10,000 Matching Annotations
  1. Sep 2025
    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Sumegi et al. use calcium imaging in head-fixed mice to test whether new place fields tend to emerge due to events that resemble behavioral time scale plasticity (BTSP) or other mechanisms. An impressive dataset was amassed (163 sessions from 45 mice with 500-1000 neurons per sample) to study spontaneous emergence of new place fields in area CA1 that had the signature of BTSP. The authors observed that place fields could emerge due to BTSP and non-BTSP-like mechanisms. Interestingly, when non-BTSP mechanisms seemed to generate a place field, this tended to occur on a trial with a spontaneous reset in neural coding (a remapping event). Novelty seemed to upregulate non-BTSP events relative to BTSP events. Finally, large calcium transients (presumed plateau potentials) were not sufficient to generate a place field.

      Strengths:

      I found this manuscript to be exceptionally well written, well powered, and timely given the outstanding debate and confusion surrounding whether all place fields must arise from BTSP event. Working at the same institute, Albert Lee (e.g. Epszstein et al., 2011 - which should be cited) and Jeff Magee (e.g. Bittner et al., 2017) showed contradictory results for how place fields arise. These accounts have not fully been put toe-to-toe and reconciled in the literature. This manuscript addresses this gap and shows that both accounts are correct - place fields can emerge due to a pre-existing map and due to BTSP.

      Weaknesses:

      I find only three significant areas for improvement in the present study:

      First, can it be concluded that non-BTSP events occur exclusively due to a global remapping event, as stated in the manuscript "these PFF surges included a high fraction of both non-BTSP- and BTSP-like PFF events, and were associated with global remapping of the CA1 representation"? Global remapping has a precise definition that involves quantifying the stability of all place fields recorded. Without a color scale bar in Figure 3D (which should be added), we cannot know whether the overall representations were independent before and after the spontaneous reset. It would be good to know if some neurons are able to maintain place coding (more often than expected by chance), suggestive of a partial-remapping phenomenon.

      Second, BTSP has a flip side that involves weakening of existing place fields when a novel field emerges. Was this observed in the present study? Presumably place fields can disappear due to this bidirectional-BTSP or due to global remapping. For a full comparison of the two phenomena, the disappearance of place fields must also be assessed.

      Finally, it would be good to know if place fields differ according to how they are born. For example, are there differences in reliability, width, peak rate, out of field firing, etc for those that arise due BTSP vs non-BTSP.

      Comments on revisions:

      The authors have mostly addressed my feedback. Compelling evidence for a fundamental observation.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Lu & Cui et al. observe that adult male zebrafish are more resistant to infection and disease following exposure to Spring Viremia of Carp Virus (SVCV) than female fish. The authors then attempt to identify some of the molecular underpinnings of this apparent sexual dimorphism and focus their investigations on a gene called cytochrome P450, family 17, subfamily A, polypeptide 2 (cyp17a2) because it was among the genes that they found to be more highly expressed in kidney tissue from males than in females. Their investigations lead them to propose a direct connection between cyp17a2 and modulation of interferon signaling as the key underlying driver of the difference between male and female susceptibility to SVCV.

      Strengths:

      Strengths of this study include the interesting observation of a substantial difference between adult male and female zebrafish in their susceptibility to SVCV, and also the breadth of experiments that were performed linking cyp17a2 to infection phenotypes and molecularly to the stability of host and virus proteins in cell lines. The authors place the infection phenotype in an interesting and complex context of many other sexual dimorphisms in infection phenotypes in vertebrates. This study succeeds in highlighting an unexpected factor involved in antiviral immunity that will be an important subject for future investigations of infection, metabolism, and other contexts.

      Weaknesses:

      Weaknesses of this study include an indirect connection between the majority of experiments and the proposed mechanism underlying the sexual dimorphism phenotype, widespread reliance on over-expression when investigating protein-protein interaction and localization, and an insufficient amount of description of the data presented in the figures. Specific examples of areas for clarification or improvement include:

      (1) Figure 10 outlines a mechanistic link between cyp17a2 and the sexual dimorphism the authors report for SVCV infection outcomes. The data presented on increased susceptibility of cyp17a2-/- mutant male zebrafish support this diagram, but this conclusion is fairly weak without additional experimentation in both males and females. The authors justify their decision to focus on males by stating that they wanted to avoid potential androgen-mediated phenotypes in the cpy17a2 mutant background (lines 152-156), but this appears to be speculation. It also doesn't preclude the possibility of testing the effects of increased cyp17a2 expression on viral infection in both males and females. This is of critical importance if the authors intend to focus the study on sexual dimorphism, which is how the introduction and discussion are currently structured.

      (2) The authors present data indicating an unexpected link between cyp17a2 and ubiquitination pathways. It is unclear how a CYP450 family member would carry out such activities, and this warrants much more attention. One brief paragraph in the discussion (starting at line 448) mentions previous implications of CYP450 proteins in antiviral immunity, but given that most of the data presented in the paper attempt to characterize cyp17a2 as a direct interactor of ubiquitination factors, more discussion in the text should be devoted to this topic. For example, are there any known domains in this protein that make sense in this context? Discussion of this interface is more relevant to the study than the general overview of sexual dimorphism that is currently highlighted in the discussion and throughout the text.

      (3) Figures 2-9 contain information that could be streamlined to highlight the main points the authors hope to make through a combination of editing, removal, and movement to supplemental materials. There is a consistent lack of clarity in these figures that could be improved by supplementing them with more text to accompany the supplemental figures. Using Figure 2 and an example, panel (A) could be removed as unnecessary, panel (B) could be exchanged for a volcano plot with examples highlighting why cyp17a2 was selected for further study and also the full dataset could be shared in a supplemental table, panel (C) could be modified to indicate why that particular subset was chosen for plotting along with an explanation of the scaling, panel (D) could be moved to supplemental because the point is redundant with panels (A) and (C), panel (E) could be presented as a heatmap, in panels (G) and (H) data from EPC cells could be moved to supplemental because it is not central to the phenotype under investigation, panels (J) to (L) and (N) to (P) could be moved to supplemental because they are redundant with the main points made in panels (M) and (Q). Similar considerations could be made with Figures 3-9

      (4) The data in Figure 3 (A)-(C) do not seem to match the description in the text. That is, the authors state that cyp17a2 overexpression increases interferon signaling activity in cells, but the figure shows higher increases in vector controls. Additionally, the data in panel (H) are not described. What genes were selected and why, and where are the data on the rest of the genes from this analysis? This should be shared in a supplemental table.

      (5) Some of the reagents described in the methods do not have cited support for the applications used in the study. For example, the antibody for TRIM11 (line 624, data in Figures 6 & 7) was generated for targeting the human protein. Validation for use of this reagent in zebrafish should be presented or cited. Furthermore, the accepted zebrafish nomenclature for this gene would be preferred throughout the text, which is bloodthirsty-related gene family, member 32.

    2. Reviewer #2 (Public review):

      The manuscript identified Cyp17a2 as a master regulator of male-biased antiviral immunity in a sex chromosome-free model (zebrafish) challenging established immunological paradigms.

      Strengths:

      (1) The bifunctional role of Cyp17a2 (host-directed STING stabilization and virus-directed P degradation) represents a significant conceptual advance.

      (2) First demonstration of K33 chains as a critical regulatory switch for both host defense proteins and viral substrates.

      (3) Comprehensive validation across biological scales: organismal (survival, histopathology), cellular (transcriptomics, Co-IPs), and molecular (ubiquitination assays, site-directed mutagenesis).

      (4) Functional conservation in cyprinids (zebrafish and gibel carp) strengthens biological significance.

      Weaknesses:

      (1) Colocalization analyses (Figures 4G, 6I, 9D) require quantitative metrics (e.g., Pearson's coefficients) rather than representative images alone.

      (2) Figure 1 survival curves need annotated statistical tests (e.g., "Log-rank test, p=X.XX")

      (3) Figure 2P GSEA should report exact FDR-adjusted *p*-values (not just "*p*<0.05").

      (4) Section 2 overextends on teleost sex-determination diversity, condensing to emphasize relevance to immune dimorphism would strengthen narrative cohesion.

      (5) Limited discussion on whether this mechanism extends beyond Cyprinidae and its implications for teleost adaptation.

    1. Reviewer #1 (Public review):

      Summary:

      In their manuscript, Metz Reed and colleagues present an exceptionally thorough analysis of three-dimensional genome reorganization during breast cancer progression using the well-characterized MCF10 model system. The integration of high-resolution Micro-C contact maps with multi-omics profiling provides compelling insights into stage-specific dynamics of chromatin compartments, TAD boundaries, and looping events. The discovery that stable chromatin loops enable epigenetic reprogramming of cancer genes, while structural changes selectively drive metastasis-associated pathways, represents a significant conceptual advance. This work substantially deepens our understanding of genome topology in malignancy. To further enhance this impactful study, we offer the following constructive suggestions.

      Strengths:

      This work sets a benchmark for integrative 3D genomics in oncology. Its methodological sophistication and conceptual advances establish a new paradigm for studying nuclear architecture in disease.

      Weaknesses:

      Major Issues

      (1) Functional tests would strengthen the observed links between structure and gene changes. For example, the COL12A1 gene loop formation correlates with its increased expression. Disrupting this loop using CRISPR-dCas9 at chr6 position 75280 kb could prove whether the loop causes COL12A1 activation. Such experiments would turn strong correlations into clear mechanisms.

      (2) The H3K27ac looping idea needs deeper validation. Data suggests H3K27ac loss weakens loops without affecting CTCF. Testing how cohesin proteins interact with H3K27ac-modified sites would clarify this process. Degron systems could rapidly remove H3K27ac to observe real-time effects. Also, the AP-1 motifs found at dynamic loop sites deserve functional tests. Knocking down AP-1 factors might show if they control loop formation.

      (3) Connecting findings to patient data would boost clinical relevance. The MCF10 model is excellent for controlled studies. Checking if TAD boundary weakening occurs in actual patient metastases would show real-world importance. Comparing primary and metastatic tumor samples from the same patients could reveal new structural biomarkers. If tissue is scarce, testing cancer cells with added stroma cells might mimic tumor environment effects.

      Minor Issues

      Adding a clear definition for static loops would help readers. For example, state that static loops show less than 10 percent contact change across replicates. In the ABC model analysis, removing promoter regions from the enhancer list would focus results on true long-range interactions. Briefly noting why this study sees TAD weakening while other cancer types show different patterns would provide useful context.

    2. Reviewer #2 (Public review):

      Employing the MCF10 breast-cancer progression series, the authors integrate high-resolution Micro-C chromatin-conformation capture with RNA-seq and ChIP-seq to delineate the sequential reorganization of compartments, topologically associated domains (TADs), and long-range loops across benign, pre-neoplastic, and metastatic states, and couple these 3D alterations to gene expression and enhancer activity. Four principal findings emerge: (i) largely static chromatin frameworks still gate differential gene output, with up-regulated loci most affected; (ii) enhancer-promoter contact strength covaries with transcriptional amplitude; (iii) 127 genes gain expression concomitant with increased chromatin contacts; and (iv) progression-associated genes acquire altered histone marks at distal enhancers that remain tethered by stable loops. While the conclusions are broadly supported, methodological and analytical refinements are required.

      (1) Model representativeness.<br /> The long-term culture-adapted MCF10 genome harbours extensive aneuploidies and translocations. Validation of key COL12A1/WNT5A loop dynamics in an independent breast-cancer line (e.g., MDA-MB-231, T47D) or in patient-derived organoids/PDX models would strengthen generalizability.

      (2) The study remains purely correlative; no perturbation experiments are conducted to demonstrate causal roles of chromatin loops on gene expression. CRISPR interference (CRISPR-Cas9-KRAB/HDAC) or enhancer deletion/inversion should be applied to 3-5 pivotal loops (e.g., COL12A1, WNT5A) to test their impact on target-gene expression and cellular phenotypes (e.g., proliferation, migration).

      (3) The manuscript lacks integration with clinical datasets. Integrate TCGA-BRCA data to assess whether elevated COL12A1/WNT5A expression associates with overall survival (OS) or distant metastasis-free survival (DMFS).

    3. Reviewer #3 (Public review):

      Summary:

      The authors tackle an important problem: defining the topological changes that occur during tumorigenesis. To study this, they use an established stepwise cell model of breast cancer. A strength of their study is a careful, robust differential analysis of topological features across each cell state, which is presented clearly and rigorously. They define changes in compartmentalization, TAD structure, and chromatin looping. Intriguingly, when the authors integrate differential gene expression with chromatin looping, they see that most differentially regulated genes are not involved in loop changes, suggesting that changes in promoter or enhancer chromatin marks may play a bigger role in regulating transcription than differential loops. The differential topology analysis and its integration with transcription is very well done- one of the best versions of this I have read in the 3D genome field! However, the paper is framed largely as a cancer biology study, and it teaches us much less about this. I am worried that some of the trends for each topologic feature are not going to be consistent across the pre-malignant-malignant-metastatic spectrum and would like the authors to soften some of their claims a bit regarding how this clarifies our understanding of cancer evolution.

      Weaknesses:

      Major Concerns:

      (1) The integration of gene expression and chromatin loops is intriguing. The authors' differential analysis, however, omits consideration of genes that are on and simply further upregulated versus genes that transition on/off or off/on. It would be nice to see the authors break out looping patterns for these two different patterns of regulation, as it may be instructive regarding the rules for how EP loops govern transcription.

      (2) Given the paucity of differential loops at the majority of genes whose expression changes, the authors should examine chromatin subcompartments, as these may associate more with differential transcription.

      (3) The authors could push their TAD analysis further by integrating it with transcription. Can they look at genes and their enhancers that span these altered boundaries to see if these shifts impact transcription?

      (4) The progression of cancer critically goes from a benign -> pre-malignant -> malignant -> metastatic series of steps. The AT1 line is described as 'premalignant' and thus the authors' series omits a malignant line. While I think adding such a sample is an unreasonable request at this point (as it would have had to have been studied in 'batch' with these other samples), the authors should acknowledge that they omit this step and spend some time discussing the genetic, morphologic, and phenotypic features for their 3 conditions. The images in Figure 1S aren't particularly useful- they don't tell the reader that these cells are malignant/benign. The karyotypic data are intriguing but not fully analyzed, so it is hard to know what true phenotype these cells represent. For example, malignant means DCIS/invasive carcinoma - so then what does this pre-malignant cell model represent? The described alteration in the AT1 line is a Ras oncogene, so in some sense, the transition to this line really is just +/- Ras. The authors could spend some time thinking about the effects of Ras specifically on the 3D genome.

    1. Reviewer #2 (Public review):

      Summary:

      Ueno et al. described substantial changes in the Afadin knockout retina. These changes include decreased numbers of rods and cones, an increased number of bipolar cells, and disrupted somatic and synaptic organization of the outer limiting membrane, outer nuclear layer, outer plexiform layer. In contrast, the number and organization of amacrine cells and retinal ganglion cells remain relatively intact. They also observed changes in ERG responses, RGC receptive fields and functions, and visual behaviors. The morphological and function characterization of retinal cell types and laminations is detailed and relatively comprehensive.

    2. Reviewer #1 (Public review):

      Summary:

      The question of how central nervous system lamination defects affect functional integrity is an interesting yet debated topic. The authors investigated the role of afadin, a key adherens junction scaffolding protein, in retinal lamination and function using a retina-specific conditional knockout mouse model. Their findings show that the loss of Afadin caused severe outer retinal lamination defects, disrupting photoreceptor morphology, synapse numbers, and cell positioning, as demonstrated by histological analysis. Despite these structural impairments, retinal function was partially preserved: mERG detected small a- and b-waves, retinal ganglion cells responded to light, and behavioral tests confirmed residual visual function. This research offers new insights into the relationship between retinal lamination and neural circuit function, suggesting that altered retinal morphology does not completely eliminate the capacity for visual information processing.

      Strengths:

      The study effectively employs the well-organized laminar structure of the retina as an accessible model for investigating afadin's role in lamination within the central nervous system. High-quality histological, immunostaining, and electron microscopy images clearly reveal structural defects in the conditional knockout mice. The revised manuscript significantly enhances the findings by incorporating robust quantitative analyses of cell positioning, retinal thickness, and cell numbers, as well as new assessments of developmental defects. Additionally, new behavioral tests, including the optomotor response and visual cliff tests, have been introduced. Together with electrophysiological recordings, these additions compellingly demonstrate the partial preservation of visual function despite severe structural disruptions.

      Weaknesses:

      Overall, the study of the mechanisms remains weak. While the authors addressed concerns about molecular mechanisms by examining cell proliferation potentially related to Notch and Wnt signaling (Figure S6C, lines 868-870), the findings are largely negative (no significant changes in progenitor cell numbers), and the discussion of alternative pathways remains speculative.

    1. Reviewer #1 (Public review):

      I applaud the authors' for providing a thorough response to my comments from the first round of review. The authors' have addressed the points I raised on the interpretation of the behavioral results as well as the validation of the model (fit to the data) by conducting new analyses, acknowledging the limitations where required and providing important counterpoints. As a result of this process, the manuscript has considerably improved. I have no further comments and recommend this manuscript for publication.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript proposes that the use of a latent cause model for assessment of memory-based tasks may provide improved early detection in Alzheimer's Disease as well as more differentiated mapping of behavior to underlying causes. To test the validity of this model, the authors use a previously described knock-in mouse model of AD and subject the mice to several behaviors to determine whether the latent cause model may provide informative predictions regarding changes in the observed behaviors. They include a well-established fear learning paradigm in which distinct memories are believed to compete for control of behavior. More specifically, it's been observed that animals undergoing fear learning and subsequent fear extinction develop two separate memories for the acquisition phase and the extinction phase, such that the extinction does not simply 'erase' the previously acquired memory. Many models of learning require the addition of a separate context or state to be added during the extinction phase and are typically modeled by assuming the existence of a new state at the time of extinction. The Niv research group, Gershman et al. 2017, have shown that the use of a latent cause model applied to this behavior can elegantly predict the formation of latent states based on a Bayesian approach, and that these latent states can facilitate the persistence of the acquisition and extinction memory independently. The authors of this manuscript leverage this approach to test whether deficits in production of the internal states, or the inference and learning of those states, may be disrupted in knock-in mice that show both a build-up of amyloid-beta plaques and a deterioration in memory as the mice age.

      Strengths:

      I think the authors' proposal to leverage the latent cause model and test whether it can lead to improved assessments in an animal model of AD is a promising approach for bridging the gap between clinical and basic research. The authors use a promising mouse model and apply this to a paradigm in which the behavior and neurobiology are relatively well understood - an ideal situation for assessing how a disease state may impact both the neurobiology and behavior. The latent cause model has the potential to better connect observed behavior to underlying causes and may pave a road for improved mapping of changes in behavior to neurobiological mechanisms in diseases such as AD.<br /> The authors also compare the latent cause model to the Rescorla-Wagner model and a latent state model allowing for better assessment of the latent cause model as a strong model for assessing reinstatement.

      Weaknesses:

      I have several substantial concerns which I've detailed below. These include important details on how the behavior was analyzed, how the model was used to assess the behavior, and the interpretations that have been made based on the model.<br /> (1) There is substantial data to suggest that during fear learning in mice separate memories develop for the acquisition and extinction phases, with the acquisition memory becoming more strongly retrieved during spontaneous recovery and reinstatement. The Gershman paper, cited by the authors, shows how the latent causal model can predict this shift in latent causes by allowing for the priors to decay over time, thereby increasing the posterior of the acquisition memory at the time of spontaneous recovery. In this manuscript, the authors suggest a similar mechanism of action for reinstatement, yet the model does not appear to return to the acquisition memory after reinstatement, at least based on the simulation and examples shown in figures 1 and 3. More specifically, in figure 1, the authors indicate that the posterior probability of the latent cause, z<sub>A</sub> (the putative acquisition memory), increases, partially leading to reinstatement. This does not appear to be the case as test 3 (day 36) appears to have similar posterior probabilities for z<sub>A</sub> as well as similar weights for the CS as compared to the last days of extinction. Rather, the model appears to mainly modify the weights in the most recent latent cause, z<sub>B</sub> - the putative the 'extinction state', during reinstatement. The authors suggest that previous experimental data have indicated that spontaneous recovery or reinstatement effects are due to an interaction of the acquisition and extinction memory. These studies have shown that conditioned responding at a later time point after extinction is likely due to a balance between the acquisition memory and the extinction memory, and that this balance can shift towards the acquisition memory naturally during spontaneous recovery, or through artificial activation of the acquisition memory or inhibition of the extinction memory (see Lacagnina et al. for example). Here the authors show that the same latent cause learned during extinction, z<sub>B</sub>, appears to dominate during the learning phase of reinstatement, with rapid learning to the context - the weight for the context goes up substantially on day 35 - in z<sub>B</sub>. This latent cause, z<sub>B</sub>, dominates at the reinstatement test, and due to the increased associative strength between the context and shock, there is a strong CR. For the simulation shown in figure 1, it's not clear why a latent cause model is necessary for this behavior. This leads to the next point.

      (2) The authors compared the latent cause model to the Rescorla-Wagner model. This is very commendable, particularly since the latent cause model builds upon the RW model, so it can serve as an ideal test for whether a more simplified model can adequately predict the behavior. The authors show that the RW model cannot successfully predict the increased CR during reinstatement (Appendix figure 1). Yet there are some issues with the way the authors have implemented this comparison:<br /> (2A) The RW model is a simplified version of the latent cause model and so should be treated as a nested model when testing, or at a minimum, the number of parameters should be taken into account when comparing the models using a method such as the Bayesian Information Criterion, BIC.<br /> (2B) The RW model provides the associative strength between stimuli and does not necessarily require a linear relationship between V and the CR. This is the case in the original RW model as well as in the LCM. To allow for better comparison between the models, the authors should be modeling the CR in the same manner (using the same probit function) in both models. In fact, there are many instances in which a sigmoid has been applied to RW associative strengths to predict CRs. I would recommend modeling CRs in the RW as if there is just one latent cause. Or perhaps run the analysis for the LCM with just one latent cause - this would effectively reduce the LCM to RW and keep any other assumptions identical across the models.<br /> (2C) In the paper, the model fits for the alphas in the RW model are the same across the groups. Were the alphas for the two models kept as free variables? This is an important question as it gets back to the first point raised. Because the modeling of the reinstatement behavior with the LCM appears to be mainly driven by latent cause z<sub>B</sub>, the extinction memory, it may be possible to replicate the pattern of results without requiring a latent cause model. For example, the 12-month-old App NL-G-F mice behavior may have a deficit in learning about the context. Within the RW model, if the alpha for context is set to zero for those mice, but kept higher for the other groups, say alpha_context = 0.8, the authors could potentially observe the same pattern of discrimination indices in figure 2G and 2H at test. Because the authors don't explicitly state which parameters might be driving the change in the DI, the authors should show in some way that their results cannot simply be due to poor contextual learning in the 12 month old App NL-G-F mice, as this can presumably be predicted by the RW model. The authors' model fits using RW don't show this, but this is because they don't consider this possibility that the alpha for context might be disrupted in the 12-month-old App NL-G-F mice. Of course, using the RW model with these alphas won't lead to as nice of fits of the behavior across acquisition, extinction, and reinstatement as the authors' LCM, the number of parameters are substantially reduced in the RW model. Yet the important pattern of the DI would be replicated with the RW model (if I'm not mistaken), which is the important test for assessment of reinstatement.

      (3) As stated by the authors in the introduction, the advantage of the fear learning approach is that the memory is modified across the acquisition-extinction-reinstatement phases. Although perhaps not explicitly stated by the authors, the post-reinstatement test (test 3) is the crucial test for whether there is reactivation of a previously stored memory, with the general argument being that the reinvigorated response to the CS can't simply be explained by relearning the CS-US pairing, because re-exposure the US alone leads to increase response to the CS at test. Of course there are several explanations for why this may occur, particularly when also considering the context as a stimulus. This is what I understood to be the justification for the use of a model, such as the latent cause model, that may better capture and compare these possibilities within a single framework. As such, it is critical to look at the level of responding to both the context alone and to the CS. It appears that the authors only look at the percent freezing during the CS, and it is not clear whether this is due to the contextual-US learning during the US re-exposure or to increased responding to the CS - presumably caused by reactivation of the acquisition memory. The authors do perform a comparison between the preCS and CS period, but it is not clear whether this is taken into account in the LCM. For example, the instance of the model shown in figure 1 indicates that the 'extinction cause', or cause z6, develops a strong weight for the context during the reinstatement phase of presenting the shock alone. This state then leads to increased freezing during the final CS probe test as shown in the figure. If they haven't already, I think the authors must somehow incorporate these different phases (CS vs ITI) into their model, particularly since this type of memory retrieval that depends on assessing latent states is specifically why the authors justified using the latent causal model. In more precise terms, it's not clear whether the authors incorporate a preCS/ITI period each day the cue is presented as a vector of just the context in addition to the CS period in which the vector contains both the context and the CS. Based on the description, it seemed to me that they only model the CRs during the CS period on days when the CS is presented, and thereby the context is only ever modeled on its own (as just the context by itself in the vector) on extinction days when the CS is not presented. If they are modeling both timepoints each day that the CS I presented, then I would recommend explicitly stating this in the methods section.

      (4) The authors fit the model using all data points across acquisition and learning. As one of the other reviewers has highlighted, it appears that there is a high chance for overfitting the data with the LCM. Of course, this would result in much better fits than models with substantially fewer free parameters, such as the RW model. As mentioned above, the authors should use a method that takes into account the number of parameters, such as the BIC.

      (5) The authors have stated that they do not think the Barnes maze task can be modeled with the LCM. Whether or not this is the case, if the authors do not model this data with the LCM, the Barnes maze data doesn't appear valuable to the main hypothesis. The authors suggest that more sophisticated models such as the LCM may be beneficial for early detection of diseases such as Alzheimer's, so the Barnes maze data is not valuable for providing evidence of this hypothesis. Rather, the authors make an argument that the memory deficits in the Barnes maze mimic the reinstatement effects providing support that memory is disrupted similarly in these mice. Although, the authors state that the deficits in memory retrieval are similar across the two tasks, the authors are not explicit as to the precise deficits in memory retrieval in the reinstatement task - it's a combination of overgeneralizing latent causes during acquisition, poor learning rate, over differentiation of the stimuli.

    3. Reviewer #3 (Public review):

      Summary:

      This paper seeks to identify underlying mechanisms contributing to memory deficits observed in Alzheimer's disease (AD) mouse models. By understanding these mechanisms, they hope to uncover insights into subtle cognitive changes early in AD to inform interventions for early-stage decline.

      Strengths:

      The paper provides a comprehensive exploration of memory deficits in an AD mouse model, covering early and late stages of the disease. The experimental design was robust, confirming age-dependent increases in Aβ plaque accumulation in the AD model mice and using multiple behavior tasks that collectively highlighted difficulties in maintaining multiple competing memory cues, with deficits most pronounced in older mice.

      In the fear acquisition, extinction, and reinstatement task, AD model mice exhibited a significantly higher fear response after acquisition compared to controls, as well as a greater drop in fear response during reinstatement. These findings suggest that AD mice struggle to retain the fear memory associated with the conditioned stimulus, with the group differences being more pronounced in the older mice.

      In the reversal Barnes maze task, the AD model mice displayed a tendency to explore the maze perimeter rather than the two potential target holes, indicating a failure to integrate multiple memory cues into their strategy. This contrasted with the control mice, which used the more confirmatory strategy of focusing on the two target holes. Despite this, the AD mice were quicker to reach the target hole, suggesting that their impairments were specific to memory retrieval rather than basic task performance.

      The authors strengthened their findings by analyzing their data with a leading computational model, which describes how animals balance competing memories. They found that AD mice showed somewhat of a contradiction: a tendency to both treat trials as more alike than they are (lower α) and similar stimuli as more distinct than they are (lower σx) compared to controls.

      Weaknesses:

      While conceptually solid, the model struggles to fit the data and to support the key hypothesis about AD mice's inability to retain competing memories. These issues are evident in Figure 3:

      (1) The model misses trends in the data, including the gradual learning of fear in all groups during acquisition, the absence of a fear response at the start of the experiment, and the faster return of fear during reinstatement compared to the gradual learning of fear during acquisition. It also underestimates the increase in fear at the start of day 2 of extinction, particularly in controls.

      (2) The model explains the higher fear response in controls during reinstatement largely through a stronger association to the context formed during the unsignaled shock phase, rather than to any memory of the conditioned stimulus from acquisition (as seen in Figure 3C). In the experiment, however, this memory does seem to be important for explaining the higher fear response in controls during reinstatement (as seen in Author Response Figure 3). The model does show a necessary condition for memory retrieval, which is that controls rely more on the latent causes from acquisition. But this alone is not sufficient, since the associations within that cause may have been overwritten during extinction. The Rescorla-Wagner model illustrates this point: it too uses the latent cause from acquisition (as it only ever uses a single cause across phases) but does not retain the original stimulus-shock memory, updating and overwriting it continuously. Similarly, the latent cause model may reuse a cause from acquisition without preserving its original stimulus-shock association.

      These issues lead to potential overinterpretation of the model parameters. The differences in α and σx are being used to make claims about cognitive processes (e.g., overgeneralization vs. over differentiation), but the model itself does not appear to capture these processes accurately.

      The authors could benefit from a model that better matches the data and captures the retention and retrieval of fear memories across phases. While they explored alternatives, including the Rescorla-Wagner model and a latent state model, these showed no meaningful improvement in fit. This highlights a broader issue: these models are well-motivated but may not fully capture observed behavior.

      Conclusion:

      Overall, the data support the authors' hypothesis that AD model mice struggle to retain competing memories, with the effect becoming more pronounced with age. While I believe the right computational model could highlight these differences, the current models fall short in doing so.

    1. Reviewer #2 (Public review):

      Summary:

      Septin caging has emerged as one of the innate immune response of eukaryotic cells to infections by intracellular bacteria. This fascinating assembly of eukaryotic proteins into complex structures restricts bacteria motility within the cytoplasm of host cells, thereby facilitating recognition by cytosolic sensors and components of the autophagy machinery. Given the different types of septin caging that have been described thus far, a single cell, unbiased approach to quantify and characterise septin recruitment at bacteria is important to fully grasp the role and function of caging. Thus, the authors have developed an automated image analysis pipeline allowing bacterial segmentation and classification of septin cages that will be very useful in the future, applied to study the role of host and bacterial factors, compare different bacterial strains or even compare infections by clinical isolates.

      Strengths:

      The authors developed a solid pipeline that has been thoroughly validated. When tested on infected cells, automated analysis corroborated previous observations and allowed the unbiased quantification of the different types of septin cages as well as the correlation between caging and bacterial metabolic activity. This approach will prove an essential asset in the further characterisation of septin cages for future studies.

      Weaknesses:

      As the main aim of the manuscript is to described the newly developed analysis pipeline, the results illustrated in the manuscript are essentially descriptive. The developed pipeline seems exceptionally efficient in recognising septin cages in infected cells but its application for a broader purpose or field of study remains limited.

    2. Reviewer #4 (Public review):

      Summary

      In this study, López-Jiménez and colleagues demonstrate the utility of using high-content microscopy in dissecting host and bacterial determinants that play a role in the establishment of infection using Shigella flexneri as a model. The manuscript nicely identifies that infection with Shigella results in a block to DNA replication and protein synthesis. At the same time, the host responds, in part, via the entrapment of Shigella in septin cages.

      Strengths:

      The main strength of this manuscript is its technical aspects. They nicely demonstrate how an automated microscopy pipeline coupled with artificial intelligence can be used to gain new insights regarding elements of bacterial pathogenesis, using Shigella flexneri as a model system. Using this pipeline enabled the investigators to enhance the field's general understanding regarding the role of septin cages in responding to invading Shigella. This platform should be of interest to those who study a variety of intracellular microbial pathogens.

      Another strength of the manuscript is the demonstration - using cell biology-based approaches- that infection with Shigella blocks DNA replication and protein synthesis. These observations nicely dovetail with the prior findings of other groups. Nevertheless, their clever click-chemistry-based approaches provide visual evidence of these phenomena and should interest many.

      Weaknesses:

      There are two main weaknesses of this work. First, the studies are limited to findings obtained using a single immortalized cell line. It is appreciated that HeLa cells serve as an excellent model for studying aspects of Shigella pathogenesis and host responses. However, it would be nice to see that similar observations are observed with an epithelial cell line of intestinal, preferably colonic origin, and eventually, with a non-immortalized cell line, although it is appreciated that the latter studies are beyond the scope of this work.

      The other weakness is that the studies are minimally mechanistic. For example, the investigators have data to suggest that infection with Shigella leads to an arrest in DNA replication and protein synthesis; however, no follow-up studies have been conducted to determine how these host cell processes are disabled. Interestingly, Zhang and colleagues recently identified that the Shigella OspC effectors target eukaryotic translation initiation factor 3 to block host cell translation (PMID: 38368608).

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors attempt to devise general rules for aptamer design based on structure and sequence features. The main system they are testing is an aptamer targeting a viral sequence.

      Strengths:

      The method combines a series of well-established protocols, including docking, MD, and a lot of system-specific knowledge, to design several new versions of the Ta aptamer with improved binding affinity.

      Weaknesses:

      The approach requires a lot of existing knowledge and, importantly, an already known aptamer, which presumably was found with Selex. In addition, although the aptamer may have a stronger binding affinity, it is not clear if any of it has any additional useful properties such as stability, etc.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript proposes a workflow for discovering and optimizing RNA aptamers, with application in the optimization of a SARS-CoV-2 RBD. The authors took a previously identified RNA aptamer, computationally docked it into one specific RBD structure, and searched for variants with higher predicted affinity. The variants were subsequently tested for RBD binding using gel retardation assays and competition with antibodies, and one was found to be a stronger binder by about three-fold than the founding aptamer.

      Overall, this would be an interesting study if it were performed with truly high-affinity aptamers, and specificity was shown for RBD or several RBD variants.

      Strengths:

      The computational workflow appears to mostly correctly find stronger binders, though not de novo binders.

      Weaknesses:

      (1) Antibody competition assays are reported with RBD at 40 µM, aptamer at 5 µM, and a titration of antibody between 0 and 1.2 µg. This approach does not make sense. The antibody concentration should be reported in µM. An estimation of the concentration is 0-8 pmol (from 0-1.2 µg), but that's not a concentration, so it is unknown whether enough antibody molecules were present to saturate all RBD molecules, let alone whether they could have displaced all aptamers.

      (2) These are not by any means high-affinity aptamers. The starting sequence has an estimated (not measured, since the titration is incomplete) KD of 110 µM. That's really the same as non-specific binding for an interaction between an RNA and a protein. This makes the title of the manuscript misleading. No high-affinity aptamer is presented in this study. If the docking truly presented a bound conformation of an aptamer to a protein, a sub-micromolar Kd would be expected, based on the number of interactions that they make.

      (3) The binding energies estimated from calculations and those obtained from the gel-shift experiments are vastly different, as calculated from the Kd measurements, making them useless for comparison, except for estimating relative affinities.

    1. Reviewer #1 (Public review):

      This is my first review of this manuscript. The authors included previous reviews for a different journal with a length of 90 and 39 pages; I did not review this reply in my assessment of the paper itself. Influenza prediction is not my area of expertise.

      A major concern is that the model is trained in the midst of the COVID-19 pandemic and its associated restrictions and validated on 2023 data. The situation before, during, and after COVID is fluid, and one may not be representative of the other. The situation in 2023 may also not have been normal and reflective of 2024 onward, both in terms of the amount of testing (and positives) and measures taken to prevent the spread of these types of infections. A further worry is that the retrospective prospective split occurred in October 2020, right in the first year of COVID, so it will be impossible to compare both cohorts to assess whether grouping them is sensible.

      The outcome of interest is the number of confirmed influenza cases. This is not only a function of weather, but also of the amount of testing. The amount of testing is also a function of historical patterns. This poses the real risk that the model confirms historical opinions through increased testing in those higher-risk periods. Of course, the models could also be run to see how meteorological factors affect testing and the percentage of positive tests. The results only deal with the number of positive (only the overall number of tests is noted briefly), which means there is no way to assess how reasonable and/or variable these other measures are. This is especially concerning as there was massive testing for respiratory viruses during COVID in many places, possibly including China.

      (1) Although the authors note a correlation between influenza and the weather factors. The authors do not discuss some of the high correlations between weather factors (e.g., solar radiation and UV index). Because of the many weather factors, those plots are hard to parse.

      (2) The authors do not actually compare the results of both methods and what the LSTM adds.

      Minor comments:

      (3) The methods are long and meandering. They could be cleaned up and shortened. E.g., there is no need for 30 lines on PCR testing; the study area should come before the study design. The authors discuss similar elements in multiple places; this whole section can be shortened considerably without affecting the content.

      (4) How reliable is the "Our Word in Data" website for subnational coverage of restrictions? Some of the authors are from Putian and should be able to confirm the accuracy for both studied areas.

      (5) Figure 2A is hard to parse; it would make more sense to plot these as line plots (y=count, x=month).

    2. Reviewer #2 (Public review):

      Summary:

      The study aimed to assess the associations between meteorological drivers and influenza is important although not new. The authors used only 6 years of surveillance data and deep learning models, combining distributed lag non-linear models (DLNM) with Bayesian-optimized LSTM neural networks for predictive modeling. The key interest in this area is to explore the subtropical locations, where influenza is less common and circulates year-round. The authors further claimed that such an association could be able to provide an early warning in the community. In this direction, the current manuscript has several scopes of improvements and clarification of the claims, as I list here.

      Strengths:

      Study design based on a prospective cohort to analyse the data for retrospective outcomes.

      Weaknesses:

      (1) The rationale of the study is not clearly stated.

      (2) Several issues with methodological and data integration should be clarified.

      (3) Validation of the models is not presented clearly.

      (4) The claim for providing tools for 'early warning' was not validated by analysis and results.

    1. Reviewer #1 (Public review):

      Summary:

      Nahas et al. investigated the roles of herpes simplex virus 1 (HSV-1) structural proteins using correlative cryo-light microscopy and soft X-ray tomography. The authors generated nine viral variants with deletions or mutations in genes encoding structural proteins. They employed a chemical fixation-free approach to study native-like events during viral assembly, enabling observation of a wider field of view compared to cryo-ET. The study effectively combined virology, cell biology, and structural biology to investigate the roles of viral proteins in virus assembly and budding.

      Strengths:

      (1) The study presented a novel approach to studying viral assembly in cellulo.

      (2) The authors generated nine mutant viruses to investigate the roles of essential proteins in nuclear egress and cytoplasmic envelopment.

      (3) The use of correlative imaging with cryoSIM and cryoSXT allowed for the study of viral assembly in a near-native state and in 3D.

      (4) The study identified the roles of VP16, pUL16, pUL21, pUL34, and pUS3 in nuclear egress.

      (5) The authors demonstrated that deletion of VP16, pUL11, gE, pUL51, or gK inhibits cytoplasmic envelopment.

      (6) The manuscript is well-written, clearly describing findings, methods, and experimental design.

      (7) The figures and data presentation are of good quality.

      (8) The study effectively correlated light microscopy and X-ray tomography to follow virus assembly, providing a valuable approach for studying other viruses and cellular events.

      (9) The research is a valuable starting point for investigating viral assembly using more sophisticated methods like cryo-ET with FIB-milling.

      (10) The study proposes a detailed assembly mechanism and tracks the contributions of studied proteins to the assembly process.

      (11) The study includes all necessary controls and tests for the influence of fluorescent proteins.

      Weaknesses:

      Overall, the manuscript does not have any major weaknesses, just a few minor comments, which were mostly solved in the revised version of the manuscript.

      Comments on the latest version:

      I reviewed the responses and the updated manuscript, and I am very pleased with how the authors have revised it. The manuscript was already strong, but with the addition of the summary table and the separated images, it is now excellent.

    2. Reviewer #2 (Public review):

      Summary:

      For centuries, humans have been developing methods to see ever smaller objects, such as cells and their contents. This has included studies of viruses and their interactions with host cells during processes extending from virion structure to the complex interactions between viruses and their host cells: virion entry, virus replication and virion assembly, and release of newly constructed virions. Recent developments have enabled simultaneous application of fluorescence-based detection and intracellular localization of molecules of interest in the context of sub-micron resolution imaging of cellular structures by electron microscopy.

      The submission by Nahas et al., extends the state-of-the-art for visualization of important aspects of herpesvirus (HSV-1 in this instance) virion morphogenesis, a complex process that involves virus genome replication, and capsid assembly and filling in the nucleus, transport of the nascent nucleocapsid and some associated tegument proteins through the inner and outer nuclear membranes to the cytoplasm, orderly association of several thousand mostly viral proteins with the capsid to form the virion's tegument, envelopment of the tegumented capsid at a virus-tweaked secretory vesicle or at the plasma membrane, and release of mature virions at the plasma membrane.

      In this groundbreaking study, cells infected with HSV-1 mutants that express fluorescently tagged versions of capsid (eYFP-VP26) and tegument (gM-mCherry) proteins were visualized with 3D correlative structured illumination microscopy and X-ray tomography. The maturation and egress pathways thus illuminated were studied further in infections with fluorescently tagged viruses lacking one of nine viral proteins.

      Strengths:

      This outstanding paper meets the journal's definitions of Landmark, Fundamental, Important, Valuable, and Useful. The work is also Exceptional, Compelling, Convincing, and Solid. The work is a tour de force of classical and state-of-the-art molecular and cellular virology. Beautiful images accompanied by appropriate statistical analyses and excellent figures. The numerous complex issues addressed are explained in a clear and coordinated manner; the sum of what was learned is greater than the sum of the parts. Impacts go well beyond cytomegalovirus and the rest of the herpesviruses, to other viruses and cell biology in general.

      Comments on the latest version:

      This is a very nice paper. The authors responded affirmatively to the suggestions and questions of the reviewers.

    3. Reviewer #3 (Public review):

      Summary:

      Kamal L. Nahas et al. demonstrated that pUL16, pUL21, pUL34, VP16, and pUS3 are involved in the egress of the capsids from the nucleous, since mutant viruses ΔpUL16, ΔpUL21, ΔUL34, ΔVP16, and ΔUS3 HSV-1 show nuclear egress attenuation determined by measuring the nuclear:cytoplasmic ratio of the capsids, the dfParental, or the mutants. Then, they showed that gM-mCherry+ endomembrane association and capsid clustering were different in pUL11, pUL51, gE, gK, and VP16 mutants. Furthermore, the 3D view of cytoplasmic budding events suggests an envelopment mechanism where capsid budding into spherical/ellipsoidal vesicles drives the envelopment.

      Strengths:

      The authors employed both structured illumination microscopy and cellular ultrastructure analysis to examine the same infected cells, using cryo-soft-X-ray tomography to capture images. This combination, set here for the first time, enabled the authors to obtain holistic data regarding a biological process, as a viral assembly. Using this approach, the researchers studied various stages of HSV-1 assembly. For this, they constructed a dual-fluorescently labelled recombinant virus, consisting of eYFP-tagged capsids and mCherry-tagged envelopes, allowing for the independent identification of both unenveloped and enveloped particles. They then constructed nine mutants, each targeting a single viral protein known to be involved in nuclear egress and envelopment in the cytoplasm, using this dual-fluorescent as the parental one. The experimental setting, both the microscopic and the virological, is robust and well-controlled. The manuscript is well-written, and the data generated is robust and consistent with previous observations made in the field.

      I congratulate the authors. The work is robust, and I personally highlight the way they managed to include others' results merged among their own, providing a complete view of the story.

      Comments on the latest version:

      I reviewed the responses and the updated manuscript, and I agree with the reviewer's #1 words: "The manuscript was already strong, but with the addition of the summary table and the separated images, it is now excellent."

    1. Reviewer #1 (Public review):

      Filamentous fungi are established work horses in biotechnology with Aspergillus oryzae as a prominent example with a thousand-year of history. Still the cell biology and biochemical properties of the production strains is not well understood. The paper of the Takeshita group describes the change in nuclear numbers and correlate it to different production capacities. They used microfluidic devices to really correlate the production with nuclear numbers. In addition, they used microdissection to understand expression profile changes and found an increase of ribosomes. The analysis of two genes involved in cell volume control in S. pombe did not reveal conclusive answers to explain the phenomenon. It appears that it is a multi-trait phenotype. Finally, they identified SNPs in many industrial strains and tried to correlate them to the capability of increasing their nuclear numbers.

      The methods used in the paper range from high quality cell biology, Raman spectroscopy to atomic force and electron microscopy and from laser microdissection to the use of microfluidic devices to study individual hyphae.

      This is a very interesting, biotechnologically relevant paper with the application of excellent cell biology.

      Comments on revised version:

      The authors addressed all suggestions satisfactorily.

    2. Reviewer #2 (Public review):

      Summary:

      In the study presented by Itani and colleagues it is shown that some strains of Aspergillus oryzae - especially those used industrially for the production of sake and soy sauce - develop hyphae with a significantly increased number of nuclei and cell volume over time. These thick hyphae are formed by branching from normal hyphae and grow faster and therefore dominate the colonies. The number of nuclei positively correlates with the thicker hyphae and also the amount of secreted enzymes. The addition of nutrients such as yeast extract or certain amino acids enhanced this effect. Genome and transcriptome analyses identified genes, including rseA, that are associated with the increased number of nuclei and enzyme production. The authors conclude from their data involvement of glycosyltransferases, calcium channels and the tor regulatory cascade in regulation of cell volume and number of nuclei. Thicker hyphae and an increased number of nuclei was also observed in high-production strains of other industrially used fungi such as Trichoderma reesei and Penicillium chrysogenum, leading to the hypothesis that the mentioned phenotypes are characteristic of production strains which is of significant interest for fungal biotechnology.

      Strengths:

      The study is very comprehensive and involves application of divers state-of-the-art cell biological, biochemical and genetic methods. Overall, the data are properly controlled and analyzed, and the figures and movies are of excellent quality.The results are particularly interesting with regard to the elucidation of molecular mechanisms that regulate the size of fungal hyphae and the number of nuclei. For this, the authors have discovered a very good model: (regular) strains with a low number of nuclei and strains with high number of nuclei. Also, the results can be expected to be of interest for the further optimization of industrially relevant filamentous fungi.

      In the revision the authors addressed all my comments and as a result produced an even stronger study.

    3. Reviewer #3 (Public review):

      Summary:

      The authors seek to determine the underlying traits that support the exceptional capacity of Aspergillus oryzae to secrete enzymes and heterologous proteins. To do so, they leverage the availability of multiple domesticated isolates of A. oryzae along with other Aspergillus species to perform comparative imaging and genomic analysis.

      Strengths:

      The strength of this study lies in the use of multifaceted approaches to identify significant differences in hyphal morphology that correlate with enzyme secretion, which is then followed by the use of genomics to identify candidate functions that underlie these differences.

      Weaknesses:

      The authors addressed all suggestions satisfactorily.

    1. Reviewer #1 (Public review):

      Overall, the manuscript reveals the role for actin polymerization to drive fusion of myoblasts during adult muscle regeneration. This pathway regulates fusion in many contexts, but whether it was conserved in adult muscle regeneration remained unknown. Robust genetic tools and histological analyses were used to convincingly support the claims.

    2. Reviewer #2 (Public review):

      To fuse, differentiated muscle cells must rearrange their cytoskeleton and assemble actin-enriched cytoskeletal structures. These actin foci are proposed to generate mechanical forces necessary to drive close membrane apposition and the fusion pore formation. While the study of these actin-rich structures has been conducted mainly in drosophila and in vertebrate embryonic development, the present manuscript present clear evidence this mechanism is necessary for fusion of adult muscle stem cells in vivo, in mice. The data presented here clearly demonstrate that ARP2/3 and SCAR/WAVE complexes are required for differentiating satellite cells fusion into multinucleated myotubes, during skeletal muscle regeneration.

    3. Reviewer #3 (Public review):

      The authors have satisfactorily addressed my inquiries. However, I had to look quite hard to find where they responded to my final comment regarding the potential role of Arpc2 post-fusion during myofiber growth and/or maintenance, which I eventually located on page 7. I would appreciate it if the authors could state this point more explicitly, perhaps by adding a sentence such as "However, we cannot rule out the possibility that Arpc2 may also play a role in....." to improve clarity of communication.

      While I understood from the original version that this issue falls beyond the immediate scope of the study, I believe it is important to adopt a more cautious and rigorous interpretative framework, especially given the widespread use of this experimental approach. In particular, when a gene could potentially have additional roles in myofibers, it may be helpful to explicitly acknowledge that possibility. Even if Arpc2 may not necessarily be one of them, such roles cannot be fully excluded without direct testing.

    1. Reviewer #1 (Public review):

      Summary:

      This computational modeling study builds on multiple previous lines of experimental and theoretical research to investigate how a single neuron can solve a nonlinear pattern classification task. The authors construct a detailed biophysical and morphological model of a single striatal medium spiny neuron, and endow excitatory and inhibitory synapses with dynamic synaptic plasticity mechanisms that are sensitive to (1) the presence or absence of a dopamine reward signal, and (2) spatiotemporal coincidence of synaptic activity in single dendritic branches. The latter coincidence is detected by voltage-dependent NMDA-type glutamate receptors, which can generate a type of dendritic spike referred to as a "plateau potential." In the absence of inhibitory plasticity, the proposed mechanisms result in good performance on a nonlinear classification task when specific input features are segregated and clustered onto individual branches, but reduced performance when input features are randomly distributed across branches. Interestingly, adding inhibitory plasticity improves classification performance even when input features are randomly distributed.

      Strengths:

      The integrative aspect of this study is its major strength. It is challenging to relate low-level details such as electrical spine compartmentalization, extrasynaptic neurotransmitter concentrations, dendritic nonlinearities, spatial clustering of correlated inputs, and plasticity of excitatory and inhibitory synapses to high-level computations such as nonlinear feature classification. Due to high simulation costs, it is rare to see highly biophysical and morphological models used for learning studies that require repeated stimulus presentations over the course of a training procedure. The study aspires to prove the principle that experimentally-supported biological mechanisms can explain complex learning.

      Weaknesses:

      The high level of complexity of each component of the model makes it difficult to gain an intuition for which aspects of the model are essential for its performance, or responsible for its poor performance under certain conditions. Stripping down some of the biophysical detail and comparing it to a simpler model may help better understand each component in isolation.

    2. Reviewer #2 (Public review):

      Summary:

      The study explores how single striatal projection neurons (SPNs) utilize dendritic nonlinearities to solve complex integration tasks. It introduces a calcium-based synaptic learning rule that incorporates local calcium dynamics and dopaminergic signals, along with metaplasticity to ensure stability for synaptic weights. Results show SPNs can solve the nonlinear feature binding problem and enhance computational efficiency through inhibitory plasticity in dendrites, emphasizing the significant computational potential of individual neurons. In summary, the study provides a more biologically plausible solution to single-neuron learning and gives further mechanical insights into complex computations at the single-neuron level.

      Strengths:

      The paper introduces a novel learning rule for training a single multicompartmental neuron model to perform nonlinear feature binding tasks (NFBP), highlighting two main strengths: the learning rule is local, calcium-based, and requires only sparse reward signals, making it highly biologically plausible, and it applies to detailed neuron models that effectively preserve dendritic nonlinearities, contrasting with many previous studies that use simplified models.

    1. Reviewer #1 (Public review):

      This revision of the computational study by Mondal et al addresses several issues that I raised in the previous round of reviews and, as such, is greatly improved. The manuscript is more readable, its findings are more clearly described, and both the introduction and the discussion sections are tighter and more to the point. And thank you for addressing the three timescales of half activation/inactivation parameters. It makes the mechanism clearer.

      Some issues remain that I bring up below.

      Comment:

      I still have a bone to pick with the claim that "activity-dependent changes in channel voltage-dependence alone are insufficient to attain bursting". As I mentioned in my previous comment, this is also the case for the gmax values (channel density). If you choose the gmax's to be in a reasonable range, then the statement above is simply cannot be true. And if, in contrast, you choose the activation/inactivation parameters to be unreasonable, then no set of gmax's can produce proper activity. So I remain baffled what exactly is the point that the authors are trying to make.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, Mondal and co-authors present the development of a computational model of homeostatic plasticity incorporating activity-dependent regulation of gating properties (activation, inactivation) of ion channels. The authors show that, similar to what has been observed for activity-dependent regulation of ion channel conductances, implementing activity-dependent regulation of voltage sensitivity participates in the achievement of a target phenotype (bursting or spiking). The results however suggest that activity-dependent regulation of voltage sensitivity is not sufficient to allow this and needs to be associated with the regulation of ion channel conductances in order to reliably reach target phenotype. Although the implementation of this biologically relevant phenomenon is undeniably relevant, a few important questions are left unanswered.

