antibody function, adding to the broader understanding of antibody crosslinking-a topic frequently discussed in the field of influenza research. These findings could have significant implications for vaccine design, particularly for strategies involving the display of the HA ectodomain on nanoparticles, potentially guiding the development of more effective influenza vaccines. Furthermore, the broader relevance of these findings may extend to other viruses with similar structural and immunological properties.

      My expertise lies in the structural determination of antibody-antigen complexes in influenza and other pathogens. While I may not have sufficient expertise to evaluate specific technical details of the fluorescence-based methods employed, the authors have convincingly demonstrated the robustness of their experimental design and interpretation, supported by appropriate controls.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      SUMMARY In "Antigen flexibility supports the avidity of hemagglutinin-specific antibodies at low antigen densities", Benegal et al. develop a microscopy-based assay to measure dissociation of HA head-binding antibodies from intact virions. This assay allows the authors to explore the contribution of IgG bivalent avidity to antibody interaction with native virions, which is not accessible using other methods such as BLI. Using this assay, the authors further explore the effect of HA density on IgG avidity with engineered low-HA virions and then with artificial HA-coated microspheres. In addition to measuring antibody dissociation, the authors perform structural analyses to predict the conformational preferences of many HA IgGs from published structures. The authors conclude that low HA densities (down to ~10%) still support high avidity binding for the 2 IgGs tested, and thus there would be little evolutionary pressure for IAV to reduce the HA density as a strategy to evade immune recognition.

      MAJOR COMMENTS

      The data presented are generally convincing for the two antibodies tested, with some caveats listed below. I believe the microscopy technique is valuable and provides a significant contribution to the field, and I believe that the finding that avidity persists at low densities for IAV is compelling and worth communicating to other virologists. Overall, with the incorporation of the suggested major revisions, this manuscript represents a significant advancement in the field.

      A major limitation of the current study is the small number of antibodies tested. Two antibodies are quite few, particularly since this work attempts to generalize these observations with structural predictions of dozens or hundreds of HA antibodies. While I believe that the resilience of IgG binding to lower epitope densities is likely common to many HA antibodies (or antibodies in general), this work alone does not support this. To this end, the authors should acknowledge their limited sample size in the text or discussion and that the generalization to other antibodies is speculative. Alternatively, the authors could demonstrate with additional antibodies (such as F045-092 which is pointed out in Fig S3A and perhaps group 'i' antibodies according to Fig S3A).

      This is an important point, and we more explicitly acknowledge this limitation in lines 277-278.

      It seems to me lateral diffusion of HA in the viral membrane is an important discussion point that was missed in this manuscript. The authors should comment on what is known about the lateral mobility of HA on virions, and how this could impact the ability of an IgG to crosslink. The authors should comment about whether long range diffusion and/or short range "shuffling" of glycoproteins could contribute to crosslinking preferences of antibodies in addition to the tilt, which is the only movement discussed. As appropriate, the authors should then comment on how this may affect their interpretation of experiments using beads. In experiments on beads, there is certainly no lateral mobility of the HA trimers; what are the consequences of this on the analysis?

      We agree that this is an important consideration, and we have revised the manuscript (lines 296-298) to address these points. Briefly, we have previously performed fluorescence recovery after photobleaching of covalently labeled HA and NA on the surface of filamentous influenza particles (10.7554/eLife.43764; see Figure 1B of this reference for a representative example). This data indicates that long range diffusion does not seem to be occurring on the virion surface. Short range diffusion, or shuffling, has not been observed, but cannot be ruled out, and may increase conformations favorable to bivalent binding.

      Should the authors qualify the limitations in the scope of their experimental results and the system of choice (beads vs. virions) as described in my previous comments, I suggest three experiments that I believe are essential to support the authors' claims. Alternative to qualifying the limitations, two optional experiments are also listed that could support the authors' claims as they are - those require a more extensive experimental undertaking and are thus labeled [OPTIONAL].

      1) The photobleaching experiment shown in Figure S1A. I am concerned that measuring photobleaching in steady state conditions does not properly control for the experimental conditions. In steady state, bleached antibody could unbind and be replaced by fluorescent antibody that has diffused into the field of view. This should be more thoroughly controlled by irreversibly capturing antibody (such as with biotin) and imaging after excess antibody is washed away, or by some other method such as capturing and imaging virus that has been directly labeled with AF555. This should be possible using reagents and techniques already demonstrated by the authors.

      We have updated the supplemental information with a more rigorous control for photobleaching; the revised figures are shown in Fig S1A. In this experiment, fluorescent S139/1 IgG was bound to HK68 virions. The antibody was washed away, and the loss of fluorescence signal was imaged separately under two conditions: 1) Dissociation only; an image was collected at 0s and one at 60s. 2) Dissociation and photobleaching; an image was collected at a rate of 1 frame per second for 60 seconds. The difference between the endpoint intensities from both conditions is not statistically significant. This supports our conclusion that, in the absence of antibodies in solution that can exchange with those bound to virions, photobleaching does not make a detectable contribution to the loss of signal we observe in our antibody dissociation experiments.

      2) In imaging, the authors analyzed only filamentous virions because they exhibit the best signal to noise ratio, which is a reasonable technical simplification. However, this relies on the assumption that glycoprotein presentation is relatively constant between virions of different sizes. It would be helpful to perform some analysis of small virions in any movie where there is sufficient signal. This would support the assumption that rates for small virions are comparable to those of filaments in the same experiment. This should be possible by performing additional analysis on existing data, without requiring additional experiments.

      Thank you for calling our attention to a point that needs clarification. The analysis that was restricted to filaments was for the SEP-HA binding experiments (shown in Fig 3A&B). This was done in order to select only those particles that were not diffraction-limited, so that we could control for any systematic differences in size between the two populations by measuring HA signal per unit particle length. For the dissociation experiments (Fig 2), data was taken from all virions in the fields of view. For this analysis, the normalized dissociation curves were averaged in two ways to account for the potential discrepancy that the reviewer points out. In the first method, the average was taken with each virion equally weighted, while in the second method, the entire field of view was masked and normalized together. Both curves look very similar, suggesting that any potential differences between smaller virions and filaments are not enough to make a quantifiable difference in dissociation rate. A representative dissociation curve with both analyses shown side-by-side has been added in Figure S1B.

      3) In figure 3, C05 fab binding is used to assay HA content of the SEP HA virions. An additional method of confirming HA content that is more independent from the imaging assay would be beneficial, such as a Western blot to quantify HA relative to NP, NA, or M1 etc.

      We have used western blotting to quantify the amount of HA contained relative to M1 in each population. This new data is discussed in lines 163-168 of the revised manuscript and shown in Figure S2C. As noted in the revised text, western blot analysis suggests that the density of native HA is decreased to ~31% its normal level in SEP-HA virions, lower than the ~75% value determined via fluorescence microscopy. One possible reason for this disparity is the presence of virus-like particles in the SEP-HA sample that completely lack wildtype HA. These would be excluded from our imaging analysis but captured by the western blot.

      4) [OPTIONAL] In figure 4, it is depicted that FISW84 biases HA in a tilted conformation, and the authors reasonably propose the reduced flexibility discourages crosslinking by IgGs. From the modeling summarized in Figure S3A, are there any antibodies predicted to prefer crosslinking HA at the same angle FISW84 tilts the ectodomain? Would FISW84 enhance crosslinking by such an antibody?

      This is an interesting suggestion, and we have revised the manuscript (lines 247-249) to clarify our thinking on this point. Based on the structure of the FISW84 Fab (PDB ID 6HJQ), we conclude that binding of a single Fab fragment does not necessarily actively tilt the HA ectodomain in a specific direction. Rather, it restricts tilting in the direction that would cause a steric clash between the Fab and the membrane. As a result, HA can still sample a range of angles, but this range is no longer symmetrical about the ectodomain axis. By reducing the likelihood that two HA ectodomains would tilt towards each other at a favorable angle, we would expect all antibodies to be disadvantaged to some degree. A possible exception could be if three FISW84 Fab fragments manage to bind to a single HA trimer. In this case, the HA ectodomain would be forced to remain perpendicular to the membrane to accommodate them all. This would favor antibodies that prefer binding to HAs where the ectodomains are parallel to each other. In our analysis in Figure S3A, this includes primarily antibodies that bind to the HA central stalk, such as 31.b.09. However, we note that these antibodies may encounter barriers to bivalent binding that we do not consider here, including proximity to the FISW84 epitope and the high density of HA in the membrane.

      5) [OPTIONAL] In figure S3A, the authors display theoretical tilt and spacing preferences for many HA antibodies based on published structures. Interestingly, their group iii antibody is predicted to prefer greater spacing and tilt, and likewise the authors observe increased binding at lower densities (in figure 3E). It would be beneficial to the work to test group i antibodies (base binding) in the dissociation experiments. The behavior of a base binding antibody, particularly at low densities could reinforce the modeling performed for this work.

      This is an excellent suggestion which we are not currently able to pursue for technical reasons. In particular, it would be difficult to distinguish between increased binding of these antibodies at low antigen densities that is due to bivalent attachment (and thus reduced dissociation) versus increased accessibility of the epitope, which may be occluded at higher HA densities.

      The experiments are well explained and supported by methods that would enable reproducibility.

      The authors state "The statistical tests and the number of replicates used in specific cases are described in the figure legends" yet in many cases this information is absent. For the k values in fig 2D, some indication of error or confidence interval would be helpful.

      We have ensured that this information is included in each of the captions. Regarding the k values, formal error propagation is challenging due to the way the k values were derived. Specifically, these values were calculated by fitting the average of the three initial dissociation traces, rather than fitting each replicate individually and then averaging the rate constants. As a result, the usual methods for estimating confidence intervals or standard error of the mean are not directly applicable.

      MINOR COMMENTS

      o Some of the small details in fig 1A and fig S1 are lost due to small figure size - such as the sialic acid residues and lipid bilayer.

      We have resized the figure components.

      o Although described in the text, it could be helpful to incorporate into figure 2 why the BLI data is shown for S129 fab. Perhaps indicate in 2C that that curve is "too fast to accurately measure" and perhaps near the table in 2D indicate the blue data is from Lee et al. It may be fine to simply remove the BLI results from the figure and refer to them only in the discussion of the experiments. Even with the measured data, the difference between fab and IgG is striking enough to support the paper, and the BLI data may be more confusing in the figure than it adds.

      We have updated the caption for Figure 2D to clarify that binding between the S139/1 Fab and A/WSN/1933 HA is approaching the limit of detection in our assay, and that the additional rates are from Lee et al. We have also updated the table to make the presentation of the kinetic parameters more clear.

      o In figure 3A, better describe the fluorescent components in the fluorescent images in the legend.

      We have updated the caption for Figure 3A to describe the fluorescent components shown in the image. Specifically, the panel labeled 'HA' shows signal from a fluorescent FI6v3 scFv, while the panel labeled 'decoy' shows signal from the SEP-HA construct.

      o From personal experience, the flexibility of HA ectodomain can be significantly affected by how much of the membrane proximal linker region is retained or removed. Could the authors comment on how they chose the cutoff for their HA ectodomain used in the bead experiments and their rationale?

      This is an important point, and while the precise impact of the linker on HA flexibility remains uncertain, we agree that it may increase the freedom of motion of the ectodomain relative to the HA membrane anchor. We mention this caveat in the revised text (lines 188-191) and we have added an AlphaFold2 prediction of how our recombinant HA might look to Figure S2D.

      o In Figure S1B, if I understand correctly: black dashed line "IgG equivalent dissociation rate" is the experimental data, magenta "Crosslinking model fit" is the theoretically total antibody bound as described by the mathematical model. Then the gray lines "Double- /singly- bound antibodies plot the theoretical amount of antibody bound once and bound twice. If this is correct, I believe it would be clearer if the singly- and doubly- bound were plotted in separate colors, and that this is explained more clearly in the legend.

      We have revised the figure to show doubly- and singly-bound curves using different line styles.

      o Related to an earlier comment, if lateral diffusion may play a role, how might this differ between different types of antibodies?

      As mentioned in our previous response, we do not anticipate that lateral diffusion makes a significant contribution to antibody binding to the surface of virions, although it may be important on the cell surface.

      o Could the authors comment in the discussion on how their results on virions may translate to the surface of the infected cell, which is also decorated in viral glycoproteins? Early time points of infection could be an in vivo example of low-density HA. What extent may antibody binding and crosslinking affect viral proteins on the cell surface or the immune response?

      This is a very interesting point. Antibody binding to the infected cell surface has been shown to alter viral release and morphology, presumably at lower HA densities than those observed the viral surface. We have added a brief discussion of this point (lines 291-295) to the revised manuscript.

      o The github link in the methods is incorrect or not yet available.

      Thank you for noting this. We have updated the link.

      o Reference 1 has an incorrect or expired link.

      These references have been updated.

      Reviewer #3 (Significance (Required)):

      • This work represents a conceptual advance in our understanding of antibody action on viral pathogens. The authors adapt existing microscopy methodologies to measure antibody avidity in a new way that is better representative of in vivo conditions.

      • To my knowledge, this is the first instance of direct measurement of antibody off-rates from intact virus particles, instead of immobilized protein as in BLI, SPR, or interferometry.

      • This work should be of interest to virologist and biophysicists interested in the cooperative binding of antibodies and the relation of virus structural organization to antibody recognition. Immunologist may also be influenced by this work. This work may be followed up by other researchers similarly measuring the association and dissociation rates of antibodies with single virions, or otherwise comparing fab to IgG binding to gain insight into when crosslinking is or is not occurring.

      • Reviewer expertise: Single-virion imaging, protein complexes, biochemistry, influenza A.

      • I do not have sufficient expertise to evaluate the mathematical models and differential equations for modeling the k-on and k-off rates.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary

      In this study, Benegal et al. investigate the binding kinetics of HA-head-specific antibodies (S139/1 and C05) to intact influenza virus particles using a fluorescence microscopy-based technique to measure the dissociation rate (koff) of the antibodies. By applying their proposed equilibrium model for bivalent antibody binding to HA, the authors calculated the crosslinking rate (kx), which represents the rate at which a single-bound antibody crosslinks to an additional HA molecule. Their experiments revealed that antigen crosslinking significantly slows koff, reducing it by up to two orders of magnitude.

      The authors further utilized streptavidin-coated beads conjugated with biotinylated HA or biotinylated BSA at varying concentrations to control HA surface density. Their results demonstrated that the two tested HA-head-specific antibodies retained the ability to crosslink HAs even at ~10-fold lower HA surface densities. In a complementary experiment, they employed an HA-anchor-specific antibody to restrict HA flexibility, which led to reduced binding of S139/1 and C05 IgGs but not their Fab fragments. This finding suggests that HA flexibility, rather than density, is the primary determinant of antibody crosslinking and avidity.

      Overall, the authors present an innovative approach to elucidating the dissociation and crosslinking kinetics of antibodies targeting intact virions or nanoparticles. The study is well-designed, with alternative interpretations of the results carefully considered and addressed throughout. I have only a few minor comments and suggestions for clarification.

      Minor comments:

      1. In Figure 1, does the grey color of each IgG in panel C indicate the Fc domain? If so, please add the description of the colors to the figure legend. In fact, it may be better to explain all the colors used here (for HA1, HA2, Fab heavy chain, light chain, etc.).
      2. Under the section," Bivalent binding of S139/1 and C05 persists after ~10-fold reductions in HA surface densities", the beginning of the second paragraph writes, "For both S139/1 and C05 Fab, binding increases linearly with HA density, as expected for a monovalent interaction dictated by absolute HA availability rather than density (Fig. 3D). Interestingly, the same relationship is observed for S139/1 IgG."

      Visually, I think the same relationship also seems to hold for C05 IgG. Would it be better to perform some linear regression and report the R2 value for the fitting so that this assessment can be quantitative? 3. At the end of the same page, in the same paragraph, the authors mentioned, "In contrast to the IgG, Fab binding measured at twice the molar concentration of the IgG is nearly undetectable under these conditions, confirming the IgG binding is not occurring through monovalent interactions (Fig. S2E)." What are the conditions you are referring to? In Fig. S2E, there is only the Ab intensity for the Ab binding at 100% HA (and not the other percentages). For the Ab intensity of S139/1 Fab, what is the concentration of the Fab used in Figure 3D? Why could the intensity in this experiment for S139/1 Fab reach ~100,000, whereas that of the 8 nM in Fig. S2E can only reach ~20,000? 4. Under the section, "Tilting of HA about its membrane anchor contributes to C05 and S139/1 avidity", in the second paragraph, the authors wrote, "If this is correct, we reasoned that avidity could be reduced by constraining tilting of the HA ectodomain. To test this hypothesis, we used FISW84, an antibody that binds to the HA anchor epitope and biases the ectodomain into a tilted conformation (Fig. 4B)."

      Can you use some computational models (maybe the same one you used for Figure 4A) to show that when an HA trimer is bounded by FISW84 Fabs, the tilting of HA is constrained? I think this will help substantiate the assertion above. 5. It would be good if you could mention the strain of HA used in the experiments in Figure 4 in the actual Figure as well (as supposed to just in the figure legend). 6. I do not see a method section for the structure-based model you used in Figure 4. In the text, you cited your previous study (ref 28) for the model, but it would be good to write about this briefly (and how you specifically apply the model in this study) in this current manuscript. 7. In Figure S1 panel D, what is the unit of the antibody concentration? Could you please add it to the graph legend?

      Significance

      Previously, this group utilized the same fluorescence-based method to investigate the potency of anti-HA IgG1 antibodies in preventing viral entry versus egress, as well as the tendency of antibodies targeting different HA epitopes to crosslink two HA trimers in cis or in trans (He et al., J Virol, 2024). In this study, they extend their work by evaluating, in-depth, how the density and flexibility of hemagglutinin (HA) on the viral surface influence the binding avidity of anti-HA antibodies. Using two human IgG1 antibodies targeting the HA head, the authors demonstrate that these antibodies can crosslink two HA trimers in cis, even when the trimers are further apart than adjacent HAs. Notably, the study reveals that HA flexibility, rather than density, is the key determinant modulating antibody crosslinking. Even at a 10-fold reduced HA density compared to the original, the antibodies retained their ability to crosslink trimers.

      This study provides critical insights into the relationship between HA density, flexibility, and antibody function, adding to the broader understanding of antibody crosslinking-a topic frequently discussed in the field of influenza research. These findings could have significant implications for vaccine design, particularly for strategies involving the display of the HA ectodomain on nanoparticles, potentially guiding the development of more effective influenza vaccines. Furthermore, the broader relevance of these findings may extend to other viruses with similar structural and immunological properties.

      My expertise lies in the structural determination of antibody-antigen complexes in influenza and other pathogens. While I may not have sufficient expertise to evaluate specific technical details of the fluorescence-based methods employed, the authors have convincingly demonstrated the robustness of their experimental design and interpretation, supported by appropriate controls.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      Walton et al. set out to isolate new phages targeting the opportunistic pathogen Pseudomonas aeruginosa. Using a double ∆fliF ∆pilA mutant strain, they were able to isolate 4 new phages, CLEW-1. -3, -6, and -10, which were unable to infect the parental PAO1F Wt strain. Further experiments showed that the 4 phages were only able to infect a ∆fliF strain, indicating a role of the MS-protein in the flagellum complex. Through further mutational analysis of the flagellum apparatus, the authors were able to identify the involvement of c-di-GMP in phage infection. Depletion of c-di-GMP levels by an inducible phosphodiesterase renders the bacteria resistant to phage infection, while elevation of c-di-GMP through the Wsp system made the cells sensitive to infection by CLEW-1. Using TnSeq, the authors were able to not only reaffirm the involvement of c-di-GMP in phage infection but also able to identify the exopolysaccharide PSL as a downstream target for CLEW-1. C-di-GMP is a known regulator of PSL biosynthesis. The authors show that CLEW-1 binds directly to PSL on the cell surface and that deletion of the pslC gene resulted in complete phage resistance. The authors also provide evidence that the phage-PSL interaction happens during the biofilm mode of growth and that the addition of the CLEW-1 phage specifically resulted in a significant loss of biofilm biomass. Lastly, the authors set out to test if CLEW-1 could be used to resolve a biofilm infection using a mouse keratitis model. Unfortunately, while the authors noted a reduction in bacterial load assessed by GFP fluorescence, the keratitis did not resolve under the tested parameters. 

      Strengths: 

      The experiments carried out in this manuscript are thoughtful and rational and sufficient explanation is provided for why the authors chose each specific set of experiments. The data presented strongly supports their conclusions and they give present compelling explanations for any deviation. The authors have not only developed a new technique for screening for phages targeting P. aeruginosa, but also highlight the importance of looking for phages during the biofilm mode of growth, as opposed to the more standard techniques involving planktonic cultures. 

      Weaknesses: 

      While the paper is strong, I do feel that further discussions could have gone into the decision to focus on CLEW-1 for the majority of the paper. The paper also doesn't provide any detailed information on the genetic composition of the phages. It is unclear if the phages isolated are temperate or virulent. Many temperate phages enter the lytic cycle in response to QS signalling, and while the data as it is doesn't suggest that is the case, perhaps the paper would be strengthened by further elimination of this possibility. At the very least it might be worth mentioning in the discussion section. 

      Thank you for your review. The genomes of all Clew phages and Ocp-2 have been uploaded [Genbank accession# PQ790658.1, PQ790659.1, PQ790660.1, PQ790661.1, and PQ790662.1]. It turns out that the Clew phage are highly related, which is highlighted by the genomic comparison in the supplementary figure S1. It therefore made sense to focus our in-depth analysis on one of the phage. We have included a supplementary figure (S1A), demonstrating that the other Clew phage also require an intact psl locus for infection, to make that logic clearer. The phage are virulent (there is apparently a bit of a debate about this with regard to Bruynogheviruses, but we have not been able to isolate lysogens). This is now mentioned in the discussion.  

      Reviewer #2 (Public review): 

      This manuscript by Walton et al. suggests that they have identified a new bacteriophage that uses the exopolysaccharide Psl from Pseudomonas aeruginosa (PA) as a receptor. As Psl is an important component in biofilms, the authors suggest that this phage (and others similarly isolated) may be able to specifically target biofilm-growing bacteria. While an interesting suggestion, the manner in which this paper is written makes it difficult to draw this conclusion. Also, some of the results do not directly follow from the data as presented and some relevant controls seem to be missing. 

      Thank you for your review. We would argue that the combination of demonstrating Psl-dependent binding of Clew-1 to P. aeruginosa, as well as demonstration of direct binding of Clew-1 to affinity-purified Psl, indicates that the phage binds directly to Psl and uses it as a receptor. In looking at the recommendations, it appears that the remark about controls refers to not using the ∆pslC mutant alone (as opposed to the ∆fliF2 ∆pslC double mutant) as a control for some of the binding experiments. However, since the ∆fliF2 mutant is more permissive for phage infection, analyzing the effect of deleting pslC in the context of the ∆fliF2 mutant background is the more stringent test. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      First off, I would like to congratulate the authors on this study and manuscript. It is very well executed and the writing and flow of the paper are excellent. The findings are intriguing and I believe the paper will be very well received by both the phage, Pseudomonas, and biofilm communities. 

      Thank you for your kind review of our work!

      I have very little to critique about the paper but I have listed a few suggestions that I believe could strengthen the paper if corrected: 

      Comments and suggestions: 

      (1) The paper initially describes 4 isolated phages but no rationale is given for why they chose to continue with CLEW-1, as opposed to CLEW-3, -6, and -10. The paper would benefit from going into more detail with phage genomics and perhaps characterize the phage receptor binding to PSL. 

      Clew-1, -3, -6, and -10 are actually quite similar to one another. The genomes are now uploaded to Genbank [accession# PQ790658.1, PQ790659.1, PQ790660.1, and PQ790661.1]. They all require an intact Psl locus for infection, we have updated Fig. S1 to show this for the remaining Clew phage. In the end, it made sense to focus on one of these related phage and characterize it in depth.

      (2) PA14 was used in some experiments but not listed in the strain table. 

      Thank you, this has been added in the resubmission.

      (3) Would have been good to see more strains/isolates used.

      We are currently characterizing the host range of Clew-1. It appears to be pretty limited, but this will likely be included in another paper that will focus on host range, not only of Clew-1, but other biofilm-tropic phage that we have isolated since then.

      (4) Could purified PSL be added to make non-PSL strain (like PA14) susceptible? 

      We have tried adding purified Psl to a psl mutant strain, but this does not result phage sensitivity. Further characterization of the Psl receptor, is something we are currently working on, but will likely be a much bigger story than can be easily accommodated in a revised manuscript.

      (5) No data on resistance development. 

      We have not done this as yet.

      (6) Alternative biofilm models. Both in vitro and in vivo. 

      We agree that exploring the interaction of Clew-1 with biofilms in greater detail is a logical next step. The revised manuscript does have data on the viability of P. aeruginosa biofilm bacteria after Clew-1 infection using either a bead biofilm model or LIVE/DEAD staining of static biofilms. However, expanding on this further (setting up flow-cell biofilms, developing reporters to monitor phage infection, etc.) is beyond the scope of this initial report and characterization of Clew-1.

      (7) There is a mistake in at least one reference. An unknown author is listed in reference 48. DA Garsin is not part of the paper. Might be worth looking into further mistakes in the reference list as I suspect this might be an issue related to the citation software.

      Thank you. Yes, odd how that extra author got snuck in. This has been corrected.

      (8) I don't seem to be able to locate a Genbank file or accession number. If it wasn't performed how was evolutionary relatedness data generated?

      The genomes of all Clew phages and Ocp-2 have been uploaded [Genbank accession# PQ790658.1, PQ790659.1, PQ790660.1, PQ790661.1, and PQ790662.1]

      (9) No genomic information about the isolated phages. Are they temperate or virulent? This would be important information as only strictly lytic phages are currently deemed appropriate for phage therapy. 

      These phage are virulent. We have only been able to isolate resistant bacteria from plaques, but they do not harbor the phage (as detected by PCR). This matches what other researchers have found for Bruynogheviruses.

      Reviewer #2 (Recommendations for the authors): 

      Others have used different PA mutants lacking known phage receptors to pan for new phages. However, it is not totally clear how the screen here was selected for the Psl-specific phage. The authors used flagella and pili mutants and found Clew-1, -3, -6, and -10. These were all Bruynogheviruses. They also isolated a phage that uses the O antigen as a receptor. The family of this latter phage and how it is known to use this as a receptor is not described. 

      Phage Ocp-2 is a Pbunavirus. We added new supplementary figure S3, addressing the O-antigen receptor.

      The authors focused on Clew-1, but the receptor for these other Clew phages is not presented. For Clew-1 the phage could plaque on the fliF deletion mutant but not the wild-type strain. The reason for this never appears to be addressed. The authors leap to consider the involvement of c-di-GMP, but how this relates to fliF appears to be lacking. 

      We have included a supplementary figure demonstrating that all the Clew phage require Psl for infection (Fig. S1A). As noted above, we have uploaded the genomic data that underpins the comparison in our supplementary figure. The phage are all closely related. It therefore made sense to focus on one of the phage for the analysis.  

      It is particularly unclear why this phage doesn't plaque on PAO1 as this strain does make Psl. Related to this, it actually looks like something is happening to PAO1 in Figure S4 (although what units are on the x-axis is not entirely clear).

      We hypothesize that the fraction of susceptible cells in the population dictates whether the phage can make overt plaques. The supplementary figure S4 indicates that a subpopulation of the wild-type culture is susceptible and this is borne out by the fraction of wild type cells that the phage can bind to (~50%). The fliF mutation increases this frequency of susceptible cells to 80-90% (Fig. 3).

      The Tnseq screen to identify receptors is clever and identifies additional phosphodiesterase genes, the deletion of which makes PAO1 susceptible. And the screen to find resistant fliF mutants identified genes involved in Psl. However, the link between the phosphodiesterase mutants and the amount of Psl produced never appears to be established. And the statement that Psl is required for infection (line 130) is never actually tested.

      The link between c-di-GMP and Psl production is well-established in the literature. I think the requirement for Psl in infection is demonstrated multiple ways, including lack of plaque formation on psl mutant strains and lack of phage binding to strains that do not produce Psl, direct binding of the phage to affinity purified Psl.

      Figure 2C describes using a ∆fliF2 strain but how this is different (or if it is different) from ∆fliF described in the text is never explained.

      The difference in the deletions is explained in table S1, in the description for the deletion constructs used in their construction, pEXG2-∆fliF and pEXG2-∆fliF2 (∆fliF2 is smaller than ∆fliF and can be complemented completely with our complementing plasmid, pP37-fliF, which is the reason why we used the ∆fliF2 mutation going forward, rather than the ∆fliF mutation on which the phage was originally isolated).

      Similarly, there is a sentence (line 138) that "Attachment of Clew-1 is Psl-dependent" but this would appear to have no context.

      The relevant figure, Fig. 3, is cited in the next sentence and is the subject of the remaining paragraphs in this section of the manuscript.

      For Figure 3B, why wasn't the single ∆pslC mutant visualized in this analysis? Similar questions relate to the data in Figure 4.

      Analyzing the effect of the pslC deletion in the context of the ∆fliF2 mutant background, which is more permissive for phage infection, is the more stringent test.  

      The efficacy of Clew-1 in the mouse keratitis model is intriguing but it is unclear why the CFU/eye are so variable. The description of how the experiment was actually carried out is not clear. Was only one eye scratched or both? Were controls included with a scratch and no bacteria ({plus minus} phage)?

      One eye was infected. We did not conduct a no-bacteria control (just scratching the cornea is not sufficient to cause disease). The revised manuscript has an updated animal experiment in which we carried the infection forward to 72h with two phage treatments. Following this regiment, there is a significant decrease in CFU, as well as corneal opacity (disease). Variability of the data is a fairly common feature in animal experiments. There are a number of factors, such as does the mouse blink and remove some of the inoculum shortly after deposition of the bacteria or the phage after each treatment that could explain this variability.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Weaknesses:

      The revised manuscript has gained much clarity and consistency. One previous criticism, however, has in my opinion not been properly addressed. I think the problem boils down to not clearly distinguishing between orthologs and paralogs/homologs. As this problem affects a main conclusion - the prevalence of deletions over insertions in the MTBC - it should be addressed, if not through additional analyses, then at least in the discussion.

      Insertions and deletions are now distinguished in the following way: "Accessory regions were further classified as a deletion if present in over 50% of the 192 sub-lineages or an insertion/duplication if present in less than 50% of sub-lineages." The outcome of this classification is suspicious: not a single accessory region was classified as an insertion/duplication. As a check of sanity, I'd expect at least some insertions of IS6110 to show up, which has produced lineage- or sublineage-specific insertions (Roychowdhury et al. 2015, Shitikov et al. 2019). Why, for example, wouldn't IS6110 insertions in the single L8 strain show up here?

      In a fully clonal organism, any insertion/duplication will be an insertion/duplication of an existing sequence, and thus produce a paralog. If I'm correctly understanding your methods section, paralogs are systematically excluded in the pangraph analysis. Genomic blocks are summarized at the sublineage levels as follows (l.184 ): "The DNA sequences from genomic blocks present in at least one sub-lineage but completely absent in others were extracted to look for long-term evolution patterns in the pangenome." I presume this is done using blastn, as in other steps of the analysis.

      So a sublineage-specific copy of IS6110 would be excluded here, because IS6110 is present somewhere in the genome in all sublineages. However, the appropriate category of comparison, at least for the discussion of genome reduction, is orthology rather than homology: is the same, orthologous copy of IS6110, at the same position in the genome, present or absent in other sublineages? The same considerations apply to potential sublineage-specific duplicates of PE, PPE, and Esx genes. These gene families play important roles in host-pathogen interactions, so I'd argue that the neglect of paralogs is not a finicky detail, but could be of broader biological relevance.

      Within the analysis we undertook we did look at paralogous blocks in pangraph, based on copy number per genome. However, this could have been clearer in the text and we will rectify this. We also focussed on duplicated/deleted blocks that were present in two of more sub-lineages. This is noted in figure 4 legend but we will make this clearer in other sections of the manuscript.

      We agree that indeed the way paralogs are handled could still be optimised, and that gene duplicates of some genes could have biological importance. The reviewer is suggesting that a synteny analysis between genomes would be best for finding specific regions that are duplicated/deleted within a genome, and if those sections are duplicated/deleted in the same regions of the genome. Since Pangraph does not give such information readily, a larger amount of analysis would be required to confirm such genome position-specific duplications. While this is indeed important, we deem this to be out of scope for the current publication, but will note this as a limitation in the discussion. However, this does not fundamentally change the main conclusions of our analysis.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this paper, Behruznia and colleagues use long-read sequencing data for 335 strains of the Mycobacterium tuberculosis complex to study genome evolution in this clonal bacterial pathogen. They use both a "classical" pangenome approach that looks at the presence and absence of genes, and a more general pangenome graph approach to investigate structural variants also in non-coding regions. The two main results of the study are that (1) the MTBC has a small pangenome with few accessory genes, and that (2) pangenome evolution is driven by deletions in sublineage-specific regions of difference. Combining the gene-based approach with a pangenome graph is innovative, and the former analysis is largely sound apart from a lack of information about the data set used. The graph part, however, requires more work and currently fails to support the second main result. Problems include the omission of important information and the confusing analysis of structural variants in terms of "regions of difference", which unnecessarily introduces reference bias. Overall, I very much like the direction taken in this article, but think that it needs more work: on the one hand by simply telling the reader what exactly was done, on the other by taking advantage of the information contained in the pangenome graph.

      Strengths:

      The authors put together a large data set of long-read assemblies representing most lineages of the Mycobacterium tuberculosis context, covering a large geographic area. State-of-the-art methods are used to analyze gene presence-absence polymorphisms (Panaroo) and to construct a pangenome graph (PanGraph). Additional analysis steps are performed to address known problems with misannotated or misassembled genes in pangenome analysis.

      Weaknesses:

      The study does not quite live up to the expectations raised in the introduction. Firstly, while the importance of using a curated data set is emphasized, little information is given about the data set apart from the geographic origin of the samples (Figure 1). A BUSCO analysis is conducted to filter for assembly quality, but no results are reported. It is also not clear whether the authors assembled genomes themselves in the cases where, according to Supplementary Table 1, only the reads were published but not the assemblies. In the end, we simply have to trust that single-contig assemblies based on long-reads are reliable.

      We have now added a robust overview of the dataset to supplementary file 1. This is split into 3 sections: public genomes, which were assembled by others; sequenced genomes, which were created and assembled by us; the BUSCO information for all the genomes together. We did not assemble any public data ourselves but retrieved these from elsewhere. We have modified the text to be more specific on this (Line 114 onwards) and the supplementary file is updated to better outline the data.

      One issue with long read assemblies could be that high rates of sequencing errors result in artificial indels when coverage is low, which in turn could affect gene annotation and pangenome inference (e.g. Watson & Warr 2019, https://doi.org/10.1038/s41587-018-0004-z). Some of the older long-read data used by the authors could well be problematic (PacBio RSII), but also their own Nanopore assemblies, six of which have a mean coverage below 50 (Wick et al. 2023 recommend 200x for ONT, https://doi.org/ 10.1371/journal.pcbi.1010905). Could the results be affected by such assembly errors? Are there lineages, for example, for which there is an increased proportion of RSII data? Given the large heterogeneity in data quality on the NCBI, I think more information about the reads and the assemblies should be provided.

      We have now included an analysis where we looked to see if the sequencing platform influenced the resulting accessory genome size and the pseudogene count. The details of this are included in lines 207-219, and the results are outlined in lines 251-258. Essentially, we found no correlation between sequencing platform and genome characteristics, although less stringent cut-offs did suggest that PacBio SMRT-only assembled genomes may have larger accessory genomes. We do not believe this is enough to influence our larger inferences from this data. It should be noted that complete genomes, in general, give a better indication of pangenome size compared to draft genomes, as has been shown previously (e.g. Marin et al., 2024). Even with some small potential bias, this makes our analysis more robust than any previously published.

      In relation to the sequencing depth of our own data, all genomes had coverage above 30x, which Sanderson et al. (2024) has shown to be sufficient for highly accurate sequence recovery. We fixed an issue with the L9 isolate from the previous submission, which resulted in a better BUSCO score and overall quality of that isolate and the overall dataset.

      The part of the paper I struggled most with is the pangenome graph analysis and the interpretation of structural variants in terms of "regions of difference". To start with, the method section states that "multiple whole genomes were aligned into a graph using PanGraph" (l.159/160), without stating which genomes were for what reason. From Figure 5 I understand that you included all genomes, and that Figure 6 summarizes the information at the sublineage level. This should be stated clearly, at present the reader has to figure out what was done. It was also not clear to me why the authors focus on the sublineage level: a minority of accessory genes (107 of 506) are "specific to certain lineages or sublineages" (l. 240), so why conclude that the pangenome is "driven by sublineage-specific regions of difference", as the title states? What does "driven by" mean? Instead of cutting the phylogeny arbitrarily at the sublineage level, polymorphisms could be described more generally by their frequencies.

      We apologise for the ambiguity in the methodology. All the isolates were inputted to Pangraph to create the pangenome using this method. This is now made clearer in lines 175-177. Standard pangenome statistics (size, genome fluidity, etc.) derived from this Pangraph output are now present in the results section as well (lines 301-320).

      We then only looked at regions of difference at the sub-lineage level, meaning we grouped genomes by sub-lineage within the resulting graph and looked for blocks common between isolates of the same sub-lineage but absent from one or more other sub-lineages. We did this from both the Panaroo output and the Pangraph output and then retained only blocks found by both. The results of this are now outlined in lines 351-383.

      We focussed on these sub-lineage-specific regions to focus on long-term evolution patterns and not be influenced by single-genome short-term changes. We do not have enough genomes of closely related isolates to truly look at very recent evolution, although the small accessory genome indicates this is not substantial in terms of gene presence/absence. We also did not want potential mis-annotations in a single genome to heavily influence our findings due to the potential issues pointed out by the reviewer above. We state this more clearly in the introduction (lines 106-108), methods (lines 184-186) and results (345-347), and we indicate the limitations in the Discussion, lines 452-457 and 471-473. We also changed the title to ‘shaped’ instead of ‘driven by’.

      I fully agree that pangenome graphs are the way to go and that the non-coding part of the genome deserves as much attention as the coding part, as stated in the introduction. Here, however, the analysis of the pangenome graph consists of extracting variants from the graph and blasting them against the reference genome H37Rv in order to identify genes and "regions of difference" (RDs) that are variable. It is not clear what the authors do with structural variants that yield no blast hit against H37Rv. Are they ignored? Are they included as new "regions of difference"? How many of them are there? etc. The key advantage of pangenome graphs is that they allow a reference-free, full representation of genetic variation in a sample. Here reference bias is reintroduced in the first analysis step.

      We apologise for the confusion here as indeed the RDs terminology is very MTBC-specific. Current RDs are always relevant to H37Rv, as that is how original discovery of these regions was done and that is how RDScan works. We clarify this in the introduction (lines 67-68). If we found a large sequence polymorphism (e.g. by Pangraph) and searched for known RDs using RDScan, we then assigned a current RD name to this LSP. This uses H37Rv as a reference. If we did not find a known RD, we then classified the LSP as a new RD if it is present in H37Rv, or left the designation as an LSP if not in H37Rv, thus expanding the analysis beyond the H37Rv-centric approaches used by others previously. This is hopefully now made clearer in the methods, lines 187-194.

      Along similar lines, I find the interpretation of structural variants in terms of "regions of difference" confusing, and probably many people outside the TB field will do so. For one thing, it is not clear where these RDs and their names come from. Did the authors use an annotation of RDs in the reference genome H37Rv from previously published work (e.g. Bespiatykh et al. 2021)? This is important basic information, its lack makes it difficult to judge the validity of the results. The Bespiatykh et al. study uses a large short-read data (721 strains) set to characterize diversity in RDs and specifically focuses on the sublineage-specific variants. While the authors cite the paper, it would be relevant to compare the results of the two studies in more detail.

      We have amended the introduction to explain this terminology better (lines 67-68). Naming of the RDs here came from using RDScan to assign current names to any accessory regions we found and if such a region was not a known RD, we gave it a lineage-related name, allowing for proper RD naming later (lines 187-194). Because the Bespiatyk paper is the basis for RDScan, our work implicitly compares to this throughout, as any RDs we find which were not picked up by RDScan are thus novel compared to that paper.

      As far as I understand, "regions of difference" have been used in the tuberculosis field to describe structural variants relative to the reference genome H37Rv. Colloquially, regions present in H37Rv but absent in another strain have been called "deletions". Whether these polymorphisms have indeed originated through deletion or through insertion in H37Rv or its ancestors requires a comparison with additional strains. While the pangenome graph does contain this information, the authors do not attempt to categorize structural variants into insertions and deletions but simply seem to assume that "regions of difference" are deletions. This, as well as the neglect of paralogs in the "classical" pangenome analysis, puts a question mark behind their conclusion that deletion drives pangenome evolution in the MTBC.

      We have now amended the analysis to specifically designate a structural variant as a deletion if present in the majority of strains and absent in a minority, or an insertion/duplication if present in a minority and absent in a majority (lines 191-192). We also ran Panaroo without merging paralogs to examine duplication in this output; Pangraph implicitly includes paralogs already.

      From all these analyses we did not find any structural variants classed as insertions/duplications and did not find paralogs to be a major feature at the sub-lineage level (lines 377-383). While these features could be important on shorter timescales, we do not have enough closed genomes to confidently state this (limitation outlined in lines 452-457). Therefore, our assertion that deletions are a primary force shaping the long-term evolution in this group still holds.

      Reviewer #2 (Public Review):

      Summary:

      The authors attempted to investigate the pangenome of MTBC by using a selection of state-of-the-art bioinformatic tools to analyse 324 complete and 11 new genomes representing all known lineages and sublineages. The aim of their work was to describe the total diversity of the MTBC and to investigate the driving evolutionary force. By using long read and hybrid approaches for genome assembly, an important attempt was made to understand why the MTBC pangenome size was reported to vary in size by previous reports.

      Strengths:

      A stand-out feature of this work is the inclusion of non-coding regions as opposed to only coding regions which was a focus of previous papers and analyses which investigated the MTBC pangenome. A unique feature of this work is that it highlights sublineage-specific regions of difference (RDs) that were previously unknown. Another major strength is the utilisation of long-read whole genomes sequences, in combination with short-read sequences when available. It is known that using only short reads for genome assembly has several pitfalls. The parallel approach of utilizing both Panaroo and Pangraph for pangenomic reconstruction illuminated the limitations of both tools while highlighting genomic features identified by both. This is important for any future work and perhaps alludes to the need for more MTBC-specific tools to be developed.

      Weaknesses:

      The only major weakness was the limited number of isolates from certain lineages and the over-representation others, which was also acknowledged by the authors. However, since the case is made that the MTBC has a closed pangenome, the inclusion of additional genomes would not result in the identification of any new genes. This is a strong statement without an illustration/statistical analysis to support this.

      We have included a Heaps law and genome fluidity calculation for each pangenome estimation to demonstrate that the pangenome is closed. This is detailed in lines 225-228 with results shown in lines 274-278 and 316- 320 and Supplementary Figure 2. We agree that more closely related genomes would benefit a future version of this analysis and indicate we indicate the limitations in the Discussion, lines 452-457 and 471-473.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Abstract

      l. 24, "with distinct genomic features". I'm not sure what you are referring to here.

      We refer to the differences in accessory genome and related functional profiles but did not want to bloat the abstract with such additional details

      Introduction

      l. 40, "L1 to L9". A lineage 10 has been described recently: https://doi.org/10.3201/eid3003.231466.

      We have updated the text and the reference. Unfortunately, no closed genome for this lineage exists so we have not included it in the analyses. We note this in the results, like 232

      l.62/3, "caused by the absence of horizontal gene transfer, plasmids, and recombination". Recombination is not absent in the MTBC, only horizontal gene transfer seems to be, which is what the cited studies show. Indeed a few sentences later homologous recombination is mentioned as a cause of deletions.

      This has now been removed from the introduction

      l. 67, "within lineage diversity is thought to be mostly driven by SNPs". Again I'm not sure what is meant here with "driven by". Point mutations are probably the most common mutational events, but duplications, insertions, deletions, and gene conversion also occur and can affect large regions and possibly important genes, as shown in a recent preprint (https://doi.org/10.1101/2024.03.08.584093).

      We have changed the text to say ‘mostly composed of’. While indeed other SNVs may be contributing, the prevailing thought at lineage level is that SNPs are the primary source of diversity. The linked pre-print is looking at within transmission clusters and this has not been described at the lineage level, which could be done in a future work.

      l. 100/1. "that can account for variations in virulence, metabolism, and antibiotic resistance". I would phrase this conservatively since the functional inferences in this study are speculative.

      This has now been tempered to be less specific.

      Methods

      l. 108. That an assembly has a single contig does not mean that it is "closed". Many single contig assemblies on NCBI are reference-guided short-read assemblies, that is, fragments patched together rather than closed assemblies. The same could be true for long-read assemblies.

      We specifically chose those listed as closed on NCBI so rely on their checks to ensure this is true. We have stated this better in the paper, line 117.

      l. 111. From Supplementary Table 1 understand that for many genomes only the reads were available (no ASM number). Did you assemble these genomes? If yes, how? The assembly method is not indicated in the supplement, contrary to what is written here.

      All public genomes were downloaded in their assembled forms from the various sources. This is specified better in the text (line 118) and the supplementary table 1 now lists the accessions for all the assemblies.

      l. 113. How many assemblies passed this threshold? And is BUSCO actually useful to assess assembly quality in the MTBC? I assume the dynamic, repetitive gene families that cause problems for assembly and mapping in TB (PE, PPE, ESX) do not figure in the BUSCO list of single-copy orthologs.

      All assemblies passed the BUSCO thresholds for high-quality genomes as laid out in Supplementary Table 1. While indeed this does not include multi-copy genes such as PE/PPE we focussed on regions of difference at the sub-lineage level where two or more genomes represent that sub-lineage. This means any assembly issues in a single genome would need to be exactly the same in another of the same sub-lineage to be included in our results. Through this, we aimed to buffer out issues in individual assemblies.

      l. 147: Why is Panaroo used with -merge-paralogs? I understand that near-identical genes may not be too interesting from a functional perspective, but if the aim of the analysis is to make broad claims about processes driving genome evolution, paralogs should be considered.

      We chose to do so with merged paralogs to look for larger patterns of diversity beyond within-genome paralogs. Additionally, this was required to build the core phylogenetic tree. However, as the reviewer points out, this may bias our findings towards deletions and away from duplications as a primary evolutionary force.

      We repeated this without the merged paralogs option and indeed found a larger pangenome, as outlined in Table 1. However, at the sub-lineage level, this did not result in any new presence/absence patterns (lines 381-383). This means the paralogs tended to be in single genomes only. This still indicates that deletions are the primary force in the longer-term evolution of the complex but indeed on shorter spans this may be different.

      l. 153: remove the comment in brackets.

      This has been fixed and the proper URL placed in instead.

      l. 159: which genomes, and why those?

      This is now clarified to state all genomes were used for this analysis.

      l. 161, "gene blocks": since this analysis is introduced as capturing the non-coding part of the genome, maybe just call them "blocks"?

      All references to gene blocks are now changed to genomic blocks to be more specific.

      l. 162: what happens with blocks that yield no hits against RvD1, TbD1, and H37Rv?

      We named these with lineage-specific names (supplementary table 4) but did not assign RD names specifically.

      l. 164: where does the information about the regions of difference come from? How exactly were these regions determined?

      Awe have expanded this section to be more specific on the use of RDScan and new naming, along with how we determine if something is an RD/LSP.

      Results

      l. 185ff: This paragraph gives many details about the geographic origin of the samples, but what I'd expect here is a short description of assembly qualities, for example, the results of the BUSCO analysis, a description of your own Nanopore assemblies, or a small analysis of the number of indels/pseudogenes relative to sequencing technology or coverage (see comment in the public review).

      This section (lines 231-258) has been expanded considerably to give a better overview of the dataset and any potential biases. Supplementary table 1 has also been expanded to include more information on each strain.

      l. 187, "324 genomes published previously": 322 according to the methods section.

      The number has been fixed throughout to the proper total of public genomes (329).

      l. 201: define the soft core, shell, and cloud genes.

      This is now defined on line 262

      l. 228, "defined primarily by RD105 and RD207 deletions": this claim seems to come from the analysis of variable importance (Factoextra), which should be made clear here.

      This has been clarified on line 333.

      l. 237, "L8, serving as the ancestor of the MTBC": this is incorrect, equivalent to saying that the Chimpanzee is the ancestor of Homo sapiens.

      We have changed this to basal to align with how it is described in the original paper.

      l. 239, "The accessory genome of the MTBC". It is a bit confusing that the same term, 'accessory genome', is used here for the graph-based analysis, which is presented as a way to look at the non-coding part of the genome.

      We have clarified the terminology on line 347 and improved consistency throughout.

      l. 240/1, "specific to certain lineages and sublineages". What exactly do you mean by "specific" to? Present only in members of a certain lineage/sublineage? In all members of a certain lineage/sublineage? Maybe an additional panel in Figure 5, showing examples of lineage- and sublineage-specific variants, would help the reader grasp this key concept.

      We have clarified this on line 349 and the legend of what is now figure 4.

      l. 241/2, "82 lineage and sublineage-specific genomic regions ranging from 270 bp to 9.8 kb". Were "gene blocks" filtered for a minimum size, or why are there no variants smaller than 270 bp? A short description of all the blocks identified in the graph could be informative (their sizes, frequencies ...).

      Yes, a minimum of 250bp was set for the blocks to only look at larger polymorphisms. This is clarified on line 177 and 304.

      A second point: It is not entirely clear to me what Figure 6 is showing. Are you showing here a single representative strain per sublineage? Or have you somehow summarized the regions of difference shown in Figure 5 at the sublineage level? What is the tree on the left? This should be made clear in the legend and maybe also in the methods/results.

      In figure 4 (which was figure 6), because each RD is common to all members of the same sub-lineage, we have placed a single branch for each sub-lineage. This is has been clarified in the legend.

      l. 254, "this gene was classified as being in the core genome": why should a partially deleted gene not be in the core genome?

      You are correct, we have removed that statement.

      l. 258/259, "The Pangraph alignment approach identified partial gene deletion and non-coding regions of the DNA that were impacted by genomic deletion". I do not understand how you classify a structural variant identified in the pangenome graph as a deletion or an insertion.

      This has been clarified as relative to H37Rv, as this is standard practice for RDs and general evolutionary analyses in MTBC, as outlined above.

      l. 262/263 , "the accessory genome of the MTBC is small and is acquired vertically from a common ancestor within the lineage". If deletion is the main process involved here, "acquired" seems a bit strange.

      We agree and changed the header to better reflect the discussion on mis-annotation issues

      Figure 1: Good to know, but not directly relevant for the rest of the paper. Maybe move it to the supplement?