      Strengths:

      (1) Implementing activity-dependent regulation of gating properties of ion channels is biologically relevant.

      (2) The modeling work appears to be well performed and provides results that are consistent with previous work performed by the same group.

      Weaknesses:

      (1) The main question not addressed in the paper is the relative efficiency and/or participation of voltage-dependence regulation compared to channel conductance in achieving the expected pattern of activity. Is voltage-dependence participating to 50% or 10%. Although this is a difficult question to answer (and it might even be difficult to provide a number), it is important to determine whether channel conductance regulation remains the main parameter allowing the achievement of a precise pattern of activity (or its recovery after perturbation).

      (2) Another related question is whether the speed of recovery is significantly modified by implementing voltage-dependence regulation (it seems to be the case looking at Figure 3). More generally, I believe it would be important to give insights into the overall benefit of implementing voltage-dependence regulation, beyond its rather obvious biological relevance.

      (3) Along the same line, the conclusion about how voltage-dependence regulation and channel conductance regulation interact to provide the neuron with the expected activity pattern (summarized and illustrated in Figure 6) is rather qualitative. Consistent with my previous comments, one would expect some quantitative answers to this question, rather than an illustration that approximately places a solution in parameter space.

    3. Reviewer #3 (Public review):

      Mondal et al. use computational modeling to investigate how activity-dependent shifts in voltage-dependent (in)activation curves can complement changes in ion channel conductance to support homeostatic plasticity. While it is well established that the voltage-dependent properties of ion channels influence neuronal excitability, their potential role in homeostatic regulation, alongside conductance changes, has remained largely unexplored. The results presented here demonstrate that activity-dependent regulation of voltage dependence can interact with conductance plasticity to enable neurons to attain and maintain target activity patterns, in this case, intrinsic bursting. Notably, the timescale of these voltage-dependent shifts influences the final steady-state configuration of the model, shaping both channel parameters and activity features such as burst period and duration. A major conclusion of the study is that altering this timescale can seamlessly modulate a neuron's intrinsic properties, which the authors suggest may be a mechanism for adaptation to perturbations.

      While this conclusion is largely well-supported, additional analyses could help clarify its scope. For instance, the effects of timescale alterations are clearly demonstrated when the model transitions from an initial state that does not meet the target activity pattern to a new stable state. However, Fig. 6 and the accompanying discussion appear to suggest that changing the timescale alone is sufficient to shift neuronal activity more generally. It would be helpful to clarify that this effect primarily applies during periods of adaptation, such as neurodevelopment or in response to perturbations, and not necessarily once the system has reached a stable, steady state. As currently presented, the simulations do not test whether modifying the timescale can influence activity after the model has stabilized. In such conditions, changes in timescale are unlikely to affect network dynamics unless they somehow alter the stability of the solution, which is not shown here. That said, it seems plausible that real neurons experience ongoing small perturbations which, in conjunction with changes in timescale, could allow gradual shifts toward new solutions. This possibility is not discussed but could be a fruitful direction for future work.

      Editor's note: The authors have adequately addressed the concerns raised in the public reviews above, as well as the previous recommendations, and revised the manuscript where necessary.

    1. Reviewer #1 (Public review):

      In this work, Ligneul and coauthors implemented diffusion-weighted MRS in young rats to follow longitudinally and in vivo the microstructural changes occurring during brain development. Diffusion-weighted MRS is here instrumental in assessing microstructure in a cell-specific manner, as opposed to the claimed gold-standard (manganese-enhanced MRI) that can only probe changes in brain volume. Differential microstructure and complexification of the cerebellum and the thalamus during rat brain development were observed non-invasively. In particular, lower metabolite ADC with increasing age were measured in both brain regions, reflecting increasing cellular restriction with brain maturation. Higher sphere (representing cell bodies) fraction for neuronal metabolites (total NAA, glutamate) and total creatine and taurine in the cerebellum compared to the thalamus were estimated, reflecting the unique structure of the cerebellar granular layer with a high density of cell bodies. Decreasing sphere fraction with age was observed in the cerebellum, reflecting the development of the dendritic tree of Purkinje cells and Bergmann glia. From morphometric analyses, the authors could probe non-monotonic branching evolution in the cerebellum, matching 3D representations of Purkinje cells expansion and complexification with age. Finally, the authors highlighted taurine as a potential new marker of cerebellar development.

      From a technical standpoint, this work clearly demonstrates the potential of diffusion-weighted MRS at probing microstructure changes of the developing brain non-invasively, paving the way for its application in pathological cases. Ligneul and coauthors also show that diffusion-weighted MRS acquisitions in neonates are feasible, despite the known technical challenges of such measurements, even in adult rats. They also provide all necessary resources to reproduce and build upon their work, which is highly valuable for the community.

      From a biological standpoint, claims are well supported by the microstructure parameters derived from advanced biophysical modelling of the diffusion MRS data.

      Specific strengths:

      (1) The interpretation of dMRS data in terms of cell-specific microstructure through advanced biophysical modelling (e.g. the sphere fraction, modelling the fraction of cell bodies versus neuronal or astrocytic processes) is a strong asset of the study, going beyond the more commonly used signal representation metrics such as the apparent diffusion coefficient, which lacks specificity to biological phenomena.

      (2) The fairly good data quality despite the complexity of the experimental framework should be praised: diffusion-weighted MRS was acquired in two brain regions (although not in the same animals) and longitudinally, in neonates, including data at high b-values and multiple diffusion times, which altogether constitutes a large-scale dataset of high value for the diffusion-weighted MRS community.

      (3) The authors have shared publicly data and codes used for processing and fitting, which will allow one to reproduce or extend the scope of this work to disease populations, and which goes in line with the current effort of the MR(S) community for data sharing.

      Specific weaknesses:

      Ligneul and coauthors have convincingly addressed and included my comments from the first and second round in their revised manuscript.

      I believe the following conceptual concerns, which are inherent to the nature of the study and do not require further adjustments of the manuscript, remain:

      (1) Metabolite compartmentation in one cell type or the other has often been challenged and is currently impossible to validate in vivo. Here, Ligneul and coauthors did not use this assumption a priori and supported their claims also with non-MR literature (eg. for Taurine), but the interpretation of results in that direction should be made with care.

      (2) Longitudinal MR studies of the developing brain make it difficult to extract parameters with an "absolute" meaning. Indirect assumptions used to derive such parameters may change with age and become confounding factors (brain structure, cell distribution, concentrations normalizing metabolites (here macromolecules), relaxation times...). While findings of the manuscript are convincing and supported with literature, the true underlying nature of such changes might be difficult to access.

      (3) Diffusion MRI in addition to diffusion MRS would have been complementary and beneficial to validate some of the signal contributions, but was unfeasible in the time constraints of experiments on young animals.

    1. Reviewer #3 (Public review):

      To summarize: The authors' overfilling hypothesis depends crucially on the premise that the very-quickly reverting paired-pulse depression seen after unusually short rest intervals of << 50 ms is caused by depletion of release sites whereas Dobrunz and Stevens (1997) concluded that the cause was some other mechanism that does not involve depletion. The authors now include experiments where switching extracellular Ca2+ from 1.2 to 2.5 mM increases synaptic strength on average, but not by as much as at other synapse types. They contend that the result supports the depletion hypothesis. I didn't agree because the model used to generate the hypothesis had no room for any increase at all, and because a more granular analysis revealed a mixed population with a subset where: (a) synaptic strength increased by as much as at standard synapses; and yet (b) the quickly reverting depression for the subset was the same as the overall population.

      The authors raise the possibility of additional experiments, and I do think this could clarify things if they pre-treat with EGTA as I recommended initially. They've already shown they can do this routinely, and it would allow them to elegantly distinguish between pv and pocc explanations for both the increases in synaptic strength and the decreases in the paired pulse ratio upon switching Ca2+ to 2.5 mM. Plus/minus EGTA pre-treatment trials could be interleaved and done blind with minimal additional effort.

      Showing reversibility would be a great addition too, because, in our experience, this does not always happen in whole-cell recordings in ex-vivo tissue even when electrical properties do not change. If the goal is to show that L2/3 synapses are less sensitive to changes in Ca2+ compared to other synapse types - which is interesting but a bit off point - then I would additionally include a positive control, done by the same person with the same equipment, at one of those other synapse types using the same kind of presynaptic stimulation (i.e. ChRs).

      Specific points (quotations are from the Authors' rebuttal)

      (1) Regarding the Author response image 1, I was instead suggesting a plot of PPR in 1.2 mM Ca2+ versus the relative increase in synaptic strength in 2.5 versus in 1.2 mM. This continues to seem relevant.

      (2) "Could you explain in detail why two-fold increase implies pv < 0.2?"

      a. start with power((2.5/(1 + (2.5/K1) + 1/2.97)),4) = 2*power((1.3/(1 + (1.3/K1) + 1/2.97)),4);

      b. solve for K1 (this turns out to be 0.48);

      c. then implement the premise that pv -> 1.0 when Ca2+ is high by calculating Max = power((C/(1 + (C/K1) + 1/2.97)),4) where C is [Ca] -> infinity.

      d. pv when [Ca] = 1.3. mM must then be power((1.3/(1 + (1.3/K1) + 1/2.97)),4)/Max, which is <0.2.

      Note that modern updates of Dodge and Rahamimoff typically include a parameter that prevents pv from approaching 1.0; this is the gamma parameter in the versions from Neher group.

      (3) "If so, we can not understand why depletion-dependent PPD should lead to PPF."

      When PPD is caused by depletion and pv < 0.2, the number of occupied release sites should not be decreased by more than one-fifth at the second stimulus so, without facilitation, PPR should be > 0.8. The EGTA results then indicate there should be strong facilitation, driving PPR to something like 1.2 with conservative assumptions. And yet, a value of < 0.4 is measured, which is a large miss.

      (4) Despite the authors' suggestion to the contrary, I continue to think there is a substantial chance that Ca2+-channel inactivation is the mechanism underlying the very quickly reverting paired-pulse depression. However, this is only one example of a non-depletion mechanism among many, with the main point being that any non-depletion mechanism would undercut the reasoning for overfilling. And, this is what Dobrunz and Stevens claimed to show; that the mechanism - whatever it is - does not involve depletion. The most effective way to address this would be affirmative experiments showing that the quickly reverting depression is caused by depletion after all. Attempting to prove that Ca2+-channel inactivation does not occur does not seem like a worthwhile strategy because it would not address the many other possibilities.

      (5) True that Kusick et al. observed morphological re-docking, but then vesicles would have to re-prime and Mahfooz et al. (2016) showed that re-priming would have to be slower than 110 ms (at least during heavy use at calyx of Held).

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate the effects of aging on auditory system performance in understanding temporal fine structure (TFS), using both behavioral assessments and physiological recordings from the auditory periphery, specifically at the level of the auditory nerve. This dual approach aims to enhance understanding of the mechanisms underlying observed behavioral outcomes. The results indicate that aged animals exhibit deficits in behavioral tasks for distinguishing between harmonic and inharmonic sounds, which is a standard test for TFS coding. However, neural responses at the auditory nerve level do not show significant differences when compared to those in young, normal-hearing animals. The authors suggest that these behavioral deficits in aged animals are likely attributable to dysfunctions in the central auditory system, potentially as a consequence of aging.To further investigate this hypothesis, the study includes an animal group with selective synaptic loss between inner hair cells and auditory nerve fibers, a condition known as cochlear synaptopathy (CS). CS is a pathology associated with aging and is thought to be an early indicator of hearing impairment. Interestingly, animals with selective CS showed physiological and behavioral TFS coding similar to that of the young normal-hearing group, contrasting with the aged group's deficits. Despite histological evidence of significant synaptic loss in the CS group, the study concludes that CS does not appear to affect TFS coding, either behaviorally or physiologically.

      Strengths:

      This study addresses a critical health concern, enhancing our understanding of mechanisms underlying age-related difficulties in speech intelligibility, even when audiometric thresholds are within normal limits. A major strength of this work is the comprehensive approach, integrating behavioral assessments, auditory nerve (AN) physiology, and histology within the same animal subjects. This approach enhances understanding of the mechanisms underlying the behavioral outcomes and provides confidence in the actual occurrence of synapse loss and its effects.The study carefully manages controlled conditions by including five distinct groups: young normal-hearing animals, aged animals, animals with CS induced through low and high doses, and a sham surgery group. This careful setup strengthens the study's reliability and allows for meaningful comparisons across conditions. Overall, the manuscript is well-structured, with clear and accessible writing that facilitates comprehension of complex concepts.

      Weakness:

      The stimulus and task employed in this study are very helpful for behavioral research, and using the same stimulus setup for physiology is advantageous for mechanistic comparisons. However, I have some concerns about the limitations in auditory nerve (AN) physiology. Due to practical constraints, it is not feasible to record from a large enough population of fibers that covers a full range of best frequencies (BFs) and spontaneous rates (SRs) within each animal. This raises questions about how representative the physiological data are for understanding the mechanism in behavioral data. I am curious about the authors' interpretation of how this stimulus setup might influence results compared to methods used by Kale and Heinz (2010), who adjusted harmonic frequencies based on the characteristic frequency (CF) of recorded units. While, the harmonic frequencies in this study are fixed across all CFs, meaning that many AN fibers may not be tuned closely to the stimulus frequencies. If units are not responsive to the stimulus further clarification on detecting mistuning and phase locking to TFS effects within this setup would be valuable. Given the limited number of units per condition-sometimes as few as three for certain conditions-I wonder if CF-dependent variability might impact the results of the AN data in this study and discussing this factor can help with better understanding the results. While the use of the same stimuli for both behavioral and physiological recordings is understandable, a discussion on how this choice affects interpretation would be beneficial. In addition a 60 dB stimulus could saturate high spontaneous rate (HSR) AN fibers, influencing neural coding and phase-locking to TFS. Potentially separating SR groups, could help address these issues and improve interpretive clarity.

      A deeper discussion on the role of fiber spontaneous rate could also enhance the study. How might considering SR groups affect AN results related to TFS coding? While some statistical measures are included in the supplement, a more detailed discussion in the main text could help in interpretation.

      Although Figure S2 indicates no change in median SR, the high-dose treatment group lacks LSR fibers, suggesting a different distribution based on SR for different animal groups, as seen in similar studies on other species. A histogram of these results would be informative, as LSR fiber loss with CS-whether induced by ouabain in gerbils or noise in other animals-is well documented (e.g., Furman et al., 2013).

      Although ouabain effects on gerbils have been explored in previous studies, since these data is already seems to be recorded for the animal in this study, a brief description of changes in auditory brainstem response (ABR) thresholds, wave 1 amplitudes, and tuning curves for animals with cochlear synaptopathy (CS) in this study would be beneficial. This would confirm that ouabain selectively affects synapses without impacting outer hair cells (OHCs). For aged animals, since ABR measurements were taken, comparing hearing differences between normal and aged groups could provide insights into the pathologies besides CS in aged animals. Additionally, examining subject variability in treatment effects on hearing and how this correlates with behavior and physiology would yield valuable insights. If limited space maybe a brief clarification or inclusion in supplementary could be good enough.

      Another suggestion is to discuss the potential role of MOC efferent system and effect of anesthesia in reducing efferent effects in AN recordings. This is particularly relevant for aged animals, as CS might affect LSR fibers, potentially disrupting the medial olivocochlear (MOC) efferent pathway. Anesthesia could lessen MOC activity in both young and aged animals, potentially masking efferent effects that might be present in behavioral tasks. Young gerbils with functional efferent systems might perform better behaviorally, while aged gerbils with impaired MOC function due to CS might lack this advantage. A brief discussion on this aspect could potentially enhance mechanistic insights.

      Lastly, although synapse counts did not differ between the low-dose treatment and NH I sham groups, separating these groups rather than combining them with the sham might reveal differences in behavior or AN results, particularly regarding the significance of differences between aged/treatment groups and the young normal-hearing group.

    2. Reviewer #2 (Public review):

      Summary:

      Using a gerbil model, the authors tested the hypothesis that loss of synapses between sensory hair cells and auditory nerve fibers (which may occur due to noise exposure or aging) affects behavioral discrimination of the rapid temporal fluctuations of sounds. In contrast to previous suggestions in the literature, their results do not support this hypothesis; young animals treated with a compound that reduces the number of synapses did not show impaired discrimination compared to controls. Additionally, their results from older animals showing impaired discrimination suggest that age-related changes aside from synaptopathy are responsible for the age-related decline in discrimination.

      Strengths:

      (1) The rationale and hypothesis are well-motivated and clearly presented.

      (2) The study was well conducted with strong methodology for the most part, and good experimental control. The combination of physiological and behavioral techniques is powerful and informative. Reducing synapse counts fairly directly using ouabain is a cleaner design than using noise exposure or age (as in other studies), since these latter modifiers have additional effects on auditory function.

      (3) The study may have a considerable impact on the field. The findings could have important implications for our understanding of cochlear synaptopathy, one of the most highly researched and potentially impactful developments in hearing science in the past fifteen years.

      Weaknesses:

      (1) I have concerns that the gerbils may not have been performing the behavioral task using temporal fine structure information.

      Human studies using the same task employed a filter center frequency that was (at least) 11 times the fundamental frequency (Marmel et al., 2015; Moore and Sek, 2009). Moore and Sek wrote: "the default (recommended) value of the centre frequency is 11F0." Here, the center frequency was only 4 or 8 times the fundamental frequency (4F0 or 8F0). Hence, relative to harmonic frequency, the harmonic spacing was considerably greater in the present study. However, gerbil auditory filters are thought to be broader than those in human. In the revised version of the manuscript, the authors provide modelling results suggesting that the excitation patterns were discriminable for the 4F0 conditions, but may not have been for the 8F0 conditions. These results provide some reassurance that the 8F0 discriminations were dependent on temporal cues, but the description of the model lacks detail. Also, the authors state that "thus, for these two conditions with harmonic number N of 8 the gerbils cannot rely on differences in the excitation patterns but must solve the task by comparing the temporal fine structure." This is too strong. Pulsed tone intensity difference limens (the reference used for establishing whether or not the excitation pattern cues were usable) may not be directly comparable to profile-analysis-like conditions, and it has been argued that frequency discrimination may be more sensitive to excitation pattern cues than predicted from a simple comparison to intensity difference limens (Micheyl et al. 2013, https://doi.org/10.1371/journal.pcbi.1003336).

      I'm also somewhat concerned that the masking noise used in the present study was too low in level to mask cochlear distortion products. Based on their excitation pattern modelling, the authors state (without citation) that "since the level of excitation produced by the pink noise is less than 30 dB below that produced by the complex tones, distortion products will be masked." The basis for this claim is not clear. In human, distortion products may be only ~20 dB below the levels of the primaries (referenced to an external sound masker / canceller, which is appropriate, assuming that the modelling reported in the present paper did not include middle-ear effects; see Norman-Haignere and McDermott, 2016, doi: 10.1016/j.neuroimage.2016.01.050). Oxenham et al. (2009, doi: 10.1121/1.3089220) provide further cautionary evidence on the potential use of distortion product cues when the background noise level is too low (in their case the relative level of the noise in the compromised condition was only a little below that used in the present study). The masking level used in the present study may have been sufficient, but it would be useful to have some further reassurance on this point.

      (2) The synapse reductions in the high ouabain and old groups were relatively small (mean of 19 synapses per hair cell compared to 23 in the young untreated group). In contrast, in some mouse models of the effects of noise exposure or age, a 50% reduction in synapses is observed, and in the human temporal bone study of Wu et al. (2021, https://doi.org/10.1523/JNEUROSCI.3238-20.2021) the age-related reduction in auditory nerve fibres was ~50% or greater for the highest age group across cochlear location. It could be simply that the synapse loss in the present study was too small to produce significant behavioral effects. Hence, although the authors provide evidence that in the gerbil model the age-related behavioral effects are not due to synaptopathy, this may not translate to other species (including human).

      (3) The study was not pre-registered, and there was no a priori power calculation, so there is less confidence in replicability than could have been the case. Only three old animals were used in the behavioral study, which raises concerns about the reliability of comparisons involving this group. Statistical analyses on very small samples can be unreliable due to problems of power, generalisability, and susceptibility to outliers.

    3. Reviewer #3 (Public review):

      This study is a part of the ongoing series of rigorous work from this group exploring neural coding deficits in the auditory nerve, and dissociating the effects of cochlear synaptopathy from other age-related deficits. They have previously shown no evidence of phase-locking deficits in the remaining auditory nerve fibers in quiet-aged gerbils. Here, they study the effects of aging on the perception and neural coding of temporal fine structure cues in the same Mongolian gerbil model.

      They measure TFS coding in the auditory nerve using the TFS1 task which uses a combination of harmonic and tone-shifted inharmonic tones which differ primarily in their TFS cues (and not the envelope). They then follow this up with a behavioral paradigm using the TFS1 task in these gerbils. They test young normal hearing gerbils, aged gerbils, and young gerbils with cochlear synaptopathy induced using the neurotoxin ouabain to mimic synapse losses seen with age.

      In the behavioral paradigm, they find that aging is associated with decreased performance compared to the young gerbils, whereas young gerbils with similar levels of synapse loss do not show these deficits. When looking at the auditory nerve responses, they find no differences in neural coding of TFS cues across any of the groups. However, aged gerbils show an increase in the representation of periodicity envelope cues (around f0) compared to young gerbils or those with induced synapse loss. The authors hence conclude that synapse loss by itself doesn't seem to be important for distinguishing TFS cues, and rather the behavioral deficits with age are likely having to do with the misrepresented envelope cues instead.

      The manuscript is well written, and the data presented are robust. Some of the points below will need to be considered while interpreting the results of the study, in its current form. These considerations are addressable if deemed necessary, with some additional analysis in future versions of the manuscript.

      Spontaneous rates - Figure S2 shows no differences in median spontaneous rates across groups. But taking the median glosses over some of the nuances there. Ouabain (in the Bourien study) famously affects low spont rates first, and at a higher degree than median or high spont rates. It seems to be the case (qualitatively) in figure S2 as well, with almost no units in the low spont region in the ouabain group, compared to the other groups. Looking at distributions within each spont rate category and comparing differences across the groups might reveal some of the underlying causes for these changes. Given that overall, the study reports that low-SR fibers had a higher ENV/TFS log-z-ratio, the distribution of these fibers across groups may reveal specific effects of TFS coding by group.

      [Update: The revised manuscript has addressed these issues]

      Threshold shifts - It is unclear from the current version if the older gerbils have changes in hearing thresholds, and whether those changes may be affecting behavioral thresholds. The behavioral stimuli appear to have been presented at a fixed sound level for both young and aged gerbils, similar to the single unit recordings. Hence, age-related differences in behavior may have been due to changes in relative sensation level. Approaches such as using hearing thresholds as covariates in the analysis will help explore if older gerbils still show behavioral deficits.

      [Update: The issue of threshold shifts with aging gerbils is still unresolved in my opinion. From the revised manuscript, it appears that aged gerbils have a 36dB shift in thresholds. While the revised manuscript provides convincing evidence that these threshold shifts do not affect the auditory nerve tuning properties, the behavioral paradigm was still presented at the same sound level for young and aged animals. But a potential 36 dB change in sensation level may affect behavioral results. The authors may consider adding thresholds as covariates in analyses or present any evidence that behavioral thresholds are plateaued along that 30dB range].

      Task learning in aged gerbils - It is unclear if the aged gerbils really learn the task well in two of the three TFS1 test conditions. The d' of 1 which is usually used as the criterion for learning was not reached in even the easiest condition for aged gerbils in all but one condition for the aged gerbils (Fig. 5H) and in that condition, there doesn't seem to be any age-related deficits in behavioral performance (Fig. 6B). Hence dissociating the inability to learn the task from the inability to perceive TFS 1 cues in those animals becomes challenging.

      [Update: The revised manuscript sufficiently addresses these issues, with the caveat of hearing threshold changes affecting behavioral thresholds mentioned above].

      Increased representation of periodicity envelope in the AN - the mechanisms for increased representation of periodicity envelope cues is unclear. The authors point to some potential central mechanisms but given that these are recordings from the auditory nerve what central mechanisms these may be is unclear. If the authors are suggesting some form of efferent modulation only at the f0 frequency, no evidence for this is presented. It appears more likely that the enhancement may be due to outer hair cell dysfunction (widened tuning, distorted tonotopy). Given this increased envelope coding, the potential change in sensation level for the behavior (from the comment above), and no change in neural coding of TFS cues across any of the groups, a simpler interpretation may be -TFS coding is not affected in remaining auditory nerve fibers after age-related or ouabain induced synapse loss, but behavioral performance is affected by altered outer hair cell dysfunction with age.

      [Update: The revised manuscript has addressed these issues]

      Emerging evidence seems to suggest that cochlear synaptopathy and/or TFS encoding abilities might be reflected in listening effort rather than behavioral performance. Measuring some proxy of listening effort in these gerbils (like reaction time) to see if that has changed with synapse loss, especially in the young animals with induced synaptopathy, would make an interesting addition to explore perceptual deficits of TFS coding with synapse loss.

      [Update: The revised manuscript has addressed these issues]

    1. Reviewer #1 (Public review):

      Summary:

      The authors present a nanobody-based pulse-labeling system to track yeast NPCs. Transient expression of a nanobody targeting Nup84 (fused to NeonGreen or an affinity tag) permits selective visualization and biochemical capture of NPCs. Short induction effectively labels NPCs, and the resulting purifications match those from conventional Nup84 tagging. Crucially, when induction is repressed, dilution of the labeled pool through successive cell cycles allows the visualization of "old" NPCs (and potentially individual NPCs), providing a powerful view of NPC lifespan and turnover without permanently modifying a core scaffold protein.

      Strengths:

      (1) A brief expression pulse labels NPCs, and subsequent repression allows dilution-based tracking of older (and possibly single) NPCs over multiple cell cycles.

      (2) The affinity-purified complexes closely match known Nup84-associated proteins, indicating specificity and supporting utility for proteomics.

      Weaknesses:

      (1) Reliance on GAL induction introduces metabolic shifts (raffinose → galactose → glucose) that could subtly alter cell physiology or the kinetics of NPC assembly. Alternative induction systems (e.g., β-estradiol-responsive GAL4-ER-VP16) could be discussed as a way to avoid carbon-source changes.

      (2) While proteomics is solid, a comprehensive supplementary table listing all identified proteins (with enrichment and statistics) would enhance transparency.

      (3) Importantly, the authors note that the method is particularly useful "in conditions where direct tagging of Nup84 interferes with its function, while sub-stoichiometric nanobody binding does not." After this sentence, it would be valuable to add concrete examples, such as experiments examining NPC integrity in aging or stress conditions where epitope tags can exacerbate phenotypes. These examples will help readers identify situations in which this approach offers clear advantages.

    2. Reviewer #2 (Public review):

      Summary:

      This preprint describes a practical and useful approach for labeling and tracking NPCs in situ. While useful applications including timelapse imaging, affinity purification, or proximity labeling are envisioned, addressing some outstanding technical questions would give a clearer picture of the sensitivity and temporal resolution of this approach.

      Strengths:

      Clever use of a fluorescently conjugated nanobody that binds directly to the core scaffold nucleoporin Nup84 with nanomolar affinity.

      Weaknesses:

      The decrease in nanobody labeling over 8 hours of chase period is interpreted to indicate that NPCs turn over during this time. However, it is also possible that the nanobody:Nup84 association is disrupted during mitosis by phosphorylation, other PTMs, or structural remodeling.

    3. Reviewer #3 (Public review):

      Summary:

      Submitted to the Tools and Resources series, this study reports on the use of a single-domain antibody targeting the nucleoporin Nup84 to probe and track NPCs in budding yeast. The authors demonstrate their ability to rapidly label or pull down NPCs by inducing the expression of a tagged version of the nanobody (Figure 1).

      Strengths:

      This tool's main strength is its versatility as an inexpensive, easy-to-set-up alternative to metabolic labelling or optical switching. This same rationale could, in principle, be applied to the study of other multiprotein complexes using similar strategies, provided that single-chain antibodies are available.

      Weaknesses:

      This approach has no inherent weaknesses, but it would be useful for the authors to verify that their pulse labelling strategy can also be used to detect assembly intermediates, structural variants, or damaged NPCs.

      Overall, the data clearly show that Nup84 nanobodies are a valuable tool for imaging NPC dynamics and investigating their interactomes through affinity purification.

    1. Reviewer #2 (Public review):

      Summary:

      In this contribution, the authors investigate the degree of alternative splicing across the evolutionary tree, and identify a trend of increasing alternative splicing as you move from the base of the tree (here, only prokaryotes are considered) towards the tips of the tree. In particular, the authors investigate how the degree of alternative splicing (roughly speaking, the number of different proteins made from a single ORF (open reading frame) via alternative splicing) relates to three genomic variables: the genome size, the gene content (meaning the fraction of the genome composed of ORFs), and finally, the coding percentage of ORFs, meaning the ratio between exons and total DNA in the ORF.

      The revised manuscript addresses the problems identified in the first round of reviews and now serves as a guide to understand how alternative splicing has evolved within different phyla, as opposed to making unsubstantiated claims about overall trends.

    2. Reviewer #3 (Public review):

      Summary:

      In "Alternative Splicing Across the Tree of Life: A Comparative Study," the authors use rich annotation features from nearly 1,500 high-quality NCBI genome assemblies to develop a novel genome-scale metric, the Alternative Splicing Ratio, that quantifies the extent to which coding sequences generate multiple mRNA transcripts via alternative splicing (AS). This standardized metric enables cross-species comparisons and reveals clear phylogenetic patterns: minimal AS in prokaryotes and unicellular eukaryotes, moderate AS in plants, and high AS in mammals and birds. The study finds a strong negative correlation between AS and coding content, with genomes containing approximately 50% intergenic DNA exhibiting the highest AS activity. By integrating diverse lines of prior evidence, the study offers a cohesive evolutionary framework for understanding how alternative splicing varies and evolves across the tree of life.

      Strengths:

      By studying alternative splicing patterns across the tree of life, the authors systematically address an important yet historically understudied driver of functional diversity, complexity, and evolutionary innovation. This manuscript makes a valuable contribution by leveraging standardized, publicly available genome annotations to perform a global survey of transcriptional diversity, revealing lineage-specific patterns and evolutionary correlates. The authors have done an admirable job in this revised version, thoroughly addressing prior reviewer comments. The updated manuscript includes more rigorous statistical analyses, careful consideration of potential methodological biases, expanded discussion of regulatory mechanisms, and acknowledgment of non-adaptive alternatives. Overall, the work presents an intriguing view of how alternative splicing may serve as a flexible evolutionary strategy, particularly in lineages with limited capacity for coding expansion (e.g., via gene duplication). Notably, the identification of genome size and genic coding fraction thresholds (~20 Mb and ~50%, respectively) as tipping points for increased splicing activity adds conceptual depth and potential generalizability.

      Weaknesses:

      While the manuscript offers a broad comparative view of alternative splicing, its central message becomes diffuse in the revised version. The focus of the study is unclear, and the manuscript comes across as largely descriptive without a well-articulated hypothesis or explanatory evolutionary model. Although the discussion gestures toward adaptive and non-adaptive mechanisms, these interpretations are not developed early or prominently enough to anchor the reader. The negative correlation between alternative splicing and coding content is compelling, but the biological significance of this pattern remains ambiguous: it is unclear whether it reflects functional constraint, genome organization, or annotation bias. This uncertainty weakens the manuscript's broader evolutionary inferences.

      Sections of the Introduction, particularly lines 72-90, lack cohesion and logical flow, shifting abruptly between topics without a clear structure. A more effective approach may involve separating discussions of coding and non-coding sequence evolution to clarify their distinct contributions to splicing complexity. Furthermore, some interpretive claims lack nuance. For example, the assertion that splicing in plants "evolved independently" seems overstated given the available evidence, and the citation regarding slower evolution of highly expressed genes overlooks counterexamples from the immunity and reproductive gene literature.

      Presentation of the results is occasionally vague. For instance, stating "we conducted comparisons of mean values" (line 146) without specifying the metric undercuts interpretability. The authors should clarify whether these comparisons refer to the Alternative Splicing Ratio or another measure. Additionally, the lack of correlation between splicing and coding region fraction in prokaryotes may reflect a statistical power issue, particularly given their limited number of annotated isoforms, rather than a biological absence of pattern.

      Finally, the assessment of annotation-related bias warrants greater methodological clarity. The authors note that annotations with stronger experimental support yield higher splicing estimates, yet the normalization strategy for variation in transcriptomic sampling (e.g., tissue breadth vs sequencing depth) is insufficiently described. As these factors can significantly influence splicing estimates, a more rigorous treatment is essential. While the authors rightly acknowledge that splicing represents only one layer of regulatory complexity, the manuscript would benefit from a more integrated consideration of additional dimensions, such as 3D genome architecture, e.g., the potential role of topologically associating domains in constraining splicing variation.

    3. Reviewer #4 (Public review):

      The manuscript reports on a large-scale study correlating genomic architecture with splicing complexity over almost 1,500 species. We still know relatively little about alternative splicing functional consequences and evolution, and thus, the study is relevant and timely. The methodology relies on annotations from NCBI for high-quality genomes and a main metric proposed by the authors and named Alternative Splicing Ratio (ASR). It quantifies the level of redundancy of each coding nucleotide in the annotated isoforms.

      According to the authors' response to the first reviewers' comments, the present version of the manuscript seems to be a profoundly revised version compared to the original submission. I did not have access to the reviewers' comments.

      Although the study addresses an important question and the authors have visibly made an important effort to make their claims more statistically robust, I have a number of major concerns regarding the methodology and its presentation.

      (1) A large part of the manuscript is speculative and vague. For instance, the Discussion is very long (almost longer than the Results section) and the items discussed are sometimes not in direct connection with the present work. I would suggest merging the last 2 paragraphs, for instance, since the before last paragraph is essentially a review of the literature without direct connection to the present work.

      (2) The Methods section lacks clarity and precision. A large part is devoted to explaining the biases in the data without any reference or quantification. The definition of ASR is very confusing. It is first defined in equation 2, with a different name, and then again in the next subsection from a different perspective on lines 512-518. Why build matrices of co-occurrences if these are, in practice, never used? It seems the authors exploit only the trace. A major revision, if I understood correctly, was the correction/normalisation of the ASR metric. This normalisation is not explained. The authors argue that they will write another paper about it, I do not think this is acceptable for the publication of the present manuscript. Furthermore, there is no information about the technical details of the implementation: which packages did the authors use?

      (3) Could the authors motivate why they do not directly focus on the MC permutation test? They motivate the use of permutations because the data contains extreme outliers and are non normal in most cases. Hence, it seems the Welch's ANOVA is not adapted. "To further validate our findings, we also conducted<br /> 148 a Monte Carlo permutation test, which supported the conclusions (see Methods)." Where is the comparison shown? I did not see any report of the results for the non-permuted version of the Welch's ANOVA.

      (4) What are the assumptions for the Phylogenetic Generalized Least Squares? Which evolution model was chosen and why? What is the impact of changing the model? Could the authors define more precisely (e.g. with equations) what is lambda? Is it estimated or fixed?

      (5) I think the authors could improve their account of recent literature on the topic. For instance, the paper https://doi.org/10.7554/eLife.93629.3, published in the same journal last year, should be discussed. It perfectly fits in the scope of the subsection "Evidence for the adaptive role of alternative splicing". Methods and findings reported in https://doi.org/10.1186/s13059-021-02441-9 and https://www.genome.org/cgi/doi/10.1101/gr.274696.120 directly concern the assessment of AS evolutionary conservation across long evolutionary times and/or across many species. These aspects are mentioned in the introduction on p.3. but without pointing to such works. Can we really qualify a work published in 2011 as "recent" (line 348-350)?

      The generated data and codes are available on Zenodo, which is a good point for reproducibility and knowledge sharing with the community.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate how methicillin-resistant (MRSA) and sensitive (MSSA) Staphylococcus aureus adapt to a new host (C. elegans) in the presence or absence of a low dose of the antibiotic oxacillin. Using an "Evolve and Resequence" design with 48 independently evolving populations, they track changes in virulence, antibiotic resistance, and other fitness-related traits over 12 passages. Their key finding is that selection from both the host and the antibiotic together, rather than either pressure alone, results in the evolution of the most virulent pathogens. Genomically, they find that this adaptation repeatedly involves mutations in a small number of key regulatory genes, most notably codY, agr, and saeRS.

      Strengths:

      The main advantage of the research lies in its strong and thoroughly replicated experimental framework, enabling significant conclusions to be drawn based on the concept of parallel evolution. The study successfully integrates various phenotypic assays (virulence, growth, hemolysis, biofilm formation) with whole-genome sequencing, offering an extensive perspective on the adaptive landscape. The identification of certain regulatory genes as common targets of selection across distinct lineages is an important result that indicates a level of predictability in how pathogens adapt.

      Weaknesses:

      (1) The main limitation of the paper is that its findings on the function of specific genes are based on correlation, not cause-and-effect evidence. While the parallel evolution evidence is strong, the authors have not yet performed the definitive tests (i.e., reconstruction of ancestral genes) to ensure that the mutations identified in isolation are enough to account for the virulence or resistance changes observed. This makes the conclusions more like firm hypotheses, not confirmed facts.

      (2) In some instances, the claims in the text are not fully supported by the visual data from the figures or are reported with vagueness. For example, the display of phenotypic clusters in the PCA (Figure 6A) and the sweeping generalization about the effect of antibiotics on the mutation rates (Figure S5) can be more precise and nuanced. Such small deviations dilute the overall argument somewhat and must be corrected.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript describes the results of an evolution experiment where Staphylococcus aureus was experimentally evolved via sequential exposure to an antibiotic followed by passaging through C. elegans hosts. Because infecting C. elegans via ingestion results in lysis of gut cells and an immune response upon infection, the S. aureus were exposed separately across generations to antibiotic stress and host immune stress. Interestingly, the dual selection pressure of antibiotic exposure and adaptation to a nematode host resulted in increased virulence of S. aureus towards C. elegans.

      Strengths:

      The data presented provide strong evidence that in S. aureus, traits involved in adaptation to a novel host and those involved in antibiotic resistance evolution are not traded off. On the contrary, they seem to be correlated, with strains adapted to antibiotics having higher virulence towards the novel host. As increased virulence is also associated with higher rates of haemolysis, these virulence increases are likely to reflect virulence levels in vertebrate hosts.

      Weaknesses:

      Right now, the results are presented in the context of human infections being treated with antibiotics, which, in my opinion, is inappropriate. This is because<br /> (1) exposure to the host and antibiotics was sequential, not simultaneous, and thus does not reflect the treatment of infection, and<br /> (2) because the site of infection is different in C. elegans and human hosts.

      Nevertheless, the results are of interest; I just think the interpretation and framing should be adjusted.

    3. Reviewer #3 (Public review):

      Summary:

      Su et al. sought to understand how the opportunistic pathogen Staphylococcus aureus responds to multiple selection pressures during infection. Specifically, the authors were interested in how the host environment and antibiotic exposure impact the evolution of both virulence and antibiotic resistance in S. aureus. To accomplish this, the authors performed an evolution experiment where S. aureus was fed to Caenorhabditis elegans as a model system to study the host environment and then either subjected to the antibiotic oxacillin or not. Additionally, the authors investigated the difference in evolution between an antibiotic-resistant strain, MRSA, and an isogenic susceptible strain, MSSA. They found that MRSA strains evolved in both antibiotic and host conditions became more virulent, and that strains evolved outside these conditions lost virulence. Looking at the strains evolved in just antibiotic conditions, the authors found that S. aureus maintained its ability to lyse blood cells. Mutations in codY, gdpP, and pbpA were found to be associated with increased virulence. Additionally, these mutations identified in these experiments were found in S. aureus strains isolated from human infections.

      Strengths:

      The data are well-presented, thorough, and are an important addition to the understanding of how certain pathogens might adapt to different selective pressures in complex environments.

      Weaknesses:

      There are a few clarifications that could be made to better understand and contextualize the results. Primarily, when comparing the number of mutations and selection across conditions in an evolution experiment, information about population sizes is important to be able to calculate the mutation supply and number of generations throughout the experiment. These calculations can be difficult in vivo, but since several steps in the methodology require plating and regrowth, those population sizes could be determined. There was also no mention of how the authors controlled the inoculation density of bacteria introduced to each host. This would need to be known to calculate the generation time within the host. These caveats should be addressed in the manuscript.

      Another concern is the number of generations the populations of S. aureus spent either with relaxed selection in rich media or under antibiotic pressure in between the host exposure periods. It is probable then that the majority of mutations were selected for in these intervening periods between host infection. Again, a more detailed understanding of population sizes would contribute to the understanding of which phase of the experiment contributed to the mutation profile observed.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript presents an extensive body of work and an outstanding contribution to our understanding of the IFN type I and III system in chickens. The research started with the innovative approach of generating KO chickens that lack the receptor for IFNα/β (IFNAR1) or IFN-λ (IFNLR1). The successful deletion and functional loss of these receptors was clearly and comprehensively demonstrated in comparison to the WT. Moreover, the homozygous KO lines (IFNAR1-/- or IFNLR1-/- ) were found to have similar body weights, and normal egg production and fertility compared to their WT counterparts. These lines are a major contribution to the toolbox for the study of avian/chicken immunology.

      The significance of this contribution is further demonstrated by the use of these lines by the authors to gain insight into the roles of IFN type I and IFN-type III in chickens, by conducting in ovo and in vivo studies examining basic aspects of immune system development and function, as well as the responses to viral challenges conducted in ovo and in vivo.

      Based on solid, state-of the-art methods and convincing evidence from studies comparing various immune system related functions in the IFNAR1-/- or IFNLR1-/- lines to the WT, revealed that the deletion of IFNAR1 and/or IFNLR1 resulted in:<br /> (1) impaired IFN signaling and induction of anti-viral state;<br /> (2) modulation of immune cell profiles in the peripheral blood circulation and spleen;<br /> (3) modulation of the cecum microbiome;<br /> (4) reduced concentrations of IgM and IgY in the blood plasma before and following immunization with model antigen KLH, whereby also line differences in the time-course of the antibody production were observed;<br /> (5) decrease in MHCII+ macrophages and B cells in the spleen of IFNAR1 KO chickens, although the MHCII-expression per cell was not affected in this line; and<br /> (6) reduction in the response of αβ1 TCR+ T cells of IFNAR1 KO chickens as suggested by clonal repertoire analyses.

      These studies were then followed by examination of the role of type I and type III IFN in virus infection, using different avian influenza A virus strains as well as an avian gamma corona virus (IBV) in in ovo challenge experiments. These studies revealed: viral titers that reflect virus-species and strain-specific IFN responses; no differences in the secretion of IFN-α/β in both KO compared to the WT lines; a predominant role of type I IFN in inducing the interferon-stimulated gene (ISG) Mx; and that an excessive and unbalanced type I IFN response can harm host fitness (survival rate, length of survival) and contribute to immunopathology.

      Based on guidance from the in ovo studies, comprehensive in vivo studies were conducted on host-pathogen interactions in hens from the three lines (WT, IFNAR1 KO, or IFNLR1 KO). These studies revealed the early appearance of symptoms and poor survival of hens from the IFNR1 KO line challenged with H3N1 avian influenza A virus; efficient H#N1 virus replication in IFNAR1 KO hens, increased plasma concentrations of IFNα/β and mRNA expression of IFN-λ in spleens of the IFNAR1 KO hens; a pro-inflammatory role of IFN-λ in the oviduct of hens infected with H3N1 virus; increased proinflammatory cytokine expression in spleens of IFNAR1 KO hens, and Impairment of negative feedback mechanisms regulating IFN-α/β secretion in IFNAR1-KO hens and a significant decrease in this group's antiviral state; additionally it was demonstrated that IFN-α/β can compensate IFN-λ to induce an adequate antiviral state in the spleen during H3N1 infection, but IFN-λ cannot compensate for IFN-α/β signaling in the spleen.

      Strengths:

      (1) Both the methods and results from the comprehensive, well-designed, and well-executed experiments are considered excellent. The results are well and correctly described in the result narrative and well presented in both the manuscript and supplement Tables and Figures. Excellent discussion/interpretation of results.

      (2) The successful generation of the type I and type III IFN KO lines offers unprecedented insight and opens multiple new venues for exploring the IFN system in chickens. The new knowledge reported here is direct evidence of the high impact of this model system on effectively addressing a critical knowledge gap in avian immunology.

      (3) The thoughtful selection of highly relevant viruses to poultry and human health for the in ovo and in vivo challenge studies to examine and assess host-pathogen interactions in the IFNR KO and WT lines.

      (4) Making use of the unique opportunities in the chicken model to examine and evaluate the host's IFN system responses to various viral challenges in ovo, before conducting challenge studies in hens.

      (5) The new knowledge gained from the IFNAR1 and IFNLR1 KO lines will find much-needed application in developing more effective strategies to prevent health challenges like avian influenza and its devastating effects on poultry, humans, and other mammals.

      (6) The excellent cooperation and contributions of the co-authors and institutions.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    2. Reviewer #2 (Public review):

      Summary:

      This study attempts to dissect the contributions of type I and type III IFNs to the antiviral response in chickens. The first part of the study characterises the generation of IFNAR and IFNLR KO chicken strains and describes basic differences. Four different viruses are then tested in chicken embryos, while the subsequent analysis of the antiviral response in vivo is performed with one influenza H3N1 strain.

      Strengths:

      Having these two KO chicken strains as a tool is a great achievement. The initial analysis is solid. Clear effect of IFNAR deficiency in in vivo infection, less so for IFNLR deficiency.

      Weaknesses:

      (1) The antibody induction by KLH immunisation: No data indicated whether or not this vaccination induces IFN responses in wt mice, so the effects observed may be due to steady-state differences or to differential effects of IFN induced during the vaccination phase. No pre-immune results are shown. The differences are relatively small and often found at only one plasma dilution - the whole of Figure 4 could be condensed into one or two panels by proper calculation of Ab titers - would these titres be significantly different? This, as all of the other in vivo experiments, has not been repeated, if I understand the methods section correctly.

      (2) The basic conundrum here and in later figures is never addressed by the authors: Situations where IFN type 1 and 3 signalling deficiency each have an independent effect (i.e., Figure 4d) suggest that they act by separate, unrelated mechanisms. However, all the literature about these IFN families suggests that they show almost identical signalling and gene induction downstream of their respective receptors. How can the same signalling, clearly active here downstream of the receptors for IFN type 1 or type 3, be non-redundant, i.e., why does the unaffected IFN family not stand in? This is a major difference from the mouse studies, which showed a rather subtle phenotype when only one of the two IFN systems was missing, but a massive reduction in virus control in double KO mice (the correct primary paper should be quoted here, not only the review by McNab). Reasons could be a direct effect of IFNab on B cells and an indirect effect of IFNL through non-B cells, timing issues, and many other scenarios can be envisaged. The authors do not address this question, which limits the depth of analysis.

      (3) In the one in vivo experiment performed with chickens, only one virus was tested; more influenza strains should be included, as well as non-influenza viruses.

      (4) The basic conundrum of point 2 applies equally to Figure 6a; both KOs have a phenotype. Again in 6d, both IFNs appear to be separately required for Mx induction. An explanation is needed.

      (5) Line 308, where are the viral titers you refer to in the text? The statement that the results demonstrate that excessive IFNab has a negative impact is overstretched, as no IFN measurements of the infected embryos are shown here.

      (6) The in vivo infection is the most interesting experiment, and the key outcome here is that IFN type 1 is crucial for anti-H3N1 protection in chickens, while type 3 is less impactful. However, this experiment suffers from the different time points when chickens were culled, so many parameters are impossible to compare (e.g., weight loss, histopathology, IFN measurements, and more). Many of these phenomena are highly dynamic in acute virus infections, so disparate time points do not allow a meaningful comparison between different genotypes. What are the stats in 7b? Is the median rather than the mean indicated by the line? Otherwise, the lines appear in surprising places. SD must be shown, and I find it difficult to believe that there is a significant difference in weight, for e.g., IFNAR KO, unless maybe with a paired t test. What is the statistical test?

      (7) Figures 7e,f: these comparisons are very difficult to interpret as the virus loads at these time points already differ significantly, so any difference could be secondary to virus load differences.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors reveal that the availability of extracellular asparagine (Asn) represents a metabolic vulnerability for the activation and differentiation of naive CD4+ T cells. To deplete extracellular Asn, they employed two orthogonal approaches: activating naive CD4+ T cells in either PEGylated asparaginase (PEG-AsnASE)-treated medium or custom-formulated RPMI medium specifically lacking Asn. Importantly, they demonstrate that Asn depletion not only impaired metabolic reprogramming associated with CD4+ T cell activation but also reduced CD4+ helper T cell lineage-specific cytokine production, thereby ameliorating the severity of experimental autoimmune encephalomyelitis.

      Strengths:

      The experiments presented here are comprehensive and well-designed, providing compelling evidence for the conclusions. The conclusions will be important to the field.

      Weaknesses:

      (1) EAE is the prototypic T cell-mediated autoimmune disease model, and both Th1 and Th17 cells are implicated in its pathogenesis. In contrast, Th2 and Treg cells and their associated cytokines (such as IL-4 and IL-10) have been shown to play a role in the resolution of EAE, and potentially in the modulation of disease progression. Thus, it will be important to determine whether Asn depletion affects the differentiation of naive CD4+ T cells into corresponding subsets under Th2 and Treg polarization conditions, as well as the expression of lineage-specific transcription factors and cytokine production.

      (2) EAE is characterized by inflammation and demyelination in the central nervous system (CNS), leading to neurological deficits. Myelin destruction is directly correlated with the severity of the disease. For Figure 6, did the authors perform spinal cord histological analysis by hematoxylin and eosin (H&E) or Luxol fast blue (LFB) staining? This is important to rigorously examine pathological EAE symptoms.

    2. Reviewer #2 (Public review):

      While the importance of asparagine in the differentiation and activation of CD8 T cells has been previously reported, its role in CD4 T cells remained unclear. Using culture media containing specific amino acids, the authors demonstrated that extracellular asparagine promotes CD4 T cell proliferation. Consistent with this, depletion of extracellular asparagine using PEG-AsnASE suppressed CD4 T cell activation. Proteomic analysis focusing on asparagine content revealed that, during the early phase of T cell activation, most asparagine incorporated into proteins is derived from extracellular sources. The authors further confirmed the importance of extracellular asparagine in vivo, demonstrating improved EAE pathology.

      While the data are well organized and convincing, the mechanism by which asparagine deficiency leads to altered T cell differentiation remains unclear. It is also necessary to investigate the transporters involved in asparagine uptake. In particular, elucidating whether different T cell subsets utilize the same or distinct transport mechanisms would provide important insight into the immunoregulatory role of asparagine.

      (1) The finding that asparagine supplementation promotes T cell proliferation under various amino acid conditions is highly significant. However, the concentration at which this effect occurs remains unclear. A titration analysis would be necessary to determine the dose-dependency of asparagine.

      (2) The effects of asparagine deficiency occur during the early phase of T cell activation. Thus, it is likely that the transporters responsible for asparagine uptake are either rapidly induced upon activation or already expressed in the resting state. Since this is central to the focus of the manuscript, it is interesting to identify the transporter responsible for asparagine uptake during early T cell activation. A recent paper (DOI: 10.1126/sciadv.ads350) reported that macrophages utilize Slc6a14 to use extracellular asparagine. Is this also true for CD4+ T cells?

      (3) Given that depletion of extracellular asparagine impairs differentiation of Th1 and Th17 cells, it is possible that TCR signaling is compromised under these conditions. This point should be investigated by targeting downstream signaling molecules such as Lck, ZAP70, or mTOR. Also, does it affect the protein stability of master transcription factors such as T-bet and RORgt?

      (4) Is extracellular asparagine also important for the differentiation of helper T cell subsets other than Th1 and Th17, such as Th2, Th9, and iTreg?

      (5) Asparagine taken up from outside the cell has been shown to be used for de novo protein synthesis (Figure 3E), but are there any proteins that are particularly susceptible to asparagine deficiency? This can be verified by performing proteome analysis, and the effects on Th1/17 subset differentiation mentioned above should also be examined.

      (6) While the importance of extracellular asparagine is emphasized, Asns expression is markedly induced during early T cell activation. Nevertheless, the majority of asparagine incorporated into proteins appears to be derived from extracellular sources. Does genetic deletion of Asns have any impact on early CD4+ T cell activation? The authors indicated that newly synthesized Asns have little impact on CD8+ T cells in the Discussion section, but is this also true for CD4+ T cells? This could be verified through experiments using CRISPR-mediated Asns gene targeting or pharmacological inhibition.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Xu et al. reported base-resolution mapping of RNA pseudouridylation in five bacterial species, utilizing recently developed BID-seq. They detected pseudouridine (Ψ) in bacterial rRNA, tRNA, and mRNA, and found growth phase-dependent Ψ changes in tRNA and mRNA. They then focused on mRNA and conducted a comparative analysis of Ψ profiles across different bacterial species. Finally, they developed a deep learning model to predict Ψ sites based on RNA sequence and structure.

      Strengths:

      This is the first comprehensive Ψ map across multiple bacterial species, and systematically reveals Ψ profiles in rRNA, tRNA, and mRNA under exponential and stationary growth conditions. It provides a valuable resource for future functional studies of Ψ in bacteria.

      Weaknesses:

      Ψ is highly abundant on non-coding RNA such as rRNA and tRNA, while its level on mRNA is very low. The manuscript focuses primarily on mRNA, which raises questions about the data quality and the rigor of the analysis. Many conclusions in the manuscript are speculative, based solely on the sequencing data but not supported by additional experiments.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, Xu et al. present a transcriptome-wide, single-base resolution map of RNA pseudouridine modifications across evolutionarily diverse bacterial species using an adapted form of BID-Seq. By optimizing the method for bacterial RNA, the authors successfully mapped modifications in rRNA, tRNA, and, importantly, mRNA across both exponential and stationary growth phases. They uncover evolutionarily conserved Ψ motifs, dynamic Ψ regulation tied to bacterial growth state, and propose functional links between pseudouridylation and bacterial transcript stability, translation, and RNA-protein interactions. To extend these findings, they develop a deep learning model that predicts pseudouridine sites from local sequence and structural features.

      Strengths:

      The authors provide a valuable resource: a comprehensive Ψ atlas for bacterial systems, spanning hundreds of mRNAs and multiple species. The work addresses a gap in the field - our limited understanding of bacterial epitranscriptomics, by establishing both the method and datasets for exploring post-transcriptional modifications.

      Weaknesses:

      The main limitation of the study is that most functional claims (i.e., translation efficiency, mRNA stability, and RNA-binding protein interactions) are based on correlative evidence. While suggestive, these inferences would be significantly strengthened by targeted perturbation of specific Ψ synthases or direct biochemical validation of proposed RNA-protein interactions (e.g., with Hfq). Additionally, the GNN prediction model is a notable advance, but methodological details are insufficient to reproduce or assess its robustness.

    3. Reviewer #3 (Public review):

      Summary:

      This study aimed to investigate pseudouridylation across various RNA species in multiple bacterial strains using an optimized BID-seq approach. It examined both conserved and divergent modification patterns, the potential functional roles of pseudouridylation, and its dynamic regulation across different growth conditions.

      Strengths:

      The authors optimized the BID-seq method and applied this important technique to bacterial systems, identifying multiple pseudouridylation sites across different species. They investigated the distribution of these modifications, associated sequence motifs, their dynamics across growth phases, and potential functional roles. These data are of great interest to researchers focused on understanding the significance of RNA modifications, particularly mRNA modifications, in bacteria.

      Weaknesses:

      (1) The reliability of BID-seq data is questionable due to a lack of experimental validations.

      (2) The manuscript is not well-written, and the presented work shows a major lack of scientific rigor, as several key pieces of information are missing.

      (3) The manuscript's organization requires significant improvement, and numerous instances of missing or inconsistent information make it difficult to understand the key objectives and conclusions of the study.

      (4) The rationale for selecting specific bacterial species is not clearly explained, and the manuscript lacks a systematic comparison of pseudouridylation among these species.

    1. Reviewer #1 (Public review):

      Summary:

      Alveolar macrophages (AMs) are key sentinel cells in the lungs, representing the first line of defense against infections. There is growing interest within the scientific community in the metabolic and epigenetic reprogramming of innate immune cells following an initial stress, which alters their response upon exposure to a heterologous challenge. In this study, the authors show that exposure to extracellular ATP can shape AM functions by activating the P2X7 receptor. This activation triggers the relocation of the potassium channel TWIK2 to the cell surface, placing macrophages in a heightened state of responsiveness. This leads to the activation of the NLRP3 inflammasome and, upon bacterial internalization, to the translocation of TWIK2 to the phagosomal membrane, enhancing bacterial killing through pH modulation. Through these findings, the authors propose a mechanism by which ATP acts as a danger signal to boost the antimicrobial capacity of AMs.

      Strengths:

      This is a fundamental study in a field of great interest to the scientific community. A growing body of evidence has highlighted the importance of metabolic and epigenetic reprogramming in innate immune cells, which can have long-term effects on their responses to various inflammatory contexts. Exploring the role of ATP in this process represents an important and timely question in basic research. The study combines both in vitro and in vivo investigations and proposes a mechanistic hypothesis to explain the observed phenotype.

      Weaknesses:

      First, the concept of training or trained immunity refers to long-term epigenetic reprogramming in innate immune cells, resulting in a modified response upon exposure to a heterologous challenge. The investigations presented demonstrate phenotypic alterations in AMs seven days after ATP exposure; however, they do not assess whether persistent epigenetic remodeling occurs with lasting functional consequences. Therefore, a more cautious and semantically precise interpretation of the findings would be appropriate.

      Furthermore, the in vivo data should be strengthened by additional analyses to support the authors' conclusions. The authors claim that susceptibility to Pseudomonas aeruginosa infection differs depending on the ATP-induced training effect. Statistical analyses should be provided for the survival curves, as well as additional weight curves or clinical assessments. Moreover, it would be appropriate to complement this clinical characterization with additional measurements, such as immune cell infiltration analysis (by flow cytometry), and quantification of pro-inflammatory cytokines in bronchoalveolar lavage fluid and/or lung homogenates.

      Moreover, the authors attribute the differences in resistance to P. aeruginosa infection to the ATP-induced training effect on AMs, based on a correlation between in vivo survival curves and differences in bacterial killing capacity measured in vitro. These are correlative findings that do not establish a causal role for AMs in the in vivo phenotype. ATP-mediated effects on other (i.e., non-AM) cell populations are omitted, and the possibility that other cells could be affected should be, at least, discussed. Adoptive transfer experiments using AMs would be a suitable approach to directly address this question.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Thompson et al. investigate the impact of prior ATP exposure on later macrophage functions as a mechanism of immune training. They describe that ATP training enhances bactericidal functions, which they connect to the P2x7 ATP receptor, Nlrp3 inflammasome activation, and TWIK2 K+ movement at the cell surface and subsequently at phagosomes during bacterial engulfment. With stronger methodology, these findings could provide useful insight into how ATP can modulate macrophage immune responses, though they are generally an incremental addition to existing literature. The evidence supporting their conclusions is currently inadequate. Gaps in explaining methodology are substantial enough to undermine trust in much of the data presented. Some assays may not be designed rigorously enough for interpretation.

      Strengths:

      The authors demonstrate two novel findings that have sufficient rigor to assess:

      (1) prolonged persistence of TWIK2 at the macrophage plasma membrane following ATP, and can translocate to the phagosome during particle engulfment, which builds upon their prior report of ATP-driven 'training' of macrophages.

      (2) administering mice intra-nasal ATP to 'train' lungs to protect mice from otherwise fatal bacterial infection.

      Weaknesses:

      (1) Missing details from methods/reported data: Substantial sections of key methods have not been disclosed (including anything about animal infection models, RNA-sequencing, and western blotting), and the statistical methods, as written, only address two-way comparisons, which would mean analysis was improperly performed. In addition, there is a general lack of transparency - the methods state that only representative data is included in the manuscript, and individual data points are not shown for assays.

      (2) Poor experimental design including missing controls: Particularly problematic are the Seahorse assay data (requires normalization to cell numbers to interpret this bulk assay - differences in cell growth/loss between conditions would confound data interpretation) and bacterial killing assays (as written, this method would be heavily biased by bacterial initial binding/phagocytosis which would confound assessment of killing). Controls need to be included for subcellular fractionating to confirm pure fractions and for dye microscopy to show a negative background. Conclusions from these assays may be incorrect, and in some cases, the whole experiment may be uninterpretable.

      (3) The conclusions overstate what was tested in the experiments: Conceptually, there are multiple places where the authors draw conclusions or frame arguments in ways that do not match the experiments used. Particularly:<br /> a) The authors discuss their findings in the context of importance for AM biology during respiratory infection but in vitro work uses cells that are well-established to be poor mimics of resident AMs (BMDM, RAW), particularly in terms of glycolytic metabolism.<br /> b) In vivo work does not address whether immune cell recruitment is triggered during training.<br /> c) Figure 3 is used to draw conclusions about K+ in response to bacterial engulfment, but actually assesses fungal zymosan particles.<br /> d) Figure 5 is framed in bacterial susceptibility post-viral infection, but the model used is bacterial post-bacterial.<br /> e) In their discussion, the authors propose to have shown TWIK2-mediated inflammasome activation. They link these separately to ATP, but their studies do not test if loss of TWIK2 prevents inflammasome activation in response to ATP (Figure 4E does not use TWIK2 KO).

      In summary, this work contains some useful data showing how ATP can 'train' macrophages. However, it largely lacks the expected level of rigor. For this work to be valuable to the field, it is likely to need substantial improvement in methods reporting, inclusion of missing assay controls, may require repeating key experiments that were run with insufficient methodology (or providing details and supplemental data to prove that methodology was sufficient), and should either add additional experiments that properly test their experimental question or rewrite their conclusions.

    1. Joint Public Review:

      Summary from an earlier round of review:

      This paper summarises responses from a survey completed by around 5,000 academics on their manuscript submission behaviours. The authors find several interesting stylised facts, including (but not limited to):- Women are less likely to submit their papers to highly influential journals (e.g., Nature, Science and PNAS).

      - Women are more likely to cite the demands of co-authors as a reason why they didn’t submit to highly influential journals.

      - Women are also more likely to say that they were advised not to submit to highly influential journals.

      The paper highlights an important point, namely that the submission behaviours of men and women scientists may not be the same (either due to preferences that vary by gender, selection effects that arise earlier in scientists’ careers or social factors that affect men and women differently and also influence submission patterns). As a result, simply observing gender differences in acceptance rates - or a lack thereof - should not be automatically interpreted as as evidence for or against discrimination (broadly defined) in the peer review process.

      Editor’s note: This is the third version of this article.

      Comments made during the peer review of the second version, along with author’s responses to these comments, are available below. Revisions made in response to these comments include changing the colour scheme used for the figures to make the figures more accessible for readers with certain forms of colour blindness.

      Comments made during the peer review of the first version, along with author’s responses to these comments, are available with previous versions of the article.

    1. Reviewer #1 (Public review):

      Summary:

      Chao et al. produced an updated version of the SpliceAI package using modern deep learning frameworks. This includes data preprocessing, model training, direct prediction, and variant effect prediction scripts. They also added functionality for model fine-tuning and model calibration. They convincingly evaluate their newly trained models against those from the original SpliceAI package and investigate how to extend SpliceAI to make predictions in new species. Their comparisons to the original SpliceAI models are convincing on the grounds of model performance and their evaluation of how well the new models match the original's understanding of non-local mutation effects. However, their evaluation of the new calibration functionality would benefit from a more nuanced discussion of the limitations of calibration.

      Strengths

      (1) They provide convincing evidence that their new implementation of SpliceAI matches the performance and mutation effect estimation capabilities of the original model on a similar dataset while benefiting from improved computational efficiencies. This will enable faster prediction and retraining of splicing models for new species as well as easier integration with other modern deep learning tools.

      (2) They produce models with strong performance on non-human model species and a simple well well-documented pipeline for producing models tuned for any species of interest. This will be a boon for researchers working on splicing in these species and make it easy for researchers working on new species to generate their own models.

      (3) Their documentation is clear and abundant. This will greatly aid the ability of others to work with their code base.

      Weaknesses

      (1) Their discussion of their package's calibration functionality does not adequately acknowledge the limitations of model calibration. This is problematic as this is a package intended for general use and users who are not experienced in modeling broadly and the subfield of model calibration specifically may not already understand these limitations. This could lead to serious errors and misunderstandings down the road. A model is not calibrated or uncalibrated in and of itself, only with respect to a specific dataset. In this case they calibrated with respect to the training dataset, a set of canonical transcript annotations. This is a perfectly valid and reasonable dataset to calibrate against. However, this is unlikely to be the dataset the model is applied to in any downstream use case, and this calibration is not guaranteed or expected to hold for any shift in the dataset distribution. For example, in the next section they use ISM based approaches to evaluate which sequence elements the model is sensitive to and their calibration would not be expected to hold for this set of predictions. This issue is particularly worrying in the case of their model because annotation of canonical transcript splice sites is a task that it is unlikely their model will be applied to after training. Much more likely tasks will be things such as predicting the effects of mutations, identification of splice sites that may be used across isoforms beyond just the canonical one, identification of regulatory sequences through ISM, or evaluation of human created sequences for design or evaluation purposes (such as in the context of an MPSA or designing a gene to splice a particular way), we would not expect their calibration to hold in any of these contexts. To resolve this issue, the authors should clarify and discuss this limitation in their paper (and in the relevant sections of the package documentation) to avoid confusing downstream users.

      (2) The clarity of their analysis of mutation effects could be improved with some minor adjustments. While they report median ISM importance correlation it would be helpful to see a histogram of the correlations they observed. Instead of displaying (and calculating correlations using) importance scores of only the reference sequence, showing the importance scores for each nucleotide at each position provides a more informative representation. This would also likely make the plots in 6B clearer.

    2. Reviewer #2 (Public review):

      Summary:

      The paper by Chao et al offers a reimplantation of the SpliceAI algorithm in PyTorch so that the model can more easily/efficiently be retrained. They apply their new implementation of the SpliceAI algorithm, which they call OpenSpliceAI, to several species and compare it against the original model, showing that the results are very similar and that in some small species pre-training on other species helps improve performance.

      Strengths:

      On the upside, the code runs fine and it is well documented.

      Weaknesses:

      The paper itself does not offer much beyond reimplementing SpliceAI. There is no new algorithm, new analysis, new data, or new insights into RNA splicing. There is not even any comparison to many of the alternative methods that have since been published to surpass SpliceAI. Given that some of the authors are well known with a long history of important contributions, our expectations were admittedly different. Still, we hope some readers will find the new implementation useful.

      Update for the revised version:

      The update includes mostly clarifications for tech questions/comments raised by the other two reviewers. There is no additional analysis/results that changes our above initial assessment of this paper's contribution.

    1. Reviewer #1 (Public review):

      This is an important, interesting, and in-depth study examining the role of Sp5/8 transcription factors in maintaining the neuromesodermal progenitor (NMP) niche. The authors first used Sp5/8 double conditional KO mouse embryos to establish that these factors function in the NMP niche to promote trunk elongation. They then conducted extensive single-cell analyses on embryos of various genetic mutant backgrounds to unravel the complex and intricate interactions between Wnt signaling and Sp5/8. The key conclusion from these experiments is that Sp5/8 function within an autoregulatory loop crucial for maintaining the NMP niche. The authors went on to identify and characterize a novel enhancer element downstream of the Wnt3a coding sequence, which mediates the effects of Sp5/8 on Wnt3a expression. Overall, the data presented are compelling and of high quality, and the study offers a prime example of how a relatively small set of signaling pathways and transcription factors can function in concert to impart robustness to developmental processes.

    2. Reviewer #2 (Public review):

      Chalamalasetty et al. investigate the regulatory circuit of signaling molecules and transcription factors that drive the fate of neuromesodermal competent progenitors (NMCs). NMCs contribute to Sox2-positive spinal cord and Tbxt/Bra-expressing somitic mesoderm, and this choice is governed by the interplay between Wnt3a and Fgf signaling. The authors discovered that the transcription factors SP5 and SP8 participate in this process. Mouse genetics, in vivo development, and transcription factors profiling point to a model where SP5 and SP8 directly regulate Wnt3a expression to foster Tbxt-marked mesoderm formation at the expense of Sox2-marked neural ectoderm. Mechanistically, SP5/8 bind to an enhancer which the authors characterize: its activity depends on the presence of SP5, CDX2, TCF7, and TBXT binding sites, and it is activated only in primitive streak cells at E7.5, in NMP, and in caudal and somitic mesoderm, underscoring the tissue and stage-specific nature of this Wnt3a enhancer.

      Moreover, the authors find that SP5/8 likely regulate the TCF7 association with the chromatin and compete for its binding to the TLE repressor.

      The study is extensive, compelling, and well written. The combination of in vivo evidence with single-cell transcriptomics, transcription factors profiling, and in vitro regulatory element characterization is notable and builds a convincing picture of the action of SP5/SP8.

      Here, I provide a series of comments and questions that, if addressed and clarified, could, in my opinion, improve the study.

      (1) While Sp5 and Sp8 are both present in NMCs, their expression does not fully overlap. Sp5 is also detected in caudal and presomitic mesoderm, notochord and gut, while Sp8 overlaps with Sox2 in neural progenitors of the spinal cord and brain (Fig. 1D). Accordingly, Sp8 expression is also activated by the neural-promoting RA+Fgf. It is not easy for me to reconcile this non-fully overlapping expression pattern - and in particular the overlap of Sp8 and Sox2 - with the presumed redundancy (or similarity of function) described later. Sp5/8 dko NMCs show reduced Tbxt and expanded Sox2, indicating that SP8 also represses Sox2 or neural fate, an observation confirmed by Sp8 overexpression (Figure 4c). What is the explanation for this, and is the function of SP8 in Sox2-positive neural progenitors different from its Wnt3a-sustaining role in NMCs? Or what am I missing?

      (2) I suggest that the authors show relevant ChIP-seq peaks in Figure 3 to lend credibility to the complicated overlapping Venn diagrams. I consider visual inspection of peak tracks as primary quality control of this type of experiment. A good choice could be the cis-regulatory elements at Sp5, Sp8, Tbxt, Cdx1, 2, 4 bound by TBXT and either CDX2, SP5, or SP8 (now referring to the Venn diagrams and the annotated peak table). On ChIP-seq visualization, in reference to Figures 5 and 7, I also suggest that the authors show the tracks of a negative control (IgG, non-related antibody, or better anti-flag in Sp5/8 dko). While I do not doubt the validity of these experiments, there are peaks in these figures bound by all factors tested that could be suspicious (even though, admittedly, they look like genuinely good TF peaks). A negative track would clearly show beyond any doubt that these are not suspect regions of positive unspecific signal caused by open chromatin, excessive cross-linking, or antibody cross-reaction.

      (3) SP5 here is found as a direct inducer of Wnt3a expression, and accordingly positive regulator of Tbxt and mesoderm, caudal development. I find this in partial contradiction with a finding by the Willert group (PMID: 29044119). They show that "genes with an associated SP5 peak, such as SP5 itself, AXIN2, AMOTL2, GPR37, GSC, MIXL1, NODAL, and T, show significant upregulation in expression upon Wnt3a treatment in SP5 mutant cells". There, essentially, SP5 inhibits Wnt target genes. While the authors are aware of this and cite Huggins et al., I find that this deserves a better discussion addressing how opposite functions could be sustained in different contexts, if these really are different cellular contexts in the first place, or if this could result from different methodologies.

      (4) The gastruloid experiment is nice, but I wonder whether there is any marker that the authors can use to show that other features of the gastruloids respond accordingly. For example, is the Sox2 expression domain expanded? And is there any unaffected marker to emphasize the specificity of the decreased Tbxt and Cdx2?

      (5) SP5/8 seems to enhance the TCF7 occupancy at WRE. And then, SP5/8 appears to counteract the presence of TLE repressor associated with TCF7. While these two mechanisms are interesting, they are not necessarily interconnected. According to the still-established view, TCF7 should be associated with WRE even in the absence of the Wnt signal, when TLEs are also present on the locus. One could expect that SP5 competes with TLE, to decrease its presence on TCF7-bound loci, leaving the abundance of TCF7 binding unchanged. Yet, the authors also observe that the TCF7 association changes. What is the mechanism implied? Do they perhaps consider a TCF7L1 > TCF7 switch, and if so, what evidence exists for this?

      (6) Along the same line as above, I wonder whether beta-catenin binding is also enhanced at these sites? Any TCF/LEF would require beta-catenin for gene upregulation.

      (7) The authors write that "Small Tle peaks were identified at these WREs in WT cells, demonstrating that both repressive Tle and activating Tcf7 could be detected at active genes". However, ChIP-seq is a population assay, and it is possible - more plausible, in fact - that cells displaying TLE binding are not expressing the target genes.

    3. Reviewer #3 (Public review):

      Summary:

      This is a well-done study. It shows, in a comprehensive manner, that Sp5 and Sp8 play essential roles in maintaining the complicated positive feedback circuitry needed for specification of neuromesodermal competent progenitors (NMCs) in caudal mesodermal development in murine embryos.

      Strengths:

      The developmental genetics, transcriptomic, and genomic survey of TF binding are all satisfactory and make a compelling story. The CRISPR deletion of the Wnt3a downstream enhancer clearly demonstrates that it plays an important role in the positive feedback circuit.

      Weaknesses:

      My only concerns are some of the language surrounding the mechanistic interpretation of the Wnt3a downstream enhancer and the relationship between TCF and TLE binding.

    1. Reviewer #1 (Public review):

      Summary:

      Using a combination of EEG and behavioural measurements, the authors investigate the degree to which processing of spatially-overlapping targets (coherent motion) and distractors (affective images) are sampled rhythmically and how this affects behaviour. They found that both target processing (via measurement of amplitude modulations of SSVEP amplitude to target frequency) and distractor processing (via MVPA decoding accuracy of bandpassed EEG relative to distractor SSVEP frequency) displayed a pronounced rhythm at ~1Hz, time-locked to stimulus onset. Furthermore, the relative phase of this target/distractor sampling predicted accuracy of coherent motion detection across participants.

      Strengths:

      - The authors are addressing a very interesting question with respect to sampling of targets and distractors, using neurophysiological measurements to their advantage in order to parse out target and distractor processing.<br /> - The general EEG analysis pipeline is sensible and well-described.<br /> - The main result of rhythmic sampling of targets and distractors is striking and very clear even on a participant-level.<br /> - The authors have gone to quite a lot of effort to ensure the validity of their analyses, especially in the Supplementary Material.<br /> - It is incredibly striking how the phase of both target and distractor processing are so aligned across trials for a given participant. I would have thought that any endogenous fluctuation in attention or stimulus processing like that would not be so phase aligned. I know there is literature on phase resetting in this context, the results seem very strong here and it is worth noting. The authors have performed many analyses to rule out signal processing artifacts, e.g. the sideband and beating frequency analyses.

      Weaknesses:

      - In general, the representation of target and distractor processing is a bit of a reach. Target processing is represented by SSVEP amplitude, which is going to most likely be related to the contrast of the dots, as opposed to representing coherent motion energy which is the actual target. These may well be linked (e.g. greater attention to the coherent motion task might increase SSVEP amplitude) but I would call it a limitation of the interpretation. Decoding accuracy of emotional content makes sense as a measure of distractor processing, and the supplementary analysis comparing target SSVEP amplitude to distractor decoding accuracy is duly noted. Overall, this limitation remains and has been noted in the Limitations section.<br /> - Then comparing SSVEP amplitude to emotional category decoding accuracy feels a bit like comparing apples with oranges. They have different units and scales and reflect probably different neural processes. Is the result the authors find not a little surprising in this context? This relationship does predict performance and is thus intriguing, but I think this methodological aspect needs to be discussed further. For example, is the phase relationship with behaviour a result of a complex interaction between different levels of processing (fundamental contrast vs higher order emotional processing)? Again, this has been noted in the Limitations section, but changing the data to z-scores doesn't really take care of the conceptual issue, i.e. that on-screen contrast changes would necessarily be distracting during emotional category decision-making.

    2. Reviewer #2 (Public review):

      In this study, Xiong et al. investigate whether rhythmic sampling - a process typically observed in the attended processing of visual stimuli - extends to task-irrelevant distractors. By using EEG with frequency tagging and multivariate pattern analysis (MVPA), they aimed to characterize the temporal dynamics of both target and distractor processing and examine whether these processes oscillate in time. The central hypothesis is that target and distractor processing occur rhythmically, and the phase relationship between these rhythms correlates with behavioral performance.

      Major Strengths<br /> (1) The extension of rhythmic attentional sampling to include distractors is a novel and interesting question.<br /> (2) The decoding of emotional distractor content using MVPA from SSVEP signals is an elegant solution to the problem of assessing distractor engagement in the absence of direct behavioral measures.<br /> (3) The finding that relative phase (between 1 Hz target and distractor processes) predicts behavioral performance is compelling.

      Major Weaknesses and Limitations<br /> (1) The central claim of 1 Hz rhythmic sampling is insufficiently validated. The windowing procedure (0.5s windows with 0.25s step) inherently restricts frequency resolution, potentially biasing toward low-frequency components like 1 Hz. Testing different window durations or providing controls would significantly strengthen this claim.<br /> (2) The study lacks a baseline or control condition without distractors. This makes it difficult to determine whether the distractor-related decoding signals or the 1 Hz effect reflect genuine distractor processing or more general task dynamics.<br /> (3) The pairwise decoding accuracies for distractor categories hover close to chance (~55%), raising concerns about robustness. While statistically above chance, the small effect sizes need careful interpretation, particularly when linked to behavior.<br /> (4) Neither target nor distractor signal strength (SSVEP amplitude) correlates with behavioral accuracy. The study instead relies heavily on relative phase, which-while interesting-may benefit from additional converging evidence.<br /> (5) Phase analysis is performed between different types of signals hindering their interpretability (time-resolved SSVEP amplitude and time-resolved decoding accuracy).

      The authors largely achieved their stated goal of assessing rhythmic sampling of distractors. However, the conclusions drawn - particularly regarding the presence of 1 Hz rhythmicity - rest on analytical choices that should be scrutinized further. While the observed phase-performance relationship is interesting and potentially impactful, the lack of stronger and convergent evidence on the frequency component itself reduces confidence in the broader conclusions.

      If validated, the findings will advance our understanding of attentional dynamics and competition in complex visual environments. Demonstrating that ignored distractors can be rhythmically sampled at similar frequencies to targets has implications for models of attention and cognitive control. However, the methodological limitations currently constrain the paper's impact.

      Additional Considerations<br /> • The use of EEG-fMRI is mentioned but not leveraged. If BOLD data were collected, even exploratory fMRI analyses (e.g., distractor modulation in visual cortex) could provide valuable converging evidence.<br /> • In turn, removal of fMRI artifacts might introduce biases or alter the data. For instance, the authors might consider investigating potential fMRI artifact harmonics around 1 Hz to address concerns regarding induced spectral components.

      Comments on revisions:

      The authors have addressed my previous points, and the manuscript is substantially improved. The key methodological clarifications have been incorporated, and the interpretation of findings has been appropriately moderated. I have no further major concerns.

    1. Reviewer #1 (Public review):

      Summary:

      This work presents an interesting circuit dissection of the neural system allowing a ctenophore to keep its balance and orientation in its aquatic environment by using a fascinating structure called the statocyst. By combining serial-section electron microscopy with behavioral recordings, the authors found a population of neurons that exists as a syncytium and could associate these neurons with specific functions related to controlling the beating of cilia located in the statocyst. The type A ANN neurons participate in arresting cilia beating, and the type B ANN neurons participate in resuming cilia beating and increasing their beating frequency.

      Moreover, the authors found that bridge cells are connected with the ANN neurons, giving them the role of rhythmic modulators.

      From these observations, the authors conclude that the control is coordination instead of feedforward sensory-motor function, a hypothesis that had been put forth in the past but could not be validated until now. They also compare it to the circuitry implementing a similar behavior in a species that belongs to a different phylum, where the nervous system is thought to have evolved separately.

      Therefore, this work significantly advances our knowledge of the circuitry implementing the control of the cilia that participate in statocyst function, which ultimately allows the animal to correct its orientation. It represents an example of systems neuroscience explaining how the nervous system allows an animal to solve a specific problem and puts it in an evolutionary perspective, showing a convincing case of convergent evolution.

      Strengths:

      The evidence for how the circuitry is connected is convincing. Pictures of synapses showing the direction of connectivity are clear, and there are good reasons to believe that the diagram inferred is valid, even though we can always expect that some connections are missing.

      The evidence for how the cilia change their beating frequency is also convincing, and the paradigm and recording methods seem pretty robust.

      The authors achieved their aims, and the results support their conclusions. This work impacts its field by presenting a mechanism by which ctenophores correct their balance, which will provide a template for comparison with other sensory systems.

      Weaknesses:

      The evidence supporting the claim that the neural circuitry presented here controls the cilia beating is more correlational because it only relies on the fact that the location of the two types of ANN neurons coincides with the quadrants that are affected in the behavioral recordings. Discussing ways by which causality could be established might be helpful.

      The explanation of the relevance of this work could be improved. The conclusion that the work hints at coordination instead of feedforward sensory-motor control is explained over only a few lines. The authors could provide a more detailed explanation of how the two models compete (coordination vs feedforward sensory-motor control), and why choosing one option over the other could provide advantages in this context.

      Since the fact that the ANN neurons form a syncytium is an important finding of this study, it would be useful to have additional illustrations of it. For instance, pictures showing anastomosing membranes could typically be added in Figure 2.

      Also, to better establish the importance of the study, it could be useful to explain why the balancers' cilia spontaneously beat in the first place (instead of being static and just acting as stretch sensors).

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors describe the production of a high-resolution connectome for the statocyst of a ctenophore nervous system. This study is of particular interest because of the apparent independent evolution of the ctenophore nervous system. The statocyst is a component of the aboral organ, which is used by ctenophores to sense gravity and regulate the activity of the organ's balancer cilia. The EM reconstruction of the aboral organ was carried out on a five-day-old larva of the model ctenophore Mnemiopsis leidyi. To place their connectome data in a functional context, the authors used high-speed imaging of ciliary beating in immobilized larvae. With these data, the authors were able to model the circuitry used for gravity sensing in a ctenophore larva.

      Strengths:

      Because of it apparently being the sister phylum to all other metazoans, Ctenophora is a particularly important group for studies of metazoan evolution. Thus, this work has much to tell us about how animals evolved. Added to that is the apparent independent evolution of the ctenophore nervous system. This study provides the first high-resolution connectomic analysis of a portion of a ctenophore nervous system, extending previous studies of the ctenophore nervous system carried out by Sid Tamm. As such, it establishes the methodology for high-resolution analysis of the ctenophore nervous system. While the generation of a connectome is in and of itself an important accomplishment, the coupling of the connectome data with analysis of the beating frequency of balancer cell cilia provides a functional context for understanding how the organization of the neural circuitry in the aboral organ carries out gravity sensing. In addition, the authors identified a new type of syncytial neuron in Mnemiopsis. Interestingly, the authors show that the neural circuitry controlling cilia beating in Mnemiopsis shares features with the circuitry that controls ciliary movement in the annelid Platynereis, suggesting convergent evolution of this circuitry in the two organisms. The data in this paper are of high quality, and the analyses have been thoroughly and carefully done.

      Weaknesses:

      The paper has no obvious weaknesses.

    3. Reviewer #3 (Public review):

      Summary:

      It has been a long time since I enjoyed reviewing a paper as much as this one. In it, the authors generate an unprecedented view of the aboral organ of a 5-day-old ctenophore. They proceed to derive numerous insights by reconstructing the populations and connections of cell types, with up to 150 connections from the main Q1-4 neuron.

      Strengths:

      The strengths of the analysis are the sophisticated imaging methods used, the labor-intensive reconstruction of individual neurons and organelles, and especially the mapping of synapses. The synaptic connections to and from the main coordinating neurons allow the authors to create a polarized network diagram for these components of the aboral organ. These connections give insight into the potential functions of the major neurons. This also gives some unexpected results, particularly the lack of connections from the balancer system to the coordinating system.

      Weaknesses:

      There were no significant weaknesses in the paper - only a slate of interesting unanswered questions to motivate future studies.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript "Realistic coupling enables flexible macroscopic traveling waves in the mouse cortex" by Sun, Forger, and colleagues presents a novel computational framework for studying macroscopic traveling waves in the mouse cortex by integrating realistic brain connectivity data with large-scale neural simulations.

      The key contributions include:<br /> (1) developing an algorithm that combines spatial transcriptomic data (providing detailed neuron positions and molecular properties) with voxelized connectivity data from the Allen Brain Atlas to construct neuron-to-neuron connections across ~300,000 cortical neurons;<br /> (2) building a GPU-accelerated simulation platform capable of modeling this large-scale network with both excitatory and inhibitory Hodgkin-Huxley neurons;<br /> (3) extending phase-based analysis methods from 2D to 3D to quantify traveling wave activity in the realistic brain geometry; and<br /> (4) demonstrating that realistic Allen connectivity generates significantly higher levels of macroscopic traveling waves compared to simplified local or uniform connectivity patterns.

      The study reveals that wave activity depends non-monotonically on coupling strength and that slow oscillations (0.5-4 Hz) are particularly conducive to large-scale wave propagation, providing new insights into how anatomical connectivity enables flexible spatiotemporal dynamics across the cortex.

      Strengths:

      The authors leverage two existing dense datasets of spatial transcriptomic data and connection strength between pairwise voxels in the mouse cortex in a novel way, allowing for the computational model to capture molecular and functional properties of neurons as determined by their neurotransmitter profiles, rather than making arbitrary assignments of excitatory/inhibitory roles. Additionally, the author's expansion of 2D phase dynamics to 3D phase gradient analysis methods is important and can be widely applied to calcium imaging, LFP recordings, and likely other electrophysiological recordings.

      Weaknesses:

      Despite these important computational advancements, a few aspects of this model, particularly the inability to validate the model with experimental neural data, diminish my enthusiasm for this paper:

      (1) The model's Allen connectivity approach overlooks critical aspects of real cortical dynamics. Most importantly, it excludes subcortical structures, especially the thalamus, which drives cortical traveling waves through thalamocortical interactions. The authors' method of electrically stimulating all layer 4 neurons simultaneously to initiate waves is artificially crude and bears little resemblance to natural wave generation mechanisms.

      (2) The model handles voxel-to-voxel connections crudely when neurons have mixed excitatory/inhibitory properties and varying synaptic strengths. Real connectivity differs dramatically between neuron types (pyramidal cells vs. interneurons, across cortical layers), but the model only distinguishes excitatory and inhibitory neurons. Additionally, uniform synaptic weights ignore natural variations in connection strength based on neuron type, distance, and functional role. Integrating the updated thalamocortical dataset mentioned by the authors, even at regional resolution, would substantially improve the model.

      (3) While the authors bridge microscopic (single neuron) and mesoscopic (regional connectivity) data to study macroscopic (whole-cortex) waves, they don't integrate the distinct mechanisms operating at each scale. The framework demonstrates that realistic connectivity enables macroscopic waves but fails to connect how wave dynamics emerge and interact across spatial scales systematically.

      (4) Claims that Allen connectivity produces higher phase gradient directionality (PGD) than local connectivity appear limited to delta oscillations at very specific coupling strengths and applied currents. Few parameter combinations show significantly higher PGD for Allen connectivity, and these are generally low PGD values overall.

      (5) Broadly, it's unclear how this computational framework can study memory, learning, sleep, sensory processing, or disease states, given the disconnect between simulated intracellular voltages and the local field potentials or other electrophysiological measurements typically used to study cortical traveling waves. While computationally impressive, the practical research applications remain vague.

      (6) The paper needs a clearer explanation for why medium coupling (100%) eliminates waves in Allen connectivity (Figure 6) while stronger coupling (150%) restores them.

      (7) Does using a single connectivity parameter (ρ = 300) across all regions miss important regional differences in cortical connectivity density?

    2. Reviewer #2 (Public review):

      Summary:

      This work presents a spiking network model of traveling waves at the whole-brain scale in the mouse neocortex. The authors use data from the Allen Institute to reconstruct connectivity between different neocortical sites. They then quantify macroscopic traveling waves following stimulation of all layer 4 neurons in the neocortex.

      Strengths:

      Overall, the results are interesting and shed new light on the dynamic organization of activity across the neocortex of the mouse. The paper uses realistic neuron models specifically fit to intracellular recordings, demonstrating that traveling waves occur in the mouse neocortex with both realistic connectivity and realistic single-neuron dynamics. The paper is also well-written in general. For these reasons, the authors have generally achieved their aims in this work.

      Weaknesses:

      (1) Description of Algorithm 1:<br /> While the Methods section clearly explains the density parameter \rho, the statement on line 358 concerning the "ideal" average number of connections is a little unclear. The authors should explicitly clarify that \rho is a free parameter that can be adjusted to balance computational feasibility (for a given set of computational resources) and biological fidelity.

      (2) Lines 102-103:<br /> The \rho parameter used here results in approximately 300 connections per neuron on average. The authors should state clearly that the number of connections per cell is the key determinant of computational feasibility (cf. Morrison et al., Neural Computation, 2005). The authors should also review neuronal density and synaptic connectivity in the mouse neocortex and clearly reference density and connectivity in their model to the biological scales found in the mouse.

      (3) Line 131:<br /> From the plots in Figure 2, it is not clear that the stimulus response is necessarily a rhythmic oscillation, in the sense of a single narrowband frequency.

      (4) Line 217:<br /> The authors should clarify how these findings relate to the results from Mohajerani et al. (Nature Neuroscience, 2013) or differ from them.

      (5) Line 230:<br /> Because higher temporal frequency activity also tends to be more spatially localized, a correlation between PGD and temporal frequency could be an inherent consequence of this relationship, rather than a meaningful result.

      (6) Line 247-248:<br /> It is not clear that the algorithm for generating connections between neurons presented here really relates to those for community detection. For example, in the case of the Allen Institute data, the communities are essentially in the data already.

      (7) Line 284-285:<br /> The relationship between conduction delay is more direct than this sentence suggests. Conduction delay is fundamentally determined by the time required for action potentials to propagate along axons, making it intrinsically linked to anatomical distance.

      (8) Line 287-288:<br /> The authors suggest at this point that they do not have enough information to estimate time delays due to axonal conduction along white matter fibers. However, experimental data from white matter connections typically includes information about fiber length, which does enable estimating conduction delays. These estimations have been previously implemented for Allen Institute connectome data in the mouse (Choi and Mihalas, PLoS Comput Biology, 2019) and human connectome data (Budzinski et al., Physical Review Research, 2023).

      (9) Lines 294-295:<br /> Several methods do exist for detecting and characterizing wave dynamics in three-dimensional data (Budzinski et al., Physical Review Research, 2023).

    1. Reviewer #1 (Public review):

      Summary: This study investigated how visuospatial attention influences the way people build simplified mental representations to support planning and decision-making. Using computational modeling and virtual maze navigation, the authors examined whether spatial proximity and the spatial arrangement of obstacles determine which elements are included in participants' internal models of a task. The study developed and tested an extension of the value-guided construal (VGC) model that incorporates features of spatial attention for selecting simpler task mental representation.

      Strengths:

      (1) Original Perspective: The study introduces an explicit attentional component to established models of planning, offering an approach that bridges perception, attention, and decision-making.

      (2) Methodological Approach: The combination of computational modeling, behavioral data, and eye-tracking provides converging measures to assess the relationship between attention and planning representations.

      (3) Cross-validated data: The study relies on the analysis of three separate datasets, two already published and an additional novel one. This allows for cross-validation of the findings and enhances the robustness of the evidence.

      (4) Focus on Individual Differences: Reports of how individual variability in attentional "spillover" correlates with the sparsity of task representations and spatial proximity add depth to the analysis.

      Weaknesses:

      (1) Clarity of the VGC model and behavioral task: The exposition of the VGC model lacks sufficient detail for non-expert readers. It is not clear how this model infers which maze obstacles are relevant or irrelevant for planning, nor how the maze tasks specifically operationalize "planning" versus other cognitive processes.

      The method for classifying obstacles as relevant or irrelevant to the task and connecting metacognitive awareness (i.e., participants' reports of noticing obstacles) to attentional capture is not well justified. The rationale for why awareness serves as a valid attention proxy, as opposed to behavioral or neurophysiological markers, should be clearer.

      (2) Attention framework: The account of attention is largely limited to the "spotlight" model. When solving a maze, participants trace the correct trail, following it mentally with their overt or covert attention. In this perspective, relevant concepts are also rooted in attention literature pertaining to object-based attention using tasks like curve tracing (e.g., Pooresmaeili & Roelfsema, 2014) and to mental maze solving (e.g., Wong & Scholl, 2024), which may be highly relevant and add nuance to the current work. This view of attention may be more pertinent to the task than models of simultaneously tracking multiple objects cited here. Prior work (notably from the Roelfsema group) indicates that attentional engagement in curve-tracing tasks may be a continuous, bottom-up process that progressively spreads along a trajectory, in time and space, rather than a "spotlight" that simply travels along the path. The spread of attention depends on the spatial proximity to distractors - a point that could also be pertinent to the findings here.

      Moreover, the tracing of a "solution" trail in a maze may be spontaneous and not only a top-down voluntary operation (Wong & Scholl, 2024), a finding that requires a more careful framing of the link to conscious perception discussed in the manuscript.

      Conceptualizing attention as a spatial spotlight may therefore oversimplify its role in navigation and planning. Perhaps the observed attentional modulation reflects a perceptual stage of building the trail in the maze rather than a filter for a later representation for more efficient decision making and planning. A fuller discussion of whether the current model and data can distinguish between these frameworks would benefit readers.

      (3) Lateralization of attention: The analysis considers whether relevant information is distributed bilaterally or unilaterally across the visual display, but does not sufficiently address evidence for attentional asymmetries across the left and right visual fields due to hemispheric specialization (e.g., Bartolomeo & Seidel Malkinson, 2019). Whether effects differ for left versus right hemifield arrangements is not made explicit in the presented findings.

      (4) Individual differences: Individual differences in attentional modulation are a strength of the work, but similar analyses exploring individual variation in lateralization effects could provide further insight, and the lack of such analyses may mask important effects.

      (5) Distinction between overt and covert attention: The current report at times equates eye movement patterns with the locus of attention. However, attention can be covertly shifted without corresponding gaze changes (see, for example, Pooresmaeili & Roelfsema, 2014).

      The implications for interpreting the relationship between eye movement, memory, and attention in this setting are not fully addressed. The potential dynamics of attention along a maze trajectory and their impact on lateralization analysis would benefit from further clarification.

      Appraisal of Aims and Results:

      The study sets out to determine how spatial attention shapes the construction of task representations in planning contexts. The authors provide evidence that spatial proximity and arrangement influence which environmental features are incorporated into internal models used for navigation, and that accounting for these effects improves model predictions. There is clear documentation of individual variation, with some participants showing greater attentional spillover and more sparse awareness profiles.

      However, some conceptual and methodological aspects would be clearer with greater engagement with the broader literature on attention dynamics, a more explicit justification of operational choices, and more targeted lateralization analyses.

    2. Reviewer #2 (Public review):

      Summary:

      Castanheira et al. investigate the role of spatial attention for planning during three maze navigation experiments (one new experiment and two existing datasets). Effective planning in complex situations requires the construction of simplified representations of the task at hand. The authors find that these mental representations (as assessed by conscious awareness) of a given stimulus are influenced by (spatially) surrounding stimuli. Individual participants varied in the degree to which attention influenced their task representations, and this attentional effect correlated with the sparsity of representations (as measured by the range of awareness reports across all stimuli). Spatially grouping task-relevant information on either the left or right side of the maze led to mental representations more similar to optimal representations predicted by the value-guided construal (VGC) model - a normative model describing a theoretical approach to simplifying complex task information. Finally, the authors propose an update to this model, incorporating an attentional spotlight component; the revised descriptive model predicts empirical task representations better than the original (normative) VGC model.

      Strengths:

      The novelty of this study lies in the proposal and investigation of a cognitive mechanism through which a normative model like value-guided construal can enable human planning. After proposing attention as this mechanism, the authors make concrete hypotheses about mismatches between the VGC predictions and real human behavior, which are experimentally validated. Thus, not only does this study describe a possible mechanism for simplification of task information for planning, but the authors also propose a descriptive model, revising VGC to incorporate this attentional component.

      A strength of this paper is the variety of investigative approaches: analysis of existing data, novel experiment, and a computational approach to predict experimental findings from a theoretical model. Analyzing pre-existing datasets increases the size of the participant cohort and strengthens the authors' conclusions. Meanwhile, comparing the predictions of the existing normative model and the authors' own refined model is a clever approach to substantiate their claims. In addition, the authors describe several crucial controls, which are key to the interpretability of their results. In particular, the eye tracking results were critical.

      In summary, this paper constitutes an important step toward a more complete understanding of the human ability to plan.

      Weaknesses:

      (1) There is a critical conceptual gap in the study and its interpretation, mainly due to the reliance on a self-report metric of awareness (rather than an objective measure of behavioral performance).

      a. Awareness is tested by a 9-point self-report scale. It is currently unclear why awareness of task-irrelevant obstacles in this task would necessarily compromise optimal planning. There is no indication of whether self-reported awareness affects performance (e.g., navigation path distance, time to complete the maze, number of errors). Such behavioral evidence of planning would be more compelling.

      b. Relatedly, it would have been more convincing to have an objective measure of awareness, for instance, how the presence or absence of a "task-irrelevant" obstacle affects performance (e.g., change navigation path distance or time to complete the maze), or whether participants can accurately recall the location of obstacles.

      c. Consequently, I'm not sure that we can conclude that the spatial context does impact participants' ability to plan spatial navigation or to "incorporate task-relevant information into their construal". We know that the spatial context affects subjective (self-reported) awareness, but the authors do not present evidence that spatial context affects behavioral performance.

      d. Another concern that may complicate interpretation is the following: Figure 3c shows improved VGC model predictions (steeper slope) for mazes with greater lateralization. However, there are notable outliers in these plots, where a high lateralization index does not correspond to good model performance. There is currently no discussion/explanation of these cases.

      (2) I noticed an issue with clarity regarding task-relevance. It is currently not fully clear which obstacles are "task irrelevant". Also, the term is used inconsistently, sometimes conflating with "awareness". For example, in the "Attentional spotlight model of task representations" section, the authors state that "task-relevant information becomes less relevant when surrounded by task-irrelevant information". But they really mean that participants become less aware of those task-relevant obstacles. I assume task-relevance is an objective characteristic related to maze organization, not to a participant's construal. Indeed, the following paragraph provides evidence of model predictions of awareness.

      (3) The behavioral paradigm has some distinct disadvantages, and the validity of the task is not backed up by behavioral data.

      a. I understand the need for central fixation, but it also makes the task less naturalistic.

      b. The task with its top-down grid view does not seem to mimic real human navigation. Though this grid may be similar to mental maps we form for navigation, the sensory stimuli corresponding to possible paths and to spatial context during real-life navigation are very different.

      c. Behavioral performance is not reported, so it is unknown whether participants are able to properly complete the task. The task seems pretty difficult to navigate, especially when the obstacles disappear, and in combination with the central fixation.

      d. There is no discussion of whether/how this navigation task generalizes to other forms of planning.

    3. Reviewer #3 (Public review):

      Summary:

      The authors build on a recent computational model of planning, the "value-guided construal" framework by Ho et al. (2022), which proposes that people plan by constructing simple models of a task, such as by attending to a subset of obstacles in a maze. They analyze both published experimental data and new experimental data from a task in which participants report attention to objects in mazes. The authors find that attention to objects is affected by spatial proximity to other objects (i.e., attentional overspill) as well as whether relevant objects are lateralized to the same hemifield. To account for these results, the authors propose a "spotlight-VGC" model, in which, after calculating attention scores based on the original VGC model, attention to objects is enhanced based on distance. They find that this model better explains participant responses when objects are lateralized to different hemifields. These results demonstrate complex interactions between filtering of task-relevant information and more classical signatures of attentional selection.

      Strengths:

      (1) The paper builds on existing modeling work in a novel manner and integrates classic results on attention into the computational framework.

      (2) The authors report new and extensive analyses of existing data that shed light on additional sources of systematic variability in responses related to attentional spillover effects

      (3) They collect new data using new stimuli in the original paradigm that directly test predictions related to the lateralization of task-relevant information, including eye tracking data that allows them to control for possible confounds.

      (4) The extended model (spotlight-VGC) provides a formal account of these new results.

      Weaknesses:

      (1) The spotlight-VGC model has a free parameter - the "width" of the attentional spotlight. This seems to have been fixed to be 3 squares. It would be good if the authors could describe a more principled procedure for selecting the width so that others can use the model in other contexts.

      (2) Have the authors considered other ways in which factors such as attentional spillover and lateralization could be incorporated into the model? The spotlight-VGC model, as presented, involves first computing VGC predictions and only afterwards computing spillover. This seems psychologically implausible, since it supposes that the "optimal" representation is first formed and then it gets corrupted. Is there a way to integrate these biases directly into the VGC framework, perhaps as a prior on construals? The authors gesture towards this when they talk about "inductive biases", but this is not formalized.

      (3) Can the authors rule out that the lateralization effects are the result of memory biases since the main measure used is a self-report of attention?

    1. Reviewer #1 (Public review):

      This work provides a valuable toolkit for endogenous isolation of projection neuron subtypes. With further validation, it could present a solid method for low-input ribosome affinity purification using a ribosomal RNA (rRNA) antibody. The experimental evidence for the distinct ribosomal complexes is limited to this method and indirect support from complementary analyses of pre-existing data. However, with additional experimental data to support the specificity of ribosomal complex pulldown and confirmation of the putative ribosomal complex proteins of interest, the study would provide compelling evidence for translation regulation of neuronal development through compositional ribosome heterogeneity. This work would be of interest to neuroscientists, developmental biologists, and those studying translational networks underlying gene regulation.

      Strengths

      (1) This in vivo labeling of specific projection neurons and ribosomal rRNA affinity purification method accommodates a low input of <100K somata per replicate, which is useful for the study of neuronal subtypes with limited input. In principle, this set of techniques could work across different cell types with limited input, depending on the molecule used for cell type labeling.

      (2) The authors are also able to isolate endogenous neurons with minimal perturbation up to the point of collection, preserving the native state for the neuron in vivo as long as possible prior to processing.

      (3) This study identified over a dozen potential non-ribosomal proteins associated with SCPN ribosomal complexes, as well as a ribosomal protein enriched in CPN.

      Limitations

      (1) In this study, the authors address the advantages of their ribosomal complex isolation method in SCPN and CPN against RPL22-HA affinity purification. While this does show more pull-down of the ribosomal RNA by the Y10B rRNA antibody, the authors claim this method identifies cell-type-specific ribosomal complex proteins without demonstrating a positive control for the method's specificity. There are very limited experiments to truly delineate how "specific" this method is working and whether there could be contamination from other complexes bound by the antibody. I see this as the major limitation that should be addressed. To boost their claims of capturing cell-type-specific ribosomal complexes, the authors could consider applying their rRNA affinity purification pipeline to compare cell types with well-characterized ribosome-associated proteins, like mouse embryonic stem cells and HELA cells. The reviewer can completely appreciate the elegance in the neural characterization here, but it seems there needs to be a solid foothold on the specificity of the method, perhaps facilitated by cell types that can be more readily scaled up and tested.

      (2) The authors followed up on their differentially enriched ribosomal complex proteins by analyzing the ribosome association of these proteins in external datasets. While this analysis supports the ribosome-association of these proteins, there is limited experimental validation of physical association with the ribosome, much less any functional characterization. The reciprocal pulldown of PRKCE is promising; however, I would recommend orthogonal validation of several putative ribosomal complex proteins to increase confidence. Specifically, the authors could use sucrose gradient fractionation of SCPN and CPN, followed by a western blot to identify the putative interaction with the 80S monosome or polysomes. This would also provide evidence towards the pulldown capturing association with mature ribosome species, which is currently unclear. This experiment would provide substantial evidence for the direct association of these non-ribosomal proteins with subtype-specific ribosomal complexes.

      (3) The authors state interest in learning more about the differences underlying translational regulation of projection neuron development. This method only captures neuronal somata, which will only capture ribosomes in the main cell body. There are also ribosomes regulating local translation in the axons, which may also play a critical role in axonal circuit establishment and activity. These ribosomal complex interactions may also be rather transient and difficult to capture at only one developmental stage. Therefore, this method is currently limited to a single developmental snapshot of ribosomal complexes at P3 within the main cell body. It would be exciting to see the extended utility of this method to sample neurites and additional developmental stages to gain further resolution on the developmental translation regulation of these projection neurons.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors introduce a unique pipeline of techniques to identify cell-type-specific ribosomal complex compositions. With more validation, there is certainly potential for those studying neuronal translation to leverage this method in limited primary cells as an alternative to existing methods that do not rely on ribosomal protein tagging, such as ARC-MS (Bartsch et al., 2023), RAPIDASH (Susanto and Hung et al., 2024), and RAPPL (Nature Communications, 2025).