      This has been moved to Supplementary figure 1

      Figure 2: the y-axis is labeled 'Variable genome size', but from the text and the legend I figure it should be 'Number of accessory genes'?

      This has been changed to ‘accessory genes’ in Figure 1 (which was figure 2 in previous version).

      Figure 4: too small.

      We will endeavour to ensure this is as large as possible in the final version.

      Discussion

      l. 271, "MTBC accessory genome is ... acquired vertically". See above.

      Changed, as outlined above.

      l. 292, "appeared to be fragmented genes caused by misassemblies". Is there a way to distinguish "true" pseudogenes from misassemblies? This could be a relevant issue for low-coverage long-read assemblies (see public review).

      Not that we are currently aware of, but we do know other groups which are working on this issue.

      l. 300/1, "the whole-genome approach could capture higher genetic variations". Do you mean the graph approach? I'm not sure that comparing the two approaches here makes sense, as they serve different purposes. A pangenome graph is a summary of all genetic variation, while the purpose of Panaroo is to study gene absence/presence. So by definition, the graph should capture more genetic variation.

      This statement was specifically to state that much genetic variation in MTBC is outside the coding genes and so traditional “pangenome’ analyses are actually not looking at the full genomic variation.

      l. 302/3, "this method identified non-coding regions of the genome that were affected by genomic deletions". See the comments above regarding deletions versus insertions. I'd say this method identifies coding and non-coding regions that were affected by genomic deletions and insertions.

      We have undertaken additional analyses to be sure these are likely deletions, as outlined above.

      l. 305: what are "lineage-independent deletions"?

      We labelled these as convergent evolution, now clarified on line 443.

      l. 329: How is RD105 "caused" by the insertion of IS6110? I did not find RD105 mentioned in the Alonso et al. paper. Similarly below, l. 331, how is RD207 "linked" to IS6110?

      The RD105 connection was misattributed as IS6110 insertion is related to RD152, not RD105. This has now been removed.

      RD207 is linked to IS6110 as its deletion is due to recombination between two such elements. This is now clarified on line 486.

      l. 345, "the growth advantage gene group": not quite sure what this is.

      We have fixed this on line 499 to state they are genes which confer growth advantages.

      l. 373ff: The role of genetic drift in the evolution of the MTBC is an open question, other studies have come to different conclusions than Hershberg et al. (this has been recently reviewed: https://doi.org/10.24072/pcjournal.322).

      We have outlined this debate better in lines 527-531

      l. 375/6, "Gene loss, driven by genetic drift, is likely to be a key contributor to the observed genetic diversity within the MTBC." This sentence would need some elaboration to be intelligible. How does genetic drift drive gene loss?

      We have removed this.

      l. 395/6, "... predominantly driven by genome reduction. This observation underlines the importance of genomic deletions in the evolution of the MTBC." See comments above regarding deletions. I'm not convinced that your study really shows this, as it completely ignores paralogs and the processes counteracting reductive genome evolution: duplication and gene amplification.

      As outlined above, we have undertaken additional analyses to more strongly support this statement.

      l. 399, "the accessory genome of MTBC is a product of gene deletions, which can be classified into lineage-specific and independent deletions". Again, I'm not sure what is meant by lineage-independent deletions.

      We have better defined this in the text, line 443, to be related to convergent evolution.

      Reviewer #2 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data, or analyses.

      In lines 120-121, it is mentioned that TB-profiler v4.4.2 was used for lineage classification, but this version was released in February 2023. As I understand there have been some changes (inclusion/exclusion) of certain lineage markers. Would it not be appropriate to repeat lineage classification with a more recent version? This would of course require extensive re-analysis, so could the lineage marker database perhaps also be cited.

      We have rerun all the genomes through TB-Profiler v6.5 and updated the text to state this; the exact database used is also now stated.

      Could the authors perhaps include the sequencing summary or quality of the nanopore sequences? The L9 (Mtb8) sample had a relatively lower depth and resulted in two contigs. Yet one contig was the initial inclusion criteria. It is unclear whether these samples were excluded from some of the analyses. Mtb6 also has relatively low coverage. Was the sequencing quality adequate to accurately identify all the lineage markers, in particular those with a lower depth of coverage? Could a hybrid approach be an inexpensive way to polish these assemblies?

      We reanalysed the L9 sample and, with some better cleaning, got it to a single contig with better depth and overall score. This is outlined in the Supplementary table 1 sheets. While depth is average, it is still above the recommended 30x, which is needed for good sequence recovery (Sanderson et al., 2024). We did indeed recover all lineage markers from these assemblies.

      Recommendations for improving the writing and presentation.

      The introduction is well-written and recent MTBC pangenomic studies have been incorporated, but I am curious as to why this paper was not referred to: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6922483/ I believe this was the first attempt to study the pangenome, albeit with a different research question. Nearly all previous analyses largely focused on utilizing the pangenome to investigate transmission.

      Indeed this study did look at a pangenome of sorts, but specifically SNPs and not genes or regions. Since the latter is the main basis for pangenome work these days, we chose not to include this paper.

      Minor corrections to the text and figures.

      In line 129, it is explained that DNA was extracted to be suitable for PacBio sequencing, but ONT sequencing was used for the 11 new sequences. Is this a minor oversight or do the authors feel that DNA extracted for PacBio would be suitable for ONT sequencing? It is a fair assumption.

      We apologise, this is a long-read extraction approach and not specific to PacBio. We have amended the text to state this.

      In line 153, this should be removed: (Conor, could you please add the script to your GitHub page?).

      This has been fixed now.

    1. Reviewer #2 (Public review):

      Summary:

      The study introduces new tools for measuring intracellular Ca2+ concentration gradients around retinal rod bipolar cell (rbc) synaptic ribbons. This is done by comparing the Ca2+ profiles measured with mobile Ca2+ indicator dyes versus ribbon-tethered (immobile) Ca2+ indicator dyes. The Ca2+ imaging results provide a straightforward demonstration of Ca2+ gradients around the ribbon and validate their experimental strategy. This experimental work is complemented by a coherent, open-source, computational model that successfully describes changes in Ca2+ domains as a function of Ca2+ buffering. In addition, the authors try to demonstrate that there is heterogeneity among synaptic ribbons within an individual rbc terminal.

      Strengths:

      The study introduces a new set of tools for estimating Ca2+ concentration gradients at ribbon AZs, and the experimental results are accompanied by an open-source, computational model that nicely describes Ca2+ buffering at the rbc synaptic ribbon. In addition, the dissociated retinal preparation remains a valuable approach for studying ribbon synapses. Lastly, excellent EM.

      Comments on revisions:

      Specific minor comments:

      (1) Rewrite the final sentence of the Abstract. It is difficult to understand.

      (2) Add a definition in the Introduction (and revisit in the Discussion) that delineates between micro- and nano-domain. A practical approach would be to round up and round down. If you round up from 0.6 um, then it is microdomain which means ~ 1 um or higher. Likewise, round down from 0.3 um to nanodomain? If you are using confocal, or even STED, the resolution for Ca imaging will be in the 100 to 300 nm range. The point of your study is that your new immobile Ca2-ribbon indicator may actually be operating on a tens of nm scale: nanophysiology. The Results are clearly written in a way that acknowledges this point but maybe make such a "definition" comment in the intro/discussion in order to: 1) demonstrate the power of the new Ca2+ indicator to resolve signals at the base of the ribbon (effectively nano), and 2) (Discussion) to acknowledge that some are achieving nanoscopic resolution (50 to 100nm?) with light microscopy (as you ref'd Neef et al., 2018 Nat Comm).

      (3) Suggested reference: Grabner et al. 2022 (Sci Adv, Supp video 13, and Fig S5). Here rod Cav channels are shown to be expressed on both sides the ribbon, at its base, and they are within nanometers from other AZ proteins. This agrees with the conclusions from your imaging work.

      (4) In the Discussion, add a little more context to what is known about synaptic transmission in the outer and inner retina.. First, state that the postsynaptic receptors (for example: mGluR6-OnBCs vs KARs-Off-BCs, vs. AMPAR-HCs), and possibly the synaptic cleft (ground squirrel), are known to have a significant impact on signaling in the outer retina. In the inner retina, there are many more unknowns. For example, when I think of the pioneering Palmer JPhysio study, which you sight, I think of NMDAR vs AMPAR, and uncertainty in what type postsynaptic cell was patched (GC or AC....). Once you have informed the reader that the postsynapse is known to have a significant impact on signaling, then promote your experimental work that addresses presynaptic processes: "...the new tool and results allow us to explore release heterogeneity, ribbon by ribbon in dissociated preps, which we eventually plan to use at ribbon synapses within slices......to better understand how the presynapse shapes signaling......".

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors, Dalal, et. al., determined cryo-EM structures of open, closed, and desensitized states of the pentameric ligand-gated ion channel ELIC reconstituted in liposomes, and compared them to structures determined in varying nanodisc diameters. They argue that the liposomal reconstitution method is more representative of functional ELIC channels, as they were able to test and recapitulate channel kinetics through stopped-flow thallium flux liposomal assay. The authors and others have described channel interactions with membrane scaffold proteins (MSP), initially thought to be in a size-dependent manner. However, the authors reported that their cryo-EM ELIC structure interacts with the large nanodisc spNW25, contrary to their original hypotheses. This suggests that the channel's interactions with MSPs might alter its structure, possibly not accurately representing/reflecting functional states of the channel.

      Strengths:

      Cryo-EM structural determination from proteoliposomes is a promising methodology within the ion channel field due to their large surface area and lack of MSP or other membrane mimetics that could alter channel structure. Comparing liposomal ELIC to structures in various-sized nanodiscs gives rise to important discussions for other membrane protein structural studies when deciding the best method for individual circumstances.

      Weaknesses:

      The overarching goal of the study was to determine structural differences of ELIC in detergent nanodiscs and liposomes. Including comparisons of the results to the native bacterial lipid environment would provide a more encompassing discussion of how the determined liposome structures might or might not relate to the native receptor in its native environment. The authors stated they determined open, closed, and desensitized states of ELIC reconstituted in liposomes and suggest the desensitization gate is at the 9' region of the pore. However, no functional studies were performed to validate this statement.

      The goal of this study was to determine structures of ELIC in the same lipid environment in which its function is characterized. However, it is also worth noting that phosphatidylethanolamine and phosphatidylglyerol, two lipids used for the liposome formation, are necessary for ELIC function (PMID 36385237) and principal lipid components of gram-negative bacterial membranes in which ELIC is expressed.

      The desensitized structure of ELIC in liposomes shows a pore diameter at the hydrophobic L240 (9’) residue of 3.3 Å, which is anticipated to pose a large energetic barrier to the passage of ions due to the hydrophobic effect. We have included a graphical representation of pore diameters from the HOLE analysis for all liposome structures in Supplementary Figure 6B. While we have not tested the role of L240 in desensitization with functional experiments, it was shown by Gonzalez-Gutierrez and colleagues (PMID 22474383) that the L240A mutation apparently eliminates desensitization in ELIC. This finding is consistent with L240 (9’) being the desensitization gate of ELIC. We have referenced this study when discussing the desensitization gate in the Results.

      Reviewer #2 (Public review):

      Summary

      The report by Dalas and colleagues introduces a significant novelty in the field of pentameric ligand-gated ion channels (pLGICs). Within this family of receptors, numerous structures are available, but a widely recognised problem remains in assigning structures to functional states observed in biological membranes. Here, the authors obtain both structural and functional information of a pLGIC in a liposome environment. The model receptor ELIC is captured in the resting, desensitized, and open states. Structures in large nanodiscs, possibly biased by receptor-scaffold protein interactions, are also reported. Altogether, these results set the stage for the adoption of liposomes as a proxy for the biological membranes, for cryoEM studies of pLGICs and membrane proteins in general.

      Strengths

      The structural data is comprehensive, with structures in liposomes in the 3 main states (and for each, both inward-facing and outward-facing), and an agonist-bound structure in the large spNW25 nanodisc (and a retreatment of previous data obtained in a smaller disc). It adds up to a series of work from the same team that constitutes a much-needed exploration of various types of environment for the transmembrane domain of pLGICs. The structural analysis is thorough.

      The tone of the report is particularly pleasant, in the sense that the authors' claims are not inflated. For instance, a sentence such as "By performing structural and functional characterization under the same reconstitution conditions, we increase our confidence in the functional annotation of these structures." is exemplary.

      Weaknesses

      Core parts of the method are not described and/or discussed in enough detail. While I do believe that liposomes will be, in most cases, better than, say, nanodiscs, the process that leads from the protein in its membrane down to the liposome will play a big role in preserving the native structure, and should be an integral part of the report. Therefore, I strongly felt that biochemistry should be better described and discussed. The results section starts with "Optimal reconstitution of ELIC in liposomes [...] was achieved by dialysis". There is no information on why dialysis is optimal, what it was compared to, the distribution of liposome sizes using different preparation techniques, etc... Reading the title, I would have expected a couple of paragraphs and figure panels on liposome reconstitution. Similarly, potential biochemical challenges are not discussed. The methods section mentions that the sample was "dialyzed [...] over 5-7 days". In such a time window, most of the members of this protein family would aggregate, and it is therefore a protocol that can not be directly generalised. This has to be mentioned explicitly, and a discussion on why this can't be done in two days, what else the authors tested (biobeads? ... ?) would strengthen the manuscript.

      To a lesser extent, the relative lack of both technical details and of a broad discussion also pertains to the cryoEM and thallium flux results. Regarding the cryoEM part, the authors focus their analysis on reconstructions from outward-facing particles on the basis of their better resolutions, yet there was little discussion about it. Is it common for liposome-based structures? Are inward-facing reconstructions worse because of the increased background due to electrons going through two membranes? Are there often impurities inside the liposomes (we see some in the figures)? The influence of the membrane mimetics on conformation could be discussed by referring to other families of proteins where it has been explored (for instance, ABC transporters, but I'm sure there are many other examples). If there are studies in other families of channels in liposomes that were inspirational, those could be mentioned. Regarding thallium flux assays, one argument is that they give access to kinetics and set the stage for time-resolved cryoEM, but if I did not miss it, no comparison of kinetics with other techniques, such as electrophysiology, nor references to eventual pioneer time-resolved studies are provided.

      Altogether, in my view, an updated version would benefit from insisting on every aspect of the methodological development. I may well be wrong, but I see this paper more like a milestone on sample prep for cryoEM imaging than being about the details of the ELIC conformations.

      Additions have been made to the Results and Discussion sections elaborating on the following points: 1) reconstitution of ELIC in liposomes using dialysis, the advantage of this over other methods such as biobeads, and whether the dialysis protocol can be shortened for other less stable proteins; 2) the issue of separating outward- and inward-facing channels; 3) referencing the effect of nanodiscs on ABC transporters, structures of membrane proteins in liposomes, and pioneering time-resolved cryo-EM studies; and 4) comparison of the kinetics of ELIC gating kinetics with electrophysiology measurements. With regards to the first point, it should be noted that all necessary details are provided in the Methods to reproduce the experiments including the reconstitution and stopped-flow thallium flux assay. It is also important to note that the same preparation for making proteoliposomes was used for assessing function using the stopped-flow thallium flux assay and for determining the structure by cryo-EM. This is now stated in the Results.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Major revisions:

      (1) The authors suggest that the desensitization gate is located at the 9' region within the pore. However, as stated by the authors, the 2' residues function as the desensitization gate in related channels. In a few of their HOLE analyzed structures (e.g. Figure 2B and 4B), there seems to be a constriction also at 2', but this finding is not discussed in the context of desensitization. Further functional testing of mutated 9' and/or 2' gates would bolster the argument for the location of the desensitization gate.

      As stated above, we have included HOLE plots of pore radius in Supplementary Fig. 6B and referenced the study showing that the L240A mutation (9’) in ELIC (PMID 22474383) appears to eliminate desensitization. This result along with the narrow pore diameter at 9’ in the desensitized structure suggests that 9’ is likely a desensitization gate in ELIC. In contrast, mutation of Q233 (2’) to a cysteine in a previous study produced a channel that still desensitizes (PMID 25960405). Since Q233 is a hydrophilic residue in contrast to L240, Q233 probably does not pose the same energetic barrier to ion translocation as L240 based on the structure.

      (2) In discussing functional states of ELIC and ELIC5 in different reconstitution methods, the authors reference constriction sites determined by HOLE analysis software. These constriction sites were key evidence for the authors to determine functional state, however, it is difficult to discern pore sizes based on the figures. Pore diameters and clear color designation (ie, green vs orange) with the figures would greatly aid their discussions.

      HOLE plots are displayed in Supplementary Fig. 6B and pore diameters are not provided in the text.

      (3) The authors had an intriguing finding that ELIC dimers are found in spNW25 scaffolds. Is there any functional evidence to suggest they could be functioning as dimers?

      There is no evidence that the function of ELIC or other pLGICs is altered by the formation of dimers of pentamers. Therefore, while this result is intriguing and likely facilitated by concentrating multiple ELIC pentamers within the nanodisc, it is not clear if these interactions have any functional importance. We have stated this in the Results.

      (4) Thallium flux assay to validate channel function within proteoliposomes. Proteoliposomes are known to be generally very leaky membranes, would be good to have controls without ELIC added to determine baseline changes in fluorescence.

      We have established from multiple previous studies that liposomes composed of 2:1:1 POPC:POPE:POPG (PMID 36385237 and 31724949) do not show significant thallium flux as measured by the stopped-flow assay (PMID 29058195) in the absence of ELIC activity. Furthermore, in the present study, the data in Fig. 1A of WT ELIC shows a low thallium flux rate 60 seconds after exposure to agonist when the ion channel has mostly desensitized. Therefore, this data serves also as a control indicating that the high thallium flux rates in response to agonist (at earlier delay times) are not due to leak, but rather due to ELIC channel activity.

      Minor revisions:

      (1) Abstract and introduction. 'Liganded' should be ligand

      We removed this word and changed it to “agonist-bound” for consistency throughout the manuscript.

      (2) Inconsistent formatting of FSC graphs in Supplemental Figure 4

      The difference is a consequence of the different formatting between cryoSPARC and Relion FSC graphs.

      Reviewer #2 (Recommendations for the authors):

      Minor writing remarks:

      The present report builds on previous work from the same team, and to my eye it would be a plus if this were conveyed more explicitly. I see it as a strength to explore various developments in several papers that complement each other. E.g in the introduction when citing reference 12 (Dalal 2024), later in introducing ref 15 (Petroff 2022), I wish I was reminded of the main findings and how they fit with the new results.

      We have expanded on the Results and Discussion detailing key findings from these studies that are relevant to the current study.

      Suggestions for analysis:

      Data treatment. Maybe I missed it, but I wondered if C1 vs C5 treatment of the liposome data showed any interesting differences? When I think about the biological membrane, I picture it as a very crowded place with lots of neighbouring proteins. I would not be surprised if, similarly to what they do in discs, the receptor would tend to stick to, or bump into, anything present also in liposomes (a neighboring liposome, some undefined density inside the liposome).

      We attempted to perform C1 heterogeneous refinement jobs in cryoSPARC and C1 3D classification in Relion5. For the WT datasets, these did not produce 3D reconstructions that were of sufficient quality for further refinement. For ELIC5 with agonist, the C1 reconstructions were not different than the C5 reconstructions. Furthermore, there was no evidence of dimers of pentamers from the 2D or 3D treatments, unlike what was observed in the spNW25 nanodiscs. This is likely because the density of ELIC pentamers in the liposomes was too low to capture these transient interactions. We have included this information in the Methods.

      In data treatment, we sometimes find only what we're looking for. I wondered if the authors tried to find, for instance, the open and D conformations in the resting dataset during classifications.

      This is an interesting question since some population of ELIC channels could visit a desensitized conformation in the absence of agonist and this would not be detected in our flux assay. After extensive heterogeneous refinement jobs in cryoSPARC and 3D classification jobs in Relion5, we did not detect any unexpected structures such as open/desensitized conformations in the apo dataset.

      In the analysis of the M4 motions, is there info to be gained by looking at how it interacts with the rest of the TMD? For instance, I wondered if the buried surface area between M4 and the rest was changed. Also one could imagine to look at that M4 separately in outward-facing and inward-facing conformations (because the tension due to the bilayer will not be the same in the outer layer in both orientations - intuitively, I'd expect different levels of M4 motions)

      We have expanded our analysis of the structures as recommended. We determined the buried surface area between M4 and the rest of the channel in the liganded WT and ELIC5 structures in liposomes and nanodiscs, as well as the area between the TMD interfaces for these structures. There appears to be a pattern where liposome structures show less buried surface area between M4 and the rest of the channel, and less area at the TMD interfaces. Overall, this suggests that the liposome structures of ELIC in the open-channel or desensitized conformations are more loosely packed in the TMD compared to the nanodisc structures.

      We have also further discussed the issue of separating outward- and inward-facing conformations in the Results. The problem with classifying outward- and inward-facing orientations is that top/down or tilted views of the particles cannot be easily distinguished as coming from channels in one orientation or the other, unless there are conformational differences between outward- and inward-facing channels that would allow for their separation during 3D heterogeneous refinement or 3D classification. Furthermore, since the inward-facing reconstructions are of much lower resolution than the outward-facing reconstructions, we suspect that these particles are more heterogeneous possibly containing junk, multiple conformations, or particles that are both inward- and outward-facing. On the other hand, the outward-facing structures are of good quality, and therefore we are more confident that these come from a more homogeneous set of particles that are likely outward-facing (Note that most particles are outward facing based on side views of the 2D class averages). That said, when examining the conformation of M4 in outward- and inward-facing structures, we do not see any significant differences with the caveat that the inward-facing structures are of poor quality and that inward- and outward-facing particles may not have been well-separated.

    1. Reviewer #3 (Public review):

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome. In particular, the authors identify one key dimension: the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally argue that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea has the potential to change how we think about several major mental disorders in a substantial way and can additionally help us better understand how healthy people navigate challenging decision-making problems. More concisely, it is a very good idea.

      Unfortunately, my view is that neither the theoretical nor empirical aspects of the paper really deliver on that promise. In particular, most (perhaps all) of the interesting claims in the paper have weak empirical support.

      Starting with theory, the authors do not provide a strong formal characterization of the proposed notion of elasticity. There are existing, highly general models of controllability (e.g., Huys & Dayan, 2009; Ligneul, 2021) and the elasticity idea could naturally be embedded within one of these frameworks. The authors gesture at this in the introduction; however, this formalization is not reflected in the implemented model, which is highly task-specific. Moreover, the authors present elasticity as if it is somehow "outside of" the more general notion of controllability. However, effort and investment are just specific dimensions of action; and resources like money, strength, and skill (the "highly trained birke") are just specific dimensions of state. Accordingly, the notion of elasticity is necessarily implicitly captured by the standard model. Personally, I am compelled by the idea that effort and resource (and therefore elasticity) are particularly important dimensions, ones that people are uniquely tuned to. However, by framing elasticity as a property that is different in kind from controllability (rather than just a dimension of controllability), the authors only make it more difficult to integrate this exciting idea into generalizable models.

      Turning to experiment, the authors make two key claims: (1) people infer the elasticity of control, and (2) individual differences in how people make this inference are importantly related to psychopathology.

      Starting with claim 1, there are three subclaims here; implicitly, the authors make all three. (1A) People's behavior is sensitive to differences in elasticity, (1B) people actually represent/track something like elasticity, and (1C) people do so naturally as they go about their daily lives. The results clearly support 1A. However, 1B and 1C are not strongly supported.

      (1B) The experiment cannot support the claim that people represent or track elasticity because effort is the only dimension over which participants can engage in any meaningful decision-making. The other dimension, selecting which destination to visit, simply amounts to selecting the location where you were just told the treasure lies. Thus, any adaptive behavior will necessarily come out in a sensitivity to how outcomes depend on effort.

      Notes on rebuttal: The argument that vehicle/destination choice is not trivial because people occasionally didn't choose the instructed location is not compelling to me-if anything, the exclusion rate is unusually low for online studies. The finding that people learn more from non-random outcomes is helpful, but this could easily be cast as standard model-based learning very much like what one measures with the Daw two-step task (nothing specific to control here). Their final argument is the strongest, that to explain behavior the model must assume "a priori that increased effort could enhance control." However, more literally, the necessary assumption is that each attempt increases the probability of success-e.g. you're more likely to get a heads in two flips than one. I suppose you can call that "elasticity inference", but I would call it basic probabilistic reasoning.

      For 1C, the claim that people infer elasticity outside of the experimental task cannot be supported because the authors explicitly tell people about the two notions of control as part of the training phase: "To reinforce participants' understanding of how elasticity and controllability were manifested in each planet, [participants] were informed of the planet type they had visited after every 15 trips." (line 384).

      Notes on rebuttal: The authors try to retreat, saying "our research question was whether people can distinguish between elastic and inelastic controllability." I struggle to reconcile this with the claim in the abstract "These findings establish the elasticity of control as a distinct cognitive construct guiding adaptive behavior". That claim is the interesting one, and the one I am evaluating the evidence in light of.

      Finally, I turn to claim 2, that individual differences in how people infer elasticity are importantly related to psychopathology. There is much to say about the decision to treat psychopathology as a unidimensional construct (the authors claim otherwise, but see Fig 6C). However, I will keep it concrete and simply note that CCA (by design) obscures the relationship between any two variables. Thus, as suggestive as Figure 6B is, we cannot conclude that there is a strong relationship between Sense of Agency (SOA) and the elasticity bias---this result is consistent with any possible relationship (even a negative one). As it turns out, Figure S3 shows that there is effectively no relationship (r=0.03).

      Notes on rebuttal: The authors argue for CCA by appeal to the need to "account for the substantial variance that is typically shared among different forms of psychopathology". I agree. A simple correlation would indeed be fairly weak evidence. Strong evidence would show a significant correlation after *controlling for* other factors (e.g. a regression predicting elasticity bias from all subscales simultaneously). CCA effectively does the opposite, asking whether-with the help of all the parameters and all the surveys-one can find any correlation between the two sets of variables. The results are certainly suggestive, but they provide very little statistical evidence that the elasticity parameter is meaningfully related to any particular dimension of psychopathology.

      There is also a feature of the task that limits our ability to draw strong conclusions about individual differences about elasticity inference. In the original submission, the authors stated that the study was designed to be "especially sensitive to overestimation of elasticity". A straightforward consequence of this is that the resulting *empirical* estimate of estimation bias (i.e., the gamma_elasticity parameter) is itself biased. This immediately undermines any claim that references the directionality of the elasticity bias (e.g. in the abstract). Concretely, an undirected deficit such as slower learning of elasticity would appear as a directed overestimation bias.

      When we further consider that elasticity inference is the only meaningful learning/decision-making problem in the task (argued above), the situation becomes much worse. Many general deficits in learning or decision-making would be captured by the elasticity bias parameter. Thus, a conservative interpretation of the results is simply that psychopathology is associated with impaired learning and decision-making.

      Notes on rebuttal: I am very concerned to see that the authors removed the discussion of this limitation in response to my first review. I quote the original explanation here:

      - In interpreting the present findings, it needs to be noted that we designed our task to be especially sensitive to overestimation of elasticity. We did so by giving participants free 3 tickets at their initial visits to each planet, which meant that upon success with 3 tickets, people who overestimate elasticity were more likely to continue purchasing extra tickets unnecessarily. Following the same logic, had we first had participants experience 1 ticket trips, this could have increased the sensitivity of our task to underestimation of elasticity in elastic environments. Such underestimation could potentially relate to a distinct psychopathological profile that more heavily loads on depressive symptoms. Thus, by altering the initial exposure, future studies could disambiguate the dissociable contributions of overestimating versus underestimating elasticity to different forms of psychopathology.

      The logic of this paragraph makes perfect sense to me. If you assume low elasticity, you will infer that you could catch the train with just one ticket. However, when elasticity is in fact high, you would find that you don't catch the train, leading you to quickly infer high elasticity-eliminating the bias. In contrast, if you assume high elasticity, you will continue purchasing three tickets and will never have the opportunity to learn that you could be purchasing only one-the bias remains.

      The authors attempt to argue that this isn't happening using parameter recovery. However, they only report the *correlation* in the parameter, whereas the critical measure is the *bias*. Furthermore, in parameter recovery, the data-generating and data-fitting models are identical-this will yield the best possible recovery results. Although finding no bias in this setting would support the claims, it cannot outweigh the logical argument for the bias that they originally laid out. Finally, parameter recovery should be performed across the full range of plausible parameter values; using fitted parameters (a detail I could only determine by reading the code) yields biased results because the fitted parameters are themselves subject to the bias (if present). That is, if true low elasticity is inferred as high elasticity, then you will not have any examples of low elasticity in the fitted parameters and will not detect the inability to recover them.

      Minor comments:

      Below are things to keep in mind.

      The statistical structure of the task is inconsistent with the framing. In the framing, participants can make either one or two second boarding attempts (jumps) by purchasing extra tickets. The additional attempt(s) will thus succeed with probability p for one ticket and 2p - p^2 for two tickets; the p^2 captures the fact that you only take the second attempt if you fail on the first. A consequence of this is buying more tickets has diminishing returns. In contrast, in the task, participants always jumped twice after purchasing two tickets, and the probability of success with two tickets was exactly double that with one ticket. Thus, if participants are applying an intuitive causal model to the task, they will appear to "underestimate" the elasticity of control. I don't think this seriously jeopardizes the key results, but any follow-up work should ensure that the task's structure is consistent with the intuitive causal model.

      The model is heuristically defined and does not reflect Bayesian updating. For example, it over-estimates maximum control by not using losses with less than 3 tickets (intuitively, the inference here depends on what your beliefs about elasticity). Including forced three-ticket trials at the beginning of each round makes this less of an issue; but if you want to remove those trials, you might need to adjust the model. The need to introduce the modified model with kappa is likely another symptom of the heuristic nature of the model updating equations.

    1. Author response:

      The following is the authors’ response to the original reviews

      Summary of our revisions

      (1) We have explained the reason why the untrained RNN with readout (value-weight) learning only could not well learn the simple task: it is because we trained the models continuously across trials with random inter-trial intervals rather than separately for each episodic trial and so it was not trivial for the models to recognize that cue presentation in different trials constitutes a same single state since the activities of untrained RNN upon cue presentation should differ from trial to trial (Line 177-185).

      (2) We have shown that dimensionality was higher in the value-RNNs than in the untrained RNN (Fig. 2K,6H).

      (3) We have shown that even when distractor cue was introduced, the value-RNNs could learn the task (Fig. 10).

      (4) We have shown that extended value-RNNs incorporating excitatory and inhibitory units and conforming to the Dale's law could still learn the tasks (Fig. 9,10-right column).

      (5) In the original manuscript, the non-negatively constrained value-RNN showed loose alignment of value-weight and random feedback from the beginning but did not show further alignment over trials. We have clarified its reason and found a way, introducing a slight decay (forgetting), to make further alignment occur (Fig. 8E,F).

      (6) We have shown that the value-RNNs could learn the tasks with longer cue-reward delay (Fig. 2M,6J) or action selection (Fig. 11), and found cases where random feedback performed worse than symmetric feedback.

      (7) We compared our value-RNNs with e-prop (Bellec et al., 2020, Nat Commun). While e-prop incorporates the effects of changes in RNN weights across distant times through "eligibility trace", our value-RNNs do not. The reason why our models can still learn the tasks with cue-reward delay is considered to be because our models use TD error and TD learning itself, even TD(0) without eligibility trace, is a solution for temporal credit assignment. In fact, TD error-based e-prop was also examined, but for that, result with symmetric feedback, but not with random feedback, was shown (their Fig. 4,5) while for another setup of reward-based e-prop without TD error, result with random feedback was shown (their SuppFig. 5). We have noted these in Line 695-711 (and also partly in Line 96-99).

      (8) In the original manuscript, we emphasized only the spatial locality (random rather than symmetric feedback) of our learning rule. But we have now also emphasized the temporal locality (online learning) as it is also crucial for bio-plausibility and critically different from the original value-RNN with BPTT. We also changed the title.

      (9) We have realized that our estimation of true state values was invalid (as detailed in page 34 of this document). Effects of this error on performance comparisons were small, but we apologize for this error.

      Reviewer #1 (Public review):

      Summary:

      Can a plastic RNN serve as a basis function for learning to estimate value. In previous work this was shown to be the case, with a similar architecture to that proposed here. The learning rule in previous work was back-prop with an objective function that was the TD error function (delta) squared. Such a learning rule is non-local as the changes in weights within the RNN, and from inputs to the RNN depends on the weights from the RNN to the output, which estimates value. This is non-local, and in addition, these weights themselves change over learning. The main idea in this paper is to examine if replacing the values of these non-local changing weights, used for credit assignment, with random fixed weights can still produce similar results to those obtained with complete bp. This random feedback approach is motivated by a similar approach used for deep feed-forward neural networks.

      This work shows that this random feedback in credit assignment performs well but is not as well as the precise gradient-based approach. When more constraints due to biological plausibility are imposed performance degrades. These results are not surprising given previous results on random feedback. This work is incomplete because the delay times used were only a few time steps, and it is not clear how well random feedback would operate with longer delays. Additionally, the examples simulated with a single cue and a single reward are overly simplistic and the field should move beyond these exceptionally simple examples.

      Strengths:

      • The authors show that random feedback can approximate well a model trained with detailed credit assignment.

      • The authors simulate several experiments including some with probabilistic reward schedules and show results similar to those obtained with detailed credit assignments as well as in experiments.

      • The paper examines the impact of more biologically realistic learning rules and the results are still quite similar to the detailed back-prop model.

      Weaknesses:

      *please note that we numbered your public review comments and recommendations for the authors as Pub1 and Rec1 etc so that we can refer to them in our replies to other comments.

      Pub1. The authors also show that an untrained RNN does not perform as well as the trained RNN. However, they never explain what they mean by an untrained RNN. It should be clearly explained.

      These results are actually surprising. An untrained RNN with enough units and sufficiently large variance of recurrent weights can have a high-dimensionality and generate a complete or nearly complete basis, though not orthonormal (e.g: Rajan&Abbott 2006). It should be possible to use such a basis to learn this simple classical conditioning paradigm. It would be useful to measure the dimensionality of network dynamics, in both trained and untrained RNN's.

      We have added an explanation of untrained RNN in Line 144-147:

      “As a negative control, we also conducted simulations in which these connections were not updated from initial values, referring to as the case with "untrained (fixed) RNN". Notably, the value weights w (i.e., connection weights from the RNN to the striatal value unit) were still trained in the models with untrained RNN.”

      We have also analyzed the dimensionality of network dynamic by calculating the contribution ratios of each principal component of the trajectory of RNN activities. It was revealed that the contribution ratios of later principal components were smaller in the cases with untrained RNN than in the cases with trained value RNN. We have added these results in Fig. 2K and Line 210-220 (for our original models without non-negative constraint):

      “In order to examine the dimensionality of RNN dynamics, we conducted principal component analysis (PCA) of the time series (for 1000 trials) of RNN activities and calculated the contribution ratios of PCs in the cases of oVRNNbp, oVRNNrf, and untrained RNN with 20 RNN units. Figure 2K shows a log of contribution ratios of 20 PCs in each case. Compared with the case of untrained RNN, in oVRNNbp and oVRNNrf, initial component(s) had smaller contributions (PC1 (t-test p = 0.00018 in oVRNNbp; p = 0.0058 in oVRNNrf) and PC2 (p = 0.080 in oVRNNbp; p = 0.0026 in oVRNNrf)) while later components had larger contributions (PC3~10,15~20 p < 0.041 in oVRNNbp; PC5~20 p < 0.0017 in oVRNNrf) on average, and this is considered to underlie their superior learning performance. We noticed that late components had larger contributions in oVRNNrf than in oVRNNbp, although these two models with 20 RNN units were comparable in terms of cue~reward state values (Fig. 2J-left).”

      and Fig. 6H and Line 412-416 (for our extended models with non-negative constraint):

      “Figure 6H shows contribution ratios of PCs of the time series of RNN activities in each model with 20 RNN units. Compared with the cases with naive/shuffled untrained RNN, in oVRNNbp-rev and oVRNNrf-bio, later components had relatively high contributions (PC5~20 p < 1.4×10,sup>−6</sup> (t-test vs naive) or < 0.014 (vs shuffled) in oVRNNbp-rev; PC6~20 p < 2.0×10<sup>−7</sup> (vs naive) or PC7~20 p < 5.9×10<sup>−14</sup> (vs shuffled) in oVRNNrf-bio), explaining their superior value-learning performance.”

      Regarding the poor performance of the model with untrained RNN, we would like to add a note. It is sure that untrained RNN with sufficient dimensions should be able to well represent just <10 different states, and state values should be able to be well learned through TD learning regardless of whatever representation is used. However, a difficulty (nontriviality) lies in that because we modeled the tasks in a continuous way, rather than in an episodic way, the activity of untrained RNN upon cue presentation should generally differ from trial to trial. Therefore, it was not trivial for RNN to know that cue presentation in different trials, even after random lengths of inter-trial interval, should constitute a same single state. We have added this note in Line 177-185:

      “This inferiority of untrained RNN may sound odd because there were only four states from cue to reward while random RNN with enough units is expected to be able to represent many different states (c.f., [49]) and the effectiveness of training of only the readout weights has been shown in reservoir computing studies [50-53]. However, there was a difficulty stemming from the continuous training across trials (rather than episodic training of separate trials): the activity of untrained RNN upon cue presentation generally differed from trial to trial, and so it is non-trivial that cue presentation in different trials should be regarded as the same single state, even if it could eventually be dealt with at the readout level if the number of units increases.”

      The original value RNN study (Hennig et al., 2023, PLoS Comput Biol) also modeled tasks in a continuous way (though using backprop-through-time (BPTT) for training) and their model with untrained RNN also showed considerably larger RPE error than the value RNN even when the number of RNN units was 100 (the maximum number plotted in their Fig. 6A).

      Pub2. The impact of the article is limited by using a network with discrete time-steps, and only a small number of time steps from stimulus to reward. What is the length of each time step? If it's on the order of the membrane time constant, then a few time steps are only tens of ms. In the classical conditioning experiments typical delays are of the order to hundreds of milliseconds to seconds. Authors should test if random feedback weights work as well for larger time spans. This can be done by simply using a much larger number of time steps.

      In the revised manuscript, we examined the cases in which the cue-reward delay (originally 3 time steps) was elongated to 4, 5, or 6 time-steps. Our online value RNN models with random feedback could still achieve better performance (smaller squared value error) than the models with untrained RNN, although the performance degraded as the cue-reward delay increased. We have added these results in Fig. 2M and Line 223-228 (for our original models without non-negative constraint)

      “We further examined the cases with longer cue-reward delays. As shown in Fig. 2M, as the delay increased, the mean squared error of state values (at 3000-th trial) increased, but the relative superiority of oVRNNbp and oVRNNrf over the model with untrained RNN remained to hold, except for cases with small number of RNN units (5) and long delay (5 or 6) (p < 0.0025 in Wilcoxon rank sum test for oVRNNbp or oVRNNrf vs untrained for each number of RNN units for each delay).”

      and Fig. 6J and Line 422-429 (for our extended models with non-negative constraint):

      “Figure 6J shows the cases with longer cue-reward delays, with default or halved learning rates. As the delay increased, the mean squared error of state values (at 3000-th trial) increased, but the relative superiority of oVRNNbp-rev and oVRNNrf-bio over the models with untrained RNN remained to hold, except for a few cases with 5 RNN units (5 delay oVRNNrf-bio vs shuffled with default learning rate, 6 delay oVRNNrf-bio vs naive or shuffled with halved learning rate) (p < 0.047 in Wilcoxon rank sum test for oVRNNbp-rev or oVRNNrf-bio vs naive or shuffled untrained for each number of RNN units for each delay).”

      Also, we have added the note about our assumption and consideration on the time-step that we described in our provisional reply in Line 136-142:

      “We assumed that a single RNN unit corresponds to a small population of neurons that intrinsically share inputs and outputs, for genetic or developmental reasons, and the activity of each unit represents the (relative) firing rate of the population. Cortical population activity is suggested to be sustained not only by fast synaptic transmission and spiking but also, even predominantly, by slower synaptic neurochemical dynamics [46] such as short-term facilitation, whose time constant can be around 500 milliseconds [47]. Therefore, we assumed that single time-step of our rate-based (rather than spike-based) model corresponds to 500 milliseconds.”

      Pub3. In the section with more biologically constrained learning rules, while the output weights are restricted to only be positive (as well as the random feedback weights), the recurrent weights and weights from input to RNN are still bi-polar and can change signs during learning. Why is the constraint imposed only on the output weights? It seems reasonable that the whole setup will fail if the recurrent weights were only positive as in such a case most neurons will have very similar dynamics, and the network dimensionality would be very low. However, it is possible that only negative weights might work. It is unclear to me how to justify that bipolar weights that change sign are appropriate for the recurrent connections and inappropriate for the output connections. On the other hand, an RNN with excitatory and inhibitory neurons in which weight signs do not change could possibly work.

      We examined extended models that incorporated inhibitory and excitatory units and followed Dale's law with certain assumptions, and found that these models could still learn the tasks. We have added these results in Fig. 9 and subsection “4.1 Models with excitatory and inhibitory units” and described the details of the extended models in Line 844-862:

      Pub4. Like most papers in the field this work assumes a world composed of a single cue. In the real world there many more cues than rewards, some cues are not associated with any rewards, and some are associated with other rewards or even punishments. In the simplest case, it would be useful to show that this network could actually work if there are additional distractor cues that appear at random either before the CS, or between the CS and US. There are good reasons to believe such distractor cues will be fatal for an untrained RNN, but might work with a trained RNN, either using BPPT or random feedback. Although this assumption is a common flaw in most work in the field, we should no longer ignore these slightly more realistic scenarios.

      We examined the performance of the models in a task in which distractor cue randomly appeared. As a result, our model with random feedback, as well as the model with backprop, could still learn the state values much better than the models with untrained RNN. We have added these results in Fig. 10 and subsection “4.2 Task with distractor cue”

      Reviewer #1 (Recommendations for the authors):

      Detailed comments to authors

      Rec1. Are the untrained RNNs discussed in methods? It seems quite good in estimating value but has a strong dopamine response at time of reward. Is nothing trained in the untrained RNN or are the W values trained. Untrained RNN are not bad at estimating value, but not as good as the two other options. It would seem reasonable that an untrained RNN (if I understand what it is) will be sufficient for such simple Pavlovian conditioning paradigms. This is provided that the RNN generates a complete, or nearly complete basis. Random RNN's provided that the random weights are chosen properly can indeed generate a nearly complete basis. Once there is a nearly complete temporal basis, it seems that a powerful enough learning rule will be able to learn the very simple Pavlovian conditioning. Since there are only 3 time-steps from cue to reward, an RNN dimensionality of 3 would be sufficient. A failure to get a good approximation can also arise from the failure of the learning algorithm for the output weights (W).

      As we mentioned in our reply to your public comment Pub1 (page 3-5), we have added an explanation of "untrained RNN" (in which the value weights were still learnt) (Line 144-147). We also analyzed the dimensionality of network dynamics by calculating the contribution ratios of principal components of the trajectory of RNN activities, showing that the contribution ratios of later principal components were smaller in the cases with untrained RNN than in the cases with trained value RNN (Fig. 2K/Line 210-220, Fig.6H/Line 412-416). Moreover, also as we mentioned in our reply to your public comment Pub1, we have added a note that even learning of a small number of states was not trivially easy because we considered continuous learning across trials rather than episodic learning of separate trials and thus it was not trivial for the model to know that cue presentation in different trials after random lengths of inter-trial interval should still be regarded as a same single state (Line 177-185).

      Rec2. For all cases, it will be useful to estimate the dimensionality of the RNN. Is the dimensionality of the untrained RNN smaller than in the trained cases? If this is the case, this might depend on the choice of the initial random (I assume) recurrent connectivity matrix.

      As mentioned above, we have analyzed the dimensionality of the network dynamics, and as you said, the dimensionality of the model with untrained RNN (which was indeed the initial random matrix as you said, as we mentioned above) was on average smaller than the trained value RNN models (Fig. 2K/Line 210-220, Fig.6H/Line 412-416).

      Rec3. It is surprising that the error starts increasing for more RNN units above ~15. See discussion. This might indicate a failure to adjust the learning parameters of the network rather than a true and interesting finding.

      Thank you very much for this insightful comment. In the original manuscript, we set the learning rate to a fixed value (0.1), without normalization by the squared norm of feature vector (as we mentioned in Line 656-7 of the original manuscript) because we thought such a normalization could not be locally (biologically) implemented. However, we have realized that the lack of normalization resulted in excessively large learning rate when the number of RNN units was large and it could cause instability and error increase as you suggested. Therefore, in the revised manuscript, we have implemented a normalization of learning rate (of value weights) that does not require non-local computations, specifically, division by the number of RNN units. As a result, the error now monotonically decreased, as the number of RNN units increased, in the non-negatively constrained models (Fig. 6E-left) and also largely in the unconstrained model with random feedback, although still not in the unconstrained model with backprop or untrained RNN (Fig. 2J-left)

      Rec4. Not numbering equations is a problem. For example, the explanations of feedback alignment (lines 194-206) rely on equations in the methods section which are not numbered. This makes it hard to read these explanations. Indeed, it will also be better to include a detailed derivation of the explanation in these lines in a mathematical appendix. Key equations should be numbered.

      We have added numbers to key equations in the Methods, and references to the numbers of corresponding equations in the main text. Detailed derivations are included in the Methods.

      Rec5. What is shown in Figure 3C? - an equation will help.

      We have added an explanation using equations in the main text (Line 256-259).

      Rec6. The explanation of why alignment occurs is not satisfactory, but neither is it in previous work on feedforward networks. The least that should be done though

      Regarding why alignment occurs, what remained mysterious (to us) was that in the case of nonnegatively constrained model, while the angle between value weight vector (w) and the random feedback vector (c) was relatively close (loosely aligned) from the beginning, it appeared (as mentioned in the manuscript) that there was no further alignment over trials, despite that the same mechanism for feedback alignment that we derived for the model without non-negative constraint was expected to operate also under the non-negative constraint. We have now clarified the reason for this, and found a way, introduction of slight decay (forgetting) of value weights, by which feedback alignment came to occur in the non-negatively constraint model. We have added these in the revised manuscript (Line 463-477):

      “As mentioned above, while the angle between w and c was on average smaller than 90° from the beginning, there was no further alignment over trials. This seemed mysterious because the mechanism for feedback alignment that we derived for the models without non-negative constraint was expected to work also for the models with non-negative constraint. As a possible reason for the non-occurrence of feedback alignment, we guessed that one or a few element(s) of w grew prominently during learning, and so w became close to an edge or boundary of the non-negative quadrant and thereby angle between w and other vector became generally large (as illustrated in Fig. 8D). Figure 8Ea shows the mean±SEM of the elements of w ordered from the largest to smallest ones after 1500 trials. As conjectured above, a few elements indeed grew prominently.

      We considered that if a slight decay (forgetting) of value weights (c.f., [59-61]) was assumed, such a prominent growth of a few elements of w may be mitigated and alignment of w to c, beyond the initial loose alignment because of the non-negative constraint, may occur. These conjectures were indeed confirmed by simulations (Fig. 8Eb,c and Fig. 8F). The mean squared value error slightly increased when the value-weightdecay was assumed (Fig. 8G), however, presumably reflecting a decrease in developed values and a deterioration of learning because of the decay.”

      Rec7. I don't understand the qualitative difference between 4G and 4H. The difference seems to be smaller but there is still an apparent difference. Can this be quantified?

      We have added pointers indicating which were compared and statistical significance on Fig. 4D-H, and also Fig. 7 and Fig. 9C.

      Rec8. More biologically realistic constraints.

      Are the weights allowed to become negative? - No.

      Figure 6C - untrained RNN with non-negative x_i. Again - it was not explained what untrained RNN is. However, given my previous assumption, this is probably because the units developed in an untrained RNN is much further from representing a complete basis function. This cannot be done with only positive values. It would be useful to see network dynamics of units for untrained RNN. It might also be useful in all cases to estimate the dimensionality of the RNN. For 3 time-steps, it needs to be at least 3, and for more time steps as in Figure 4, larger.

      As we mentioned in our reply to your public comment Pub3 (page 6-8), in the revised manuscript we examined models that incorporated inhibitory and excitatory units and followed Dale's law, which could still learn the tasks (Fig. 9, Line 479-520). We have also analyzed the dimensionality of network dynamics as we mentioned in our replies to your public comment Pub1 and recommendations Rec1 and Rec2.

      Rec9. A new type of untrained RNN is introduced (Fig 6D) this is the first time an explanation of of the untrained RNN is given. Indeed, the dimensionality of the second type of untrained RNN should be similar to the bioVRNNrf. The results are still not good.

      In the model with the new type of untrained RNN whose elements were shuffled from trained bioVRNNrf, contribution ratios of later principal components of the trajectory of RNN activities (Fig. 6H gray dotted line) were indeed larger than those in the model with native untrained RNN (gray solid line) but still much smaller than those in the trained value RNN models with backprop (red line) or random feedback (blue line). It is considered that in value RNN, RNN connections were trained to realize high-dimensional trajectory, and shuffling did not generally preserve such an ability.

      Rec10. The discussion is too long and verbose. This is not a review paper.

      We have made the original discussion much more compact (from 1686 words to 940 words). We have added new discussion, in response to the review comments, but the total length remains to be shorter than before (1589 words).

      Reviewer #2 (Public review):

      Summary:

      Tsurumi et al. show that recurrent neural networks can learn state and value representations in simple reinforcement learning tasks when trained with random feedback weights. The traditional method of learning for recurrent network in such tasks (backpropagation through time) requires feedback weights which are a transposed copy of the feed-forward weights, a biologically implausible assumption. This manuscript builds on previous work regarding "random feedback alignment" and "value-RNNs", and extends them to a reinforcement learning context. The authors also demonstrate that certain nonnegative constraints can enforce a "loose alignment" of feedback weights. The author's results suggest that random feedback may be a powerful tool of learning in biological networks, even in reinforcement learning tasks.

      Strengths:

      The authors describe well the issues regarding biologically plausible learning in recurrent networks and in reinforcement learning tasks. They take care to propose networks which might be implemented in biological systems and compare their proposed learning rules to those already existing in literature. Further, they use small networks on relatively simple tasks, which allows for easier intuition into the learning dynamics.

      Weaknesses:

      The principles discovered by the authors in these smaller networks are not applied to deeper networks or more complicated tasks, so it remains unclear to what degree these methods can scale up, or can be used more generally.

      We have examined extended models that incorporated inhibitory and excitatory units and followed Dale's law with certain assumptions, and found that these models could still learn the tasks. We have added these results in Fig. 9 and subsection “4.1 Models with excitatory and inhibitory units”.