    2. Reviewer #2 (Public review):

      Summary:

      This study presents a sophisticated molecular dissection of ribosome-associated complexes (RCs) in two well-defined cortical projection neuron subtypes (ScPN and CPN) during early postnatal development. The authors develop and optimize an rRNA immunoprecipitation-mass spectrometry (rRNA IP-MS) workflow to recover RCs from FACS-purified, retrogradely labeled neurons, achieving remarkable subtype specificity and biochemical resolution. Through proteomic profiling, they reveal both shared and distinct ribosome-associated proteins between ScPN and CPN, with a focus on non-core RC components and their potential functional relevance. The work advances our understanding of cell-type-specific translation regulation, moving beyond the transcriptome to explore the proteome-level complexity in neuronal subtypes.

      Strengths:

      This work stands out for its technical sophistication and innovation. The authors combine retrograde labeling, FACS purification, and an optimized rRNA IP-MS approach (low input) to isolate ribosome-associated complexes from highly specific neuronal subtypes in vivo, a challenging issue that they execute with impressive rigor. The methodological pipeline is both elegant and well-controlled, yielding high-quality, reproducible data. The depth of proteomic coverage is remarkable, with nearly all known cytoplasmic ribosomal proteins identified, along with hundreds of ribosome-associated proteins (RAPs), including translation factors, chaperones, and RNA-binding proteins. The analysis not only reveals shared components between ScPN and CPN RCs but also uncovers subtype-specific differences in associated proteins.

      Particularly notable is the integration of this new proteomic dataset with previously published transcriptomic and ribosome footprinting data, which helps to validate the specificity and relevance of the findings. Overall, the clarity of the writing, the robustness of the data, and the transparency of the methods make this a strong and compelling contribution.

      Weaknesses:

      Despite the depth and high quality of the dataset, the study remains descriptive. While the identification of subtype-specific RC components is intriguing, the current version of the manuscript does not explore their functional roles or the biological consequences of their alterations. There is no perturbation, causal testing, in vitro or in vivo manipulation to demonstrate whether these proteins are necessary for ScPN or CPN identity, specific axonal targeting, metabolism, or synaptic function.

      One important point highlighted by the authors in the discussion - and critical for establishing the subtype specificity of the identified proteins - is that some ribosomal complexes may be specialized for specific developmental stages, rather than exclusively for the subtype-specific needs of projection neuron development. The work presented here provides a valuable starting point for further investigation into such RC specialization. However, it will be essential to determine to what extent these RCs exhibit true subtype specificity, independently of their temporal maturation context.

      As a result, key mechanistic insights remain a bit speculative. Although several of the identified proteins have known roles in processes like synaptogenesis or metabolism, their relevance to the specific neuronal subtypes under study is not experimentally addressed. That said, given its rich content and the comprehensive early postnatal dataset, the manuscript represents an extremely valuable resource for the community. While primarily exploratory, it lays a strong foundation for future functional studies aimed at uncovering the biological impact of the identified ribosomal complexes.

    1. Reviewer #1 (Public review):

      Summary:

      Mazer & Yovel 2025 dissect the inverse problem of how echolocators in groups manage to navigate their surroundings despite intense jamming using computational simulations.

      The authors show that despite the 'noisy' sensory environments that echolocating groups present, agents can still access some amount of echo-related information and use it to navigate their local environment. It is known that echolocating bats have strong small and large-scale spatial memory that plays an important role for individuals. The results from this paper also point to the potential importance of an even lower-level, short-term role of memory in the form of echo 'integration' across multiple calls, despite the unpredictability of echo detection in groups. The paper generates a useful basis to think about the mechanisms in echolocating groups for experimental investigations too.

      Strengths:

      * The paper builds on biologically well-motivated and parametrised 2D acoustics and sensory simulation setup to investigate the various key parameters of interest

      * The 'null-model' of echolocators not being able to tell apart objects & conspecifics while echolocating still shows agents succesfully emerge from groups - even though the probability of emergence drops severely in comparison to cognitively more 'capable' agents. This is nonetheless an important result showing the direction-of-arrival of a sound itself is the 'minimum' set of ingredients needed for echolocators navigating their environment.

      * The results generate an important basis in unraveling how agents may navigate in sensorially noisy environments with a lot of irrelevant and very few relevant cues.

      * The 2D simulation framework is simple and computationally tractable enough to perform multiple runs to investigate many variables - while also remaining true to the aim of the investigation.

      Weaknesses:

      * Authors have not yet provided convincing justification for the use of different echolocation phases during emergence and in cave behaviour. In the previous modelling paper cited for the details - here the bat-agents are performing a foraging task, and so the switch in echolocation phases is understandable. While flying with conspecifics, the lab's previous paper has shown what they call a 'clutter response' - but this is not necessarily the same as going into a 'buzz'-type call behaviour. As pointed out by another reviewer - the results of the simulations may hinge on the fact that bats are showing this echolocation phase-switching, and thus improving their echo-detection. This is not necessarily a major flaw - but something for readers to consider in light of the sparse experimental evidence at hand currently.

      * The decision to model direction-of-arrival with such high angular resolution (1-2 degrees) is not entirely justifiable - and the authors may wish to do simulation runs with lower angular resolution. Past experimental paradigms haven't really separated out target-strength as a confounding factor for angular resolution (e.g. see the cited Simmons et al. 1983 paper). Moreover, to this reviewer's reading of the cited paper - it is not entirely clear how this experiment provides source-data to support the DoA-SNR parametrisation in this manuscript. The cited paper has two array-configurations, both of which are measured to have similar received levels upon ensonification. A relationship between angular resolution and signal-to-noise ratio is understandable perhaps - and one can formulate such a relationship, but here the reviewer asks that the origin/justification be made clear. On an independent line, also see the recent contrasting results of Geberl, Kugler, Wiegrebe 2019 (Curr. Biol.) - who suggest even poorer angular resolution in echolocation.

    2. Reviewer #2 (Public review):

      This manuscript describes a detailed model for bats flying together through a fixed geometry. The model considers elements which are faithful to both bat biosonar production and reception and the acoustics governing how sound moves in air and interacts with obstacles. The model also incorporates behavioral patterns observed in bats, like one-dimensional feature following and temporal integration of cognitive maps. From a simulation study of the model and comparison of the results with the literature, the authors gain insight into how often bats may experience destructive interference of their acoustic signals and those of their peers, and how much such interference may actually negatively effect the groups' ability to navigate effectively. The authors use generalized linear models to test the significance of the effects they observe.

      The work relies on a thoughtful and detailed model which faithfully incorporates salient features, such as acoustic elements like the filter for a biological receiver and temporal aggregation as a kind of memory in the system. At the same time, the authors abstract features that are complicating without being expected to give additional insights, as can be seen in the choice of a two-dimensional rather than three-dimensional system. I thought that the level of abstraction in the model was perfect, enough to demonstrate their results without needless details. The results are compelling and interesting, and the authors do a great job discussing them in the context of the biological literature.

      With respect to the first version of the manuscript, the authors have remedied all my outstanding questions or concerns in the current version. The new supplementary figure 5 is especially helpful in understanding the geometry.

    1. Reviewer #1 (Public review):

      Summary:

      The authors provide a detailed ultrastructural analysis of the larval pharyngeal sensory organs, including the dorsal pharyngeal sensilla, dorsal pharyngeal organ, ventral pharyngeal sensilla, and posterior pharyngeal sensilla. Using electron microscopy and 3D reconstruction, Richter et al., present a comprehensive mapping and classification of pharyngeal sensory structures, defining mthe orphological type of pharyngeal sensilla based on ultrastructure and generating a neuron-to-sensillum map. These findings significantly advance our understanding of internal larval sensory systems and establish a robust framework for future functional studies in coordination with external sensory systems.

      Strengths:

      The application of high-resolution electron microscopy and 3D imaging analysis successfully overcomes technical challenges associated with visualizing deep internal structures. This enables an unprecedented level of anatomical detail of the larval pharyngeal sensory system. Thus, the study complements and completes existing maps of larval sensory circuits, contributing a comprehensive neuroanatomical characterization of larval sensory input pathways. These insights will inform future studies on larval behavior, sensory processing, and may also have applied relevance for insect control strategies.

      Weaknesses:

      While the manuscript is concise, clearly written, and methodologically rigorous, it primarily addresses a specialized readership with expertise in insect neuroanatomy.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript documents the structure of the pharyngeal nervous system of the Drosophila larva. The authors wanted to achieve a detailed ultrastructural reconstruction of the gustatory sensory organs in the Drosophila pharynx. Using serial EM and the associated bioinformatics tools, they have achieved their goal. The paper is written clearly and illustrated beautifully with 3D models and annotated sections. The data will significantly enrich the field of Drosophila neurobiology.

      Strengths:

      Given the dataset, the findings presented are solid and will be an important work of reference for the future.

      Weaknesses:

      Previous work, including EM, on the pharyngeal sensory organ is not sufficiently referenced and used for comparison with the data presented in this study.

    1. Reviewer #1 (Public review):

      Summary:

      This work provides important new evidence of the cognitive and neural mechanisms that give rise to feelings of shame and guilt, as well as their transformation into compensatory behavior. The authors use a well-designed interpersonal task to manipulate responsibility and harm, eliciting varying levels of shame and guilt in participants. The study combines behavioral, computational, and neuroimaging approaches to offer a comprehensive account of how these emotions are experienced and acted upon. Notably, the findings reveal distinct patterns in how harm and responsibility contribute to guilt and shame and how these factors are integrated into compensatory decision-making.

      Strengths:

      (1) Investigating both guilt and shame in a single experimental framework allows for a direct comparison of their behavioral and neural effects while minimizing confounds.

      (2) The study provides a novel contribution to the literature by exploring the neural bases underlying the conversion of shame into behavior.

      (3) The task is creative and ecologically valid, simulating a realistic social situation while retaining experimental control.

      (4) Computational modeling and fMRI analysis yield converging evidence for a quotient-based integration of harm and responsibility in guiding compensatory behavior.

      Weaknesses:

      (1) Post-experimental self-reports rely both on memory and on the understanding of the conceptual difference between the two emotions. Additionally, it is unclear whether the 16 scenarios were presented in random order; sequential presentation could have introduced contrast effects or demand characteristics.

      (2) In the neural analysis of emotion sensitivity, the authors identify brain regions correlated with responsibility-driven shame sensitivity and then use those brain regions as masks to test whether they were more involved in the responsibility-driven shame sensitivity than the other types of emotion sensitivity. I wonder if this is biasing the results. Would it be better to use a cross-validation approach? A similar issue might arise in "Activation analysis (neural basis of compensatory sensitivity)."

      Additional comments and questions:

      (1) Regarding the traits of guilt and shame, I appreciate using the scores from the subscales (evaluations and action tendencies) separately for the analyses (instead of a composite score). An issue with using the actions subscales when measuring guilt and shame proneness is that the behavioral tendencies for each emotion get conflated with their definitions, risking circularity. It is reassuring that the behavior evaluation subscale was significantly correlated with compensatory behavior (not only the action tendencies subscale). However, the absence of significant neural correlates for the behavior evaluation subscale raises questions: Do the authors have thoughts on why this might be the case, and any implications?

      (2) Regarding the computational model finding that participants seem to disregard self-interest, do the authors believe it may reflect the relatively small endowment at stake? Do the authors believe this behavior would persist if the stakes were higher? Additionally, might the type of harm inflicted (e.g., electric shock vs. less stigmatized/less ethically charged harm like placing a hand in ice-cold water) influence the weight of self-interest in decision-making?

      Taken together, the conclusions of the paper are well supported by the data. It would be valuable for future studies to validate these findings using alternative tasks or paradigms to ensure the robustness and generalizability of the observed behavioral and neural mechanisms.

    2. Reviewer #2 (Public review):

      Summary:

      The authors combined behavioral experiments, computational modeling, and functional magnetic resonance imaging (fMRI) to investigate the psychological and neural mechanisms underlying guilt, shame, and the altruistic behaviors driven by these emotions. The results revealed that guilt is more strongly associated with harm, whereas shame is more closely linked to responsibility. Compared to shame, guilt elicited a higher level of altruistic behavior. Computational modeling demonstrated how individuals integrate information about harm and responsibility. The fMRI findings identified a set of brain regions involved in representing harm and responsibility, transforming responsibility into feelings of shame, converting guilt and shame into altruistic actions, and mediating the effect of trait guilt on compensatory behavior.

      Strengths:

      This study offers a significant contribution to the literature on social emotions by moving beyond prior research that typically focused on isolated aspects of guilt and shame. The study presents a comprehensive examination of these emotions, encompassing their cognitive antecedents, affective experiences, behavioral consequences, trait-level characteristics, and neural correlates. The authors have introduced a novel experimental task that enables such a systematic investigation and holds strong potential for future research applications. The computational modeling procedures were implemented in accordance with current field standards. The findings are rich and offer meaningful theoretical insights. The manuscript is well written, and the results are clearly and logically presented.

      Weaknesses:

      In this study, participants' feelings of guilt and shame were assessed retrospectively, after they had completed all altruistic decision-making tasks. This reliance on memory-based self-reports may introduce recall bias, potentially compromising the accuracy of the emotion measurements.

      In many behavioral economic models, self-interest plays a central role in shaping individual decision-making, including moral decisions. However, the model comparison results in this study suggest that models without a self-interest component (such as Model 1.3) outperform those that incorporate it (such as Model 1.1 and Model 1.2). The authors have not provided a satisfactory explanation for this counterintuitive finding.

      The phrases "individuals integrate harm and responsibility in the form of a quotient" and "harm and responsibility are integrated in the form of a quotient" appear in the Abstract and Discussion sections. However, based on the results of the computational modeling, it is more accurate to state that "harm and the number of wrongdoers are integrated in the form of a quotient." The current phrasing misleadingly suggests that participants represent information as harm divided by responsibility, which does not align with the modeling results. This potentially confusing expression should be revised for clarity and accuracy.

      In the Discussion, the authors state: "Since no brain region associated with social cognition showed significant responses to harm or responsibility, it appears that the human brain encodes a unified measure integrating harm and responsibility (i.e., the quotient) rather than processing them as separate entities when both are relevant to subsequent emotional experience and decision-making." However, this interpretation overstates the implications of the null fMRI findings. The absence of significant activation in response to harm or responsibility does not necessarily imply that the brain does not represent these dimensions separately. Null results can arise from various factors, including limitations in the sensitivity of fMRI. It is possible that more fine-grained techniques, such as intracranial electrophysiological recordings, could reveal distinct neural representations of harm and responsibility. The interpretation of these null findings should be made with greater caution.

    3. Reviewer #3 (Public review):

      Summary:

      Zhu et al. set out to elucidate how the moral emotions of guilt and shame emerge from specific cognitive antecedents - harm and responsibility - and how these emotions subsequently drive compensatory behavior. Consistent with their prediction derived from functionalist theories of emotion, their behavioral findings indicate that guilt is more influenced by harm, whereas shame is more influenced by responsibility. In line with previous research, their results also demonstrate that guilt has a stronger facilitating effect on compensatory behavior than shame. Furthermore, computational modeling and neuroimaging results suggest that individuals integrate harm and responsibility information into a composite representation of the individual's share of the harm caused. Brain areas such as the striatum, insula, temporoparietal junction, lateral prefrontal cortex, and cingulate cortex were implicated in distinct stages of the processing of guilt and/or shame. In general, this work makes an important contribution to the field of moral emotions. Its impact could be further enhanced by clarifying methodological details, offering a more nuanced interpretation of the findings, and discussing their potential practical implications in greater depth.

      Strengths:

      First, this work conceptualizes guilt and shame as processes unfolding across distinct stages (cognitive appraisal, emotional experience, and behavioral response) and investigates the psychological and neural characteristics associated with their transitions from one stage to the next.

      Second, the well-designed experiment effectively manipulates harm and responsibility - two critical antecedents of guilt and shame.

      Third, the findings deepen our understanding of the mechanisms underlying guilt and shame beyond what has been established in previous research.

      Weaknesses:

      (1) Over the course of the task, participants may gradually become aware of their high error rate in the dot estimation task. This could lead them to discount their own judgments and become inclined to rely on the choices of other deciders. It is unclear whether participants in the experiment had the opportunity to observe or inquire about others' choices. This point is important, as the compensatory decision-making process may differ depending on whether choices are made independently or influenced by external input.

      (2) Given the inherent complexity of human decision-making, it is crucial to acknowledge that, although the authors compared eight candidate models, other plausible alternatives may exist. As such, caution is warranted when interpreting the computational modeling results.

      (3) I do not agree with the authors' claim that "computational modeling results indicated that individuals integrate harm and responsibility in the form of a quotient" (i.e., harm/responsibility). Rather, the findings appear to suggest that individuals may form a composite representation of the harm attributable to each individual (i.e., harm/the number of people involved). The explanation of the modeling results ought to be precise.

      (4) Many studies have reported positive associations between trait gratitude, social value orientation, and altruistic behavior. It would be helpful if the authors could provide an explanation about why this study failed to replicate these associations.

      (5) As the authors noted, guilt and shame are closely linked to various psychiatric disorders. It would be valuable to discuss whether this study has any implications for understanding or even informing the treatment of these disorders.

    1. Reviewer #1 (Public review):

      Summary

      The authors previously published a study of RGC boutons in the dLGN in developing wild-type mice and developing mutant mice with disrupted spontaneous activity. In the current manuscript, they have broken down their analysis of RGC boutons according to the number of Homer/Bassoon puncta associated with each vGlut3 cluster.

      The authors find that, in the first post-natal week, RGC boutons with multiple active zones (mAZs) are about a third as common as boutons with a single active zone (sAZ). The size of the vGluT2 cluster associated with each bouton was proportional to the number of active zones present in each bouton. Within the author's ability to estimate these values (n=3 per group, 95% of results expected to be within ~2.5 standard deviations), these results are consistent across groups: 1) dominant eye vs. non-dominant eye, 2) wild-type mice vs. mice with activity blocked, and at 3) ages P2, P4, and P8. The authors also found that mAZs and sAZs also have roughly the same number (about 1.5) of sAZs clustered around them (within 1.5 um).

      However, the authors do not interpret this consistency between groups as evidence that active zone clustering is not a specific marker or driver of activity dependent synaptic segregation. Rather, the authors perform a large number of tests for statistical significance and cite the presence or absence of statistical significance as evidence that "Eye-specific active zone clustering underlies synaptic competition in the developing visual system (title)". I don't believe this conclusion is supported by the evidence.

      Strengths

      The source dataset is high resolution data showing the colocalization of multiple synaptic proteins across development. Added to this data is labeling that distinguishes axons from the right eye from axons from the left eye. The first order analysis of this data showing changes in synapse density and in the occurrence of multi-active zone synapses is useful information about the development of an important model for activity dependent synaptic remodeling.

      Weaknesses

      In my previous review I argued that it was not possible to determine, from their analysis, whether the differences they were reporting between groups was important to the biology of the system. The authors have made some changes to their statistics (paired t-tests) and use some less derived measures of clustering. However, they still fail to present a meaningfully quantitative argument that the observed group differences are important. The authors base most of their claims on small differences between groups. There are two big problems with this practice. First, the differences between groups appear too small to be biologically important. Second, the differences between groups that are used as evidence for how the biology works are generally smaller than the precision of the author's sampling. That is, the differences are as likely to be false positives as true positives.

      (1) Effect size. The title claims: "Eye-specific active zone clustering underlies synaptic competition in the developing visual system". Such a claim might be supported if the authors found that mAZs are only found in dominant-eye RGCs and that eye-specific segregation doesn't begin until some threshold of mAZ frequency is reached. Instead, the behavior of mAZs is roughly the same across all conditions. For example, the clear trend in Figure 4C and D is that measures of clustering between mAZ and sAZ are as similar as could reasonably be expected by the experimental design. However, some of the comparisons of very similar values produced p-values < 0.05. The authors use this fact to argue that the negligible differences between mAZ and sAZs explain the development of the dramatic differences in the distribution of ipsilateral and contralateral RGCs.

      (2) Sample size. Performing a large number of significance tests and comparing p-values is not hypothesis testing and is not descriptive science. At best, with large sample sizes and controls for multiple tests, this approach could be considered exploratory. With n=3 for each group, many comparisons of many derived measures, among many groups, and no control for multiple testing, this approach constitutes a random result generator.

      The authors argue that n=3 is a large sample size for the type of high resolution / large volume data being used. It is true that many electron microscopy studies with n=1 are used to reveal the patterns of organization that are possible within an individual. However, such studies cannot control individual variation and are, therefore, not appropriate for identifying subtle differences between groups.<br /> In response to previous critiques along these lines, the authors argue they have dealt with this issue by limiting their analysis to within-individual paired comparisons. There are several problems with their thinking in this approach. The main problem is that they did not change the logic of their arguments, only which direction they pointed the t-tests. Instead of claiming that two groups are different because p < 0.05, they say that two groups are different because one produced p < 0.05 and the other produced p > 0.05. These arguments are not statistically valid or biologically meaningful.

      To the best of my understanding, the results are consistent with the following model:

      • RGCs form mAZs at large boutons (known)

      • About a quarter of week-one RGC boutons are mAZs (new observation)

      • Vesicle clustering is proportional to active zone number (~new observation)

      • RGC synapse density increases during the first post-week (known)

      • Blocking activity reduces synapse density (known)

      • Contralateral eye RGCs for more and larger synapses in the lateral dLGN (known)

      • With n=3 and effect sizes smaller than 1 standard deviation, a statistically significant result is about as likely to be a false positive as a true positive.

      • A true-positive statistically significant result does is not evidence of a meaningful deviation from a biological model.

      Providing plots that show the number of active zones present in boutons across these various conditions is useful. However, I could find no compelling deviation from the above default predictions that would influence how I see the role of mAZs in activity dependent eye-specific segregation.

      Below are critiques of most of the claims of the manuscript.

      Claim (abstract): individual retinogeniculate boutons begin forming multiple nearby presynaptic active zones during the first postnatal week.

      Confirmed by data.

      Claim (abstract): the dominant-eye forms more numerous mAZ contacts,

      Misleading: The dominant-eye (by definition) forms more contacts than the non-dominant eye. That includes mAZ.

      Claim (abstract): At the height of competition, the non-dominant-eye projection adds many single active zone (sAZ) synapses

      Weak: While the individual observation is strong, it is a surprising deviation based on a single n=3 experiment in a study that performed twelve such experiments (six ages, mutant/wildtype, sAZ/mAZ)

      Claim (abstract): Together, these findings reveal eye-specific differences in release site addition during synaptic competition in circuits essential for visual perception and behavior.

      False: This claim is unambiguously false. The above findings, even if true, do not argue for any functional significance to active zone clustering.

      Claim (line 84): "At the peak of synaptic competition midway through the first postnatal week, the non-dominant-eye formed numerous sAZ inputs, equalizing the global synapse density between the two eyes"

      Weak: At one of twelve measures (age, bouton type, genotype) performed with 3 mice each, one density measure was about twice as high as expected.

      Claim (line 172): "In WT mice, both mAZ (Fig. 3A, left) and sAZ (Fig. 3B, left) inputs showed significant eye-specific volume differences at each age."

      Questionable: There appears to be a trend, but the size and consistency is unclear.

      Claim (line 175): "the median VGluT2 cluster volume in dominant-eye mAZ inputs was 3.72 fold larger than that of non-dominant-eye inputs (Fig. 3A, left)."

      Cherry picking. Twelve differences were measured with an n of 3, 3 each time. The biggest difference of the group was cited. No analysis is provided for the range of uncertainty about this measure (2.5 standard deviations) as an individual sample or as one of twelve comparisons.

      Claim (line 174): "In the middle of eye-specific competition at P4 in WT mice, the median VGluT2 cluster volume in dominant-eye mAZ inputs was 3.72 fold larger than that of non-dominant-eye inputs (Fig. 3A, left). In contrast, β2KO mice showed a smaller 1.1 fold difference at the same age (Fig. 3A, right panel). For sAZ synapses at P4, the magnitudes of eye-specific differences in VGluT2 volume were smaller: 1.35-fold in WT (Fig. 3B, left) and 0.41-fold in β2KO mice (Fig. 3B, right). Thus, both mAZ and sAZ input size favors the dominant eye, with larger eye-specific differences seen in WT mice (see Table S3)."

      No way to judge the reliability of the analysis and trivial conclusion: To analyze effect size the authors choose the median value of three measures (whatever the middle value is). They then make four comparisons at the time point where they observed the biggest difference in favor of their hypothesis. There is no way to determine how much we should trust these numbers besides spending time with the mislabeled scatter plots. The authors then claim that this analysis provides evidence that there is a difference in vGluT2 cluster volume between dominant and non-dominant RGCs and that that difference is activity dependent. The conclusion that dominant axons have bigger boutons and that mutants that lack the property that would drive segregation would show less of a difference is very consistent with the literature. Moreover, there is no context provided about what 1.35 or 1.1 fold difference means for the biology of the system.

      Claim (189): "This shows that vesicle docking at release sites favors the dominant-eye as we previously reported but is similar for like eye type inputs regardless of AZ number."

      Contradicts core claim of manuscript: Consistent with previous literature, there is an activity dependent relative increase in vGlut2 clustering of dominant eye RGCs. The new information is that that activity dependence is more or less the same in sAZ and mAZ. The only plausible alternative is that vGlut2 scaling only increases in mAZ which would be consistent with the claims of their paper. That is not what they found. To the extent that the analysis presented in this manuscript tests a hypothesis, this is it. The claim of the title has been refuted by figure 3.

      Claim (line 235): "For the non-dominant eye projection, however, clustered mAZ inputs outnumbered clustered sAZ inputs at P4 (Fig. 4C, bottom left panel), the age when this eye adds sAZ synapses (Fig. 2C)."

      Misleading: The overwhelming trend across 24 comparisons is that the sAZ clustering looks like mAZ clustering. That is the objective and unambiguous result. Among these 24 underpowered tests (n=3), there were a few p-values < 0.05. The authors base their interpretation of cell behavior on these crossings.

      Claim (line 328): "The failure to add synapses reduced synaptic clustering and more inputs formed in isolation in the mutants compared to controls."

      Trivially true: Density was lower in mutant.

      Claim (line 332): "While our findings support a role for spontaneous retinal activity in presynaptic release site addition and clustering..."

      Not meaningfully supported by evidence: I could not find meaningful differences between WT and mutant beside the already known dramatic difference in synapse density.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Zhang and Speer examine changes in the spatial organization of synaptic proteins during eye specific segregation, a developmental period when axons from the two eyes initially mingle and gradually segregate into eye-specific regions of the dorsal lateral geniculate. The authors use STORM microscopy and immunostain presynaptic (VGluT2, Bassoon) and postsynaptic (Homer) proteins to identify synaptic release sites. Activity-dependent changes of this spatial organization are identified by comparing the β2KO mice to WT mice. They describe two types of synapses based on Bassoon clustering: the multiple active zone (mAZ) synapse and single active zone (sAZ) synapse. In this revision, the authors have added EM data to support the idea that mAZ synapses represent boutons with multiple release sites. They have also reanalyzed their data set with different statistical approaches.

      Strengths:

      The data presented is of good quality and provides an unprecedented view at high resolution of the presynaptic components of the retinogeniculate synapse during active developmental remodeling. This approach offers an advance to the previous mouse EM studies of this synapse because of the CTB label allows identification of the eye from which the presynaptic terminal arises.

      Weaknesses:

      While the interpretation of this data set is much more grounded in this second revised submission, some of the authors' conclusions/statements still lack convincing supporting evidence. In particular, the data does not support the title: "Eye-specific active zone clustering underlies synaptic competition in the developing visual system". The data show that there are fewer synapses made for both contra- and ipsi- inputs in the β2KO mice-- this fact alone can account for the differences in clustering. There is no evidence linking clustering to synaptic competition. Moreover, the findings of differences in AZ# or distance between AZs that the authors report are quite small and it is not clear whether they are functionally meaningful.

    3. Reviewer #3 (Public review):

      This study is a follow-up to a recent study of synaptic development based on a powerful data set that combines anterograde labeling, immunofluorescence labeling of synaptic proteins, and STORM imaging (Cell Reports, 2023). Specifically, they use anti-Vglut2 label to determine the size of the presynaptic structure (which they describe as the vesicle pool size), anti-Bassoon to label active zones with the resolution to count them, and anti-Homer to identify postsynaptic densities. Their previous study compared the detailed synaptic structure across the development of synapses made with contra-projecting vs. ipsi-projecting RGCs and compared this developmental profile with a mouse model with reduced retinal waves. In this study, they produce a new detailed analysis on the same data set in which they classify synapses into "multi-active zone" vs. "single-active zone" synapses and assess the number and spacing of these synapses. The authors use measurements to make conclusions about the role of retinal waves in the generation of same-eye synaptic clusters. The authors interpret these results as providing insight into how neural activity drives synapse maturation, the strength of their conclusions is not directly tested by their analysis.

      Strengths:

      This is a fantastic data set for describing the structural details of synapse development in a part of the brain undergoing activity-dependent synaptic rearrangements. The fact that they can differentiate the eye of origin is what makes this data set unique over previous structural work. The addition of example images from the EM dataset provides confidence in their categorization scheme.

      Weaknesses:

      Though the descriptions of single vs multi-active zone synapses are important and represent a significant advance, the authors continue to make unsupported conclusions regarding the biological processes driving these changes. Although this revision includes additional information about the populations tested and the tests conducted, the authors do not address the issue raised by previous reviews. Specifically, they provide no assessment of what effect size represents a biologically meaningful result. For example, a more appropriate title is "The distribution of eye-specific single vs multi-active zone is altered in mice with reduced spontaneous activity" rather than concluding that this difference in clustering is somehow related to synaptic competition. Of course, the authors are free to speculate, but many of the conclusions of the paper are not supported by their results.

    1. Reviewer #1 (Public review):

      Summary:

      This computational study investigates the physical mechanisms underlying enhancer-promoter (E-P) interactions across genomic distances in Drosophila chromosomes, motivated by a previously published study that revealed unexpectedly frequent long-range contacts challenging classical polymer models. The authors performed coarse-grained polymer simulations testing three chromatin organization models: ideal polymers, loop extrusion, and compartmental segregation, comparing their predictions to experimental Hi-C contact maps, mean E-P distances, and two-locus mean-squared displacement dynamics. They found that compartmental segregation best captured both the structural and dynamic features observed experimentally, while neither ideal chains nor loop extrusion alone could reproduce all experimental observables. The combination of compartmental segregation with loop extrusion further improved agreement with experimental data, suggesting these mechanisms might be involved in Drosophila chromatin organization.

      Strengths:

      The paper has two primary strengths:

      (1) The simulations are based on biologically interpretable mechanisms (compartmentalization and loop extrusion), which may facilitate making specific experimentally testable predictions.

      (2) The work uses a systematic approach to increase model complexity by directly fitting to data, first establishing that simple models fail to capture the data until arriving at a more complex model that does capture the data.

      Weaknesses:

      I have two major concerns (detailed below) and multiple minor concerns.

      Major concerns:

      (1) While the upside of the mechanistic simulations is that they are interpretable, the downside is that specific choices for the considered mechanism were made, and conclusions drawn from it are necessarily biased by the initial choices. In this paper, only two mechanisms were considered: loop extrusion and compartmentalization. Yet, it is not clear why these are the most likely underlying mechanisms that might determine the chromosome dynamics. Indeed, previous work (not cited in this paper) showed that Drosophila chromosome structure is not determined by loop extrusion: https://elifesciences.org/articles/94070.

      This should be acknowledged, and the main reasons for choosing these particular mechanisms should be laid out. The conclusions of the paper must then necessarily always be seen under the caveat that only these two mechanisms were considered.

      (2) Even within the framework of the approach, insufficient evidence is given to support the title of the paper "Criticality-driven enhancer-promoter dynamics in Drosophila chromosomes" for two reasons:

      (a) The fact that the best-fit parameters are near a coil-globule transition does not mean that the resulting dynamics are criticality-driven. To claim criticality, one would usually expect much more direct evidence, such as diverging correlation lengths. Furthermore, it would need to be shown that the key features of the dynamics (which should be defined, presumably the static and dynamic exponents) indeed depend on the parameters being at this transition. i.e., when tuning the simulations away from this parameter point, does the behaviour disappear? Only in this case can it be claimed that the behaviour is driven by this phenomenon.

      (b) The results section actually contains no mention of the coil-globule transition, and it is not clear in what way the parameters are close to this transition.

      Thus, three things are necessary:

      (i) How the parameters are close to the transition needs to be explained in detail.

      (ii) The divergence of observed dynamics whenever the parameters are tuned away from the transition needs to be demonstrated.

      (iii) Even if 1 and 2 are fulfilled, a more careful title should be chosen, such as "Polymer simulations near the coil-globule transition are consistent with enhancer-promoter dynamics in Drosophila chromosomes."

      Many of the results in the figures and results section are rather repetitive and could be compressed. The main result of Figure 1 - that the data are not described by an ideal chain - was already fully shown and established in the original paper from which the data are taken. Figure 2 is a negative result with near-identical panels to Figure 3. Figure 4B is hard to interpret.

      The paper makes no concrete suggestions for new experiments to test the hypotheses formulated. Since the paper can only claim that the simulations are consistent with the data, it would significantly strengthen the paper if testable predictions could be made.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, Ganesh and colleagues use experimental data from Hi-C and from live-cell imaging to evaluate different polymer models of 3D genome organization in Drosophila based on both structural and dynamic properties. The authors consider several leading hypotheses, which are examined sequentially in increasing level of complexity - from the minimal Rouse polymer, to a model combining sequence-specific compartmentalization and loop-extrusion without extrusion blockers. They conclude that the combination of both compartmentalization and loop-extrusion gives the best agreement with the data. Their analysis also leads to concrete predictions about the processivity of cohesin loop extrusion in Drosophila, and a conclusion that the compartmental interaction strength is poised near criticality in the coil-globule phase space.

      Strengths:

      There is considerable interest in the field in understanding the mechanisms responsible for the 3D spatial organization genome and the dynamic movement of the genome, which has major implications for our understanding of long-range transcriptional regulation and other genome behaviors. The live-cell experimental work on which this study draws highlights the limitations of existing models to explain even the dynamic behaviors observed in the data, further exciting interest in further exploration. Therefore, this paper seeks to address an important gap in the field. The work is written in a well-organized, well-illustrated fashion. The text and figures are nicely integrated, easy to read, and explain challenging concepts with elegance and brevity in a manner that will be accessible to a broad audience.

      Weaknesses:

      The validity and utility of these conclusions are, in my view, substantially undermined by what appears to be unappreciated peculiarities of the live-cell data set that was used to constrain the model. The live-cell data comes from embryos were edited in a way that intentionally substantively changed both the 3D genome structure and dynamics specifically at the loci which are imaged, a case which is not at all explained by any of the models suggested nor acknowledged in the current work, nor compatible with the Hi-C data that simultaneously used to explain these models. As these ignored synthetic alterations have been previously shown to be determinative of transcriptional activity, the relevance of the author's work to transcriptional control (a prime motivation in the introduction) is unclear.

      The agreement in 3D organization, as represented in chromosome-scale contact frequency heatmaps, is substantially less impressive than the agreement seen in prior work with similar models. This discrepancy appears to be due in part to the unappreciated effects of the mentioned in the previous limitation, as well as inappropriate choices in metrics used to evaluate agreement. It is also not particularly surprising that combining more models, with more free parameters, results in an improvement in the quality of fit.

      Some major results, including both theoretical works and experimental ones, are ignored, despite their relevance to the stated objective of the work. The current manuscript and analysis could be improved substantially by a consideration of these works.

      I describe these issues in more detail below.

      Major issues:

      (1) The genetic element "homie" is present in a subset of the data: The experimental data used in this analysis come from different fly lines, half of which have been edited explicitly to alter genome structure and consequent transcriptional behavior, yet the authors are trying to fit with a common model - a problem which substantially undermines the utility of the analysis.

      Specifically, the authors evaluate the various models/simulations by comparing them to Hi-C from wildtype Drosophila embryos on the chromosome scale and 3D distances and dynamics from live cell imaging in genetically edited embryos, to a series of models in turn. The exercise fatally overlooks a critical fact, (admittedly not easily noticed in the work from Bruckner et al), that the fly embryos used for nearly all their analyses contain not only fluorescent labels, but also contain two copies of a powerful genetic sequence, "homie", known for its ability to dramatically change the 3D organization and dynamics of the genome. Whether or not the fluorescent labels themselves used in the study further alter structure and dynamics is not entirely clear (and will require further work beyond the scope of either study), but at least these fluorescent labels aren't known to dramatically affect 3D structure and dynamics the way homie is. The critical problem is that adding or removing the "homie", as shown in a collection of prior works I describe below in more detail, dramatically affects structure, dynamics, and gene expression. Whether or not the genome contains two distal cis-linked copies of homie fundamentally changes genome structure and dynamics, so to use one dataset which has this edit (the live-cell data) and one dataset which lacks it (the Hi-C data) is, in some sense, to guarantee failure of any model to match all the data.

      If the authors had chosen instead to focus exclusively on the 'no homie' genetic lines in the Brukner data, they would have a much smaller dataset (just 2 distances), which would not cover all the length scales of interest, but it would at least be a dataset not known to be contradictory to the Hi-C. The two 'no homie' lines make much more plausible candidates for the sort of generalizable polymer dynamics these authors seek to explain, as will hopefully be made more clear by a brief review of what is known about homie. I next describe the published data that support these conclusions about how homie affects 3D genome spatial organization and dynamics:

      What is "homie" and how does it affect 3D genome distances, dynamics, and gene expression?

      The genetic element "homie" was named by James Jaynes' lab ( Fujioka...Jaynes 2009) in reference to its remarkable "homing" ability - a fascinating and still poorly understood biological observation that some genetic sequences from Drosophila, when cloned on plasmids and reintegrated into the genome with p-elements, had a remarkable propensity to re-integrate near their endogenous sequence, (Hama et al., 1990; Kassis, 2002; Taillebourg and Dura, 1999; Bender and Hudson, 2000; Fujioka...Jaynes 2009). By contrast, most genetic elements tend to incorporate at random across the genome in such assays (with some bias for active chromatin).

      The Jaynes lab subsequently showed that flies carrying two copies of homie, one integrated in cis, ~140 kb distal from the endogenous element, formed preferential cis contacts with one another. Indeed, if a promoter and reporter gene were included at this distal integration site, the reporter gene would activate gene expression in the pattern normally seen by the gene, even-skipped. The endogenous copy of homie marks one border of ~16 kb mini-TAD which contains the even-skipped gene, (eve), and its developmental enhancers, so this functional interaction provides further evidence of physical proximity (as was also shown by 3C by Jaynes (Fujioka..., Schedl, Jaynes 2016), and later with elegant live imaging, by Jaynes and Gregor (Chen 2018)).

      Critically, if either copy of homie is deleted or substantially mutated, the 3D proximity is lost (Fujioka 2016, Chen 2018, Bruckner 2023), and the expression of the transgene is dramatically reduced (at 58 kb) or lost. Given the author's motivation of understanding "E-P" interactions, the fact that the increased 3D proximity provided by homie is as essential for transcription as the promoter itself at the ~150 kb distance, underscores that these are not negligible changes.

      These effects can be seen by plotting the data from Bruckner 2023, which includes data from labels with separations of 58 kb and ~150 kb "no homie" as well as homie. Unfortunately, the authors don't plot this data in the manuscript in the comparison of 3D distances, though the two-point MSD can be seen in Figure S13C, and laudably, the data is made public in a well-annotated repository on Zenodo, noted in the study. Note that the distance data in Figure S13 were filtered to exclude the transcriptionally off state, and are thus not the quantity the current authors are interested in. If they plot the published data for no homie, they will see the clear effect on the average 3D distance, R(s), and a somewhat stronger effect on the contact frequency P(s), which causes significant deviation from the trend-line followed by the homie-containing data.

      (2) The agreement between the "best performing" simulations for all models and the Hi-C data is not on par with prior studies using similar approaches, apparently due to some erroneous choices in how the optimization is carried out:

      Hi-C-comparison

      The 'best fit' simulation Hi-C looks strikingly different from the biological data in all comparisons, with clearly lower agreement than other authors have shown using highly similar methods (e.g., Shi and Thirumalai 2023; Di Pierro et al. 2017; Nuebler et al. 2018; Esposito et al. 2022; Conte et al. 2022), among many others. I believe this results from a few issues with how the current authors select and evaluate the data in their work:

      (a) Most works have used Pearson's correlation rather than Spearman's correlation when comparing simulation and Hi-C contact frequencies. Pearson's correlation is more appropriate when we expect the values to be linearly related, which they should be in this case, as they are constructed indeed to be measuring the same thing (contact frequency), just derived from two different methods. Spearman's correlation would have been justifiable for comparing how transcription output correlates with contact frequency. This may fix the bafflingly low correlations reported at lower adhesion values in Figure S2C.

      (b) Choice of adhesion strengths - The Hi-C map comparison in Figure 3 strongly suggests that a much more striking visual agreement would have been achieved if much weaker (but still non-zero) homotypic monomer affinity had been selected. In the authors' simulation, the monomer state (A/B identity) strongly dominates polymer position, resulting in the visual appearance of an almost black-and-white checkerboard. The data, meanwhile, look like a weak checkerboard superimposed on the polymer.

      (c) A further confounding problem is the aforementioned issue that the Hi-C data don't come from the edited cell lines, and that the interaction of the two Homie sites is vastly stronger than the compartment interactions of this region of the genome.

      (3) Some important concepts from the field are ignored:

      The crumpled/fractal globule model is widely discussed in the literature (including the work containing the data used in this study) - its exclusion from this analysis thus appears as a substantial gap/oversight:

      A natural alternative to the much-discussed Rouse polymer model is the "crumpled polymer" (Grosberg et al. 1988; Grosberg 2016; Halverson et al. 2011; Halverson et al. 2011), also known as the "fractal globule" (Lieberman-Aiden et al. 2009; Mirny 2011; Dekker and Mirny 2016; Boettiger et al. 2016), much discussed for the way it captures the ⅓ scaling of R(s), found for much of the genome (or, equivalently, the -1 exponent of the probability of contact as a function of genome separation, P(s)). Given the 1/3rd scaling in the data, and the fact that the original authors highlighted the crumpled model in addition to the Rouse model, it seems that this comparison would be instructive and the lack of discussion an oversight. Moreover, while prior works (e.g., Buckner, Gregor, 2023) used some traditional simplifying assumptions to estimate the MSD and relaxation time scaling of this model, I believe a more rigorous analysis with explicit simulations (as in Figure 1 for the Rouse model) would be instructive for the crumpled polymer simulations. Note the crumpled globule is not necessarily the same as the globule in the coil-globule transition discussed here - it requires some assumptions about non-entanglement to stay trapped in the meta-stable state which has the 1/3rd R(s) scaling that is indicative of this model, and not the 1/2 exhibited by equilibrium globules (for s<< length of the polymer) and dilute polymers alike.

      While the fit in Figure 2 appears to get closer to the 1/3rd exponent (B= 0.32), this appears to be a largely coincidental allusion of agreement - the simulation data in truth shows a systematic deviation, returning to the 1/2 scaling for distances from 500 kb to whole chromosomes. This feature is not very evident as the authors restrict the analysis to only the few points available in the experimental data, though had they tested intervening distances I expect they would show log-log P(s) is nonlinear (non-powerlaw) for distances less than the typical loop length up to a few fold larger than the loop length, and thereafter returns to the scaling provided by the 'base' polymer behavior. This appears to be Rouse-like in these authors' model, with R(s) going like 1/2, even though the data are closer to 1/3rd, as indeed most published simulated P(s) curves based on loop extrusion - e.g., (Fudenberg et al. 2016; Nuebler et al. 2018). In this vein, it would be instructive to the readers if the authors would include additional predictions from the simulation on the plot that lie at genomic separation distances not tested in the data, to better appreciate the predictions.

      Minor issues

      (1) I think it is too misleading to only describe the experimental data from Brukner as "E-P" interactions from Drosophila. It is important to note somewhere that this is not an endogenous interaction with a functional role in Drosophila - it is a synthetic interaction between enhancers in the vicinity of the eve gene and a synthetic promoter placed at a variable distance away. The uniformity is elegant - (it is the same pair of elements being studied at all distances), but also provides limited scope for generalization as suggested by the current text. Moreover, the enhancers were not directly labeled; rather, the 3D position of nascent RNA transcribed from eve was tracked with an RNA-binding protein and used as a proxy for the 3D position of the enhancers. There is not an individual enhancer at the eve locus that interacts with the transgene, but rather a collection of enhancers is distributed at different positions throughout the entire TAD, which contains eve, and must form separate loops to reach eve. Indeed, it was previously reported that differences in the local position of these enhancers, relative to eve, affect their ability to interact with the distal reporter gene and the endogenous eve gene (Chen 2018). There is also reported competition between these enhancers and the distal gene, which further complicates the analysis (especially since the state of eve and of its enhancers varies among the different cells as a function of stripe position) - see Chen 2018. All of this is ignored in the current work, despite the assertion of the application to understanding E-P interaction. A detailed discussion of these issues is not necessary, but I fear that ignoring them entirely is to invite further confusion and error.

      (2) I believe this sentence is overstated, given available data: " TAD borders are characterized by transitions between epigenetic states rather than by preferentially-bound CTCF [4, 23, 24]." Indeed, this claim has been repeatedly made in the literature as cited here. However, other data clearly demonstrate a strong enrichment of CTCF at TAD borders (and at epigenetic borders, which in Drosophila have a high correspondence with TAD borders, as the authors have already appropriately noted). See, for example, Figure 4 of Sexton Cell 2012, and compare to Figure 2 of Dixon 2012. Of minor note, CTCF peaks co-occupied by the Zinc Finger TF CP190 are more likely to be TAD borders than CTCF alone. How big a species-specific difference this is remains unclear, as it appears some mammalian CTCF-marked TAD boundaries may be co-occupied by additional ZNFs. While plenty of Drosophila TAD boundaries indeed lack CTCF, many are marked by CTCF, this is enriched relative to what would be expected by chance (or relative to the alignment of other TFs, like Twist or Eve with TAD boundaries), and it has been shown that CTCF loss is sufficient to remove a subset of these, see for example Figure 5 of (Kaushal et al. 2021) (though it is possible, most will require mutation of the all the border-associated factors that collectively bind many of the borders, dCTCF, CP190, mod(mdg4) and others).

      (3) This assertion is overstated given available data: "Although TAD boundaries in Drosophila are often associated with insulator proteins [20], there is no direct evidence that these elements block LEFs in vivo. Therefore, we did not impose boundary constraints in our simulations; LEFs were allowed to move freely unless stalled by collisions with other LEFs, with the possibility of crossover.". Deletion of insulator in Drosophila that lie within a common epigenetic state leads to fusion of TADs (e.g., Mateo et al., 2019 - deletion of the CTCF-marked Fub insulator, in posterior tissues where both flanks of Fub are active; Kaushal, 2021, has examples as well). Loss of CTCF causes a small number of TADs to fuse as measured by Hi-C. This is far from 'direct evidence that insulators block LEFs' - as the authors have already noted, even the idea that cohesin extrudes loops in Drosophila in the first place is indeed controversial. However, LEF activity and stalling at insulators would provide a very natural explanation of why chromatin in a shared epigenetic state should form distinct TADs, and why these TADs should fuse upon insulator deletion. Justifying the lack of stalling sites based on empirical data is thus not very convincing to this reviewer. I believe it would be more apt to simply describe this as a simplifying assumption, rather than the above phrase, which may be misleading.

    1. Reviewer #1 (Public review):

      In this revised submission from Kapustin et al., the authors have made significant changes to the manuscript. Namely, the authors have addressed several of the major issues with the original submission, providing a more concrete link between fibronectin and the secretion of extracellular vesicles. Additionally, the authors have moderated some of the conclusions to better suit the rigor of the experimental results and limitations of their approach. Generally, the findings convey an interesting cell autonomous pathway in which smooth muscle cells sense fibronectin, which canonically is a proinflammatory substrate with activating properties in many tissues. Fibronectin-mediated integrin signaling stimulates secretion of small extracellular vesicles containing collagen VI which is deposited into the surrounding extracellular matrix. Collagen VI itself gleaned from extracellular vesicle secretion seems to further alter smooth muscle cell morphodynamics. For this later finding, much of the mechanism behind collagen VI vesicle loading and secretion has yet to be worked out. The authors provide evidence of extracellular vesicles containing collagen VI trapped in fibronectin in atherosclerotic plaques providing a nice validation of their in vitro findings in a diseased human cohort. Some limitations do still exist in the manuscript in its current form such as the assessment of the vesicle origins, contents and their association with the actin cytoskeleton; however, the rigor and execution are much improved from the preceding version. Overall, the pathobiology underlying vascular smooth muscle remodeling in disease states is a critical area of research that warrants further exploration.

    2. Reviewer #2 (Public review):

      The findings in the current manuscript are interesting and valuable contributions to the fields of vascular biology and extracellular vesicle-related mechanisms. They suggest a potential role for smooth muscle cell-derived extracellular vesicles in presenting Type VI collagen to cells to orchestrate their migration, with proposed relevance to aberrant smooth muscle cell movements in the progression of atherosclerotic lesions. A wide range of assays are utilized to test various aspects of this working model, with the resulting data being largely solid and supporting several of the interpretations articulated by the authors. The revised manuscript has adequately addressed key weaknesses.

      The authors present data suggesting a working model in which vascular smooth muscle cells (vSMCs) are stimulated by fibronectin (FN) to generate small extracellular vesicles (sEVs) that harbor Type VI Collagen (collagen VI). These collagen VI-associated sEVs are suggested to accumulate in the extracellular matrix (ECM) and influence cell migration and adhesion dynamics, potentially contributing to disease progression in atherosclerosis. Majors strengths of this manuscript include robust imaging data and the inclusion of human-derived samples in their analysis. The authors also make a reasonable attempt to provide data to support the potential existence of these mechanistic connections, though some minor questions remain regarding data interpretation. The authors largely achieved their aims of finding evidence consistent with their interpretations, and they have presented logical support for their conclusions while acknowledging important limitations and caveats to their current study. This work will likely have a sustained impact on the field of sEV biology and potential intersections with vascular biology, including their methodology e.g., imaging approaches. As biologists continue to explore the role of sEVs in physiological and pathological processes, this work raises an interesting aspect that must be considered more broadly, and that is, what is the role of sEVs that are ECM-associated and not necessarily internalized by recipient cells? Are there discrete mechanisms that govern their role in maintaining and/or disrupting normal physiological processes? This manuscript makes an attempt to address these unresolved yet critical questions.

    1. Reviewer #1 (Public review):

      Summary:

      This study examines how two common psychiatric treatments, antidepressant medication and cognitive distancing, influence baseline levels and moment-to-moment changes in happiness, confidence, and engagement during a reinforcement learning task. Combining a probabilistic selection task, trial-by-trial affect ratings, psychiatric questionnaires, and computational modeling, the authors demonstrate that each treatment has distinct effects on affective dynamics. Notably, the results highlight the key role of affective biases in how people with mental health conditions experience and update their feelings over time, and suggest that interventions like cognitive distancing and antidepressant medication may work, at least in part, by shifting these biases.

      Strengths:

      (1) Addresses an important question: how common psychiatric treatments impact affective biases, with potential translational relevance for understanding and improving mental health interventions.

      (2) The introduction is strong, clear, and accessible, making the study approachable for readers less familiar with the underlying literature.

      (3) Utilizes a large sample that is broadly representative of the UK population in terms of age and psychiatric symptom history, enhancing generalizability.

      (4) Employs a theory-driven computational modeling framework that links learning processes with subjective emotional experiences.

      (5) Uses cross-validation to support the robustness and generalizability of model comparisons and findings.

      Weaknesses:

      The authors acknowledge the limitations in the discussion section.

      Additional questions:

      (1) Group Balance & Screening for Medication Use: How many participants in the cognitive distancing and control groups were taking antidepressant medication? Why wasn't medication use included as part of the screening to ensure both groups had a similar number of participants taking medication?

      (2) Assessment of the Practice of Cognitive Distancing: Is there a direct or more objective method to evaluate whether participants actively engaged in cognitive distancing during the task, and to what extent? Currently, the study infers engagement indirectly through the outcomes, but does not include explicit measures of participants' use of the technique. Would including self-report check-ins throughout the task, asking participants whether they were actively engaging in cognitive distancing, have been useful? However, including frequent self-report check-ins would increase procedural differences between groups, making perhaps the tasks less comparable beyond the intended treatment manipulation. Maybe incorporating a question at the end of the task, asking how much they engaged in cognitive distancing, could offer a useful measure of subjective engagement without overly disrupting the task flow.

      Conclusion:

      This study advances our understanding of the mechanisms underlying mental health interventions. The combination of computational modeling with behavioral and affective data offers a powerful framework for understanding how treatments influence affective biases and dynamics. These findings are of broad interest across clinical and mental health sciences, cognitive and affective research, and applied translational fields focused on improving psychological well-being.

    2. Reviewer #2 (Public review):

      In this paper, Dercon and colleagues report on affective changes related to components of reinforcement learning and on the effects of brief training in psychological distancing and participants' self-reported antidepressant use. About 1,000 participants were assessed online, with half randomized to a brief training in psychological distancing with reminders to distance during the subsequent reinforcement learning (RL) task. Participants completed a battery of psychiatric questionnaires and answered questions about medication use, with about 14% of participants reporting current antidepressant use. All participants completed the RL task and rated their happiness, confidence, engagement, and (at the end of each block of trials) fatigue throughout the task. Computational models were used to estimate trial-by-trial values of expected value and prediction error and to assess the effects of these values on self-reported affect. Participants' affect ratings decreased over time, and participants with higher psychiatric symptoms (particularly anxiety/depressive symptoms) showed lower baseline affect and greater decreases in affect. Participants randomized to the distancing intervention and who reported antidepressant use differed in their affective ratings: distancing reduced the reductions in happiness over time, while antidepressant use was related to higher baseline happiness. Distancing also reduced the effects of trial-level expected value on happiness, while antidepressant use was related to a more enduring effect of trial-level values on happiness.

      Overall, this is an interesting paper with strong methods and an interesting approach. That psychiatric symptoms and cognitive distancing are related to affective ratings is not terribly novel; the relationship with antidepressant use is a bit more novel. The extension of the mood model to an RL task is a new contribution, as is the relationship of these effects with psychologically related manipulations.

      One major concern is the inference that can be drawn from the two "treatments": one is a brief instruction in a component of psychotherapy, and one is ongoing use of medication. The former is not a treatment in and of itself, but a (presumably) active ingredient of one. How to interpret antidepressant use as measured is unclear, e.g., are the residual symptoms in these participants an early indicator of treatment resistance? Are these participants with better access to health care? Are they receiving antidepressants for a mental health issue?

      There are some clarifications needed in the affect model as well.

    3. Reviewer #3 (Public review):

      Summary:

      The present manuscript investigates and proposes different mechanisms for the effects of two therapeutic approaches - cognitive distancing technique and use of antidepressants - on subjective ratings of happiness, confidence, and task engagement, and on the influence of such subjective experiences on choice behavior. Both approaches were found to link to changes in affective state dynamics in a choice task, specifically reduced drift (cognitive distancing) and increased baseline (antidepressant use). Results also suggest that cognitive distancing may reduce the weighing of recent expected values in the happiness model, while antidepressant use may reduce forgetting of choices and outcomes.

      Strengths:

      This is a timely topic and a significant contribution to ongoing efforts to improve our mechanistic understanding of psychopathology and devise effective novel interventions. The relevance of the manuscript's central question is clear, and the links to previous literature and the broader field of computational psychiatry are well established. The modelling approaches are thoughtful and rigorously tested, with appropriate model checks and persuasive evidence that modelling complements the theoretical argument and empirical findings.

      Weaknesses:

      Some vagueness and lack of clarity in theoretical mechanisms and interpretation of results leave outstanding questions regarding (a) the specific links drawn between affective biases, therapies aimed at mitigating them, and mental health function, and (b) the structure and assumptions of the modelling, and how they support the manuscript's central claims. Broadly, I do not fully understand the distinction between how choice behavior vs. affect are impacted separately or together by cognitive distancing. Clarification on this point is needed, possibly through a more explicit proposal of a mechanism (or several alternative mechanisms?) in the introduction and more explicit interpretation of the modelling results in the context of the cyclical choice-affect mechanism.

      (1) Theoretical framework and proposed mechanisms

      The link between affective biases and negative thinking patterns is a bit unclear. The authors seem to make a causal claim that "affective biases are precipitated and maintained by negative thinking patterns", but it is unclear what precisely these negative patterns are; earlier in the same paragraph, they state that affective biases "cause low mood" and possibly shift choices toward those that maintain low mood. So the directionality of the mechanism here is unclear - possibly explaining a bit more of the cyclic nature of this mechanism, and maybe clarifying what "negative thinking patterns" refer to will be helpful.

      More generally, this link between affect and choices, especially given the modelling results later on, should be clarified further. What is the mechanism by which these two impact each other? How do the models of choice and affect ratings in the RL task test this mechanism? I'm not quite sure the paper answers these questions clearly right now.

      The authors also seem to implicitly make the claim that symptoms of mental ill-health are at least in part related to choice behavior. I find this a persuasive claim generally; however, it is understated and undersupported in the introduction, to the point where a reader may need to rely on significant prior knowledge to understand why mitigating the impact of affective biases on choice behavior would make sense as the target of therapeutic interventions. This is a core tenet of the paper, and it would be beneficial to clarify this earlier on.

      It would be helpful to interpret a bit more clearly the findings from 3.4. on decreased drift in all three subjective assessments in the cognitive distancing group. What is the proposed mechanism for this? The discussion mentions that "attenuated declines [...] over time, [add] to our previously reported findings that this psychotherapeutic technique alters aspects of reward learning" - but this is vague and I do not understand, if an explanation for how this happens is offered, what that explanation is. Given the strong correlation of the drift with fatigue, is the explanation that cognitive distancing mitigates affect drift under fatigue? Or is this merely reporting the result without an interpretation around potential mechanisms?

      (Relatedly, aside from possibly explaining the drift parameter, do the fatigue ratings link with choice behavior in any way? Is it possible that the cognitive distancing was helping participants improve choices under fatigue?)

      (2) Task Structure and Modelling

      It is unclear what counted as a "rewarding" vs. "unrewarding" trial in the model. From my understanding of the task description, participants obtained positive or no reward (no losses), and verbal feedback, Correct/Incorrect. But given the probabilistic nature of the task, it follows that even some correct choices likely had unrewarding results. Was the verbal feedback still "Correct" in those cases, but with no points shown? I did not see any discussion on whether it is the #points earned or the verbal feedback that is considered a reward in the model. I am assuming the former, but based on previous literature, likely both play a role; so it would be interesting - and possibly necessary to strengthen the paper's argument - to see a model that assigns value to positive/negative feedback and earned points separately.

      From a theory perspective, it's interesting that the authors chose to assume separate learning rates for rewarding and non-rewarding trials. Why not, for example, separate reward sensitivity parameters? E.g., rather than a scaling parameter on the PE, a parameter modifying the r term inside the PE equation to, perhaps, assign different values to positive and zero points? (While I think overall the math works out similarly at the fitting time, this type of model should be less flexible on scaling the expected value and more flexible on scaling the actual #points / the subjective experience of the obtained verbal feedback, which seems more in line with the theoretical argument made in the introduction). The introduction explicitly states that negative biases "may cause low mood by making outcomes appear less rewarding" - which in modelling equations seems more likely to translate to different reward-perception biases, and not different learning rates. Alternatively, one might incorporate a perseveration parameter (e.g., similar to Collins et al. 2014) that would also accomplish a negative bias. Either of these two mechanisms seems perhaps worth testing out in a model - especially in a model that defines more clearly what rewarding vs. unrewarding may mean to the participant.

      If I understand correctly, the affect ratings models assume that the Q-value and the PE independently impact rating (so they have different weights, w2 and w3), but there is no parameter allowing for different impact for perceived rewarding and unrewarding outcomes? (I may be misreading equations 4-5, but if not, Q-value and PE impact the model via static rather than dynamic parameters.) Given the joint RL-affect fit, this seems to carry the assumption that any perceptual processing differences leading to different subjective perceptions of reward associated with each outcome only impact choice behavior, but not affect? (whereas affect is more broadly impacted, if I'm understanding this correctly, just by the magnitude of the values and PEs?) This is an interesting assumption, and the authors seem to have tested it a bit more in the Supplementary material, as shown in Figure S4. I'm wondering why this was excluded from the main text - it seems like the more flexible model found some potentially interesting differences which may be worth including, especially as they might shed additional insight into the influence of cognitive distancing on the cyclical choice-affect mechanisms proposed.

      Minor comments:

      If fatigue ratings were strongly associated with drift in the best-fitting model (as per page 13), I wonder if it would make sense to use those fatigue ratings as a proxy rather than allow the parameter to vary freely? (This does not in any way detract from the winning model's explanatory power, but if a parameter seems to be strongly explained by a variable we have empirical data for, it's not clear what extra benefit is earned by having that parameter in the model).

    1. Reviewer #1 (Public review):

      Allodynia is commonly measured in the pain field using von Frey filaments, which are applied to a body region (usually hindpaw if studying rodents) by a human. While humans perceive themselves as being objective, as the authors noted, humans are far from consistent when applying these filaments. Not to mention, odors from humans, including of different sexes, can influence animal behavior. There is thus a major unmet need for a way to automate this tedious von Frey testing process, and to remove humans from the experiment. I have no major scientific concerns with the study, as the authors did an outstanding job of comparing this automated system to human experimenters in a rigorous and quantitative manner. They even demonstrated that their automated system can be used in conjunction with in vivo imaging techniques.

      While it is somewhat unclear how easy and inexpensive this device will be, I anticipate everyone in the pain field will be clamoring to get their hands on a system like this. And given the mechanical nature of the device, and propensity for mice to urinate on things, I also wonder how frequently the device breaks/needs to be repaired. Perhaps some details regarding cost and reliability of the device would be helpful to include, as these are the two things that could make researchers hesitant to adopt immediately.

      The only major technical concern, which is easy to address, is whether the device generates ultrasounic sounds that rodents can hear when idle or operational, across the ultrasonic frequencies that are of biological relevance (20-110 kHz). These sounds are generally alarm vocalizations and can create stress in animals, and/or serve as cues of an impending stimulus (if indeed they are produced by the device).

      Comments on revisions:

      Was Fig. 1 updated with the new apparatus design? i.e. to address issue of animal waste affecting function over time?

      I have no further comments.

    2. Reviewer #2 (Public review):

      Summary:

      Burdge, Juhmka et al describe the development and validation of a new automated system for applying plantar stimuli in rodent somatosensory behavior tasks. This platform allows the users to run behavior experiments remotely, removing experimenter effects on animals and reducing variability in manual application of stimuli. The system integrates well with other automated analysis programs that the lab has developed, providing a complete package for standardizing behavior data collection and analysis. The authors present extensive validations of the system against manual stimulus application. Proof of concept studies also show how the system can be used to better understand the effect of experimenters on behavior and the effects of how stimuli are presented on the micro features of the animal withdrawal response.

      Strengths:

      If widely adopted, ARM has the potential to reduce variability in plantar behavior studies across and within labs and provide a means to standardize results. It provides a way to circumvent the confounds that humans bring into performing sensitive plantar behavior tests (e.g. experimenter odors, experince, physical abilities, variation in stimulus application, sex). Furthermore, it can be integrated with other automated platforms, allowing for quicker analysis and potentially automated stimulus delivery. The manuscript also presents some compelling evidence on the effects of stimulus application time and height on withdrawals, which can potentially help labs that are manually applying stimuli standardize applications. The system is well validated and the results are clear and convincingly presented. Claims are well supported by experimental evidence.

      Weaknesses:

      ARM seems like a fantastic system that could be widely adopted, a primary weakness is that it is not currently available to other labs. This will eventually be remedied as it is commercialised.

    3. Reviewer #3 (Public review):

      Summary:

      This report describes the development and initial applications of the ARM (Automated Reproducible Mechano-stimulator), a programmable tool that delivers various mechanical stimuli to a select target (most frequently, a rodent hindpaw). Comparisons to traditional testing methods (e.g., experimenter application of stimuli) reveal that the ARM reduces variability in the anatomical targeting, height, velocity, and total time of stimulus application. Given that the ARM can be controlled remotely, this device was also used to assess effects of experimenter presence on reflexive responses to mechanical stimulation. Although not every experimenter had notable sex-dependent effects on animal behavior, use of the ARM never had this effect (for obvious reasons!). Lastly, the ARM was used to stimulate rodent hindpaws while measuring neuronal activity in the basolateral nucleus of the amygdala (BLA), a brain region that is associated with the negative affect of pain. This device, and similar automated devices, will undoubtedly reduce experimenter-related variability in reflexive mechanical behavior tests; this may increase experimental reproducibility between laboratories who are able to invest in this type of technology.

      Strengths:

      Clear examples of variability in experimenter stimulus application are provided and then contrasted with uniform stimulus application that is inherent to the ARM.

      The ARM is able to quickly oscillate between delivery of various mechanical stimuli; this is advantageous for experimental efficiency.

      New additions to the ARM and PAWS platforms have been methodically tested to ensure reproducibility and reliability.

    1. Reviewer #1 (Public review):

      Summary:

      Ferreiro et al. present a method to simulate protein sequence evolution under a birth-death model where sequence evolution is guided by structural constraints on protein stability. The authors then use this model to explore the predictability of sequence evolution in several viral proteins. In principle, this work is of great interest to molecular evolution and phylodynamics, which has struggled to couple non-neutral models of sequence evolution to phylodynamic models like birth-death processes. Unfortunately, though, the model shows little improvement over neutral models in predicting protein sequence evolution, although it can predict protein stability better than models assuming neutral evolution. It appears that more work is needed to determine exactly what aspects of protein sequence evolution are predictable under such non-neutral phylogenetic models.

      Major concerns:

      (1) The authors have clarified the mapping between birth-death model parameters and fitness, but how fitness is modeled still appears somewhat problematic. The authors assume the death rate = 1 - birth rate. So a variant with a birth rate b = 1 would have a death rate d = 0 and so would be immortal and never die, which does not seem plausible. Also I'm not sure that this would "allow a constant global (birth-death) rate" as stated in line 172, as selection would still act to increase the population mean growth rate r = b - d. It seems more reasonable to assume that protein stability affects only either the birth or death rate and assume the other rate is constant, as in the Neher 2014 model.

      (2) It is difficult to evaluate the predictive performance of protein sequence evolution. This is in part due to the fact that performance is compared in terms of percent divergence, which is difficult to compare across viral proteins and datasets. Some protein sequences would be expected to diverge more because they are evolving over longer time scales, under higher substitution rates or under weaker purifying selection. It might therefore help to normalize the divergence between predicted and observed sequences by the expected or empirically observed amount of divergence seen over the timescale of prediction.

      (3) Predictability may also vary significantly across different sites in a protein. For example, mutations at many sites may have little impact on structural stability (in which case we would expect poor predictive performance) while even conservative changes at other sites may disrupt folding. I therefore feel that there remains much work to be done here in terms of figuring out where and when sequence evolution might be predictable under these types of models, and when sequence evolution might just be fundamentally unpredictable due to the high entropy of sequence space.

    2. Reviewer #2 (Public review):

      In this study, the authors aim to forecast the evolution of viral proteins by simulating sequence changes under a constraint of folding stability. The central idea is that proteins must retain a certain level of structural stability (quantified by folding free energy, ΔG) to remain functional, and that this constraint can shape and restrict the space of viable evolutionary trajectories. The authors integrate a birth-death population model with a structurally constrained substitution (SCS) model and apply this simulation framework to several viral proteins from HIV-1, SARS-CoV-2, and influenza.

      The motivation to incorporate biophysical constraints into evolutionary models is scientifically sound, and the general approach aligns with a growing interest in bridging molecular evolution and structural biology. The authors focus on proteins where immune pressure is limited and stability is likely to be a dominant constraint, which is conceptually appropriate. The method generates sequence variants that preserve folding stability, suggesting that stability-based filtering may capture certain evolutionary patterns.

      However, the study does not substantiate its central claim of forecasting. The model does not predict future sequences with measurable accuracy, nor does it reproduce observed evolutionary paths. Validation is limited to endpoint comparisons in a few datasets. While KL divergence is used to compare amino acid distributions, this analysis is only applied to a single protein (HIV-1 MA), and there is no assessment of mutation-level predictive accuracy or quantification of how well simulated sequences recapitulate real evolutionary paths. No comparison is made to real intermediate variants available from extensive viral sequencing datasets which gather thousands of sequences with detailed collection date annotation (SARS-CoV-2, Influenza, RSV).

      The selection of proteins is narrow and the rationale for including or excluding specific proteins is not clearly justified.

      The analyzed datasets are also under-characterized: we are not given insight into how variable the sequences are or how surprising the simulated sequences might be relative to natural diversity. Furthermore, the use of consensus sequences to represent timepoints is problematic, particularly in the context of viral evolution, where divergent subclades often coexist - a consensus sequence may not accurately reflect the underlying population structure.

      The fitness function used in the main simulations is based on absolute ΔG and rewards increased stability without testing whether real evolutionary trajectories tend to maintain, increase, or reduce folding stability over time for the particular systems (proteins) that are studied. While a variant of the model does attempt to center selection around empirical ΔG values, this more biologically plausible version is underutilized and not well validated.

      Ultimately, the model constrains sequence evolution to stability-compatible trajectories but does not forecast which of these trajectories are likely to occur. It is better understood as a filter of biophysically plausible outcomes than as a predictive tool. The distinction between constraint-based plausibility and sequence-level forecasting should be made clearer. Despite these limitations, the work may be of interest to researchers developing simulation frameworks or exploring the role of protein stability in viral evolution, and it raises interesting questions about how biophysical constraints shape sequence space over time.

    1. Reviewer #1 (Public review):

      Summary:

      This study is an evaluation of patient variants in the kidney isoform of AE1 linked to distal renal tubular acidosis. Drawing on observations in the mouse kidney, this study extends findings to autophagy pathways in a kidney epithelial cell line.

      Strengths:

      Experimental data are convincing and nicely done.

      Weaknesses:

      Some data are lacking or not explained clearly. Mutations are not consistently evaluated throughout the study, which makes it difficult to draw meaningful conclusions.

    2. Reviewer #2 (Public review):

      Context and significance:

      Distal renal tubular acidosis (dRTA) can be caused by mutations in a Cl-/HCO3- exchanger (kAE1) encoded by the SLC4A1 gene. The precise mechanisms underlying the pathogenesis of the disease due to these mutations are unclear, but it is thought that loss of the renal intercalated cells (ICs) that express kAE1 and/or aberrant autophagy pathway function in the remaining ICs may contribute to the disease. Understanding how mutations in SLC4A1 affect cell physiology and cells within the kidney, a major goal of this study, is an important first step to unraveling the pathophysiology of this complex heritable kidney disease.

      Summary:

      The authors identify a number of new mutations in the SLC4A1 gene in patients with diagnosed dRTA that they use for heterologous experiments in vitro. They also use a dRTA mouse model with a different SLC4A1 mutation for experiments in mouse kidneys. Contrary to previous work that speculated dRTA was caused mainly by trafficking defects of kAE1, the authors observe that their new mutants (with the exception of Y413H, which they only use in Figure 1) traffic and localize at least partly to the basolateral membrane of polarized heterologous mIMCD3 cells, an immortalized murine collecting duct cell line. They go on to show that the remaining mutants induce abnormalities in the expression of autophagy markers and increased numbers of autophagosomes, along with an alkalinized intracellular pH. They also reported that cells expressing the mutated kAE1 had increased mitochondrial content coupled with lower rates of ATP synthesis. The authors also observed a partial rescue of the effects of kAE1 variants through artificially acidifying the intracellular pH. Taken together, this suggests a mechanism for dRTA independent of impaired kAE1 trafficking and dependent on intracellular pH changes that future studies should explore.

      Strengths:

      The authors corroborate their findings in cell culture with a well-characterized dRTA KI mouse and provide convincing quantification of their images from the in vitro and mouse experiments.

      Weaknesses:

      The data largely support the claims as stated, with some minor suggestions for improving the clarity of the work. Some of the mutants induce different strengths of effects on autophagy and the various assays than others, and it is not clear why this is from the present manuscript, given that they propose pHi and the unifying mechanism.

    3. Reviewer #3 (Public review):

      Summary:

      The authors have identified novel dRTA causing SLC4A1 mutations and studied the resulting kAE1 proteins to determine how they cause dRTA. Based on a previous study on mice expressing the dRTA kAE1 R607H variant, the authors hypothesize that kAE1 variants cause an increase in intracellular pH, which disrupts autophagic and degradative flux pathways. The authors clone these new kAE1 variants and study their transport function and subcellular localization in mIMCD cells. The authors show increased abundance of LC3B II in mIMCD cells expressing some of the kAE1 variants, as well as reduced autophagic flux using eGFP-RFP-LC3. These data, as well as the abundance of autophagosomes, serve as the key evidence that these kAE1 mutants disrupt autophagy. Furthermore, the authors demonstrate that decreasing the intracellular pH abrogates the expression of LC3B II in mIMCD cells expressing mutant SLC4A1. Lastly, the authors argue that mitochondrial function, and specifically ATP synthesis, is suppressed in mIMCD cells expressing dRTA variants and that mitochondria are less abundant in AICs from the kidney of R607H kAE1 mice. While the manuscript does reveal some interesting new results about novel dRTA causing kAE1 mutations, the quality of the data to support the hypothesis that these mutations cause a reduction in autophagic flux can be improved. In particular, the precise method of how the western blots and the immunofluorescence data were quantified, with included controls, would enhance the quality of the data and offer more supportive evidence of the authors' conclusions.

      Strengths:

      The authors cloned novel dRTA causing kAE1 mutants into expression vectors to study the subcellular localization and transport properties of the variants. The immunofluorescence images are generally of high quality, and the authors do well to include multiple samples for all of their western blots.

      Weaknesses:

      Inconsistent results are reported for some of the variants. For example, R295H causes intracellular alkalinization but also has no effect on intracellular pH when measured by BCECF. The authors also appear to have performed these in vitro studies on mIMCD cells that were not polarized, and therefore, the localization of kAE1 to the basolateral membrane seems unlikely, based upon images included in the manuscript. Additionally, there is no in vivo work to demonstrate that these kAE1 variants alter intracellular pH, including the R607H mouse, which is available to the authors. The western blots are of varying quality, and it is often unclear which of the bands are being quantified. For example, LAMP1 is reported at 100kDa, the authors show three bands, and it is unclear which one(s) are used to quantify protein abundance. Strikingly, the authors report a nonsensical value for their quantification of LCRB II in Figure 2, where the ratio of LCRB II to total LCRB (I + II) is greater than one. The control experiments with starvation and bafilomyocin are not supportive and significantly reduce enthusiasm for the authors' findings regarding autophagy. There are labeling errors between the manuscript and the figures, which suggest a lack of vigilance in the drafting process.

    1. Reviewer #1 (Public review):

      Summary:

      Lysosomal damage is commonly found in many diseases including normal aging and age-related disease. However, the transcriptional programs activated by lysosomal damage has not been thoroughly characterized. This study aims to investigate lysosome damage-induced major transcriptional responses and the underlying signaling basis. The authors have convincingly shown that lysosomal damage activates a ubiquitination-dependent signaling axis involving TAB, TAK1, and IKK, which culminate in the activation of NF-kB and subsequent transcriptional upregulation of pro-inflammatory genes and pro-survival genes. Overall, the major aims of this study are successfully achieved.

      Strengths:

      This study is well-conceived and strictly executed, leading to clear and well-supported conclusions. Through unbiased transcriptomics and proteomics screens, the authors identifies NF-kB as a major transcriptional program activated upon lysosome damage. TAK1 activation by lysosome damage-induced ubiquitination is found to be essential for NF-kB activation and MAP kinase signaling. The transcriptional and proteomic changes are shown to be largely driven by TAK1 signaling. Finally, the TAK1-IKK signaling is shown to provide resistance to apoptosis during lysosomal damage response. The main signaling axis of this pathway has been convincingly demonstrated.

      Overall, this study identifies major transcriptional responses following lysosomal damage through unbiased approaches. It is important to consider the impact of these pathways in disease settings where lysosomal integrity is compromised.

      Comments on revisions:

      The authors have adequately addressed all previous comments. I have no further recommendations.

    2. Reviewer #2 (Public review):

      Summary:

      Endo et al. investigate the novel role of ubiquitin response upon lysosomal damage in activating cellular signaling for cell survival. The authors provide a comprehensive transcriptome and proteome analysis of aging-related cells experiencing lysosomal damage, identifying transcription factors involved in transcriptome and proteome remodeling with a focus on the NF-κB signaling pathway. They further characterized the K63-ubiquitin-TAB-TAK1-NF-κB signaling axis in controlling gene expression, inflammatory responses, and apoptotic processes.

      Strengths:

      In the aging-related model, the authors provide a comprehensive transcriptome and characterize the K63-ubiquitin-TAB-TAK1-NF-κB signaling axis. Through compelling experiments and advanced tools, they elucidate its critical role in controlling gene expression, inflammatory responses, and apoptotic processes.

      Weaknesses:

      The study lacks deeper connections with previous research, particularly:

      • The established role of TAB-TAK1 in AMPK activation during lysosomal damage

      • The potential significance of TBK1 in NF-κB signaling pathways

      Comments on revisions:

      The authors have successfully addressed all the raised questions and the manuscript is now significantly improved.

    3. Reviewer #3 (Public review):

      Summary:

      The response to lysosomal damage is a fast-moving and timely field. Besides repair and degradation pathways, increasing interest has been focusing on damaged-induced signaling. The authors conducted both transcriptomics and proteomics to characterize the cellular response to lysosomal damage. They identify a signaling pathway leading to activation of NFkappaB. Based on this and supported by Western blot and microscopy data, the authors nicely show that TAB2/3 and TAK1 are activated at damaged lysosomes and kick off the pathway to alter gene expression, which induces cytokines and protect from cell death. TAB2/3 activation is proposed to occur through K63 ubiquitin chain formation. Generally, this is a careful and well conducted study that nicely delineates the pathway under lysosomal stress. The "omics" data serves a valuable resource for the field. More work should be invested into how TAB2/3 are activated at the damaged lysosomes, also to increase novelty in light of previous reports.

      Strengths:

      Generally, this is a careful and well-conducted study that nicely delineates how the NFkB pathway is activated under lysosomal stress and modulates cell behavior. The "omics" data serves as a valuable resource for the field.

      Weaknesses:

      While activation of TAB2/3 by K63-linked Ub chains is convincing, more work needs to be done on how they are recruited by distinct damage types to probe relevance for different pathophysiological conditions."

      Comments on revisions:

      The authors have addressed much of my criticism. Specifically, they have put (with new experiments) the data on the TAB2/3-TAK1 pathway in perspective to the previously reported LUBAC-mediated activation of NFkB. They also addressed the question about the significance of K63-linked chains for TAB2/3 activation with new complementation experiments (a K63-specific NZF mutant failed to rescue).

      The third point (types of damage as triggers) raises more questions, though. The authors find that, in contrast to LLOMe, GPN or DC661-induced damage does not activate TAK1 (consistent with lower damage levels). However, the authors still observe K63 ubiquitylation. This goes along with their finding that TAB2 is recruited in the absence of any ubiquitylation (blocked by TAK-243). It argues that TAB2 is recruited by an unknown cue (that may be damage-specific) and then activated by K63. The authors need to clarify whether TAB2 is or is not recruited in the GPN/DC661 conditions (in which K63 occurs, but TAK1 is not activated). The point about the effects of other damage types was also raised by reviewer #1 and should be solved. The fact that TAB2 is recruited independently of K63 should also be visualized in the model. The manuscript will then be an important contribution to the field.

    1. Reviewer #1 (Public review):

      Summary:

      This study by Bushey et al., focuses on two newly released red-shifted anion-Channelrhodopsins (A1ACR and HfACR, referred as Ruby-ACRs) in Drosophila. Here, the authors use a combination of electrophysiology, calcium imaging, and behavioral analyses to demonstrate the advantages of Ruby-ACRs over previous optogenetic silencers like the green-shifted GtACR1 and the blue-shifted GtACR2: higher photocurrent, faster kinetics, and operating at a light spectrum range that prevents unwanted behavioral effects in the fly. The availability of these new red-shifted silencers constitutes a great addition to the Drosophila genetic toolkit.

      Strengths:

      (1) The authors generate both UAS and LexAop RubyACR reagents and test them in a variety of preparations (electrophysiological recordings, calcium imaging, different behavioral paradigms) that cover the breadth of the fly research environment.

      (2) The optical stimulation parameters are carefully measured and characterized. Especially impressive is that they managed to titrate over both wavelength and intensity across their various assays. This provides a comprehensive dataset to the community.

      (3) Tools are made available to the community through the stock center.

      Weaknesses:

      (1) The authors could better describe their construct and choice of parameters for the chosen construct. I am specifically wondering about the following points:

      a) Why use that particular backbone (not the most commonly used one across recent literature (pJFRC7 is more common).

      b) Why do the CsChrimson and GTACR1 have a Kir sequence in it, and why did the authors not put this in the RubyACRs? I would also prefer if authors don't refer to GtACR1 as GTACR-Kir in text (e.g., in line 72); instead, they should either refer to it as GtACR1 or GtACR1-kir-mVenus (based on the full genotype mentioned in their table at the end). Same for CsChrimson-kir. From what I understand, this is just a Kir trafficking sequence and not the entire Kir sequence, which can confuse the readers.

      c) Finally, I would also encourage authors to deposit plasmids on Addgene.

      (2) Figure 2 is interesting, but it is a bit unfortunate that there is a YFP baseline in most of the samples here (except Chrimson88; this should also be mentioned). I wonder how the YFP baseline impacts this data. Could the high intensity stimulation (red light) lead to bleaching of YFP or tdTomato that reduces the baseline in the green channel? All this also makes me wonder if authors tried tagging the RubyACRs with other fluorophores or non-fluorescent tags and how that impacted their functioning. Non-YFP-tagged versions would be more useful for applications involving GCaMP imaging.

      (3) Another point for Figure 2: Since RubyACRs seem to have such a broad activation range, I wonder how much the imaging light (920nm) impacts the baseline in these experiments. If there were plots without the red light stimulation and just varying imaging light intensity, that could be useful to the research community.

      (4) Also, for Figures 2C - D, in the methods authors indicate that the stimulation light intensities were progressively increased. Could this lead to desensitization of opsin? Wouldn't randomized intensities be a better way to do this? Perhaps it should be mentioned as a caveat.

      (5) In Figure 3E the bottom middle panel Vglut-Gal4,GtACR1 shows a major increase in walking at light onset. This seems very different than all other conditions, and I could not find any discussion of this. It would help if some explanation were provided for this.

    2. Reviewer #2 (Public review):

      Summary:

      Bushey et al. investigate the feasibility of using RubyACRs, specifically A1ACR1 and HfACR1 (described previously in (Govorunova et al., 2020)) as red-shifted inhibitory opsins in Drosophila melanogaster. The study employs a wide range of techniques to demonstrate successful neuronal inhibition. Electrophysiology experiments established that HfACR1 was most effective at hyperpolarizing cells, compared to A1ACR1 and GtACR1; both RubyACRs also appeared to be more effective than GtACR1 when the latter was actuated by green light. The authors further demonstrate successful neuronal inhibition using calcium imaging. RubyACRs were also shown to be useful in in vivo behavioral setups, specifically in spontaneous locomotion, associative learning, and courtship paradigms. In the courtship assay, in particular, the authors test multiple wavelengths of light at various light intensities, thus providing a rigorous analysis of the RubyACRs' efficacy under different light conditions.

      Strengths:

      The work provides the Drosophila field with a promising new tool. Red-shifted opsins are particularly advantageous in behavioral assays as red light penetrates the cuticle better than green or blue light, and provides less visual stimulation to the fly. It is also ideal for imaging as it allows for simultaneous optogenetic stimulation and GCamp imaging. A particular strength of the paper is the direct demonstration of RubyACR's capacity to inhibit neurons via electrophysiology and calcium imaging. Furthermore, inhibition effects in the three behavioral assays are strong and convincing. Given the apparent efficacy of RubyACRs and the advantages of a red-sensitive anion channelrhodopsin, this tool has great potential.

      Weaknesses:

      This work convincingly demonstrates the efficacy and potential utility of RubyACRs in Drosophila for imaging and behavior. However, the lethality/toxicity of RubyACRs is a relevant concern that should be addressed in-depth rather than glossed over, as it may pose a major obstacle to use. Discussing this issue in the present study will also help guide potential users and will set the stage for potential future efforts to ameliorate RubyACRs as optogenetic inhibitors.

      Major concerns:

      (1) Table 1 demonstrates high lethality in the RubyACRs compared to GtACR1. For example, in the MI04979-VGlut driver, GtACR1 expression resulted in 32.9% lethality, while HfACR1 expression resulted in 98.7% lethality. This lethality presents an obstacle to the potential adoption of this tool, and should be discussed in detail, rather than in passing. The authors might like to present "% lethality" rather than "% survived", as the former is more relevant when discussing the relative yield and health of flies that can be used in experiments.

      (2) In Figure 3D, driver>opsin flies have lower locomotion during the baseline (i.e., dark) phase, compared to opsin-only controls or GtACR1 flies. For some comparisons, flies are walking around 10-fold slower. For example, in the case of VGlut-GAL4>HfACR1, test flies are walking at <1 mm/s, while "Empty" test flies are walking at ~10 mm/s. This suggests that, for these drivers, neuronal and/or network function is affected. It opens the possibility that the lethality and locomotor defects could be due to cell-autonomous toxicity. We ask the authors to provide a description of this effect in the Results and to discuss it in the Discussion. Relatedly, VGlut-GAL4>GtACR1 flies in red light exhibit a locomotion increase, but this data is not mentioned in the text. The use of differing scales for the Y-axes in these panels can be confusing when the reader is expected to compare velocity across different panels. It would be best if the y-axes were set to a single range, e.g., 0 to 12 mm/s.

      (3) Lethality in broad drivers could result from cell-autonomous toxicity or neuronal dysfunction resulting from RubyACR expression. Ideally, the authors would address or even investigate the possible mechanisms of toxicity of the RubyACRs. Do cells and/or synapses expressing RubyACRs have normal morphology and function? For example, the authors could compare cell survival between flies with RubyACR expression and flies with a fluorescent protein with no opsin. The authors may also want to present lethality data for other, less broad drivers (such as MB320C, which was used for the associative memory assay) in order to demonstrate whether this problem is confined to broad drivers such as VGlut-GAL4, or if this is a problem with narrow drivers as well. If new experiments are not possible, these issues should at least be mentioned in the Discussion.

      Minor concerns

      (1) The specific method used for quantifying lethality is mentioned briefly in Table 1 but is not detailed in the Methods. The authors derive lethality by comparing to a sibling control group with either the opsin or the driver alone, but the opsin alone or driver alone may cause some lethality by themselves. We suggest the use of a viability assay, e.g. (Rockwell et al., 2019), which would give potential users a clearer picture of which developmental stage is most affected by opsin expression, as well as allow opsin-only, driver-only and experimental groups to be assessed separately (lethality would then be reported as the % of embryos that reach each stage of development, and eventually enclosure).

      (2) For the calcium imaging analysis in Figure 2, the U-shaped curve observed for mean ΔF/F0 for A1ACR1 and HfACR1 may not be due to actual desensitization for the channels, as the authors suggest (lines 143-145), but may be due simply to a shifting baseline. The authors use the 5-s period preceding stimulation onset as F0, but in some cases (e.g., HfACR1 at 250 uW/mm2), calcium fluorescence rises above baseline and remains high post-stimulation (ΔF/F0 of +0.5, which we observe is the same magnitude as the ΔF/F0 of -0.5 observed during inhibition), thus affecting the ΔF/F0 for subsequent trials. The authors should discuss this incomplete recovery in the text, or (if available) use a static channel instead to provide a stable F0 for calculating ΔF/F0. Alternatively, if the authors wish to rigorously test the hypothesis that high light intensity indeed results in desensitization of these channels, they may consider using different flies for each light intensity or longer inter-stimulus intervals.

      (3) For Figure 3C (Flybowl assay), the authors mention that "simply expressing the opsins decreased baseline locomotor activity compared to empty driver lines". However, the "Empty" controls in 3C appear to refer to opsin-only controls, not driver-only controls. The driver-only controls are not presented in the figure. The use of "empty" differs between the text and the figure, as the text refers to "empty" driver lines, while the figure uses "empty" to apparently refer to opsin-only controls. We recommend changing the terminology across all figures to be unambiguous, e.g., by using "opsin-only" or "driver-only" as opposed to the ambiguous "empty". In addition, the fact that opsin-only controls move less than driver-only controls may suggest some toxicity as a result of the opsin-only construct; this should be discussed further.

      (4) Figures 4 and 5 lack the reporting of driver-only controls.

      (5) Figures 3 and 4 lack positive controls; that is, the benchmarking of the efficacy of RubyACRs in their respective behavioral paradigms against a known inhibitor, e.g., GtACR1 with green light. To confirm that this GtACR1 transgene is functional, the authors could include GtACR1 with green light as a positive control for these two figures, as they have done for Figure 5-supplement 2 and 3.

      (6) Several citations are missing. In their discussion, the authors highlight that shorter wavelengths of light are more attenuated by tissue (lines 278-281); this should be accompanied by the relevant citations (Inagaki et al., 2014). Similarly, the claim that behavioral experiments exhibit greater sensitivity to shorter wavelengths should be substantiated (lines 281-283).

      References:

      Govorunova EG, Sineshchekov OA, Li H, Wang Y, Brown LS, Spudich JL. 2020. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption. Proc Natl Acad Sci U S A 117:22833-22840.

      Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, Tsien RY, Anderson DJ. 2014. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11:325-332.

      Rockwell AL, Beaver I, Hongay CF. 2019. A direct and simple method to assess Drosophila melanogaster's viability from embryo to adult. J Vis Exp e59996.

    3. Reviewer #3 (Public review):

      Summary:

      This study by Bushey et al. adapts and evaluates two newly developed red-shifted optogenetic inhibitors, A1ACR1 and HfACR1, collectively referred to as RubyACRs, for neuronal silencing in Drosophila melanogaster. Traditional optogenetic inhibitors such as GtACR1 and GtACR2 are activated by green (~515 nm) and blue (~470 nm) light, respectively, which poses several limitations in Drosophila. Specifically, shorter-wavelength light suffers from reduced tissue penetration and increased absorption, and is visible to flies, potentially confounding behavioral assays, particularly those involving visual processing. In contrast, RubyACRs are activated by red light (~610-660 nm), which penetrates the cuticle more effectively and thus can be more potent in manipulating fly behavior. In the current manuscript, the authors first demonstrate that both A1ACR1 and HfACR1 can be robustly expressed in fly neurons and are properly trafficked to the plasma membrane. Upon red-light stimulation, both opsins produce strong and sustained hyperpolarization in larval motor neurons, outperforming GtACR1 in both magnitude and temporal dynamics. Next, using two-photon calcium imaging in the visual system, the authors further demonstrate that activation of RubyACRs significantly reduces GCaMP6s signal, indicating that they can reliably inhibit neuronal activity. Importantly, unlike reported in some mammalian studies, RubyACRs do not appear to trigger paradoxical depolarization at axon terminals in the fly visual system, as no evidence of aberrant depolarization is observed in motion-detecting Mi1 neurons.

      In the second part of the manuscript, the authors characterize the effects of RubyACRs on fly behavior (walking, learning, and courtship song). Using the inhibition of genetically labelled neurons that regulate these behaviors, the authors demonstrate that stimulation of RubyACRs leads to potent suppression of locomotion, courtship song, or dopamine-dependent associative learning.

      Strengths:

      Altogether, the experiments conducted in this manuscript demonstrate that RubyACRs are powerful tools for optogenetic inhibition in Drosophila, with advantages in spectral compatibility, behavioral specificity, and potential applications in vivo two-photon calcium imaging.

      Weaknesses:

      The manuscript is strong, but it can be further improved with a few additional analyses and minor revisions. Especially, a more detailed evaluation of RubyACRs with two-photon excitation will help clarify to what extent these opsins can be simultaneously used together with green GECIs, such as GCaMPs.

    1. Reviewer #1 (Public review):

      Summary:

      Review of the manuscript titled " Mycobacterial Metallophosphatase MmpE acts as a nucleomodulin to regulate host gene expression and promotes intracellular survival".

      The study provides an insightful characterization of the mycobacterial secreted effector protein MmpE, which translocates to the host nucleus and exhibits phosphatase activity. The study characterizes the nuclear localization signal sequences and residues critical for the phosphatase activity, both of which are required for intracellular survival.

      Strengths:

      (1) The study addresses the role of nucleomodulins, an understudied aspect in mycobacterial infections.

      (2) The authors employ a combination of biochemical and computational analyses along with in vitro and in vivo validations to characterize the role of MmpE.

      Weaknesses:

      (1) While the study establishes that the phosphatase activity of MmpE operates independently of its NLS, there is a clear gap in understanding how this phosphatase activity supports mycobacterial infection. The investigation lacks experimental data on specific substrates of MmpE or pathways influenced by this virulence factor.

      (2) The study does not explore whether the phosphatase activity of MmpE is dependent on the NLS within macrophages, which would provide critical insights into its biological relevance in host cells. Conducting experiments with double knockout/mutant strains and comparing their intracellular survival with single mutants could elucidate these dependencies and further validate the significance of MmpE's dual functions.

      (3) The study does not provide direct experimental validation of the MmpE deletion on lysosomal trafficking of the bacteria.

      (4) The role of MmpE as a mycobacterial effector would be more relevant using virulent mycobacterial strains such as H37Rv.

    2. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors have characterized Rv2577 as a Fe3+/Zn2+ -dependent metallophosphatase and a nucleomodulin protein. The authors have also identified His348 and Asn359 as critical residues for Fe3+ coordination. The authors show that the proteins encode for two nuclease localization signals. Using C-terminal Flag expression constructs, the authors have shown that the MmpE protein is secretory. The authors have prepared genetic deletion strains and show that MmpE is essential for intracellular survival of M. bovis BCG in THP-1 macrophages, RAW264.7 macrophages, and a mouse model of infection. The authors have also performed RNA-seq analysis to compare the transcriptional profiles of macrophages infected with wild-type and MmpE mutant strains. The relative levels of ~ 175 transcripts were altered in MmpE mutant-infected macrophages and the majority of these were associated with various immune and inflammatory signalling pathways. Using these deletion strains, the authors proposed that MmpE inhibits inflammatory gene expression by binding to the promoter region of a vitamin D receptor. The authors also showed that MmpE arrests phagosome maturation by regulating the expression of several lysosome-associated genes such as TFEB, LAMP1, LAMP2, etc. These findings reveal a sophisticated mechanism by which a bacterial effector protein manipulates gene transcription and promotes intracellular survival.

      Strength:

      The authors have used a combination of cell biology, microbiology, and transcriptomics to elucidate the mechanisms by which Rv2577 contributes to intracellular survival.

      Weakness:

      The authors should thoroughly check the mice data and show individual replicate values in bar graphs.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript titled "Mycobacterial Metallophosphatase MmpE Acts as a Nucleomodulin to Regulate Host Gene Expression and Promote Intracellular Survival", Chen et al describe biochemical characterisation, localisation and potential functions of the gene using a genetic approach in M. bovis BCG and perform macrophage and mice infections to understand the roles of this potentially secreted protein in the host cell nucleus. The findings demonstrate the role of a secreted phosphatase of M. bovis BCG in shaping the transcriptional profile of infected macrophages, potentially through nuclear localisation and direct binding to transcriptional start sites, thereby regulating the inflammatory response to infection.

      Strengths:

      The authors demonstrate using a transient transfection method that MmpE when expressed as a GFP-tagged protein in HEK293T cells, exhibits nuclear localisation. The authors identify two NLS motifs that together are required for nuclear localisation of the protein. A deletion of the gene in M. bovis BCG results in poorer survival compared to the wild-type parent strain, which is also killed by macrophages. Relative to the WT strain-infected macrophages, macrophages infected with the ∆mmpE strain exhibited differential gene expression. Overexpression of the gene in HEK293T led to occupancy of the transcription start site of several genes, including the Vitamin D Receptor. Expression of VDR in THP1 macrophages was lower in the case of ∆mmpE infection compared to WT infection. This data supports the utility of the overexpression system in identifying potential target loci of MmpE using the HEK293T transfection model. The authors also demonstrate that the protein is a phosphatase, and the phosphatase activity of the protein is partially required for bacterial survival but not for the regulation of the VDR gene expression.

      Weaknesses:

      (1) While the motifs can most certainly behave as NLSs, the overexpression of a mycobacterial protein in HEK293T cells can also result in artefacts of nuclear localisation. This is not unprecedented. Therefore, to prove that the protein is indeed secreted from BCG, and is able to elicit transcriptional changes during infection, I recommend that the authors (i) establish that the protein is indeed secreted into the host cell nucleus, and (ii) the NLS mutation prevents its localisation to the nucleus without disrupting its secretion.

      Demonstration that the protein is secreted: Supplementary Figure 3 - Immunoblotting should be performed for a cytosolic protein, also to rule out detection of proteins from lysis of dead cells. Also, for detecting proteins in the secreted fraction, it would be better to use Sauton's media without detergent, and grow the cultures without agitation or with gentle agitation. The method used by the authors is not a recommended protocol for obtaining the secreted fraction of mycobacteria.

      Demonstration that the protein localises to the host cell nucleus upon infection: Perform an infection followed by immunofluorescence to demonstrate that the endogenous protein of BCG can translocate to the host cell nucleus. This should be done for an NLS1-2 mutant expressing cell also.

      (2) In the RNA-seq analysis, the directionality of change of each of the reported pathways is not apparent in the way the data have been presented. For example, are genes in the cytokine-cytokine receptor interaction or TNF signalling pathway expressed more, or less in the ∆mmpE strain?

      (3) Several of these pathways are affected as a result of infection, while others are not induced by BCG infection. For example, BCG infection does not, on its own, produce changes in IL1β levels. As the authors did not compare the uninfected macrophages as a control, it is difficult to interpret whether ∆mmpE induced higher expression than the WT strain, or simply did not induce a gene while the WT strain suppressed expression of a gene. This is particularly important because the strain is attenuated. Does the attenuation have anything to do with the ability of the protein to induce lysosomal pathway genes? Does induction of this pathway lead to attenuation of the strain? Similarly, for pathways that seem to be downregulated in the ∆mmpE strain compared to the WT strain, these might have been induced upon infection with the WT strain but not sufficiently by the ∆mmpE strain due to its attenuation/ lower bacterial burden.

      (4) CHIP-seq should be performed in THP1 macrophages, and not in HEK293T. Overexpression of a nuclear-localised protein in a non-relevant line is likely to lead to several transcriptional changes that do not inform us of the role of the gene as a transcriptional regulator during infection.

      (5) I would not expect to see such large inflammatory reactions persisting 56 days post-infection with M. bovis BCG. Is this something peculiar for an intratracheal infection with 1x107 bacilli? For images of animal tissue, the authors should provide images of the entire lung lobe with the zoomed-in image indicated as an inset.

      (6) For the qRT-PCR based validation, infections should be performed with the MmpE-complemented strain in the same experiments as those for the WT and ∆mmpE strain so that they can be on the same graph, in the main manuscript file. Supplementary Figure 4 has three complementary strains. Again, the absence of the uninfected, WT, and ∆mmpE infected condition makes interpretation of these data very difficult.

      (7) The abstract mentions that MmpE represses the PI3K-Akt-mTOR pathway, which arrests phagosome maturation. There is not enough data in this manuscript in support of this claim. Supplementary Figure 5 does provide qRT-PCR validation of genes of this pathway, but the data do not indicate that higher expression of these pathways, whether by VDR repression or otherwise, is driving the growth restriction of the ∆mmpE strain.

      (8) The relevance of the NLS and the phosphatase activity is not completely clear in the CFU assays and in the gene expression data. Firstly, there needs to be immunoblot data provided for the expression and secretion of the NLS-deficient and phosphatase mutants. Secondly, CFU data in Figure 3A, C, and E must consistently include both the WT and ∆mmpE strain.

    1. Reviewer #1 (Public review):

      From my reading, this study aimed to achieve two things:

      (1) A neurally-informed account of how Pieron's and Fechner's laws can apply in concert at distinct processing levels.

      (2) A comprehensive map in time and space of all neural events intervening between stimulus and response in an immediately-reported perceptual decision.

      I believe that the authors achieved the first point, mainly owing to a clever contrast comparison paradigm, but with good help also from a new topographic parsing algorithm they created. With this, they found that the time intervening between an early initial sensory evoked potential and an "N2" type process associated with launching the decision process varies inversely with contrast according to Pieron's law. Meanwhile, the interval from that second event up to a neural event peaking just before response increases with contrast, fitting Fechner's law, and a very nice finding is that a diffusion model whose drift rates are scaled by Fechner's law, fit to RT, predicts the observed proportion of correct responses very well. These are all strengths of the study.

      The second, generally stated aim above is, in the opinion of this reviewer, unconvincing and ill-defined. Presumably, the full sequence of neural events is massively task-dependent, and surely it is more in number than just three. Even the sensory evoked potential typically observed for average ERPs, even for passive viewing, would include a series of 3 or more components - C1, P1, N1, etc. So are some events being missed? Perhaps the authors are identifying key events that impressively demarcate Pieron- and Fechner-adherent sections of the RT, but they might want to temper the claim that they are finding ALL events. In addition, the propensity for topographic parsing algorithms to potentially lump together distinct processes that partially co-evolve should be acknowledged.

      To take a salient example, the last neural event seems to blend the centroparietal positivity with a more frontal midline negativity, some of which would capture the CNV and some motor-execution related components that are more tightly time-locked to, of course, the response. If the authors plotted the traditional single-electrode ERP at the frontal focus and centroparietal focus separately, they are likely to see very different dynamics and contrast- and SAT-dependency. What does this mean for the validity of the multivariate method? If two or more components are being lumped into one neural event, wouldn't it mean that properties of one (e.g., frontal burstiness at response) are being misattributed to the other (centroparietal signal that also peaks but less sharply at response)?

      Also related to the method, why must the neural events all be 50 ms wide, and what happens if that is changed? Is it realistic that these neural events would be the same duration on every trial, even if their duration was a free parameter? This might be reasonable for sensory and motor components, but unlikely for cognitive.

      In general, I wonder about the analytic advantage of the parsing method - the paradigm itself is so well-designed that the story may be clear from standard average event-related potential analysis, and this might sidestep the doubts around whether the algorithm is correctly parsing all neural events.

      In particular, would the authors consider plotting CPP waveforms in the traditional way, across contrast levels? The elegant design is such that the C1 component (which has similar topography) will show up negative and early, giving way to the CPP, and these two components will show opposite amplitude variations (not just temporal intervals as is this paper's main focus), because the brighter the two gratings, the stronger the aggregate early sensory response but the weaker the decision evidence due to Fechner. I believe this would provide a simple, helpful corroborating analysis to back up the main functional interpretation in the paper.

      The first component is picking up on the C1 component (which is negative for these stimulus locations), not a "P100". Please consult any visual evoked potential study (e.g., Luck, Hillyard, etc).

      It is unexpected that this does not vary in latency with contrast - see, for example. Gebodh et al (2017, Brain Topography) - and there is little discussion of this. Could it be that nonlinear trends were not correctly tested for?

      There is very little analysis or discussion of the second stage linked to attention orientation - what would the role of attention orientation be in this task? Is it spatial attention directed to the higher contrast grating (and if so, should it lateralise accordingly?), or is it more of an alerting function the authors have in mind here?

    2. Reviewer #2 (Public review):

      Summary:

      The authors decomposed response times into component processes and manipulated the duration of these processes in opposing directions by varying contrast, and overall by manipulating speed-accuracy tradeoffs. They identify different processes and their durations by identifying neural states in time and validate their functional significance by showing that their properties vary selectively as expected with the predicted effects of the contrast manipulation. They identify 3 processes: stimulus encoding, attention orienting, and decision. These map onto classical event-related potentials. The decision-making component matched the CPP, and its properties varied with contrast and predicted decision-accuracy, while also exhibiting a burst not characteristic of evidence accumulation.

      Strengths:

      The design of the experiment is remarkable and offers crucial insights. The analysis techniques are beyond state-of-the-art, and the analyses are well motivated and offer clear insights.