      We have also examined the performance of the models in a task in which distractor cue randomly appeared, finding that our models could still learn the state values much better than the models with untrained RNN. We have added these result in Fig. 10 and subsection “4.2 Task with distractor cue”.

      Regarding the depth, we continue to think about it but have not yet come up with concrete ideas.

      Reviewer #2 (Recommendations for the authors):

      (1) I think the work would greatly benefit from more proofreading. There are language errors/oddities throughout the paper, I will list just a few examples from the introduction:

      Thank you for pointing this out. We have made revisions throughout the paper.

      line 63: "simultaneously learnt in the downstream of RNN". Simultaneously learnt in networks downstream of the RNN? Simulatenously learn in a downstream RNN? The meaning is not clear in the original sentence.

      We have revised it to "simultaneously learnt in connections downstream of the RNN" (Line 67-68).

      starting in line 65: " A major problem, among others.... value-encoding unit" is a run-on sentence and would more readable if split into multiple sentences.

      We have extensively revised this part, which now consists of short sentences (Line 70-75).

      line 77: "in supervised learning of feed-forward network" should be either "in supervised learning of a feed-forward network" or "in supervised learning of feed-forward networks".

      We have changed "feed-forward network" to "feed-forward networks" (Line 83).

      (2) Under what conditions can you use an online learning rule which only considers the influence of the previous timestep? It's not clear to me how your networks solve the temporal credit assignment problem when the cue-reward delay in your tasks is 3-5ish time steps. How far can you stretch this delay before your networks stop learning correctly because of this one-step assumption? Further, how much does feedback alignment constrain your ability to learn long timescales, such as in Murray, J.M. (2019)?

      The reason why our models can solve the temporal credit assignment problem at least to a certain extent is considered to be because temporal-difference (TD) learning, which we adopted, itself has a power to resolve temporal credit assignment, as exemplified in that TD(0) algorithms without eligibility trance can still learn the value of distant rewards. We have added a discussion on this in Line 702-705:

      “…our models do not have "eligibility trace" (nor memorable/gated unit, different from the original value-RNN [26]), but could still solve temporal credit assignment to a certain extent because TD learning is by itself a solution for it (notably, recent work showed that combination of TD(0) and model-based RL well explained rat's choice and DA patterns [132]).”

      We have also examined the cases in which the cue-reward delay (originally 3 time steps) was elongated to 4, 5, or 6 time-steps, and our models with random feedback could still achieve better performance than the models with untrained RNN although the performance degraded as the cue-reward delay increased. We have added these results in Fig. 2M and Line 223-228 (for our original models without non-negative constraint)

      “We further examined the cases with longer cue-reward delays. As shown in Fig. 2M, as the delay increased, the mean squared error of state values (at 3000-th trial) increased, but the relative superiority of oVRNNbp and oVRNNrf over the model with untrained RNN remained to hold, except for cases with small number of RNN units (5) and long delay (5 or 6) (p < 0.0025 in Wilcoxon rank sum test for oVRNNbp or oVRNNrf vs untrained for each number of RNN units for each delay).”

      and Fig. 6J and Line 422-429 (for our extended models with non-negative constraint):

      “Figure 6J shows the cases with longer cue-reward delays, with default or halved learning rates. As the delay increased, the mean squared error of state values (at 3000-th trial) increased, but the relative superiority of oVRNNbp-rev and oVRNNrf-bio over the models with untrained RNN remained to hold, except for a few cases with 5 RNN units (5 delay oVRNNrf-bio vs shuffled with default learning rate, 6 delay oVRNNrf-bio vs naive or shuffled with halved learning rate) (p < 0.047 in Wilcoxon rank sum test for oVRNNbp-rev or oVRNNrf-bio vs naive or shuffled untrained for each number of RNN units for each delay).”

      As for the difficulty due to random feedback compared to backprop, there appeared to be little difference in the models without non-negative constraint (Fig. 2M), whereas in the models with nonnegative constraint, when the cue-reward delay was elongated to 6 time-steps, the model with random feedback performed worse than the model with backprop (Fig. 6J bottom-left panel).

      (3) Line 150: Were the RNN methods trained with continuation between trials?

      Yes, we have added

      “The oVRNN models, and the model with untrained RNN, were continuously trained across trials in each task, because we considered that it was ecologically more plausible than episodic training of separate trials.” in Line 147-150. This is considered to make learning of even the simple cue-reward association task nontrivial, as we describe in our reply to your comment 9 below.

      (4) Figure 2I, J: indicate the statistical significance of the difference between the three methods for each of these measures.

      We have added statistical information for Fig. 2J (Line 198-203):

      “As shown in the left panel of Fig. 2J, on average across simulations, oVRNNbp and oVRNNrf exhibited largely comparable performance and always outperformed the untrained RNN (p < 0.00022 in Wilcoxon rank sum test for oVRNNbp or oVRNNrf vs untrained for each number of RNN units), although oVRNNbp somewhat outperformed or underperformed oVRNNrf when the number of RNN units was small (≤10 (p < 0.049)) or large (≥25 (p < 0.045)), respectively.”

      and also Fig. 6E (for non-negative models) (Line 385-390):

      “As shown in the left panel of Fig. 6E, oVRNNbp-rev and oVRNNrf-bio exhibited largely comparable performance and always outperformed the models with untrained RNN (p < 2.5×10<sup>−12</sup> in Wilcoxon rank sum test for oVRNNbp-rev or oVRNNrf-bio vs naive or shuffled untrained for each number of RNN units), although oVRNNbp-rev somewhat outperformed or underperformed oVRNNrf-bio when the number of RNN units was small (≤10 (p < 0.00029)) or large (≥25 (p < 3.7×10<sup>−6</sup>)), respectively…”

      Fig. 2I shows distributions, whose means are plotted in Fig. 2J, and we did not add statistics to Fig. 2I itself.

      (5) Line 178: Has learning reached a steady state after 1000 trials for each of these networks? Can you show a plot of error vs. trial number?

      We have added a plot of error vs trial number for original models (Fig. 2L, Line 221-223):

      “We examined how learning proceeded across trials in the models with 20 RNN units. As shown in Fig. 2L, learning became largely converged by 1000-th trial, although slight improvement continued afterward.”

      and non-negatively constrained models (Fig. 6I, Line 417-422):

      “Figure 6I shows how learning proceeded across trials in the models with 20 RNN units. While oVRNNbp-rev and oVRNNrf-bio eventually reached a comparable level of errors, oVRNNrf-bio outperformed oVRNNbp-rev in early trials (at 200, 300, 400, or 500 trials; p < 0.049 in Wilcoxon rank sum test for each). This is presumably because the value weights did not develop well in early trials and so the backprop-type feedback, which was the same as the value weights, did not work well, while the non-negative fixed random feedback worked finely from the beginning.”

      As shown in these figures, learning became largely steady at 1000 trials, but still slightly continued, and we have added simulations with 3000 trials (Fig. 2M and Fig. 6J).

      (6) Line 191: Put these regression values in the figure caption, as well as on the plot in Figure 3B.

      We have added the regression values in Fig. 3B and its caption.

      (7) Line 199: This idea of being in the same quadrant is interesting, but I think the term "relatively close angle" is too vague. Is there another more quantatative way to describe this what you mean by this?

      We have revised this (Line 252-254) to “a vector that is in a relatively close angle with c , or more specifically, is in the same quadrant as (and thus within at maximum 90° from) c (for example, [c<sub>1</sub>  c<sub>2</sub>  c<sub>3</sub>]<sup>T</sup> and [0.5c<sub>1</sub> 1.2c<sub>2</sub> 0.8c<sub>3</sub>]T) “

      (8) Line 275: I'd like to see this measure directly in a plot, along with the statistical significance.

      We have added pointers indicating which were compared and statistical significance on Fig. 4D-H, and also Fig. 7 and Fig. 9C.

      (9) Line 280: Surely the untrained RNN should be able to solve the task if the reservoir is big enough, no? Maybe much bigger than 50 units, but still.

      We think this is not sure. A difficulty lies in that because we modeled the tasks in a continuous way rather than in an episodic way (as we mentioned in our reply to your comment 3), the activity of untrained RNN upon cue presentation should generally differ from trial to trial. Therefore, it was not trivial for RNN to know that cue presentation in different trials, even after random lengths of inter-trial interval, should constitute a same single state. We have added this note in Line 177-185:

      “This inferiority of untrained RNN may sound odd because there were only four states from cue to reward while random RNN with enough units is expected to be able to represent many different states (c.f., [49]) and the effectiveness of training of only the readout weights has been shown in reservoir computing studies [50-53]. However, there was a difficulty stemming from the continuous training across trials (rather than episodic training of separate trials): the activity of untrained RNN upon cue presentation generally differed from trial to trial, and so it is non-trivial that cue presentation in different trials should be regarded as the same single state, even if it could eventually be dealt with at the readout level if the number of units increases.”

      The original value RNN study (Hennig et al., 2023, PLoS Comput Biol) also modeled tasks in a continuous way (though using BPTT for training) and their model with untrained RNN also showed considerably larger RPE error than the value RNN even when the number of RNN units was 100 (the maximum number plotted in their Fig. 6A).

      (10) It's a bit confusing to compare Figure 4C to Figure 4D-H because there are also many features of D-H which do not match those of C (response to cue, response to late reward in task 1). It would make sense to address this in some way. Is there another way to calculate the true values of the states (e.g., maybe you only start from the time of the cue) which better approximates what the networks are doing?

      As we mentioned in our replies to your comments 3 and 9, our models with RNN were trained continuously across trials rather than separately for each episodic trial, and whether the models could still learn the state representation is a key issue. Therefore, starting learning from the time of cue would not be an appropriate way to compare the models, and instead we have made statistical comparison regarding key features, specifically, TD-RPEs at early and late rewards, as indicated in Fig. 4D-H.

      (11) Line 309: Can you explain why this non-monotic feature exists? Why do you believe it would be more biologically plausible to assume monotonic dependence? It doesn't seem so straightforward to me, I can imagine that competing LTP/LTD mechanisms may produce plasticity which would have a non-monotic dependence on post-synaptic activity.

      Thank you for this insightful comment. As you suggested, non-monotonic dependence on the postsynaptic activity (BCM rule) has been proposed for unsupervised learning (cortical self-organization) (Bienenstock et al., 1982 J Neurosci), and there were suggestions that triplet-based STDP could be reduced to a BCM-like rule and additional components (Gjorgjieva et al., 2011 PNAS; Shouval, 2011 PNAS). However, the non-monotonicity appeared in our model, derived from the backprop rule, is maximized at the middle and thus opposite from the BCM rule, which is minimized at the middle (i.e., initially decrease and thereafter increase). Therefore we consider that such an increase-then-decreasetype non-monotonicity would be less plausible than a monotonic increase, which could approximate an extreme case (with a minimum dip) of the BCM rule. We have added a note on this point in Line 355-358:

      “…the dependence on the post-synaptic activity was non-monotonic, maximized at the middle of the range of activity. It would be more biologically plausible to assume a monotonic increase (while an opposite shape of nonmonotonicity, once decrease and thereafter increase, called the BCM (Bienenstock-Cooper-Munro) rule has actually been suggested [56-58]).”

      (12) Line 363: This is the most exciting part of the paper (for me). I want to learn way more about this! Don't hide this in a few sentences. I want to know all about loose vs. feedback alignment. Show visualizations in 3D space of the idea of loose alignment (starting in the same quadrant), and compare it to how feedback alignment develops (ending in the same quadrant). Does this "loose" alignment idea give us an idea why the random feedback seems to settle at 45 degree angle? it just needs to get the signs right (same quadrant) for each element?

      In reply to this encouraging comment, we have made further analyses of the loose alignment. By the term "loose alignment", we meant that the value weight vector w and the feedback vector c are in the same (non-negative) quadrant, as you said. But what remained mysterious (to us) was while the angle between w and c was relatively close (loosely aligned) from the beginning, it appeared (as mentioned in the manuscript) that there was no further alignment over trials (and the angle actually settled at somewhat larger than 45°), despite that the same mechanism for feedback alignment that we derived for the model without non-negative constraint was expected to operate also under the nonnegative constraint. We have now clarified the reason for this, and found a way, introduction of slight decay (forgetting) of value weights, by which feedback alignment came to occur in the non-negatively constraint model. We have added this in Line 463-477:

      “As mentioned above, while the angle between w and c was on average smaller than 90° from the beginning, there was no further alignment over trials. This seemed mysterious because the mechanism for feedback alignment that we derived for the models without non-negative constraint was expected to work also for the models with non-negative constraint. As a possible reason for the non-occurrence of feedback alignment, we guessed that one or a few element(s) of w grew prominently during learning, and so w became close to an edge or boundary of the non-negative quadrant and thereby angle between w and other vector became generally large (as illustrated in Fig. 8D). Figure 8Ea shows the mean±SEM of the elements of w ordered from the largest to smallest ones after 1500 trials. As conjectured above, a few elements indeed grew prominently.

      We considered that if a slight decay (forgetting) of value weights (c.f., [59-61]) was assumed, such a prominent growth of a few elements of w may be mitigated and alignment of w to c, beyond the initial loose alignment because of the non-negative constraint, may occur. These conjectures were indeed confirmed by simulations (Fig. 8Eb,c and Fig. 8F). The mean squared value error slightly increased when the value-weightdecay was assumed (Fig. 8G), however, presumably reflecting a decrease in developed values and a deterioration of learning because of the decay.”

      As for visualization, because the model's dimension was high such as 12, we could not come up with better ways of visualization than the trial versus angle plot (Fig. 3A, 8A,F). Nevertheless, we would expect that the abovementioned additional analyses of loose alignment (with graphs) are useful to understand what are going on.

      (13) Line 426: how does this compare to some of the reward modulated hebbian rules proposed in other RNNs? See Hoerzer, G. M., Legenstein, R., & Maass, W. (2014). Put another way, you arrived at this from a top-down approach (gradient descent->BP->approximated by RF->non-negativity constraint>leads to DA dependent modulation of Hebbian plasticity). How might this compare to a bottom up approach (i.e. starting from the principle of Hebbian learning, and adding in reward modulation)

      The study of Hoerzer et al. 2014 used a stochastic perturbation, which we did not assume but can potentially be integrated. On the other hand, Hoerzer et al. trained the readout of untrained RNN, whereas we trained both RNN and its readout. We have added discussion to compare our model with Hoerzer et al. and other works that also used perturbation methods, as well as other top-down approximation method, in Line 685-711 (reference 128 is Hoerzer et al. 2014 Cereb Cortex):

      “As an alternative to backprop in hierarchical network, aside from feedback alignment [36], Associative Reward-Penalty (A<sub>R-P</sub>) algorithm has been proposed [124-126]. In A<sub>R-P</sub>, the hidden units behave stochastically, allowing the gradient to be estimated via stochastic sampling. Recent work [127] has proposed Phaseless Alignment Learning (PAL), in which high-frequency noise-induced learning of feedback projections proceeds simultaneously with learning of forward projections using the feedback in a lower frequency. Noise-induced learning of the weights on readout neurons from untrained RNN by reward-modulated Hebbian plasticity has also been demonstrated [128]. Such noise- or perturbation-based [40] mechanisms are biologically plausible because neurons and neural networks can exhibit noisy or chaotic behavior [129-131], and might improve the performance of value-RNN if implemented.

      Regarding learning of RNN, "e-prop" [35] was proposed as a locally learnable online approximation of BPTT [27], which was used in the original value RNN 26. In e-prop, neuron-specific learning signal is combined with weight-specific locally-updatable "eligibility trace". Reward-based e-prop was also shown to work [35], both in a setup not introducing TD-RPE with symmetric or random feedback (their Supplementary Figure 5) and in another setup introducing TD-RPE with symmetric feedback (their Figure 4 and 5). Compared to these, our models differ in multiple ways.

      First, we have shown that alignment to random feedback occurs in the models driven by TD-RPE. Second, our models do not have "eligibility trace" (nor memorable/gated unit, different from the original valueRNN [26]), but could still solve temporal credit assignment to a certain extent because TD learning is by itself a solution for it (notably, recent work showed that combination of TD(0) and model-based RL well explained rat's choice and DA patterns [132]). However, as mentioned before, single time-step in our models was assumed to correspond to hundreds of milliseconds, incorporating slow synaptic dynamics, whereas e-prop is an algorithm for spiking neuron models with a much finer time scale. From this aspect, our models could be seen as a coarsetime-scale approximation of e-prop. On top of these, our results point to a potential computational benefit of biological non-negative constraint, which could effectively limit the parameter space and promote learning.”

      Related to your latter point (and also replying to other reviewer's comment), we also examined the cases where the random feedback in our model was replaced with uniform feedback, which corresponds to a simple bottom-up reward-modulated triplet plasticity rule. As a result, the model with uniform feedback showed largely comparable, but somewhat worse, performance than the model with random feedback. We have added the results in Fig. 2J-right and Line 206-209 (for our original models without non-negative constraint):

      “The green line in Fig. 2J-right shows the performance of a special case where the random feedback in oVRNNrf was fixed to the direction of (1, 1, ..., 1)<sup>T</sup> (i.e., uniform feedback) with a random coefficient, which was largely comparable to, but somewhat worse than, that for the general oVRNNrf (blue line).”

      and Fig. 6E-right and Line 402-407 (for our extended models with non-negative constraint):

      “The green and light blue lines in the right panels of Figure 6E and Figure 6F show the results for special cases where the random feedback in oVRNNrf-bio was fixed to the direction of (1, 1, ..., 1) <sup>T</sup> (i.e., uniform feedback) with a random non-negative magnitude (green line) or a fixed magnitude of 0.5 (light blue line). The performance of these special cases, especially the former (with random magnitude) was somewhat worse than that of oVRNNrf-bio, but still better than that of the models with untrained RNN. and also added a biological implication of the results in Line 644-652:

      We have shown that oVRNNrf and oVRNNrf-bio could work even when the random feedback was uniform, i.e., fixed to the direction of (1, 1, ..., 1) <sup>T</sup>, although the performance was somewhat worse. This is reasonable because uniform feedback can still encode scalar TD-RPE that drives our models, in contrast to a previous study [45], which considered DA's encoding of vector error and thus regarded uniform feedback as a negative control. If oVRNNrf/oVRNNrf-bio-like mechanism indeed operates in the brain and the feedback is near uniform, alignment of the value weights w to near (1, 1, ..., 1) is expected to occur. This means that states are (learned to be) represented in such a way that simple summation of cortical neuronal activity approximates value, thereby potentially explaining why value is often correlated with regional activation (fMRI BOLD signal) of cortical regions [113].”

      Reviewer #3 (Public review):

      Summary:

      The paper studies learning rules in a simple sigmoidal recurrent neural network setting. The recurrent network has a single layer of 10 to 40 units. It is first confirmed that feedback alignment (FA) can learn a value function in this setting. Then so-called bio-plausible constraints are added: (1) when value weights (readout) is non-negative, (2) when the activity is non-negative (normal sigmoid rather than downscaled between -0.5 and 0.5), (3) when the feedback weights are non-negative, (4) when the learning rule is revised to be monotic: the weights are not downregulated. In the simple task considered all four biological features do not appear to impair totally the learning.

      Strengths:

      (1) The learning rules are implemented in a low-level fashion of the form: (pre-synaptic-activity) x (post-synaptic-activity) x feedback x RPE. Which is therefore interpretable in terms of measurable quantities in the wet-lab.

      (2) I find that non-negative FA (FA with non negative c and w) is the most valuable theoretical insight of this paper: I understand why the alignment between w and c is automatically better at initialization.

      (3) The task choice is relevant since it connects with experimental settings of reward conditioning with possible plasticity measurements.

      Weaknesses:

      (4) The task is rather easy, so it's not clear that it really captures the computational gap that exists with FA (gradient-like learning) and simpler learning rule like a delta rule: RPE x (pre-synpatic) x (postsynaptic). To control if the task is not too trivial, I suggest adding a control where the vector c is constant c_i=1.

      We have examined the cases where the feedback was uniform, i.e., in the direction of (1, 1, ..., 1) in both models without and with non-negative constraint. In both models, the models with uniform feedback performed somewhat worse than the original models with random feedback, but still better than the models with untrained RNN. We have added the results in Fig. 2J-right and Line 206-209 (for our original models without non-negative constraint):

      “The green line in Fig. 2J-right shows the performance of a special case where the random feedback in oVRNNrf was fixed to the direction of (1, 1, ..., 1) <sup>T</sup> (i.e., uniform feedback) with a random coefficient, which was largely comparable to, but somewhat worse than, that for the general oVRNNrf (blue line).”

      and Fig. 6E-right and Line 402-407 (for our extended models with non-negative constraint):

      “The green and light blue lines in the right panels of Figure 6E and Figure 6F show the results for special cases where the random feedback in oVRNNrf-bio was fixed to the direction of (1, 1, ..., 1) <sup>T</sup> (i.e., uniform feedback) with a random non-negative magnitude (green line) or a fixed magnitude of 0.5 (light blue line). The performance of these special cases, especially the former (with random magnitude) was somewhat worse than that of oVRNNrf-bio, but still better than that of the models with untrained RNN.”

      We have also added a discussion on the biological implication of the model with uniform feedback mentioned in our provisional reply in Line 644-652:

      “We have shown that oVRNNrf and oVRNNrf-bio could work even when the random feedback was uniform, i.e., fixed to the direction of (1, 1, ..., 1) <sup>T</sup>, although the performance was somewhat worse. This is reasonable because uniform feedback can still encode scalar TD-RPE that drives our models, in contrast to a previous study [45], which considered DA's encoding of vector error and thus regarded uniform feedback as a negative control. If oVRNNrf/oVRNNrf-bio-like mechanism indeed operates in the brain and the feedback is near uniform, alignment of the value weights w to near (1, 1, ..., 1) is expected to occur. This means that states are (learned to be) represented in such a way that simple summation of cortical neuronal activity approximates value, thereby potentially explaining why value is often correlated with regional activation (fMRI BOLD signal) of cortical regions [113].”

      In addition, while preparing the revised manuscript, we found a recent simulation study, which showed that uniform feedback coupled with positive forward weights was effective in supervised learning of one-dimensional output in feed-forward network (Konishi et al., 2023, Front Neurosci).

      We have briefly discussed this work in Line 653-655:

      “Notably, uniform feedback coupled with positive forward weights was shown to be effective also in supervised learning of one-dimensional output in feed-forward network [114], and we guess that loose alignment may underlie it.”

      (5) Related to point 3), the main strength of this paper is to draw potential connection with experimental data. It would be good to highlight more concretely the prediction of the theory for experimental findings. (Ideally, what should be observed with non-negative FA that is not expected with FA or a delta rule (constant global feedback) ?).

      We have added a discussion on the prediction of our models, mentioned in our provisional reply, in Line 627-638:

      “oVRNNrf predicts that the feedback vector c and the value-weight vector w become gradually aligned, while oVRNNrf-bio predicts that c and w are loosely aligned from the beginning. Element of c could be measured as the magnitude of pyramidal cell's response to DA stimulation. Element of w corresponding to a given pyramidal cell could be measured, if striatal neuron that receives input from that pyramidal cell can be identified (although technically demanding), as the magnitude of response of the striatal neuron to activation of the pyramidal cell. Then, the abovementioned predictions could be tested by (i) identify cortical, striatal, and VTA regions that are connected, (ii) identify pairs of cortical pyramidal cells and striatal neurons that are connected, (iii) measure the responses of identified pyramidal cells to DA stimulation, as well as the responses of identified striatal neurons to activation of the connected pyramidal cells, and (iv) test whether DA→pyramidal responses and pyramidal→striatal responses are associated across pyramidal cells, and whether such associations develop through learning.”

      Moreover, we have considered another (technically more doable) prediction of our model, and described it in Line 639-643:

      “Testing this prediction, however, would be technically quite demanding, as mentioned above. An alternative way of testing our model is to manipulate the cortical DA feedback and see if it will cause (re-)alignment of value weights (i.e., cortical striatal strengths). Specifically, our model predicts that if DA projection to a particular cortical locus is silenced, effect of the activity of that locus on the value-encoding striatal activity will become diminished.”

      (6a) Random feedback with RNN in RL have been studied in the past, so it is maybe worth giving some insights how the results and the analyzes compare to this previous line of work (for instance in this paper [1]). For instance, I am not very surprised that FA also works for value prediction with TD error. It is also expected from the literature that the RL + RNN + FA setting would scale to tasks that are more complex than the conditioning problem proposed here, so is there a more specific take-home message about non-negative FA? or benefits from this simpler toy task? [1] https://www.nature.com/articles/s41467-020-17236-y

      As for a specific feature of non-negative models, we did not describe (actually did not well recognize) an intriguing result that the non-negative random feedback model performed generally better than the models without non-negative constraint with either backprop or random feedback (Fig. 2J-left versus Fig. 6E-left (please mind the difference in the vertical scales)). This suggests that the non-negative constraint effectively limited the parameter space and thereby learning became efficient. We have added this result in Line 392-395:

      “Remarkably, oVRNNrf-bio generally achieved better performance than both oVRNNbp and oVRNNrf, which did not have the non-negative constraint (Wilcoxon rank sum test, vs oVRNNbp : p < 7.8×10,sup>−6</sup> for 5 or ≥25 RNN units; vs oVRNNrf: p < 0.021 for ≤10 or ≥20 RNN units).”

      Also, in the models with non-negative constraint, the model with random feedback learned more rapidly than the model with backprop although they eventually reached a comparable level of errors, at least in the case with 20 RNN units. This is presumably because the value weights did not develop well in early trials and so the backprop-based feedback, which was the same as the value weights, did not work well, while the non-negative fixed random feedback worked finely from the beginning. We have added this result in Fig. 6I and Line 417-422:

      “Figure 6I shows how learning proceeded across trials in the models with 20 RNN units. While oVRNNbp-rev and oVRNNrf-bio eventually reached a comparable level of errors, oVRNNrf-bio outperformed oVRNNbp-rev in early trials (at 200, 300, 400, or 500 trials; p < 0.049 in Wilcoxon rank sum test for each). This is presumably because the value weights did not develop well in early trials and so the backprop-type feedback, which was the same as the value weights, did not work well, while the non-negative fixed random feedback worked finely from the beginning.”

      We have also added a discussion on how our model can be positioned in relation to other models including the study you mentioned (e-prop by Bellec, ..., Maass, 2020) in subsection “Comparison to other algorithms” of the Discussion):

      Regarding the slightly better performance of the non-negative model with random feedback than that of the non-negative model with backprop when the number of RNN units was large (mentioned in our provisional reply), state values in the backprop model appeared underdeveloped than those in the random feedback model. Slightly better performance of random feedback than backprop held also in our extended model incorporating excitatory and inhibitory units (Fig. 9B).

      (6b) Related to task complexity, it is not clear to me if non-negative value and feedback weights would generally scale to harder tasks. If the task in so simple that a global RPE signal is sufficient to learn (see 4 and 5), then it could be good to extend the task to find a substantial gap between: global RPE, non-negative FA, FA, BP. For a well chosen task, I expect to see a performance gap between any pair of these four learning rules. In the context of the present paper, this would be particularly interesting to study the failure mode of non-negative FA and the cases where it does perform as well as FA.

      In the cue-reward association task with 3 time-steps delay, the non-negative model with random feedback performed largely comparably to the non-negative model with backprop, and this remained to hold in a task where distractor cue, which was not associated with reward, appeared in random timings. We have added the results in Fig. 10 and subsection “4.2 Task with distractor cue”.

      We have also examined the cases where the cue-reward delay was elongated. In the case of longer cue-reward delay (6 time-steps), in the models without non-negative constraint, the model with random feedback performed comparably to (and slightly better than when the number of RNN units was large) the model with backprop (Fig. 2M). In contrast, in the models with non-negative constraint, the model with random feedback underperformed the model with backprop (Fig. 6J, left-bottom). This indicates a difference between the effect of non-negative random feedback and the effect of positive+negative random feedback.

      We have further examined the performance of the models in terms of action selection, by extending the models to incorporate an actor-critic algorithm. In a task with inter-temporal choice (i.e., immediate small reward vs delayed large reward), the non-negative model with random feedback performed worse than the non-negative model with backprop when the number of RNN units was small. When the number of RNN increased, these models performed more comparably. These results are described in Fig. 11 and subsection “4.3 Incorporation of action selection”.

      (7) I find that the writing could be improved, it mostly feels more technical and difficult than it should. Here are some recommendations:

      7a) for instance the technical description of the task (CSC) is not fully described and requires background knowledge from other paper which is not desirable.

      7b) Also the rationale for the added difficulty with the stochastic reward and new state is not well explained.

      7c) In the technical description of the results I find that the text dives into descriptive comments of the figures but high-level take home messages would be helpful to guide the reader. I got a bit lost, although I feel that there is probably a lot of depth in these paragraphs.

      As for 7a), 'CSC (complete serial compound)' was actually not the name of the task but the name of the 'punctate' state representation, in which each state (timing from cue) is represented in a punctate manner, i.e., by a one-hot vector such as (1, 0, ..., 0), (0, 1, ..., 0), ..., and (0, 0, ..., 1). As you pointed out, using the name of 'CSC' would make the text appearing more technical than it actually is, and so we have moved the reference to the name of 'CSC' to the Methods (Line 903-907):

      “For the agents with punctate state representation, which is also referred to as the complete serial compound (CSC) representation [1, 48, 133], each timing from a cue in the tasks was represented by a 10-dimensional one-hot vector, starting from (1 0 0 ... 0)<sup>T</sup> for the cue state, with the next state (0 1 0 ... 0) <sup>T</sup> and so on.”

      and in the Results we have instead added a clearer explanation (Line 163-165):

      “First, for comparison, we examined traditional TD-RL agent with punctate state representation (without using the RNN), in which each state (time-step from a cue) was represented in a punctate manner, i.e., by a one-hot vector such as (1, 0, ..., 0), (0, 1, ..., 0), and so on.”

      As for 7b), we have added the rationale for our examination of the tasks with probabilistic structures (Line 282-294):

      “Previous work [54] examined the response of DA neurons in cue-reward association tasks in which reward timing was probabilistically determined (early in some trials but late in other trials). There were two tasks, which were largely similar but there was a key difference that reward was given in all the trials in one task whereas reward was omitted in some randomly determined trials in another task. Starkweather et al. [54] found that the DA response to later reward was smaller than the response to earlier reward in the former task, presumably reflecting the animal's belief that delayed reward will surely come, but the opposite was the case in the latter task, presumably because the animal suspected that reward was omitted in that trial. Starkweather et al.[54] then showed that such response patterns could be explained if DA encoded TD-RPE under particular state representations that incorporated the probabilistic structures of the task (called the 'belief state'). In that study, such state representations were 'handcrafted' by the authors, but the subsequent work [26] showed that the original value-RNN with backprop (BPTT) could develop similar representations and reproduce the experimentally observed DA patterns.”

      As for 7c), we have extensively revised the text of the results, adding high-level explanations while trying to reduce the lengthy low-level descriptions (e.g., Line 172-177 for Fig2E-G).

      (8) Related to the writing issue and 5), I wished that "bio-plausibility" was not the only reason to study positive feedback and value weights. Is it possible to develop a bit more specifically what and why this positivity is interesting? Is there an expected finding with non-negative FA both in the model capability? or maybe there is a simpler and crisp take-home message to communicate the experimental predictions to the community would be useful?

      There is actually an unexpected finding with non-negative model: the non-negative random feedback model performed generally better than the models without non-negative constraint with either backprop or random feedback (Fig. 2J-left versus Fig. 6E-left), presumably because the nonnegative constraint effectively limited the parameter space and thereby learning became efficient, as we mentioned in our reply to your point 6a above (we did not well recognize this at the time of original submission).

      Another potential merit of our present work is the simplicity of the model and the task. This simplicity enabled us to derive an intuitive explanation on why feedback alignment could occur. Such an intuitive explanation was lacking in previous studies while more precise mathematical explanations did exist. Related to the mechanism of feedback alignment, one thing remained mysterious to us at the time of original submission. Specifically, in the non-negatively constraint random feedback model, while the angle between the value weight (w) and the random feedback (c) was relatively close (loosely aligned) from the beginning, it appeared (as mentioned in the manuscript) that there was no further alignment over trials (and the angle actually settled at somewhat larger than 45°), despite that the same mechanism for feedback alignment that we derived for the model without non-negative constraint was expected to operate also under the non-negative constraint. We have now clarified the reason for this, and found a way, introduction of slight decay (forgetting) of value weights, by which feedback alignment came to occur in the non-negatively constraint model. We have added this in Line 463-477:

      “As mentioned above, while the angle between w and c was on average smaller than 90° from the beginning, there was no further alignment over trials. This seemed mysterious because the mechanism for feedback alignment that we derived for the models without non-negative constraint was expected to work also for the models with non-negative constraint. As a possible reason for the non-occurrence of feedback alignment, we guessed that one or a few element(s) of w grew prominently during learning, and so w became close to an edge or boundary of the non-negative quadrant and thereby angle between w and other vector became generally large (as illustrated in Fig. 8D). Figure 8Ea shows the mean±SEM of the elements of w ordered from the largest to smallest ones after 1500 trials. As conjectured above, a few elements indeed grew prominently.

      We considered that if a slight decay (forgetting) of value weights (c.f., [59-61]) was assumed, such a prominent growth of a few elements of w may be mitigated and alignment of w to c, beyond the initial loose alignment because of the non-negative constraint, may occur. These conjectures were indeed confirmed by simulations (Fig. 8Eb,c and Fig. 8F). The mean squared value error slightly increased when the value-weightdecay was assumed (Fig. 8G), however, presumably reflecting a decrease in developed values and a deterioration of learning because of the decay.”

      Correction of an error in the original manuscript

      In addition to revising the manuscript according to your comments, we have made a correction on the way of estimating the true state values. Specifically, in the original manuscript, we defined states by relative time-steps from a reward and estimated their values by calculating the sums of discounted future rewards starting from them through simulations. However, we assumed variable inter-trial intervals (ITIs) (4, 5, 6, or 7 time-steps with equal probabilities), and so until receiving cue information, agent should not know when the next reward will come. Therefore, states for the timings up to the cue timing cannot be defined by the upcoming reward, but previously we did so (e.g., state of "one timestep before cue") without taking into account the ITI variability.

      We have now corrected this issue, having defined the states of timings with respect to the previous (rather than upcoming) reward. For example, when ITI was 4 time-steps and agent existed in its last time-step, agent will in fact receive a cue at the next time-step, but agent should not know it until actually receiving the cue information and instead should assume that s/he was at the last time-step of ITI (if ITI was 4), last − 1 (if ITI was 5), last − 2 (if ITI was 6), or last − 3 (if ITI was 7) with equal probabilities (in a similar fashion to what we considered when thinking about state definition for the probabilistic tasks). We estimated the true values of states defined in this way through simulations. As a result, the corrected true value of the cue-timing has become slightly smaller than the value described in the original manuscript (reflecting the uncertainty about ITI length), and consequently small positive TD-RPE has now appeared at the cue timing.

      Because we measured the performance of the models by squared errors in state values, this correction affected the results reporting the performance. Fortunately, the effects were relatively minor and did not largely alter the results of performance comparisons. However, we sincerely apologize for this error. In the revised manuscript, we have used the corrected true values throughout the manuscript, and we have described the ways of estimating these values in Line 919-976.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We thank the three reviewers for the time and caution taken to assess our manuscript, and for their constructive feedback that will help improve the study. We herewith provide a revision plan, expecting that the additional experiments and corrections will address the key points raised by the reviewers.

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      • *

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      Summary: The manuscript by Delgado et al. reports the role of the actin remodeling Arp2/3 complex in the biology of Langerhans cells, which are specialized innate immune cells of the epidermis. The study is based on a conditional KO mouse model (CD11cCre;Arpc4fl/fl), in which the deletion of the Arp2/3 subunit ArpC4 is under the control of the myeloid cell specific CD11c promoter.

      In this model, the assembly of LC networks in the epidermis of ear and tail skin is preserved when examining animals immediately after birth (up to 1 week). Subsequently however LCs from ArpC4-deleted mice start displaying morphological aberrations (reduced elongation and number of branches at 4 weeks of age). Additionally, a profound decline in LC numbers is reported in the skin of both the ear and tail of young adult mice (8-10 weeks).

      To explore the cause of such decline, the authors then opt for the complementary in vitro study of bone-marrow derived DCs, given the lack of a model to study LCs in vitro. They report that ArpC4 deletion is associated with aberrantly shaped nuclei, decreased expression of the nucleoskeleton proteins Lamin A/C and B1, nuclear envelop ruptures and increased DNA damage as shown by γH2Ax staining. Importantly, they provide evidence that the defects evoked by ArpC4 deletion also occur in the LCs in situ (immunofluorescence of the skin in 4-week old mice).

      Increased DNA damage is further documented by staining differentiating DCs from ArpC4-deleted mice with the 53BP1 marker. In parallel, nuclear levels of DNA repair kinase ATR and recruitment of RPA70 (which recruits ATR to replicative forks) are reduced in the ArpC4-deleted condition. In vitro treatment of DCs with the topoisomerase II inhibitor etoposide and the Arp2/3 inhibitor CK666 induce comparable DNA damage, as well as multilobulated nuclei and DNA bridges. The authors conclude that the ArpC4-KO phenotype might stem, at least in part, from a defective ability to repair DNA damages occurring during cell division.

      The study in enriched by an RNA-seq analysis that points to an increased expression of genes linked to IFN signaling, which the authors hypothetically relate to overt activation of innate nucleic acid sensing pathways.

      The study ends by an examination of myeloid cell populations in ArpC4-KO mice beyond LCs. Skin cDC2 and cDC2 subsets display skin emigration defects (like LCs), but not numerical defects in the skin (unlike LCs). Myeloid cell subsets of the colon are also present in normal numbers. In the lungs, interstitial and alveolar macrophages are reduced, but not lung DC subsets. Collectively, these observations suggest that ArpC4 is essential for the maintenance of myeloid cell subsets that rely on cell division to colonize or to self-maintain within their tissue of residency (including LCs).

      MAJOR COMMENTS

      1. ArpC4 and Arp2/3 expression The authors argue that LCs from Arpc4KO mice should delete the Arpc4 gene in precursors that colonize the skin around birth. It would be important to show it to rule out the possibility that the lack of phenotype (initial seeding, initial proliferative burst) in young animals (first week) could be related to an incomplete deletion of ArpC4 expression. Also important would be to show what is happening to the Arp2/3 complex in LCs from Arpc4KO mice.

      __Response: __We thank this reviewer for the careful assessment of our manuscript. Regarding this specific comment, we would like to clarify that we do not expect ArpC4 to be deleted in LC precursors, as CD11c is only expressed once the cells have entered the epidermis. Instead, we expect the deletion to take place after birth around day 2-4 (Chorro et al., 2009). For this reason, we performed a deletion PCR of epidermal cells at postnatal day 7 (P7), a time at which the proliferative burst occurs. This analysis revealed CD11c-Cre-driven recombination in the ArpC4 locus (Fig. S2C). This experiment indicates that ArpC4 deletion does not alter LC proliferation and postnatal network formation.


      Revision plan: We will revise the manuscript text to more clearly explain when ArpC4 will be deleted during development when using the CD11c-Cre transgene, and better emphasize the rationale for the deletion PCR.

      In the in vitro studies with DCs, the level of ArpC4 and Arp2/3 deletion at the protein level is also not documented.


      __Response: __We have previously analyzed the expression of ArpC4 in BMDCs in a recent study, confirming its loss in CD11c-Cre;ArpC4fl/fl cells at the protein level: Rivera et al. Immunity 2022; doi: 10.1016/j.immuni.2021.11.008. PMID: 34910930 (Fig. S2D). Therefore, in the current manuscript we only refer to that paper (Results, first paragraph).

      The authors explain that surface expression of the CD11c marker, which drives Arpc4 deletion, gradually increased during differentiation of DCs: from 50% to 90% of the cells. Does that mean that loss of ArpC4 expression is only effective in a fraction of the cells examined before day 10 of differentiation (e.g. in the RNA-seq analysis)?

      __Response: __The reviewer is correct, there is heterogeneity in CD11c expression, which is inherent of these DC culture model, implying that Arpc4 gene deletion will be partial. However, despite this, we were able to detect significant differences between the transcriptomes of control and CD11c-Cre;ArpC4fl/fl DCs in early phases during differentiation, emphasizing that the phenotype of ArpC4 loss is robust.


      Revision Plan: We will include a notion on this heterogeneity in the revised manuscript text.

      Intra-nuclear versus extra-nuclear activities of Arp2/3

      The authors favor a model whereby intra-nuclear ArpC4 helps maintaining nuclear integrity during proliferation of DCs (and possibly LCs). However, multiple pools of Arp2/3 have been described and accordingly, multiple mechanisms may account for the observed phenotype: i) cytoplasmic pool to drive the protrusions sustaining the assembly of the LC network and its connectivity with keratinocytes ; ii) peri-nuclear pool to protect the nucleus ; iii) Intra-nuclear pool to facilite DNA repair mechanisms e.g. by stabilizing replicative forks (the scenario favored by the authors).


      __Response: __The referee is correct, and this is actually discussed in our manuscript (page 11, upper paragraph): we cannot exclude that several pools of branched actin are influencing the phenotype we here describe.

      Unfortunately, we have previously tested several antibodies against ArpC4, but in our hands, and despite comprehensive optimization, they did not yield specific signals that would enable us to assess changes in subcellular localization in murine cells. Upon this reviewer's comment, we will now reassess the available tools and found an antibody against ArpC2 (Millipore, Anti-p34-Arc/ARPC2, 07-227-I-100UG) that may work based on published data. We have ordered this product to test it for IF staining of ArpC2, hoping to be able to delineate the subcellular localization of ArpC2 in DCs and potentially LCs.

      Revision plan: Upon receipt, we will test the ArpC2 antibody (Millipore, #07-227-I-100UG) both in cultured DCs and in epidermal whole mounts, running various optimization protocols regarding fixation, permeabilization and blocking reagents, next to antibody dilution. That way we hope to be able to detect the subcellular localization of Arp2/3 complex components as requested by this reviewer.

      It is recommended that the authors try to gather more supportive data to sustain the intra-nuclear role. Documenting ArpC4 presence in the nucleus would help support the claim. It could be combined with treatments aiming at blocking proliferation in order to reinforce the possibility that a main function of ArpC4 is to protect proliferating cells by favoring DNA repair inside the nucleus.

      __Response: __We thank this reviewer for this very helpful comment. As outlined in the previous response, we will aim at obtaining subcellular localization data for Arp2/3 complex components, and along with that study a potential intranuclear localization. Beyond that, in comparison to commonly cultured cell types, however, we face two hurdles addressing the nuclear Arp2/3 role in full: 1) Due to poor transduction rates and epigenetic silencing, we cannot sufficiently express exogenous constructs such as ArpC4-NLS in DCs to assess the subcellular localization of Arp2/3 complex components. 2) We have performed preliminary tests to block proliferation in DCs, using the cyclin D kinase 1 inhibitor RO3306 at different concentrations and incubation times during DC differentiation. Unfortunately, most cells were found dead after treatment. Further lowering the inhibitor concentrations (below 3.5uM) will likely not block the cell cycle, rendering this approach unsuited.

      Revision plan: We will test the suitability of additional antibodies directed against Arp2/3 complex components to assess their subcellular localization, with the aim to discriminate peripheral cytoplasmic vs. perinuclear vs. intranuclear localization. In addition, we will add a comment in the discussion, further addressing this point. In the case we remain unable to pinpoint that Arp2/3 resides in the nucleus, we will further tone down our current phrasing in the discussion, also emphasizing the possibility that cytoplasmic or perinuclear pools of the complex may indirectly help maintain the integrity of the genome in LCs.

      Nuclear envelop ruptures

      The nuclear envelop ruptures are not sufficiently documented (how many cells were imaged? quantification?). The authors employ STED microscopy to examine Lamin B1 distribution. The image shown in Figure 4A does not really highlight the nuclear envelop, but rather the entire content. Whether it is representative is questionable. We would expect Lamin B1 staining intensity to be drastically reduced given the quantification shown in Figure 3D. In addition, although the authors have stressed in the previous figure that Arpc4-KO is associated with nucleus shape aberrations, the example shown in Figure 4A is that of a nucleus with a normal ovoid shape.

      It is recommended to quantify the ruptures with Lap2b antibodies (or another staining that would better delineate the envelop) in order to avoid the possible bias due to the reduced staining intensity of Lamin B1.

      __Response: __NE ruptures were quantified by imaging NLS-GFP-expressing DCs in microchannels to visualize leakage of their nuclear content (Fig. 4B,C). The STED image mentioned by the referee (Fig. 4A,D) was only shown to further illustrate examples of NE ruptures, here using Lamin B as an immunofluorescence marker for the NE. We do agree with the reviewer that it was not chosen optimally to represent the ArpC4-KO phenotype regarding nuclear shape and Lamin B1.

      Revision plan: We will provide representative examples of nuclear illustrations of the ArpC4-KO phenotype vs. control cells. In addition, we will perform STED microscopy of Lap2B immunostained DCs as suggested by the referee.

      A missing analysis is that of nuclear envelop ruptures as a function of nucleus deformations.

      __Response: __As stated in the manuscript (page 5, third paragraph), the morphology of DCs is quite heterogeneous. As mentioned above, nuclear rupture events were quantified by live-imaging of NLS-GFP expressing DCs, enabling the tracing of rupture events. Live imaging is the only robust manner to measure nuclear membrane rupture events as they are transient due to rapid membrane repair (Raab et al. Science 2016). The NLS-GFP label itself, however, is not accurate enough to also quantify nuclear deformations. The latter therefore was quantified after cell fixation, using DAPI and/or immunostaining for NE envelope markers (Figures 3 and S3).

      Revision plan: We will quantify nuclear deformations using Lap2B staining of the nuclear envelope as suggested by the referee.

      Fig 4B-C: same frequency of Arpc4-KO and WT cells displaying nuclear envelop ruptures in the 4-µm channels; however image show a rupture for the Arpc4-KO and no rupture for the WT cells (this is somehow misleading). Are ruptures similar in Arpc4-KO and WT cells in this condition?

      __Response: __We apologize for choosing an image that better reflects our quantification, our mistake.

      Revision plan: We will choose an image that better reflects our quantification.

      Fig 4D-E: is their a direct link between nuclear envelop ruptures and ƴH2A.X?

      __Response: __At present, we can only correlate the findings of increased gH2Ax and elevated events of nuclear envelope ruptures in ArpC4-KO DCs. Rescue experiments are very difficult to impossible in DCs (e.g. restoring Lamin A/C and B levels in the KOs and subsequently assessing the amount of DNA damage). While we are afraid that we cannot address a potential link between NE ruptures and DNA damage by experiments in a manner feasible within this manuscript's revision, we have discussed this interesting aspect based on observations in immortalized cell culture systems (page 10). However, we would like to note that this was indeed shown for different cell types in Nader et al. Cell 2021. This effect results from access of cytosolic nuclease Trex1 to nuclear DNA.

      Revision plan: This point will be clarified in our revised manuscript.


      Interesting (but optional) would be to understand what is happening to DNA, histones? Is their evidence for leakage in the cytoplasm?

      __Response: __We have not investigated so far. We will attempt to do so.

      Revision plan: To address this aspect, we plan to perform immunostainings for double-stranded DNA in the cytoplasm (along with an NE marker). This approach has been used in the field to mark cytoplasmic DNA.

      RNA seq analysis

      The RNA-seq analysis suffers from a lack of direct connection with the rest of the study. The extracted molecular information is not validated nor further explored. It remains very descriptive. The PCA analysis suggests a « more pronounced transcriptomic heterogeneity in differentiating Arpc4KO DCs ». However it seems difficult to make such a claim from the comparison of 3 mice per group. In addition, such heterogeneity is not seen in the more detailed analysis (Fig 5F). The authors claim that « day 10 control and Arpc4KO DCs showed no to very little differences in gene expression, in contrast to cells at days 7-9 of differentiation ». This is not obvious from the data displayed in the corresponding figure. In addition, it is not expected that cells that may take a divergent differentiation path at days 7-9 may would return to a similar transcriptional activity at day 10.

      A point that is not discussed is that before day 10 of DC differentiation, Arpc4 KO is expected to only occur in about 50% of the cell population. This is expected to impact the RNA-seq analysis.

      Not all clusters have been exploited (e.g. cluster 3 elevated, cluster 6 partly reduced). I suggest the authors reconsider their analysis and analysis of the RNA-seq analysis (or eventually invest in complementary analysis).

      __Response: __Despite a comprehensive analysis of the different transcriptomes of control and ArpC4 mutant cells during DC differentiation, we decided to focus the presentation and discussion of our RNAseq results on the most notable findings. Of these, the elevated innate immune responses in ArpC4-KO DCs (Fig. 5E,H) caught our particular attention, as this seemed highly meaningful in light of DC and LC functions.

      Revision plan: As suggested by the referee, in the revised manuscript, we will better connect the RNAseq data to the other cellular and molecular analyses shown, complementing these results by investigating the potential involvement of innate immune responses in the ArpC4-KO phenotype.

      What causes the profound numerical drop of LC in the epidermis?

      A major open question is what causes the massive drop of LCs. Although differentiating Arpc4KO DCs start accumulating DNA damage upon proliferation, they succeed in progressing through the cell cycle. There is even a slightly elevated expression of cell cycle genes at day 7 of differentiation in the DC model.

      Only a trend for increased apoptosis is observed in ear and tail skin. It would be important to provide complementary data documenting increased death (or aberrant emigration?) of LCs in the 4-8 week time window.

      __Response: __We agree with the reviewer that this is an important question. We exclude that elevated emigration causes the decline of LCs in ArpC4-KO epidermis, as ArpC4-mutant LCs are significantly reduced (and not increased) in skin-draining lymph nodes (Fig. 7E). To assess whether increased cell death contributed to LC loss, we have tried to identify LCs that are just about to die. As the reviewer noted, we could only observe a trend of apoptosis-positive LCs in mutant epidermis. We assume that this is because of a quick elimination of compromised LCs following DNA damage, with only a short time passing until LCs with impaired genome integrity will be cleared from the system, making it very difficult to detect gH2Ax-positive cells that are positive for markers of cell death.

      Revision plan: Despite the abovementioned expected limitations to detect DNA-damage-positive but viable LCs in vivo, for the manuscript revision we will collect 6-week-old mice to analyze LC numbers and apoptosis (cleaved Caspase-3), complementing our data derived from 7-day and 4-week-old mice (Figures S2A,B, S2E,F). Suited mice have been born end of May; we are ready to analyze them at 6-weeks of age, accordingly.

      Functional consequences

      Although the study reports novel aspects of LC biology, the consequence of ArpC4 deletion for skin barrier function and immunosurveillance are not investigated. It would seem very relevant to test how this model copes with radiation, chemical and/or microorganism challenges.