      Weaknesses:

      It is not clear to me that the results confirm that there are only 3 processes, since e.g., motor preparation and execution were not captured. While the authors discuss this, this is a clear weakness of the approach, as other components may also have been missed. It is also unclear to what extent topographies map onto processes, since, e.g., different combinations of sources can lead to the same scalp topography.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors examine the processing stages involved in perceptual decision-making using a new approach to analysing EEG data, combined with a critical stimulus manipulation. This new EEG analysis method enables single-trial estimates of the timing and amplitude of transient changes in EEG time-series, recurrent across trials in a behavioural task. The authors find evidence for three events between stimulus onset and the response in a two-spatial-interval visual discrimination task. By analysing the timing and amplitude of these events in relation to behaviour and the stimulus manipulation, the authors interpret these events as related to separable processing stages for stimulus encoding, attention orientation, and decision (deliberation). This is largely consistent with previous findings from both event-related potentials (across trials) and single-trial estimates using decoding techniques and neural network approaches.

      Strengths:

      This work is not only important for the conceptual advance, but also in promoting this new analysis technique, which will likely prove useful in future research. For the broader picture, this work is an excellent example of the utility of neural measures for mental chronometry.

      Weaknesses:

      The manuscript would benefit from some conceptual clarifications, which are important for readers to understand this manuscript as a stand-alone work. This includes clearer definitions of Piéron's and Fechner's laws, and a fuller description of the EEG analysis technique. The manuscript, broadly, but the introduction especially, may be improved by clearly delineating the multiple aims of this project: examining the processes for decision-making, obtaining single-trial estimates of meaningful EEG-events, and whether central parietal positivity reflects ramping activity or steps averaged across trials. A fuller discussion of the limitations of the work, in particular, the absence of motor contributions to reaction time, would also be appreciated.

      At times, the novelty of the work is perhaps overstated. Rather, readers may appreciate a more comprehensive discussion of the distinctions between the current work and previous techniques to gauge single-trial estimates of decision-related activity, as well as previous findings concerning distinct processing stages in decision-making. Moreover, a discussion of how the events described in this study might generalise to different decision-making tasks in different contexts (for example, in auditory perception, or even value-based decision-making) would also be appreciated.

  2. resu-bot-bucket.s3.ca-central-1.amazonaws.com resu-bot-bucket.s3.ca-central-1.amazonaws.com
    1. Implemented an LLM chatbox for AI-assisted debugging, fulfilling the client's priority and enhancing the tool's functionality.

      Quantify the enhancement. How much did functionality improve? Provide metrics if available.

    2. Collaborated within a 6-person team in an Agile environment, delivering project milestones over 5 sprints and incorporating peer feedback through 360-degree reviews.

      Specify the outcomes of the project milestones. What was the impact on the client or team?

    1. Reviewer #2 (Public review):

      McDougal et al. describe the surprising finding that IFIT1 proteins from different mammalian species inhibit replication of different viruses, indicating that evolution of IFIT1 across mammals has resulted in host species-specific antiviral specificity. Before this work, research into the antiviral activity and specificity of IFIT1 had mostly focused on the human ortholog, which was described to inhibit viruses including vesicular stomatitis virus (VSV) and Venezuelan equine encephalitis virus (VEEV) but not other viruses including Sindbis virus (SINV) and parainfluenza virus type 3 (PIV3). In the current work, the authors first perform evolutionary analyses on IFIT1 genes across a wide range of mammalian species and reveal that IFIT1 genes have evolved under positive selection in primates, bats, carnivores, and ungulates. Based on these data, they hypothesize that IFIT1 proteins from these diverse mammalian groups may show distinct antiviral specificities against a panel of viruses. By generating human cells that express IFIT1 proteins from different mammalian species, the authors show a wide range of antiviral activities of mammalian IFIT1s. Most strikingly, they find several IFIT1 proteins that have completely different antiviral specificities relative to human IFIT1, including IFIT1s that fail to inhibit VSV or VEEV, but strongly inhibit PIV3 or SINV. These results indicate that there is potential for IFIT1 to inhibit a much wider range of viruses than human IFIT1 inhibits. Electrophoretic mobility shift assays (EMSAs) suggest that some of these changes in antiviral specificity can be ascribed to changes in direct binding of viral RNAs. Interestingly, they also find that chimpanzee IFIT1, which is >98% identical to human IFIT1, fails to inhibit any tested virus. Replacing three residues from chimpanzee IFIT1 with those from human IFIT1, one of which has evolved under positive selection in primates, restores activity to chimpanzee IFIT1. Together, these data reveal a vast diversity of IFIT1 antiviral specificity encoded by mammals, consistent with an IFIT1-virus evolutionary "arms race".

      Overall, this is a very interesting and well-written manuscript that combines evolutionary and functional approaches to provide new insight into IFIT1 antiviral activity and species-specific antiviral immunity. The conclusion that IFIT1 genes in several mammalian lineages are evolving under positive selection is supported by the data. The virology results, which convincingly show that IFIT1s from different species have distinct antiviral specificity, are the most surprising and exciting part of the paper. As such, this paper will be interesting for researchers studying mechanisms of innate antiviral immunity, as well as those interested in species-specific antiviral immunity. Moreover, it may prompt others to test a wide range of orthologs of antiviral factors beyond those from humans or mice, which could further the concept of host-specific innate antiviral specificity. Additional areas for improvement, which are mostly to clarify the presentation of data and conclusions, are described below.

      Strengths:

      (1) This paper is a very strong demonstration of the concept that orthologous innate immune proteins can evolve distinct antiviral specificities. Specifically, the authors show that IFIT1 proteins from different mammalian species are able to inhibit replication of distinct groups of viruses, which is most clearly illustrated in Figure 4G. This is an unexpected finding, as the mechanism by which IFIT1 inhibits viral replication was assumed to be similar across orthologs. While the molecular basis for these differences remains unresolved, this is a clear indication that IFIT1 evolution functionally impacts host-specific antiviral immunity and that IFIT1 has the potential to inhibit a much wider range of viruses than previously described.

      (2) By revealing these differences in antiviral specificity across IFIT1 orthologs, the authors highlight the importance of sampling antiviral proteins from different mammalian species to understand what functions are conserved and what functions are lineage- or species-specific. These results might therefore prompt similar investigations with other antiviral proteins, which could reveal a previously undiscovered diversity of specificities for other antiviral immunity proteins.

      (3) The authors also surprisingly reveal that chimpanzee IFIT1 shows no antiviral activity against any tested virus despite only differing from human IFIT1 by eight amino acids. By mapping this loss of function to three residues on one helix of the protein, the authors shed new light on a region of the protein with no previously known function.

      (4) Combined with evolutionary analyses that indicate that IFIT1 genes are evolving under positive selection in several mammalian groups, these functional data indicate that IFIT1 is engaged in an evolutionary "arms race" with viruses, which results in distinct antiviral specificities of IFIT1 proteins from different species.

      Weaknesses:

      (1) Some of the results and discussion text could be more focused on the model of evolution-driven changes in IFIT1 specificity. In particular, the majority of the residue mapping is on the chimpanzee protein, where it would appear that this protein has lost all antiviral function, rather than changing its antiviral specificity like some other examples in this paper. As such, the connection between the functional mapping of individual residues with the positive selection analysis and changes in antiviral specificity is not present. While the model that changes in antiviral specificity have been positively selected for is intriguing, it is not supported by data in the paper.

      (2) The strength of the differences in antiviral specificity could be highlighted to a greater degree. Specifically, the text describes a number of interesting examples of differences in inhibition of viruses from Figure 3C and 3D, and 4C-F. The revised version has added some clarity by at least providing raw data for 3C and 3D for the reader to make their own comparisons, but it is still difficult to quickly assess which are the most interesting comparisons to make (e.g. for future mapping of residues that might be important).

    2. Reviewer #3 (Public review):

      Summary:

      This manuscript by McDougal et al, demonstrates species-specific activities of diverse IFIT1 orthologs, and seeks to utilize evolutionary analysis to identify key amino acids under positive selection that contribute to antiviral activity of this host factor. While the authors identify amino acid residues important for antiviral activity of some orthologs, and propose a possible mechanism by which these residues may function, the significance or applicability of these findings to other orthologs is unclear. However, the subject matter is of interest to the field, and these findings contribute to the body of knowledge regarding IFIT1 evolution.

      Strengths:

      Assessment of multiple IFIT1 orthologs shows the wide variety of antiviral activity of IFIT1, and identification of residues outside of the known RNA binding pocket in the protein suggests additional novel mechanisms which may regulate IFIT1 activity.

      Weaknesses:

      Given that there appears to be very little overlap observed in orthologs that inhibited the viruses tested, it's possible that other amino acids may be key drivers of antiviral activity in these other orthologs. Thus, it's difficult to conclude whether the findings that residues 362/4/6 are important for IFIT1 activity can be broadly applied to other orthologs, or whether these are unique to human and chimpanzee IFIT1. While additional molecular studies of the impact of these mutations on IFIT1 function (e.g. impact on IFIT complex formation) would lend further insight, as it stands, these findings demonstrate a role for these residues in IFIT1 activity.

    1. Reviewer #1 (Public review):

      Summary:

      Weiss and co-authors presented a versatile probabilistic tool. aTrack helps in classifying tracking behaviors and understanding important parameters for different types of single particle motion types: Brwonian, Confined, or Directed motion. The tool can be used further to analyze populations of tracks and the number of motion states. This is a stand-alone software package, making it user-friendly for a broad group of researchers.

      Strengths:

      This manuscript presents a novel method for trajectory analysis.

      Comments on revisions:

      The authors have strengthened and improved the manuscript

    2. Reviewer #2 (Public review):

      Summary:

      The authors present a software package "aTrack" for identification of motion types and parameter estimation in single-particle tracking data. The software is based on maximum likelihood estimation of the time-series data given an assumed motion model and likelihood ratio tests for model selection. They characterized the performance of the software mostly on simulated data and showed that it is applicable to experimental data.

      Strengths:

      Although many tools exist in the single-particle tracking (SPT) field, this particular software package is developed using an innovative mathematical model and a probabilistic approach. It also provide inference of motion types, which are critical to answer biological questions in SPT experiments.

      (1) The authors adopt a novel mathematical framework, which is unique in the SPT field.

      (2) The authors have validated their method extensively using simulated tracks and compared to existing methods when appropriate.

      (3) The code is freely available

      Weaknesses:

      The authors did a good job during the revision to address most of the weaknesses in my (as well as other reviewer's) first round of review. Nevertheless, the following issue is still not fully addressed.<br /> The hypothesis testing method presented here lacks rigorous statistical foundation. The authors improved on this point after the revision, but in their newly added SI section "Statistical Test", only justified their choices using "hand-waving" arguments (i.e. there is not a single reference to proper statistical textbooks or earlier works in this important section). I understand that sometimes mathematical rigor comes later after some intuition-guided choices of critical parameters seems to work, but nevertheless need to point it out as a remaining weakness.

    1. Reviewer #2 (Public review):

      Summary:

      The authors report that Arabidopsis short HSFs S-HsfA2, S-HsfA4c, and S-HsfB1 confer extreme heat. They have truncated DNA binding domains that bind to a new heat-regulated element. Considering Short HSFA2, the authors have highlighted the molecular mechanism by which S-HSFs prevent HSR hyperactivation via negative regulation of HSP17.6B. The S-HsfA2 protein binds to the DNA binding domain of HsfA2, thus preventing its binding to HSEs, eventually attenuating HsfA2-activated HSP17.6B promoter activity. This report adds insights to our understanding of heat tolerance and plant growth.

      Strengths:

      (1) The manuscript represents ample experiments to support the claim.

      (2) The manuscript covers a robust number of experiments and provides specific figures and graphs to in support of their claim.

      (3) The authors have chosen a topic to focus on stress tolerance in changing environment.

      (4) The authors have summarized the probable mechanism using a figure.

      Weaknesses:

      Quite minimum

      (1) Fig. 3. the EMSA to reveal binding

      (2) Alignment of supplementary figures 6-7.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Kolb and Hasseman et al. introduces a significantly improved GABA sensor, building on the pioneering work of the Janelia team. Given GABA's role as the main inhibitory neurotransmitter and the historical lack of effective optical tools for real-time in vivo GABA dynamics, this development is particularly impactful. The new sensor boasts an enhanced signal-to-noise ratio (SNR) and appropriate kinetics for detecting GABA dynamics in both in vitro and in vivo settings. The study is well-presented, with convincing and high-quality data, making this tool a valuable asset for future research into GABAergic signaling.

      Strengths:

      The core strength of this work lies in its significant advancement of GABA sensing technology. The authors have successfully developed a sensor with higher SNR and suitable kinetics, enabling the detection of GABA dynamics both in vitro and in vivo. This addresses a critical gap in neuroscience research, offering a much-needed optical tool for understanding the most important inhibitory neurotransmitter. The clear representation of the work and the convincing, high-quality data further bolster the manuscript's strengths, indicating the sensor's reliability and potential utility. We anticipate this tool will be invaluable for further investigation of GABAergic signaling.

      Weaknesses:

      Despite the notable progress, a key limitation is that the current generation of GABA sensors, including the one presented here, still exhibits inferior performance compared to state-of-the-art glutamate sensors. While this work is a substantial leap forward, it highlights that further improvements in GABA sensors would still be highly beneficial for the field to match the capabilities seen with glutamate sensors.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript presents the development and characterization of iGABASnFR2, a genetically encoded GABA sensor with markedly improved performance over its predecessor, iGABASnFR1. The study is comprehensive and methodologically rigorous, integrating high-throughput mutagenesis, functional screening, structural analysis, biophysical characterization, and in vivo validation. iGABASnFR2 represents a significant advancement in GABA sensor engineering and application in imaging GABA transmission in slice and in vivo. This is a timely and technically strong contribution to the molecular toolkit for neuroscience.

      Strengths:

      The authors apply a well-established sensor optimization pipeline and iterative engineering strategy from single-site to combinatorial mutants to engineer iGABASnFR2. The development of both positive and negative going variants (iGABASnFR2 and iGABASnFR2n) offers experimental flexibility. The structure and interpretation of the key mutations provide insights into the working mechanism of the sensor, which also suggest optimization strategies. Although individual improvements in intrinsic properties are incremental, their combined effect yields clear functional gains, enabling detection of direction-selective GABA release in the retina and volume-transmitted GABA signaling in somatosensory cortex, which were challenging or missed using iGABASnFR1.

      Weaknesses:

      With minor revisions and clarifications, especially regarding membrane trafficking, this manuscript will be a valuable resource for probing inhibitory transmission.

    1. Reviewer #4 (Public review):

      Summary:

      Several behavioral experiments and one TMS experiment were performed to examine adaptation to room reverberation for speech intelligibility in noise. This is an important topic that has been extensively studied by several groups over the years. And the study is unique in that it examines one candidate brain area, dlPFC, potentially involved in this learning, and finds that disrupting this area by TMS results in a reduction in the learning. The behavioral conditions are in many ways similar to previous studies. However, they find results that do not match previous results (e.g., performance in anechoic condition is worse than in reverberation), making it difficult to assess the validity of the methods used. One unique aspect of the behavioral experiments is that Ambisonics was used to simulate the spaces, while headphone simulation was mostly used previously. The main behavioral experiment was performed by interleaving 3 different rooms and measuring speech intelligibility as a function of the number of words preceding the target in a given room on a given trial. The findings are that performance improves on the time scale of seconds (as the number of words preceding the target increases), but also on a much larger time scale of tens to hundreds of seconds (corresponding to multiple trials), while for some listeners it is degraded for the first couple of trials. The study also finds that the performance is best in the room that matches the T60 most commonly observed in everyday environments. These are potentially interesting results. However, there are issues with the design of the study and analysis methods that make it difficult to verify the conclusions based on the data.

      Strengths:

      (1) Analysis of the adaptation to reverberation on multiple time scales, for multiple reverberant and anechoic environments, and also considering contextual effects of one environment interleaved with the other two environments.

      (2) TMS experiment showing reduction of some of the learning effects by temporarily disabling the dlPFC.

      Weaknesses:

      While the study examines the adaptation for different carrier lengths, it keeps multiple characteristics (mainly talker voice and location) fixed in addition to reverberation. Therefore, it is possible that the subjects adapt to other aspects of the stimuli, not just to reverberation. A condition in which only reverberation would switch for the target would allow the authors to separate these confounding alternatives. Now, the authors try to address the concerns by indirect evidence/analyses. However, the evidence provided does not appear sufficient.

      The authors use terms that are either not defined or that seem to be defined incorrectly. The main issue then is the results, which are based on analysis of what the authors call d', Hit Rate, and Final Hit rate. First of all, they randomly switch between these measures. Second, it's not clear how they define them, given that their responses are either 4-alternative or 8-alternative forced choice. d', Hit Rate, and False Alarm Rate are defined in Signal detection theory for the detection of the presence of a target. It can be easily extended to a 2-alternative forced choice. But how does one define a Hit, and, in particular, a False Alarm, in a 4/8-alternative? The authors do not state how they did it, and without that, the computation of d' based on HR and FAR is dubious. Also, what the authors call Hit Rate, is presumably the percent correct performance (PCC), but even that is not clear. Then they use FHR and act as if this was the asymptotic value of their HR, even though in many conditions their learning has not ended, and randomly define a variable of +-10 from FHR, which must produce different results depending on whether the asymptote was reached or not. Other examples of usage of strange usage of terms: they talk about "global likelihood learning" (L426) without a definition or a reference, or about "cumulative hit rate" (L1738), where it is not clear to me what "cumulative" means there.

      There are not enough acoustic details about the stimuli. The authors find that reverberant performance is overall better than anechoic in 2 rooms. This goes contrary to previous results. And the authors do not provide enough acoustic details to establish that this is not an artefact of how the stimuli were normalized (e.g., what were the total signal and noise levels at the two ears in the anechoic and reverberant conditions?).

      There are some concerns about the use of statistics. For example, the authors perform two-way ANOVA (L724-728) in which one factor is room, but that factor does not have the same 3 levels across the two levels of the other factor. Also, in some comparisons, they randomly select 11 out of 22 subjects even though appropriate test correct for such imbalances without adding additional randomness of whether the 11 selected subjects happened to be the good or the bad ones.

      Details of the experiments are not sufficiently described in the methods (L194-205) to be able to follow what was done. It should be stated that 1 main experiment was performed using 3 rooms, and that 3 follow-ups were done on a new set of subjects, each with the room swapped.

    2. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a well-designed and insightful behavioural study examining human adaptation to room acoustics, building on prior work by Brandewie & Zahorik. The psychophysical results are convincing and add incremental but meaningful knowledge to our understanding of reverberation learning. However, I find the transcranial magnetic stimulation (TMS) component to be over-interpreted. The TMS protocol, while interesting, lacks sufficient anatomical specificity and mechanistic explanation to support the strong claims made regarding a unique role of the dorsolateral prefrontal cortex (dlPFC) in this learning process. More cautious interpretation is warranted, especially given the modest statistical effects, the fact that the main TMS result of interest is a null result, the imprecise targeting of dlPFC (which is not validated), and the lack of knowledge about the timescale of TMS effects in relation to the behavioural task. I recommend revising the manuscript to shift emphasis toward the stronger behavioural findings and to present a more measured and transparent discussion of the TMS results and their limitations.

      Strengths:

      (1) Well-designed acoustical stimuli and psychophysical task.

      (2) Comparisons across room combinations are well conducted.

      (3) The virtual acoustic environment is impressive and applied well here.

      (4) A timely study with interesting behavioural results.

      Weaknesses:

      (1) Lack of hypotheses, particularly for TMS.

      (2) Lack of evidence for targeting TMS in [brain] space and time.

      (3) The most interesting effect of TMS is a null result compared to a weak statistical effect for "meta adaptation"

    3. Reviewer #2 (Public review):

      Summary:

      This study investigated how listeners adapt to and utilize statistical properties of different acoustic spaces to improve speech perception. The researchers used repetitive TMS to perturb neural activity in DLPFC, inhibiting statistical learning compared to sham conditions. The authors also identified the most effective room types for the effective use of reverberations in speech in noise perception, with regular human-built environments bringing greater benefits than modified rooms with lower or higher reverberation times.

      Strengths:

      The introduction and discussion sections of the paper are very interesting and highlight the importance of the current study, particularly with regard to the use of ecologically valid stimuli in investigating statistical learning. However, they could be condensed into parts. TMS parameters and task conditions were well-considered and clearly explained.

      Weaknesses

      (1) The Results section is difficult to follow and includes a lot of detail, which could be removed. As such, it presents as confusing and speculative at times.

      (2) The hypotheses for the study are not clearly stated.

      (3) Multiple statistical models are implemented without correcting the alpha value. This leaves the analyses vulnerable to Type I errors.

      (4) It is confusing to understand how many discrete experiments are included in the study as a whole, and how many participants are involved in each experiment.

      (5) The TMS study is significantly underpowered and not robust. Sample size calculations need further explanation (effect sizes appear to be based on behavioural studies?). I would caution an exploratory presentation of these data, and calculate a posteriori the full sample size based on effect sizes observed in the TMS data.

    4. Reviewer #1 (Public review):

      Summary:

      This manuscript describes the results of an experiment that demonstrates a disruption in statistical learning of room acoustics when transcranial magnetic stimulation (TMS) is applied to the dorsolateral prefrontal cortex in human listeners. The work uses a testing paradigm designed by the Zahorik group that has shown improvement in speech understanding as a function of listening exposure time in a room, presumably through a mechanism of statistical learning. The manuscript is comprehensive and clear, with detailed figures that show key results. Overall, this work provides an explanation for the mechanisms that support such statistical learning of room acoustics and, therefore, represents a major advancement for the field.

      Strengths:

      The primary strength of the work is its simple and clear result, that the dorsolateral prefrontal cortex is involved in human room acoustic learning.

      Weaknesses:

      A potential weakness of this work is that the manuscript is quite lengthy and complex.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors argue that defining higher visual areas (HVAs) based on reversals of retinotopic tuning has led to an over-parcellation of secondary visual cortices. Using retinotopic models, they propose that the HVAs are more parsimoniously mapped as a single area V2, which encircles V1 and exhibits complex retinotopy. They reanalyze functional data to argue that functional differences between HVAs can be explained by retinotopic coverage. Finally, they compare the classification of mouse visual cortex to that of other species to argue that our current classification is inconsistent with those used in other model species.

      Strengths:

      This manuscript is bold and thought-provoking, and is a must-read for mouse visual neuroscientists. The authors take a strong stance on combining all HVAs, with the possible exception of area POR, into a single V2 region. Although I suspect many in the field will find that their proposal goes too far, many will agree that we need to closely examine the assumptions of previous classifications to derive a more accurate areal map. The authors' supporting analyses are clear and bolster their argument. Finally, they make a compelling argument for why the classification is not just semantic, but has ramifications for the design of experiments and analysis of data.

      Weaknesses:

      Although I enjoyed the polemic nature of the manuscript, there are a few issues that weaken their argument.

      (1) Although the authors make a compelling argument that retinotopic reversals are insufficient to define distinct regions, they are less clear about what would constitute convincing evidence for distinct visual regions. They mention that a distinct area V3 has been (correctly) defined in ferrets based on "cytoarchitecture, anatomy, and functional properties", but elsewhere argue that none of these factors are sufficient to parcellate any of the HVAs in mouse cortex, despite some striking differences between HVAs in each of these factors. It would be helpful to clearly define a set of criteria that could be used for classifying distinct regions.

      (2) On a related note, although the authors carry out impressive analyses to show that differences in functional properties between HVAs could be explained by retinotopy, they glossed over some contrary evidence that there are functional differences independent of retinotopy. For example, axon projections to different HVAs originating from a single V1 injection - presumably including neurons with similar retinotopy - exhibit distinct functional properties (Glickfeld LL et al, Nat Neuro, 2013). As another example, interdigitated M2+/M2- patches in V1 show very different HVA connectivity and response properties, again independent of V1 location/retinotopy (Meier AM et al., bioRxiv). One consideration is that the secondary regions might be considered a single V2 with distinct functional modules based on retinotopy and connectivity (e.g., V2LM, V2PM, etc).

      (3) Some of the HVAs-such as AL, AM, and LI-appear to have redundant retinotopic coverage with other HVAS, such as LM and PM. Moreover, these regions have typically been found to have higher "hierarchy scores" based on connectivity (Harris JA et al., Nature, 2019; D'Souza RD et al., Nat Comm, 2022), though unfortunately, the hierarchy levels are not completely consistent between studies. Based on existing evidence, there is a reasonable argument to be made for a hybrid classification, in which some regions (e.g., LM, P, PM, and RL) are combined into a single V2 (though see point #2 above) while other HVAs are maintained as independent visual regions, distinct from V2. I don't expect the authors to revise their viewpoint in any way, but a more nuanced discussion of alternative classifications is warranted.

    2. Reviewer #2 (Public review):

      Summary:

      The study by Rowley and Sedigh-Sarvestani presents modeling data suggesting that map reversals in mouse lateral extrastriate visual cortex do not coincide with areal borders, but instead represent borders between subregions within a single area V2. The authors propose that such an organization explains the partial coverage in higher-order areas reported by Zhuang et al., (2017). The scheme revisits an organization proposed by Kaas et al., (1989), who interpreted the multiple projection patches traced from V1 in the squirrel lateral extrastriate cortex as subregions within a single area V2. Kaas et al's interpretation was challenged by Wang and Burkhalter (2007), who used a combination of topographic mapping of V1 connections and receptive field recordings in mice. Their findings supported a different partitioning scheme in which each projection patch mapped a specific topographic location within single areas, each containing a complete representation of the visual field. The area map of mouse visual cortex by Wang and Burkhalter (2007) has been reproduced by hundreds of studies and has been widely accepted as ground truth (CCF) (Wang et al., 2020) of the layout of rodent cortex. In the meantime, topographic mappings in marmoset and tree shew visual cortex made a strong case for map reversals in lateral extrastriate cortex, which represent borders between functionally diverse subregions within a single area V2. These findings from non-rodent species raised doubts about whether during evolution, different mammalian branches have developed diverse partitioning schemes of the cerebral cortex. Rowley and Sedigh-Sarvestani favor a single master plan in which, across evolution, all mammalian species have used a similar blueprint for subdividing the cortex.

      Strengths:

      The story illustrates the enduring strength of science in search of definitive answers.

      Weaknesses:

      To me, it remains an open question whether Rowley and Sedigh-Sarvestani have written the final chapter of the saga. A key reason for my reservation is that the areas the maps used in their model are cherry-picked. The article disregards published complementary maps, which show that the entire visual field is represented in multiple areas (i.e. LM, AL) of lateral extrastriate cortex and that the map reversal between LM and AL coincides precisely with the transition in m2AChR expression and cytoarchitecture (Wang and Burkhalter, 2007; Wang et al., 2011). Evidence from experiments in rats supports the gist of the findings in the mouse visual cortex (Coogan and Burkhalter, 1993).

      (1) The selective use of published evidence, such as the complete visual field representation in higher visual areas of lateral extrastriate cortex (Wang and Burkhalter, 2007; Wang et al., 2011) makes the report more of an opinion piece than an original research article that systematically analyzes the area map of mouse visual cortex we have proposed. No direct evidence is presented for a single area V2 with functionally distinct subregions.

      (2) The article misrepresents evidence by commenting that m2AChR expression is mainly associated with the lower field. This is counter to published findings showing that m2AChR spans across the entire visual field (Gamanut et al., 2018; Meier et al., 2021). The utility of markers for delineating areal boundaries is discounted, without any evidence, in disregard of evidence for distinct areal patterns in early development (Wang et al., 2011). Pointing out that markers can be distributed non-uniformly within an area is well-familiar. m2AChR is non-uniformly expressed in mouse V1, LM and LI (Ji et al., 2015; D'Souza et al., 2019; Meier et al., 2021). Recently, it has been found that the patchy organization within V1 plays a role in the organization of thalamocortical and intracortical networks (Meier et al., 2025). m2AChR-positive patches and m2AChR-negative interpatches organize the functionally distinct ventral and dorsal networks, notably without obvious bias for upper and lower parts of the visual field.

      (3) The study has adopted an area partitioning scheme, which is said to be based on anatomically defined boundaries of V2 (Zhuang et al., 2017). The only anatomical borders used by Zhuang et al. (2017) are those of V1 and barrel cortex, identified by cytochrome oxidase staining. In reality, the partitioning of the visual cortex was based on field sign maps, which are reproduced from Zhuang et al., (2017) in Figure 1A. It is unclear why the maps shown in Figures 2E and 2F differ from those in Figure 1A. It is possible that this is an oversight. But maintaining consistent areal boundaries across experimental conditions that are referenced to the underlying brain structure is critical for assigning modeled projections to areas or sub-regions. This problem is evident in Figure 2F, which is presented as evidence that the modeling approach recapitulates the tracings shown in Figure 3 of Wang and Burkhalter (2007). The dissimilarities between the modeling and tracing results are striking, unlike what is stated in the legend of Figure 2F.

      (4) The Rowley and Sedigh-Sarvestani find that the partial coverage of the visual field in higher order areas shown by Zhuang et al (2017) is recreated by the model. It is important to caution that Zhuang et al's (2017) maps were derived from incomplete mappings of the visual field, which was confined to -25-35 deg of elevation. This underestimates the coverage we have found in LM and AL. Receptive field mappings show that LM covers 0-90 deg of azimuth and -30-80 elevation (Wang and Burkhalter, 2007). AL covers at least 0-90 deg of azimuth and -30-50 deg of elevation (Wang and Burkhalter, 2007; Wang et al., 2011). These are important differences. Partial coverage in LM and AL underestimates the size of these areas and may map two projection patches as inputs to subregions of a single area rather than inputs to two separate areas. Complete, or nearly complete, visual representations in LM and AL support that each is a single area. Importantly, both areas are included in a callosal-free zone (Wang and Burkhalter, 2007). The surrounding callosal connections align with the vertical meridian representation. The single map reversal is marked by a transition in m2AChR expression and cytoarchitecture (Wang et al., 2011).

      (5) The statement that the "lack of visual field overlap across areas is suggestive of a lack of hierarchical processing" is predicated on the full acceptance of the mappings by Zhuang et al (2017). Based on the evidence reviewed above, the reclassification of visual areas proposed in Figure 1C seems premature.

      (6) The existence of lateral connections is not unique to rodent cortex and has been described in primates (Felleman and Van Essen, 1991).

      (7) Why the mouse and rat extrastriate visual cortex differ from those of many other mammals is unclear. One reason may be that mammals with V2 subregions are strongly binocular.

    3. Reviewer #3 (Public review):

      Summary:

      The authors review published literature and propose that a visual cortical region in the mouse that is widely considered to contain multiple visual areas should be considered a single visual area.

      Strengths:

      The authors point out that relatively new data showing reversals of visual-field sign within known, single visual areas of some species require that a visual field sign change by itself should not be considered evidence for a border between visual areas.

      Weaknesses:

      The existing data are not consistent with the authors' proposal to consolidate multiple mouse areas into a single "V2". This is because the existing definition of a single area is that it cannot have redundant representations of the visual field. The authors ignore this requirement, as well as the data and definitions found in published manuscripts, and make an inaccurate claim that "higher order visual areas in the mouse do not have overlapping representations of the visual field". For quantification of the extent of overlap of representations between 11 mouse visual areas, see Figure 6G of Garrett et al. 2014. [Garrett, M.E., Nauhaus, I., Marshel, J.H., and Callaway, E.M. (2014). Topography and areal organization of mouse visual cortex. The Journal of neuroscience 34, 12587-12600. 10.1523/JNEUROSCI.1124-14.2014.

    1. Reviewer #1 (Public review):

      Summary:

      Parise presents another instantiation of the Multisensory Correlation Detector model that can now accept stimulus-level inputs. This is a valuable development as it removes researcher involvement in the characterization/labeling of features and allows analysis of complex stimuli with a high degree of nuance that was previously unconsidered (i.e. spatial/spectral distributions across time). The author demonstrates the power of the model by fitting data from dozens of previous experiments including multiple species, tasks, behavioral modality, and pharmacological interventions.

      Strengths:

      One of the model's biggest strengths, in my opinion, is its ability to extract complex spatiotemporal co-relationships from multisensory stimuli. These relationships have typically been manually computed or assigned based on stimulus condition and often distilled to a single dimension or even single number (e.g., "-50 ms asynchrony"). Thus, many models of multisensory integration depend heavily on human preprocessing of stimuli and these models miss out on complex dynamics of stimuli; the lead modality distribution apparent in figure 3b and c are provocative. I can imagine the model revealing interesting characteristics of the facial distribution of correlation during continuous audiovisual speech that have up to this point been largely described as "present" and almost solely focused on the lip area.

      Another aspect that makes the MCD stand out among other models is the biological inspiration and generalizability across domains. The model was developed to describe a separate process - motion perception - and in a much simpler organism - drosophila. It could then describe a very basic neural computation that has been conserved across phylogeny (which is further demonstrated in the ability to predict rat, primate, and human data) and brain area. This aspect makes the model likely able to account for much more than what has already been demonstrated with only a few tweaks akin to the modifications described in this and previous articles from Parise.

      What allows this potential is that, as Parise and colleagues have demonstrated in those papers since our (re)introduction of the model in 2016, the MCD model is modular - both in its ability to interface with different inputs/outputs and its ability to chain MCD units in a way that can analyze spatial, spectral, or any other arbitrary dimension of a stimulus. This fact leaves wide-open the possibilities for types of data, stimuli, and tasks a simplistic neutrally inspired model can account for.

      And so it's unsurprising (but impressive!) that Parise has demonstrated the model's ability here to account for such a wide range of empirical data from numerous tasks (synchrony/temporal order judgement, localization, detection, etc.) and behavior types (manual/saccade responses, gaze, etc.) using only the stimulus and a few free parameters. This ability is another of the model's main strengths that I think deserves some emphasis: it represents a kind of validation of those experiments - especially in the context of cross-experiment predictions.

      Finally, what is perhaps most impressive to me is that the MCD (and the accompanying decision model) does all this with very few (sometimes zero) free parameters. This highlights the utility of the model and the plausibility of its underlying architecture, but also helps to prevent extreme overfitting if fit correctly.

      Weaknesses:

      The model boasts an incredible versatility across tasks and stimulus configurations and its overall scope of the model is to understand how and what relevant sensory information is extracted from a stimulus. We still need to exercise care when interpreting its parameters, especially considering the broader context of top-down control of perception and that some multisensory mappings may not be derivable purely from stimulus statistics (e.g., the complementary nature of some phonemes/visemes).

    2. Reviewer #2 (Public review):

      Summary:

      Building on previous models of multisensory integration (including their earlier correlation-detection framework used for non-spatial signals), the author introduces a population-level Multisensory Correlation Detector (MCD) that processes raw auditory and visual data. Crucially, it does not rely on abstracted parameters, as is common in normative Bayesian models," but rather works directly on the stimulus itself (i.e., individual pixels and audio samples). By systematically testing the model against a range of experiments spanning human, monkey, and rat data - the authors show that their MCD population approach robustly predicts perception and behavior across species with a relatively small (0-4) number of free parameters.

      Strengths:

      (1) Unlike prior Bayesian models that used simplified or parameterized inputs, the model here is explicitly computable from full natural stimuli. This resolves a key gap in understanding how the brain might extract "time offsets" or "disparities" from continuously changing audio-visual streams.

      (2) The same population MCD architecture captures a remarkable range of multisensory phenomena, from classical illusions (McGurk, ventriloquism) and synchrony judgments, to attentional/gaze behavior driven by audio-visual salience. This generality strongly supports the idea that a single low-level computation (correlation detection) can underlie many distinct multisensory effects.

      (3) By tuning model parameters to different temporal rhythms (e.g., faster in rodents, slower in humans), the MCD explains cross-species perceptual data without reconfiguring the underlying architecture.

      (4) The authors frame their model as a plausible algorithmic account of the Bayesian multisensory-integration models in Marr's levels of hierarchy.

      Weaknesses:

      What remains unclear is how the parameters themselves relate to stimulus quantities (like stimulus uncertainty), as is often straightforward in Bayesian models. A theoretical missing link is the explicit relationship between the parameters of the MCD models and those of a cue combination model, thereby bridging Marr's levels of hierarchy.

      Likely Impact and Usefulness

      The work offers a compelling unification of multiple multisensory tasks-temporal order judgments, illusions, Bayesian causal inference, and overt visual attention-under a single, fully stimulus-driven framework. Its success with natural stimuli should interest computational neuroscientists, systems neuroscientists, and machine learning scientists. This paper thus makes an important contribution to the field by moving beyond minimalistic lab stimuli, illustrating how raw audio and video can be integrated using elementary correlation analyses.

    1. Reviewer #1 (Public review):

      Summary:

      This is a wonderful and landmark study in the field of human embryo modeling. It uses patterned human gastruloids and conducts a functional screen on neural tube closure, and identifies positive and negative regulators, and defines the epistasis among them.

      Strengths:

      The above was achieved following optimization of the micro-pattern-based gastruloid protocol to achieve high efficiency, and then optimized to conduct and deliver CRISPRi without disrupting the protocol. This is a technical tour de force as well as one of the first studies to reveal new knowledge on human development through embryo models, which has not been done before.

      The manuscript is very solid and well-written. The figures are clear, elegant, and meaningful. The conclusions are fully supported by the data shown. The methods are well-detailed, which is very important for such a study.

      Weaknesses:

      This reviewer did not identify any meaningful, major, or minor caveats that need addressing or correcting.

      A minor weakness is that one can never find out if the findings in human embryo models can be in vitro revalidated in humans in vivo. This is for obvious and justified ethical reasons. However, the authors acknowledge this point in the section of the manuscript detailing the limitations of their study.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript is a technical report on a new model of early neurogenesis, coupled to a novel platform for genetic screens. The model is more faithful than others published to date, and the screening platform is an advance over existing ones in terms of speed and throughput.

      Strengths:

      It is novel and useful.

      Weaknesses:

      The novelty of the results is limited in terms of biology, mainly a proof of concept of the platform and a very good demonstration of the hierarchical interactions of the top regulators of GRNs.

      The value of the manuscript could be enhanced in two ways:

      (1) by showing its versatility and transforming the level of neural tube to midbrain and hindbrain, and looking at the transcriptional hierarchies there.

      (2) by relating the patterning of the organoids to the situation in vivo, in particular with the information in reference 49. The authors make a statement "To compare our findings with in vivo gene expression patterns, we applied the same approach to published scRNA-seq data from 4-week-old human embryos at the neurula stage" but it would be good to have a more nuanced reference: what stage, what genes are missing, what do they add to the information in that reference?

    1. Reviewer #1 (Public review):

      Summary:

      Gao et al. has demonstrated that the the pesticide emamectin benzoate (EB) treatment of brown plathopper (BPH) leads to increased egg laying in the insect, which is a common agricultural pest. The authors hypothesize that EB upregulates JH titer resulting in increased fecundity.

      Strengths:

      The finding that a class of pesticide increases fecundity of brown planthopper is interesting.

      Comments on revisions:

      All my concerns have been addressed to reasonable level of satisfaction.

    1. Reviewer #1 (Public review):

      In this manuscript, Roy et al. used the previously published deep transfer learning tool, DEGAS, to map disease associations onto single-cell RNA-seq data from bulk expression data. The authors performed independent runs of DEGAS using T2D or obesity status and identified distinct β-cell subpopulations. β-cells with high obese-DEGAS scores contained two subpopulations derived largely from either non-diabetic or T2D donors. Finally, immunostaining using human pancreas sections from healthy and T2D donors validated the heterogeneous expression and depletion of DLK1 in T2D islets.

      Strengths:

      (1) This meta-analysis of previously published scRNA-seq data uses a deep transfer learning tool.

      (2) Identification of novel beta cell subclusters.

      (3) Identified a relatively innovative role of DLK1 in T2D disease progression.

      Comments on revisions:

      All previous concerns have been addressed.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Gitanjali Roy et al. applies deep transfer learning (DEGAS) to assign patient-level disease attributes (metadata) to single cells of T2D and non-diabetic patients, including obese patients. This led to the identification of a singular cluster of T2D-associated β-cells; and two subpopulations of obese- β-cells derived from either non-diabetic or T2D donors. The objective was to identify novel and established genes implicated in T2D and obesity. Their final goal is to validate their findings at the protein level using immunohistochemistry of pancreas tissue from non-diabetic and T2D organ donors.

      Strengths:

      This paper is well-written, and the findings are relevant for β-cell heterogeneity in T2D and obesity.

      Weaknesses:

      The validation they provide is not sufficiently strong: no DLK1 immunohistochemistry is shown of obese patient-derived sections. Additional presumptive relevant candidates from this transcriptomic analysis should be screened for, at the protein level.

      Comments on revisions:

      The authors have largely addressed my comments. No further experiments are requested.

    1. Reviewer #1 (Public review):

      This study established a C921Y OGT-ID mouse model, systematically demonstrating in mammals the pathological link between O-GlcNAc metabolic imbalance and neurodevelopmental disorders (cortical malformation, microcephaly) as well as behavioral abnormalities (hyperactivity, impulsivity, learning/memory deficits). However, critical flaws in the current findings require resolution to ensure scientific rigor.

      The most concerning finding appears in Figure S12. While Supplementary Figure S12 demonstrates decreased OGA expression without significant OGT level changes in C921Y mutants via Western blot/qPCR, previous reports (Florence Authier, et al., Dis Model Mech. 2023) described OGT downregulation in Western blot and an increase in qPCR in the same models. The opposite OGT expression outcomes in supposedly identical mouse models directly challenge the model's reliability. This discrepancy raises serious concerns about either the experimental execution or the interpretation of results. The authors must revalidate the data with rigorous controls or provide a molecular biology-based explanation.

      A few additional comments to the author may be helpful to improve the study.

      Major

      (1) While this study systematically validated multi-dimensional phenotypes (including neuroanatomical abnormalities and behavioral deficits) in OGT C921Y mutant mice, there is a lack of relevant mechanisms and intervention experiments. For example, the absence of targeted intervention studies on key signaling pathways prevents verification of whether proteomics-identified molecular changes directly drive phenotypic manifestations.

      (2) Although MRI detected nodular dysplasia and heterotopia in the cingulate cortex, the cellular basis remains undefined. Spatiotemporal immunofluorescence analysis using neuronal (NeuN), astrocytic (GFAP), and synaptic (Synaptophysin) markers is recommended to identify affected cell populations (e.g., radial glial migration defects or intermediate progenitor differentiation abnormalities).

      (3) While proteomics revealed dysregulation in pathways including Wnt/β-catenin and mTOR signaling, two critical issues remain unresolved: a) O-GlcNAc glycoproteomic alterations remain unexamined; b) The causal relationship between pathway changes and O-GlcNAc imbalance lacks validation. It is recommended to use co-immunoprecipitation or glycosylation sequencing to confirm whether the relevant proteins undergo O-GlcNAc modification changes, identify specific modification sites, and verify their interactions with OGT.

      (4) Given that OGT-ID neuropathology likely originates embryonically, we recommend serial analyses from E14.5 to P7 to examine cellular dynamics during critical corticogenesis phases.

      (5) The interpretation of Figure 8A constitutes overinterpretation. Current data fail to conclusively demonstrate impairment of OGT's protein interaction network and lack direct evidence supporting the proposed mechanisms of HCF1 misprocessing or OGA loss.

    2. Reviewer #2 (Public review):

      Summary:

      The authors are trying to understand why certain mutants of O-GlcNAc transferase (OGT) appear to cause developmental disorders in humans. As an important step towards that goal, the authors generated a mouse model with one of these mutations that disrupts OGT activity. They then go on to test these mice for behavioral differences, finding that the mutant mice exhibit some signs of hyperactivity and differences in learning and memory. They then examine alterations to the structure of the brain and skull, and again find changes in the mutant mice that have been associated with developmental disorders. Finally, they identify proteins that are up- or down-regulated between the two mice as potential mechanisms to explain the observations.

      Strengths:

      The major strength of this manuscript is the creation of this mouse model, as a key step in beginning to understand how OGT mutants cause developmental disorders. This line will prove important for not only the authors but other investigators as well, enabling the testing of various hypotheses and potentially treatments. The experiments are also rigorously performed, and the conclusions are well supported by the data.

      Weaknesses:

      The only weakness identified is a lack of mechanistic insight. However, this certainly may come in the future through more targeted experimentation using this mouse model.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a robust set of experiments that provide new fundamental insights into the role of STN neurons during active and passive avoidance tasks. These forms of avoidance have received comparatively less attention in the literature than the more extensively studied escape or freezing responses, despite being extremely relevant to human behaviour and more strongly influenced by cognitive control.

      Strengths:

      Understanding the neural infrastructure supporting avoidance behaviour would be a fundamental milestone in neuroscience. The authors employ sophisticated methods, including calcium imaging and optogenetics, to delineate the functions of STN neurons during avoidance behaviours. The work is extremely thorough, and the evidence presented is compelling. Experiments are carefully constructed, well-controlled, and the statistical analyses are appropriate.

      Points for Authors' Consideration:

      (1) Motoric role of STN:<br /> The authors interpret their findings within the context of active avoidance, a cognitively demanding process. An alternative interpretation is that STN activation enhances global motoric tone, facilitating general movement rather than specifically encoding cautious avoidance. Experimentally, this could be evaluated by examining STN-induced motoric tone in non-avoidance contexts, such as open field tests with bilateral stimulations. Alternatively, or additionally, the authors could explicitly discuss evidence for and against the possibility that increased motoric tone may account for aspects of the observed behaviours.

      (2) Temporal Dynamics in Calcium Imaging (AA2 vs. AA1):<br /> Based on previous work by this group, a delay (~1-2 sec) in neuronal response onset was anticipated in AA2 compared to AA1. Although a delay in peak response is observed, there is no clear evidence of a significant delay in response onset or changes in slope of neural activity. The authors could quantify calcium onset latencies and slopes and statistically compare these parameters across conditions.

      (3) Speed Differences (AA2 vs. AA1):<br /> Given the increased latency in AA2, and based on previous work from the group, one would expect faster movements following initiation. However, such differences are not evident in the presented data. The authors might want to discuss the absence of an expected speed increase and clarify whether this absence is consistent with previous findings.

      (4) Behavioural Differences Across Neuronal Classes (Figure 7):<br /> The manuscript currently does not compare responses of neuronal classes I, II, and III between AA1 and AA2 conditions separately or provide information regarding their activity during AA3.

      (5) Streamlining Narrative and Figures:<br /> Given the extensive amount of material presented, the manuscript and figures would benefit from streamlining. Many data points and graphs could be moved to supplementary materials without affecting the core interpretation and simplifying the reading of the work by a non-expert audience. Similarly, the main text could be refined to more clearly emphasise the key findings, which would improve both readability and impact. At the same time, certain aspects would benefit from additional clarification. For example, it would be helpful to explain the key features of the AA1-AA3 tasks at the point of introduction, rather than referring readers to previous literature. Overall, enhancing clarity and accessibility would serve the authors well and broaden the impact of the work.

    2. Reviewer #2 (Public review):

      Summary:

      Zhou, Sajid et al. present a study investigating the STN involvement in signaled movement. They use fiber photometry, implantable lenses, and optogenetics during active avoidance experiments to evaluate this. The data are useful for the scientific community, and the overall evidence for their claims is solid, but many aspects of the findings are confusing and seemingly contradictory. For example, STN activity increases with contraversive turning in the fiber photometry experiments, but optogenetic stimulation of the STN evokes ipsiversive turning. While the authors present a huge collection of data, it is somewhat difficult to extract the key information and the meaningful implications resulting from this data.

      Strengths:

      The study is comprehensive in using many techniques, stimulation powers, frequencies, and configurations.

      Weaknesses:

      Here are the specific weaknesses of the paper.

      (1) Vglut2 isn't a very selective promoter for the STN. Did the authors verify every injection across brain slices to ensure the para-subthalamic nucleus, thalamus, lateral hypothalamus, and other Vglut2-positive structures were never infected?

      (2) The authors say in the methods that the high vs low power laser activation for optogenetic experiments was defined by the behavioral output. This is misleading, and the high vs low power should be objectively stated and the behavioral results divided according to the power used, not according to the behavioral outcome.

      (3) In the fiber photometry experiments exposing mice to the range of tones, it is impossible to separate the STN response to the tone from the STN response to the movement evoked by the tone. The authors should expose the mouse to the tones in a condition that prevents movement, such as anesthetized or restrained, to separate out the two components.

      (4) The claim 'STN activation is ideally suited to drive active avoids' needs more explanation. This claim comes after the fiber photometry experiments during active avoidance tasks, so there has been no causality established yet.

      (5) The statistical comparisons in Figure 7E need some justification and/or clarification. The 9 neuron types are originally categorized based on their response during avoids, then statistics are run showing that they respond differently during avoids. It is no surprise that they would have significantly different responses, since that is how they were classified in the first place. The authors must explain this further and show that this is not a case of circular reasoning.

      (6) The authors show that neurons that have strong responses to orientation show reduced activity during avoidance. What are the implications of this? The author should explain why this is interesting and important.

      (7) It is not clear which conditions each mouse experienced in which order. This is critical to the interpretation of Figure 9 and the reduction of passive avoids during STN stimulation. Did these mice have the CS1+STN stimulation pairing or the STN+US pairing prior to this experiment? If they did, the stimulation of the STN could be strongly associated with either punishment or with the CS1 that predicts punishment. If that is the case, stimulating the STN during CS2 could be like presenting CS1+CS2 at the same time and could be confusing.

      (8) The experiments in Figure 10 are used to say that STN stimulation is not aversive, but they only show that STN stimulation cannot be used as punishment in place of a shock. This doesn't mean that it is not aversive; it just means it is not as aversive as a shock. The authors should do a simpler aversion test, such as conditioned or real-time place preference, to claim that STN stimulation is not aversive. This is particularly surprising as previous work (Serra et al., 2023) does show that STN stimulation is aversive.

      (9) In the discussion, the idea that the STN encodes 'moving away' from contralateral space is pretty vague and unsupported. It is puzzling that the STN activates more strongly to contraversive turns, but when stimulated, it evokes ipsiversive turns; however, it seems a stretch to speculate that this is related to avoidance. In the last experiments of the paper, the axons from the STN to the GPe and to the midbrain are selectively stimulated. Do these evoke ipsiversive turns similarly?

      (10) In the discussion, the authors claim that the STN is essential for modulating action timing in response to demands, but their data really only show this in one direction. The STN stimulation reliably increases the speed of response in all conditions (except maximum speed conditions such as escapes). It seems to be over-interpreting the data to say this is an inability to modulate the speed of the task, especially as clear learning and speed modulation do occur under STN lesion conditions, as shown in Figure 12B. The mice learn to avoid and increase their latency in AA2 vs AA1, though the overall avoids and latency are different from controls. The more parsimonious conclusion would be that STN stimulation biases movement speed (increasing it) and that this is true in many different conditions.

      (11) In the discussion, the authors claim that the STN projections to the midbrain tegmentum directly affect the active avoidance behavior, while the STN projections to the SNr do not affect it. This seems counter to their results, which show STN projections to either area can alter active avoidance behavior. What is the laser power used in these terminal experiments? If it is high (3mW), the authors may be causing antidromic action potentials in the STN somas, resulting in glutamate release in many brain areas, even when terminals are only stimulated in one area. The authors could use low (0.25mW) laser power in the terminals to reduce the chance of antidromic activation and spatially restrict the optical stimulation.

      (12) Was normality tested for data prior to statistical testing?

      (13) Why are there no error bars on Figure 5B, black circles and orange triangles?

    3. Reviewer #3 (Public review):

      Summary:

      The authors use calcium recordings from STN to measure STN activity during spontaneous movement and in a multi-stage avoidance paradigm. They also use optogenetic excitation, optogenetic inhibition, and lesion approaches to increase or decrease the activity of STN during the avoidance paradigm. The paper reports a large amount of data and makes many claims, some seem well supported to this Reviewer, others not so much.

      Strengths:

      Well-supported claims include data showing that during spontaneous movements, especially contraversive ones, STN calcium activity is increased using bulk photometry measurements. Single-cell measures back this claim but also show that it is only a modest minority of STN cells that respond strongly, with most showing no response during movement, and a similar number showing smaller inhibitions during movement.

      Similar data during cued active avoidance procedures show that STN calcium activity sharply increases in response to auditory cues, and during cued movements to avoid a footshock. Optogenetic and lesion experiments are consistent with an important role for STN in generating cue-evoked avoidance. And a strength of these results is that multiple bi-directional approaches were used.

      Weaknesses:

      I found the experimental design and presentation convoluted and the results over-interpreted.

      (1) I really don't understand or accept this idea that delayed movement is necessarily indicative of cautious movements. Is the distribution of responses multi-modal in a way that might support this idea, or do the authors simply take a normal distribution and assert that the slower responses represent 'caution'? Even if responses are multi-modal and clearly distinguished by 'type', why should readers think this that delayed responses imply cautious responding instead of say: habituation or sensitization to cue/shock, variability in attention, motivation, or stress; or merely uncertainty which seems plausible given what I understand of the task design where the same mice are repeatedly tested in changing conditions. This relates to a major claim (i.e., in the work's title).

      (2) Related to the last, I'm struggling to understand the rationale for dividing cells into 'types' based the their physiological responses in some experiments (e.g., Figure 7).

      (3) The description and discussion of orienting head movements were not well supported, but were much discussed in the avoidance datasets. The initial speed peaks to cue seem to be the supporting data upon which these claims rest, but nothing here suggests head movement or orientation responses.

      (4) Similar to the last, the authors note in several places, including abstract, the importance of STN in response timing, i.e., particularly when there must be careful or precise timing, but I don't think their data or task design provides a strong basis for this claim.

      (5) I think that other reports show that STN calcium activity is recruited by inescapable foot shock as well. What do these authors see? Is shock, independent of movement, contributing to sharp signals during escapes?

      (6) In particular, and related to the last point, the following work is very relevant and should be cited: https://elifesciences.org/reviewed-preprints/104643#tab-content. Note that the focus of this other paper is on a subset of VGLUT2+ Tac1 neurons in paraSTN, but using VGLUT2-Cre to target STN will target both STN and paraSTN.

      (7) In multiple other instances, claims that were more tangential to the main claims were made without clearly supporting data or statistics. E.g., claim that STN activation is related to translational more than rotational movement; claim that GCaMP and movement responses to auditory cues were small; claims that 'some animals' responded differently without showing individual data.

      (8) In several figures, the number of subjects used was not described. This is necessary. Also necessary is some assessment of the variability across subjects. The only measure of error shown in many figures relates to trial-to-trial or event variability, which is minimal because, in many cases, it appears that hundreds of trials may have been averaged per animal, but this doesn't provide a strong view of biological variability. When bar/line plots are used to display data, I recommend showing individual animals where feasible.

      (9) Can the authors consider the extent to which calcium imaging may be better suited to identify increases compared to decreases and how this may affect the results, particularly related to the GRIN data when similar numbers of cells show responses in both directions (e.g., Figure 3)?

      (10) Raw example traces are not provided.

      (11) The timeline of the spontaneous movement and avoidance sessions was not clear, nor was the number of events or sessions per animal nor how this was set. It is not clear if there was pre-training or habituation, if many or variable sessions were combined per animal, or what the time gaps between sessions were, or if or how any of these parameters might influence interpretation of the results.

      (12) It is not clear if or how the spread of expression outside of the target STN was evaluated, and if or how many mice were excluded due to spread or fiber placements.

    1. Reviewer #1 (Public review):

      Summary:

      Previous studies have shown that treatment with 17α-estradiol (a stereoisomer of the 17β-estradiol) extends lifespan in male mice but not in females. The current study by Li et al, aimed to identify cell-specific clusters and populations in the hypothalamus of aged male rats treated with 17α-estradiol (treated for 6 months). This study identifies genes and pathways affected by 17α-estradiol in the aged hypothalamus.

      Strengths:

      Using single-nucleus transcriptomic sequencing (snRNA-seq) on hypothalamus from aged male rats treated with 17α-estradiol they show that 17α-estradiol significantly attenuated age-related increases in cellular metabolism, stress, and decreased synaptic activity in neurons.

      Moreover, sc-analysis identified GnRH as one of the key mediators of 17α-estradiol's effects on energy homeostasis. Furthermore, they show that CRH neurons exhibited a senescent phenotype, suggesting a potential side effect of the 17α-estradiol. These conclusions are supported by supervised clustering by neuropeptides, hormones, and their receptors.

      Weaknesses:

      However, the study has several limitations that reduce the strength of the key claims in the manuscript. In particular:

      (1) The study focused only on males and did not include comparisons with females. However, previous studies have shown that 17α-estradiol extends lifespan in a sex-specific manner in mice, affecting males but not females. Without the comparison with the female data, it's difficult to assess its relevance to the lifespan.

      (2) Its not known whether 17α-estradiol leads to lifespan extension in male rats similar to male mice. Therefore, it is not possible to conclude that the observed effects in the hypothalamus, are linked to the lifespan extension. The manuscript cited in the introduction does not include lifespan data on rats.

      (3) The effect of 17α-estradiol on non-neuronal cells such as microglia and astrocytes is not well described (Fig.1). Previous studies demonstrated that 17α-estradiol reduces microgliosis and astrogliosis in the hypothalamus of aged male mice. Current data suggest that the proportion of oligo, and microglia were increased by the drug treatment, while the proportions of astrocytes were decreased. These data might suggest possible species differences, differences in the treatment regimen, or differences in drug efficiency. This has to be discussed.

      A more detailed analysis of glial cell types within the hypothalamus in response to drug should be provided.

      (4) The conclusion that CRH neurons are going into senescence is not clearly supported by the data. A more detailed analysis of the hypothalamus such as histological examination to assess cellular senescence markers in CRH neurons, is needed to support this claim.

      Revised submission:

      Some of the concerns were addressed in this revised version, and the authors responded and addressed study design limitations in both sexes/ages.

      However, there are still some concerns that were not sufficiently addressed:<br /> While the term "senescent" was changed to "stressed," some histological/ cellular validation of this phenotype is still needed.

      Some discussion on the sex-specific effects of 17α-estradiol in the hypothalamus is still required. Previous studies in mice demonstrated that 17α-estradiol reduced hypothalamic microgliosis and astrogliosis in male but not female UM-HET3 mice.

      Additionally, the provided analysis on astrocytes and microglia is superficial.

    2. Reviewer #2 (Public review):

      Summary:

      Li et al. investigated the potential anti-ageing role of 17α-Estradiol on the hypothalamus of aged rats. To achieve this, they employed a very sophisticated method for single-cell genomic analysis that allowed them to analyze effects on various groups of neurons and non-neuronal cells. They were able to sub-categorize neurons according to their capacity to produce specific neurotransmitters, receptors, or hormones. They found that 17α-Estradiol treatment led to an improvement in several factors related to metabolism and synaptic transmission by bringing the expression levels of many of the genes of these pathways closer or to the same levels to those of young rats, reversing the ageing effect. Interestingly, among all neuronal groups, the proportion of Oxytocin-expressing neurons seems to be the one most significantly changing after treatment with 17α-Estradiol, suggesting an important role of these neurons on mediating its anti-ageing effects. This was also supported by an increase in circulating levels of oxytocin. It was also found that gene expression of corticotropin-releasing hormone neurons was significantly impacted by 17α-Estradiol even though it was not different between aged and young rats, suggesting that these neurons could be responsible for side effects related to this treatment. This article revealed some potential targets that should be further investigated in future studies regarding the role of 17α-Estradiol treatment in aged males.

      Strengths:

      • The single nucleus mRNA sequencing is a very powerful method for gene expression analysis and clustering. The supervised clustering of neurons was very helpful in revealing otherwise invisible differences between neuronal groups and helped identify specific neuronal populations as targets.

      • There is a variety of functions used that allowed the differential analysis of a very complex type of data. This led to a better comparison between the different groups in many levels.

      • There were some physiological parameters measured such as circulating hormone levels that helped the interpretation of the effects of the changes in hypothalamic gene expression.

      Weaknesses:

      • One main control group is missing from the study, the young males treated with 17α-Estradiol.

      • Even though the technical approach is a sophisticated one, analyzing the whole rat hypothalamus instead of specific nuclei or subregions makes the study weaker.

      • Although the authors claim to have several findings, the data fail to support these claims.

      • The study is about improving ageing but no physiological data from the study demonstrated such claim with the exception of the testes histology which was not properly analyzed and was not even significantly different between the groups.

      • Overall, the study remains descriptive with no physiological data to demonstrate that any of the effects on hypothalamic gene expression is related to metabolic, synaptic or other function.

      Comments on revisions:

      The authors revised part of the manuscript to address some of the reviewers' comments. This improved the language and the text flow to a certain extent. They also added an additional analysis including glial cells. However, they failed to address the main weaknesses brought up by the reviewers and did not add any experimental demonstration of their claims on lifespan expansion induced by 17α-estradiol in rats (the cited study does not include lifespan in rats). In addition, they insisted i keeping parts in the discussion that are not directly linked to any of the papers' findings.

    1. Reviewer #1 (Public review):

      In this manuscript, Dillard and colleagues integrate cross-species genomic data with a systems approach to identify potential driver genes underlying human GWAS loci and establish the cell type(s) within which these genes act and potentially drive disease.

      Specifically, they utilize a large single cell RNA-seq (scRNA-seq) dataset from an osteogenic cell culture model - bone marrow-derived stromal cells cultured under osteogenic conditions (BMSC-OBs) - from a genetically diverse outbred mouse population called the Diversity Outbred (DO) stock to discover network driver genes that likely underlie human bone mineral density (BMD) GWAS loci. The DO mice segregate over 40M single nucleotide variants, many of which affect gene expression levels, therefore making this an ideal population for systems genetic and co-expression analyses.

      The current study builds on previous published work from the same group that used co-expression analysis to identify co-expressed "modules" of genes that were enriched for BMD GWAS associations. In this study, the authors utilized a much larger scRNA-seq dataset from 80 DO BMSC-OBs, inferred co-expression based on Bayesian networks for each identified mesenchymal cell type, focused on networks with dynamic expression trajectories that are most likely driving differentiation of BMSC-OBs, and then prioritized genes ("differentiation driver genes" or DDGs) in these osteogenic differentation networks that had known expression or splicing QTLs (eQTL/sQTLs) in any GTEx tissue that co-localized with human BMD GWAS loci. The systems analysis is impressive, the experimental methods are described in detail, and the experiments appear to be carefully done. The computational analysis of the single cell data is comprehensive and thorough, and the evidence presented in support of the identified DDGs, including Tpx2 and Fgfrl1, is for the most part convincing. Some limitations in the data resources and methods hamper enthusiasm somewhat and are discussed below.

      Overall, while this study will no doubt be valuable to the BMD community, the cross-species data integration and analytical framework may be more valuable and generally applicable to the study of other diseases, especially for diseases with robust human GWAS data but for which robust human genomic data in relevant cell types is lacking.

      Specific strengths of the study include the large scRNA-seq dataset on BMSC-OBs from 80 DO mice, the clustering analysis to identify specific cell types and sub-types, the comparison of cell type frequencies across the DO mice, and the CELLECT analysis to prioritize cell clusters that are enriched for BMD heritability (Figure 1). The network analysis pipeline outlined in Figure 2 is also a strength, as is the pseudotime trajectory analysis (results in Figure 3).

      Potential drawbacks of the authors' approach include their focus on genes that were previously identified as having an eQTL or sQTL in any GTEx tissue. The authors rightly point out that the GTEx database does not contain data for bone tissue, but reason that eQTLs can be shared across many tissues - this assumption is valid for many cis-eQTLs, but it could also exclude many genes as potential DDGs with effects that are specific to bone/osteoblasts. Indeed, the authors show that important BMD driver genes have cell-type specific eQTLs. Another issue concerns potential model overfitting in the iterativeWGCNA analysis of mesenchymal cell type-specific co-expression, which identified an average of 76 co-expression modules per cell cluster (range 26-153). Based on the limited number of genes that are detected as expressed in a given cell due to sparse per cell read depth (400-6200 reads/cell) and drop outs, it's surprising that as many as 153 co-expression modules could be distinguished within any cell cluster. I would suspect some degree of model overfitting is responsible for these results.

      Overall, though, these concerns are minor relative to the many strengths of the study design and results. Indeed, I expect the analytical framework employed by the authors here will be valuable to -- and replicated by -- researchers in other disease areas.

      Comments on revisions:

      Thank you for addressing my concerns. This is an impressive study and manuscript that you should be proud of.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Farber and colleagues have performed single cell RNAseq analysis on bone marrow derived stem cells from DO Mice. By performing network analysis, they look for driver genes that are associated with bone mineral density GWAS associations. They identify two genes as potential candidates to showcase the utility of this approach.

      Strengths:

      The study is very thorough and the approach is innovative and exciting. The manuscript contains some interesting data relating to how cell differentiation is occurring and the effects of genetics on this process. The section looking for genes with eQTLs that differ across the differentiation trajectory (Figure 4) was particularly exciting.

      Weaknesses:

      The manuscript is, in parts, hard to read due to the use of acronyms and there are some questions about data analysis that still need to be addressed.

      Comments on revisions:

      Dillard et al have made several improvements to their manuscript.

      (1) We previously asked the authors to determine whether any cell types were enriched for BMD-related traits since the premise of the paper is that 'many genes impacting BMD do so by influencing osteogenic differentiation or ... adipogenic differentiation'. Given the potential for the cell culture method to skew the cell type distribution non-physiologically, it is important to establish which cell types in their assay are most closely associated with BMD traits. The new CELLECT analysis and Figure 1E address this point nicely. However, it would still be nice to see the correlations between these cell types and BMD traits in the mice as this would provide independent evidence to support their physiological importance more broadly.

      (2) Shortening the introduction.

      (3) Addressing limitations that arise from not accounting for founder genome SNPs when aligning scRNA-seq data.

      (4) The main take-away of this paper is, to us, the development of a single cell approach to studying BMD-related traits. It is encouraging that the cells post-culture appear to be representative of those pre-culture (supplemental figure 3).

      However, the authors seem to have neglected several comments made by both reviewers. While we share the authors' enthusiasm for the single cell analytical approach, we do not understand their reluctance to perform further statistical tests. We feel that the following comments have still not been addressed:

      (1) The manuscript still contains the following:

      "To provide further support that tradeSeq-identified genes are involved in differentiation, we performed a cell type-specific expression quantitative trait locus (eQTL) analysis for each mesenchymal cell type from the 80 DO mice. We identified 563 genes (eGenes) regulated by a significant cis-eQTL in specific cell types of the BMSC-OB scRNA-seq data (Supplementary Table S14). In total, 73 eGenes were also tradeSeq-identified genes in one or more cell type boundaries along their respective trajectories (Supplementary Table S9)."

      The purpose of this paragraph is to convince readers that the eGenes approach aligns with the tradeSeq approach (and that their approach can therefore be trusted). It is essential that such claims are supported by statistical reasoning. Given that it would be very simple to perform permutation/enrichment analyses to address this point, and both reviewers requested similar analyses, we do not understand the author's reluctance here. Otherwise, this section should be rewritten so that it does not imply that the identification of these genes provides support for their approach.

      (2) Given that a central purpose of this manuscript is to establish a systematic workflow for identifying candidate genes, the manuscript could still benefit from more explanation as to why the authors chose to highlight Tpx2 and Fgfrl1. Tpx2 does already have a role in bone physiology through the IMPC. The authors should comment on why they did not explore Kremen1, for instance, as this gene seems important for the transition to both OB1 and 2.

      A final minor comment is that it would be very helpful if the authors could indicate if the DDGs in Table 1 are also eGenes for the relevant cell type. This is much more meaningful than looking through GTEx.

    1. Reviewer #1 (Public review):

      Summary:

      The authors introduce a densely-sampled dataset where 6 participants viewed images and sentence descriptions derived from the MS Coco database over the course of 10 scanning sessions. The authors further showcase how image and sentence decoders can be used to predict which images or descriptions were seen, using pairwise decoding across a set of 120 test images. The authors find decodable information widely distributed across the brain, with a left-lateralized focus. The results further showed that modality-agnostic models generally outperformed modality-specific models, and that data based on captions was not explained better by caption-based models but by modality-agnostic models. Finally, the authors decoded imagined scenes.

      Strengths:

      (1) The dataset presents a potentially very valuable resource for investigating visual and semantic representations and their interplay.

      (2) The introduction and discussion are very well written in the context of trying to understand the nature of multimodal representations and present a comprehensive and very useful review of the current literature on the topic.

      Weaknesses:

      (1) The paper is framed as presenting a dataset, yet most of it revolves around the presentation of findings in relation to what the authors call modality-agnostic representations, and in part around mental imagery. This makes it very difficult to assess the manuscript, whether the authors have achieved their aims, and whether the results support the conclusions.

      (2) While the authors have presented a potential use case for such a dataset, there is currently far too little detail regarding data quality metrics expected from the introduction of similar datasets, including the absence of head-motion estimates, quality of intersession alignment, or noise ceilings of all individuals.

      (3) The exact methods and statistical analyses used are still opaque, making it hard for a reader to understand how the authors achieved their results. More detail in the manuscript would be helpful, specifically regarding the exact statistical procedures, what tests were performed across, or how data were pooled across participants.

      (4) Many findings (e.g., Figure 6) are still qualitative but could be supported by quantitative measures.

      (5) Results are significant in regions that typically lack responses to visual stimuli, indicating potential bias in the classifier. This is relevant for the interpretation of the findings. A classification approach less sensitive to outliers (e.g., 70-way classification) could avoid this issue. Given the extreme collinearity of the experimental design, regressors in close temporal proximity will be highly similar, which could lead to leakage effects.

      (6) The manuscript currently lacks a limitations section, specifically regarding the design of the experiment. This involves the use of the overly homogenous dataset Coco, which invites overfitting, the mixing of sentence descriptions and visual images, which invites imagery of previously seen content, and the use of a 1-back task, which can lead to carry-over effects to the subsequent trial.

      (7) I would urge the authors to clarify whether the primary aim is the introduction of a dataset and showing the use of it, or whether it is the set of results presented. This includes the title of this manuscript. While the decoding approach is very interesting and potentially very valuable, I believe that the results in the current form are rather descriptive, and I'm wondering what specifically they add beyond what is known from other related work. This includes imagery-related results. This is completely fine! It just highlights that a stronger framing as a dataset is probably advantageous for improving the significance of this work.

    2. Reviewer #2 (Public review):

      Summary:

      This study introduces SemReps-8K, a large multimodal fMRI dataset collected while subjects viewed natural images and matched captions, and performed mental imagery based on textual cues. The authors aim to train modality-agnostic decoders--models that can predict neural representations independently of the input modality - and use these models to identify brain regions containing modality-agnostic information. They find that such decoders perform comparably or better than modality-specific decoders and generalize to imagery trials.

      Strengths:

      (1) The dataset is a substantial and well-controlled contribution, with >8,000 image-caption trials per subject and careful matching of stimuli across modalities - an essential resource for testing theories of abstract and amodal representation.

      (2) The authors systematically compare unimodal, multimodal, and cross-modal decoders using a wide range of deep learning models, demonstrating thoughtful experimental design and thorough benchmarking.

      (3) Their decoding pipeline is rigorous, with informative performance metrics and whole-brain searchlight analyses, offering valuable insights into the cortical distribution of shared representations.

      (4) Extension to mental imagery decoding is a strong addition, aligning with theoretical predictions about the overlap between perception and imagery.

      Weaknesses:

      While the decoding results are robust, several critical limitations prevent the current findings from conclusively demonstrating truly modality-agnostic representations:

      (1) Shared decoding ≠ abstraction: Successful decoding across modalities does not necessarily imply abstraction or modality-agnostic coding. Participants may engage in modality-specific processes (e.g., visual imagery when reading, inner speech when viewing images) that produce overlapping neural patterns. The analyses do not clearly disambiguate shared representational structure from genuinely modality-independent representations. Furthermore, in Figure 5, the modality-agnostic encoder did not perform better than the modality-specific decoder trained on images (in decoding images), but outperformed the modality-specific decoder trained on captions (in decoding captions). This asymmetry contradicts the premise of a truly "modality-agnostic" encoder. Additionally, given the similar performance between modality-agnostic decoders based on multimodal versus unimodal features, it remains unclear why neural representations did not preferentially align with multimodal features if they were truly modality-independent.

      (2) The current analysis cannot definitively conclude that the decoder itself is modality-agnostic, making "Qualitative Decoding Results" difficult to interpret in this context. This section currently provides illustrative examples, but lacks systematic quantitative analyses.

      (3) The use of mental imagery as evidence for modality-agnostic decoding is problematic. Imagery involves subjective, variable experiences and likely draws on semantic and perceptual networks in flexible ways. Strong decoding in imagery trials could reflect semantic overlap or task strategies rather than evidence of abstraction.

      The manuscript presents a methodologically sophisticated and timely investigation into shared neural representations across modalities. However, the current evidence does not clearly distinguish between shared semantics, overlapping unimodal processes, and true modality-independent representations. A more cautious interpretation is warranted. Nonetheless, the dataset and methodological framework represent a valuable resource for the field.

    3. Reviewer #3 (Public review):

      Summary:

      The authors recorded brain responses while participants viewed images and captions. The images and captions were taken from the COCO dataset, so each image has a corresponding caption, and each caption has a corresponding image. This enabled the authors to extract features from either the presented stimulus or the corresponding stimulus in the other modality. The authors trained linear decoders to take brain responses and predict stimulus features. "Modality-specific" decoders were trained on brain responses to either images or captions, while "modality-agnostic" decoders were trained on brain responses to both stimulus modalities. The decoders were evaluated on brain responses while the participants viewed and imagined new stimuli, and prediction performance was quantified using pairwise accuracy. The authors reported the following results:

      (1) Decoders trained on brain responses to both images and captions can predict new brain responses to either modality.

      (2) Decoders trained on brain responses to both images and captions outperform decoders trained on brain responses to a single modality.

      (3) Many cortical regions represent the same concepts in vision and language.

      (4) Decoders trained on brain responses to both images and captions can decode brain responses to imagined scenes.

      Strengths:

      This is an interesting study that addresses important questions about modality-agnostic representations. Previous work has shown that decoders trained on brain responses to one modality can be used to decode brain responses to another modality. The authors build on these findings by collecting a new multimodal dataset and training decoders on brain responses to both modalities.

      To my knowledge, SemReps-8K is the first dataset of brain responses to vision and language where each stimulus item has a corresponding stimulus item in the other modality. This means that brain responses to a stimulus item can be modeled using visual features of the image, linguistic features of the caption, or multimodal features derived from both the image and the caption. The authors also employed a multimodal one-back matching task, which forces the participants to activate modality-agnostic representations. Overall, SemReps-8K is a valuable resource that will help researchers answer more questions about modality-agnostic representations.

      The analyses are also very comprehensive. The authors trained decoders on brain responses to images, captions, and both modalities, and they tested the decoders on brain responses to images, captions, and imagined scenes. They extracted stimulus features using a range of visual, linguistic, and multimodal models. The modeling framework appears rigorous, and the results offer new insights into the relationship between vision, language, and imagery. In particular, the authors found that decoders trained on brain responses to both images and captions were more effective at decoding brain responses to imagined scenes than decoders trained on brain responses to either modality in isolation. The authors also found that imagined scenes can be decoded from a broad network of cortical regions.

      Weaknesses:

      The characterization of "modality-agnostic" and "modality-specific" decoders seems a bit contradictory. There are three major choices when fitting a decoder: the modality of the training stimuli, the modality of the testing stimuli, and the model used to extract stimulus features. However, the authors characterize their decoders based on only the first choice-"modality-specific" decoders were trained on brain responses to either images or captions, while "modality-agnostic" decoders were trained on brain responses to both stimulus modalities. I think that this leads to some instances where the conclusions are inconsistent with the methods and results.

      First, the authors suggest that "modality-specific decoders are not explicitly encouraged to pick up on modality-agnostic features during training" (line 137) while "modality-agnostic decoders may be more likely to leverage representations that are modality-agnostic" (line 140). However, whether a decoder is required to learn modality-agnostic representations depends on both the training responses and the stimulus features. Consider the case where the stimuli are represented using linguistic features of the captions. When you train a "modality-specific" decoder on image responses, the decoder is forced to rely on modality-agnostic information that is shared between the image responses and the caption features. On the other hand, when you train a "modality-agnostic" decoder on both image responses and caption responses, the decoder has access to the modality-specific information that is shared by the caption responses and the caption features, so it is not explicitly required to learn modality-agnostic features. As a result, while the authors show that "modality-agnostic" decoders outperform "modality-specific" decoders in most conditions, I am not convinced that this is because they are forced to learn more modality-agnostic features.

      Second, the authors claim that "modality-specific decoders can be applied only in the modality that they were trained on, while "modality-agnostic decoders can be applied to decode stimuli from multiple modalities, even without knowing a priori the modality the stimulus was presented in" (line 47). While "modality-agnostic" decoders do outperform "modality-specific" decoders in the cross-modality conditions, it is important to note that "modality-specific" decoders still perform better than expected by chance (figure 5). It is also important to note that knowing about the input modality still improves decoding performance even for "modality-agnostic" decoders, since it determines the optimal feature space-it is better to decode brain responses to images using decoders trained on image features, and it is better to decode brain responses to captions using decoders trained on caption features.

    1. Reviewer #1 (Public review):

      In this manuscript, the authors describe a new method to more accurately estimate the fitness advantage of new SARS-CoV-2 variants when they emerge. This was a key public health question during the pandemic and drove a number of important policy choices during the latter half of the acute phase of the pandemic. They attempt to link fitness to expected wave size. The analyses are tested on data from 33 different US states for which the data were considered sufficient. The main novelty of the method is that it links the frequency of variants to the number of cases and thus estimates fitness in terms of the reproduction number.

      The results with the new method appear to be more consistent estimates of fitness advantage over time, suggesting that the methods suggested are more accurate than the comparator methods.

      Given that the paper presents a methodological advancement, the absence of a simulation study is a weakness. I am satisfied that the trends estimated via the different approaches suggest a useful advancement for a difficult problem. However, the work would have been considerably stronger if synthetic data had been used to illustrate without doubt how the revised method better captures underlying, pre-specified differences in fitness.

    2. Reviewer #2 (Public review):

      Summary:

      This study develops a joint epidemiological and population genetic model to infer variant-specific effective reproduction numbers Rt and growth advantages of SARS-CoV-2 variants using US case counts and sequence data (Jan 2021-Mar 2022). For this, they use the commonly used renewal equation framework, observation models (negative binomial with zero inflation and Dirichlet-multinomial likelihoods, both to account for overdispersion). For the parameterization of Rt, again, they used a classic cubic spline basis expansion. Additionally, they use Bayesian Inference, specifically SVI. I was reassured to see the sensitivity analysis on the generation time to check effects on Rt.

      This is an incredibly robust study design. Integrating case and sequence data enables estimation of both absolute and relative variant fitness, overcoming limitations of frequency-only or case-only models. This reminds me of https://www.medrxiv.org/content/10.1101/2023.01.02.23284123v4.full

      I also really appreciated the flexible and interpretable parameterization of the renewal equations with splines. But I may be biased since I really like splines!

      The approach is justified, however, it has some big limitations. Specifically, there are some notable weaknesses, that I detail below.

      (1) The model does not account for demographic stochasticity or transmission overdispersion (superspreading), which are known to affect SARS-CoV-2 dynamics and can bias Rt, especially in low incidence or early introduction phases.

      (2) While the authors explore the sensitivity of generation time, the reliance on fixed generation time parameters (with some adjustments for Delta/Omicron) may still bias results

      (3) There is no explicit adjustment for population immunity, which limits the ability to disentangle intrinsic variant fitness (even though the model allows for inclusion of covariates - this to me is one of two major flaws in the study.

      (4) The second major flaw in my opinion is that there is no hierarchical pooling across states - each state is modeled independently. A hierarchical Bayesian model could borrow strength across states, improving estimates for states with sparse data and enabling more robust inference of shared variant effects.

      I would strongly recommend the following things in order of priority, where the first two points I consider critical.

      (1) Implement a hierarchical model for variant growth advantages and Rt across states.

      (2) Include time-varying covariates for vaccination rates, prior infection, and non-pharmaceutical interventions directly. This would help disentangle intrinsic variant transmissibility from changes in population susceptibility and behavior.

      (3) Extend the renewal model to a stochastic or branching process framework that explicitly models overdispersed transmission.

      (4) It would be good to allow for multiple seeding events per variant and per state. This can be informed by phylogeography in a minimum effort way and would improve the accuracy of Rt.

      (5) By now, I don't think it will be a surprise that addressing sampling bias is standard, reweighting sequence data or comparing results with independent surveillance data to assess the impact of non-representative sequencing.

    1. Reviewer #1 (Public review):

      This is a well-designed and very interesting study examining the impact of imprecise feedback on outcomes on decision-making. I think this is an important addition to the literature and the results here, which provide a computational account of several decision-making biases, are insightful and interesting.

      I do not believe I have substantive concerns related to the actual results presented; my concerns are more related to the framing of some of the work. My main concern is regarding the assertion that the results prove that non-normative and non-Bayesian learning is taking place. I agree with the authors that their results demonstrate that people will make decisions in ways that demonstrate deviations from what would be optimal for maximizing reward in their task under a strict application of Bayes rule. I also agree that they have built reinforcement learning models which do a good job of accounting for the observed behavior. However, the Bayesian models included are rather simple- per the author descriptions, applications of Bayes' rule with either fixed or learned credibility for the feedback agents. In contrast, several versions of the RL models are used, each modified to account for different possible biases. However more complex Bayes-based models exist, notably active inference but even the hierarchical gaussian filter. These formalisms are able to accommodate more complex behavior, such as affect and habits, which might make them more competitive with RL models. I think it is entirely fair to say that these results demonstrate deviations from an idealized and strict Bayesian context; however, the equivalence here of Bayesian and normative is I think misleading or at least requires better justification/explanation. This is because a great deal of work has been done to show that Bayes optimal models can generate behavior or other outcomes that are clearly not optimal to an observer within a given context (consider hallucinations for example) but which make sense in the context of how the model is constructed as well as the priors and desired states the model is given.

      As such, I would recommend that the language be adjusted to carefully define what is meant by normative and Bayesian and to recognize that work that is clearly Bayesian could potentially still be competitive with RL models if implemented to model this task. An even better approach would be to directly use one of these more complex modelling approaches, such as active inference, as the comparator to the RL models, though I would understand if the authors would want this to be a subject for future work.

      Abstract:

      The abstract is lacking in some detail about the experiments done, but this may be a limitation of the required word count? If word count is not an issue, I would recommend adding details of the experiments done and the results. One comment is that there is an appeal to normative learning patterns, but this suggests that learning patterns have a fixed optimal nature, which may not be true in cases where the purpose of the learning (e.g. to confirm the feeling of safety of being in an in-group) may not be about learning accurately to maximize reward. This can be accommodated in a Bayesian framework by modelling priors and desired outcomes. As such the central premise that biased learning is inherently non-normative or non-Bayesian I think would require more justification. This is true in the introduction as well.

      Introduction:

      As noted above the conceptualization of Bayesian learning being equivalent to normative learning I think requires either further justification. Bayesian belief updating can be biased an non-optimal from an observer perspective, while being optimal within the agent doing the updating if the priors/desired outcomes are set up to advantage these "non-optimal" modes of decision making.

      Results:

      I wonder why the agent was presented before the choice - since the agent is only relevant to the feedback after the choice is made. I wonder if that might have induced any false association between the agent identity and the choice itself. This is by no means a critical point but would be interesting to get the authors' thoughts.

      The finding that positive feedback increases learning is one that has been shown before and depends on valence, as the authors note. They expanded their reinforcement learning model to include valence; but they did not modify the Bayesian model in a similar manner. This lack of a valence or recency effect might also explain the failure of the Bayesian models in the preceding section where the contrast effect is discussed. It is not unreasonable to imagine that if humans do employ Bayesian reasoning that this reasoning system has had parameters tuned based on the real world, where recency of information does matter; affect has also been shown to be incorporable into Bayesian information processing (see the work by Hesp on affective charge and the large body of work by Ryan Smith). It may be that the Bayesian models chosen here require further complexity to capture the situation, just like some of the biases required updates to the RL models. This complexity, rather than being arbitrary, may be well justified by decision making in the real world.

      The methods mention several symptom scales- it would be interesting to have the results of these and any interesting correlations noted. It is possible that some of individual variability here could be related to these symptoms, which could introduce precision parameter changes in a Bayesian context and things like reward sensitivity changes in an RL context.

      Discussion:

      (For discussion, not a specific comment on this paper): One wonders also about participant beliefs about the experiment or the intent of the experimenters. I have often had participants tell me they were trying to "figure out" a task or find patterns even when this was not part of the experiment. This is not specific to this paper, but it may be relevant in the future to try and model participant beliefs about the experiment especially in the context of disinformation, when they might be primed to try and "figure things out".

      As a general comment, in the active inference literature, there has been discussion of state-dependent actions, or "habits", which are learned in order to help agents more rapidly make decisions, based on previous learning. It is also possible that what is being observed is that these habits are at play, and that they represent the cognitive biases. This is likely especially true given, as the authors note, the high cognitive load of the task. It is true that this would mean that full-force Bayesian inference is not being used in each trial, or in each experience an agent might have in the world, but this is likely adaptive on the longer timescale of things, considering resource requirements. I think in this case you could argue that we have a departure from "normative" learning, but that is not necessarily a departure from any possible Bayesian framework, since these biases could potentially be modified by the agent or eschewed in favor of more expensive full-on Bayesian learning when warranted. Indeed in their discussion on the strategy of amplifying credible news sources to drown out low-credibility sources, the authors hint to the possibility of longer term strategies that may produce optimal outcomes in some contexts, but which were not necessarily appropriate to this task. As such, the performance on this task- and the consideration of true departure from Bayesian processing- should be considered in this wider context. Another thing to consider is that Bayesian inference is occurring, but that priors present going in produce the biases, or these biases arise from another source, for example factoring in epistemic value over rewards when the actual reward is not large. This again would be covered under an active inference approach, depending on how the priors are tuned. Indeed, given the benefit of social cohesion in an evolutionary perspective, some of these "biases" may be the result of adaptation. For example, it might be better to amplify people's good qualities and minimize their bad qualities in order to make it easier to interact with them; this entails a cost (in this case, not adequately learning from feedback and potentially losing out sometimes), but may fulfill a greater imperative (improved cooperation on things that matter). Given the right priors/desired states, this could still be a Bayes-optimal inference at a social level and as such may be ingrained as a habit which requires effort to break at the individual level during a task such as this.

      The authors note that this task does not relate to "emotional engagement" or "deep, identity-related, issues". While I agree that this is likely mostly true, it is also possible that just being told one is being lied to might elicit an emotional response that could bias responses, even if this is a weak response.

      Comments on revisions:

      In their updated version the authors have made some edits to address my concerns regarding the framing of the 'normative' bayesian model, clarifying that they utilized a simple bayesian model which is intended to adhere in an idealized manner to the intended task structure, though further simulations would have been ideal.

      The authors, however, did not take my recommendation to explore the symptoms in the symptom scales they collected as being a potential source of variability. They note that these were for hypothesis generation and were exploratory, fair enough, but this study is not small and there should have been sufficient sample size for a very reasonable analysis looking at symptom scores.

      However, overall the toned down claims and clarifications of intent are adequate responses to my previous review.

    2. Reviewer #2 (Public review):

      This important paper studies the problem of learning from feedback given by sources of varying credibility. The convincing combination of experiment and computational modeling helps to pin down properties of learning, while opening unresolved questions for future research.

      Summary:

      This paper studies the problem of learning from feedback given by sources of varying credibility. Two bandit-style experiments are conducted in which feedback is provided with uncertainty, but from known sources. Bayesian benchmarks are provided to assess normative facets of learning, and alternative credit assignment models are fit for comparison. Some aspects of normativity appear, in addition to possible deviations such as asymmetric updating from positive and negative outcomes.

      Strengths:

      The paper tackles an important topic, with a relatively clean cognitive perspective. The construction of the experiment enables the use of computational modeling. This helps to pinpoint quantitatively the properties of learning and formally evaluate their impact and importance. The analyses are generally sensible, and advanced parameter recovery analyses (including cross-fitting procedure) provide confidence in the model estimation and comparison. The authors have very thoroughly revised the paper in response to previous comments.

      Weaknesses:

      The authors acknowledge the potential for cognitive load and the interleaved task structure to play a meaningful role in the results, though leave this for future work. This is entirely reasonable, but remains a limitation in our ability to generalize the results. Broadly, some of the results obtain in cases where the extent of generalization is not always addressed and remains uncertain.

    3. Reviewer #3 (Public review):

      Summary

      This paper investigates how disinformation affects reward learning processes in the context of a two-armed bandit task, where feedback is provided by agents with varying reliability (with lying probability explicitly instructed). They find that people learn more from credible sources, but also deviate systematically from optimal Bayesian learning: They learned from uninformative random feedback, learned more from positive feedback, and updated too quickly from fully credible feedback (especially following low-credibility feedback). Overall, this study highlights how misinformation could distort basic reward learning processes, without appeal to higher order social constructs like identity.

      Strengths

      • The experimental design is simple and well-controlled; in particular, it isolates basic learning processes by abstracting away from social context
      • Modeling and statistics meet or exceed standards of rigor
      • Limitations are acknowledged where appropriate, especially those regarding external validity
      • The comparison model, Bayes with biased credibility estimates, is strong; deviations are much more compelling than e.g. a purely optimal model
      • The conclusions are of substantial interest from both a theoretical and applied perspective

      Weaknesses

      The authors have addressed most of my concerns with the initial submission. However, in my view, evidence for the conclusion that less credible feedback yields a stronger positivity bias remains weak. This is due to two issues.

      Absolute or relative positivity bias?

      The conclusion of greater positivity bias for lower credible feedback (Fig 5) hinges on the specific way in which positivity bias is defined. Specifically, we only see the effect when normalizing the difference in sensitivity to positive vs. negative feedback by the sum. I appreciate that the authors present both and add the caveat whenever they mention the conclusion. However, without an argument that the relative definition is more appropriate, the fact of the matter is that the evidence is equivocal.

      There is also a good reason to think that the absolute definition is more appropriate. As expected, participants learn more from credible feedback. Thus, normalizing by average learning (as in the relative definition) amounts to dividing the absolute difference by increasingly large numbers for more credible feedback. If there is a fixed absolute positivity bias (or something that looks like it), the relative bias will necessarily be lower for more credible feedback. In fact, the authors own results demonstrate this phenomenon (see below). A reduction in relative bias thus provides weak evidence for the claim.

      It is interesting that the discovery study shows evidence of a drop in absolute bias. However, for me, this just raises questions. Why is there a difference? Was one a just a fluke? If so, which one?

      Positivity bias or perseveration?

      Positivity bias and perseveration will both predict a stronger relationship between positive (vs. negative) feedback and future choice. They can thus be confused for each other when inferred from choice data. This potentially calls into question all the results on positivity bias.

      The authors clearly identify this concern in the text and go to considerable lengths to rule it out. However, the new results (in revision 1) show that a perseveration-only model can in fact account for the qualitative pattern in the human data (the CA parameters). This contradicts the current conclusion:

      Critically, however, these analyses also confirmed that perseveration cannot account for our main finding of increased positivity bias, relative to the overall extent of CA, for low-credibility feedback.

      Figure 24c shows that the credibility-CA model does in fact show stronger positivity bias for less credible feedback. The model distribution for credibility 1 is visibly lower than for credibilities 0.5 and 0.75.

      The authors need to be clear that it is the magnitude of the effect that the perseveration-only model cannot account for. Furthermore, they should additionally clarify that this is true only for models fit to data; it is possible that the credibility-CA model could capture the full size of the effect with different parameters (which could fit best if the model was implemented slightly differently).

      The authors could make the new analyses somewhat stronger by using parameters optimized to capture just the pattern in CA parameters (for example by MSE). This would show that the models are in principle incapable of capturing the effect. However, this would be a marginal improvement because the conclusion would still rest on a quantitative difference that depends on specific modeling assumptions.

      New simulations clearly demonstrate the confound in relative bias

      Figure 24 also speaks to the relative vs. absolute question. The model without positivity bias shows a slightly stronger absolute "positivity bias" for the most credible feedback, but a weaker relative bias. This is exactly in line with the logic laid out above. In standard bandit tasks, perseveration can be quite well-captured by a fixed absolute positivity bias, which is roughly what we see in the simulations (I'm not sure what to make of the slight increase; perhaps a useful lead for the authors). However, when we divide by average credit assignment, we now see a reduction. This clearly demonstrates that a reduction in relative bias can emerge without any true differences in positivity bias.

      Given everything above, I think it is unlikely that the present data can provide even "solid" evidence for the claim that positivity bias is greater with less credible feedback. This confound could be quickly ruled out, however, by a study in which feedback is sometimes provided in the absence of a choice. This would empirically isolate positivity bias from choice-related effects, including perseveration.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use a gambling task with momentary mood ratings from Rutledge et al. and compare computational models of choice and mood to identify markers of decisional and affective impairments underlying risk-prone behavior in adolescents with suicidal thoughts and behaviors (STB). The results show that adolescents with STB show enhanced gambling behavior (choosing the gamble rather than the sure amount), and this is driven by a bias towards the largest possible win rather than insensitivity to possible losses. Moreover, this group shows a diminished effect of receiving a certain reward (in the non-gambling trials) on mood. The results were replicated in an undifferentiated online sample where participants were divided into groups with or without STB based on their self-report of suicidal ideation on one question in the Beck Depression Inventory self-report instrument. The authors suggest, therefore, that adolescents with decreased sensitivity to certain rewards may need to be monitored more closely for STB due to their increased propensity to take risky decisions aimed at (expected) gains (such as relief from an unbearable situation through suicide), regardless of the potential losses.

      Strengths:

      (1) The study uses a previously validated task design and replicates previously found results through well-explained model-free and model-based analyses.

      (2) Sampling choice is optimal, with adolescents at high risk; an ideal cohort to target early preventative diagnoses and treatments for suicide.

      (3) Replication of the results in an online cohort increases confidence in the findings.

      (4) The models considered for comparison are thorough and well-motivated. The chosen models allow for teasing apart which decision and mood sensitivity parameters relate to risky decision-making across groups based on their hypotheses.

      (5) Novel finding of mood (in)sensitivity to non-risky rewards and its relationship with risk behavior in STB.

      Weaknesses:

      (1) The sample size of 25 for the S- group was justified based on previous studies (lines 181-183); however, all three papers cited mention that their sample was low powered as a study limitation.

      (2) Modeling in the mediation analysis focused on predicting risk behavior in this task from the model-derived bias for gains and suicidal symptom scores. However, the prediction of clinical interest is of suicidal behaviors from task parameters/behavior - as a psychiatrist or psychologist, I would want to use this task to potentially determine who is at higher risk of attempting suicide and therefore needs to be more closely watched rather than the other way around (predicting behavior in the task from their symptom profile). Unfortunately, the analyses presented do not show that this prediction can be made using the current task. I was left wondering: is there a correlation between beta_gain and STB? It is also important to test for the same relationships between task parameters and behavior in the healthy control group, or to clarify that the recommendations for potential clinical relevance of these findings apply exclusively to people with a diagnosis of depression or anxiety disorder. Indeed, in line 672, the authors claim their results provide "computational markers for general suicidal tendency among adolescents", but this was not shown here, as there were no models predicting STB within patient groups or across patients and healthy controls.

      (3) The FDR correction for multiple comparisons mentioned briefly in lines 536-538 was not clear. Which analyses were included in the FDR correction? In particular, did the correlations between gambling rate and BSI-C/BSI-W survive such correction? Were there other correlations tested here (e.g., with the TAI score or ERQ-R and ERQ-S) that should be corrected for? Did the mediation model survive FDR correction? Was there a correction for other mediation models (e.g., with BSI-W as a predictor), or was this specific model hypothesized and pre-registered, and therefore no other models were considered? Did the differences in beta_gain across groups survive FDR when including comparisons of all other parameters across groups? Because the results were replicated in the online dataset, it is ok if they did not survive FDR in the patient dataset, but it is important to be clear about this in presenting the findings in the patient dataset.

      (4) There is a lack of explicit mention when replication analyses differ from the analyses in the patient sample. For instance, the mediation model is different in the two samples: in the patient sample, it is only tested in S+ and S- groups, but not in healthy controls, and the model relates a dimensional measure of suicidal symptoms to gambling in the task, whereas in the online sample, the model includes all participants (including those who are presumably equivalent to healthy controls) and the predictor is a binary measure of S+ versus S- rather than the response to item 9 in the BDI. Indeed, some results did not replicate at all and this needs to be emphasized more as the lack of replication can be interpreted not only as "the link between mood sensitivity to CR and gambling behavior may be specifically observable in suicidal patients" (lines 582-585) - it may also be that this link is not truly there, and without a replication it needs to be interpreted with caution.

      (5) In interpreting their results, the authors use terms such as "motivation" (line 594) or "risk attitude" (line 606) that are not clear. In particular, how was risk attitude operationalized in this task? Is a bias for risky rewards not indicative of risk attitude? I ask because the claim is that "we did not observe a difference in risk attitude per se between STB and controls". However, it seems that participants with STB chose the risky option more often, so why is there no difference in risk attitude between the groups?

    2. Reviewer #2 (Public review):

      Summary:

      This article addresses a very pertinent question: what are the computational mechanisms underlying risky behaviour in patients who have attempted suicide? In particular, it is impressive how the authors find a broad behavioural effect whose mechanisms they can then explain and refine through computational modeling. This work is important because, currently, beyond previous suicide attempts, there has been a lack of predictive measures. This study is the first step towards that: understanding the cognition on a group level. This is before being able to include it in future predictive studies (based on the cross-sectional data, this study by itself cannot assess the predictive validity of the measure).

      Strengths:

      (1) Large sample size.

      (2) Replication of their own findings.

      (3) Well-controlled task with measures of behaviour and mood + precise and well-validated computational modeling.

      Weaknesses:

      I can't really see any major weakness, but I have a few questions:

      (1) I can see from the parameter recovery that the parameters are very well identified. Is it surprising that this is the case, given how many parameters there are for 90 trials? Could the authors show cross-correlations? I.e., make a correlation matrix with all real parameters and all fitted parameters to show that not only the diagonal (i.e., same data is the scatter plots in S3) are high, but that the off-diagonals are low.

      (2) Could the authors clarify the result in Figure 2B of a correlation between gambling rate and suicidal ideation score, is that a different result than they had before with the group main effect? I.e., is your analysis like this: gambling rate ~ suicide ideation + group assignment? (or a partial correlation)? I'm asking because BSI-C is also different between the groups. [same comment for later analyses, e.g. on approach parameter].

      (3) The authors correlate the impact of certain rewards on mood with the % gambling variable. Could there not be a more direct analysis by including mood directly in the choice model?

      (4) In the large online sample, you split all participants into S+ and S-. I would have imagined that instead, you would do analyses that control for other clinical traits. Or, for example, you have in the S- group only participants who also have high depression scores, but low suicide items.

    3. Reviewer #3 (Public review):

      This manuscript investigates computational mechanisms underlying increased risk-taking behavior in adolescent patients with suicidal thoughts and behaviors. Using a well-established gambling task that incorporates momentary mood ratings and previously established computational modeling approaches, the authors identify particular aspects of choice behavior (which they term approach bias) and mood responsivity (to certain rewards) that differ as a function of suicidality. The authors replicate their findings on both clinical and large-scale non-clinical samples.

      The main problem, however, is that the results do not seem to support a specific conclusion with regard to suicidality. The S+ and S- groups differ substantially in the severity of symptoms, as can be seen by all symptom questionnaires and the baseline and mean mood, where S- is closer to HC than it is to S+. The main analyses control for illness duration and medication but not for symptom severity. The supplementary analysis in Figure S11 is insufficient as it mistakes the absence of evidence (i.e., p > 0.05) for evidence of absence. Therefore, the results do not adequately deconfound suicidality from general symptom severity.

      The second main issue is that the relationship between an increased approach bias and decreased mood response to CR is conceptually unclear. In this respect, it would be natural to test whether mood responses influence subsequent gambling choices. This could be done either within the model by having mood moderate the approach bias or outside the model using model-agnostic analyses.

      Additionally, there is a conceptual inconsistency between the choice and mood findings that partly results from the analytic strategy. The approach bias is implemented in choice as a categorical value-independent effect, whereas the mood responses always scale linearly with the magnitude of outcomes. One way to make the models more conceptually related would be to include a categorical value-independent mood response to choosing to gamble/not to gamble.

      The manuscript requires editing to improve clarity and precision. The use of terms such as "mood" and "approach motivation" is often inaccurate or not sufficiently specific. There are also many grammatical errors throughout the text.

      Claims of clinical relevance should be toned down, given that the findings are based on noisy parameter estimates whose clinical utility for the treatment of an individual patient is doubtful at best.

    1. Reviewer #1 (Public review):

      Summary:

      In the present study, Chen et al. investigate the role of Endophilin A1 in regulating GABAergic synapse formation and function. To this end, the authors use constitutive or conditional knockout of Endophilin A1 (EEN1) to assess the consequences on GABAergic synapse composition and function, as well as the outcome for PTZ-induced seizure susceptibility. The authors show that EEN1 KO mice show a higher susceptibility to PTZ-induced seizures, accompanied by a reduction in the GABAergic synaptic scaffolding protein gephyrin as well as specific GABAAR subunits and eIPSCs. The authors then investigate the underlying mechanisms, demonstrating that Endophilin A1 binds directly to gephyrin and GABAAR subunits, and identifying the subdomains of Endophilin A1 that contribute to this effect. Overall, the authors state that their study places Endophilin A1 as a new regulator of GABAergic synapse function.

      Strengths:

      Overall, the topic of this manuscript is very timely, since there has been substantial recent interest in describing the mechanisms governing inhibitory synaptic transmission at GABAergic synapses. The study will therefore be of interest to a wide audience of neuroscientists studying synaptic transmission and its role in disease. The manuscript is well written and contains a substantial quantity of data. In the revised version of the manuscript, the authors have increased the number of samples analyzed and have significantly improved the statistical analysis, thereby substantially strengthening the conclusions of their study.

    2. Reviewer #2 (Public review):

      Summary:

      The function of neural circuits relies heavily on the balance of excitatory and inhibitory inputs. Particularly, inhibitory inputs are understudied when compared to their excitatory counterparts due to the diversity of inhibitory neurons, their synaptic molecular heterogeneity, and their elusive signature. Thus, insights into these aspects of inhibitory inputs can inform us largely on the functions of neural circuits and the brain.

      Endophilin A1, an endocytic protein heavily expressed in neurons, has been implicated in numerous pre- and postsynaptic functions, however largely at excitatory synapses. Thus, whether this crucial protein plays any role in inhibitory synapse, and whether this regulates functions at the synaptic, circuit, or brain level remains to be determined.

      The three remaining concerns are:

      (1) The use of one-way ANOVA is not well justified.

      (2) The use of superplots to show culture to culture variability would make it more transparent.

      (3) Change EEN1 in Figure 8B to EndoA1.

      Comments on revised version:

      The authors addressed the concerns adequately.

    3. Reviewer #3 (Public review):

      Chen et al. identify endophilin A1 as a novel component of the inhibitory postsynaptic scaffold. Their data show impaired evoked inhibitory synaptic transmission in CA1 neurons of mice lacking endophilin A1, and an increased susceptibility to seizures. Endophilin can interact with the postsynaptic scaffold protein gephyrin and promotes assembly of the inhibitory postsynaptic element. Endophilin A1 is known to play a role in presynaptic terminals and in dendritic spines, but a role for endophilin A1 at inhibitory postsynaptic densities has not yet been described, providing a valuable addition to the field.

      To investigate the role of endophilin A1 at inhibitory postsynapses, the authors used a broad array of experimental approaches, including tests of seizure susceptibility, electrophysiology, biochemistry, neuronal culture and image analysis. The authors have addressed the remaining concerns in their revision. Taken together, their results expand the synaptic role of endophilin-A1 to include the inhibitory post synaptic element.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses a diverse isolate collection of Streptococcus pneumoniae from hospital patients in the Netherlands to understand the population-level genetic basis of growth rate variation in this pathogen, which is a key determinant of S. pneumoniae within-host fitness. Previous efforts have studied this phenomenon in strain-specific comparisons, which can lack the statistical power and scope of population-level studies. The authors collected a rigorous set of in vitro growth data for each S. pneumoniae isolate and subsequently paired growth curve analysis with whole-genome analyses to identify how phylogenetics, serotype and specific genetic loci influence in vitro growth. While there were noticeable correlations between capsular serotype and phylogeny with growth metrics, they did not identify specific loci associated with altered in vitro growth, suggesting that these phenotypes are controlled by the collective effect of the entire genetic background of a strain. This is an important finding that lays the foundation for additional, more highly-powered studies that capture more S. pneumoniae genetic diversity to identify these genetic contributions.