      __Response: __We fully agree with this reviewer that this is a very interesting point. Therefore, next to assessing the steady-state circulation of LCs and DCs, we also addressed the consequence of ArpC4 loss for LC function in chemically challenged skin: we performed skin painting experiments using the contact sensitizer fluorescein isothiocyanate (FITC), diluted in the sensitizing agent dibutyl phthalate (DBP), to detect cutaneous-derived phagocytes within draining lymph nodes. These experiments revealed that migration of Arpc4KO LCs (as well as of Arpc4KO DCs) to skin-draining lymph nodes was impaired (Fig. 7C-E), confirming an in vivo role of ArpC4 for immune cell migration to lymphatic organs following a chemical challenge. Considering the lengthy legal approval procedures for new animal experimentation procedures, additional in vivo challenges -beyond the provided FITC challenge study- would take at least 6 additional months, which would delay excessively the revision of our manuscript.

      Revision Plan: We will better explain the FITC painting experiment to highlight its importance.

      MINOR COMMENTS:

      1- Figure 1D

      Gating strategy: twice the same empty plots. The content seems to be missing... Does this need to be shown in the main figure?

      __Response: __We apologize for this problem; there might be a problem due to file conversion of PDF reader software. In our PDF versions (including the published bioRxiv preprint) we do see the data points (see below); however, we have earlier experienced incomplete FACS plots during manuscript preparation.


      Revision plan: We will take extra care and double-check the results after converting the figures into PDFs. In addition, we will provide JPG files when submitting the revised manuscript, to prevent such problems.

      2- Figure 2

      Best would be to keep same scale to compare P1 and P7 (tail skin, figure 2A)

      Response and revision plan: We will replace the examples with micrographs of comparable scale (already solved, will be provided with manuscript revision).

      Overlay of Ki67 and MHC-II does not allow to easily visualize the double-positive cells (Fig 2C)

      Response and revision plan: We will provide single-channel image next to the merged view, and improve the visualization of double-positive cells (already solved, will be provided with manuscript revision)

      Quality of Ki67 staining different for Arpc4-KO (less intense, less focused to the nuclei): a technical issue or could that reflect something?

      Response and revision plan: We thank the reviewer for spotting this. We have re-assessed all Ki67 micrographs and noted that the originally chosen examples indeed are not fully representative. We have meantime selected more representative examples of Ki67-positive cells in control and mutant tissues, reflecting no difference in the principal nature of Ki67 staining (already taken care of, will be provided with manuscript revision).

      Fig 2C: Panels mounted differently for ear and tail skin (different order to present the individual stainings, Dapi for tail skin only).

      Response and revision plan: We will harmonize the sequence of panels in figure 2 with submission of the revised manuscript.

      3- LC branch analysis (Fig 1 and 2)

      While Fig 1 indicates that ear skin LCs form in average twice as few branches as tail skin LCs (3-4 versus 8-9 branches per cell), Fig 2 shows the opposite (10-12 versus 6-7 branches per cell).

      Is this due to a very distinct pattern between the 2 considered ages (4 weeks versus 8-10 weeks)? Could the author double-check that there is no methodological bias in their analysis?


      Response: We thank the reviewer for hinting us on this apparent inconsistency. Indeed, our initial analysis suffered from a bias in detecting LC dendrites, as the tissue cellularity and overall morphology significantly differs between 4-week-old and adult animals: In adult animals, the immunostainings show a higher baseline background signal for the skin epithelium compared to P28. We had noted this beforehand and had adjusted the imaging pipeline accordingly, with a more stringent thresholding to eliminate background signals in the case of adult tissues. While we were able to detect the described ArpC4 phenotype, this strategy resulted in a reduced ability to detect dendrites (both in control and mutant tissues), explaining the seemingly reduced number of dendrites in adult vs. 4-week-old tissues.

      Revision plan: We have double-checked both the micrographs and the corresponding quantifications and did not identify errors. Instead, our assumption -that a too high stringency for background reduction in adults caused the discrepancy- turned out correct. At present, we are re-doing the detailled analyses of LC morphology at 4-week and adult stages by confocal microscopy using a 63x objective rather than a 40x objective as done previously. First results confirm that with this approach the number of LC dendrites across these ages are largely comparable, while the phenotypes of ArpC4 loss are retained. We will provide a completely new analysis with revision of the manuscript.

      4- Fig 3 E-G

      How many animals were examined (n=5)? Reproducible accros animals? Why was it done with 4-week animals (phenotype not complete? Event occurring before loss in numbers...)

      Response and revision plan: As mentioned in the figure legend for Fig. 3F we have analysed N = 4 control and N= 5 KO mice (for clarity, we will add this information to Figure 3E and G in the revised document). We chose the 4-week time-point as this was the stage when the loss of LCs first became apparent (even though non-significant at this age). We aimed to learn whether changes in nuclear morphology and nuclear envelope markers represented early molecular and cellular events following ArpC4 loss. Compared to later stages, this strategy poses a reduced risk to detect indirect effects of ArpC4 loss. We will clarify this in the revised manuscript text.

      Staining Lamin A/C globally more intense in the Arpc4-KO epidermis (also seems to apply to the masks corresponding to the LCs). Surprising to see that the quantification indicates a major drop of Lamin A/C intensity in the LCs.

      Response and revision plan: We again thank the reviewer for this careful assessment. The originally chosen micrographs are indeed not fully representative. As with many tissue stainings, there is inter-sample variability. We have now revisited the micrographs and did not find a significant global reduction of Lamin A/C in the entire epidermis (including keratinocytes/KCs). The drop of Lamin A/C intensity is restricted to ArpC4 LCs -and not KCs- and in line with the reduced Lamin A/C expression data in DCs (Fig. 3C,D). We have selected more representative examples, which will be provided with the revised manuscript.

      Legend Fig 4D replace confocal microscopy by STED microscopy

      Revision plan: We will replace "confocal microscopy" by "STED microscopy" accordingly.

      6- Figure 4F

      Intensity/background of γH2Ax staining very distinct between the 2 micrographs shown for WT and Arpc4-KO epidermis.

      Response and revision plan: We have revisited the micrographs and now selected more representative examples, which will be provided in the revised manuscript.

      7- Figure 7C, F, H

      Gating strategies: would be better to harmonize the style of the plots (dot plots and 2 types of contour plots have been used...)

      Response and revision plan: We agree and will provide a harmonized plot illustration in the revised manuscript.

      8- Figure 7H

      Legend of lower gating strategy seems to be wrong (KO and not WT).

      Response and revision plan: We thank the reviewer for pointing out this mistake. A corrected figure display will be provided with revision.

      Reviewer #1 (Significance (Required)):

      Strengths: the general quality of the manuscript is high. It is very clearly written and it contains a very detailed method section that would allow reproducing the reported experiments. This work entails a clear novelty in that it represents the first investigation of the role of ArpC4 in LCs. It opens an interesting perspective about specific mechanisms sustaining the maintenance of myeloid cell subsets in peripheral tissues. This work is therefore expected to be of interest for a large audience of cellular immunologists and beyond. Challenging skin function with an external trigger would lift the relevance for a even wider audience (see main point 6).

      __Response: __see point 6.

      Limitations: in its current version the manuscript suffers from a lack of solidity around a few analysis (see main points on ArpC4 and Arp2/3 protein expression, nuclear envelop rupture analysis,...). It also tends to formulate a narrative centered on the ArpC4 intra-nuclear function that is not definitely proven.

      The field of expertise of this reviewer is: cellular immunology and actin remodeling.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      SUMMARY This is a study in experimental mice employing both in vitro and, importantly, in vivo approaches. EPIDERMAL LANGERHANS CELLS serve as a paradigm for the maintenance of homeostasis of myeloid cells in a tissue, epidermis in this case. In addition to well known functions of the ACTIN NETWORK in cell migration, chemotaxis, cell adherence and phagocytosis the authors reveal a critical function of actin networks in the survival of cells in their home tissue.

      Actin-related proteins (Arp), specifically here the Arp2/3 complex, are necessary to form the filamentous actin networks. The authors use conditional knock-out mice where Arpc4 (an essential component of the Arp2/3 complex) is deleted under the control of CD11c, the most prominent dendritic cell marker which is also expressed on Langerhans cells. In normal mice, epidermal Langerhans cells reside in the epidermis virtually life-long. They initially settle the epidermis around and few days after birth an establish a dense network by a burst of proliferation and then they "linger on" by low level maintenance proliferation. In the epidermis of Arpc4 knock-out mice Langerhans cells also start off with this proliferative burst but, strikingly, they do not stay but are massively reduced by the age of 8-12 weeks.

      The analyses of this decline revealed that

      -- the shape (number of nuclear lobes) and integrity of cell nuclei was compromised; they were fragile and ruptured to some degree when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      -- DNA damage, as detected by staining for gamma-H2Ax or 53BP1 accumulated when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      -- recruitment of DNA repair molecules was inhibited when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      -- gene signatures of interferon signaling and response were increased when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      -- in vivo migration of dendritic cells and Langerhans cells from the skin to the draining lymph nodes in an inflammatory setting (FITC painting of the skin) was impaired when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      -- the persistence of the typical dense network of Langerhans cells in the epidermis, created by proliferation shortly after birth, is abrogated when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing. Importantly, this was not the case for myeloid cell populations that settle a tissue without needing that initial burst of proliferation. For instance, numbers of colonic macrophages were not affected when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing.

      Thus, the authors conclude that the Arp2/3 complex is essential by its formation of actin networks to maintain the integrity of nuclei and ensure DNA repair thereby ascertaining the maintenance proliferation of Langerhans cells and, as the consequence, the persistence of the dense epidermal netowrk of Langerhans cells.

      Up-to-date methodology from the fields of cell biology and cellular immunology (cell isolation from tissues, immunofluorescence, multiparameter flow cytometry, FISH, "good old" - but important - transmission electronmicroscopy, etc.) was used at high quality (e.g., immunofluorescence pictures!). Quantitative and qualitative analytical methods were timely and appropriate (e.g., Voronoi diagrams, cell shape profiling tools, Cre-lox gene-deletion technology, etc.). Importantly, the authors used a clever method, that they had developed several years ago, namely the analysis of dendritic cell migration in microchannels of defined widths. Molecular biology methods such as RNAseq were also employed and analysed by appropriate bioinformatic tools.

      MAJOR COMMENTS:

      • ARE THE KEY CONCLUSIONS CONVINCING? Yes, they are.

      • SHOULD THE AUTHORS QUALIFY SOME OF THEIR CLAIMS AS PRELIMINARY OR SPECULATIVE, OR REMOVE THEM ALTOGETHER? No, I think it is ok as it stands. The authors are wording their claims and conclusions not apodictically but cautiously, as it should be. They point out explicitely which lines of investigations they did not follow up here.

      • WOULD ADDITIONAL EXPERIMENTS BE ESSENTIAL TO SUPPORT THE CLAIMS OF THE PAPER? REQUEST ADDITIONAL EXPERIMENTS ONLY WHERE NECESSARY FOR THE PAPER AS IT IS, AND DO NOT ASK AUTHORS TO OPEN NEW LINES OF EXPERIMENTATION. I think that the here presented experimental evidence suffices to support the conclusions drawn. No additional experiments are necessary.

      • ARE THE SUGGESTED EXPERIMENTS REALISTIC IN TERMS OF TIME AND RESOURCES? IT WOULD HELP IF YOU COULD ADD AN ESTIMATED COST AND TIME INVESTMENT FOR SUBSTANTIAL EXPERIMENTS. Not applicable.

      • ARE THE DATA AND THE METHODS PRESENTED IN SUCH A WAY THAT THEY CAN BE REPRODUCED? Yes, they are.

      • ARE THE EXPERIMENTS ADEQUATELY REPLICATED AND STATISTICAL ANALYSIS ADEQUATE? Yes.

      __Response: __We thank the reviewer very much for assessing our work, for providing constructive suggestions, and for acknowledging the strength of the study.

      MINOR COMMENTS:

      • SPECIFIC EXPERIMENTAL ISSUES THAT ARE EASILY ADDRESSABLE. None

      • ARE PRIOR STUDIES REFERENCED APPROPRIATELY? Essentially yes. Regarding the reduction / loss of the adult epidermal Langerhans cell network, it may be of some interest to also refer to / discuss to another one of the few examples of this phenomenon. There, the initial burst of proliferation is followed by reduced proliferation and increased apoptosis when a critical member of the mTOR signaling cascade is conditionally knocked out (Blood 123:217, 2014).

      __Response and revision plan: __As suggested, we will include into the revised manuscript further examples with related phenotypes regarding the progressive decline of LCs.

      • ARE THE TEXT AND FIGURES CLEAR AND ACCURATE? Yes they are. Figures are well arranged for easy comprehension.

      • DO YOU HAVE SUGGESTIONS THAT WOULD HELP THE AUTHORS IMPROVE THE PRESENTATION OF THEIR DATA AND CONCLUSIONS?

      1. Materials & Methods. The authors write, regarding flow cytometry of epidermal cells: "Briefly, 1cm2 of back skin from 8-14 weeks old female wild-type and knockout littermates was dissociated in 0.25 mg/mL Liberase (Sigma, cat. #5401020001) and 0.5 mg/mL DNase (Sigma, cat.#10104159001) in 1 mL of RPMI (Sigma) and mechanically disaggregated in Eppendorf tubes, FOLLOWED BY INCUBATED for 2 h at 37 {degree sign}C." Followed by what?

      __Response and revision plan: __We apologize for this mistake. The text should read: "... followed by blocking and antibody labeling of cells in single cell suspension.". We will provide the correct text in the revised manuscript.

      Materials & Methods. BMDC electronmicroscopy. What is "IF". Please specify.

      __Response and revision plan: __We also regret this mistake in the method text. It should read: "... For electron microscopy analysis, after PDMS removal, cells were fixed using 2.5% glutaraldehyde ...". We will correct this in the revised manuscript.

      RESULTS in gene expression analyses. The authors observe some increase in apoptosis (as detected by cleaved-Caspase-3 staining). Is this observation in immunofluorescence also evident in the RNAseq data (where the IFN changes were seen), i.e., in Figure 5.

      __Response and revision plan: __We will check our RNAseq data regarding any changes in apoptosis-related genes and, if so, include these in the revised manuscript.

      Figure 7 F and G. Perhaps the authors may want to swap upper and lower panels in F or G, so that macrophage FACS plots and bar graphs are in the same row - ob, obiously, DC plots and bars likewise.

      __Response and revision plan: __We agree and will harmonize the panel sequence in the revised manuscript.

      Figure 7H. "Gating strategy in ArpC4WT Lung (previously gated in Live CD45+ cells)" - The lower row is knock-out, not WT. This is indicated correctly in the legand, but in the figure both rows are labeled as WT.

      __Response and revision plan: __Indeed, the legend information is correct, but the corresponding figure panel is incorrect. We will provide a corrected version with revision.

      The reference by Park et al. 2021 is missing in the list.

      __Response and revision plan: __We will add the reference to the revised bibliography.

      Figure 1D. Sure, the bar graphs are meant to say "CD11c"? The FACS plots show "CD11b".

      __Response and revision plan: __We will check the panels and correct where necessary.

      As to cDC1. In Figure 1D the FACS plot shows an absence of CD103+ cDC1 cells. In contrast, In Figure 7A-left side panel, there is not difference in cDC1 cells between WT and KO mice. Is therefore the flow cytometry plot in Figure 1D not representative regarding cDC1 cells? Correct?

      __Response and revision plan: __The reviewer is correct about this apparent discrepancy. We have not observed differences in the control vs. Aprc4-KO cDC1 population, hence Figure 7 represents our findings. For figure 1, we have by mistake chosen a non-representative plot, with the aim of illustrating the gating strategy. We apologize for this mistake and will provide a corrected an representative FACS plot figure in the revised manuscript.

      Reviewer #2 (Significance (Required)):

      • DESCRIBE THE NATURE AND SIGNIFICANCE OF THE ADVANCE (E.G. CONCEPTUAL, TECHNICAL, CLINICAL) FOR THE FIELD. This is a conceptual advance. It adds a big step to our understanding of how immune cells in tissues (which all come from the bone marrow or are seeded before birth from embryonal hematopoietic organs such as yolk sac and fetal liver) can remain resident in these tissues. For cell types such as Langerhans cells, which establish their final population density within their tissues of residence, the presented finding convincingly buttress the role of proliferation and thereby the role for the actin-related protein complex 2/3 (Arp2/3).

      • PLACE THE WORK IN THE CONTEXT OF THE EXISTING LITERATURE (PROVIDE REFERENCES, WHERE APPROPRIATE). While we know much about actin-related proteins (Arp), as correctly cited by the authors, this knowledge is derived mostly from in vitro studies. The submitted study translates the findings to an in vivo setting for the first time.

      • STATE WHAT AUDIENCE MIGHT BE INTERESTED IN AND INFLUENCED BY THE REPORTED FINDINGS. Skin immunologists foremost, but these findings are of interest to the entire community of immunologists, but also cell biologists.

      • DEFINE YOUR FIELD OF EXPERTISE. My expertise is in skin immunology, in particular skin dendritic cells including Langerhans cells.

      We acknowledge the referee for their positive assessment of our manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      The manuscript identifies a role of the Arp2/3 complex, the major regulator of actin branching in cells, for controlling the homeostasis of murine Langerhans cells (LCs), a specialized subset of dendritic cells in the skin epidermis. The findings of the study are based on the analysis of CD11c-Cre Arpc4-flox mice, a conditional knockout mouse model, which interferes with Arp2/3 function in Langerhans cells and other CD11c-expressing myeloid cells, e.g. dendritic cell or macrophage subsets. By using immunofluorescence and flow cytometry analysis of epidermis and skin tissues, the authors provide a detailed analysis of LC numbers at different developmental stages (postnatal day 1, 7, 28, and adult mice) and demonstrate that Arpc4-deficiency does not interfere with the establishment of LC networks until postnatal day 28. However, LCs in ear and tail skin are substantially reduced in Arpc4-deficient mice at 8-12 weeks of age. In parallel to their in vivo model, the authors analyze cultures of bone marrow-derived dendritic cells (BMDCs) from control and CD11c-Cre Arpc4-flox mice. Arpc4-deficiency in BMDCs, which develop over 8-10 days in culture, results in nuclear shape and lamina abnormalities, as well as signs of increased DNA damage. Aspects of this phenotype are also detected in Langerhans cells in epidermal preparations. Transcriptomic analysis of BMDCs highlights a gene signature of increased expression of the interferon response pathway and alterations in cell cycle regulation. Arpc4-deficient BMDCs show increased expression of DNA damage markers and reduced expression of certain DNA repair factors. Based on these correlative findings from the BMDC model, the authors conclude that the decline in LC numbers might develop from the accumulation of DNA damage over time, which the authors phrease "pre-mature aging of Langerhans cells". Lastly, the authors show a heterogenous picture how Arp2/3 depletion affects distinct DC populations in CD11c-Cre Arpc4-flox mice. While some tissue-resident DC subsets appear normal in numbers, others are declined in numbers in the tissue. This may be related to their proliferation potential in tissues.

      Major comments:

      • Are the claims and the conclusions supported by the data or do they require additional experiments or analyses to support them?

      1) The authors claim that Arpc4 deficiency selectively compromises myeloid cell populations that rely on proliferation for tissue colonization (Figure 7). The presented data might give hints for such a general hypothesis, but solid experimental proof to prove this is lacking. When comparing myeloid cell subsets from foru different irgans, the authors refer to published data that some dendritic cell subsets are more proliferative in tissues than others and that CD11cCre Arpc4-flox mice appear to have reduced cell numbers in these populations. However, the presented data are purely correlative and no functional connection to cell proliferation has been made to the phenotypes. While some dendritic cell subsets (Langerhans cells, alveolar DCs) show reduced cell numbers in CD11cCre Arpc4-flox mice, other myeloid cell cells subsets are unaffected (e.g. dermal cDC1 and 2, colon macrophages).There could be plenty of other reasons that might underly the observed discrepancies between these cell subsets, e.g. Arp2/3 knockout efficiency and myeloid cell turnover in the tissue are just two examples, which have not been taken into consideration. Direct measurement of cell proliferation, e.g. BrdU labeling, and the observed phenotype would be missing to make such claims. The data could either be removed. Experimentally addressing these points could take 3-6 months.

      Response and planned revisions: We thank the referee for bringing this point. We agree that these results give hints that support our conclusion but that do not address this question directly. However, we would like to insist on the fact that our conclusion is based on studies from others showing that alveolar macrophages self-maintain themselves through proliferation (Bain et al. Mucosal Immunology 2022). In contrast, it has been reported that most colonic macrophages are derived from monocytes that are being recruited to the gut through life (Bain et al. Mucosal Immunity 2023)

      We propose to better explain and discuss these points in our revised manuscripts. In addition, we will stress that we do not exclude that different intracellular Arpc4-dependent processes might contribute to the phenotypes observed (beyond maintenance of DNA integrity). These revisions will help mitigate our conclusions and leave open the potential implication of alternative mechanisms that will be discussed as suggested by the referee.

      2) The authors claim that DC subsets (e.g. dermal cDCs), which develop from pre-DCs, are not affected by Arp2/3 depletion (Figure 7, although the FACS plot in Fig. 1D would suggest a different picture for cDC1). This is surprising in light of the data with bone marrow-derived DCs (BMDCs), the major in vitro model of this study, which develop from CDPs that again develop from pre-DCs. BMDCs did show aberrant nuclei and signs of DNA damage. How would the authors then explain the discrepancies of the BMDC model with DC subsets, where the authors feel that the pre-DC origin explains the phenotypic difference? This is a general concern of the data interpretation and conclusions.

      __Response: __We thank the referee to bring this point that indeed requires clarification. Two non-exclusive hypotheses could explain this apparent discrepancy:

      • The ontogeny of bone-marrow-derived DCs: Depending on the protocol used, there might be variations in the precursors DCs develop from. We use one of the first protocols, which was pioneered by Paola Ricciardi-Castagnoli lab (Winzler et al. J.Exp.Med. 1997). It relies on a supernatant from J558 cells transfected with GMCSF, which contains additional cytokines and mainly generate DC2-like DCs. Langerhans cells are closer to DC2s, which resemble more macrophages than DC1s. We thus chose this protocol rather than the protocols that use Flt3-L, which produce both DC1s and DC2s developed from common dendritic-cell precursors (CDPs). It is thus possible that our BM-derived DCs develop from other precursor cells that are possibly closer to monocyte precursors.
      • As shown in Figure 5C, kinetics of acquisition of CD11c expression, and thus deletion of the Arpc4 gene, might be distinct in vivo and in vitro. In vivo, as stated in our manuscript, DCs acquire CD11c as preDCs and undergo few rounds of divisions after. In vitro, as shown by our cycling experiments, BM-derived DCs continuously cycle, so they will keep dividing after having acquire CD11c (around day 7) and deleting the Arpc4 gene. __Revision plan: __We propose to mention these hypotheses in the discussion of our manuscript to explain the apparent contradiction raised by the referee.

      3) In line with point 2, the authors never show that BMDCs show reduced proliferation, reduced cell numbers or increased cell death in Arpc4-deficient cell cultures, as a consequence of the detected DNA damage and impaired DNA repair. In fact, Figure 5C even shows that cell growth rates between control and KO are equal. This is a major mismatch in the current study. Since the authors use the BMDC model to explain the declining cell numbers in Langerhans cells (which derive from fetal liver cells), this phenotype is not mirrored by the BMDC culture and it remains open whether the observed changes in nuclear DNA damage and repair are indeed directly linked to the observed phenotype of declining cell numbers in the tissue. These aspects require argumentation why cell growth is unchanged in KO cells. Additional experiments addressing these points with sufficient biological replicates (cultures from different mice) could take 2-3 months, including preparation time.

      __Response____: __We thank the referee for bringing this point, which was probably not properly discussed in the first version of our manuscript. Indeed, Arpc4KO BM-derived DCs do not show the premature cell death phenotype observed in LCs in vivo, as stated by the referee. There are at least two putative non-exclusive explanations for this. First, unlike LCs, which are long-lived cells, BM-derived DCs can be kept in culture for only 10-12 days. As DNA damage-induced cell death takes time (LCs only start to die about 3-4 weeks after network establishment), the lifespan of BM-DCs could simply not be long enough to observe this phenotype. Second, in the epidermis, LCs are physically constrained and continuously exposed to diverse signals that might increase their sensitivity to DNA damage and thereby induction of subsequent cell death.

      __Revision Plan: __We will clarify this point in our revised manuscript by providing putative explanations for the death phenotype of Arpc4-deficient LCs not being observed in BM-derived DCs. We will further explain that this does not invalidate this cellular model as it was used to raise hypotheses on the putative role played by Arpc4 in myeloid cells, i.e. maintenance of DNA integrity, which was then confirmed in vivo (Arpc4KO LCs do indeed display DNA damage in the epidermis). Without this "imperfect cellular model", we would have probably not been able to uncover this novel function of Arp2/3 in immune cells.

      4) The authors refer to a "pre-mature aging" phenotype of Arpc4-deficient BMDCs and LCs, based on reductions in Lamin B, Lamin A and increases in gH2AX and 53BP1. I find this term and overstatement of the current data and suggest that other markers for cell senescence, such as p53, Rb, p21 and b-Galactosidase are then also used to make such strong claim on "aging" and cell senescence. Experimentally addressing this point with sufficient biological replicates could take 2-3 months, including preparation time.

      __Revision Plan: __We will assess the expression of these genes and senescence signatures in our RNAseq analysis as well as in Arpc4WT and Arpc4KO-derived DCs, as suggested by the referee.

      5) The study does not provide a mechanism how the Arp2/3 complex would mediate the observed effects on DNA damage and repairs has not been addressed in the cell model, and only potential scenarios from other non-myeloid cell lines are discussed. It remains unclear whether the observed phenotypes in Arpc4-depleted myleoid cells relate to the direct nuclear function of Arp2/3 or the cytosolic function of Arp2/3, including its roles in cytoskeletal regulation that may have secondary effects on the nuclear alterations. This is a general concern of the presented data, data on mechanism might require more than 6 months.

      __Revision Plan: __The referee is correct: Our manuscript shows that Arp2/3 deficiency in specific myeloid cells impacts on their survival in vivo and proposes that this could result at least in part from impaired maintenance of DNA integrity in these cells. We do not know whether this also applies to non-myeloid cells, which, although very interesting, is beyond the scope of the present study. In addition, we do not have any experimental tool to distinguish whether the DNA damage phenotype of Arpc4KO cells involves the nuclear or cortical pool of F-actin, this is why we have left this question open in the discussion of our manuscript.

      6) OPTIONAL: The authors make a strong case arguing that the increased interferon expression signature (based on the transcriptomics data) reflects the nuclear ruptures in Arpc4-deficient cells and adds to the observed phenotype. If this is so, what happens then in STING knockout cells in the presence of CK666 inhibitor?


      __Revision Plan____: __The referee is correct in that we do not show this point experimentally and should therefore temper this conclusion.

      • Are the data and the methods presented in such a way that they can be reproduced?

      1) The analyses include quite a number of intensity calculations of immunofluorescence signals (Fig. 3D, E; Fig. 4E, Fig. 5B and 6B)? The background stainings are often variable or very high. In some cases it is even unclear whether stainings are really detecting protein and go beyond background staining (Fig. 6A, Fig. 5F). How were immunofluorescence data acquired and dealt with different background staining intensities?

      __Revision Plan: __We will carefully describe the microscopes used for image acquisition as well as the downstream analyses for each experiment, which indeed vary depending on the signals observed with distinct antibodies or construct.

      2) It remained unclear to me on which basis the nuclear deformations in Fig. 3G, H were calculated?

      __Revision Plan: __We will carefully describe the methods used to quantify nuclear deformations.

      3) The detailed phenotype of control mice is a bit unclear. It appears as if these were Cre-negative animals. Did the authors have some proof-of-principle experiments showing that CD11cCre Arpc4 +/+ animals have comparable phenotypes to Cre-negative animals?

      • Are the experiments adequately replicated and statistical analysis adequate?

      __Revision Plan: __We have never observed any decline in LC numbers in other mouse lines/genotypes (for example in cPLA2flox/flox;CD11c-Cre mice shown in the manuscript, Fig. S6B), excluding a putative role for the Cre in LC death.

      For most experiments, the number of biological replicates (mice, or BMDC cultures from different mice) and individual values (n, cells) are indicated. Statistical analysis appears adequate.

      Minor comments:

      • Prior published studies on Arp2/3 function in immune cells are referenced accordingly. A number of additional pre-print manuscripts on this topic have not been cited and could be considered referencing.


      __Revision Plan: __We will fix this point and cite additional, relevant preprints.

      • The text is very clearly and very well written. Figures are clear and accurate for most cases. There are some open questions:

      • Fig. 1B: The number of dots betwenn graph and legend do not match. The dots are not n=12 for both genotypes. Additionally: What do the symbols in the circles in the graph stand for? This is also in another later figure unclear.

      • Fig. 2C: The current IF presentation (overlay MHCII with Ki67) is not very helpful. An additional image that shows only the Ki67 signal in the MHCII mask would be very helpful.

      • Fig. 4B: BMDCs of which culture day were used for these experiments?

      • Fig. 4A and D shows the same representative cells for two biological messages, which is only moderately convincing regarding a "general" phenotype.

      • Fig. 5, B: Scale bars are missing.

      __Revision Plan: __We will fix all these points.

      Reviewer #3 (Significance (Required)):

      Strengths and Advance:

      The study provides strong data and a very detailed analysis of how the Arp2/3 complex regulates stages of Langerhans cell development and homeostasis. The role of the Arp2/3 complex as regulator of actin branching, which is involved in many cellular functions, has previously not been reported for this cell type. Previous research in immune cells have already studied the Arp2/3 complex, but studies were focussed on its role in migration and the majority of published phenotypes related to cell migration. While there are already a number of in vitro studies showing that the Arp2/3 complex can regulate aspects of cell cycle control or cell death in non-immune cells, most of these studies were performed with immortalized, non-immune cell lines, which can be more easily manipulated to dissect mechanistic aspects of the cellular phenotype, but are limited in their physiological interpretation. Hence, it is a major strength of this study to investigate the effects of Arp2/3 in a primary immune cell type, directly in the native and physiological environment. This is important because in vitro data from other cell types cannot be easily extrapolated to any other cell type and it is critical for our understanding to collect physiological data from tissues, where the biology really happens. The finding that the Arp2/3 complex regulates the tissue-residency of Langerhans cell through processes that are unrelated to migration are partially unexpected, shifting the view of this protein complex's physiological role to other cell biological processes, e.g. regulation of cell proliferation.

      Limitations: The limitations of the study are detailed in the five major points listed above. The study accumulates many experiments that characterize the phenotype of Arpc4-depleted cells, showing signs of DNA damage in Langerhans cells and cultures of BMDCs. How the Arp2/3 complex would mechanistically mediate the observed effects on DNA damage and repairs have not been addressed. It also remains open whether this is due to the effects of the Arp2/3 complex in the nucleus or the cytosol, which would be biologically extremely important to understand. Above that, there are some discrepancies regarding the phenotype of the BMDC model, which does neither entirely match the Langerhans cell phenotype in the tissue (reduced proliferation, LC derive from different progenitors), nor other endogenous DC populations, which should also derive from similar progenitors.

      Audience and reviewer background:

      In its current form, the manuscript will already be of interest for several research fields: Langerhans cell and dendritic cell homeostasis, immune cell trafficking, actin and cytoskeleton regulation in immune cells, physiological role of actin-regulating proteins. My own field of expertise is immune cell trafficking in mouse models, leukocyte migration and cytoskeletal regulation. I cannot judge the analysis and clustering of the bulk RNA sequencing data.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      • *

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      • This is a study in experimental mice employing both in vitro and, importantly, in vivo approaches. EPIDERMAL LANGERHANS CELLS serve as a paradigm for the maintenance of homeostasis of myeloid cells in a tissue, epidermis in this case. In addition to well known functions of the ACTIN NETWORK in cell migration, chemotaxis, cell adherence and phagocytosis the authors reveal a critical function of actin networks in the survival of cells in their home tissue.

      • Actin-related proteins (Arp), specifically here the Arp2/3 complex, are necessary to form the filamentous actin networks. The authors use conditional knock-out mice where Arpc4 (an essential component of the Arp2/3 complex) is deleted under the control of CD11c, the most prominent dendritic cell marker which is also expressed on Langerhans cells. In normal mice, epidermal Langerhans cells reside in the epidermis virtually life-long. They initially settle the epidermis around and few days after birth an establish a dense network by a burst of proliferation and then they "linger on" by low level maintenance proliferation. In the epidermis of Arpc4 knock-out mice Langerhans cells also start off with this proliferative burst but, strikingly, they do not stay but are massively reduced by the age of 8-12 weeks.

      • The analyses of this decline revealed that

      a) the shape (number of nuclear lobes) and integrity of cell nuclei was compromised; they were fragile and ruptured to some degree when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      b) DNA damage, as detected by staining for gamma-H2Ax or 53BP1 accumulated when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      c) recruitment of DNA repair molecules was inhibited when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      d) gene signatures of interferon signaling and response were increased when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      e) in vivo migration of dendritic cells and Langerhans cells from the skin to the draining lymph nodes in an inflammatory setting (FITC painting of the skin) was impaired when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      f) the persistence of the typical dense network of Langerhans cells in the epidermis, created by proliferation shortly after birth, is abrogated when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing. Importantly, this was not the case for myeloid cell populations that settle a tissue without needing that initial burst of proliferation. For instance, numbers of colonic macrophages were not affected when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing.

      • Thus, the authors conclude that the Arp2/3 complex is essential by its formation of actin networks to maintain the integrity of nuclei and ensure DNA repair thereby ascertaining the maintenance proliferation of Langerhans cells and, as the consequence, the persistence of the dense epidermal netowrk of Langerhans cells.

      • Up-to-date methodology from the fields of cell biology and cellular immunology (cell isolation from tissues, immunofluorescence, multiparameter flow cytometry, FISH, "good old" - but important - transmission electronmicroscopy, etc.) was used at high quality (e.g., immunofluorescence pictures!). Quantitative and qualitative analytical methods were timely and appropriate (e.g., Voronoi diagrams, cell shape profiling tools, Cre-lox gene-deletion technology, etc.). Importantly, the authors used a clever method, that they had developed several years ago, namely the analysis of dendritic cell migration in microchannels of defined widths. Molecular biology methods such as RNAseq were also employed and analysed by appropriate bioinformatic tools.

      Major comments:

      • ARE THE KEY CONCLUSIONS CONVINCING? Yes, they are.

      • SHOULD THE AUTHORS QUALIFY SOME OF THEIR CLAIMS AS PRELIMINARY OR SPECULATIVE, OR REMOVE THEM ALTOGETHER? No, I think it is ok as it stands. The authors are wording their claims and conclusions not apodictically but cautiously, as it should be. They point out explicitely which lines of investigations they did not follow up here.

      • WOULD ADDITIONAL EXPERIMENTS BE ESSENTIAL TO SUPPORT THE CLAIMS OF THE PAPER? REQUEST ADDITIONAL EXPERIMENTS ONLY WHERE NECESSARY FOR THE PAPER AS IT IS, AND DO NOT ASK AUTHORS TO OPEN NEW LINES OF EXPERIMENTATION. I think that the here presented experimental evidence suffices to support the conclusions drawn. No additional experiments are necessary.

      • ARE THE SUGGESTED EXPERIMENTS REALISTIC IN TERMS OF TIME AND RESOURCES? IT WOULD HELP IF YOU COULD ADD AN ESTIMATED COST AND TIME INVESTMENT FOR SUBSTANTIAL EXPERIMENTS. Not applicable.

      • ARE THE DATA AND THE METHODS PRESENTED IN SUCH A WAY THAT THEY CAN BE REPRODUCED? Yes, they are.

      • ARE THE EXPERIMENTS ADEQUATELY REPLICATED AND STATISTICAL ANALYSIS ADEQUATE? Yes.

      Minor comments:

      • SPECIFIC EXPERIMENTAL ISSUES THAT ARE EASILY ADDRESSABLE. None

      • ARE PRIOR STUDIES REFERENCED APPROPRIATELY? Essentially yes. Regarding the reduction / loss of the adult epidermal Langerhans cell network, it may be of some interest to also refer to / discuss to another one of the few examples of this phenomenon. There, the initial burst of proliferation is followed by reduced proliferation and increased apoptosis when a critical member of the mTOR signaling cascade is conditionally knocked out (Blood 123:217, 2014).

      • ARE THE TEXT AND FIGURES CLEAR AND ACCURATE? Yes they are. Figures are well arranged for easy comprehension.

      • DO YOU HAVE SUGGESTIONS THAT WOULD HELP THE AUTHORS IMPROVE THE PRESENTATION OF THEIR DATA AND CONCLUSIONS?

      • Materials & Methods. The authors write, regarding flow cytometry of epidermal cells: "Briefly, 1cm2 of back skin from 8-14 weeks old female wild-type and knockout littermates was dissociated in 0.25 mg/mL Liberase (Sigma, cat. #5401020001) and 0.5 mg/mL DNase (Sigma, cat.#10104159001) in 1 mL of RPMI (Sigma) and mechanically disaggregated in Eppendorf tubes, FOLLOWED BY INCUBATED for 2 h at 37 {degree sign}C." Followed by what?

      • Materials & Methods. BMDC electronmicroscopy. What is "IF". Please specify.

      • RESULTS in gene expression analyses. The authors observe some increase in apoptosis (as detected by cleaved-Caspase-3 staining). Is this observation in immunofluorescence also evident in the RNAseq data (where the IFN changes were seen), i.e., in Figure 5.

      • Figure 7 F and G. Perhaps the authors may want to swap upper and lower panels in F or G, so that macrophage FACS plots and bar graphs are in the same row - ob, obiously, DC plots and bars likewise.

      • Figure 7H. "Gating strategy in ArpC4WT Lung (previously gated in Live CD45+ cells)" - The lower row is knock-out, not WT. This is indicated correctly in the legand, but in the figure both rows are labeled as WT.

      • The reference by Park et al. 2021 is missing in the list.

      • Figure 1D. Sure, the bar graphs are meant to say "CD11c"? The FACS plots show "CD11b".

      • As to cDC1. In Figure 1D the FACS plot shows an absence of CD103+ cDC1 cells. In contrast, In Figure 7A-left side panel, there is not difference in cDC1 cells between WT and KO mice. Is therefore the flow cytometry plot in Figure 1D not representative regarding cDC1 cells? Correct?

      Significance

      • DESCRIBE THE NATURE AND SIGNIFICANCE OF THE ADVANCE (E.G. CONCEPTUAL, TECHNICAL, CLINICAL) FOR THE FIELD. This is a conceptual advance. It adds a big step to our understanding of how immune cells in tissues (which all come from the bone marrow or are seeded before birth from embryonal hematopoietic organs such as yolk sac and fetal liver) can remain resident in these tissues. For cell types such as Langerhans cells, which establish their final population density within their tissues of residence, the presented finding convincingly buttress the role of proliferation and thereby the role for the actin-related protein complex 2/3 (Arp2/3).

      • PLACE THE WORK IN THE CONTEXT OF THE EXISTING LITERATURE (PROVIDE REFERENCES, WHERE APPROPRIATE). While we know much about actin-related proteins (Arp), as correctly cited by the authors, this knowledge is derived mostly from in vitro studies. The submitted study translates the findings to an in vivo setting for the first time.

      • STATE WHAT AUDIENCE MIGHT BE INTERESTED IN AND INFLUENCED BY THE REPORTED FINDINGS. Skin immunologists foremost, but these findings are of interest to the entire community of immunologists, but also cell biologists.

      • DEFINE YOUR FIELD OF EXPERTISE. My expertise is in skin immunology, in particular skin dendritic cells including Langerhans cells.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Revision Plan

      June 28, 2025

      Manuscript number: RC-2025-02982

      Corresponding author(s): Babita Madan, Nathan Harmston, David Virshup

      General Statements In Wnt signaling, the relative contributions of ‘canonical (β-catenin dependent) and non- canonical (β-catenin independent) signaling remains unclear. Here, we exploited a unique and highly robust in vivo system to study this. Our study is therefore the first comprehensive analysis of the β-catenin independent arm of the Wnt signaling pathway in a cancer model and illustrates how a combination of cis-regulatory elements can determine Wnt-dependent gene regulation.

      We are very pleased with the reviews; it appears we communicated our goal and our findings clearly, and in general the reviewers felt the study provided important information, was well planned and the results were “crystal clear”.

      While more experiments could strengthen and extend the results, we feel our results are already very robust due to the use of multiple replicates in the in vivo system.

      The Virshup lab in Singapore closed July 1, 2025 and so additional wet lab studies are not feasible.

      1. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      Below we address the points raised by the reviewers:

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The article has the merit of addressing a yet-unsolved question in the field (if beta-catenin can also repress genes) that only a limited number of studies has tried to tackle, and provides useful datasets for the community. The system employed is elegant, and the PORCN-inhibition bypassed by a ____constitutively active beta-catenin is clean and ingenious. The manuscript is clearly written.

      We thank the reviewers for their kind comments on the importance of the data. Our orthotopic model provides the opportunity to exploit robust Wnt regulated gene expression in a more responsive microenvironment than can be achieved in cell culture and simple flank xenograft models.

      Here we propose a series of thoughts and comments that, if addressed, would in our opinion improve the study and its description.

      1) We wonder why a xenograft model is necessary to induce a robust WNT response in these cells.

      The authors describe this set-up as a strength, as it is supposed to provide physiological relevance, yet it is not clear to us why this is the case.

      We welcome the opportunity to expand on our choice of an orthotopic xenograft model. It has been long established that cancer cells behave differently in different in vivo locations (Killion et al., 1998). Building on this, we confirmed this in our system that identical pancreatic cancer cells treated with the same PORCN inhibitor had very different responses in vitro, in the flank and in their orthotopic environment (Madan et al., 2018). To quote from our prior paper, “Looking only at genes decreasing more than 1.5-fold at 56 hours, we would have missed 817/1867 (44%) genes using a subcutaneous or 939/1867 (50%) using an in vitro model. Thus, the overall response to Wnt inhibition was reduced in the subcutaneous model and further blunted in vitro. An orthotopic model more accurately represents real biology.

      The reason for this is presumably the very different orthotopic microenvironment, including tissue appropriate stroma-tumor, vascular-tumor, lymphatic-tumor, and humoral interactions.

      Moreover, as the authors homogenize the tumour to perform bulk RNA-seq, we wonder whether they are not only sequencing mRNA from the cancer cells but also from infiltrating immune cells and/or from the surrounding connective tissue.

      In experiments generating RNA-seq data from xenograft models, the resulting sequences can originate from either human (graft) or mouse (host). In order to account for this, following standard practice, we filtered reads prior to alignment using Xenome (Conway et al., 2012). We have added additional text to the methods to highlight this step in our pipeline.

      2) If, as the established view implies, Wnt/beta-catenin only leads to gene activation, pathway

      inhibition would free up the transcriptional machinery - there is evidence that some of its constituents are rate-limiting. The free machinery could now activate some other genes: the net effect observed would be their increased transcription upon Wnt inhibition, irrespective of beta-catenin's presence. Could this be considered as an alternative explanation for the genes that go up in both control and bcat4A lines upon ETC-159 administration? This, we think, is in part corroborated by the absence of enrichment of biological pathways in this group of genes. The genes that are beta-catenin-dependent and downregulated (D&R) are obviously not affected by this alternative explanation.

      This is an interesting suggestion, and we will incorporate this thought into our discussion of potential mechanisms.

      3) The authors mention that HPAF-II are Wnt addicted. Do they die upon ETC-159 administration, and is this effect rescued by exogenous WNT addition?

      We and several others have previously reported that Wnt-addicted cells differentiate and/or senesce upon Wnt withdrawal in vivo but not in vitro. This is related to the broader changes in gene expression in the orthotopic tumors. The effect of PORCN inhibition has been demonstrated by us and others and is rescued by Wnt addition, downstream activation of Wnt signaling by e.g. APC mutation, and, as we show here, stabilized β-catenin.

      4) Line 120: the authors write about Figure 1C: "This demonstrates that the growth of β-cat4A cells in vitro largely requires Wnts to activate β-catenin signaling." The opposite is true: control cells require WNT and form less colony with ETC159, while β-cat4A are independent from Wnt secretion.

      We appreciate the reviewer pointing out our mis-statement. This error has now been corrected in the revised manuscript.

      5) Lines 226-229: "The β-catenin independent repressed genes were notably enriched for motifs bound by homeobox factors including GSC2, POU6F2, and MSGN1. This finding aligns with the known role of non-canonical Wnt signaling in embryonic development" This statement assumes that target genes, or at least the beta-catenin independent ones, are conserved across tissues, including developing organs. This contrasts with the view that target genes in addition to the usual suspects (e.g., AXIN2, SP5 etc.) are modulated tissue-specifically - a view that the authors (and in fact, these reviewers) appear to support in their introduction.

      We agree with the reviewer that a majority of Wnt-regulated genes are tissue specific. Indeed, the β-catenin independent Wnt-repressed genes may also be tissue specific. In other tissues, we speculate that other β-catenin independent Wnt-repressed genes may also have homeobox factor binding sites as well and so the general concept remains valid. We do not have sufficient data in other tissues to resolve this issue.

      7) The luciferase and mutagenesis work presented in Figure 5 are crystal-clear. One important aspect that remains to be clarified is whether beta-catenin and/or TCF7L2 directly bind to the NRE sites. Or do the authors hypothesize that another factor binds here? We suggest the authors to show TCF7L2 binding tracks at the NRE/WRE motifs in the main figures.

      A major question of the reviewers was, can we provide additional evidence that the NRE is bound by LEF/TCF family members. Our initial analysis of more datasets indicates TCF7L2 peaks are enriched on NREs in Wnt-β-catenin responsive cell lines like HCT116 and PANC1. These analyses appear to further support the model that the NRE binds TCF7L2, but we fully agree these analyses can neither prove nor disprove the model.

      In our revision, we will analyze additional cut and run datasets as suggested and look at the HEPG2 datasets suggested by reviewer 1. We are concerned about tissue specificity as some of the genes are not expressed in e.g. HEPG2 or HEK293 cells where datasets are available. However, our data continues to support a functional role for the NRE in the modulation of β-catenin regulated genes. The best analysis would be more ChIP-Seq or Cut and Run assays on tissues, not cells, but these studies are beyond what we can do.

      What about other TCF/LEFs and beta-catenin? Are there relevant datasets that could be explored to test whether all these bind here during Wnt activation?

      As above, We will analyze additional ChIP and Cut & Run datasets to address this question looking at β-catenin and other LEF/TCF family members. We also reflect on the fact that ChIP-Seq does not necessarily imply that the targeted factor (e.g.,TCF7L2) is bound in the target site in all the cells.

      The repression might be mediated by beta-catenin partnering with other factors that bind the NRE even by competing with TCF7L2.

      We appreciate the insightful comments and now incorporate this into our discussion.

      8) In general, while we greatly appreciate the github page to replicate the analysis, we feel that the methods' description is lacking, both concerning analytical details (e.g., the cutoff used for MACS2 peak calling) or basic experimental planning (e.g, how the luciferase assays were performed).

      We thank reviewers for the suggestions and will add further details regarding the analysis

      and experimental planning in the method sections.

      9) The paper might benefit from the addition of quality metrics on the RNA-seq. Interesting for example would be to see a PCA analysis - as a more unbiased approach - rather than the kmeans clustering.

      We have this data and will add it to the revised manuscript.

      10) It seems that in Figure 3A the clusters are mislabelled as compared to Figure 3B and Figure 1. Here the repressor clusters are labelled DR5, DR6 and DN7 whereas in the rest of the paper they are labelled DR1, DR2 and DN1.

      Thank you for pointing out this issue. This has now been corrected in Figure 3.

      11) The siCTNNB1 in Figure 5E is described to be a significant effect in the text whereas in Figure 5E this has a p value of 0.075.

      Thank you for pointing out the p value did not cross the 0.05 threshold. We have modified the text to remove the word ‘significant’.

      12) Line 396: 'Here we confirm and extend the identification of a TCF-dependent negative regulatory element (NRE), where beta-catenin interacts with TCF to repress gene expression'. We suggest caution in stating that beta-catenin and TCF directly repress gene expression by binding to NRE. In the current state the authors do not show that TCF & beta-catenin bind to these elements. See our previous point 7.

      We appreciate the suggestion of the reviewers. We will be more cautious in our interpretation.

      Further suggestions - or food for thoughts:

      13) A frequently asked question in the field concerns the off-target effects of CHIR treatment as opposed to exposure to WNT ligands. CHIR treatment - in parallel to bcat4A overexpression - would allow the authors to delineate WNT independent effects of CHIR treatment and settle this debate.

      We thank the reviewers for suggesting this interesting experiment to sort out the non- Wnt effects of GSK3 inhibition. Such a study would require a new set of animal experiments and a different analysis; we think this is beyond the scope of this manuscript.

      14) We think that Figure 4C could be strengthened by adding more public TCF-related datasets (e.g., from ENCODE) to confirm the observation across datasets from different laboratories. In particular, the HEPG2 could possibly be improved as there is an excellent TCF7L2 dataset available by ENCODE.

      Many more datasets are easily searchable through: https://www.factorbook.org/.

      As above, we will analyze the HEPG2 dataset. We plan on updating Fig 4 with data from analysis from different datasets such as (Blauwkamp et al., 2008; Zambanini et al., 2022).

      15) The authors show that there is no specific spacing between NREs and WREs. This implies that it is not likely that TCF7L2 recognizes both at the same time through the C-clamp. Do the authors think that there might be a pattern discernible when comparing the location of WRE and NRE in relation to the TCF7L2 ChIP-seq peak summit? This would allow inferring whether TCF7L2 more likely directly binds the WRE (presumably) and if the NRE is bound by a cofactor.

      This is an interesting suggestion and we will conduct this analysis as suggested on available datasets (as the result may be different in different tissue types with varying degrees of Wnt/β-catenin signaling).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Overall, the study provides a solid framework for understanding noncanonical transcriptional ____outputs of Wnt signaling in a cancer context. The majority of the conclusions are well supported by the data. However, there are a few substantive points that require clarification before the manuscript is ready for publication.

      Major Comments

      The authors' central claim-that their findings represent a comprehensive analysis of the β-catenin- independent arm of Wnt signaling and uncover a "cis-regulatory grammar" governing Wnt-dependent gene activation versus repression-is overstated based on the presented data.

      We appreciate the reviewers concern and will temper our language.

      Specifically:

      • Figure 3B identifies TF-binding motifs enriched among different Wnt-responsive gene clusters, but the authors only functionally investigate the role of NRE in β-catenin-dependent repression, particularly in the context of TCF motif interaction.

      • To support a broader claim regarding cis-regulatory grammar, additional analyses are required:

      o What is the distribution of NREs across all clusters? Are they exclusive to β-catenin-dependent repressed clusters, or more broadly present?

      The distribution of the NREs is a statistically significant enrichment; they are observed in the repressed clusters more frequently than expected by chance alone, but they are present elsewhere as well. We have tempered our language around the cis-regulatory grammar.

      o Do NREs interact with other enriched motifs beyond TCF? Is this interaction specific to repression or also involved in activation?

      This is an interesting question beyond the scope of this analysis. Our dataset uses multiple interventions; The NREs may interact with other motifs but we would need more transcriptional analysis data with biological intervention to assess this.

      o A more comprehensive analysis of cis-element combinations is needed to draw conclusions about their collective influence on gene regulation across clusters.

      We agree; This would be a great question if we had TCF binding data in our orthotopic xenograft model. It’s a dataset we do not have, nor do we have the resources to pursue this.

      Other important clarifications:

      • The use of the term "wild-type" to describe HPAF-II cells is potentially misleading. These cells are not genetically wild-type and harbor multiple oncogenic alterations.

      Thank you for pointing this out. We will use the word “parental” in the text

      • The manuscript does not clearly present the kinetics of Wnt target downregulation upon ETC-159 treatment of HPAF-II cells. Understanding whether repression mirrors activation dynamics (e.g., delay or persistence of Wnt effects) is essential to interpreting the system's temporal behavior.

      We previously addressed the temporal dynamics of activation and repression in our more comprehensive time course papers (Harmston et al., 2020; Madan et al., 2018); there are differences in the dynamics that are difficult to tease out in this new dataset as the density of time points is less. Having said that, we will compare the time course and annotate the sets of genes identified in this current study with the data from our original study to provide more information on the temporal dynamics of this system.

      Minor Comment

      • The statement in Figure 1C (lines 119-120) that "growth of β-cat4A cells in vitro largely requires Wnts to activate β-catenin signaling" is inconsistent with the data. As the β-cat4A allele encodes a constitutively active form of β-catenin, Wnts should not be required. Please revise this conclusion for clarity.

      We thank the reviewers for pointing out this mis-statement. We have corrected this.

      Reviewer #2 (Significance (Required)):

      This study offers a systematic classification of Wnt-responsive gene expression dynamics, differentiating between β-catenin-dependent and -independent mechanisms. The insights into temporal expression patterns and the potential role of the NRE element in transcriptional repression add depth to our understanding of Wnt signaling. These findings have relevance for developmental biology, stem cell biology, and cancer research-particularly in understanding how Wnt-mediated repression may influence tumor progression and therapeutic response.

      Nice review; thank you.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      … The work advances understanding of Wnt mediated repression via cis regulatory grammar.

      Major Concerns

      1) Statistical thresholds and clustering - The criteria for classifying β catenin-dependent versus - independent genes rely on FDR cutoffs above or below 0.1. If the more stringent cutoff of 0.05 was used, how many genes would still be considered Wnt regulated?

      We can readily address this in a revised manuscript.

      2) Validation of selected β catenin-dependent and -independent Wnt target genes - While the authors identify β catenin-dependent and -independent Wnt target genes (4 selected genes from different clusters in Fig.2), RT-qPCR based validation of Axin2 has been performed in Fig. S3. Authors should also validate other 3 genes as well.

      We had considered performing qPCR to re-validate some of our gene-expression changes but qPCR analyses is intrinsically more error prone than RNAseq, and we believe the literature shows that qPCR from the same samples will not add any extra utility. Previous studies that have examined this question have reported excellent correlation between the RNAseq and pPCR (Asmann et al., 2009; Griffith et al., 2010; Wu et al., 2014).

      3) NRE mechanistic insight - The most important contribution of this manuscript is the extension of the importance of the NRE motif in Wnt regulated enhancers. But the mutagenesis data provided is insufficient to conclusively nail down that the NREs are responsible for the repression. The effects in the synthetic reporters in Fig. 4D are small - it's not clear that there is much activity in the MimRep to be repressed by the NREs. The data in Fig. 5 is a better context to test the importance of the NREs, but the authors use deletion analysis which is too imprecise and settle for single nucleotide mutants in individual NREs in the ABHD11-AS1 reporter. In the Axin2 report, they mutate sequences outside of the NRE. It's too inconsistent. They should mutate 3 or 4 positions within the NRE in BOTH motifs in the context of the ABHD11-AS1 reporter. Same for the Axin2 reporter.

      We feel our analysis, coupled with the Kim paper (Kim et al., 2017), support the role of the NRE. We agree that more data is always desirable, but in our current circumstances are we cannot add additional wetlab experiments.

      Regarding Figure 4D, this is a synthetic system lacking the endogenous elements in the promoter. We agree with the reviewer that the effect is small but we would also like to point out that adding the well-established 2WRE in front of the MinRep increased the transcription activity to 1.5 fold, which is of similar magnitude change of the 2NRE deceasing the transcriptional activity 1/1.5 = 0.6.

      In Kim et al, it was shown that mutating the 11st nucleotide of the NRE motif showed the strongest effect, so we followed their lead in only mutated the 11st nucleotide in ABHD11- AS1 NRE.

      As for the putative NRE sequence present in AXIN2 promoter, its downstream sequence is polyT (__GTGTTTTTTTT__TTTTTTTTTT), if we only mutate 11st nucleotide to G/C, we could create similar sequence to NRE, so we mutated sequences outside of the NRE to fully disrupt it.

      4) Even if the mutagenesis is done more completely, the results simply replicate that of the Goentoro group. In Kim et al 2017, they provide suggestive (not convincing) evidence that TCFs directly bind to the NRE. The authors of this manuscript should explore that in more detail, e.g., can purified TCF bind to the NRE sequence? Can the authors design experiments to directly test whether beta-catenin is acting through the NRE - their data currently only demonstrates that the NRE provide a negative input to the reporters - that's an important mechanistic difference.

      We point out that our minimal reporter studies with the NRE showed a repressive effect in HCT116 (colorectal cancer cells with stabilized β-catenin) but not HT1080 (sarcoma cells with low Wnt) supporting the importance of β-catenin acting through the NRE (Figs. 4D, 4E).

      We fully agree with the reviewers that additional study of TCF interaction with the NRE would be of value. While EMSA and culture-based ChIP assays would be of some value, the best study should be done in vivo where the system is most robust. We are not in a position to do these studies, but we will add in a discussion of this as a limitation of the current study.

      5) In vertebrates, some TCFs are more repressive than others and TLEs have been implicated in repressive. Exploring these factors in the context of the NRE would increase the value of this story.

      This is an interesting idea but beyond the scope of the current manuscript. It is likely this would be dependent on tissue specific expression, local expression levels, and local binding of co-factors. As we look at other TCF members in other datasets we may be able to address this. Further wetlab experiments are beyond the scope of this work.

      **Referees cross-commenting**

      I respectfully disagree that the luciferase assays are sufficient. Using deletion analysis to understand the function of specific binding sites is insufficient and the more specific mutations of NREs are incomplete. Regarding this paper extending our knowledge of direct transcriptional repression by Wnt/bcat signaling, I don't agree that it adds much - there are numerous datasets where Wnt signaling activates and represses genes - the trick is determining whether any of the repressed genes are the result and direct regulation by TCF/bcat. They don't explore that. The main finding is an extension of the work by Lea Goentoro on the importance of the NRE motif, but they don't address whether TCF directly associates with this sequence. Goentoro argued in the 2017 paper that it does, but that data is unconvincing to me. Can purified TCF bind the NRE? Without that information (done carefully) this manuscript is very limited.

      We respectfully disagree with the reviewer regarding the contribution of this manuscript. There are certainly many datasets looking at Wnt-regulated genes in tissue culture, but these cell-based studies are underpowered to really understand Wnt biology. There are only two papers, ours and Cantú’s, that address Wnt repressed genes in any depth. No prior papers have differentiated β-catenin dependent from β-catenin independent genes before, and certainly not in an orthotopic animal model.

      A major impact of our study is the finding that only 10% of Wnt regulated genes are independent of β-catenin, at least in pancreatic cancer. We feel this is a major contribution. We further add to this analysis by re-enforcing/extend the prior evidence on the NRE in humans (and correct the motif sequence!) for Wnt-repressed genes. Our data supports the fine-tuning of the Wnt/β-catenin regulated genes by a cis-regulatory grammar.

      Reviewer #3 (Significance (Required)):

      Overall, this study advances our understanding of the dual roles of Wnt signaling in gene activation and repression, highlighting the role of the NRE motif. But this is an extension of the original NRE paper (Kim et al 2017) with no mechanistic advance beyond that original work. The transcriptomics in the first part of the manuscript have some value, but similar data sets already exist.

      We respectfully but strongly disagree with the reviewer. First, our work examines the NRE in a large-scale in vivo transcriptome dataset, significantly extending the candidate gene approach of Kim et al. Secondly, we disagree with the comment that “similar data sets already exist.” Indeed, reviewer 1 (C. Cantú) specifically pointed out we had addressed an “yet-unsolved question in the field” on whether and how β-catenin repressed genes.

      __3. __Description of the revisions that have already been incorporated in the transferred manuscript

      To date we have only corrected several typographical errors.

      1. Description of analyses that authors prefer not to carry out

      We fully agree with the reviewers that additional study of TCF interaction with the NRE would be of value. While EMSA and cell culture-based ChIP assays would be of some modest value, they have already been done in vitro by Kim et al. (Kim et al., 2017) and the best next study should be done in vivo in Wnt-responsive cancers or tissues where the biology is most robust (Madan et al., 2018) . We are not in a position to do these studies, but we will add this into the discussion as a limitation of the current study. We also acknowledge that the NRE may interact with other currently unidentified factors.

      Reviewer 1 asked about considering experiments to determine non-Wnt effects of GSK3 inhibitors like CHIR. Such a study, while interesting, would require a new set of animal experiments and a different analysis; we think this is beyond the scope of this manuscript.

      Finally, we note that the Virshup lab at Duke-NUS Medical School in Singapore, where these in vivo studies were performed, has closed as of July 1, 2025 and the various lab members have moved on to new adventures. Because of this, we are unable to undertake new wet-lab studies.

      Thank you for your consideration,

      For the authors,

      David Virshup

      References:

      Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI,

      Poland GA, Wieben ED, Kocher J-PA. 2009. 3’ tag digital gene expression profiling of human

      brain and universal reference RNA using Illumina Genome Analyzer. BMC Genom 10:531–

      1. doi:10.1186/1471-2164-10-531

      Blauwkamp TA, Chang MV, Cadigan KM. 2008. Novel TCF-binding sites specify transcriptional

      repression by Wnt signalling. The EMBO Journal 27:1436–1446. doi:10.1038/emboj.2008.80

      Conway T, Wazny J, Bromage A, Tymms M, Sooraj D, Williams ED, Beresford-Smith B. 2012.

      Xenome—a tool for classifying reads from xenograft samples. Bioinformatics 28:i172–i178.

      doi:10.1093/bioinformatics/bts236

      Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett R, Tang MJ, Hou

      Y-C, Pugh TJ, Robertson G, Chittaranjan S, Ally A, Asano JK, Chan SY, Li HI, McDonald H,

      Teague K, Zhao Y, Zeng T, Delaney A, Hirst M, Morin GB, Jones SJM, Tai IT, Marra MA.

      1. Alternative expression analysis by RNA sequencing. Nat Methods 7:843–847.

      doi:10.1038/nmeth.1503

      Harmston N, Lim JYS, Arqués O, Palmer HG, Petretto E, Virshup DM, Madan B. 2020.

      Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway.

      Cancer Res 81:464–475. doi:10.1158/0008-5472.can-20-2129

      Killion JJ, Radinsky R, Fidler IJ. 1998. Orthotopic models are necessary to predict therapy of

      transplantable tumors in mice. Cancer metastasis reviews 17:279–284.

      Kim K, Cho J, Hilzinger TS, Nunns H, Liu A, Ryba BE, Goentoro L. 2017. Two-Element

      Transcriptional Regulation in the Canonical Wnt Pathway. Current Biology 27:2357-2364.e5.

      doi:10.1016/j.cub.2017.06.037

      Madan B, Harmston N, Nallan G, Montoya A, Faull P, Petretto E, Virshup DM. 2018. Temporal

      dynamics of Wnt-dependent transcriptome reveals an oncogenic Wnt/MYC/ribosome axis. J

      Clin Invest 128:5620–5633. doi:10.1172/jci122383

      Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL,

      Sim S, Clarke MF, Quake SR. 2014. Quantitative assessment of single-cell RNA-sequencing

      methods. Nat Methods 11:41–46. doi:10.1038/nmeth.2694

      Zambanini G, Nordin A, Jonasson M, Pagella P, Cantù C. 2022. A new cut&run low volume-

      urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/b-catenin tissue-

      specific genomic targets. Development 149. doi:10.1242/dev.201124

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      MHC (Major Histocompatibility Complex) genes have long been mentioned as cases of trans-species polymorphism (TSP), where alleles might have their most recent common ancestor with alleles in a different species, rather than other alleles in the same species (e.g., a human MHC allele might coalesce with a chimp MHC allele, more recently than the two coalesce with other alleles in either species). This paper provides a more complete estimate of the extent and ages of TSP in primate MHC loci. The data clearly support deep TSP linking alleles in humans to (in some cases) old world monkeys, but the amount of TSP varies between loci.

      Strengths:

      The authors use publicly available datasets to build phylogenetic trees of MHC alleles and loci. From these trees they are able to estimate whether there is compelling support for Trans-species polymorphisms (TSPs) using Bayes Factor tests comparing different alternative hypotheses for tree shape. The phylogenetic methods are state-of-the-art and appropriate to the task.

      The authors supplement their analyses of TSP with estimates of selection (e.g., dN/dS ratios) on motifs within the MHC protein. They confirm what one would suspect: classical MHC genes exhibit stronger selection at amino acid residues that are part of the peptide binding region, and non-classical MHC exhibit less evidence of selection. The selected sites are associated with various diseases in GWAS studies.

      Weaknesses:

      An implication drawn from this paper (and previous literature) is that MHC has atypically high rates of TSP. However, rates of TSP are not estimated for other genes or gene families, so readers have no basis of comparison. No framework to know whether the depth and frequency of TSP is unusual for MHC family genes, relative to other random genes in the genome, or immune genes in particular. I expect (from previous work on the topic), that MHC is indeed exceptional in this regard, but some direct comparison would provide greater confidence in this conclusion.

      We agree that context is important! Although we expected to get the most interesting results from studying the classical genes, we did include the non-classical genes specifically for comparison. They are located in the same genomic region, have multiple sequences catalogued in different species (although they are less diverse), and perform critical immune functions. We think this is a more appropriate set to compare with the classical MHC genes than, say, a random set of genes. Interestingly, we did not detect TSP in these non-classical genes. This likely means that the classical MHC genes are truly exceptional, but it could also mean that not enough sequences are available for the non-classical genes to detect TSP. 

      It would be very interesting to repeat this analysis for another gene family to see whether such deep TSP also occurs in other immune or non-immune gene families. We are lucky that decades of past work and a dedicated database exists for cataloging MHC sequences. When this level of sequence collection is achieved for other highly polymorphic gene families, it will be possible to do a comparable analysis.  

      Given the companion paper's evidence of genic gain/loss, it seems like there is a real risk that the present study under-estimates TSP, if cases of TSP have been obscured by the loss of the TSP-carrying gene paralog from some lineages needed to detect the TSP. Are the present analyses simply calculating rates of TSP of observed alleles, or are you able to infer TSP rates conditional on rates of gene gain/loss?

      We were not able to infer TSP rates conditional on rates of gene gain/loss. We agree that some cases of TSP were likely lost due to the loss of a gene paralog from certain species. Furthermore, the dearth of MHC whole-region and allele sequences available for most primates makes it difficult to detect TSP, even if the gene paralog is still present. Long-read sequencing of more primate genomes should help with this. We agree that it would also be very interesting to study TSPs that were maintained for millions of years but were lost recently.

      Figure 5 (and 6) provide regression model fits (red lines in panel C) relating evolutionary rates (y axis not labeled) to site distance from the peptide binding groove, on the protein product. This is a nice result. I wonder, however, whether a linear model (as opposed to non-linear) is the most biologically reasonable choice, and whether non-linear functions have been evaluated. The authors might consider generalized additive models (GAMs) as an alternative that relaxes linearity assumptions.

      We agree that a linear model is likely not the most biologically reasonable choice, as protein interactions are complex. However, we made the choice to implement the simplest model because the evolutionary rates we inferred were relative, making parameters relatively meaningless. We were mainly concerned with positive or negative slopes and we leave the rest to the protein interaction experts.

      The connection between rapidly evolving sites, and disease associations (lines 382-3) is very interesting. However, this is not being presented as a statistical test of association. The authors note that fast-evolving amino acids all have at least one association: but is this really more disease-association than a random amino acid in the MHC? Or, a randomly chosen polymorphic amino acid in MHC? A statistical test confirming an excess of disease associations would strengthen this claim.

      To strengthen this claim, we added Figure 6 - Figure Supplement 7 (NOTE: this needs to be renamed as Table 1 - Figure Supplement 1, which the eLife template does not allow). Here, we plot the number of associations for each amino acid against evolutionary rate, revealing a significant positive slope in Class I. We also added explanatory text for this figure in lines 400-404.

      Reviewer #2 (Public review):

      Summary

      In this study, the authors characterized population genetic variation in the MHC locus across primates and looked for signals of long-term balancing selection (specifically trans-species polymorphism, TSP) in this highly polymorphic region. To carry out these tasks, they used Bayesian methods for phylogenetic inference (i.e. BEAST2) and applied a new Bayesian test to quantify evidence supporting monophyly vs. transspecies polymorphism for each exon across different species pairs. Their results, although mostly confirmatory, represent the most comprehensive analyses of primate MHC evolution to date and novel findings or possible discrepancies are clearly pointed out. However, as the authors discuss, the available data are insufficient to fully capture primates' MHC evolution.

      Strengths of the paper include: using appropriate methods and statistically rigorous analyses; very clear figures and detailed description of the results methods that make it easy to follow despite the complexity of the region and approach; a clever test for TSP that is then complemented by positive selection tests and the protein structures for a quite comprehensive study.

      That said, weaknesses include: lack of information about how many sequences are included and whether uneven sampling across taxa might results in some comparisons without evidence for TSP; frequent reference to the companion paper instead of summarizing (at least some of) the critical relevant information (e.g., how was orthology inferred?); no mention of the quality of sequences in the database and whether there is still potential effects of mismapping or copy number variation affecting the sequence comparison.

      To address these comments, we added Tables 2-4 to allow readers to more readily understand the data we included in each group. We refer to these tables in the introduction (line 95), in the “Data” section of the results (lines 128-129), and the “Data” section of the methods (lines 532-534).  We also added text (lines 216-219 and 250-252) to more explicitly point out that our method is conservative when few sequences are available.

      We also added a paragraph to the discussion which addresses data quality and mismapping issues (lines 473-499).

      We clarified the role of our companion paper (line 49-50) by changing “In our companion paper, we explored the relationships between the different classical and non-classical genes” to “In our companion paper, we built large multi-gene trees to explore the relationships between the different classical and non-classical genes.” We also changed the text in lines 97-99 from “In our companion paper, we compared genes across dozens of species and learned more about the orthologous relationships among them” to “In our companion paper, we built trees to compare genes across dozens of species. When paired with previous literature, these trees helped us infer orthology and assign sequences to genes in some cases.”

      Reviewer #3 (Public review):

      Summary

      The study uses publicly available sequences of classical and non-classical genes from a number of primate species to assess the extent and depth of TSP across the primate phylogeny. The analyses were carried out in a coherent and, in my opinion, robust inferential framework and provided evidence for ancient (even > 30 million years) TSP at several classical class I and class II genes. The authors also characterise evolutionary rates at individual codons, map these rates onto MHC protein structures, and find that the fastest evolving codons are extremely enriched for autoimmune and infectious disease associations.

      Strengths

      The study is comprehensive, relying on a large data set, state-of-the-art phylogenetic analyses and elegant tests of TSP. The results are not entirely novel, but a synthesis and re-analysis of previous findings is extremely valuable and timely.

      Weaknesses

      I've identified weaknesses in several areas (details follow in the next section):

      -  Inadequate description and presentation of the data used

      -  Large parts of the results read like extended figure captions, which breaks the flow. - Older literature on the subject is duly cited, but the authors don't really discuss their findings in the context of this literature.

      -  The potential impact of mechanisms other than long-term maintenance of allelic lineages by balancing selection, such as interspecific introgression and incorrect orthology assessment, needs to be discussed.

      We address these comments in the more detailed section below.

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors):

      The abstract could benefit from being sharpened. A personal pet peeve is a common habit of saying we don't know everything about a topic (line 16 - "lack a full picture of primate MHC evolution"); We never know everything on a topic, so this is hardly a strong rationale to do more work on it. This is followed by "to start addressing this gap" - which is vague because you haven't explicitly stated any gap, you simply said we are not yet omniscent on the topic. Please clearly identify a gap in our knowledge, a question that you will be able to answer with this paper.

      That makes sense! We added another sentence to the abstract to make the specific gap clearer. Inserted “In particular, we do not know to what extent genes and alleles are retained across speciation events” in lines 16-17.

      Reviewer #2 (Recommendations for the authors):

      - Some discussion of alternative explanations when certain comparisons were not found to have TSP - is this consistent with genetic drift sometimes leading to lineage loss, or does it suggest that the proposed tradeoff between autoimmunity and pathogen recognition might differ depending on primates' life history and/or exposure to similar pathogens? Could the trade-off of pathogen to self-recognition not be as costly in some species?

      This is consistent with genetic drift, as no lineages are expected to be maintained across these distantly-diverged primates under neutral selection. These ideas are certainly possible, but our Bayes Factor test only reveals evidence (or lack thereof) for deviations from the species tree and cannot provide reasons why or why not.

      - It would be interesting to put these results on very long-term balancing selection in the context of what has been reported at the region for shorter term balancing selection. The discussion compares findings of previous genes in the literature but not regarding the time scale.

      Indeed, there is some evidence for the idea of “divergent allele advantage”, in which MHC-heterozygous individuals have a greater repertoire of peptides that they can present, leading to greater resistance against pathogens and greater fitness. This heterozygote advantage thus leads to balancing selection (Pierini and Lenz, 2018; Chowell et al., 2019). Our discussion mentions other time scales of balancing selection across the primates at the MHC and other loci, but we choose to focus more on long-term than short-term balancing selection.

      - Lines 223-226 - how is the difference in BF across exons in MHC-A to be interpreted? The paragraph is about MHC-A, but then the explanation in the last sentence is for when similar BF are observed which is not the case for MHC-A. Is this interpreted as lack of evidence for TSP? Or something about recombination or gene conversion? Or that one exon may be under balancing selection but not the other?

      Thank you for pointing out the confusing logic in this paragraph. 

      Previous: “For MHC-A, Bayes factors vary considerably depending on exon and species pair. Many sequences had to be excluded from MHC-A comparisons because they were identified as gene-converted in the \textit{GENECONV} analysis or were previously identified as recombinants \citep{Hans2017,Gleimer2011,Adams2001}. Importantly, for MHC-A we do not see concordance in Bayes factors across the different exons, whereas we do for the other gene groups. Similar Bayes factors across all exons for a given comparison is thus evidence in favor of TSP being the primary driver of the observed deep coalescence structure (rather than recombination or gene conversion).” Current (lines 228-238): 

      “For MHC-A, Bayes factors vary considerably depending on exon and species pair. Past work suggests that this gene has had a long history of gene conversion affecting different exons, resulting in different evolutionary histories for different parts of the gene \citep{Hans2017,Gleimer2011,Adams2001}. Indeed, we excluded many MHC-A sequences from our Bayes factor calculations because they were identified as gene-converted in our \textit{GENECONV} analysis or were previously suggested to be recombinants. As shown in \FIG{bayes_factors_classI}, the lack of concordance in Bayes factors across the different exons for MHC-A is evidence for gene conversion, rather than balancing selection, being the most important factor in this gene's evolution. In contrast, the other gene groups generally show concordance in Bayes factors across exons. We interpret this as evidence in favor of TSP being the primary driver of the observed deep coalescence structure for MHC-B and -C (rather than recombination or gene conversion).”

      - In Figures 5C and 6C, the points sometimes show a kind of smile pattern of possibly higher rates further from the peptide. Did authors explore other fits like a polynomial? Or, whether distance only matters in close proximity to the peptide? Out of curiosity, is it possible to map substitution time/branch into the distance to the peptide binding region for each substitution? Is there any pattern with distance to interacting proteins in non-peptide binding MHC proteins like MHC-DOA? Although they don't have a PBR they do interact with other proteins.

      Thank you for these ideas! We did not explore other fits, such as a polynomial, because we wanted to implement the simplest model. Our evolutionary rates are relative, making parameters relatively meaningless. We were mainly concerned with positive or negative slopes and we leave the rest to the protein interaction experts.

      There is most likely a relationship between evolutionary rate and the distance to interacting proteins in the non-peptide-binding molecules MHC-DM and -DO. However, there are few currently available models and it is difficult to determine which residues in these models are actually interacting. However, researchers with more experience in protein interactions would be able to undertake such an analysis. 

      - How biased is the database towards human alleles? Could this affect some of the analyses, including the coincidence of rapidly evolving sites with associations? Are there more associations than expected under some null model?

      While the database is indeed biased toward human alleles, we included only a small subset of these in order to create a more balanced data set spanning the primates. This is unlikely to affect the coincidence of rapidly-evolving sites with associations; however, we note that there are no such association studies meeting our criteria in other species, meaning the associations are only coming from studies on humans.

      - To this reader, it is unnecessary and distracting to describe the figures within the text; there are frequent sentences in the text that belongs in the figure legend instead (e.g., lines 139-143, 208-211, 214-215, 328-330, etc). It would be better to focus on the results from the figures and then cite the figure, where the colors and exactly what is plotted can be in the figure legend.

      We appreciate these comments on overall flow. We removed lines 139-143 and lengthened the Figure 2 caption (and associated supplementary figure captions) to contain all necessary detail. We removed lines 208-211 and 214-215 and lengthened the captions for Figure 3, Figure 4, and associated supplementary figures. We removed a sentence from lines 303-304.  

      - I'm still concerned that the poor mappability of short-read data is contributing in some ways. Were the sequences in the database mostly from long-reads? Was nucleotide diversity calculated directly from the sequences in the database or from another human dataset? Is missing data at some sites accounted for in the denominator?

      The sequences in the database are mostly from short reads and come from a wide array of labs. We have added a paragraph to the discussion to explain the limitations of this (lines 473-499). However, the nucleotide diversity calculations shown in Figure 1 do not rely on the MHC database; rather, they are calculated from the human genomes in the 1000 Genomes project. Nucleotide diversity would be calculable for other species, but we did not do so for exactly the reason you mention–too much missing data.

      - The Figure 2 and Figure 3 supplements took me a little bit to understand - is it really worth pointing out the top 5 Bayes-factor comparisons when there is no evidence for TSP? A lot of the colored squares are not actually supporting TSP but in the grids you can't see which are and which aren't without looking at the Bayes Factor. I wonder if it would help if only those with BF > 100 were shown? Or if these were marked some other way so that it was easy to see where TSPs are supported.

      Thank you for your perspective on these figures! We initially limited them to only show >100 Bayes factors for each gene group and region, but some gene groups have no high Bayes factors. Additionally, the “summary” tree pictured in these figures is necessarily a simplification of the full space of posterior trees. We felt that showing low Bayes factor comparisons could help readers understand this relationship. For example, allele sets that look non-monophyletic on the summary tree may still have a low Bayes factor, showing that they are generally monophyletic throughout the larger (un-visualizable) space of trees.

      Reviewer #3 (Recommendations for the authors):

      Specific comments

      Abstract

      I think the abstract would benefit from some editing. For example, one might get the impression that you equate allele sharing, which would normally be understood as sharing identical sequences, with sharing ancestral allelic lineages. This distinction is important because you can have many TSPs without sharing identical allele sequences. In l. 20 you write about "deep TSP", which requires either definition of reformulation. In l. 21-23 you seem to suggest that long-term retention of allelic lineages is surprising in the light of rapid sequence evolution - it may be, depending on the evolutionary scenarios one is willing to accept, but perhaps it's not necessary to float such a suggestion in the abstract where it cannot be properly explained due to space constraints? The last sequence needs a qualifier like "in some cases".

      Thank you for catching these! For clarity, we changed several words:

      ● “alleles” to “allelic lineages” in line 13

      ● “deep” to “ancient” in line 21

      ● “Despite” to “in addition to” in line 22

      ● Added “in some cases” to line 28

      Results - Overall, parts of the results read like extended figure captions. I understand that the authors want to make the complex figures accessible to the reader. However, including so much information in the text disrupts the flow and makes it difficult to follow what the main findings and conclusions are.

      We appreciate these comments on overall flow. We removed lines 139-143 and lengthened the Figure 2 caption (and associated supplementary figure captions) to contain all necessary detail. We removed lines 208-211 and 214-215 and lengthened the captions for Figure 3, Figure 4, and associated supplementary figures. We removed a sentence from lines 303-304.  

      l. 37-39 such a short sentence on non-classical MHC is necessarily an oversimplification, I suggest it be expanded or deleted.

      There is certainly a lot to say about each of these genes! While we do not have space in this paper’s introduction to get into these genes’ myriad functions, we added a reference to our companion paper in lines 40-41:

      “See the appendices of our companion paper \citep{Fortier2024a} for more detail.”

      These appendices are extensive, and readers can find details and references for literature on each specific gene there. In addition, several genes are mentioned in analyses further on in the results, and their specific functions are discussed in more detail when they arise.

      l. 47 -49 It would be helpful to briefly outline your criteria for selecting these 17 genes, even if this is repeated later.

      Thank you! For greater clarity, we changed the text (lines 50-52) from “Here, we look within 17 specific genes to characterize trans-species polymorphism, a phenomenon characteristic of long-term balancing selection.” to “Here, we look within 17 specific genes---representing classical, non-classical, Class I, and Class II ---to characterize trans-species polymorphism, a phenomenon characteristic of long-term balancing selection.“  

      l.85-87 I may be completely wrong, but couldn't problems with establishing orthology in some cases lead to false inferences of TSP, even in primates? Or do you think the data are of sufficient quality to ignore such a possibility? (you touch on this in pp. 261-264)

      Yes, problems with establishing orthology can lead to false inferences of TSP, and it has happened before. For example, older studies that used only exon 2 (binding-site-encoding) of the MHC-DRB genes inferred trees that grouped NWM sequences with ape and OWM sequences. Thus, they named these NWM genes MHC-DRB3 and -DRB5 to suggest orthology with ape/OWM MHC-DRB3 and -DRB5, and they also suggested possible TSP between the groups. However, later studies that used non-binding-site-encoding exons or introns noticed that these NWM sequences did not group with ape/OWM sequences (which now shared the same name), providing evidence against orthology. This illustrates that establishing orthology is critical before assessing TSP (as is comparing across regions). This is part of the reason we published a companion paper (https://doi.org/10.7554/eLife.103545.1), which clears up questions of orthology and supports the analyses we did in this paper. In cases where orthology was ambiguous, this also helped us to be conservative in our conclusions here. The problems with ambiguous gene assignment are also discussed in lines 488-499.

      l. 88-93 is the first place (others are pp. 109-118 and 460-484) where a fuller description of the data used would be welcome. It's clear that the amount of data from different species varies enormously, not only in the number of alleles per locus, but also in the loci for which polymorphism data are available. In such a synthesis study, one would expect at least a tabulation of the data used in the appendices and perhaps a summary table in the main article.

      l. 109-118 Again, a more quantitative summary of the data used, with reference to a table, would be useful.

      Thank you! To address these comments, we added Tables 2-4 to allow readers to more readily understand the data we included in each group. We refer to these tables in the introduction (line 95), in the “Data” section of the results (lines 128-129), and the “Data” section of the methods (lines 532-534). Supplementary Files listing the exact alleles and sequences used in each group are also included in the resubmission.

      l. 123-124 here you say that the definition of the "16 gene groups" is in the methods (probably pp. 471-484), but it would be useful to present an informative summary of your rationale in the introduction or here

      Thank you! We agree that it is helpful to outline these groups earlier. We have changed the paragraph in lines 123-135 from: 

      “We considered 16 gene groups and two or three different genic regions for each group: exon 2 alone, exon 3 alone, and/or exon 4 alone. Exons 2 and 3 encode the peptide-binding region (PBR) for the Class I proteins, and exon 2 alone encodes the PBR for the Class II proteins. For the Class I genes, we also considered exon 4 alone because it is comparable in size to exons 2 and 3 and provides a good contrast to the PBR-encoding exons. See the Methods for more detail on how gene groups were defined. Because few intron sequences were available for non-human species, we did not include them in our analyses.” To: 

      “We considered 16 gene groups spanning MHC classes and functions. These include the classical Class I genes (MHC-A-related, MHC-B-related, MHC-C-related), non-classical Class I genes (MHC-E-related, MHC-F-related, MHC-G-related), classical Class IIA genes (MHC-DRA-related, MHC-DQA-related, MHC-DPA-related), classical Class IIB genes (MHC-DRB-related, MHC-DQB-related, MHC-DPB-related), non-classical Class IIA genes (MHC-DMA-related, MHC-DOA-related, and non-classical Class IIB genes (MHC-DMB-related, MHC-DOB-related). We studied two or three different genic regions for each group: exon 2 alone, exon 3 alone, and (for Class I) exon 4 alone. Exons 2 and 3 encode the peptide-binding region (PBR) for the Class I proteins, and exon 2 alone encodes the PBR for the Class II proteins. For the Class I genes, we also considered exon 4 alone because it is comparable in size to exons 2 and 3 and provides a good contrast to the PBR-encoding exons. Because few intron sequences were available for non-human species, we did not include them in our analyses.”

      l. 100 "alleles" -> "allelic lineages"

      Thank you for catching this. We have changed this language in line 104.

      l. 227-238 it's important to discuss the possible effect of the number of sequences available on the detectability of TSP - this is particularly important as the properties of MHC genealogies may differ considerably from those expected for neutral genealogies.

      This is a good point that may not be obvious to readers. We have added several sentences to clarify this:

      Line 193-194: “In a neutral genealogy, monophyly of each species' sequences is expected.”

      Line 213-219: “Note that the number of sequences available for comparison also affects the detectability of TSP. For example, if the only sequences available are from the same allelic lineage, they will coalesce more recently in the past than they would with alleles from a different lineage and would not show evidence for TSP. This means our method is well-suited to detect TSP when a diverse set of allele sequences are available, but it is conservative when there are few alleles to test. There were few available alleles for some non-classical genes, such as MHC-F, and some species, such as gibbon.”

      Line 244-246: “However, since there are fewer alleles available for the non-classical genes, we note that our method is likely to be conservative here.”

      l. 301 and 624-41 it's been difficult for me to understand the rationale behind using rates at mostly gap positions as the baseline and I'd be grateful for a more extensive explanation

      Normalizing the rates posed a difficult problem. We couldn’t include every single sequence in the same alignment because BEAST’s computational needs scale with the number of sequences. Therefore, we had to run BEAST separately on smaller alignments focused on a single group of genes at a time. We still wanted to be able to compare evolutionary rates across genes, but because of the way SubstBMA is implemented, evolutionary rates are relative, not absolute. Recall that to help us compare the trees, we included a common set of “backbone” sequences in all of the 16 alignments. This set included some highly-diverged genes. Initially, we planned to use 4-fold degenerate sites as the baseline sites for normalization, but there simply weren’t enough of them once we included the “backbone” set on top of the already highly diverse set of sequences in each alignment. This diversity presented an opportunity.  In BEAST, gaps are treated as missing and do not contribute any probability to the relevant branch or site (https://groups.google.com/g/beast-users/c/ixrGUA1p4OM/m/P4R2fCDWMUoJ?pli=1). So, we figured that sites that were “mostly gap” (a gap in all the human backbone sequences but with an insertion in some sequence) were mostly not contributing to the inference of the phylogeny or evolutionary rates. Because the “backbone” sequences are common to all alignments, making the “mostly gap” sites somewhat comparable across sets while not affecting inferred rates, we figured they would be a reasonable choice for the normalization (for lack of a better option).

      We added text to lines 680 and 691-693 to clarify this rationale.

      l. 380-84 this overview seems rather superficial. Would it be possible to provide a more quantitative summary?

      To make this more quantitative, we plotted the number of associations for each amino acid against evolutionary rate, shown in Figure 6 - Figure Supplement 7 (NOTE: this needs to be renamed as Table 1 - Figure Supplement 1, which the template does not allow). This reveals a significant positive slope for the Class I genes, but not for Class II. We also added explanatory text for this figure in lines 400-404.

      Discussion - your approach to detecting TSP is elegant but deserves discussion of its limitations and, in particular, a clear explanation of why detecting TSP rather than quantifying its extent is more important in the context of this work. Another important point for discussion is alternative explanations for the patterns of TSP or, more broadly, gene tree - species tree discordance. Although long-term maintenance of allelic lineages due to long-term balancing selection is probably the most convincing explanation for the observed TSP, interspecific introgression and incorrect orthology assessment may also have contributed, and it would be good to see what the authors think about the potential contribution of these two factors.

      Overall, our goal was to use modern statistical methods and data to more confidently assess how ancient the TSP is at each gene. We have added several lines of text (as noted elsewhere in this document) to more clearly illustrate the limitations of our approach. We also agree that interspecific introgression and incorrect orthology assessment can cause similar patterns to arise. We attempted to minimize the effect of incorrect orthology assessment by creating multi-gene trees and exploring reference primate genomes, as described in our companion paper (https://doi.org/10.7554/eLife.103545.1), but cannot eliminate it completely. We have added a paragraph to the discussion to address this (lines 488-499). Interspecific introgression could also cause gene tree-species tree discordance, but we are not sure about how systematic this would have to be to cause the overall patterns we observe, nor about how likely it would have been for various clades of primates across the world.

      l. 421 -424 A more nuanced discussion distinguishing between positive selection, which facilitates the establishment of a mutation, and directional selection, which leads to its fixation, would be useful here.

      We added clarification to this sentence (line 443-445), from “Indeed, within the phylogeny we find that the most rapidly-evolving codons are substituted at around 2--4-fold the baseline rate.” to “Indeed, within the phylogeny we find that the most rapidly-evolving codons are substituted at around 2--4-fold the baseline rate, generating ample mutations upon which selection may act.”

      l. 432-434 You write here about the shaping of TCR repertoires, but I couldn't find any such information in the paper, including Table 1.

      We did not include a separate column for these, so they can be hard to spot. They take the form of “TCR 𝛽 Interaction Probability >50%”, “TCR Expression (TRAV38-1)”, or “TCR 𝛼 Interaction Probability >50%” and can be found in Table 1.

      l. 436-442 Here a more detailed discussion in the context of divergent allelic advantage and even the evolution of new S-type specificities in plants would be valuable.

      We added an additional citation to a review article to this sentence (lines 438-439).  

      l. 443 The use of the word "training" here is confusing, suggesting some kind of "education" during the lifetime of the animal.

      We agree that “train” is not an entirely appropriate term, and have changed it to “evolve” (line 465).

      489-491 What data were used for these calculations?

      Apologies for missing this citation! We used the 1000 genomes project data, and the citation has been updated (line 541-542).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      1. The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K'). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed "normal, fully expanded" lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system.

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E).

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I'), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.

      Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion to more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy.

      Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I'). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManII-GFP signals. Standard colocalization analysis methods, such as Pearson's correlation coefficient or Mander's overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L').

      I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed "filled" electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      1. The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology.

      Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to "defective sulfation affects Golgi structures and multiple routes of intracellular trafficking".

      DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. Dpy-YFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5-figure supplement 2C.

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly.

      Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to "constrictions" to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes?

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H).

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly.

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np.

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT.

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively.

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      Minor: Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error. It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance (Required)):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      minor comments 1. Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsmMI07716 line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.

      The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.

      Reviewer #2 (Significance (Required)):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      • This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I') and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.

      • A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed). This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila. Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130.

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants-although this line was very sick and difficult to grow-showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss.

      • A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a product recognized by WGA? For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We're also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism's proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant.

      • Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly.

      After cleavages by Np and furin, the Pio protein should have three fragments. The N-terminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals.

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1's comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals.

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      • What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That's probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      • The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3.

      • The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      • It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.

      • The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a "C-terminal ZP domain", which is a middle piece after furin + Np cleavages.

      • The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance (Required)):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. Reviewer #2 (Public review):

      The authors aimed to develop an animal model of temporal lobe epilepsy (TLE) that will generate "on-demand" seizures and an improved platform to advance our ability to find new anti-seizure drugs (ASDs) for drug-resistant epilepsy (DRE). Unlike some of the work in this field, the authors are studying actual seizures, and hopefully events that are similar to actual epileptic seizures. To develop an optimized screening tool, however, one also needs high-throughput systems with actual seizures as a quantitative, rigorous, and reproducible outcome measures. The authors aim to provide such a model; however, this approach may be over-stated here and seems unlikely to address the critical issue of drug resistance, which is their most important claim.

      Strengths:

      - The authors have generated an animal model of "on demand" seizures, which could be used to screen new ASDs and potentially other therapies. The authors and their model make a good-faith effort to emulate the epileptic condition and to use seizure susceptibility or probability as a quantitative output measure.

      - The events considered to be seizures appear to be actual seizures, with some evidence that the seizures are different from seizures in the naïve brain. Their effort to determine how different ASDs raise seizure probability or threshold to an optogenetic stimulus to the CA1 area of the rodent hippocampus is focused on an important problem, as many if not most ASD screening uses surrogate measures that may not be as well linked to actual epileptic seizures.

      - Another concern is their stimulation of dorsal hippocampus, while ventral hippocampus would seem more appropriate.

      - Use of optogenetic techniques allows specific stimulation of the targeted CA1 pyramidal cells, and it appears that this approach is reproducible and reliable with quantitative rigor.

      - The authors have taken on a critically important problem, and have made a good-faith effort to address many of the technical concerns raised in the reviews, but the underlying problem of DRE remains.

      Weaknesses:

      - Although the model has potential advantages, it also has disadvantages. As stated by the authors, the pre-test work-load to prepare the model may not be worth the apparent advantages. And most important, the paper frequently mentions DRE but does not directly address it, and yet drug resistance is the critical issue in this field.

      - Although the paper shows examples of actual seizures, there remains some concern that some of the events might not be seizures - or a homogeneous population of seizures. More quantitative assessment of the electrical properties (e.g., duration) of the seizures and their probability is likely to be more useful than the proposed quantification in the future of the behavioral seizure stages, because the former could be both more objective and automated, while the behavioral analysis of the seizures will likely be more subjective and less reliable (and also fraught with subjectivity and analytical problems). Nonetheless, the authors point that the presence of "Racine 3 or above" behavioral seizures (in addition to their electrical data) is a good argument that many (if not all) of the "seizures" are actual epileptic seizures.

      - Optogenetic stimulation of CA1 provides cell-specificity for the stimulation, but it is not clear that this method would actually be better than electrical stimulation of a kindled rodent with superimposed hippocampal injury. The reader is unfortunately left with the concern of whether this model would be easier and more efficacious than kindling.

      - Although the authors have taken on a critically important problem, and have combined a variety of technologies, this approach may facilitate more rapid screening of ASDs against actual seizures (beneficial), but it does not really address the fundamentally critical yet difficult problem of DRE. A critical issue for DRE that is not well-addressed relates to adverse effects, which is often why many ASDs are not well tolerated by many patients (e.g., LEV). Thus, we are left with: how does this address anti-seizure DRE?

      - The focus of this paper seems to be more on seizures more than on epilepsy. In the absence of seizure spontaneity, the work seems to primarily address the issues of seizure spread and duration. Although this is useful, it does not seem to be addressing the question of what trips the system to generate a seizure.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      - The authors seem to have developed a new and useful model; however, it is not clear how this will address that core problem of DRE, which was their stated aim.

      - A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community.

      - As stated before in the original review, the potential impact would primarily be aimed at the ETSP or a drug-testing CRO; however, much more work will be required to convince the epilepsy community that this approach will actually identify new ASDs for DRE. The approach is potentially time-consuming with a steep and potentially difficult optimization curve, and thus may not be readily adaptable to the typical epilepsy-models neuroscience laboratory.

      Any additional context you think would help readers interpret or understand the significance of the work:

      - The problem of DRE is much more complicated than described by the authors here; however, the paper could end up being more useful than is currently apparent. Although this work could be seen as technically - and maybe conceptually - elegant and a technical tour de force, will it "deliver on the promise"? Is it better than kindling for DRE? In attempting to improve the discovery process, how will the model move us to another level? Will this model really be any better than others, such as kindling?

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the Reviewers for their constructive comments and the Editor for the possibility to address the Reviewers’ points in this rebuttal. We 

      (1) Conducted new experiments with NP6510-Gal4 and TH-Gal4 lines to address potential behavioral differences due to targeting dopaminergic vs. both dopaminergic and serotonergic neurons

      (2) Conducted novel data analyses to emphasize the strength of sampling distributions of behavioral parameters across trials and individual flies

      (3) Provided Supplementary Movies

      (4) Calculated additional statistics

      (5) Edited and added text to address all points of the Reviewers.

      Please see our point-by-point responses below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Translating discoveries from model organisms to humans is often challenging, especially in neuropsychiatric diseases, due to the vast gaps in the circuit complexities and cognitive capabilities. Kajtor et al. propose to bridge this gap in the fly models of Parkinson's disease (PD) by developing a new behavioral assay where flies respond to a moving shadow by modifying their locomotor activities. The authors believe the flies' response to the shadow approximates their escape response to an approaching predator. To validate this argument, they tested several PD-relevant transgenic fly lines and showed that some of them indeed have altered responses in their assay.

      Strengths:

      This single-fly-based assay is easy and inexpensive to set up, scalable, and provides sensitive, quantitative estimates to probe flies' optomotor acuity. The behavioral data is detailed, and the analysis parameters are well-explained.

      We thank the Reviewer for the positive assessment of our study.

      Weaknesses:

      While the abstract promises to give us an assay to accelerate fly-to-human translation, the authors need to provide evidence to show that this is indeed the case. They have used PD lines extensively characterized by other groups, often with cheaper and easier-to-setup assays like negative geotaxis, and do not offer any new insights into them. The conceptual leap from a low-level behavioral phenotype, e.g. changes in walking speed, to recapitulating human PD progression is enormous, and the paper does not make any attempt to bridge it. It needs to be clarified how this assay provides a new understanding of the fly PD models, as the authors do not explore the cellular/circuit basis of the phenotypes. Similarly, they have assumed that the behavior they are looking at is an escape-from-predator response modulated by the central complex- is there any evidence to support these assumptions? Because of their rather superficial approach, the paper does not go beyond providing us with a collection of interesting but preliminary observations.

      We thank the Reviewer for pointing out some limitations of our study. We would like to emphasize that what we perceive as the main advantage of performing single-fly and single-trial analyses is the access to rich data distributions that provide more fine-scale information compared to bulk assays. We think that this is exactly going one step closer to ‘bridging the enormous conceptual leap from a low-level behavioral phenotype, e.g. changes in walking speed, to recapitulating human PD progression’, and we showcase this in our study by comparing the distributions over the entire repertoire of behavioral responses across fly mutants. Nevertheless, we agree with the Reviewer that many more steps in this direction are needed to improve translatability. Therefore, we toned down the corresponding statements in the Abstract and in the Introduction. Moreover, to further emphasize the strength of sampling distributions of behavioral parameters across trials and individual flies, we complemented our comparisons of central tendencies with testing for potential differences in data dispersion, demonstrated in the novel Supplementary Figure S4.

      Looming stimuli have been used to characterize flies’ escape behaviors. These studies uncovered a surprisingly rich behavioral repertoire (Zacarias et al., 2018), which was modulated by both sensory and motor context, e.g. walking speed at time of stimulus presentation (Card and Dickinson, 2008; Oram and Card, 2022; Zacarias et al., 2018). The neural basis of these behaviors was also investigated, revealing loom-sensitive neurons in the optic lobe and the giant fiber escape pathway (Ache et al., 2019; de Vries and Clandinin, 2012). Although less frequently, passing shadows were also employed as threat-inducing stimuli in flies (Gibson et al., 2015). We opted for this variant of the stimulus so that we could ensure that the shadow reached the same coordinates in all linear track concurrently, aiding data analysis and scalability. Similar to the cited study, we found the same behavioral repertoire as in studies with looming stimuli, with an equivalent dependence on walking speed, confirming that looming stimuli and passing shadows can both be considered as threat-inducing visual stimuli. We added a discussion on this topic to the main text.

      Reviewer #2 (Public Review):

      In this study, Kajtor et al investigated the use of a single-animal trial-based behavioral assay for the assessment of subtle changes in the locomotor behavior of different genetic models of Parkinson's disease of Drosophila. Different genotypes used in this study were Ddc-GAL4>UASParkin-275W and UAS- α-Syn-A53T. The authors measured Drosophila's response to predatormimicking passing shadow as a threatening stimulus. Along with these, various dopamine (DA) receptor mutants, Dop1R1, Dop1R2 and DopEcR were also tested.

      The behavior was measured in a custom-designed apparatus that allows simultaneous testing of 13 individual flies in a plexiglass arena. The inter-trial intervals were randomized for 40 trials within 40 minutes duration and fly responses were defined into freezing, slowing down, and running by hierarchical clustering. Most of the mutant flies showed decreased reactivity to threatening stimuli, but the speed-response behavior was genotype invariant.

      These data nicely show that measuring responses to the predator-mimicking passing shadows could be used to assess the subtle differences in the locomotion parameters in various genetic models of Drosophila.

      The understanding of the manifestation of various neuronal disorders is a topic of active research. Many of the neuronal disorders start by presenting subtle changes in neuronal circuits and quantification and measurement of these subtle behavior responses could help one delineate the mechanisms involved. The data from the present study nicely uses the behavioral response to predator-mimicking passing shadows to measure subtle changes in behavior. However, there are a few important points that would help establish the robustness of this study.

      We thank the Reviewer for the constructive comments and the positive assessment of our study.

      (1) The visual threat stimulus for measuring response behavior in Drosophila is previously established for both single and multiple flies in an arena. A comparative analysis of data and the pros and cons of the previously established techniques (for example, Gibson et al., 2015) with the technique presented in this study would be important to establish the current assay as an important advancement.

      We thank the Reviewer for this suggestion. We included the following discussion on measuring response behavior to visual threat stimuli in the revised manuscript.

      Many earlier studies used looming stimulus, that is, a concentrically expanding shadow, mimicking the approach of a predator from above, to study escape responses in flies (Ache et al., 2019; Card and Dickinson, 2008; de Vries and Clandinin, 2012; Oram and Card, 2022; Zacarias et al., 2018) as well as rodents (Braine and Georges, 2023; Heinemans and Moita, 2024; Lecca et al., 2017). These assays have the advantage of closely resembling naturalistic, ecologically relevant threatinducing stimuli, and allow a relatively complete characterization of the fly escape behavior repertoire. As a flip side of their large degree of freedom, they do not lend themselves easily to provide a fully standardized, scalable behavioral assay. Therefore, Gibson et al. suggested a novel threat-inducing assay operating with moving overhead translational stimuli, that is, passing shadows, and demonstrated that they induce escape behaviors in flies akin to looming discs (Gibson et al., 2015). This assay, coined ReVSA (repetitive visual stimulus-induced arousal) by the authors, had the advantage of scalability, while constraining flies to a walking arena that somewhat restricted the remarkably rich escape types flies otherwise exhibit. Here we carried this idea one step further by using a screen to present the shadows instead of a physically moving paddle and putting individual flies to linear corridors instead of the common circular fly arena. This ensured that the shadow reached the same coordinates in all linear tracks concurrently and made it easy to accurately determine when individual flies encountered the stimulus, aiding data analysis and scalability. We found the same escape behavioral repertoire as in studies with looming stimuli and ReVSA (Gibson et al., 2015; Zacarias et al., 2018), with a similar dependence on walking speed (Oram and Card, 2022; Zacarias et al., 2018), confirming that looming stimuli and passing shadows can both be considered as threat-inducing visual stimuli.  

      (2) Parkinson's disease mutants should be validated with other GAL-4 drivers along with DdcGAL4, such as NP6510-Gal4 (Riemensperger et al., 2013). This would be important to delineate the behavioral differences due to dopaminergic neurons and serotonergic neurons and establish the Parkinson's disease phenotype robustly.

      We thank the Reviewer for point out this limitation. To address this, we repeated our key experiments in Fig.3. with both TH-Gal4 and NP6510-Gal4 lines, and their respective controls. These yielded largely similar results to the Ddc-Gal4 lines reported in Fig.3., reproducing the decreased speed and decreased overall reactivity of PD-model flies. Nevertheless, TH-Gal4 and NP6510-Gal4 mutants showed an increased propensity to stop. Stop duration showed a significant increase not only in α-Syn but also in Parkin fruit flies. These novel results have been added to the text and are demonstrated in Supplementary Figure S3.

      (3) The DopEcR mutant genotype used for behavior analysis is w1118; PBac{PB}DopEcRc02142TM6B, Tb1. Balancer chromosomes, such as TM6B,Tb can have undesirable and uncharacterised behavioral effects. This could be addressed by removing the balancer and testing the DopEcR mutant in homozygous (if viable) or heterozygous conditions.

      We appreciate the Reviewer's comment and acknowledge the potential for the DopEcR balancer chromosome to produce unintended behavioral effects. However, given that this mutant was not essential to our main conclusions, we opted not to repeat the experiment. Nevertheless, we now discuss the possible confounds associated with using the PBac{PB}DopEcRc02142 mutant allele over the balancer chromosome. “We recognize a limitation in using PBac{PB}DopEcRc02142 over the  TM6B, Tb<sup>1</sup> balancer chromosome, as the balancer itself may induce behavioral deficits in flies. We consider this unlikely, as the PBac{PB}DopEcRc02142 mutation demonstrates behavioral effects even in heterozygotes (Ishimoto et al., 2013). Additionally, to our knowledge, no studies have reported behavioral deficits in flies carrying the TM6B, Tb<sup>1</sup> balancer chromosome over a wild-type chromosome.”

      (4) The height of the arena is restricted to 1mm. However, for the wild-type flies (Canton-S) and many other mutants, the height is usually more than 1mm. Also, a 1 mm height could restrict the fly movement. For example, it might not allow the flies to flip upside down in the arena easily. This could introduce some unwanted behavioral changes. A simple experiment with an arena of height at least 2.5mm could be used to verify the effect of 1mm height.

      We thank the Reviewer for this comment, which prompted us to reassess the dimensions of the apparatus. The height of the arena was 1.5 mm, which we corrected now in the text. We observed that the arena did not restrict the flies walking and that flies could flip in the arena. We now include two Supplementary Movies to demonstrate this.

      (5) The detailed model for Monte Carlo simulation for speed-response simulation is not described. The simulation model and its hyperparameters need to be described in more depth and with proper justification.

      We thank the Reviewer for pointing out a lack of details with respect to Monte Carlo simulations. We used a nested model built from actual data distributions, without any assumptions. Accordingly, the stimulation did not have hyperparameters typical in machine learning applications, the only external parameter being the number of resamplings (3000 for each draw). We made these modeling choices clearer and expanded this part as follows.

      “The effect of movement speed on the distribution of behavioral response types was tested using a nested Monte Carlo simulation framework (Fig. S5). This simulation aimed to model how different movement speeds impact the probability distribution of response types, comparing these simulated outcomes to empirical data. This approach allowed us to determine whether observed differences in response distributions are solely due to speed variations across genotypes or if additional behavioral factors contribute to the differences. First, we calculated the probability of each response type at different specific speed values (outer model). These probabilities were derived from the grand average of all trials across each genotype, capturing the overall tendency at various speeds. Second, we simulated behavior of virtual flies (n = 3000 per genotypes, which falls within the same order of magnitude as the number of experimentally recorded trials from different genotypes) by drawing random velocity values from the empirical velocity distribution specific to the given genotype and then randomly selecting a reaction based on the reaction probabilities associated with the drawn velocity (inner model). Finally, we calculated reaction probabilities for the virtual flies and compared it with real data from animals of the same genotype.

      Differences were statistically tested by Chi-squared test.”

      (6) The statistical analysis in different experiments needs revisiting. It wasn't clear to me if the authors checked if the data is normally distributed. A simple remedy to this would be to check the normality of data using the Shapiro-Wilk test or Kolmogorov-Smirnov test. Based on the normality check, data should be further analyzed using either parametric or non-parametric statistical tests. Further, the statistical test for the age-dependent behavior response needs revisiting as well. Using two-way ANOVA is not justified given the complexity of the experimental design. Again, after checking for the normality of data, a more rigorous statistical test, such as split-plot ANOVA or a generalized linear model could be used.

      We thank the Reviewer for this comment. We performed Kolmogorov-Smirnov test for normality on the data distributions underlying Figure 3, and normality was rejected for all data distributions at p = 0.05, which justifies the use of the non-parametric Mann-Whitney U-test. Regarding ANOVA, we would like to point out that the ANOVA hypothesis test design is robust to deviations from normality (Knief and Forstmeier, 2021; Mooi et al., 2018). While the Kruskal-Wallis test is considered a reasonable non-parametric alternative of one-way ANOVA, there is no clear consensus for a non-parametric alternative of two-way ANOVA. Therefore, we left the two-way ANOVA for Figure 5 in place; however, to increase the statistical confidence in our conclusions, we performed Kruskal-Wallis tests for the main effect of age and found significant effects in all genotypes in accordance with the ANOVA, confirming the results (Stop frequency, DopEcR p = 0.0007; Dop1R1, p = 0.004; Dop1R2, p = 9.94 × 10<sup>-5</sup>; w<sup>1118</sup>, p = 9.89 × 10<sup>-13</sup>; y<sup>1</sup> w<sup>67</sup>c<sup>23</sup>, p = 2.54 × 10<sup>-5</sup>; Slowing down frequency, DopEcR, p = 0.0421; Dop1R1, p = 5.77 x 10<sup>-6</sup>; Dop1R2, p = 0.011; w<sup>1118</sup>, p = 2.62 x 10<sup>-5</sup>; y<sup>1</sup> w<sup>67</sup>c<sup>23</sup>, p = 0.0382; Speeding up frequency, DopEcR, p = 0.0003; Dop1R1, p = 2.06 x 10<sup>-7</sup>; Dop1R2, p = 2.19 x 10<sup>-6</sup>; w<sup>1118</sup>, p = 0.0044; y<sup>1</sup> w<sup>67</sup>c<sup>23</sup>, p = 1.36 x 10<sup>-5</sup>). We also changed the post hoc Tukey-tests to post hoc Mann-Whitney tests in the text to be consistent with the statistical analyses for Figure 3. These resulted in very similar results as the Tukey-tests. Of note, there isn’t a straightforward way of correcting for multiple comparisons in this case as opposed to the Tukey’s ‘honest significance’ approach, we thus report uncorrected p values and suggest considering them at p = 0.01, which minimizes type I errors. These notes have been added to the ‘Data analysis and statistics’ Methods section.

      (7) The dopamine receptor mutants used in this study are well characterized for learning and memory deficits. In the Parkinson's disease model of Drosophila, there is a loss of DA neurons in specific pockets in the central brain. Hence, it would be apt to use whole animal DA receptor mutants as general DA mutants rather than the Parkinson's disease model. The authors may want to rework the title to reflect the same.

      We thank the Reviewer for this comment, which suggests that we were not sufficiently clear on the Drosophila lines with DA receptor mutations. We used Mi{MIC} random insertion lines for dopamine receptor mutants, namely y<sup>1</sup> w<sup>*1</sup>; Mi{MIC}Dop1R1<sup>MI04437</sup> (BDSC 43773), y<sup>1</sup> w<sup>*1</sup>; Mi{MIC}Dop1R2<sup>MI08664</sup> (BDSC 51098) (Harbison et al., 2019; Pimentel et al., 2016), and w<sup>1118</sup>; PBac{PB}DopEcR<sup>c02142</sup>/TM6B, Tb<sup>1</sup> (BDSC 10847) (Ishimoto et al., 2013; Petruccelli et al., 2020, 2016). These lines carried reported mutations in dopamine receptors, most likely generating partial knock down of the respective receptors. We made this clearer by including the full names at the first occurrence of the lines in Results (beyond those in Methods) and adding references to each of the lines.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Please think about focusing the manuscript either on the escape response or the PD pathology and provide additional evidence to demonstrate that you indeed have a novel system to address open questions in the field.

      As detailed above, we now emphasize more that the main advantage of our single-trial-based approach lies in the appropriate statistical comparison of rich distributions of behavioral data. Please see our response to the ‘Weaknesses’ section for more details.

      (2) Please explain the rationale for choosing the genetic lines and provide appropriate genetic controls in the experiments, e.g. trans-heterozygotes. Why use Ddc-Gal4 instead of TH or other specific Split-Gal4 lines?

      We thank the Reviewer for this suggestion. We repeated our key experiments with TH-Gal4 and NP6510-Gal4 lines. Please see our response to Point #2 of Reviewer #2 for details.

      (3) Please proofread the manuscript for ommissions. e.g. there's no legend for Fig 4b.

      We respectfully point out that the legend is there, and it reads “b, Proportion of a given response type as a function of average fly speed before the shadow presentation. Top, Parkin and α-Syn flies. Bottom, Dop1R1, Dop1R2 and DopEcR mutant flies.”

      Reviewer #2 (Recommendations For The Authors):

      (1) In figure 2(c), representing the average walking speed data for different mutants would be useful to visually correlate the walking differences.

      We thank the Reviewer for this suggestion. The average walking speed was added in a scatter plot format, as suggested in the next point of the Reviewer. 

      (2) The data could be represented more clearly using scatter plots. Also, the color scheme could be more color-blindness friendly.

      We thank the Reviewer for this suggestion. We added scatter plots to Fig.2c that indeed represent the distribution of behavioral responses better. We also changed the color scheme and removed red/green labeling.

      (3) The manuscript should be checked for typos such as in line 252, 449, 484.

      Thank you. We fixed the typos.

      References

      Ache JM, Polsky J, Alghailani S, Parekh R, Breads P, Peek MY, Bock DD, von Reyn CR, Card GM. 2019. Neural Basis for Looming Size and Velocity Encoding in the Drosophila Giant Fiber Escape Pathway. Curr Biol 29:1073-1081.e4. doi:10.1016/j.cub.2019.01.079

      Braine A, Georges F. 2023. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 155:105475. doi:10.1016/j.neubiorev.2023.105475

      Card G, Dickinson MH. 2008. Visually Mediated Motor Planning in the Escape Response of Drosophila. Curr Biol 18:1300–1307. doi:10.1016/j.cub.2008.07.094

      de Vries SEJ, Clandinin TR. 2012. Loom-Sensitive Neurons Link Computation to Action in the Drosophila Visual System. Curr Biol 22:353–362. doi:10.1016/j.cub.2012.01.007

      Gibson WT, Gonzalez CR, Fernandez C, Ramasamy L, Tabachnik T, Du RR, Felsen PD, Maire MR, Perona P, Anderson DJ. 2015. Behavioral Responses to a Repetitive Visual Threat Stimulus Express a Persistent State of Defensive Arousal in Drosophila. Curr Biol 25:1401– 1415. doi:10.1016/j.cub.2015.03.058

      Harbison ST, Kumar S, Huang W, McCoy LJ, Smith KR, Mackay TFC. 2019. Genome-Wide Association Study of Circadian Behavior in Drosophila melanogaster. Behav Genet 49:60–82. doi:10.1007/s10519-018-9932-0

      Heinemans M, Moita MA. 2024. Looming stimuli reliably drive innate defensive responses in male rats, but not learned defensive responses. Sci Rep 14:21578. doi:10.1038/s41598-02470256-2

      Ishimoto H, Wang Z, Rao Y, Wu C, Kitamoto T. 2013. A Novel Role for Ecdysone in Drosophila Conditioned Behavior: Linking GPCR-Mediated Non-canonical Steroid Action to cAMP Signaling in the Adult Brain. PLoS Genet 9:e1003843. doi:10.1371/journal.pgen.1003843

      Knief U, Forstmeier W. 2021. Violating the normality assumption may be the lesser of two evils. Behav Res Methods 53:2576–2590. doi:10.3758/s13428-021-01587-5

      Lecca S, Meye FJ, Trusel M, Tchenio A, Harris J, Schwarz MK, Burdakov D, Georges F, Mameli M. 2017. Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior. Elife 6:1–16. doi:10.7554/eLife.30697

      Mooi E, Sarstedt M, Mooi-Reci I. 2018. Market Research, Springer Texts in Business and Economics. Singapore: Springer Singapore. doi:10.1007/978-981-10-5218-7

      Oram TB, Card GM. 2022. Context-dependent control of behavior in Drosophila. Curr Opin Neurobiol 73:102523. doi:10.1016/j.conb.2022.02.003

      Petruccelli E, Lark A, Mrkvicka JA, Kitamoto T. 2020. Significance of DopEcR, a G-protein coupled dopamine/ecdysteroid receptor, in physiological and behavioral response to stressors. J Neurogenet 34:55–68. doi:10.1080/01677063.2019.1710144

      Petruccelli E, Li Q, Rao Y, Kitamoto T. 2016. The Unique Dopamine/Ecdysteroid Receptor Modulates Ethanol-Induced Sedation in Drosophila. J Neurosci 36:4647–4657. doi:10.1523/JNEUROSCI.3774-15.2016

      Pimentel D, Donlea JM, Talbot CB, Song SM, Thurston AJF, Miesenböck G. 2016. Operation of a homeostatic sleep switch. Nature 536:333–337. doi:10.1038/nature19055

      Zacarias R, Namiki S, Card GM, Vasconcelos ML, Moita MA. 2018. Speed dependent descending control of freezing behavior in Drosophila melanogaster. Nat Commun 9:1–11. doi:10.1038/s41467-018-05875-1

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The manuscript by Metheringham et al. reports on interesting new characterizations of phenotypes caused by genetic inactivation of subunits of the methyl transferase complex responsible for N6-adenosine methylation in (pre)-mRNA ("the m6A writer") in the plant Arabidopsis thaliana. The main claim of the paper is that mutants in these subunits exhibit autoimmunity, a claim that is supported by the following lines of evidence:

      • Transcriptome profiling by mRNA-seq shows a gene expression profile with differential expression of many stress- and defense-related genes.
      • The immunity-like gene expression profile is observed under growth at 17{degree sign}C but not at 27{degree sign}C, consistent with the well-known temperature-sensitivity of some (but not all) innate immunity signaling systems in plants.
      • m6A writer mutants show increased resistance to infection by the virulent Pseudomonas syringae DC3000 strain.
      • The primary biochemical defect in m6A writing is not temperature sensitive, excluding the trivial possibility that the mutant alleles chosen for study are simply ts.

      The observations are important and the manuscript is very well written, a pleasure to read: the problem is clearly presented, the experimental results are presented in a clear, logical succession, and the discussion treats important points.

      The study is valuable pending some manuscript revision on the autoimmunity interpretation of the results obtained, and a few suggested edits that can be included if the authors agree that they would improve the paper.

      The finding that an autoimmune-like state is activated in m6A writer mutants is significant because it provides a warning flag on how such mutants should be used for studying the role of m6A in stress response signaling, including reassessment of previously published work. Whether the stress state really is autoimmunity is subject to some debate, particularly because no genetic evidence to support it has been obtained. The results are nonetheless interesting and constitute an important contribution to the community, even if they remain descriptive and with nearly no insight into molecular mechanisms. My suggestions for improvement are summarized below.

      1. Although the authors do a lot to support the claim that autoimmunity is an element of m6A writer mutant phenotypes, the study does not include genetic evidence to support this claim. This is important, because if the stress/defense gene activation causes some of the morphological phenotypes of m6A writer mutants, one should be able to suppress such defects by mutation of know immune signaling components such as the appropriate nucleotide-binding leucine-rich repeat proteins, or more generic signaling components such as EDS1, PAD4 and SAG1, common to a subset of such intracellular immune receptors. Resistance to pathogens can be observed in mutants with constitutive stress response signaling, and defense-like gene expression can be induced as a secondary of other primary defects, for instance DNA damage. Similarly, while it is true that some types of immune activation are temperature sensitive, others are not 1, and clearly, elevated temperature changes so much of the physiology of the plant that sensitivity to elevated temperature cannot be used as proof of immune activation. Thus, each of the lines of evidence presented is suggestive, not conclusive. Together, they constitute a good argument, but still not a completely satisfactory proof of the main claim. I do not think that this concern means that a lot of genetic work must be undertaken to make this paper publishable, but I think that the authors should be even more careful about how they interpret their observations. I understand that they favor more or less direct activation of autoimmunity, although even if that were true, it would be unclear what the biochemical triggers of such autoimmunity would be (unmethylated RNA, absence or writer components, excess of free m6A-binding proteins etc). However, given the concerns above, I think the authors should dedicate a small paragraph in the discussion to the possibility that the primary cause of stress/defense-gene expression is unclear and may not result from innate immune surveillance of unmethylated mRNA or components of the m6A pathway as favoured by the authors.
      2. It may be of relevance to search promoters of differentially expressed genes for enrichment of cis-elements. This simple approach identified the W-box in the first papers using transcriptome profiling to characterize the immune state in Arabidopsis 2,3, and could perhaps reveal whether a WRKY-driven transcriptional program drives differential expression or whether several other transcription factor classes may also contribute substantially, as may be expected if a more complex stress-related transcriptional program is activated. I do not think that this is a deal breaker, but some additional useful information from the existing data might be gathered in this way.
      3. Stress response activation has also been clearly described in ect2 ect3 ect4 mutants4 and even if the authors find no evidence for PR1 expression in this mutant, it is still of relevance to include a mention of this result in the discussion, together with the discussion of stress response activation seen in writer mutants in earlier reports 5,6. I would not mind the authors being a bit more explicit about what their results mean for studies that try to conclude on the biological relevance of m6A in different types of stress signaling, using phenotypes writer mutants as their primary line of evidence. But this is of course up to the authors to decide on that.
      4. In the introduction on preferred m6A sequence contexts, please clarify that m6A in plants occurs both DRACH in (G)GAU contexts 7,8.
      5. When mentioning convergence on shared signaling components from immune receptors, please include a tiny bit more information for the reader. For instance, EDS1 is mentioned, but this protein is only required for signaling from (some) TIR-NBS-LRRs, not the class of CC-NBS-LRRs. Indeed, signaling by this latter class may not converge on just one to a few components, as their multimerization appears to form the ion channels required for signaling-inducing ion currents.
      6. Please clarify in the introduction and in later parts that only some forms of autoimmunity can be suppressed by elevated temperature. Sentences like "A hallmark of Arabidopsis autoimmunity is temperature sensitivity..." are a bit misleading. Temperature sensitivity has clearly been used to study some forms of EDS1-dependent immunity, to great effect in the TMV-N interaction for instance, but it is not accurate to call temperature sensitivity a "hallmark of autoimmunity".
      7. In the discussion of possible biochemical triggers of autoimmunity in m6A mutants, please consider the following:

      (A) Mention the possibility that the primary trigger may not be immune receptor-surveillance of some defect induced by lack of m6A in mRNA (as discussed above).

      (B) In connection with the consideration that lack of m6A writer components, not m6A in mRNA, may be a signal, you could include the observation from yeast that Ime4 knockouts have a much stronger phenotype than Ime4 catalytically dead mutants or knockouts of the sole yeast YTH-domain Pho92 9. Indeed, it is a bit of an embarrassment to the plant m6A community that we have not yet examined phenotypes of MTA and MTB catalytically dead mutants, and the present report should further urge the community to finally do this important experiment. 8. Just a tiny typo on page 15, Pst DC3000, not Pst D3000 (of no relevance to the overall assessment, just a help to eliminate annoying errors before final submission).

      REFERENCES

      1. Demont, H. et al. Downstream signaling induced by several plant Toll/interleukin-1 receptor-containing immune proteins is stable at elevated temperature. Cell Reports 44(2025).
      2. Petersen, M. et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111-1120 (2000).
      3. Maleck, K. et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics 26, 403-410 (2000).
      4. Arribas-Hernández, L. et al. The YTHDF proteins ECT2 and ECT3 bind largely overlapping target sets and influence target mRNA abundance, not alternative polyadenylation. eLife 10, e72377 (2021).
      5. Bodi, Z. et al. Adenosine Methylation in Arabidopsis mRNA is Associated with the 3' End and Reduced Levels Cause Developmental Defects. Front Plant Sci 3, 48 (2012).
      6. Prall, W. et al. Pathogen-induced m6A dynamics affect plant immunity. The Plant Cell 35, 4155-4172 (2023).
      7. Arribas-Hernández, L. et al. Principles of mRNA targeting via the Arabidopsis m6A-binding protein ECT2. eLife 10, e72375 (2021).
      8. Wang, G. et al. Quantitative profiling of m6A at single base resolution across the life cycle of rice and Arabidopsis. Nature Communications 15, 4881 (2024).
      9. Ensinck, I. et al. The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and independent roles. eLife 12, RP87860 (2023).

      Significance

      The finding that an autoimmune-like state is activated in m6A writer mutants is significant because it provides a warning flag on how such mutants should be used for studying the role of m6A in stress response signaling, including reassessment of previously published work. Whether the stress state really is autoimmunity is subject to some debate, particularly because no genetic evidence to support it has been obtained. The results are nonetheless interesting and constitute an important contribution to the community, even if they remain descriptive and with nearly no insight into molecular mechanisms. I wish to congratulate the authors on another valuable contribution to the plant m6A field.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment

      This important work advances our understanding of the impact of malnutrition on hematopoiesis and subsequently infection susceptibility. Support for the overall claims is convincing in some respects and incomplete in others as highlighted by reviewers. This work will be of general interest to those in the fields of hematopoiesis, malnutrition, and dietary influence on immunity.

      We would like to thank the editors for agreeing to review our work at eLife. We greatly appreciate them assessing this study as important and of general interest to multiple fields, as well as the opportunity to respond to reviewer comments. Please find our responses to each reviewer below.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this study, the authors used a chronic murine dietary restriction model to study the effects of chronic malnutrition on controls of bacterial infection and overall immunity, including cellularity and functions of different immune cell types. They further attempted to determine whether refeeding can revert the infection susceptibility and immunodeficiency. Although refeeding here improves anthropometric deficits, the authors of this study show that this is insufficient to recover the impairments across the immune cell compartments.

      Strengths:

      The manuscript is well-written and conceived around a valid scientific question. The data supports the idea that malnutrition contributes to infection susceptibility and causes some immunological changes. The malnourished mouse model also displayed growth and development delays. The work's significance is well justified. Immunological studies in the malnourished cohort (human and mice) are scarce, so this could add valuable information.

      Weaknesses:

      The assays on myeloid cells are limited, and the study is descriptive and overstated. The authors claim that "this work identifies a novel cellular link between prior nutritional state and immunocompetency, highlighting dysregulated myelopoiesis as a major." However, after reviewing the entire manuscript, I found no cellular mechanism defining the link between nutritional state and immunocompetency.

      We thank the reviewer for deeming our work significant and noting the importance of the study. We appreciate the referee’s point regarding the lack of specific cellular functional data for innate immune cells and have modified the conclusions stated in text to more accurately reflect the results presented.

      Reviewer #2 (Public review):

      Summary:

      Sukhina et al. use a chronic murine dietary restriction model to investigate the cellular mechanisms underlying nutritionally acquired immunodeficiency as well as the consequences of a refeeding intervention. The authors report a substantial impact of undernutrition on the myeloid compartment, which is not rescued by refeeding despite rescue of other phenotypes including lymphocyte levels, and which is associated with maintained partial susceptibility to bacterial infection.

      Strengths:

      Overall, this is a nicely executed study with appropriate numbers of mice, robust phenotypes, and interesting conclusions, and the text is very well-written. The authors' conclusions are generally well-supported by their data.

      Weaknesses:

      There is little evaluation of known critical drivers of myelopoiesis (e.g. PMID 20535209, 26072330, 29218601) over the course of the 40% diet, which would be of interest with regard to comparing this chronic model to other more short-term models of undernutrition.

      Further, the microbiota, which is well-established to be regulated by undernutrition (e.g. PMID 22674549, 27339978, etc.), and also well-established to be a critical regulator of hematopoiesis/myelopoiesis (e.g. PMID 27879260, 27799160, etc.), is completely ignored here.

      We thank the reviewer for agreeing that the data presented support the stated conclusions and noting the experimental rigor.  The referee highlights two important areas for future mechanistic investigation that we agree are of great importance and relevant to the submitted study. We have included further discussion of the potential role cytokines and the microbiota might play in our model.

      Reviewer #3 (Public review):

      Summary:

      Sukhina et al are trying to understand the impacts of malnutrition on immunity. They model malnutrition with a diet switch from ad libitum to 40% caloric restriction (CR) in post-weaned mice. They test impacts on immune function with listeriosis. They then test whether re-feeding corrects these defects and find aspects of emergency myelopoiesis that remain defective after a precedent period of 40% CR. Overall, this is a very interesting observational study on the impacts of sudden prolonged exposure to less caloric intake.

      Strengths:

      The study is rigorously done. The observation of lasting defects after a bout of 40% CR is quite interesting. Overall, I think the topic and findings are of interest.

      Weaknesses:

      While the observations are interesting, in this reviewer's opinion, there is both a lack of mechanistic understanding of the phenomena and also some lack of resolution/detail about the phenomena itself. Addressing the following major issues would be helpful towards aspects of both:

      (1) Is it calories, per se, or macro/micronutrients that drive these phenotypes observed with 40% CR. At the least, I would want to see isocaloric diets (primarily protein, fat, or carbs) and then some of the same readouts after 40% CR. Ie does low energy with relatively more eg protein prevent immunosuppression (as is commonly suggested)? Micronutrients would be harder to test experimentally and may be out of the scope of this study. However, it is worth noting that many of the malnutrition-associated diseases are micronutrient deficiencies.

      (2) Is immunosuppression a function of a certain weight loss threshold? Or something else? Some idea of either the tempo of immunosuppression (happens at 1, in which weight loss is detected; vs 2-3, when body length and condition appear to diverge; or 5 weeks), or grade of CR (40% vs 60% vs 80%) would be helpful since the mechanism of immunosuppression overall is unclear (but nailing it may be beyond the scope of this communication).

      (3) Does an obese mouse that gets 40% CR also become immunodeficient? As it stands, this ad libitum --> 40% CR model perhaps best models problems in the industrial world (as opposed to always being 40% CR from weaning, as might be more common in the developing world), and so modeling an obese person losing a lot of weight from CR (like would be achieved with GLP-1 drugs now) would be valuable to understanding generalizability.

      (4) Generalizing this phenomenon as "bacterial" with listeriosis, which is more like a virus in many ways (intracellular phase, requires type I IFN, etc.) and cannot be given by the natural route of infection in mice, may not be most accurate. I would want to see an experiment with E.Coli, or some other bacteria, to test the statement of generalizability (ie is it bacteria, or type I IFN-pathway dominant infections, like viruses). If this is unique listeriosis, it doesn't undermine the story as it is at all, but it would just require some word-smithing.

      (5) Previous reports (which the authors cite) implicate Leptin, the levels of which scale with fat mass, as "permissive" of a larger immune compartment (immune compartment as "luxury function" idea). Is their phenotype also leptin-mediated (ie leptin AAV)?

      (6) The inability of re-feeding to "rescue" the myeloid compartment is really interesting. Can the authors do a bone marrow transplantation (CR-->ad libitum) to test if this effect is intrinsic to the CR-experienced bone marrow?

      (7) Is the defect in emergency myelopoiesis a defect in G-CSF? Ie if the authors injected G-CSF in CR animals, do they equivalently mobilize neutrophils? Does G-CSF supplementation (as one does in humans) rescue host defense against Listeria in the CR or re-feeding paradigms?

      We thank the reviewer for considering our work of interest and noting the rigor with which it was conducted. The referee raises several excellent mechanistic hypotheses and follow-up studies to perform. We agree that defining the specific dietary deficiency driving the phenotypes is of great interest. The relative contribution of calories versus macro- and micronutrients is an area we are interested in exploring in future studies, especially given the literature on the role of micronutrients in malnutrition driven wasting as the referee notes. We also agree that it will be key to determine whether non-hematopoietic cells contribute as well as the role of soluble factors such G-CSF and Leptin in mediating the immunodeficiency all warrant further study. Likewise, it will be important to evaluate how malnutrition impacts other models of infection to determine how generalizable these phenomena are. We have added these points to the discussion section as limitations of this study.

      Regarding how the phenotypes correspond to the timing of the immunosuppression relative to weight loss, we have performed new kinetics studies to provide some insight into this area. We now find that neutropenia in peripheral blood can be detected after as little as one week of dietary restriction, with neutropenia continuing to decline after prolonged restriction. These findings indicate that the impact on myeloid cell production are indeed rapid and proceed maximum weight loss, though the severity of these phenotypes does increase as malnutrition persists. We wholeheartedly agree with the reviewer that it will be interesting to explore whether starting weight impacts these phenotypes and whether similar findings can be made in obese animals as they are treated for weight loss.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      In this study, the authors used a chronic murine dietary restriction model to study the effects of chronic malnutrition on controls of bacterial infection and overall immunity, including cellularity and functions of different immune cell types. They further attempted to determine whether refeeding can revert the infection susceptibility and immunodeficiency. Although refeeding here improves anthropometric deficits, the authors of this study show that this is insufficient to recover the impairments across the immune cell compartments. The authors claim that "this work identifies a novel cellular link between prior nutritional state and immunocompetency, highlighting dysregulated myelopoiesis as a major." However, after reviewing the entire manuscript, I could not find any cellular mechanism defining the link between nutritional state and immunocompetency. The assays on myeloid cells are limited, and the study is descriptive and overstated.

      Major concerns:

      (1) Malnutrition has entirely different effects on adults and children. In this study, 6-8 weeks old C57/Bl6 mice were used that mimic adult malnutrition. I do not understand then why the refeeding strategy for inpatient treatment of severely malnourished children was utilized here.

      (2) Figure 1g shows BM cellularity is reduced, but the authors claim otherwise in the text.

      (3) What is the basis of the body condition score in Figure 1d? It will be good to have it in the supplement.

      (4) Listeria monocytogenes cause systemic infection, so bioload was not determined in tissues beyond the liver.

      (5) Figure 3; T cell functional assays were limited to CD8 T cells and lymphocytes isolated from the spleen.

      (6) Why was peripheral cell count not considered? Discrepancies exist with the absolute cell number and relative abundance data, except for the neutrophil and monocyte data, which makes the data difficult to interpret. For example, for B cells, CD4 and CD8 cells.

      (7) Also, if mice exhibit thymic atrophy, why does % abundance data show otherwise? Overall, the data is confusing to interpret.

      (8) No functional tests for neutrophil or monocyte function exist to explain the higher bacterial burden in the liver or to connect the numbers with the overall pathogen load

      The rationale for examining both innate and adaptive immunity is not clear-it is even more unclear since the exact timelines for examining both innate and adaptive immunity (D0 and D5) were used.

      (9) Figure 2e doesn't make sense - why is spleen cellularity measured when bacterial load is measured in the liver?

      (10) Although it is claimed that emergency myelopoiesis is affected, no specific marker for emergency myelopoiesis other than cell numbers was studied.

      (11) I suggest including neutrophil effector functions and looking for real markers of granulopoiesis, such as Cebp-b. Since the authors attempted to examine the entirety of immune responses, it is better to measure cell abundance, types, and functions beyond the spleen. Consider the systemic spread of m while measuring bioload.

      (12) Minor grammatical errors - please re-read the entire text and correct grammatical errors to improve the flow of the text.

      (13) Sample size details missing

      (14) Be clear on which marks were used to identify monocytes. Using just CD11b and Ly6G is insufficient for neutrophil quantification.

      (15) Also, instead of saying "undernourished patients," say "patients with undernutrition" - change throughout the text. I would recommend numbering citations (as is done for Nature citations) to ease in following the text, as there are areas when there are more than ten citations with author names.

      (16) No line numbers are provided

      (17) Abstract

      -  What does accelerated contraction mean?

      -  "In" is repeated in a sentence

      -  Be clear that the study is done in a mouse model - saying just "animals" is not sufficient

      -  Indicate how malnutrition is induced in these mice

      (18) Introduction

      -  "restriction," "immune organs," - what is this referring to?

      -  You mention lymphoid tissue and innate and adaptive immunity, which doesn't make sense.

      Please correct this.

      -  You mention a lot of lymphoid tissues, i.e. lymphoid mass gain, but how about the bone marrow and spleen, which are responsible for most innate immune compartments?

      (19) Results

      a) Figure 1

      -  Why 40% reduced diet?

      -  It would be interesting to report if the organs are smaller relative to body weight. It makes sense that the organ weight is lower in the 40RD mice, especially since they are smaller, so the novelty of this data is not apparent (Figure 1f).

      -  You say, "We observed a corresponding reduction in the cellularity of the spleen and thymus, while the cellularity of the bone marrow was unaffected (Fig. 1g)." however, your BM data is significant, so this statement doesn't reflect the data you present, please correct.

      b) Figure 2

      - Figure 2d - what tissue is this from, mentioned in the figure? And measure cellularity there. The rationale for why you look only at the spleen here is weak. Also, we would benefit from including the groups without infection here for comparison purposes.

      c) Figure 3

      - The rationale for why you further looked at T cells is weak, mainly because of the following sentence. "Despite this overall loss in lymphocyte number, the relative frequency of each population was either unchanged or elevated, indicating that while malnutrition leads to a global reduction in immune cell numbers, lymphocytes are less impacted than other immune cell populations (Supplemental 1)." Please explain in the main text.

      d) Figure 4

      -  You say the peak of the adaptive immune response, but you never looked at the peak of adaptive immune - when is this? If you have the data, please show it. You also only show d0 and d5 post-infection data for adaptive immunity, so I am unsure where this statement comes from.

      -  How did you identify neutrophils and monocytes through flow cytometry? Indicate the markers used. Also, your text does not match your data; please correct it. i.e. monocyte numbers reduced, and relative abundance increased, but your text doesn't say this.

      -  Show the flow graph first then, followed by the quantification.

      -  The study would benefit from examining markers of emergency myelopoiesis such as Cebpb through qPCR.

      -  Although the number of neutrophils is lower in the BM and spleen, how does this relate to increased bacterial load in the liver? This is especially true since you did not quantify neutrophil numbers in the liver.

      e) Figure 6

      -  Some figures are incorrectly labelled.

      -  For the refeeding data, also include the data from the 40RD group to compare the level of recovery in the outcome measures.

      (20) Discussion

      -  You claim that monocytes are reduced to the same extent as neutrophils, but this is not true.

      Please correct.

      -  Indicate some limitations of your work.

      We thank the reviewer for offering these recommendations and the constructive comments. 

      Several comments raised concerns over the rationale or reasoning behind aspects of the experimental design or the data presented, which we would like to clarify:

      • Regarding the refeeding protocol, we apologize for the confusion for the rationale. We based our methodology on the general guidelines for refeeding protocols for malnourished people. We elected to increase food intake 10% daily to avoid risk of refeeding syndrome or other complications. Our method is by no means replicates the administration of specific vitamins, minerals, electrolytes, nor precise caloric content as would be given to a human patient. The citation provided offers information from the WHO regarding the complications that can arise during refeeding syndrome, which while it is from a document on pediatric care, we did not mean to imply that our method modeled refeeding intervention for children. We have modified the text to avoid this confusion.

      • The reviewer requested more clarity on why we studied both the innate and adaptive immune system as well as why we chose the time points studied. As referenced in the manuscript, prior work has observed that caloric restriction, fasting, and malnutrition all can impact the adaptive immune system. Given these previous findings, we felt it important to evaluate how malnutrition affected adaptive immune cell populations in our model. To this end, we provide data tracking the course of T-cell responses from the start of infection through day 14 at the time that the response undergoes contraction. However, since we find that bacterial burden is not properly controlled at earlier time points (day 5), when it is understood the innate immune system is more critical for mediating pathogen clearance, we elected to better characterize the effect malnutrition had on innate immune populations, something less well described in the literature. As phenotypes both in bacterial burden and within innate immune populations were observable as early as day 5, we chose to focus on that time point rather than later time points when readouts could be further confounded by secondary or compounding effects by the lack of early control of infection. We have tried to make this rationale clear in the text and have made changes to further emphasize this reasoning.

      • The reviewer also requested an explaination over why bacterial burden was measured in the liver and the immune response was measured in the spleen. While the reviewer is correct that our model is a systemic infection, it is well appreciated that bacteria rapidly disseminate to the liver and spleen and these organs serve as major sites of infection. Given the central role the spleen plays in organizing both the innate and adaptive immune response in this model, it is common practice in the field to phenotype immune cell populations in the spleen, while using the liver to quantify bacterial burden (see PMID: 37773751 as one example of many). We acknowledge this does not provide the full scope of bacterial infection or the immune response in every potentially affected tissue, but nonetheless believe the interpretation that malnourished and previously malnourished animals do not properly control infection and their immune responses are blunted compared to controls still stands.

      The reviewer raised several points about di3erences in the results for cell frequency and absolute number and why these may deviate in some circumstances. For example, the reviewer notes that we observe thymic atrophy yet the frequency of peripheral T-cells does not decline. It should be noted that absolute number can change when frequency does not and vice versa, due to changes in other cell types within the studied population of cells. As in the case of peripheral lymphocytes in our study, the frequency can stay the same or even increase when the absolute number declines (Supplemental 1). This can occur if other populations of cells decrease further, which is indeed the case as the loss of myeloid cells is greater than that of lymphocytes. Hence, we find that the frequency of T and B cells is unchanged or elevated, despite the loss in absolute number of peripheral cell, which is our stated interpretation. We believe this is consistent with our overall observations and is why it is important to report both frequency and absolute number, as we have done. 

      We have made the requested changes to the text to address the reviewers concerns as noted to improve clarity and accuracy for the description of experiments, results, and overall conclusions drawn in the manuscript. We have also included a discussion of the limitations of our work as well as additional areas for future investigation that remain open. 

      Reviewer #2 (Recommendations for the authors):

      Regarding the known drivers of myelopoiesis, can the authors quantify circulating levels of relevant immune cytokines (e.g. type I and II IFNs, GM-CSF, etc.)?

      Regarding the microbiota (point #2), how dramatically does this undernutrition modulate the microbiota both in terms of absolute load and community composition, and how effectively/quickly is this rescued by refeeding?

      We thank the reviewer for raising these recommendations. We agree that the role of circulating factors like cytokines and growth factors in contributing to the defects in myelopoiesis is of interest and is the focus of future work. Similarly, the impact of malnutrition on the microbiota is of great interest and has been evaluated by other groups in separate studies. How the known impact of malnutrition on the microbiota affects the phenotypes we observe in myelopoiesis is unclear and warrants future investigation. We have added these points to the discussion section as limitations of this study.

    1. Author response:

      Reviewer #1 (Public Review):

      Fombellida-Lopez and colleagues describe the results of an ART intensification trial in people with HIV infection (PWH) on suppressive ART to determine the effect of increasing the dose of one ART drug, dolutegravir, on viral reservoirs, immune activation, exhaustion, and circulating inflammatory markers. The authors hypothesize that ART intensification will provide clues about the degree to which low-level viral replication is occurring in circulation and in tissues despite ongoing ART, which could be identified if reservoirs decrease and/or if immune biomarkers change. The trial design is straightforward and well-described, and the intervention appears to have been well tolerated. The investigators observed an increase in dolutegravir concentrations in circulation, and to a lesser degree in tissues, in the intervention group, indicating that the intervention has functioned as expected (ART has been intensified in vivo). Several outcome measures changed during the trial period in the intervention group, leading the investigators to conclude that their results provide strong evidence of ongoing replication on standard ART. The results of this small trial are intriguing, and a few observations in particular are hypothesis-generating and potentially justify further clinical trials to explore them in depth. However, I am concerned about over-interpretation of results that do not fully justify the authors' conclusions.

      We thank Reviewer #1 for their thoughtful and constructive comments, which will help us clarify and improve the manuscript. Below, we address each of the reviewer’s points and describe the changes that we intend to implement in the revised version. We acknowledge the reviewer’s concern regarding potential over-interpretation of certain findings, and we will take particular care to ensure that all conclusions are supported by the data and framed within the exploratory nature of the study.

      (1) Trial objectives: What was the primary objective of the trial? This is not clearly stated. The authors describe changes in some reservoir parameters and no changes in others. Which of these was the primary outcome? No a priori hypothesis / primary objective is stated, nor is there explicit justification (power calculations, prior in vivo evidence) for the small n, unblinded design, and lack of placebo control. In the abstract (line 36, "significant decreases in total HIV DNA") and conclusion (lines 244-246), the authors state that total proviral DNA decreased as a result of ART intensification. However, in Figures 2A and 2E (and in line 251), the authors indicate that total proviral DNA did not change. These statements are confusing and appear to be contradictory. Regarding the decrease in total proviral DNA, I believe the authors may mean that they observed transient decrease in total proviral DNA during the intensification period (day 28 in particular, Figure 2A), however this level increases at Day 56 and then returns to baseline at Day 84, which is the source of the negative observation. Stating that total proviral DNA decreased as a result of the intervention when it ultimately did not is misleading, unless the investigators intended the day 28 timepoint as a primary endpoint for reservoir reduction - if so, this is never stated, and it is unclear why the intervention would then be continued until day 84? If, instead, reservoir reduction at the end of the intervention was the primary endpoint (again, unstated by the authors), then it is not appropriate to state that the total proviral reservoir decreased significantly when it did not.

      We agree with the reviewer that the primary objective of the study was not explicitly stated in the submitted manuscript. We will clarify this in the revised manuscript. As registered on ClinicalTrials.gov (NCT05351684), the primary outcome was defined as “To evaluate the impact of treatment intensification at the level of total and replication-competent reservoir (RCR) in blood and in tissues”, with a time frame of 3 months. Accordingly, our aim was to explore whether any measurable reduction in the HIV reservoir (total or replication-competent) occurred during the intensification period, including at day 28, 56, or 84. The protocol did not prespecify a single time point for this effect to occur, and the exploratory design allowed for detection of transient or sustained changes within the intensification window.

      We recognize that this scope was not clearly articulated in the original text and may have led to confusion in interpreting the transient drop in total HIV DNA observed at day 28. While total DNA ultimately returned to baseline by the end of intensification, the presence of a transient reduction during this 3-month window still fits within the framework of the study’s registered objective. Moreover, although the change in total HIV DNA was transient, it aligns with the consistent direction of changes observed across the multiple independent measures, including CA HIV RNA, RNA/DNA ratio and intact HIV DNA, collectively supporting a biological effect of intensification.

      We would also like to stress that this is the first clinical trial ever, in which an ART intensification is performed not by adding an extra drug but by increasing the dosage of an existing drug. Therefore, we were more interested in the overall, cumulative, effect of intensification throughout the entire trial period, than in differences between groups at individual time points. We will clarify in the manuscript that this was a proof-of-concept phase 2 study, designed to generate biological signals rather than confirm efficacy in a powered comparison. The absence of a pre-specified statistical endpoint or sample size calculation reflects the exploratory nature of the trial.

      (2) Intervention safety and tolerability: The results section lacks a specific heading for participant safety and tolerability of the intervention. I was wondering about clinically detectable viremia in the study. Were there any viral blips? Was the increased DTG well tolerated? This drug is known to cause myositis, headache, CPK elevation, hepatotoxicity, and headache. Were any of these observed? What is the authors' interpretation of the CD4:8 ratio change (line 198)? Is this a significant safety concern for a longer duration of intensification? Was there also a change in CD4% or only in absolute counts? Was there relative CD4 depletion observed in the rectal biopsy samples between days 0 and 84? Interestingly, T cells dropped at the same timepoints that reservoirs declined... how do the authors rule out that reservoir decline reflects transient T cell decline that is non-specific (not due to additional blockade of replication)?

      We will improve the Methods section to clarify how safety and tolerability were assessed during the study. Safety evaluations were conducted on day 28 and day 84 and included a clinical examination and routine laboratory testing (liver function tests, kidney function, and complete blood count). Medication adherence was also monitored through pill counts performed by the study nurses.

      No virological blips above 50 copies/mL were observed and no adverse events were reported by participants during the 3-month intensification period. Although CPK levels were not included in the routine biological monitoring, no participant reported muscle pain or other symptoms suggestive of muscle toxicity.

      The CD4:CD8 ratio decrease noted during intensification was not associated with significant changes in absolute CD4 or CD8 counts, as shown in Figure 5. We interpret this ratio change as a transient redistribution rather than an immunological risk, therefore we do not consider it to represent a safety concern.

      We would like to clarify that CD4<sup>+</sup> T-cell counts did not significantly decrease in any of the treatment groups, as shown in Figure 5. The apparent decline observed concerns the CD4/CD8 ratio, which transiently dropped, but not the absolute number of CD4<sup>+</sup> T cells.

      (3) The investigators describe a decrease in intact proviral DNA after 84 days of ART intensification in circulating cells (Figure 2D), but no changes to total proviral DNA in blood or tissue (Figures 2A and 2E; IPDA does not appear to have been done on tissue samples). It is not clear why ART intensification would result in a selective decrease in intact proviruses and not in total proviruses if the source of these reservoir cells is due to ongoing replication. These reservoir results have multiple interpretations, including (but not limited to) the investigators' contention that this provides strong evidence of ongoing replication. However, ongoing replication results in the production of both intact and mutated/defective proviruses that both contribute to reservoir size (with defective proviruses vastly outnumbering intact proviruses). The small sample size and well-described heterogeneity of the HIV reservoir (with regard to overall size and composition) raise the possibility that the study was underpowered to detect differences over the 84-day intervention period. No power calculations or prior studies were described to justify the trial size or the duration of the intervention. Readers would benefit from a more nuanced discussion of reservoir changes observed here.

      We sincerely thank the reviewer for this insightful comment. We fully agree that the reservoir dynamics observed in our study raise several possible interpretations, and that its complexity, resulting from continuous cycles of expansion and contraction, reflects the heterogeneity of the latent reservoir.

      Total HIV DNA in PBMCs showed a transient decline during intensification (notably at day 28), ultimately returning to baseline by day 84. This biphasic pattern may reflect the combined effects of suppression of ongoing low-level replication by an increased DTG dosage, followed by the expansion of infected cell clones (mostly harboring defective proviruses). In other words, the transient decrease in total (intact + defective) DNA at day 28 may be due to an initial decrease in newly infected cells upon ART intensification, however at the subsequent time points this effect was masked by proliferation (clonal expansion) of infected cells with defective proviruses. This explains why the intact proviruses decreased, but the total proviruses did not change, between days 0 and 84.

      Importantly, we observed a significant decrease in intact proviral DNA between day 0 and day 84 in the intensification group (Figure 2D). We will highlight this result more clearly in the revised manuscript, as it directly addresses the study’s primary objective: assessing the impact of intensification on the replication-competent reservoir. In comparison, as the reviewer rightly points out, total HIV DNA includes over 90% defective genomes, which limits its interpretability as a biomarker of biologically relevant reservoir changes.

      In addition, other reservoir markers, such as cell-associated unspliced RNA and RNA/DNA ratios, also showed consistent trends supporting a modest but biologically relevant effect of intensification. Even in the absence of sustained changes in total HIV DNA, the coherence across these independent measures suggests a signal indicative of ongoing replication in at least some individuals, and at specific timepoints.

      Regarding tissue reservoirs, the lack of substantial change in total HIV DNA between days 0 and 84 is also in line with the predominance of defective sequences in these compartments. Moreover, the limited increase in rectal tissue dolutegravir levels during intensification (from 16.7% to 20% of plasma concentrations) may have limited the efficacy of the intervention in this site.

      As for the IPDA on rectal biopsies, we attempted the assay using two independent DNA extraction methods (Promega Reliaprep and Qiagen Puregene), but both yielded high DNA Shearing Index values, and intact proviral detection was successful in only 3 of 40 samples. Given the poor DNA integrity and weak signals, these results were not interpretable.

      That said, we fully acknowledge the limitations of our study, especially the small sample size, and we agree with the reviewer that caution is needed when interpreting these findings. In the revised manuscript, we will adopt a more measured tone in the discussion, clearly stating that these observations are exploratory and hypothesis-generating, and require confirmation in larger, more powered studies. Nonetheless, we believe that the convergence of multiple reservoir markers pointing in the same direction constitutes a potentially meaningful biological signal that deserves further investigation.

      (4) While a few statistically significant changes occurred in immune activation markers, it is not clear that these are biologically significant. Lines 175-186 and Figure 3: The change in CD4 cells + for TIGIT looks as though it declined by only 1-2%, and at day 84, the confidence interval appears to widen significantly at this timepoint, spanning an interquartile range of 4%. The only other immune activation/exhaustion marker change that reached statistical significance appears to be CD8 cells + for CD38 and HLA-DR, however, the decline appears to be a fraction of a percent, with the control group trending in the same direction. Despite marginal statistical significance, it is not clear there is any biological significance to these findings; Figure S6 supports the contention that there is no significant change in these parameters over time or between groups. With most markers showing no change and these two showing very small changes (and the latter moving in the same direction as the control group), these results do not justify the statement that intensifying DTG decreases immune activation and exhaustion (lines 38-40 in the abstract and elsewhere).

      We agree with the reviewer that the observed changes in immune activation and exhaustion markers were modest. We will revise the manuscript to reflect this more accurately. We will also note that these differences, while statistically significant (e.g., in TIGIT+ CD4+ T cells and CD38+HLA-DR+ CD8+ T cells), were limited in magnitude. We will explicitly acknowledge these limitations and interpret the findings with appropriate caution.

      (5) There are several limitations of the study design that deserve consideration beyond those discussed at line 327. The study was open-label and not placebo-controlled, which may have led to some medication adherence changes that confound results (authors describe one observation that may be evidence of this; lines 146-148). Randomized/blinded / cross-over design would be more robust and help determine signal from noise, given relatively small changes observed in the intervention arm. There does not seem to be a measurement of key outcome variables after treatment intensification ceased - evidence of an effect on replication through ART intensification would be enhanced by observing changes once intensification was stopped. Why was intensification maintained for 84 days? More information about the study duration would be helpful. Table 1 indicates that participants were 95% male. Sex is known to be a biological variable, particularly with regard to HIV reservoir size and chronic immune activation in PWH. Worldwide, 50% of PWH are women. Research into improving management/understanding of disease should reflect this, and equal participation should be sought in trials. Table 1 shows differing baseline reservoir sizes between the control and intervention groups. This may have important implications, particularly for outcomes where reservoir size is used as the denominator.

      We will expand the limitations section to address several key aspects raised by the reviewer: the absence of blinding and placebo control, the predominantly male study population, and the lack of post-intervention follow-up. While we acknowledge that open-label designs can introduce behavioral biases, including potential changes in adherence, we will now explicitly state that placebo-controlled, blinded trials would provide a more robust assessment and are warranted in future research.

      The 84-day duration of intensification was chosen based on previous studies and provided sufficient time for observing potential changes in viral transcription and reservoir dynamics. However, we agree that including post-intervention follow-up would have strengthened the conclusions, and we will highlight this limitation and future direction in the revised manuscript.

      The sex imbalance is now clearly acknowledged as a limitation in the revised manuscript, and we fully support ongoing efforts to promote equitable recruitment in HIV research. We would like to add that, in our study, rectal biopsies were coupled with anal cancer screening through HPV testing. This screening is specifically recommended for younger men who have sex with men (MSM), as outlined in the current EACS guidelines (see: https://eacs.sanfordguide.com/eacs-part2/cancer/cancer-screening-methods). As a result, MSM participants had both a clinical incentive and medical interest to undergo this procedure, which likely contributed to the higher proportion of male participants in the study.

      Lastly, although baseline total HIV DNA was higher in the intensified group, our statistical approach is based on a within-subject (repeated-measures) design, in which the longitudinal change of a parameter within the same participant during the study was the main outcome. In other words, we are not comparing absolute values of any marker between the groups, we are looking at changes of parameters from baseline within participants, and these are not expected to be affected by baseline imbalances.

      (6) Figure 1: the increase in DTG levels is interesting - it is not uniform across participants. Several participants had lower levels of DTG at the end of the intervention. Though unlikely to be statistically significant, it would be interesting to evaluate if there is a correlation between change in DTG concentrations and virologic / reservoir / inflammatory parameters. A positive relationship between increasing DTG concentration and decreased cell-associated RNA, for example, would help support the hypothesis that ongoing replication is occurring.

      We agree with the reviewer that assessing correlations between DTG concentrations and virological, immunological, or inflammatory markers would be highly informative. In fact, we initially explored this question in a preliminary way by examining whether individuals who showed a marked increase in DTG levels after intensification also demonstrated stronger changes in the viral reservoir. While this exploratory analysis did not reveal any clear associations, we would like to emphasize that correlating biological effects with DTG concentrations measured at a single timepoint may have limited interpretability. A more comprehensive understanding of the relationship between drug exposure and reservoir dynamics would ideally require multiple pharmacokinetic measurements over time, including pre-intensification baselines. This is particularly important given that DTG concentrations vary across individuals and over time, depending on adherence, metabolism, and other individual factors. We will clarify these points in the revised manuscript.

      (7) Figure 2: IPDA in tissue- was this done? scRNA in blood (single copy assay) - would this be expected to correlate with usCaRNA? The most unambiguous result is the decrease in cell-associated RNA - accompanying results using single-copy assay in plasma would be helpful to bolster this result.

      As mentioned in our response to point 3, we attempted IPDA on tissue samples, but technical limitations prevented reliable detection of intact proviruses. Regarding residual viremia, we did perform ultra-sensitive plasma HIV RNA quantification but due to a technical issue (an inadvertent PBMC contamination during plasma separation) that affected the reliability of the results we felt uncomfortable including these data in the manuscript.

      The use of the US RNA / Total DNA ratio is not helpful/difficult to interpret since the control and intervention arms were unmatched for total DNA reservoir size at study entry.

      We respectfully disagree with this comment. The US RNA / Total DNA ratio is commonly used to assess the relative transcriptional activity of the viral reservoir, rather than its absolute size. While we acknowledge that the total HIV-1 DNA levels differed at baseline between the two groups, the US RNA / Total DNA ratio specifically reflects the relationship between transcriptional activity and reservoir size within each individual, and is therefore not directly confounded by baseline differences in total DNA alone.

      Moreover, our analyses focus on within-subject longitudinal changes from baseline, not on direct between-group comparisons of absolute marker values. As such, the observed changes in the US RNA / Total DNA ratio over time are interpreted relative to each participant's baseline, mitigating concerns related to baseline imbalances between groups.

      Reviewer #2 (Public Review):

      Summary:

      An intensification study with a double dose of 2nd generation integrase inhibitor with a background of nucleoside analog inhibitors of the HIV retrotranscriptase in 2, and inflammation is associated with the development of co-morbidities in 20 individuals randomized with controls, with an impact on the levels of viral reservoirs and inflammation markers. Viral reservoirs in HIV are the main impediment to an HIV cure, and inflammation is associated with co-morbidities.

      Strengths:

      The intervention that leads to a decrease of viral reservoirs and inflammation is quite straightforward forward as a doubling of the INSTI is used in some individuals with INSTI resistance, with good tolerability.

      This is a very well documented study, both in blood and tissues, which is a great achievement due to the difficulty of body sampling in well-controlled individuals on antiretroviral therapy. The laboratory assays are performed by specialists in the field with state-of-the art quantification assays. Both the introduction and the discussion are remarkably well presented and documented.

      The findings also have a potential impact on the management of chronic HIV infection.

      Weaknesses:

      I do not think that the size of the study can be considered a weakness, nor the fact that it is open-label either.

      We thank Reviewer #2 for their constructive and supportive comments. We appreciate their positive assessment of the study design, the translational relevance of the intervention, and the technical quality of the assays. We also take note of their perspective regarding sample size and study design, which supports our positioning of this trial as an exploratory, hypothesis-generating phase 2 study.

      Reviewer #3 (Public Review):

      The introduction does a very good job of discussing the issue around whether there is ongoing replication in people with HIV on antiretroviral therapy. Sporadic, non-sustained replication likely occurs in many PWH on ART related to adherence, drug interactions and possibly penetration of antivirals into sanctuary areas of replication and as the authors point out proving it does not occur is likely not possible and proving it does occur is likely very dependent on the population studied and the design of the intervention. Whether the consequences of this replication in the absence of evolution toward resistance have clinical significance challenging question to address.

      It is important to note that INSTI-based therapy may have a different impact on HIV replication events that results in differences in virus release for specific cell type (those responsible for "second phase" decay) by blocking integration in cells that have completed reverse transcription prior to ART initiation but have yet to be fully activated. In a PI or NNRTI-based regimen, those cells will release virus, whereas with an INSTI-based regimen, they will not.

      Given the very small sample size, there is a substantial risk of imbalance between the groups in important baseline measures. Unfortunately, with the small sample size, a non-significant P value is not helpful when comparing baseline measures between groups. One suggestion would be to provide the full range as opposed to the inter-quartile range (essentially only 5 or 6 values). The authors could also report the proportion of participants with baseline HIV RNA target not detected in the two groups.

      We thank Reviewer #3 for their thoughtful and balanced review. We are grateful for the recognition of the strength of the Introduction, the complexity of evaluating residual replication, and the technical execution of the assays. We also appreciate the insightful suggestions for improving the clarity and transparency of our results and discussion.

      We will revise the manuscript to address several of the reviewer’s key concerns. We agree that the small sample size increases the risk of baseline imbalances. We will acknowledge these limitations in the revised manuscript. We will provide both the full range and the IQR in Table 1 in the revised manuscript.

      A suggestion that there is a critical imbalance between groups is that the control group has significantly lower total HIV DNA in PBMC, despite the small sample size. The control group also has numerically longer time of continuous suppression, lower unspliced RNA, and lower intact proviral DNA. These differences may have biased the ability to see changes in DNA and US RNA in the control group.

      We acknowledge the significant baseline difference in total HIV DNA between groups, which we have clearly reported. However, the other variables mentioned, duration of continuous viral suppression, unspliced RNA levels, and intact proviral DNA, did not differ significantly between groups at baseline, despite differences in the median values. These numerical differences do not necessarily indicate a critical imbalance.

      Notably, there was no significant difference in the change in US RNA/DNA between groups (Figure 2C).

      The nonsignificant difference in the change in US RNA/DNA between groups is not unexpected, given the significant between-group differences for both US RNA and total DNA changes. Since the ratio combines both markers, it is likely to show attenuated between-group differences compared to the individual components. However, while the difference did not reach statistical significance (p = 0.09), we still observed a trend towards a greater reduction in the US RNA/Total DNA ratio in the intervention group.

      The fact that the median relative change appears very similar in Figure 2C, yet there is a substantial difference in P values, is also a comment on the limits of the current sample size.

      Although we surely agree that in general, the limited sample size impacts statistical power, we would like to point out that in Figure 2C, while the medians may appear similar, the ranges do differ between groups. At days 56 and 84, the median fold changes from baseline are indeed close but the full interquartile range in the DTG group stays below 1, while in the control group, the interquartile range is wider and covers approximately equal distance above and below 1. This explains the difference in p values between the groups.

      The text should report the median change in US RNA and US RNA/DNA when describing Figures 2A-2C.

      These data are already reported in the Results section (lines 164–166): "By day 84, US RNA and US RNA/total DNA ratio had decreased from day 0 by medians (IQRs) of 5.1 (3.3–6.4) and 4.6 (3.1–5.3) fold, respectively (p = 0.016 for both markers)."

      This statistical comparison of changes in IPDA results between groups should be reported. The presentation of the absolute values of all the comparisons in the supplemental figures is a strength of the manuscript.

      In the assessment of ART intensification on immune activation and exhaustion, the fact that none of the comparisons between randomized groups were significant should be noted and discussed.

      We would like to point out that a statistically significant difference between the randomized groups was observed for the frequency of CD4<sup>+</sup> T cells expressing TIGIT, as shown in Figure 3A and reported in the Results section (p = 0.048).

      The changes in CD4:CD8 ratio and sCD14 levels appear counterintuitive to the hypothesis and are commented on in the discussion.

      Overall, the discussion highlights the significant changes in the intensified group, which are suggestive. There is limited discussion of the comparisons between groups where the results are less convincing.

      We will temper the language accordingly and add commentary on the limited and modest nature of these changes. Similarly, we will expand our discussion of counterintuitive findings such as the CD4:CD8 ratio and sCD14 changes.

      The limitations of the study should be more clearly discussed. The small sample size raises the possibility of imbalance at baseline. The supplemental figures (S3-S5) are helpful in showing the differences between groups at baseline, and the variability of measurements is more apparent. The lack of blinding is also a weakness, though the PK assessments do help (note 3TC levels rise substantially in both groups for most of the time on study (Figure S2).

      The many assays and comparisons are listed as a strength. The many comparisons raise the possibility of finding significance by chance. In addition, if there is an imbalance at baseline outcomes, measuring related parameters will move in the same direction.

      We agree that the multiple comparisons raise the possibility of chance findings but would like to stress that in an exploratory study like this it is very important to avoid a type II error. In addition, the consistent directionality of the most relevant outcomes (US RNA and intact DNA) lends biological plausibility to the observed effects.

      The limited impact on activation and inflammation should be addressed in the discussion, as they are highlighted as a potentially important consequence of intermittent, not sustained replication in the introduction.

      The study is provocative and well executed, with the limitations listed above. Pharmacokinetic analyses help mitigate the lack of blinding. The major impact of this work is if it leads to a much larger randomized, controlled, blinded study of a longer duration, as the authors point out.

      Finally, we fully endorse the reviewer’s suggestion that the primary contribution of this study lies in its value as a proof-of-concept and foundation for future randomized, blinded trials of greater scale and duration. We will highlight this more clearly in the revised Discussion.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors present an interesting study using RL and Bayesian modelling to examine differences in learning rate adaptation in conditions of high and low volatility and noise respectively. Through "lesioning" an optimal Bayesian model, they reveal that apparently a suboptimal adaptation of learning rates results from incorrectly detecting volatility in the environment when it is not in fact present.

      Strengths:

      The experimental task used is cleverly designed and does a good job of manipulating both volatility and noise. The modelling approach takes an interesting and creative approach to understanding the source of apparently suboptimal adaptation of learning rates to noise, through carefully "lesioning" and optimal Bayesian model to determine which components are responsible for this behaviour.

      We thank the reviewer for this assessment.

      Weaknesses:

      The study has a few substantial weaknesses; the data and modelling both appear robust and informative, and it tackles an interesting question. The model space could potentially have been expanded, particularly with regard to the inclusion of alternative strategies such as those that estimate latent states and adapt learning accordingly.

      We thank the reviewer for this suggestion. We agree that it would be interesting to assess the ability of alternative models to reproduce the sub-optimal choices of participants in this study. The Bayesian Observer Model described in the paper is a form of Hierarchical Gaussian Filter, so we will assess the performance of a different class of models that are able to track uncertainty-- RL based models that are able to capture changes of uncertainty (the Kalman filter, and the model described by Cochran and Cisler, Plos Comp Biol 2019). We will assess the ability of the models to recapitulate the core behaviour of participants (in terms of learning rate adaption) and, if possible, assess their ability to account for the pupillometry response.

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors aimed to investigate how humans learn and adapt their behavior in dynamic environments characterized by two distinct types of uncertainty: volatility (systematic changes in outcomes) and noise (random variability in outcomes). Specifically, they sought to understand how participants adjust their learning rates in response to changes in these forms of uncertainty.

      To achieve this, the authors employed a two-step approach:

      (1) Reinforcement Learning (RL) Model: They first used an RL model to fit participants' behavior, revealing that the learning rate was context-dependent. In other words, it varied based on the levels of volatility and noise. However, the RL model showed that participants misattributed noise as volatility, leading to higher learning rates in noisy conditions, where the optimal strategy would be to be less sensitive to random fluctuations.

      (2) Bayesian Observer Model (BOM): To better account for this context dependency, they introduced a Bayesian Observer Model (BOM), which models how an ideal Bayesian learner would update their beliefs about environmental uncertainty. They found that a degraded version of the BOM, where the agent had a coarser representation of noise compared to volatility, best fit the participants' behavior. This suggested that participants were not fully distinguishing between noise and volatility, instead treating noise as volatility and adjusting their learning rates accordingly.

      The authors also aimed to use pupillometry data (measuring pupil dilation) as a physiological marker to arbitrate between models and understand how participants' internal representations of uncertainty influenced both their behavior and physiological responses. Their objective was to explore whether the BOM could explain not just behavioral choices but also these physiological responses, thereby providing stronger evidence for the model's validity.

      Overall, the study sought to reconcile approximate rationality in human learning by showing that participants still follow a Bayesian-like learning process, but with simplified internal models that lead to suboptimal decisions in noisy environments.

      Strengths:

      The generative model presented in the study is both innovative and insightful. The authors first employ a Reinforcement Learning (RL) model to fit participants' behavior, revealing that the learning rate is context-dependent-specifically, it varies based on the levels of volatility and noise in the task. They then introduce a Bayesian Observer Model (BOM) to account for this context dependency, ultimately finding that a degraded BOM - in which the agent has a coarser representation of noise compared to volatility - provides the best fit for the participants' behavior. This suggests that participants do not fully distinguish between noise and volatility, leading to the misattribution of noise as volatility. Consequently, participants adopt higher learning rates even in noisy contexts, where an optimal strategy would involve being less sensitive to new information (i.e., using lower learning rates). This finding highlights a rational but approximate learning process, as described in the paper.

      We thank the reviewer for their assessment of the paper.

      Weaknesses:

      While the RL and Bayesian models both successfully predict behavior, it remains unclear how to fully reconcile the two approaches. The RL model captures behavior in terms of a fixed or context-dependent learning rate, while the BOM provides a more nuanced account with dynamic updates based on volatility and noise. Both models can predict actions when fit appropriately, but the pupillometry data offers a promising avenue to arbitrate between the models. However, the current study does not provide a direct comparison between the RL framework and the Bayesian model in terms of how well they explain the pupillometry data. It would be valuable to see whether the RL model can also account for physiological markers of learning, such as pupil responses, or if the BOM offers a unique advantage in this regard. A comparison of the two models using pupillometry data could strengthen the argument for the BOM's superiority, as currently, the possibility that RL models could explain the physiological data remains unexplored.

      We thank the reviewer for this suggestion. In the current version of the paper, we use an extremely simple reinforcement learning model to simply measure the learning rate in each task block (as this is the key behavioural metric we are interested in). As the reviewer highlights, this simple model doesn’t estimate uncertainty or adapt to it. Given this, we don’t think we can directly compare this model to the Bayesian Observer Model—for example, in the current analysis of the pupillometry data we classify individual trials based on the BOM’s estimate of uncertainty and show that participants adapt their learning rate as expected to the reclassified trials, this analysis would not be possible with our current RL model. However, there are more complex RL based models that do estimate uncertainty (as discussed above in response to Reviewer #1) and so may more directly be compared to the BOM. We will attempt to apply these models to our task data and describe their ability to account for participant behaviour and physiological response as suggested by the Reviewer.

      The model comparison between the Bayesian Observer Model and the self-defined degraded internal model could be further enhanced. Since different assumptions about the internal model's structure lead to varying levels of model complexity, using a formal criterion such as Bayesian Information Criterion (BIC) or Akaike Information Criterion (AIC) would allow for a more rigorous comparison of model fit. Including such comparisons would ensure that the degraded BOM is not simply favored due to its flexibility or higher complexity, but rather because it genuinely captures the participants' behavioral and physiological data better than alternative models. This would also help address concerns about overfitting and provide a clearer justification for using the degraded BOM over other potential models.

      Thank you, we will add this.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      For clarity, the methods would benefit from further detail of task framing to participants. I.e. were there explicit instructions regarding volatility/task contingencies? Or were participants told nothing?

      We have added in the following explanatory text to the methods section (page 20), clarifying the limited instructions provided to participants:

      “Participants were informed that the task would be split into 6 blocks, that they had to learn which was the best option to choose, and that this option may change over time. They were not informed about the different forms of uncertainty we were investigating or of the underlying structure of the task (that uncertainty varied between blocks).”

      In the results, it would be useful to report the general task behavior of participants to get a sense of how they performed across different parts of the task. Also, were participants excluded if they didn't show evidence of learning adaptation to volatility?

      We have added the following text reporting overall performance to the results (page 6):

      “Participants were able to learn the best option to choose in the task, selecting the most highly rewarded option on an average of 71% of trials (range 65% - 74%).”

      And the following text to the methods, confirming that participants were not excluded if they didn’t respond to volatility/noise (the failure in this adaptation is the focus of the current study) (page 19):

      “No exclusion criteria related to task performance were used.”

      The results would benefit from a more intuitive explanation of what the lesioning is trying to recapitulate; this can get quite technical and the objective is not necessarily clear, especially for the less computationally-minded reader.

      We have amended the relevant section of the results to clarify this point (page 9):

      “Having shown that an optimal learner adjusts its learning rate to changes in volatility and noise as expected, we next sought to understand the relative noise insensitivity of participants. In these analyses we “lesion” the BOM, to reduce its performance in some way, and then assess whether doing so recapitulates the pattern of learning rate adaptation observed for participants (Fig 3e). In other words, we damage the model so it performs less well and then assess whether this damage makes the behaviour of the BOM (shown in Fig 3f) more closely resemble that seen in participants (Fig 3e).”

      The modelling might be improved by the inclusion of another class of model. Specifically, models that adapt learning rates in response to the estimation of latent states underlying the current task outcomes would be very interesting to see. In a sense, these are also estimating volatility through changeability of latent states, and it would be interesting to explore whether the findings could also be explained by an incorrect assumption that the latent state has changed when outcomes are noisy.

      Thank you for this suggestion. We have added additional sections to the supplementary materials in which we use a general latent state model and a simple RL model to try to recapitulate the behaviour of participants (and to compare with the BOM). These additional sections are extensive, so are not reproduced here. We have also added in a section to the discussion in the main paper covering this interesting question in which we confirm that we were unable to reproduce participant behaviour (or the normative effect of the lesioned BOMs) using these models but suggest that alternative latent state formulations would be interesting to explore in future work (page 18):

      “A related question is whether other, non-Bayesian model formulations may be able to account for participants’ learning adaptation in response to volatility and noise. Of note, the reinforcement learning model used to measure learning rates in separate blocks does not achieve this goal—as this model is fitted separately to each block rather than adapting between blocks (NB the simple reinforcement learning model that is fitted across all blocks does not capture participant behaviour, see supplementary information). One candidate class of model that has potential here is latent-state models (Cochran & Cisler, 2019), in which the variance and unexpected changes in the process being learned (which have a degree of similarity with noise and volatility respectively) is estimated and used to alter the model’s rates of updating as well as the estimated number of states being considered. Using the model described by Cochran and Cisler, we were unable to replicate the learning rate adaptation demonstrated by participants in the current study (see supplementary information) although it remains possible that other latent state formulations may be more successful. “

      The discussion may benefit from a little more discussion of where this work leads us - what is the next step?

      As above, we have added in a suggestion about future modelling work. We have also added in a section about the outstanding interesting questions concerning the neural representation of these quantities, reproduced in response to the suggestion by reviewer #2 below.

      Reviewer #2 (Recommendations for the authors):

      The study presents an opportunity to explore potential neural coding models that could account for the cognitive processes underlying the task. In the field of neural coding, noise correlation is often measured to understand how a population of neurons responds to the same stimulus, which could be related to the noise signal in this task. Since the brain likely treats the stimulus as the same, with noise representing minor changes, this aspect could be linked to the participants' difficulty distinguishing noise from volatility. On the other hand, signal correlation is used to understand how neurons respond to different stimuli, which can be mapped to the volatility signal in the task. It would be highly beneficial if the authors could discuss how these established concepts from neural population coding might relate to the Bayesian behavior model used in the study. For instance, how might neurons encode the distinction between noise and volatility at a population level? Could noise correlation lead to the misattribution of noise as volatility at a neural level, mirroring the behavioral findings? Discussing possible neural models that could explain the observed behavior and relating it to the existing literature on neural population coding would significantly enrich the discussion. It would also open up avenues for future research, linking these behavioral findings to potential neural mechanisms.

      We thank the reviewer for this interesting suggestion. We have added in the following paragraph to the discussion section which we hope does justice to this interesting questions (page 18):

      Previous work examining the neural representations of uncertainty have tended to report correlations between brain activity and some task-based estimate of one form of uncertainty at a time (Behrens et al., 2007; Walker et al., 2020, 2023). We are not aware of work that has, for example, systematically varied volatility and noise and reported distinct correlations for each. An interesting possibility as to how different forms of uncertainty may be encoded is suggested by parallels with the neuronal decoding literature. One question addressed by this literature is how the brain decodes changes in the world from the distributed, noisy neural responses to those changes, with a particular focus on the influence of different forms of between-neuron correlation (Averbeck et al., 2006; Kohn et al., 2016). Specifically, signal-correlation, the degree to which different neurons represent similar external quantities (required to track volatility) is distinguished from, and often limited by, noise-correlation, the degree to which the activity of different neurons covaries independently of these external quantities. One possibility relevant to the current study, which resembles the underlying logic of the BOM, is that a population of neurons represents the estimated mean of the generative process that produces task outcomes. In this case, volatility would be tracked as the signal-correlation across this population, whereas noise would be analogous to the noise-correlation and, crucially, misestimation of noise as volatility might arise as misestimation of these two forms of correlation. While the current study clearly cannot adjudicate on the neural representation of these processes, our finding of distinct behavioural and physiological responses to the two forms of uncertainty, does suggest that separable neural representations of uncertainty are maintained. “

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors report a study on how stimulation of receptive-field surround of V1 and LGN neurons affects their firing rates. Specifically, they examine stimuli in which a grey patch covers the classical RF of the cell and a stimulus appears in the surround. Using a number of different stimulus paradigms they find a long latency response in V1 (but not the LGN) which does not depend strongly on the characteristics of the surround grating (drifting vs static, continuous vs discontinuous, predictable grating vs unpredictable pink noise). They find that population responses to simple achromatic stimuli have a different structure that does not distinguish so clearly between the grey patch and other conditions and the latency of the response was similar regardless of whether the center or surround was stimulated by the achromatic surface. Taken together they propose that the surround-response is related to the representation of the grey surface itself. They relate their findings to previous studies that have put forward the concept of an ’inverse RF’ based on strong responses to small grey patches on a full-screen grating. They also discuss their results in the context of studies that suggest that surround responses are related to predictions of the RF content or figure-ground segregation. Strengths:

      I find the study to be an interesting extension of the work on surround stimulation and the addition of the LGN data is useful showing that the surround-induced responses are not present in the feedforward path. The conclusions appear solid, being based on large numbers of neurons obtained through Neuropixels recordings. The use of many different stimulus combinations provides a rich view of the nature of the surround-induced responses.

      Weaknesses:

      The statistics are pooled across animals, which is less appropriate for hierarchical data. There is no histological confirmation of placement of the electrode in the LGN and there is no analysis of eye or face movements which may have contributed to the surround-induced responses. There are also some missing statistics and methods details which make interpretation more difficult.

      We thank the reviewer for their positive and constructive comments, and have addressed these specific issues in response to the minor comments. For the statistics across animals, we refer to “Reviewer 1 recommendations” point 1. For the histological analysis, we refer to “Reviewer 1 recommendations point 2”. For the eye and facial movements, we refer to “Reviewer 1 recommendations point 5”. Concerning missing statistics and methods details, we refer to various responses to “Reviewer 1 recommendations”. We thoroughly reviewed the manuscript and included all missing statistical and methodological details.

      Reviewer #2 (Public review):

      Cuevas et al. investigate the stimulus selectivity of surround-induced responses in the mouse primary visual cortex (V1). While classical experiments in non-human primates and cats have generally demonstrated that stimuli in the surround receptive field (RF) of V1 neurons only modulate activity to stimuli presented in the center RF, without eliciting responses when presented in isolation, recent studies in mouse V1 have indicated the presence of purely surround-induced responses. These have been linked to prediction error signals. In this study, the authors build on these previous findings by systematically examining the stimulus selectivity of surround-induced responses.

      Using neuropixels recordings in V1 and the dorsal lateral geniculate nucleus (dLGN) of head-fixed, awake mice, the authors presented various stimulus types (gratings, noise, surfaces) to the center and surround, as well as to the surround only, while also varying the size of the stimuli. Their results confirm the existence of surround-induced responses in mouse V1 neurons, demonstrating that these responses do not require spatial or temporal coherence across the surround, as would be expected if they were linked to prediction error signals. Instead, they suggest that surround-induced responses primarily reflect the representation of the achromatic surface itself.

      The literature on center-surround effects in V1 is extensive and sometimes confusing, likely due to the use of different species, stimulus configurations, contrast levels, and stimulus sizes across different studies. It is plausible that surround modulation serves multiple functions depending on these parameters. Within this context, the study by Cuevas et al. makes a significant contribution by exploring the relationship between surround-induced responses in mouse V1 and stimulus statistics. The research is meticulously conducted and incorporates a wide range of experimental stimulus conditions, providing valuable new insights regarding center-surround interactions.

      However, the current manuscript presents challenges in readability for both non-experts and experts. Some conclusions are difficult to follow or not clearly justified.

      I recommend the following improvements to enhance clarity and comprehension:

      (1) Clearly state the hypotheses being tested at the beginning of the manuscript.

      (2) Always specify the species used in referenced studies to avoid confusion (esp. Introduction and Discussion).

      (3) Briefly summarize the main findings at the beginning of each section to provide context.

      (4) Clearly define important terms such as “surface stimulus” and “early vs. late stimulus period” to ensure understanding.

      (5) Provide a rationale for each result section, explaining the significance of the findings.

      (6) Offer a detailed explanation of why the results do not support the prediction error signal hypothesis but instead suggest an encoding of the achromatic surface.

      These adjustments will help make the manuscript more accessible and its conclusions more compelling.

      We thank the reviewer for their constructive feedback and for highlighting the need for improved clarity regarding the hypotheses and their relation to the experimental findings.

      • We have strongly improved the Introduction and Discussion section, explaining the different hypotheses and their relation to the performed experiments.

      • In the Introduction, we have clearly outlined each hypothesis and its predictions, providing a structured framework for understanding the rationale behind our experimental design. • In the Discussion, we have been more explicit in explaining how the experimental findings inform these hypotheses.

      • We explicitly mentioned the species used in the referenced studies.

      • We provided a clearer rationale for each experiment in the Results section.

      We have also always clearly stated the species that previous studies used, both in the Introduction and Discussion section.

      Reviewer #3 (Public review):

      Summary:

      This paper explores the phenomenon whereby some V1 neurons can respond to stimuli presented far outside their receptive field. It introduces three possible explanations for this phenomenon and it presents experiments that it argues favor the third explanation, based on figure/ground segregation.

      Strengths:

      I found it useful to see that there are three possible interpretations of this finding (prediction error, interpolation, and figure/ground). I also found it useful to see a comparison with LGN responses and to see that the effect there is not only absent but actually the opposite: stimuli presented far outside the receptive field suppress rather than drive the neurons. Other experiments presented here may also be of interest to the field.

      Weaknesses:

      The paper is not particularly clear. I came out of it rather confused as to which hypotheses were still standing and which hypotheses were ruled out. There are numerous ways to make it clearer.

      We thank the reviewer for their constructive feedback and for highlighting the need for improved clarity regarding the hypotheses and their relation to the experimental findings.

      • We have strongly improved the Introduction and Discussion section, explaining the different hypotheses and their relation to the performed experiments.

      • In the Introduction, we have clearly outlined each hypothesis and its predictions, providing a structured framework for understanding the rationale behind our experimental design. • In the Discussion, we have been more explicit in explaining how the experimental findings inform these hypotheses.

      ** Recommendations for the Authors:**

      Reviewer #1 (Recommendations for the Authors):

      (1) Given the data is hierarchical with neurons clustered within 6 mice (how many recording sessions per animal?) I would recommend the use of Linear Mixed Effects models. Simply pooling all neurons increases the risk of false alarms.

      To clarify: We used the standard method for analyzing single-unit recordings, by comparing the responses of a population of single neurons between two different conditions. This means that the responses of each single neuron were measured in the different conditions, and the statistics were therefore based on the pairwise differences computed for each neuron separately. This is a common and standard procedure in systems neuroscience, and was also used in the previous studies on this topic (Keller et al., 2020; Kirchberger et al., 2023). We were not concerned with comparing two groups of animals, for which hierarchical analyses are recommended. To address the reviewer’s concern, we did examine whether differences between baseline and the gray/drift condition, as well as the gray/drift compared to the grating condition, were consistent across sessions, which was indeed the case. These findings are presented in Supplementary Figure 6.

      (2) Line 432: “The study utilized three to eight-month-old mice of both genders”. This is confusing, I assume they mean six mice in total, please restate. What about the LGN recordings, were these done in the same mice? Can the authors please clarify how many animals, how many total units, how many included units, how many recording sessions per animal, and whether the same units were recorded in all experiments?

      We have now clarified the information regarding the animals used in the Methods section.

      • We state that “We included female and male mice (C57BL/6), a total of six animals for V1 recordings between three and eight months old. In two of those animals, we recorded simultaneously from LGN and V1.”

      • We state that“For each animal, we recorded around 2-3 sessions from each hemisphere, and we recorded from both hemispheres.”

      • We noted that the number of neurons was not mentioned for each figure caption. We apologize for this omission. We have now added the number for all of the figures and protocols to the revised manuscript. We note that the same neurons were recorded for the different conditions within each protocol, however because a few sessions were short we recorded more units for the grating protocol. Note that we did not make statistical comparisons between protocols.

      (3) I see no histology for confirmation of placement of the electrode in the LGN, how can they be sure they were recording from the LGN? There is also little description of the LGN experiments in the methods.

      For better clarity, we have included a reconstruction of the electrode track from histological sections of one animal post-experiment (Figure S4). The LGN was targeted via stereotactical surgery, and the visual responses in this area are highly distinct. In addition, we used a flash protocol to identify the early-latency responses typical for the LGN, which is described in the Methods section: “A flash stimulus was employed to confirm the locations of LGN at the beginning of the recording sessions, similar to our previous work in which we recorded from LGN and V1 simultaneously (Schneider et al., 2023). This stimulus consisted of a 100 ms white screen and a 2 s gray screen as the inter-stimulus interval, designed to identify visually responsive areas. The responses of multi-unit activity (MUA) to the flash stimulus were extracted and a CSD analysis was then performed on the MUA, sampling every two channels. The resulting CSD profiles were plotted to identify channels corresponding to the LGN. During LGN recordings, simultaneous recordings were made from V1, revealing visually responsive areas interspersed with non-responsive channels.”

      (4) Many statements are not backed up by statistics, for example, each time the authors report that the response at 90degree sign is higher than baseline (Line 121 amongst other places) there is no test to support this. Also Line 140 (negative correlation), Line 145, Line 180.

      For comparison purposes, we only presented statistical analyses across conditions. However, we have now added information to the figure captions stating that all conditions show values higher than the baseline.

      (5) As far as I can see there is no analysis of eye movements or facial movements. This could be an issue, for example, if the onset of the far surround stimuli induces movements this may lead to spurious activations in V1 that would be interpreted as surround-induced responses.

      To address this point, we have included a supplementary figure analyzing facial movements across different sessions and comparing them between conditions (Supplementary Figure 5). A detailed explanation of this analysis has been added to the Methods section. Overall, we observed no significant differences in face movements between trials with gratings, trials with the gray patch, and trials with the gray screen presented during baseline. Animals exhibited similar face movements across all three conditions, supporting the conclusion that the observed neural firing rate increases for the gray-patch condition are not related to face movements.

      (6) The experiments with the rectangular patch (Figure 3) seem to give a slightly different result as the responses for large sizes (75, 90) don’t appear to be above baseline. This condition is also perceptually the least consistent with a grey surface in the RF, the grey patch doesn’t appear to occlude the surface in this condition. I think this is largely consistent with their conclusions and it could merit some discussion in the results/discussion section.

      While the effect is maybe a bit weaker, the total surround stimulated also covers a smaller area because of the large rectangular gray patch. Furthermore, the early responses are clearly elevated above baseline, and the responses up to 70 degrees are still higher than baseline. Hence we think this data point for 90 degrees does not warrant a strong interpretation.

      Minor points:

      (1) Figure 1h: What is the statistical test reported in the panel (I guess a signed rank based on later figures)? Figure 4d doesn’t appear to be significantly different but is reported as so. Perhaps the median can be indicated on the distribution?

      We explained that we used a signed rank test for Figure 1h and now included the median of the distributions in Figure 4d.

      (2) What was the reason for having the gratings only extend to half the x-axis of the screen, rather than being full-screen? This creates a percept (in humans at least) that is more consistent with the grey patch being a hole in the grating as the grey patch has the same luminance as the background outside the grating.

      We explained in the Methods section that “We presented only half of the x-axis due to the large size of our monitor, in order to avoid over-stimulation of the animals with very large grating stimuli.”. Perceptually speaking, the gray patch appears as something occluding the grating, not as a “hole”.

      (3) Line 103: “and, importantly, had less than 10degree sign (absolute) distance to the grating stimulus’ RF center.” Re-phrase, a stimulus doesn’t have an RF center.

      We corrected this to “We included only single units into the analysis that met several criteria in terms of visual responses (see Methods) and, importantly, the RF center had less than 10(absolute) distance to the grating stimulus’ center. ”.

      (4) Line 143: “We recorded single neurons LGN” - should be “single LGN neurons”.

      We corrected this to “we recorded single LGN neurons”.

      (5) Line 200: They could spell out here that the latency is consistent with the latency observed for the grey patch conditions in the previous experiments. (6) Line 465: This is very brief. What criteria did they use for single-unit assignation? Were all units well-isolated or were multi-units included?

      We clarified in the Methods section that “We isolated single units with Kilosort 2.5 (Steinmetz et al., 2021) and manually curated them with Phy2 (Rossant et al., 2021). We included only single units with a maximum contamination of 10 percent.”

      (7) Line 469: “The experiment was run on a Windows 10”. Typo.

      We corrected this to “The experiment was run on Windows 10”.

      (9) Line 481: “We averaged the response over all trials and positions of the screen”. What do they mean by ’positions of the screen’?

      We changed this to “We computed the response for each position separately right, by averaging the response across all the trials where a square was presented at a given position.”

      (9) Line 483: “We fitted an ellipse in the center of the response”. How?

      We additionally explain how we preferred the detection of the RF using an ellipse fitting: “A heatmap of the response was computed. This heatmap was then smoothed, and we calculated the location of the peak response. From the heatmap we calculated the centroid of the response using the function regionprops.m that finds unique objects, we then selected the biggest area detected. Using the centroids provided as output. We then fitted an ellipse centered on this peak response location to the smoothed heatmap using the MATLAB function ellipse.m.“

      (10) Line 485 “...and positioned the stimulus at the response peak previously found”. Unclear wording, do you mean the center of the ellipse fit to the MUA response averaged across channels or something else? (11) Line 487: “We performed a permutation test of the responses inside the RF detected vs a circle from the same area where the screen was gray for the same trials.”. The wording is a bit unclear here, can they clarify what they mean by the ’same trials’, what is being compared to what here?

      We used a permutation test to compare the neuron’s responses to black and white squares inside the RF to the condition where there was no square in the RF (i.e. the RF was covered by the gray background).

      (12) Was the pink noise background regenerated on each trial or as the same noise pattern shown on each trial?

      We explain that “We randomly presented one of two different pink noise images”

      (13) Line 552: “...used a time window of the Gaussian smoothing kernel from-.05 to .05”. Missing units.

      We explained that “we used a time window of the Gaussian smoothing kernel from -.05 s to .05 s, with a standard deviation of 0.0125 s.”

      (14) Line 565: “Additionally, for the occluded stimulus, we included patch sizes of 70 degree sign and larger.”. Not sure what they’re referring to here.

      We changed this to: “For the population analyses, we analyzed the conditions in which the gray patch sizes were 70 degrees and 90 degrees”.

      (15) Line 569: What is perplexity, and how does changing it affect the t-SNE embeddings?

      Note that t-SNE is only used for visualization purposes. In the revised manuscript, we have expanded our explanation regarding the use of t-SNE and the choice of perplexity values. Specifically, we have clarified that we used a perplexity value of 20 for the Gratings with circular and rectangular occluders and 100 for the black-and-white condition. These values were empirically selected to ensure that the groups in the data were clearly separable while maintaining the balance between local and global relationships in the projected space. This choice allowed us to visually distinguish the different groups while preserving the meaningful structure encoded in the dissimilarity matrices. In particular, varying the perplexity values would not alter the conclusions drawn from the visualization, as t-SNE does not affect the underlying analytical steps of our study.

      (16) Line 572: “We trained a C-Support Vector Classifier based on dissimilarity matrices”. This is overly brief, please describe the construction of the dissimilarity matrices and how the training was implemented. Was this binary, multi-class? What conditions were compared exactly?

      In the revised manuscript, we have expanded our explanation regarding the construction of the dissimilarity matrices and the implementation of the C-Support Vector Classification (C-SVC) model (See Methods section).

      The dissimilarity matrices were calculated using the Euclidean distance between firing rate vectors for all pairs of trials (as shown in Figure 6a-b). These matrices were used directly as input for the classifier. It is important to note that t-SNE was not used for classification but only for visualization purposes. The classifier was binary, distinguishing between two classes (e.g., Dr vs St). We trained the model using 60% of the data for training and used 40% for testing. The C-SVC was implemented using sklearn, and the classification score corresponds to the average accuracy across 20 repetitions.

      Reviewer #2 (Recommendations for the Authors):

      The relationship between the current paper and Keller et al. is challenging to understand. It seems like the study is critiquing the previous study but rather implicitly and not directly. I would suggest either directly stating the criticism or presenting the current study as a follow-up investigation that further explores the observed effect or provides an alternative function. Additionally, defining the inverse RF versus surround-induced responses earlier than in the discussion would be beneficial. Some suggestions:

      (1) The introduction is well-written, but it would be helpful to clearly define the hypotheses regarding the function of surround-induced responses and revisit these hypotheses one by one in the results section.

      Indeed, we have generally improved the Introduction of the manuscript, and stated the hypotheses and their relationships to the Experiments more clearly.

      (2) Explicitly mention how you compare classic grating stimuli of varying sizes with gray patch stimuli. Do the patch stimuli all come with a full-field grating? For the full-field grating, you have one size parameter, while for the patch stimuli, you have two (size of the patch and size of the grating).

      We now clearly describe how we compare grating stimuli of varying sizes with gray patch stimuli.

      (3) The third paragraph in the introduction reads more like a discussion and might be better placed there.

      We have moved content from the third paragraph of the Introduction to the Discussion, where it fits more naturally.

      (4) Include 1-2 sentences explaining how you center RFs and detail the resolution of your method.

      We have added an explanation to the Methods: “To center the visual stimuli during the recording session, we averaged the multiunit activity across the responsive channels and positioned the stimulus at the center of the ellipse fit to the MUA response averaged across channels.”.

      (5) Motivate the use of achromatic stimuli. This section is generally quite hard to understand, so try to simplify it.

      We explained better in the Introduction why we performed this particular experiment.

      (6) The decoding analysis is great, but it is somewhat difficult to understand the most important results. Consider summarizing the key findings at the beginning of this section.

      We now provide a clearer motivation at the start of the Decoding section.

      Reviewer #3 (Recommendations for the Authors):

      I have a few suggestions to improve the clarity of the presentation.

      Abstract: it lists a series of observations and it ends with a conclusion (“based on these findings...”). However, it provides little explanation for how this conclusion would arise from the observations. It would be more helpful to introduce the reasoning at the top and show what is consistent with it.

      We have improved the abstract of the paper incorporating this feedback.

      To some extent, this applies to Results too. Sometimes we are shown the results of some experiment just because others have done a similar experiment. Would it be better to tell us which hypotheses it tests and whether the results are consistent with all 3 hypotheses or might rule one or more out? I came out of the paper rather confused as to which hypotheses were still standing and which hypotheses were ruled out.

      We have strongly improved our explanation of the hypotheses and the relationships to the experiments in the Introduction.

      It would be best if the Results section focused on the results of the study, without much emphasis on what previous studies did or did not measure. Here, instead, in the middle of Results we are told multiple times what Keller et al. (2020) did or did not measure, and what they did or did not find. Please focus on the questions and on the results. Where they agree or disagree with previous papers, tell us briefly that this is the case.

      We have revised the Results section in the revised manuscript, and ensured that there is much less focus on what previous studies did in the Results. Differences to previous work are now discussed in the Discussion section.

      The notation is extremely awkward. For instance “Gc” stands for two words (Gray center) but “Gr” stands for a single word (Grating). The double meaning of G is one of many sources of confusion.

      This notation needs to be revised. Here is one way to make it simpler: choose one word for each type of stimulus (e.g. Gray, White, Black, Drift, Stat, Noise) and use it without abbreviations. To indicate the configuration, combine two of those words (e.g. Gray/Drift for Gray in the center and Drift in the surround).

      We have corrected the notation in the figures and text to enhance readability and improve the reader’s understanding.

      Figure 1e and many subsequent ones: it is not clear why the firing rate is shown in a logarithmic scale. Why not show it in a linear scale? Anyway, if the logarithmic scale is preferred for some reason, then please give us ticks at numbers that we can interpret, like 0.1,1,10,100... or 0.5,1,2,4... Also, please use the same y-scale across figures so we can compare.

      To clarify: it is necessary to normalize the firing rates relative to baseline, in order to pool across neurons. However such a divisive normalization would be by itself problematic, as e.g. a change from 1 to 2 is the same as a change from 1 to 0.5, on a linear scale. Furthermore such division is highly outlier sensitive. For this reason taking the logarithm (base 10) of the ratio is an appropriate transformation. We changed the tick labels to 1, 2, 4 like the reviewer suggested.

      Figure 3: it is not clear what “size” refers to in the stimuli where there is no gray center. Is it the horizontal size of the overall stimulus? Some cartoons might help. Or just some words to explain.

      Figure 3: if my understanding of “size” above is correct, the results are remarkable: there is no effect whatsoever of replacing the center stimulus with a gray rectangle. Shouldn’t this be remarked upon?

      We have added a paragraph under figure 3 and in the Methods section explaining that the sizes represent the varying horizontal dimensions of the rectangular patch. In this protocol, the classical condition (i.e. without gray patch) was shown only as full-field gratings, which is depicted in the plot as size 0, indicating no rectangular patch was present.

      DETAILS The word “achromatic” appears many times in the paper and is essentially uninformative (all stimuli in this study are achromatic, including the gratings). It could be removed in most places except a few, where it is actually used to mean “uniform”. In those cases, it should be replaced by “uniform”.

      Ditto for the word “luminous”, which appears twice and has no apparent meaning. Please replace it with “uniform”.

      We have replaced the words achromatic and luminous with “uniform” stimuli to improve the clarity when we refer to only black or white stimuli.

      Page 3, line 70: “We raise some important factors to consider when describing responses to only surround stimulation.” This sentence might belong in the Discussion but not in the middle of a paragraph of Results.

      We removed this sentence.

      Neuropixel - Neuropixels (plural)

      “area LGN” - LGN

      We corrected for misspellings.

      References

      Keller, A.J., Roth, M.M., Scanziani, M., 2020. Feedback generates a second receptive field in neurons of the visual cortex. Nature 582, 545–549. doi:10.1038/s41586-020-2319-4.

      Kirchberger, L., Mukherjee, S., Self, M.W., Roelfsema, P.R., 2023. Contextual drive of neuronal responses in mouse V1 in the absence of feedforward input. Science Advances 9, eadd2498. doi:10. 1126/sciadv.add2498.

      Rossant, C., et al., 2021. phy: Interactive analysis of large-scale electrophysiological data. https://github.com/cortex-lab/phy.

      Schneider, M., Tzanou, A., Uran, C., Vinck, M., 2023. Cell-type-specific propagation of visual flicker. Cell Reports 42.

      Steinmetz, N.A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., Beau, M., Bhagat, J., B¨ohm, C., Broux, M., Chen, S., Colonell, J., Gardner, R.J., Karsh, B., Kloosterman, F., Kostadinov, D., Mora-Lopez, C., O’Callaghan, J., Park, J., Putzeys, J., Sauerbrei, B., van Daal,R.J.J., Vollan, A.Z., Wang, S., Welkenhuysen, M., Ye, Z., Dudman, J.T., Dutta, B., Hantman, A.W., Harris, K.D., Lee, A.K., Moser, E.I., O’Keefe, J., Renart, A., Svoboda, K., H¨ausser, M., Haesler, S., Carandini, M., Harris, T.D., 2021. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588. doi:10.1126/science.abf4588.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This work aims to improve our understanding of the factors that influence female-on-female aggressive interactions in gorilla social hierarchies, using 25 years of behavioural data from five wild groups of two gorilla species. Researchers analysed aggressive interactions between 31 adult females, using behavioural observations and dominance hierarchies inferred through Elo-rating methods. Aggression intensity (mild, moderate, severe) and direction (measured as the rank difference between aggressor and recipient) were used as key variables. A linear mixed-effects model was applied to evaluate how aggression direction varied with reproductive state (cycling, trimester-specific pregnancy, or lactation) and sex composition of the group. This study highlights the direction of aggressive interactions between females, with most interactions being directed from higher- to lower-ranking adult females close in social rank. However, the results show that 42% of these interactions are directed from lower- to higher-ranking females. Particularly, lactating and pregnant females targeted higher-ranking individuals, which the authors suggest might be due to higher energetic needs, which increase risk-taking in lactating and pregnant females. Sex composition within the group also influenced which individuals were targeted. The authors suggest that male presence buffers female-on-female aggression, allowing females to target higher-ranking females than themselves. In contrast, females targeted lower-ranking females than themselves in groups with a larger ratio of females, which supposes a lower risk for the females since the pool of competitors is larger. The findings provide an important insight into aggression heuristics in primate social systems and the social and individual factors that influence these interactions, providing a deeper understanding of the evolutionary pressures that shape risk-taking, dominance maintenance, and the flexibility of social strategies in group-living species.

      The authors achieved their aim by demonstrating that aggression direction in female gorillas is influenced by factors such as reproductive condition and social context, and their results support the broader claim that aggression heuristics are flexible. However, some specific interpretations require further support. Despite this, the study makes a valuable contribution to the field of behavioural ecology by reframing how we think about intra-sexual competition and social rank maintenance in primates.

      Strengths:

      One of the study's major strengths is the use of an extensive dataset that compiles 25 years of behavioural data and 6871 aggressive interactions between 31 adult females in five social groups, which allows for a robust statistical analysis. This study uses a novel approach to the study of aggression in social groups by including factors such as the direction and intensity of aggressive interactions, which offers a comprehensive understanding of these complex social dynamics. In addition, this study incorporates ecological and physiological factors such as the reproductive state of the females and the sex composition of the group, which allows an integrative perspective on aggression within the broader context of body condition and social environment. The authors successfully integrate their results into broader evolutionary and ecological frameworks, enriching discussions around social hierarchies and risk sensitivity in primates and other animals.

      Thank you for the positive assessment of our work and the nice summary of the manuscript!

      Weaknesses:

      Although the paper has a novel approach by studying the effect of reproductive state and social environment on female-female aggression, the use of observational data without experimental manipulation limits the ability to establish causation. The authors suggest that the difference observed in female aggression direction between groups with different sex composition might be indicative of male presence buffering aggression, which seems speculative, as no direct evidence of male intervention or support was reported. Similarly, the use of reproductive state as a proxy for energetic need is an indirect measure and does not account for actual energy expenditure or caloric intake, which weakens the authors' claims that female energetic need induces risk-taking. Overall, this paper would benefit from stronger justification and empirical support to strengthen the conclusions of the study about the mechanisms driving female aggression in gorillas.

      We agree that experimental manipulation would allow us to extend our work. Unfortunately, this is not possible with wild, endangered gorillas.

      We have now added more references (Watts 1994; Watts 1997) and enriched our arguments regarding male presence buffering aggression. Previous research suggests that male gorillas may support lower-ranking females and they may intervene in female-female conflicts (Sicotte 2002). Unfortunately, our dataset did not allow us to test for male protection. We conduct proximity scans every 10 minutes and these scans are not associated to each interaction, meaning that we cannot reliably test if proximity to a male influence the likelihood to receive aggression.

      We have now clearly stated that reproductive state is an indirect proxy for energetic needs. We agree with your point about energy intake and expenditure, but unfortunately, we do not have data on energy expenditure or caloric intake to allow us to delve into more fine-grained analyses.

      Overall, we have tried to enrich the justification and empirical support to strengthen our conclusions by clarifying the text and adding more examples and references.

      Reviewer #2 (Public review):

      Summary:

      The authors' aim in this study is to assess the factors that can shift competitive incentives against higher- or lower-ranking groupmates in two gorilla species.

      Strengths:

      This is a relevant topic, where important insights could be gained. The authors brought together a substantial dataset: a long-term behavioral dataset representing two gorilla species from five social groups.

      Weaknesses:

      The authors have not fully shown the data used in the model and explored the potential of the model. Therefore, I remain cautious about the current results and conclusions.

      Some specific suggestions that require attention are

      (1) The authors described how group size can affect aggression patterns in some species (line 54), using a whole paragraph, but did not include it as an explanation variable in their model, despite that they stated the overall group size can "conflate opposing effects of females and males" (line 85). I suggest underlining the effects of numbers of males or/and females here and de-emphasizing the effect of group size in the Introduction.

      We did not use group size as a main predictor, as has been commonly done in other species, because of potentially conflating opposing effects of males and females. To further stress this point, we have specifically added in the introduction: “group size, the overall number of individuals in the group, might not be a good predictor of aggression heuristics, as it can conflate the effects of different kinds of individuals on aggression (see Smit & Robbins 2024 for an example of opposing effects of the number of females and number of males on female gorilla aggression).”

      We also “ran our analysis testing for group size (number of weaned individuals in the group), instead of the numbers of females and males, [and] its influence on interaction score was not significant (estimate=-0.001, p-value=0.682).”

      (2) There should be more details given about how the authors calculated individual Elo-ratings (line 98). It seems that authors pooled all avoidance/displacement behaviors throughout the study period. But how often was the Elo-rating they included in the model calculated? By the day or by the month? I guess it was by the day, as they "estimate female reproductive state daily" (line 123). If so, it should be made clear in the text.

      We rephrased accordingly: “We used all avoidance and displacement interactions throughout the study period and we used the function elo.seq from R package EloRating to infer daily individual female Elo-scores”. We also clarified that “This method takes into account the temporal sequence of interactions and updates an individual’s Elo-scores each day the individual interacted with another...”

      In addition, all groups were long-term studied, and the group composition seems fluctuant based on the Table 1 in Reference 11. When an individual enters/leaves the group with a stable hierarchy, it takes time before the hierarchy turns stable again. If the avoidance/displacement behaviors used for the rank relationship were not common, it would take a few days or maybe longer. Also, were the aggressive behaviors more common during rank fluctuations? In other words, if avoidance/displacement behaviors and aggressive behaviors occur simultaneously during rank fluctuations, how did the authors deal with it and take it into consideration in the analysis?

      We have shown in Reference 25 (Smit & Robbins 2025) after Reference 11 (Smit & Robbins 2024) that females form highly stable hierarchies, and that dyadic dominance relationships are not influenced by dispersal or death of third individuals. Notably, new immigrant females usually start at and remain low ranking, without large fluctuations in rank. Therefore, the presence of any fluctuation periods have limited influence in the aggressive interactions in our study system.

      The authors emphasized several times in the text that gorillas "form highly stable hierarchical relationships". Also, in Reference 25, they found very high stabilities of each group's hierarchy. However, the number of females involved in that analysis was different from that used here. They need to provide more basic info on each group's dominance hierarchy and verify their statement. I strongly suggest that the authors display Elo-rating trajectories and necessary relevant statistics for each group throughout the study period as part of the supplementary materials.

      In fact, the females involved in the present analysis and the analysis of Smit & Robbins 2025 are the same. Our present analysis is based on the hierarchies of Smit & Robbins 2025. Note that female gorillas disperse and occasionally immigrate to another study group. This is why some females may appear in the hierarchies of more than one group, giving the impression that there are more females involved in the analysis of Smit & Robbins 2025 (e.g. by counting the lines in the Elo-rating plots). We now specifically state that “We present these interactions and hierarchies in detail in Smit & Robbins 2025”, to clarify that the hierarchies are the same.

      (3) The authors stated why they differentiated the different stages based on female reproductive status. They also referred to the differences in energetic needs between stages of pregnancy and lactation (lines 127-128). However, in the mixed model, they only compared the interaction score between the female cycling stage and other stages. The model was not well explained, and the results could be expanded. I suggest conducting more pairwise comparisons in the model and presenting the statistics in the text, if there are significant results. If all three pregnancy stages differed significantly from cycling and lactating stages but not from each other, they may be merged as one pregnancy stage. More in-depth analysis would help provide better answers to the research questions.

      Thank you for pointing this out. First, when we considered one pregnancy stage, pregnant females showed indeed a significantly greater interaction score than females in other reproductive stages. We have now included that in the manuscript. However, we still find relevant to test for the different stages of pregnancy, given the difference of energetic needs in these stages. We have now included the pairwise comparisons in a new table (Table 2).

      Reviewer #3 (Public review):

      Smit and Robbins' manuscript investigates the dynamics of aggression among female groupmates across five gorilla groups. The authors utilize longitudinal data to examine how reproductive state, group size, presence of males, and resource availability influence patterns of aggression and overall dominance rankings as measured by Elo scores. The findings underscore the important role of group composition and reproductive status, particularly pregnancy, in shaping dominance relationships in wild gorillas. While the study addresses a compelling and understudied topic, I have several comments and suggestions that may enhance clarity and improve the reader's experience.

      (1) Clarification of longitudinal data - The manuscript states that 25 years of behavioral data were used, but this number appears unclear. Based on my calculations, the maximum duration of behavioral observation for any one group appears to be 18 years. Specifically:

      • ATA: 6 years

      • BIT: 8 years

      • KYA: 18 years

      • MUK: 6 years

      • ORU: 8 years

      I recommend that the authors clarify how the 25-year duration was derived.

      Indeed none of the five study “groups” has been studied for 25 years in a row. However, MUK emerged from a fission of group KYA in early 2016. So, from the start of group KYA in October 1998 to the end of group MUK in December 2023, there are 25 years and 2 months. We have now rephrased to “...starting in 1998 in one of the mountain gorilla groups” in the introduction, and to “We use a long-term behavioural dataset on five wild groups of the two gorilla species, starting in 1998” in the abstract.

      (2) Consideration of group size - The authors mention that group size was excluded from analyses to avoid conflating the opposing effects of female and male group members. While this is understandable, it may still be beneficial to explore group size effects in supplementary analyses. I suggest reporting statistics related to group size and potentially including a supplementary figure. Additionally, given that the study includes both mountain and wild gorillas, it would be helpful to examine whether any interspecies differences are apparent.

      We have now added the suggested extra test: “When we ran our analysis testing for group size (number of weaned individuals in the group), instead of the numbers of females and males, its influence on interaction score was not significant (estimate=-0.001, p-value=0.682).”

      Regarding species differences: In our analysis, we test for species (mountain vs western) and we find no significant differences between the two. This is stated in the results.

      (3) Behavioral measures clarification - Lines 112-116 describe the types of aggressive behaviors observed. It would be helpful to clarify how these behaviors differ from those used to calculate Elo scores, or whether they overlap. A brief explanation would improve transparency regarding the methodology.

      We now added short explanations into brackets for behaviours that are not obvious. We also added a sentence in the text to clarify the difference with the behaviours used to calculate Elo scores: “These two behaviours [avoidance and displacement] are ritualized, occurring in absence of aggression, they are considered a more reliable proxy of power relationships over aggression, and they are typically used to infer gorilla hierarchical relationships”.

      (4) Aggression rates versus Elo scores - The manuscript uses aggression rates rather than dominance rank (as measured by Elo scores) as the main outcome variable, but there is no explanation on why. How would the results differ if aggression rates were replaced or supplemented with Elo scores? The current justification for prioritizing aggression rates over dominance rank needs to be more clearly supported.

      The sentence we added above (“These two behaviours [avoidance and displacement] are ritualized, occurring in absence of aggression, they are considered a more reliable proxy of power relationships over aggression, and they are typically used to infer gorilla hierarchical relationships”) and the first paragraph of the results hopefully clarify that ritualized agonistic interactions are generally directionally consistent and more reliably capture the highly stable dominance relationships of female gorillas. This approach has been used to calculate dominance rank in gorillas in all studies that have considered it, dating back to the 1970s (namely in studies by Harcourt and Watts). On the other hand, aggression can be context dependent (we now clearly note that in the beginning of the Methods paragraph on aggressive interactions). Therefore, we use Eloscores inferred from ritualized interactions as base and a reliable proxy of power relationships; then we test if the direction of aggression within these relationships is driven also by energetic needs or the social environment.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank all reviewers for the highly detailed review and the time and effort which has been invested in this review. It is clear from the reviews that we’ve had the privilege to have our work extensively and thoroughly checked by knowledgeable experts, for which we are very grateful. We have read their perspectives, questions and suggested improvements with great interest. We have reflected on the public review in detail and have included detailed responses below. First, we would like to respond to four main issues pointed out by the editor and reviewers:

      (1) Lack of yield data in the manuscript: Yield data has been collected in most of the sites and years of our study, and these have already been published and cited in our manuscript. In the appendix of our manuscript, we included a table with yield data for the sites and years in which the beetle diversity was studied. These data show that strip cropping does not cause a systematic yield reduction.

      (2) Sampling design clarification: Our paper combines data from trials conducted at different locations and years. On the one hand this allows an analysis of a comprehensive dataset, but on the other hand in some cases this resulted in variations in how data were collected or processed (e.g. taxonomic level of species identification). We have added more details to the sections on sampling design and data analysis to increase clarity and transparency.

      (3) Additional data analysis: In the revised manuscript we present an analysis on the responses of abundances of the 12 most common ground beetle genera to strip cropping. This gives better insight in the variation of responses among ground beetle taxa.

      (4) Restrict findings to our system: We nuanced our findings further and focused more on the implications of our data on ground beetle communities, rather than on agrobiodiversity in a broader sense.

      Below we also respond to the editor and reviewers in more detail.

      Reviewing Editor Comments:

      (1) You only have analyzed ground beetle diversity, it would be important to add data on crop yields, which certainly must be available (note that in normal intercropping these would likely be enhanced as well).

      Most yield data have been published in three previous papers, which we already cited or cite now (one was not yet published at the time of submission). Our argumentation is based on these studies. We had also already included a table in the appendix that showed the yield data that relates specifically to our locations and years of measurement. The finding that strip cropping does not majorly affect yield is based on these findings. We revised the title of our manuscript to remove the explicit focus on yield.

      (2) Considering the heterogeneous data involving different experiments it is particularly important to describe the sampling design in detail and explain how various hierarchical levels were accounted for in the analysis.

      We agree that some important details to our analysis were not described in sufficient detail. Especially reviewer 2 pointed out several relevant points that we did account for in our analyses, but which were not clear from the text in the methods section. We are convinced that our data analyses are robust and that our conclusions are supported by the data. We revised the methods section to make our approach clearer and more transparent.

      (3) In addition to relative changes in richness and density of ground beetles you should also present the data from which these have been derived. Furthermore, you could also analyze and interpret the response of the different individual taxa to strip cropping.

      With our heterogeneous dataset it was quite complicated to show overall patterns of absolute changes in ground beetle abundance and richness, especially for the field-level analyses. As the sampling design was not always the same and occasionally samples were missing, the number of year series that made up a datapoint were different among locations and years. However, we always made sure that for the comparison of a paired monoculture and strip cropping field, the number of year series was always made equal through rarefaction. That is, the number of ground beetle(s) (species) are always expressed as the number per 2 to 6 samples. Therefore, we prefer to stick to relative changes as we are convinced that this gives a fairer representation of our complex dataset.

      We agree with the second point that both the editor and several reviewers pointed out. The indicator species analyses that we used were biased by rare species, and we now omit this analysis. Instead, we included a GLM analysis on the responses of abundances of the 12 most common ground beetle genera to strip cropping. We chose for genera here (and not species) as we could then include all locations and years within the analyses, and in most cases a genus was dominated by a single species (but notable exceptions were Amara and Harpalus, which were often made up of several species). We illustrate these analyses still in a similar fashion as we did for the indicator species analysis.

      (4) Keep to your findings and don't overstate them but try to better connect them to basic ecological hypotheses potentially explaining them.

      After careful consideration of the important points that reviewers point out, we decided to nuance our reasoning about biodiversity conservation along two key lines: (1) the extent to which ground beetles can be indicators of wider biodiversity changes; and (2) our findings that are not as straightforward positive as our narrative suggests. We still believe that strip cropping contributes positively to carabid communities, and have carefully checked the text to avoid overstatements.

      Reviewer #1 (Public review):

      Summary:

      This study demonstrates that strip cropping enhances the taxonomic diversity of ground beetles across organically-managed crop systems in the Netherlands. In particular, strip cropping supported 15% more ground beetle species and 30% more individuals compared to monocultures.

      Strengths:

      A well-written study with well-analyzed data of a complex design. The data could have been analyzed differently e.g. by not pooling samples, but there are pros and cons for each type of analysis and I am convinced this will not affect the main findings. A strong point is that data were collected for 4 years. This is especially strong as most data on biodiversity in cropping systems are only collected for one or two seasons. Another strong point is that several crops were included.

      We thank reviewer 1 for their kind words and agree with this strength of the paper. The paper combines data from trials conducted at different locations and years. On the one hand this allows an analysis of a comprehensive dataset, but on the other hand in some cases there were slight variations in how data were collected or processed (e.g. taxonomic level of species identification).

      Weaknesses:

      This study focused on the biodiversity of ground beetles and did not examine crop productivity. Therefore, I disagree with the claim that this study demonstrates biodiversity enhancement without compromising yield. The authors should present results on yield or, at the very least, provide a stronger justification for this statement.

      We acknowledge that we indeed did not formally analyze yield in our study, but we have good reason for this. The claim that strip cropping does not compromise yield comes from several extensive studies (Juventia & van Apeldoorn, 2024; Ditzler et al., 2023; Carillo-Reche et al., 2023) that were conducted in nearly all the sites and years that we included in our study. We chose not to include formal analyses of productivity for two key reasons: (1) a yield analysis would duplicate already published analyses, and (2) we prefer to focus more on the ecology of ground beetles and the effect of strip cropping on biodiversity, rather than diverging our focus also towards crop productivity. Nevertheless, we have shown the results on yield in Table S6 and refer extensively to the studies that have previously analyzed this data (line 203-207, 217-221).

      Reviwer #1 (Recommendations for the authors):

      This is a well-written study on the effects of strip cropping on ground-beetle diversity. As stated above the study is well analyzed, presented, and written but you should not pretend that you analyzed yield e.g. lines 25-27 "We show that strip cropping...enhance ground beetle biodiversity without incurring major yield loss.

      We understand the confusion caused by this sentence, and it was never our intention to give the impression that we analyzed yield losses. These findings were based on previous research by ourselves and colleagues, and we have now changed the sentence to reflect this (line 25-27).

      I think you assume that yield does not differ between strip cropping and monoculture. I am not sure this is correct as one crop might attract pests or predators spilling over to the other crop. I am also not sure if the sowing and harvest of the crop will come with the same costs. So if you assume this, you should only do it in the main manuscript and not the abstract, to justify this better.

      With three peer-reviewed papers on the same fields as we studied, we can convincingly state that strip cropping in organic agriculture generally does not result in major yield loss, although exceptions exist, which we refer to in the discussion.

      In the introduction lines 28-43, you refer to insect biomass decline. I wonder if you would like to add the study of Loboda et al. 2017 in Ecography. It seems not fitting as it is from the Artic but also the other studies you cite are not only coming from agricultural landscapes and this study is from the same time as the Hallmann et al. 2017 study and shows a decline in flies of 80%

      We have removed the sentence that this comment refers to, to streamline the introduction more.

      Lines 50-51. You only have one citation for biodiversity strategies in agricultural systems. I suggest citing Mupepele et al. 2021 in TREE. This study refers to management but also the policies and societal pressures behind it.

      We have added this citation and a recent paper by Cozim-Melges et al. (2024) here (line 49-52).

      In the methods, I am missing a section on species identifications. This would help to understand why you used "taxonomic richness".

      Thanks for pointing this out. We have now included a new section on ground beetle identification (line 304-309 in methods).

      Figure 1 is great and I like that you separated the field and crop-level data, although there is no statistical power for the crop-specific data. I personally would move k to the supplements. It is very detailed and small and therefore hard to read

      We chose to keep figure 1k, as in our view it gives a good impression of the scale of the experiment, the number of crops included and the absolute numbers of caught species.

      Reviewer #2 (Public review):

      Summary:

      The authors aimed to investigate the effects of organic strip cropping on carabid richness and density as well as on crop yields. They find on average higher carabid richness and density in strip cropping and organic farming, but not in all cases.

      We did not intend to investigate the effect of strip cropping on crop yields, but rather place our work in the framework of earlier studies that already studied yield. All the monocultures and strip cropping fields were organic farms. Our findings thus compare crop diversity effects within the context of organic farming.

      Strengths:

      Based on highly resolved species-level carabid data, the authors present estimates for many different crop types, some of them rarely studied, at the same time. The authors did a great job investigating different aspects of the assemblages (although some questions remain concerning the analyses) and they present their results in a visually pleasing and intuitive way.

      We appreciate the kind words of reviewer 2 and their acknowledgement of the extensiveness of our dataset. In our opinion, the inclusion of many different crops is indeed a strength, rarely seen in similar studies; and we are happy that the figures are appreciated.

      Weaknesses:

      The authors used data from four different strip cropping experiments and there is no real replication in space as all of these differed in many aspects (different crops, different areas between years, different combinations, design of the strip cropping (orientation and width), sampling effort and sample sizes of beetles (differing more than 35 fold between sites; L 100f); for more differences see L 237ff). The reader gets the impression that the authors stitched data from various places together that were not made to fit together. This may not be a problem per se but it surely limits the strength of the data as results for various crops may only be based on small samples from one or two sites (it is generally unclear how many samples were used for each crop/crop combination).

      The paper indeed combines data from trials conducted at different locations and years. On the one hand this allows an analysis of a comprehensive dataset, but on the other hand in some cases there were slight differences in the experimental design. At the time that we did our research, there were only a handful of farmers that were employing strip cropping within the Netherlands, which greatly reduced the number of fields for our study. Therefore, we worked in the sites that were available and studied as many crops on these sites. Since there was variation in the crops grown in the sites, for some crops we have limited replication. In the revision we have explained this more clearly (line 297-300).

      One of my major concerns is that it is completely unclear where carabids were collected. As some strips were 3m wide, some others were 6m and the monoculture plots large, it can be expected that carabids were collected at different distances from the plot edge. This alone, however, was conclusively shown to affect carabid assemblages dramatically and could easily outweigh the differences shown here if not accounted for in the models (see e.g. Boetzl et al. (2024) or Knapp et al. (2019) among many other studies on within field-distributions of carabids).

      Point well taken. Samples were always taken at least 10 meters into the field, and always in the middle of the strip. This would indeed mean that there is a small difference between the 3- and 6m wide strips regarding distance from another strip, but this was then only a difference of 1.5 to 3 meters from the edge. A difference that, based on our own extensive experience with ground beetle communities, will not have a large impact on the findings of ground beetles. The distance from field/plot edges was similar between monocultures and strip cropped fields. We present a more detailed description of the sampling design in the methods of the revised manuscript (line 294-297).

      The authors hint at a related but somewhat different problem in L 137ff - carabid assemblages sampled in strips were sampled in closer proximity to each other than assemblages in monoculture fields which is very likely a problem. The authors did not check whether their results are spatially autocorrelated and this shortcoming is hard to account for as it would have required a much bigger, spatially replicated design in which distances are maintained from the beginning. This limitation needs to be stated more clearly in the manuscript.

      To be clear, this limitation relates to the comparison that we did for the community compositions of ground beetles in two crops either in strip cropping or monocultures. In this case, it was impossible to avoid potential autocorrelation due to our field design. We also acknowledge this limitation in the results section (line 130-133). However, for our other analyses we corrected for spatial autocorrelation by including variables per location, year and crop. This grouped samples that were spatially autocorrelated. Therefore, we don’t see this as a discrepancy of our other analyses.

      Similarly, we know that carabid richness and density depend strongly on crop type (see e.g. Toivonen et al. (2022)) which could have biased results if the design is not balanced (this information is missing but it seems to be the case, see e.g. Celeriac in Almere in 2022).

      We agree and acknowledge that crop type can influence carabid richness and density, which is why we have included variables to account for differences caused by crops. However, we did not observe consistent differences between crops in how strip cropping affected ground beetle richness and density. Therefore, we don’t think that crop types would have influenced our conclusions on the overall effect of strip cropping.

      A more basic problem is that the reader neither learns where traps were located, how missing traps were treated for analyses how many samples there were per crop or crop combination (in a simple way, not through Table S7 - there has to have been a logic in each of these field trials) or why there are differences in the number of samples from the same location and year (see Table S7). This information needs to be added to the methods section.

      Point well taken. We have clarified this further in the revised manuscript (line 294-301, 318-322). As we combined data from several experimental designs that originally had slightly different research questions, this in part caused differences between numbers of rounds or samples per crop, location or year.

      As carabid assemblages undergo rapid phenological changes across the year, assemblages that are collected at different phenological points within and across years cannot easily be compared. The authors would need to standardize for this and make sure that the assemblages they analyze are comparable prior to analyses. Otherwise, I see the possibility that the reported differences might simply be biased by phenology.

      We agree and we dealt with this issue by using year series instead of using individual samples of different rounds. This approach allowed us to get a good impression of the entire ground beetle community across seasons. For our analyses we had the choice to only include data from sampling rounds that were conducted at the same time, or to include all available data. We chose to analyze all data, and made sure that the number of samples between strip cropping and monoculture fields per location, year and crop was always the same by pooling and rarefaction.

      Surrounding landscape structure is known to affect carabid richness and density and could thus also bias observed differences between treatments at the same locations (lower overall richness => lower differences between treatments). Landscape structure has not been taken into account in any way.

      We did not include landscape structure as there are only 4 sites, which does not allow a meaningful analysis of potential effects landscape structure. Studying how landscape interacts with strip cropping to influence insect biodiversity would require at least, say 15 to 20 sites, which was not feasible for this study. However, such an analysis may be possible in an ongoing project (CropMix) which includes many farms that work with strip cropping.

      In the statistical analyses, it is unclear whether the authors used estimated marginal means (as they should) - this needs to be clarified.

      In the revised manuscript we further clarified this point (line 365-366, 373-374).

      In addition, and as mentioned by Dr. Rasmann in the previous round (comment 1), the manuscript, in its current form, still suffers from simplified generalizations that 'oversell' the impact of the study and should be avoided. The authors restricted their analyses to ground beetles and based their conclusions on a design with many 'heterogeneities' - they should not draw conclusions for farmland biodiversity but stick to their system and report what they found. Although I understand the authors have previously stated that this is 'not practically feasible', the reason for this comment is simply to say that the authors should not oversell their findings.

      In the revised manuscript, we nuanced our findings by explaining that strip cropping is a potentially useful tool to support ground beetle biodiversity in agricultural fields (line 33-35).

      Reviewer #2 (Recommendations for the authors):

      In addition to the points stated under 'Weaknesses' above, I provide smaller comments and recommendations:

      Overall comments:

      (i) The carabid images used in the figures were created by Ortwin Bleich and are copyrighted. I could not find him accredited in the acknowledgements; the figure legends simply state that the images were taken from his webpage. Was his permission obtained? This should be stated.

      We have received written permission from Ortwin Bleich for using his pictures in our figures, and have accredited him for this in the acknowledgements (line 455-456).

      (ii) There is a great confusion in the field concerning terminology. The authors here use intercropping and strip cropping, a specific form of intercropping, interchangeably. I advise the authors to stick to strip cropping as it is more precise and avoids confusion with other forms of intercropping.

      We agree with the definitions given by reviewer 2 and had already used them as such in the text. We defined strip cropping in the first paragraph of the introduction and do not use the term “intercropping” after this definition to avoid confusion.

      Comments to specific lines:

      Line 19: While this is likely true, there is so far not enough compelling evidence for such a strong statement blaming agriculture. Please rephrase.

      Changed the sentence to indicate more clearly that it is one of the major drivers, but that the “blame” is not solely on agriculture (line 18-19).

      Line 22: Is this the case? I am aware of strip cropping being used in other countries, many of them in Europe. Why the focus on 'Dutch'?

      Indeed, strip cropping is now being pioneered by farmers throughout Europe. However in the Netherlands, some farmers have been pioneering strip cropping already since 2014. We have added this information to indicate that our setting is in the Netherlands, and as in our opinion it gives a bit more context to our manuscript.

      Line 24: I would argue that carabids are actually not good indicators for overall biodiversity in crop fields as they respond in a very specific way, contrasting with other taxa. It is commonly observed that carabids prefer more disturbed habitats and richness often increases with management intensity and in more agriculturally dominated landscapes - in stark contrast to other taxa like wild bees or butterflies.

      We have reworded this sentence to reflect that they are not necessarily indicators of wide agricultural biodiversity, but that they do hold keystone positions within food webs in agricultural systems (line 23-25).

      Line 31: This statement here is also too strong - carabids are not overall biodiversity and patterns found for carabids likely differ strongly from patterns that would be observed in other taxa. This study is on carabids and the conclusion should thus also refer to these in order to avoid such over-simplified generalizations.

      We agree and have nuanced this sentence to indicate that our findings are only on ground beetles (line 33-35). However, we would like to point out that the statement that “patterns found for carabids likely differ strongly from patterns that would be observed in other taxa” assumes a disassociation between carabids and other taxa.

      Line 41: I am sure the authors are aware of the various methodological shortcomings of the dataset used in Hallmann et al. (2017) which likely led to an overestimation of the actual decline. Analysing the same data, Müller et al. (2023) found that weather can explain fluctuations in biomass just as well as time. I thus advise not putting too much focus on these results here as they seem questionable.

      We have removed this sentence to streamline the introduction, thus no longer mentioning the percentages given by Hallmann et al. (2017).

      Line 46: Surely likely but to my knowledge this is actually remarkably hard to prove. Instead of using the IPBES report here that simply states this as a fact, it would be better to see some actual evidence referenced.

      We removed IPBES as a source and changed this for Dirzo et al. (2014), a review that shows the consequences of biodiversity decline on a range of different ecosystem services and ecological functions (line 45-47).

      Line 52ff: I am not sure whether this old land-sparing vs. land-sharing debate is necessary here. The authors could simply skip it and directly refer to the need of agricultural areas, the dominating land-use in many regions, to become more biodiversity-friendly. It can be linked directly to Line 61 in my opinion which would result in a more concise and arguably stronger introduction.

      After reconsidering, we agree with reviewer 2 that this section was redundant and we have removed the lines on land-sparing vs land-sharing.

      Line 59: Just a note here: this argument is not meaningful when talking about strip cropping in the Netherlands as there is virtually no land left that could be converted (if anything, agricultural land is lost to construction). The debate on land-use change towards agriculture is nowadays mostly focused on the tropics and the Global South.

      We argue that strip cropping could play an important role as a measure that does not necessarily follow the trade-off between biodiversity and agriculture for a context beyond the Netherlands (line 52-58).

      Line 69: Does this statement really need 8 references?

      Line 71: ... and this one 5 additional ones?

      We have removed excess references in these two lines (line 62-66).

      Line 74: But also likely provides the necessary crop continuity for many crop pests - the authors should keep in mind that when practitioners read agricultural biodiversity, they predominantly think of weeds and insect pests.

      We agree with reviewer 2 that agricultural biodiversity is still a controversial topic. However, as the focus in this manuscript is more on biodiversity conservation, rather than pest management, we prefer to keep this sentence as is. In other published papers and future work we focus more on the role of strip cropping for pest management.

      Line 83: Consider replacing 'moments' maybe - phenological stages or development stages?

      Although we understand the point of reviewer 2, we prefer to keep it at moments, as we did not focus on phenological stages and we only wanted to say that we set pitfall traps at several moments throughout the year. However, by placing the pitfall traps at several moments throughout the year, we did capture several phenological stages.

      Line 86: Not only farming practices - there are also massive fluctuations between years in the same crop with the same management due to effects of the weather in the previous reproductive season. Interpreting carabid assemblage changes is therefore not straightforward.

      We absolutely agree that interpreting carabid assemblage is not straightforward, but as we did not study year or crop legacy effects we chose to keep this sentence to maintain focus on our research goals.

      Line 88: 'ecolocal'?

      Typo, should have been ecological. Changed (line 81).

      Line 90: 'As such, they are often used as indicator group for wider insect diversity in agroecosystems' - this is the third repetition of this statement and the second one in this paragraph - please remove. Having worked on carabids extensively myself, I also think that this is not the true reason - they are simply easy to collect passively.

      We agree with the reviewer and have removed this sentence.

      Line 141: I have doubts about the value of the ISA looking at the results. Anchomenus dorsalis is a species extremely common in cereal monoculture fields in large parts of Europe, especially in warmer and drier conditions (H. griseus was likely only returned as it is generally rare and likely only occurred in few plots that, by chance, were strip-cropped). It can hardly be considered an indicator for diverse cropping systems but it was returned as one here (which I do not doubt). This often happens with ISA in my experience as they are very sensitive to the specific context of the data they are run on. The returned species are, however, often not really useable as indicators in other contexts. I thus believe they actually have very limited value. Apart from this, we see here that both monocultures and strip cropping have their indicators, as would likely all crop types. I wonder what message we would draw from this ...

      On close reconsideration, we agree with the reviewer that the ISAs might have been too sensitive to rare species that by chance occur in one of two crop configurations. To still get an idea on what happens with specific ground beetle groups, we chose to replace the ISAs with analyses on the 12 most common ground beetle genera. For this purpose we have added new sections to the methods (line 368-374) and results (line 135-143), replaced figure 2 and table S5, and updated the discussion (line 182-200).

      Line 165: Carabid activity is high when carabids are more active. Carabids can be more active either when (i) there are simply more carabid individuals or /and (ii) when they are starved and need to search more for prey. More carabid activity does thus not necessarily indicate more individuals, it can indicate that there is less prey. This aspect is missing here and should be discussed. It is also not true that crop diversification always increases prey biomass - especially strip cropping has previously been shown to decrease pest densities (Alarcón-Segura et al., 2022). Of course, this is a chicken-egg problem (less pests => less carabids or more carabids => less pests ?) ... this should at least be discussed.

      We have rewritten this paragraph to further discuss activity density in relation to food availability (line 175-185).

      Line 178: These species are not exclusively granivorous - this speculation may be too strong here.

      Line 185: true for all but C. melanocephalus - this species is usually more associated with hedgerows, forests etc.

      After removing the ISA’s, we also chose to remove this paragraph and replace it with a paragraph that is linked to the analyses on the 12 most common genera (line 182-200).

      Line 202: These statements are too strong for my taste - the authors should add an 'on average' here. The data show that they likely do not always enhance richness by 15 % and as the authors state, some monocultures still had higher richness and densities.

      “on average” added (line 211)

      Line 203: 'can lead' - the authors cannot tell based on their results if this is always true for all taxa.

      Changed to “can lead” (line 213)

      Line 205: What is 'diversification' here?

      This concerns measures like hedgerows or flower strips. We altered the sentence to make this clearer (line 215-216).

      Line 208: Does this statement need 5 references? (as in the introduction, the reader gets the impression the authors aimed to increase the citation count of other articles here).

      We have removed excess references (line 219-221).

      Line 222: How many are 'a few'? Maybe state a proportion.

      We only found two species, we’ve changed the sentence accordingly (line 232-233).

      Line 224: As stated above, I would not overstress the results of the ISAs - the authors stated themselves that the result for A. dorsalis is likely only based on one site ...

      We removed this sentence after removing the ISAs.

      Line 305: I think there is an additional nested random level missing - the transect or individual plot the traps were located in (or was there only one replicate for each crop/strip in each experiment)? Hard to tell as the authors provide no information on the actual sample sizes.

      Indeed, there was one field or plot per cropping system per crop per location per year from which all the samples were taken. Therefore the analysis does not miss a nested random level. We provided information on sample sizes in Table S7.

      Line 314ff: The authors describe that they basically followed a (slightly extended) Chao-Hill approach (species richness, Shannon entropy & inverse Simpson) without the sampling effort / sample completeness standardization implemented in this approach and as a reader I wonder why they did not simply just use the customary Chao-Hill approach.

      We were not aware of the Chao-Hill approach, and we see it as a compliment that we independently came up with an approach similar to a now accepted approach.

      Line 329: Unclear what was nested in what here - location / year / crop or year / location / crop ?

      For the crop-level analyses, the nested structure was location > year > crop. This nested structure was chosen as every location was sampled across different years and (for some locations) the crops differed among years. However, as we pooled the samples from the same field in the field-level analyses, using the same random structure would have resulted in each individual sampling unit being distinguished as a group. Therefore, the random structure here was only location > year. We explain this now more clearly in lines 329 and 355-357.

      Line 334: I can see why the authors used these distributions but it is presented here without any justification. As a side note: Gamma (with log link) would likely be better for the Shannon model as well (I guess it cannot be 0 or negative ...).

      We explain this now better in lines 360-364.

      Line 341: Why Hellinger and not simply proportions?

      We used Hellinger transformation to give more weight to rarer species. Our pitfall traps were often dominated by large numbers of a few very abundant / active species. If we had used proportions, these species would have dominated the community analyses. We clarified this in the text (line 379-381).

      Line 348: An RDA is constrained by the assumptions / model the authors proposed and "forces" the data into a spatial ordination that resembles this model best. As the authors previously used an unconstrained PERMANOVA, it would be better to also use an NMDS that goes along with the PERMANOVA.

      The initial goal of the RDA was not to directly visualize the results of the PERMANOVA, but to show whether an overall crop configuration effect occurred, both for the whole dataset and per location. We have now added NMDS figures to link them to the PERMANOVA and added these to the supplementary figures (fig S6-S8). We also mention this approach in the methods section (line 387-390).

      Line 355f: This is also a clear indication of the strong annual fluctuations in carabid assemblages as mentioned above.

      Indeed.

      Line 361: 'pairwise'.

      Typo, we changed this.

      Line 362: reference missing.

      Reference added (line 405)

      References

      Alarcón-Segura, V., Grass, I., Breustedt, G., Rohlfs, M., Tscharntke, T., 2022. Strip intercropping of wheat and oilseed rape enhances biodiversity and biological pest control in a conventionally managed farm scenario. J. Appl. Ecol. 59, 1513-1523.

      Boetzl, F.A., Sponsler, D., Albrecht, M., Batáry, P., Birkhofer, K., Knapp, M., Krauss, J., Maas, B., Martin, E.A., Sirami, C., Sutter, L., Bertrand, C., Baillod, A.B., Bota, G., Bretagnolle, V., Brotons, L., Frank, T., Fusser, M., Giralt, D., González, E., Hof, A.R., Luka, H., Marrec, R., Nash, M.A., Ng, K., Plantegenest, M., Poulin, B., Siriwardena, G.M., Tscharntke, T., Tschumi, M., Vialatte, A., Van Vooren, L., Zubair-Anjum, M., Entling, M.H., Steffan-Dewenter, I., Schirmel, J., 2024. Distance functions of carabids in crop fields depend on functional traits, crop type and adjacent habitat: a synthesis. Proceedings of the Royal Society B: Biological Sciences 291, 20232383.

      Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., de Kroon, H., 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809.

      Knapp, M., Seidl, M., Knappová, J., Macek, M., Saska, P., 2019. Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Scientific Reports 9, 8967.

      Müller, J., Hothorn, T., Yuan, Y., Seibold, S., Mitesser, O., Rothacher, J., Freund, J., Wild, C., Wolz, M., Menzel, A., 2023. Weather explains the decline and rise of insect biomass over 34 years. Nature.

      Toivonen, M., Huusela, E., Hyvönen, T., Marjamäki, P., Järvinen, A., Kuussaari, M., 2022. Effects of crop type and production method on arable biodiversity in boreal farmland. Agriculture, Ecosystems & Environment 337, 108061.

      Reviewer #3 (Public review):

      Summary:

      In this paper, the authors made a sincere effort to show the effects of strip cropping, a technique of alternating crops in small strips of several meters wide, on ground beetle diversity. They state that strip cropping can be a useful tool for bending the curve of biodiversity loss in agricultural systems as strip cropping shows a relative increase in species diversity (i.e. abundance and species richness) of the ground beetle communities compared to monocultures. Moreover, strip cropping has the added advantage of not having to compromise on agricultural yields.

      Strengths:

      The article is well written; it has an easily readable tone of voice without too much jargon or overly complicated sentence structure. Moreover, as far as reviewing the models in depth without raw data and R scripts allows, the statistical work done by the authors looks good. They have well thought out how to handle heterogenous, yet spatially and temporarily correlated field data. The models applied and the model checks performed are appropriate for the data at hand. Combining RDA and PCA axes together is a nice touch.

      We thank reviewer 3 for their kind words and appreciation for the simple language and analysis that we used.

      Weaknesses:

      The evidence for strip cropping bringing added value for biodiversity is mixed at best. Yes, there is an increase in relative abundance and species richness at the field level, but it is not convincingly shown this difference is robust or can be linked to clear structural and hypothesised advantages of the strip cropping system. The same results could have been used to conclude that there are only very limited signs of real added value of strip cropping compared to monocultures.

      Point well taken. We agree that the effect of strip cropping on carabid beetle communities are subtle and we nuanced the text in the revised version to reflect this. See below for more details on how we revised the manuscript to reflect this point.

      There are a number of reasons for this:

      (1) Significant differences disappear at crop level, as the authors themselves clearly acknowledge, meaning that there are no differences between pairs of similar crops in the strip cropping fields and their respective monoculture. This would mean the strips effectively function as "mini-monocultures".

      This is indeed in line with our conclusions. Based on our data and results, the advantages of strip cropping seem mostly to occur because crops with different communities are now on the same field, rather than that within the strips you get mixtures of communities related to different crops. We discussed this in the first paragraph of the discussion in the original submission (line 161-164).

      The significant relative differences at the field level could be an artifact of aggregation instead of structural differences between strip cropping and monocultures; with enough data points things tend to get significant despite large variance. This should have been elaborated further upon by the authors with additional analyses, designed to find out where differences originate and what it tells about the functioning of the system. Or it should have provided ample reason for cautioning in drawing conclusions about the supposed effectiveness of strip cropping based on these findings.

      We believe that this is a misunderstanding of our approach. In the field-level analyses we pooled samples from the same field (i.e. pseudo-replicates were pooled), resulting in a relatively small sample size of 50 samples. We revised the methods section to better explain this (line 318-322). Therefore, the statement “with enough data points things tend to get significant” is not applicable here.

      (2) The authors report percentages calculated as relative change of species richness and abundance in strip cropping compared to monocultures after rarefaction. This is in itself correct, however, it can be rather tricky to interpret because the perspective on actual species richness and abundance in the fields and treatments is completely lost; the reported percentages are dimensionless. The authors could have provided the average cumulative number of species and abundance after rarefaction. Also, range and/or standard error would have been useful to provide information as to the scale of differences between treatments. This could provide a new perspective on the magnitude of differences between the two treatments which a dimensionless percentage cannot.

      We agree that this would be the preferred approach if we would have had a perfectly balanced dataset. However, this approach is not feasible with our unbalanced design and differences in sampling effort. While we acknowledge the limitation of the interpretation of percentages, it does allow reporting relative changes for each combination of location, year and crop. The number of samples on which the percentages were based were always kept equal (through rarefaction) between the cropping systems (for each combination of location, year and crop), but not among crops, years and location. This approach allowed us to make a better estimation whenever more samples were available, as we did not always have an equal number of samples available between both cropping systems. For example, sometimes we had 2 samples from a strip cropped field and 6 from the monoculture, here we would use rarefaction up to 2 samples (where we would just have a better estimation from the monoculture). In other cases, we had 4 samples in both strip cropped and monoculture fields, and we chose to use rarefaction to 4 samples to get a better estimation altogether. Adding a value for actual richness or abundance to the figures would have distorted these findings, as the variation would be huge (as it would represent the number of ground beetle(s) species per 2 to 6 pitfall samples). Furthermore, the dimension that reviewer 3 describes would thus be “The number of ground beetle species / individuals per 2 to 6 samples”, not a very informative unit either.

      (3) The authors appear to not have modelled the abundance of any of the dominant ground beetle species themselves. Therefore it becomes impossible to assess which important species are responsible (if any) for the differences found in activity density between strip cropping and monocultures and the possible life history traits related reasons for the differences, or lack thereof, that are found. A big advantage of using ground beetles is that many life history traits are well studied and these should be used whenever there is reason, as there clearly is in this case. Moreover, it is unclear which species are responsible for the difference in species richness found at the field level. Are these dominant species or singletons? Do the strip cropping fields contain species that are absent in the monoculture fields and are not the cause of random variation or sampling? Unfortunately, the authors do not report on any of these details of the communities that were found, which makes the results much less robust.

      Thank you for raising this point. We have reconsidered our indicator species analysis and found that it is rather sensitive for rare species and insensitive to changes in common species. Therefore, we have replaced the indicator species analyses with a GLM analysis for the 12 most common genera of ground beetles in the revised manuscript. This will allow us to go more in depth on specific traits of the genera which abundances change depending on the cropping system. In the revised manuscript, we will also discuss these common genera more in depth, rather than focusing on rarer species (line 135-143, 182-200 in discussion). Furthermore, we have added information on rarity and habitat preference to the table that shows species abundances per location (Table S2), and mention these aspects briefly in the results (line 145-153).

      (4) In the discussion they conclude that there is only a limited amount of interstrip movement by ground beetles. Otherwise, the results of the crop-level statistical tests would have shown significant deviation from corresponding monocultures. This is a clear indication that the strips function more like mini-monocultures instead of being more than the sum of its parts.

      This is in line with our point in the first paragraph of the discussion and an important message of our manuscript.

      (5) The RDA results show a modelled variable of differences in community composition between strip cropping and monoculture. Percentages of explained variation of the first RDA axis are extremely low, and even then, the effect of location and/or year appear to peak through (Figure S3), even though these are not part of the modelling. Moreover, there is no indication of clustering of strip cropping on the RDA axis, or in fact on the first principal component axis in the larger RDA models. This means the explanatory power of different treatments is also extremely low. The crop level RDA's show some clustering, but hardly any consistent pattern in either communities of crops or species correlations, indicating that differences between strip cropping and monocultures are very small.

      We agree and we make a similar point in the first paragraph of the discussion (line 160-162).

      Furthermore, there are a number of additional weaknesses in the paper that should be addressed:

      The introduction lacks focus on the issues at hand. Too much space is taken up by facts on insect decline and land sharing vs. land sparing and not enough attention is spent on the scientific discussion underlying the statements made about crop diversification as a restoration strategy. They are simply stated as facts or as hypotheses with many references that are not mentioned or linked to in the text. An explicit link to the results found in the large number of references should be provided.

      We revised the introduction by omitting the land sharing vs. land sparing topic and better linking references to our research findings.

      The mechanistic understanding of strip cropping is what is at stake here. Does strip cropping behave similarly to intercropping, a technique that has been proven to be beneficial to biodiversity because of added effects due to increased resource efficiency and greater plant species richness? This should be the main testing point and agenda of strip cropping. Do the biodiversity benefits that have been shown for intercropping also work in strip cropping fields? The ground beetles are one way to test this. Hypotheses should originate from this and should be stated clearly and mechanistically.

      We agree with the reviewer and clarified this research direction clearer in the introduction of the revised manuscript (line 66-72).

      One could question how useful indicator species analysis (ISA) is for a study in which predominantly highly eurytopic species are found. These are by definition uncritical of their habitat. Is there any mechanistic hypothesis underlying a suspected difference to be found in preferences for either strip cropping or monocultures of the species that were expected to be caught? In other words, did the authors have any a priori reasons to suspect differences, or has this been an exploratory exercise from which unexplained significant results should be used with great caution?

      Point well taken. We agree that the indicator species analysis has limitations and therefore now replaced this with GLM analysis for the 12 most common ground beetle genera.

      However, setting these objections aside there are in fact significant results with strong species associations both with monocultures and strip cropping. Unfortunately, the authors do not dig deeper into the patterns found a posteriori either. Why would some species associate so strongly with strip cropping? Do these species show a pattern of pitfall catches that deviate from other species, in that they are found in a wide range of strips with different crops in one strip cropping field and therefore may benefit from an increased abundance of food or shelter? Also, why would so many species associate with monocultures? Is this in any way logical? Could it be an artifact of the data instead of a meaningful pattern? Unfortunately, the authors do not progress along these lines in the methods and discussion at all.

      We thank reviewer 3 for these valuable perspectives. In the revised manuscript, we further explored the species/genera that respond to cropping systems and discuss these findings in more detail in the revised manuscript (line 182-200 in discussion).

      A second question raised in the introduction is whether the arable fields that form part of this study contain rare species. Unfortunately, the authors do not elaborate further on this. Do they expect rare species to be more prevalent in the strip cropping fields? Why? Has it been shown elsewhere that intercropping provides room for additional rare species?

      The answer is simply no, we did not find more rare species in strip cropping. In the revised manuscript, we added a column for rarity (according to waarneming.nl) in the table showing abundances of species per location (table S2). We only found two rare species, one of which we only found a single individual and one that was more related to the open habitat created by a failed wheat field. We discuss this more in depth in the revised results (line 145-153).

      Considering the implications the results of this research can have on the wider discussion of bending the curve and the effects of agroecological measures, bold claims should be made with extreme restraint and be based on extensive proof and robust findings. I am not convinced by the evidence provided in this article that the claim made by the authors that strip cropping is a useful tool for bending the curve of biodiversity loss is warranted.

      We believe that strip cropping can be a useful tool because farmers readily adopt it and it can result in modest biodiversity gains without yield loss. However, strip cropping is indeed not a silver bullet (which we also don’t claim). We nuanced the implications of our study in the revised manuscript (line 30-35, 232-237).

      Reviewer #3 (Recommendations for the authors):

      General comments:

      (1) I am missing the R script and data files in the manuscript. This is a serious drawback in assessing the quality of the work.

      Datasets and R scripts will be made available upon completion of the manuscript.

      (2) I have doubts about the clarity of the title. It more or less states that strip cropping is designed in order to maintain productivity. However, the main objective of strip cropping is to achieve ecological goals without losing productivity. I suggest a rethink of the title and what it is the authors want to convey.

      As the title lead to false expectations for multiple reviewers regarding analyses on yield, we chose to alter the title and removed any mention of yield in the title.

      (3) Line 22: I would add something along the lines of: "As an alternative to intercropping, strip cropping is pioneerd by Dutch farmers... " This makes the distinction and the connection between the two more clear.

      In our opinion, strip cropping is a form of intercropping. We have changed this sentence to reflect this point better. (line 21-22)

      (4) Line 24: "these" should read "they"

      After changing this sentence, this typo is no longer there (line 24).

      (5) Line 34-48. I think this introduction is too long. The paper is not directly about insect decline, so the authors could consider starting with line 43 and summarising 34-42 in one or two sentences.

      Removed a sentence on insect declines here to make the introduction more streamlined.

      (6) Line 51-59. I am not convinced the land sparing - land sharing idea adds anything to the paper. It is not used in the discussion and solicits much discussion in and of itself unnecessary in this paper. The point the authors want to make is not arable fields compared to natural biodiversity, but with increases in biodiversity in an already heavily degraded ecosystem; intensive agriculture. I think the introduction should focus on that narrative, instead of the land sparing-sharing dichotomy, especially because too little attention is spent on this narrative.

      We removed the section on land-sparing vs land-sharing as it was indeed off-topic.

      (7) Line 85. Dynamics is not correctly used here. It should read Ground beetle communities are sensitive.

      Changed accordingly (line 78-79).

      (8) Line 90-91. Here, it should be added that ground beetles are used as indicators for ground-dwelling insect diversity, not wider insect diversity in agricultural systems. In fact, Gerlach et al., the reference included, clearly warn against using indicator groups in a context that is too wide for a single indicator group to cover and Van Klink (2022) has recently shown in a meta-analysis that the correlation between trends in insect groups is often rather poor.

      We removed the sentence that claimed ground beetles to be indicators of general biodiversity, and have focused the text in general more on ground beetle biodiversity, rather than general biodiversity.

      (9) Line 178: was there a high weed abundance measured in the stripcropping fields? Or has there been reports on higher weed abundance in general? The references provided do not appear to support this claim.

      To our knowledge, there is only one paper on the effect of strip cropping on weeds (Ditzler et al., 2023). This paper shows strip cropping (and more diverse cropping systems) reduce weed cover, but increase weed richness and diversity. We mistakenly mentioned that crop diversification increases weed seed biomass, but have changed this accordingly to weed seed richness. The paper from Carbonne et al. (2022) indeed doesn’t show an effect of crop diversification on weeds. However, it does show a positive relation between weed seed richness and ground beetle activity density. We have moved this citation to the right place in the sentence (line 172-175).

      (10) Line 279-288. The description of sampling with pitfalls is inadequate. Please follow the guidelines for properly incorporating sufficient detail on pitfall sampling protocols as described in Brown & Matthews 2016,

      We were sadly not aware of this paper prior to the experiments, but have at least added information on all characteristics of the pitfall traps as mentioned in the paper (line 290-294).

      (11) Lines 307-310. What reasoning lies behind the choice to focus on the most beetle-rich monocultures? Do the authors have references for this way of comparing treatments? Is there much variation in the monocultures that solicits this approach? It would be preferable if the authors could elaborate on why this method is used, provide references that it is a generally accepted statistical technique and provide additional assesments of the variation in the data so it can be properly related to more familiar exploratory data analysis techniques.

      We ran two analyses for the field-level richness and abundance. First we used all combinations of monocultures and strip cropping. However, as strip cropping is made up of (at least) 2 crops, we had 2 constituent monocultures. As we would count a comparison with the same strip cropped field twice when we included both monocultures, we also chose to run the analyses again with only those monocultures that had the highest richness and abundance. This choice was done to get a conservative estimate of ground beetle richness increases through strip cropping. We explained this methodology further in the statistical analysis section (line 329-335).

      In Figure S6 the order of crop combinations is altered between 2021 on the left and 2022 on the right. This is not helpful to discover any possible patterns.

      We originally chose this order as it represented also the crop rotations, but it is indeed not helpful without that context. Therefore, we chose to change the order to have the same crop combinations within the rows.