      Strengths:

      The authors were able to completely control the experimental and genetic analyses to ensure all isolates underwent the same analysis pipeline to enhance the rigor of their findings.

      The isolate collection captures an appreciable amount of S. pneumoniae diversity and, importantly, enables disentangling the contributions of the capsule and phylogenetic background to growth rates.

      This study provides a population-level, rather than strain-specific, view of how genetic background influences growth rate in S. pneumoniae. This is an advance over previous studies that have only looked at smaller sets of strains.

      The methods used are well-detailed and robust to allow replication and extension of these analyses. Moreover, the manuscript is very well written and includes a thoughtful and thorough discussion of the strengths and limitations of the current study.

      Weaknesses:

      As acknowledged by the authors, the genetic diversity and sample size of this newly collected isolate set is still limited relative to the known global diversity of S. pneumoniae, which evidently limits the power to detect loci with smaller/combinatorial contributions to growth rate (and ultimately infection).

      The in vitro growth data is limited to a single type of rich growth medium, which may not fully reflect the nutritional and/or selective pressures present in the host.

      The current study does not use genetic manipulation or in vitro/in vivo infection models to experimentally test whether alteration of growth rates as observed in this study is linked to virulence or successful infection. The availability of a naturally diverse collection with phylogenetic and serotype combinations already identified as interesting by the authors provides a strong rationale for wet-lab studies of these phenotypes.

      Update on first revision:

      The authors have responded to all of my initial comments as well as those of the other reviewers, and I have no further concerns to be addressed.

    2. Reviewer #2 (Public review):

      The study by Chaguza et al. presents a novel perspective on pneumococcal growth kinetics, suggesting that the overall genetic background of Streptococcus pneumoniae, rather than specific loci, plays a more dominant role in determining growth dynamics. Through a genome-wide association study (GWAS) approach, the authors propose a shift in how we understand growth regulation, differing from earlier findings that pinpointed individual genes, such as wchA or cpsE, as key regulators of growth kinetics. This study highlights the importance of considering the cumulative impact of the entire genetic background rather than focusing solely on individual genetic loci.

      The study emphasizes the cumulative effects of genetic variants, each contributing small individual impacts, as the key drivers of pneumococcal growth. This polygenic model moves away from the traditional focus on single-gene influences. Through rigorous statistical analyses, the authors persuasively advocate for a more holistic approach to understanding bacterial growth regulation, highlighting the complex interplay of genetic factors across the entire genome. Their findings open new avenues for investigating the intricate mechanisms underlying bacterial growth and adaptation, providing fresh insights into bacterial pathogenesis.

      Strengths:

      This study exemplifies a holistic approach to unraveling key factors in bacterial pathogenesis. By analyzing a large dataset of whole-genome sequences and employing robust statistical methodologies, the authors provide strong evidence to support their main findings. Which is a leap forward from previous studies focused on a relatively smaller number of strains. Their integration of genome-wide association studies (GWAS) highlights the cumulative, polygenic influences on pneumococcal growth kinetics, challenging the traditional focus on individual loci. This comprehensive strategy not only advances our understanding of bacterial growth regulation but also establishes a foundation for future research into the genetic underpinnings of bacterial pathogenesis and adaptation. The amount of data generated and corresponding approaches to analyze the data are impressive as well as convincing. The figures are convincing and comprehensible too. The revised version of the manuscript, after the addition and including explanations, is more convincing and acceptable.

      Weaknesses:

      This study suggests evidence that the genetic background significantly influences bacterial growth kinetics. However, the absence of experimental validation remains a critical limitation. Although the authors acknowledge in their response to reviewers that bench-experiments were beyond the scope of this work and are planned, this gap of experimental validation weakens the current conclusions. Demonstrable validation will be essential to corroborate the associations identified through the GWAS approach. Future experimental efforts will be critical to substantiate these findings and to deepen our understanding of the genetic determinants governing bacterial growth dynamics.

    3. Reviewer #3 (Public review):

      This study provides insights into the growth kinetics of a diverse collection of Streptococcus pneumoniae, identifying capsule and lineage differences. It was not able to identify any specific loci from the GWAS that were associated with the growth features. It does provide a useful study linking phenotypic data with large scale genomic population data.

      In the revised version, the authors have addressed the points raised by the reviewers. The authors have provided additional detail in the Introduction and Methods that both improves the general accessibility for the broad readership of eLife, and the ability of other researchers to reproduce the approaches used in this study. They have expanded the Results and Discussion text in some sections to provide greater clarity and accuracy in reporting their data.

      The inclusion of a Data Availability statement was a useful addition and will help ensure the manuscript adheres to eLife's publishing policies.

    1. Reviewer #1 (Public review):

      Summary:

      This work by Govorunova et al. identified three naturally blue-shifted channelrhodopsins (ChRs) from ancyromonads, namely AnsACR, FtACR, and NlCCR. The phylogenetic analysis places the ancyromonad ChRs in a distinct branch, highlighting their unique evolutionary origin and potential for novel applications in optogenetics. Further characterization revealed the spectral sensitivity, ionic selectivity, and kinetics of the newly discovered AnsACR, FtACR, and NlCCR. This study also offers valuable insights into the molecular mechanism underlying the function of these ChRs, including the roles of specific residues in the retinal-binding pocket. Finally, this study validated the functionality of these ChRs in both mouse brain slices (for AnsACR and FtACR) and in vivo in Caenorhabditis elegans (for AnsACR), demonstrating the versatility of these tools across different experimental systems.<br /> In summary, this work provides a potentially valuable addition to the optogenetic toolkit by identifying and characterizing novel blue-shifted ChRs with unique properties.

      Strengths:

      This study provides a thorough characterization of the biophysical properties of the ChRs' properties and demonstrated the versatility of these tools in different ex vivo and in vivo experimental systems. The authors also explored the potential of AnsACR for multiplexed optogenetics. Finally, the mutagenesis experiments revealed the roles of key residues in the photoactive site that can affect the spectral and kinetic properties of the channelrhodopsins.

      Weaknesses:

      The revised manuscript has addressed most of the previous major weaknesses.

    2. Reviewer #2 (Public review):

      Summary:

      Govorunova et al present three new anion opsins that have potential applications silencing neurons. They identify new opsins by scanning numerous databases for sequence homology to known opsins, focusing on anion opsins. The three opsin identified, are uncommonly fast, potent, and are able to silence neuronal activity. The authors characterize numerous parameters of the opsins and compare these opsins to the existing and widely used GtACR opsins.

      Strengths:

      This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. The opsins AnsACR and FtACR are particularly notable having extraordinarily fast onset kinetics that could have utility in many domains. Furthermore, the authors show AnsACR is useable in multiphoton experiments having a peak photocurrent in a commonly used wavelength. Overall, the author's detailed measurements and characterization make for an important resource - both presenting new opsins that may be important for future experiment, and providing characterizations to expand our understanding of opsin biophysics in general.

    3. Reviewer #3 (Public review):

      Summary:

      The authors aimed to develop Channelrhodopsins (ChRs), light-gated ion channels, with high potency and blue action spectra for use in multicolor (multiplex) optogenetics applications. To achieve this, they performed a bioinformatics analysis to identify ChR homologues in several protist species, focusing on ChRs from ancyromonads, which exhibited the highest photocurrents and the most blue-shifted action spectra among the tested candidates. Within the ancyromonad clade, the authors identified two new anion-conducting ChRs and one cation-conducting ChR. These were characterized in detail using a combination of manual and automated patch-clamp electrophysiology, absorption spectroscopy, and flash photolysis. The authors also explored sequence features that may explain the blue-shifted action spectra and differences in ion selectivity among closely related ChRs.

      Strengths:

      A key strength of this study is the high-quality experimental data, which were obtained using well-established techniques such as manual patch-clamp and absorption spectroscopy, complemented by modern automated patch-clamp approaches. These data convincingly support most of the claims. The newly characterized ChRs expand the optogenetics toolkit and will be of significant interest to researchers working with microbial rhodopsins, those developing new optogenetic tools, as well as neuro- and cardioscientists employing optogenetic methods.

      Weaknesses:

      This study does not exhibit major methodological weaknesses.

    1. Reviewer #1 (Public review):

      The authors report on a thorough investigation of the interaction of megakaryocytes (MK) with their associated ECM during maturation. They report convincing evidence to support the existence of a dense cage-like pericellular structure containing laminin γ1 and α4 and collagen IV, which interacts with integrins β1 and β3 on MK and serve to fix the perisinusoidal localization of MK and prevent their premature intravasation. As with everything in nature, the authors support a Goldilocks range of MK-ECM interactions - inability to digest the ECM via inhibition of MMPs leads to insufficient MK maturation and development of smaller MK. This important work sheds light into the role of cell-matrix interactions in MK maturation, and suggests that higher-dimensional analyses are necessary to capture the full scope of cellular biology in the context of their microenvironment. The authors have responded appropriately to the majority of my previous comments.

    2. Reviewer #2 (Public review):

      Summary:

      This study makes a significant contribution to understanding the microenvironment of megakaryocytes (MKs) in the bone marrow, identifying an extracellular matrix (ECM) cage structure that influences MK localization and maturation. The authors provide compelling evidence for the presence of this ECM cage and its role in MK homeostasis, employing an array of sophisticated imaging techniques and molecular analyses.

      The authors have addressed most of the concerns raised in the previous review, providing clarifications and additional data that strengthen their conclusions

      More broadly, this work adds to a growing recognition of the ECM as an active participant in haematopoietic cell regulation in the bone marrow microenvironment. This work could pave the way to future studies investigating how the megakaryocytes' ECM cage affects their function as part of the haematopoietic stem cell niche, and by extension, influences global haematopoiesis.

    1. Reviewer #1 (Public review):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations. Importantly, the rescue experiments also demonstrated that sulfation enzymatic activity is important.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing.

      Significance:

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore, it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

    2. Reviewer #2 (Public review):

      Summary

      This study provides new insights into organ morphogenesis using the Drosophila salivary gland (SG) as a model. The authors identify a requirement for sulfation in regulating lumen expansion, which correlates with several effects at the cellular level, including regulation of intracellular trafficking and the organization of Golgi, the aECM and the apical membrane. In addition, the authors show that the ZP proteins Dumpy (Dpy) and Pio form an aECM regulating lumen expansion. Previous reports already pointed to a role for Papss in sulfation in SG and the presence of Dpy and Pio in the SG. Now this work extends these previous analyses and provides more detailed descriptions that may be relevant to the fields of morphogenesis and cell biology (with particular focus on ECM research and tubulogenesis). This study nicely presents valuable information regarding the requirements of sulfation and the aECM in SG development.

      Strengths:

      - The results supporting a role for sulfation in SG development are strong. In addition, the results supporting the involvement of Dpy and Pio in the aECM of the SG, their role in lumen expansion, and their interactions, are also strong.

      - The authors have made an excellent job in revising and clarifying the many different issues raised by the reviewers, particularly with the addition of new experiments and quantifications. I consider that the manuscript has improved considerably.

      - The authors generated a catalytically inactive Papss enzyme, which is not able to rescue the defects in Papss mutants, in contrast to wild type Papss. This result clearly indicates that the sulfation activity of Papss is required for SG development.

    1. Reviewer #1 (Public review):

      Summary:

      The authors of this study propose a model in which NPY family regulators antagonize the activity of the pid mutation in the context of floral development and other auxin-related phenotypes. This is hypothesized to occur through regulation of or by PID and its action on the PIN1 auxin transporter.

      Strengths:

      The findings are intriguing.

      Weaknesses and Major Comments:

      (1) While the findings are indeed intriguing, the mechanism of action and interaction among these components remains poorly understood. The study would benefit from significantly more thorough and focused experimental analyses to truly advance our understanding of pid phenotypes and the interplay among PID, NPYs, and PIN1.

      (2) The manuscript appears hastily assembled, with key methodological and conceptual details either missing or inconsistent. Although issues with figure formatting and clarity (e.g., lack of scale bars and inconsistent panel layout) may alone warrant revision, the content remains the central concern and must take precedence over presentation.

      (3) Given that fertile progeny are obtained from pid-TD pin1/PIN1 and pid NPY OE lines, it would be important to analyze whether mutations and associated phenotypes are heritable. This is especially relevant since CRISPR lines can be mosaic. Comprehensive genotyping and inheritance studies are required.

      (4) The Materials and Methods section lacks essential information on how the lines were generated, genotyped, propagated, and scored. There is also generally no mention of how reproducible the observations were. These genetic experiments need to be described in detail, including the number of lines analyzed and consistency across replicates.

      (5) The nature of the pid alleles used in the study is not described. This is essential for interpretation.

      (6) The authors measure PIN1 phosphorylation in response to NPY overexpression and conclude that the newly identified phosphorylation sites are inhibitory because they do not overlap with known activating sites. This conclusion is speculative without functional validation. Functional assays are available and must be included to substantiate this claim.

      (7) Figure 5 implies that NPY1 acts downstream of PID, but there is no biochemical evidence supporting this hierarchy. Additional experiments are needed to demonstrate the epistatic or regulatory relationship.

      (8) The authors should align their genetic observations with cell biological data on PIN1, PIN2, and PID localization and distribution.

    2. Reviewer #2 (Public review):

      Summary:

      The study is well-conducted, revealing that NPY1, with previously less-characterized molecular functions, can suppress pid mutant phenotypes with a phosphorylation-based mechanism. Overexpression of NPY1 (NPY1-OE) results in PIN phosphorylation at unique sites and bypasses the requirement for PID for this event. Conversely, a C-terminal deleted form of NPY1 (NPY1-dC) fails to rescue pid despite promoting a certain phospho-profile in PIN proteins.

      Strengths:

      (1) The careful genetic analyses of pid suppression by NPY1-OE and the inability of NPY1dC to do the same.

      (2) Phospho-proteomics approaches reveal that NPY1-OE induces phosphorylation of PINs at non-canonical sites, independent of PID.

      Weaknesses:

      (1) The native role of NPY1 is not tested by phospho-proteomics in loss-of-function npy1 mutants. Such analysis would be crucial to demonstrate that NPY1 is required for the observed phosphorylation events.

      (2) The functional consequences of the newly identified phosphorylation sites in PINs remain speculative. Site-directed mutagenesis (phospho-defective and phospho-mimetic) would help clarify their physiological roles.

      (3) The kinase responsible for NPY1-mediated phosphorylation remains unidentified. Since NPY1 is a non-kinase protein, a model involving recruitment of partner kinases (e.g., PIN-phosphorylating kinases other than PID) should be considered or discussed.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript from Mudgett et al. explores the relative roles of PID and NPY1 in auxin-dependent floral initiation in Arabidopsis. Micro vectorial auxin flows directed by PIN1 are essential to flower initiation, and loss of PIN1 or two of its regulators, PID and NPY1 (in a yucca-deficient background) phenocopies the pinformed phenotype. This group has previously shown that PID-PIN1 interactions and function are dosage-dependent. The authors pick up this thread by demonstrating that a heterozygote containing a CRISPR deletion of one copy of PIN1 can restore quasi-wild type floral initiation to pid.

      The authors then show that overexpression of NPY1 is sufficient to more or less restore wild-type floral initiation to the pid mutant. The authors claim that this result demonstrates that NPY1 functions downstream of PID, as this ectopic abundance of NPY1 resulted in phosphorylation of PIN1 at sites that differ from sites of action of PID. The authors pursue evidence that PID action via NPY1 is analogous to the mode of action by which phot1/2 act on NPH3 in seedling phototropism. Such a model is supported by the evidence presented herein that the C terminus of NPY1, which has abundant Ser/Thr content, is phosphorylated, and that the deletion of this domain prevents overexpression compensation of the pinformed phenotype.<br /> While the results presented support evidence in the literature that PID acts on NPY1 to regulate PIN1 function, it is also possible that NPY1 overexpression results in limited expansion of phosphorylation targets observed with other AGC kinases. And if the phot model is any indication, there may be other PID targets that modulate PIN1-dependent floral initiation.

      However, overexpression of the NPY1 C-terminal deletion construct resulted in phosphorylation of both PIN1 and PIN2 and agravitropic root growth similar to what is observed in pin2 mutants. This suggests that direct PID phosphorylation of PINs and action via NPY1 can be distinguished by phosphorylation sites and by growth phenotypes.

      Strengths:

      A very important effort that places NPY1 downstream of PID in floral initiation.

      Weaknesses:

      As PID has been shown to act on sites that regulate PIN protein polarity as well as PIN protein function, it would be useful if the authors consider how their results would fit/not fit with a model where combinatorial function of NPY1 and PID regulate PIN1 in a manner similar to the way that PID appears to function combinatorially with D6PK on PIN3.

  3. Aug 2025
    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Liu et al have tried to dissect the neural and molecular mechanisms that C. elegans use to avoid the digestion of harmful bacterial food. Liu et al show that C. elegans use ON-OFF state of AWC olfactory neurons to regulate the digestion of harmful gram-positive bacteria S. saprophyticus (SS). Authors show that when C. elegans are fed on SS food, AWC neurons switch to OFF fate, which prevents the digestion of S. saprophyticus, and this helps C. elegans avoid these harmful bacteria. Using genetic and transcriptional analysis as well as making use of previously published findings, Liu et al implicate p38 MAPK pathway (in particular, NSY-1, the C. elegans homolog of MAPKKK ASK1) and insulin signaling in this process.

      Strengths:

      The revised manuscript has improved significantly. The authors have addressed almost all the comments that I had in my initial review.

      Weaknesses:

      None.

    2. Reviewer #2 (Public review):

      Summary:

      Using C. elegans as a model, the authors present an interesting story demonstrating a new regulatory connection between olfactory neurons and the digestive system. Mechanistically, they identified key factors (NSY-1, STR-130 et.al) in neurons, as well as critical 'signaling factors' (INS-23, DAF-2) that bridge different cells/tissues to execute the digestive shutdown induced by poor-quality food (Staphylococcus saprophyticus, SS).

      Strengths:

      The conclusions of this manuscript are mostly well supported by the experimental results shown.

      Weaknesses:

      The authors have done a nice job in addressing my comments.

    3. Reviewer #3 (Public review):

      Summary:

      The study explores a molecular mechanism by which C. elegans detects low-quality food through neuron-digestive crosstalk, offering new insights into food quality control systems. Liu and colleagues demonstrated that NSY-1, expressed in AWC neurons, is a key regulator for sensing Staphylococcus saprophyticus (SS), inducing avoidance behavior and shutting down the digestive system via intestinal BCF-1. They further revealed that INS-23, an insulin peptide, interacts with the DAF-2 receptor in the gut to modulate SS digestion. The study uncovers a food quality control system connecting neural and intestinal responses, enabling C. elegans to adapt to environmental challenges.

      Strengths:

      The study employs a genetic screening approach to identify nsy-1 as a critical regulator in detecting food quality and initiating adaptive responses in C. elegans. The use of RNA-seq analysis is particularly noteworthy, as it reveals distinct regulatory pathways involved in food sensing (Figure 4) and digestion of Staphylococcus saprophyticus (Figure 5). The strategic application of both positive and negative data mining enhances the depth of analysis. Importantly, the discovery that C. elegans halts digestion in response to harmful food and employs avoidance behavior highlights a physiological adaptation mechanism.

      Weaknesses:

      Major weaknesses have been addressed.

    1. Reviewer #1 (Public review):

      The authors adequately addressed the concerns I raised in my initial review, which are noted below.

      (1) I suggest that the authors choose a different term in their title, abstract and manuscript to describe the phenotypes associated with ufd-1 and npl-4 knockdown other than an "inflammation-like response." Inflammation is a pathological term with four cardinal signs: redness (rubor), swelling (tumor), warmth (calor) and pain (dolor). These are not symptoms known to occur in C. elegans. The authors could consider using "inappropriate," "aberrant" or "toxic" immune activation in the title and abstract.

      (2) I think it is important to point out in the context of the authors novelty claim in the abstract and manuscript that the toxic effects of inappropriate immune activation in C. elegans has been widely catalogued. For example: doi.org/10.1371/journal.ppat.1011120 (2023); doi:10.1186/s12915-016-0320-z (2016).; doi:10.1126/science.1203411 (2011); doi:10.1534/g3.115.025650 (2016). In addition, doi:10.7554/eLife.74206 (2022) previously described a mutation that caused innate immune activation that reduced accumulation of P. aeruginosa in the intestine, but also caused animals to have a shortened lifespan.

      Thus, I do not think this study reveals the existence of inflammatory-like responses in C. elegans, as stated by the authors. Indeed, I think it is important for the authors to remove this novelty claim from their paper and discuss their work in the context of these studies in a paragraph in the introduction.

      (3) The authors rely on the use of RNAi of ufd-1 and npl-4 to study their effect on P. aeruginosa colonization and pathogen resistance throughout the manuscript. To address the possibility of off-target effects of the RNAi, the authors should consider both (i) showing with qRT-PCR that these genes are indeed targeted during RNAi, and (ii) confirming their phenotypes with an orthologous technique, preferably by studying ufd-1 and npl-4 loss-of-function mutants [both in the wild-type and sek-1(km4) backgrounds]. If mutation of these genes is lethal, the authors could use Auxin Inducible Degron (AID) technology to induce the degradation of these proteins in post-developmental animals.

      (4) I am confused about the author's explanation regarding their observation that inhibition of the UFD-1/ NPL-4 complex extends the lifespan of sek-1(km25) animals, but not pmk-1(km25) animals, as SEK-1 is the MAPKK that functions immediately upstream of the p38 MAPK PMK-1 to promote pathogen resistance.

      I am also confused why their RNA-seq experiment revealed a signature of intracellular pathogen response genes and not PMK-1 targets, which the authors propose is accounting for toxic immune activation. Activation of which immune response leads to toxicity?

      (5) The authors did not test alternative explanations for why UFD-1/ NPL-4 complex inhibition compromises survival during pathogen infection, other than exuberant immune activation. For example, it is possible that inhibition of this proteosome complex shortens lifespan by compromising the general health/ normal physiology of nematodes. Immune responses could be activated as a secondary consequence of this stress, and not be a direct cause of early mortality. Does sek-1(km4) mutant suppress the lifespan shortened lifespan of ufd-1 and npl-4 knockdown? This experiment should also be done with loss-of-function mutants, as noted in point 3.

      (6) The conclusion of Figure 6 hinges on an experiment that uses double RNAi to knockdown two genes at the same time (Fig. 6D and 6G), an approach that is inherently fraught in C. elegans biology owing to the likelihood that the efficiency of RNAi-mediated gene knockdown is compromised and may account for the observed phenotypes. The proper control for double RNAi is not empty vector + ufd-1(RNAi), but rather gfp(RNAi) + ufd-1(RNAi), as the introduction of a second hairpin RNA is what may compromise knockdown efficiency. In this context, it is important to confirm that knockdown of both genes occurs as expected (with qRT-PCR) and to confirm this phenotype using available elt-2 loss-of-function mutants.

      (7) A supplementary table with the source data for at least three replications (mean lifespan, n, statistical comparison) for each pathogenesis assay should be included in this manuscript.

      Comments on revisions:

      The authors adequately addressed the concerns I raised.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to uncover what role, if any, the UFD1/NPL4 complex might play in innate immune responses of the nematode C. elegans. The authors find that loss of the complex renders animals more sensitive to both pathogenic and non-pathogenic bacteria. However, there appears to be a complex interplay with known innate immune pathways since loss of UFD1/NPL4 actually results in increased survival of animals lacking the canonical innate immune pathways.

      Strengths:

      The authors perform robust genetic analysis to exclude and include possible mechanisms by which the UFD1/NPL4 pathway acts in the innate immune response.

      Weaknesses:

      The argument that the loss of the UFD1/NPL4 complex triggers a response that mimics that of an intracellular pathogen is not thoroughly investigated. Additionally, the finding of a role of the GATA transcription factor, ELT-2, in this response is suggestive, but experiments showing sufficiency in the context of loss of the UFD1/NPL4 complex need to be explored.

      Comments on revisions:

      The authors have performed several control experiments for their RNAi based experiments and also tested the requirement for xbp-1s in their paradigm. The findings and their interpretations are acceptable.

    1. Reviewer #3 (Public review):

      Summary:

      This study investigates the role of the host protein RBMX2 in regulating the response to Mycobacterium bovis infection and its connection to epithelial-mesenchymal transition (EMT), a key pathway in cancer progression. Using bovine and human cell models, the authors have wisely shown that RBMX2 expression is upregulated following M. bovis infection and promotes bacterial adhesion, invasion, and survival by disrupting epithelial tight junctions via the p65/MMP-9 signaling pathway. They also demonstrate that RBMX2 facilitates EMT and is overexpressed in human lung cancers, suggesting a potential link between chronic infection and tumor progression. The study highlights RBMX2 as a novel host factor that could serve as a therapeutic target for both TB pathogenesis and infection-related cancer risk.

      Strengths:

      The major strengths lie in its multi-omics integration (transcriptomics, proteomics, metabolomics) to map RBMX2's impact on host pathways, combined with rigorous functional assays (knockout/knockdown, adhesion/invasion, barrier tests) that establish causality through the p65/MMP-9 axis. Validation across bovine and human cell models and in clinical tissue samples enhances translational relevance. Finally, identifying RBMX2 as a novel regulator linking mycobacterial infection to EMT and cancer progression opens exciting therapeutic avenues.

      Weaknesses:

      There are a few minor weaknesses like grammatical errors, spelling mistakes. Also, the manuscript is too dense; improving the narratives in the Results and Discussion section could help readers follow the logic of the experimental design and conclusions.

    1. Reviewer #1 (Public review):

      In the manuscript, Aldridge and colleagues investigate the role of IL-27 in regulating hematopoiesis during T. gondii infection. Using loss-of-function approaches, reporter mice, and the generation of serial chimeric mice, they elegantly demonstrate that IL-27 induction plays a critical role in modulating bone marrow myelopoiesis and monocyte generation to the infection site. The study is well-designed, with clear experimental approaches that effectively address the mechanisms by which IL-27 regulates bone marrow myelopoiesis and prevents HSC exhaustion. I have two minor comments that could enhance the conceptual framework of this study:

      (1) The authors indirectly show that IL-27R expression on HSPCs is necessary for regulating HSC proliferation and preventing exhaustion. However, given that they have access to IL-27RFlox mice, they could cross these with Fgd5Cre mice to specifically delete IL-27R on long-term HSCs. This would provide direct evidence for the role of IL-27 signaling in LTHSCs during infection.

      (2) Since memory T and B cells often home to the bone marrow, it would be interesting to consider the potential cross-talk between these cells, HSPCs, and IL-27 signaling during secondary T. gondii infection. A brief discussion of this possibility would strengthen the study's broader implications.

    2. Reviewer #2 (Public review):

      Aldridge et al. demonstrate the important role of IL-27 in limiting emergency myelopoiesis in response to Toxoplasma gondii infection. Interestingly, IL-27 acts specifically at the level of early haematopoietic progenitors, inducing STAT signalling, which, in this case, dampens proliferation and preserves HSC fitness.

      They used different mouse genetic models such as HSC lineage tracing, IL27 and IL27R-deficient mice to show that :

      HSCs actively participate in emergency myelopoiesis during Toxoplasma gondii infection.

      The absence of IL27 and IL27R increases monocyte progenitors and monocytes, mainly inflammatory monocytes CCR2hi.

      At steady state, loss of IL27 impairs HSC fitness as competitive transplantation shows long-term engraftment deficiency of IL27 BM cells. This impairment is exacerbated after infection.

      IL27 is produced by various BM and other tissue cells at steady state and its expression increases with infection, mainly by increasing the number of monocytes producing it.

      This article highlights a new mechanism that acts directly at the level of early hematopoietic cells to limit over-inflammation during infection.

    1. Reviewer #1 (Public review):

      Summary:

      The authors were attempting to describe if trained innate immunity would modulate antibody dependent-cellular phagocytosis (ADCP) and/or efferocytosis.

      Strengths:

      The use of primary murine macrophages, and not a cell line, is considered a strength.

      The trained immunity mediated changes to phagocytosis affected both myeloma and breast cancer cells. The broad effect is consistent with trained immunity.

      In this revised manuscript, the authors now include in vivo data to show in vivo relevance.

      Weaknesses:

      There are many types of cancers so it would be helpful to focus the title more for the types of cancers included in the present study, the most relevant of course would be the type of cancer used for the in vivo model.

    2. Reviewer #3 (Public review):

      Summary:

      Chatzis et al showed that β-glucan trained macrophages have decreased phagocytic activity of apoptotic tumor cells and that is accompanied by lower levels of secreted IL-1β using mouse model.

      Strengths:

      This finding has potential impact on designing new cancer immunotherapeutic approaches by targeting macrophage efferocytosis.

      The concerns have been addressed.

    1. Reviewer #1 (Public review):

      Summary:

      This fundamental work employed multidisciplinary approaches and conducted rigorous experiments to study how a specific subset of neurons in the dorsal striatum (i.e., "patchy" striatal neurons) modulates locomotion speed depending on the valence of naturalistic contexts.

      Strengths:

      The scientific findings are novel and original and significantly advance our understanding of how the striatal circuit regulates spontaneous movement in various contexts.

      Weaknesses:

      This is extensive research involving various circuit manipulation approaches. Some of these circuit manipulations are not physiological. This is discussed.

    2. Reviewer #2 (Public review):

      Hawes et al. investigated the role of striatal neurons in the patch compartment of the dorsal striatum. Using Sepw1-Cre line, the authors combined a modified version of the light/dark transition box test that allows them to examine locomotor activity in different environmental valence with a variety of approaches, including cell-type-specific ablation, miniscope calcium imaging, fiber photometry, and opto-/chemogenetics. First, they found ablation of patchy striatal neurons resulted in an increase in movement vigor when mice stayed in a safe area or when they moved back from more anxiogenic to safe environments. The following miniscope imaging experiment revealed that a larger fraction of striatal patchy neurons was negatively correlated with movement speed, particularly in an anxiogenic area. Next, the authors investigated differential activity patterns of patchy neurons' axon terminals, focusing on those in GPe, GPi, and SNr, showing that the patchy axons in SNr reflect movement speed/vigor. Chemogenetic and optogenetic activation of these patchy striatal neurons suppressed the locomotor vigor, thus demonstrating their causal role in the modulation of locomotor vigor when exposed to valence differentials. Unlike the activation of striatal patches, such a suppressive effect on locomotion was absent when optogenetically activating matrix neurons by using the Calb1-Cre line, indicating distinctive roles in the control of locomotor vigor by striatal patch and matrix neurons. Together, they have concluded that nigrostriatal neurons within striatal patches negatively regulate movement vigor, dependent on behavioral contexts where motivational valence differs.

      The strengths of this work include the use of multiple experimental approaches, including genetic/viral ablation of patch neurons, miniscope single-cell imaging, as well as projection-specific recording of axonal activity by fiber photometry, and causal manipulation of the neurons by chemogenetic and optogenetics. Although similar findings were reported previously, the authors' results will be of value owing to multiple levels of investigation. In my view, this study will add to the important literature by demonstrating how patch (striosomal) neurons in the striatum controls movement vigor.

    3. Reviewer #3 (Public review):

      Hawes et al. combined behavioral, optical imaging, and activity manipulation techniques to investigate the role of striatal patch SPNs in locomotion regulation. Using Sepw1-Cre transgenic mice, they found that patch SPNs encode locomotion deceleration in a light-dark box procedure through optical imaging techniques. Moreover, genetic ablation of patch SPNs increased locomotion speed, while chemogenetic activation of these neurons decreased it. The authors concluded that a subtype of patch striatonigral neurons modulates locomotion speed based on external environmental cues.

      In the revision, the authors have largely addressed my concerns with additional explanation and discussion, although some of the key experiments to strengthen the authors' claim by identifying the function of specific cell populations remain to be conducted due to technical challenges. Nevertheless, the current results remain valuable and interesting to a wide audience in the field.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have investigated the role of GAT3 in the visual system. First, they have developed a CRISPR/Cas9-based approach to locally knock out this transporter in the visual cortex. They then demonstrated electrophysiologically that this manipulation increases inhibitory synaptic input into layer 2/3 pyramidal cells. They further examined the functional consequences by imaging neuronal activity in the visual cortex in vivo. They found that absence of GAT3 leads to reduced spontaneous neuronal activity and attenuated neuronal responses and reliability to visual stimuli, but without an effect on orientation selectivity. Further analysis of this data suggests that Gat3 removal leads to less coordinated activity between individual neurons and in population activity patterns, thereby impaired information encoding. Overall, this is an elegant and technically advanced study that demonstrates a new and important role of GAT3 in controlling processing of visual information.

      Strengths:

      Development of a new approach for a local knockout (GAT3)

      Important and novel insights into visual system function and its dependence on GAT3

      Plausible cellular mechanism

      Weaknesses:

      No major weaknesses.

    2. Reviewer #2 (Public review):

      Summary:

      Park et al. has made a tool for spatiotemporally restricted knockout of the astrocytic GABA transporter GAT3 leveraging CRISPR/Cas9 and viral transduction in adult mice, and evaluated the effects of GAT3 on neural encoding of visual stimulation.

      Strengths:

      This concise manuscript leverages state-of-the-art gene CRISPR/Cas9 technology for knocking out astrocytic genes. This has to a little degree been preformed previously in astrocytes and represents an important development in the field. Moreover they utilize in vivo two-photon imaging of neural responses to visual stimuli as a readout of neural activity, in addition to validating their data with ex vivo electrophysiology. Lastly, they use advanced statistical modeling to analyze the impact on GAT3 knockout. Overall, the study comes across as rigorous and convincing.

      Weaknesses:

      Adding the following experiments would potentially have strengthened the conclusions and helped interpret the findings, although may be considered outside the scope of this manuscript, and be pursued in future work:

      (1) Neural activity is quite profoundly influenced by GAT3 knockout. Corroborating these relatively large changes to neural activity with in vivo electrophysiology of some sort as an additional readout would have strengthened the conclusions.

      (2) Given the quite large effects on neural coding in visual cortex assessed with jRGECO imaging it would have been interesting the mouse groups could have been subjected to behavioral testing assessing the visual system.

    1. Reviewer #1 (Public review):

      The manuscript by Yin and colleagues addresses a long-standing question in the field of cortical morphogenesis, regarding factors that determine differential cortical folding across species and individuals with cortical malformations. The authors present work based on a computational model of cortical folding evaluated alongside a physical model that makes use of gel swelling to investigate the role of a two-layer model for cortical morphogenesis. The study assesses these models against empirically derived cortical surfaces based on MRI data from ferret, macaque monkey, and human brains.

      The manuscript is clearly written and presented, and the experimental work (physical gel modeling as well as numerical simulations) and analyses (subsequent morphometric evaluations) are conducted at the highest methodological standards. It constitutes an exemplary use of interdisciplinary approaches for addressing the question of cortical morphogenesis by bringing together well-tuned computational modeling with physical gel models. In addition, the comparative approaches used in this paper establish a foundation for broad-ranging future lines of work that investigate the impact of perturbations or abnormalities during cortical development.

      The cross-species approach taken in this study is a major strength of the work. However, correspondence across the two methodologies did not appear to be equally consistent in predicting brain folding across all three species. The results presented in Figures 4 (and Figures S3 & S4) show broad correspondence in shape index and major sulci landmarks across all three species. Nevertheless, the results presented for the human brain lack the same degree of clear correspondence for the gel model results as observed in the macaque and ferret. While this study clearly establishes a strong foundation for comparative cortical anatomy across species and the impact of perturbations on individual morphogenesis, further work that fine-tunes physical modeling of complex morphologies, such as that of the human cortex, may help to further understand the factors that determine cortical functionalization and pathologies.

    2. Reviewer #2 (Public review):

      This manuscript explores the mechanisms underlying cerebral cortical folding using a combination of physical modelling, computational simulations, and geometric morphometrics. The authors extend their prior work on human brain development (Tallinen et al., 2014; 2016) to a comparative framework involving three mammalian species: ferrets (Carnivora), macaques (Old World monkeys), and humans (Hominoidea). By integrating swelling gel experiments with mathematical differential growth models, they simulate sulcification instability and recapitulate key features of brain folding across species. The authors make commendable use of publicly available datasets to construct 3D models of fetal and neonatal brain surfaces: fetal macaque (ref. [26]), newborn ferret (ref. [11]), and fetal human (ref. [22]).

      Using a combination of physical models and numerical simulations, the authors compare the resulting folding morphologies to real brain surfaces using morphometric analysis. Their results show qualitative and quantitative concordance with observed cortical folding patterns, supporting the view that differential tangential growth of the cortex relative to the subcortical substrate is sufficient to account for much of the diversity in cortical folding. This is a very important point in our field, and can be used in the teaching of medical students.

      Brain folding remains a topic of ongoing debate. While some regard it as a critical specialization linked to higher cognitive function, others consider it an epiphenomenon of expansion and constrained geometry. This divergence was evident in discussions during the Strüngmann Forum on cortical development (Silver et al., 2019). Though folding abnormalities are reliable indicators of disrupted neurodevelopmental processes (e.g., neurogenesis, migration), their relationship to functional architecture remains unclear. Recent evidence suggests that the absolute number of neurons varies significantly with position-sulcus versus gyrus-with potential implications for local processing capacity (e.g., https://doi.org/10.1002/cne.25626). The field is thus in need of comparative, mechanistic studies like the present one.

      This paper offers an elegant and timely contribution by combining gel-based morphogenesis, numerical modelling, and morphometric analysis to examine cortical folding across species. The experimental design - constructing two-layer PDMS models from 3D MRI data and immersing them in organic solvents to induce differential swelling - is well-established in prior literature. The authors further complement this with a continuum mechanics model simulating folding as a result of differential growth, as well as a comparative analysis of surface morphologies derived from in vivo, in vitro, and in silico brains.

      I offer a few suggestions here for clarification and further exploration:

      Major Comments

      (1) Choice of Developmental Stages and Initial Conditions

      The authors should provide a clearer justification for the specific developmental stages chosen (e.g., G85 for macaque, GW23 for human). How sensitive are the resulting folding patterns to the initial surface geometry of the gel models? Given that folding is a nonlinear process, early geometric perturbations may propagate into divergent morphologies. Exploring this sensitivity-either through simulations or reference to prior work-would enhance the robustness of the findings.

      (2) Parameter Space and Breakdown Points

      The numerical model assumes homogeneous growth profiles and simplifies several aspects of cortical mechanics. Parameters such as cortical thickness, modulus ratios, and growth ratios are described in Table II. It would be informative to discuss the range of parameter values for which the model remains valid, and under what conditions the physical and computational models diverge. This would help delineate the boundaries of the current modelling framework and indicate directions for refinement.

      (3) Neglected Regional Features: The Occipital Pole of the Macaque

      One conspicuous omission is the lack of attention to the occipital pole of the macaque, which is known to remain smooth even at later gestational stages and has an unusually high neuronal density (2.5× higher than adjacent cortex). This feature is not reproduced in the gel or numerical models, nor is it discussed. Acknowledging this discrepancy-and speculating on possible developmental or mechanical explanations-would add depth to the comparative analysis. The authors may wish to include this as a limitation or a target for future work.

      (4) Spatio-Temporal Growth Rates and Available Human Data

      The authors note that accurate, species-specific spatio-temporal growth data are lacking, limiting the ability to model inhomogeneous cortical expansion. While this may be true for ferret and macaque, there are high-quality datasets available for human fetal development, now extended through ultrasound imaging (e.g., https://doi.org/10.1038/s41586-023-06630-3). Incorporating or at least referencing such data could improve the fidelity of the human model and expand the applicability of the approach to clinical or pathological scenarios.

      (5) Future Applications: The Inverse Problem and Fossil Brains

      The authors suggest that their morphometric framework could be extended to solve the inverse growth problem-reconstructing fetal geometries from adult brains. This speculative but intriguing direction has implications for evolutionary neuroscience, particularly the interpretation of fossil endocasts. Although beyond the scope of this paper, I encourage the authors to elaborate briefly on how such a framework might be practically implemented and validated.

      Conclusion

      This is a well-executed and creative study that integrates diverse methodologies to address a longstanding question in developmental neurobiology. While a few aspects-such as regional folding peculiarities, sensitivity to initial conditions, and available human data-could be further elaborated, they do not detract from the overall quality and novelty of the work. I enthusiastically support this paper and believe that it will be of broad interest to the neuroscience, biomechanics, and developmental biology communities.

      Note: The paper mentions a companion paper [reference 11] that explores the cellular and anatomical changes in the ferret cortex. I did not have access to this manuscript, but judging from the title, this paper might further strengthen the conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, Wang et al. use a combination of genetic tools, novel experimental approaches and biomechanical models to quantify the contribution of passive leg forces in Drosophila. They also deduce that passive forces are not sufficient to support the body weight of the animal. Overall, the contribution of passive forces reported in this work is much less than what one would expect based on the size of the organism and previous literature from larger insects and mammals. This is an interesting finding, but some major caveats in their approach remain unanswered.

      Strengths:

      (1) The authors combine experimental measurements and modeling to quantify the contributions of passive forces at limb joints in Drosophila.

      (2) The authors replicate a previous experimental strategy (Hooper et al 2009, J. Neuro) to suspend animals in air for measuring passive forces and, as in previous studies, find that passive forces are much stronger than gravitational forces acting on the limbs. While in these previous studies using large insects, a lot of invasive approaches for accurately quantifying passive forces are possible (e.g., physically cutting of nerves, directly measuring muscle forces in isolated preparations, etc), the small size of Drosophila makes this difficult. The authors overcome this using a novel approach where they attach additional weight to the leg (changes gravitational force) and inactivate motor neurons (remove active forces). With a few approximations and assumptions, the authors then deduce the contribution of passive forces at each joint for each leg.

      (3) The authors find interesting differences in passive forces across different legs. This could have behavioral implications.

      (4) Finally, the authors compare experimental results of how a free-standing Drosophila is lowered ("falls down") on silencing motor neurons, to a biomechanical "OpenSim" model for deducing the role of passive forces in supporting the body weight of the fly. Using this approach, they conclude that passive forces are not sufficient to support the body weight of the fly.

      Weaknesses:

      (1) Line 65 "(Figure 1A). Inactivation causes a change in the leg's rest position; however, in preliminary experiments, the body rotation did not have a large effect on the rest positions of the leg following inactivation. This result is consistent with the one already reported for stick insects and shows that passive forces within the leg are much larger than the gravitational force on a leg and dominate limb position [1]." This is the direct replication of the previous work by Hooper et al 2009 and therefore authors should ideally show the data for this condition (no weight attached).

      (2) The authors use vglut-gal4, a very broad driver for inactivating motor neurons. The driver labels all glutamatergic neurons, including brain descending neurons and nerve cord interneurons, in addition to motor neurons. Additionally, the strength of inactivation might differ in different neurons (including motor neurons) depending on the expression levels of the opsins. As a result, in this condition, the authors might not be removing all active forces. This is a major caveat that authors do not address. They explore that they are not potentially silencing all inputs to muscles by using an additional octopaminergic driver, but this doesn't address the points mentioned above. At the very least, the authors should try using other motor neuron drivers, as well as other neuronal silencers. This driver is so broad that authors couldn't even use it for physiology experiments. Additionally, the authors could silence VGlut-labeled motor neurons and record muscle activity (potentially using GCaMP as has been done in several recent papers cited by the authors, Azevedo et al, 2020) as a much more direct readout.

      (3) Figure 4 uses an extremely simplified OpenSim model that makes several assumptions that are known to be false. For example, the Thorax-Coxa joint is assumed to be a ball and socket joint, which it is not. Tibia-tarsus joint is completely ignored and likely makes a major contribution in supporting overall posture, given the importance of the leg "claw" for adhering to substrates. Moreover, there are a couple of recent open-source neuromechanical models that include all these details (NeuromechFly by Lobato-Rios et al, 2022, Nat. Methods, and the fly body model by Vaxenburg et al, 2025, Nature). Leveraging these models to rule in or rule out contributions at other joints that are ignored in the authors' OpenSim model would be very helpful to make their case.

      (4) Figure 5 shows the experimental validation of Figure 4 simulations; however, it suffers from several caveats.

      a) The authors track a single point on the head of the fly to estimate the height of the fly. This has several issues. Firstly, it is not clear how accurate the tracking would be. Secondly, it is not clear how the fly actually "falls" on VGlut silencing; do all flies fall in a similar manner in every trial? Almost certainly, there will be some "pitch" and "role" in the way the fly falls. These will affect the location of this single-tracked point that doesn't reflect the authors' expectations. Unless the authors track multiple points on the fly and show examples of tracked videos, it is hard to believe this dataset and, hence, any of the resulting interpretations.

      b) As described in the previous point, the "reason" the fly falls on silencing all glutamatergic neurons could be due to silencing all sorts of premotor/interneurons in addition to the silencing of motor neurons.

      c) (line 175) "The first finding is that there was a large variation in the initial height of the fly (Figure 5C), consistent with a recent study of flies walking on a treadmill[20]." The cited paper refers to how height varies during "walking". However, in the current study, the authors are only looking at "standing" (i.e. non-walking) flies. So it is not the correct reference. In my opinion, this could simply reflect poor estimation of the fly's height based on poor tracking or other factors like pitch and role.

      d) "The rate at which the fly fell to the ground was much smaller in the experimental flies than it was in the simulated flies (Figure 5E). The median rate of falling was 1.3 mm/s compared to 37 mm/s for the simulated flies (Figure 5F). (Line 190) The most likely reason for the longer than expected time for the fly to fall is delays associated with motor neuron inactivation and muscle inactivation." I don't believe this reasoning. There are so many caveats (which I described in the above points) in the model and the experiment, that any of those could be responsible for this massive difference between experiment and modeling. Simply not getting rid of all active forces (inadequate silencing) could be one obvious reason. Other reasons could be that the model is using underestimates of passive forces, as alluded to in point 3.

      (5) Final figure (Figure 6) focuses on understanding the time course of neuronal silencing. First of all, I'm not entirely sure how relevant this is for the story. It could be an interesting supplemental data. But it seems a bit tangential. Additionally, it also suffers from major caveats.

      a) The authors now use a new genetic driver for which they don't have any behavioral data in any previous figures. So we do not know if any of this data holds true for the previous experiments. The authors perform whole-cell recordings from random unidentified motor neurons labeled by E49-Gal4>GtACR1 to deduce a time constant for behavioral results obtained in the VGlut-Gal4>GtACR1 experiments.

      b) The DMD setup is useful for focal inactivation, however, the appropriate controls and data are not presented. Line 200 "A spot of light on the cell body produces as much of the hyperpolarization as stimulating the entire fly (mean of 11.3 mV vs 13.1 mV across 9 neurons). Conversely, excluding the cell body produces only a small effect on the MN (mean of 2.6 mV)." First of all, the control experiment for showing that DMD is indeed causing focal inactivation would be to gradually move the spot of light away from the labeled soma, i.e. to the neighboring "labelled" soma and show that there is indeed focal inactivation. Instead authors move it quite a long distance into unlabeled neuropil. Secondly, I still don't get why the authors are doing this experiment. Even if we believe the DMD is functioning perfectly, all this really tells us is that a random subset motor neurons (maybe 5 or 6 cells, legend is missing this info) labeled by E49-Gal4 is strongly hyperpolarized by its own GtACR1 channel opening, rather than being impacted because of hyperpolarizations in other E49-Gal4 labeled neurons. This has no relevance to the interpretation of any of the VGlut-Gal4 behavioral data. VGLut-Gal4 is much broader and also labels all glutamatergic neurons, most of which are inhibitory interneurons whose silencing could lead to disinhibition of downstream networks.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aim to quantify passive muscle forces in the legs of Drosophila, and test the hypothesis that these forces would be sufficient to support body weight in small insects. They take advantage of the genetic tools available in Drosophila, and use a combination of genetic silencing (optogenetic inactivation of motor neurons), kinematic measurements, and simulations using OpenSim. This integrative toolkit is used to examine the role of passive torques across multiple leg joints. They find that passive forces are weaker than expected - in particular, passive forces were found to be too weak to support the body weight of the fly. This challenges previous scaling assumptions derived from studies in larger insects and has potential implications for our understanding of motor control in small animals.

      Strengths:

      The primary strength of this work lies in its integration of multiple analyses. By pulling together simulations, kinematic measurements from high-resolution videos, and genetic manipulation, they are able to overcome limitations of past studies. In particular, optogenetic manipulation allowed for measurements to be made in whole animals, and the modeling component is valuable because it both validates experimental findings and elucidates the mechanism behind some of the observed dynamic consequences (e.g., the rapid fall after motor inactivation). The conclusions made in the study are well-supported by the data and could have an impact on a number of fields, including invertebrate neurobiology and bioinspired design.

      Weaknesses:

      While (as mentioned above) the study's conclusions are well-supported by the results and modeling, limitations arise because of the assumptions made. For instance, using a linear approximation may not hold at larger joint angles, and future studies would benefit from accounting for nonlinearities. Future studies could also delve into the source of passive forces, which is important for more deeply understanding the anatomical and physical basis of the results in this study. For instance, assessments of muscle or joint properties to correlate stiffness values with physical structure might be an area of future consideration

    3. Reviewer #3 (Public review):

      Summary:

      The authors present a novel method to measure passive joint torques - torques due to internal forces other than active muscle contraction - in the fruit fly: genetically inactivating all motor neurons in intact limb acted upon by a gravitational load results in a change in limb configuration; evaluating the moment equilibrium condition about the limb joints then yields a direct estimate of the passive joint torques. Deactivating all motor neurons in an intact standing fly provided two further conclusions: First, because deactivation causes the fly to drop to the floor, the passive joint torques are deemed insufficient to maintain rotational equilibrium against the body weight; using a multi-body-dynamics simulation, the authors estimate that the passive torques would need to be about 40-80 times higher to maintain a typical posture without active muscle action. Second, a delay between the motor neuron inactivation and the onset of the "free fall" motivates the authors to invoke a simple exponential decay model, which is then used to derive a time constant for muscle deactivation, in robust agreement with direct electro-physiological recordings.

      Strengths:

      The experimental design that permits determination of passive joint torques is elegant, effective, novel, and altogether excellent; it permits measurements previously impossible. A careful error analysis is presented, and a spectrum of technically challenging methods, including multi-body dynamics and e-phys, is deployed to further interpret and contextualise the results.

      Weaknesses:

      (1) Passive torques are measured, but only some short speculative statements, largely based on previous work, are offered on their functional significance; some of these claims are not well supported by experimental evidence or theoretical arguments. Passive forces are judged as "large" compared to the weight force of the limb, but the arguably more relevant force is the force limb muscles can generate, which, even in equilibrium conditions, is already about two orders of magnitude larger. The conclusion that passive forces are dynamically irrelevant seems natural, but contrasts with the assertion that "passive forces [...] will have a strong influence on limb kinematics". As a result, the functional significance of passive joint torques in the fruit fly, if any, remains unclear, and this ambiguity represents a missed opportunity. We now know the magnitude of passive joint torques - do they matter and for what? Are they helpful, for example, to maintain robust neuronal control, or a mechanical constraint that negatively impacts performance, e.g., because they present a sink for muscle work?

      (2) The work is framed with a scaling argument, but the assumptions that underpin the associated claims are not explicit and can thus not be evaluated. This is problematic because at least some arguments appear to contradict textbook scaling theory or everyday experience. For example, active forces are assumed to scale with limb volume, when every textbook would have them scale with area instead; and the asserted scaling of passive forces involves some hidden assumptions that demand more explicit discussion to alert the reader to associated limitations. Passive forces are said to be important only in small animals, but a quick self-experiment confirms that they are sufficient to stabilize human fingers or ankles against gravity, systems orders of magnitude larger than an insect limb, in seeming contradiction with the alleged dominance of scale. Throughout the manuscript, there are such and similar inaccuracies or ambiguities in the mechanical framing and interpretation, making it hard to fairly evaluate some claims, and rendering others likely incorrect.

    1. Reviewer #1 (Public review):

      The manuscript by Choi and colleagues investigates the impact of variation in cortical geometry and growth on cortical surface morphology. Specifically, the study uses physical gel models and computational models to evaluate the impact of varying specific features/parameters of the cortical surface. The study makes use of this approach to address the topic of malformations of cortical development and finds that cortical thickness and cortical expansion rate are the drivers of differences in morphogenesis.

      The study is composed of two main sections. First, the authors validate numerical simulation and gel model approaches against real cortical postnatal development in the ferret. Next, the study turns to modelling malformations in cortical development using modified tangential growth rate and cortical thickness parameters in numerical simulations. The findings investigate three genetically linked cortical malformations observed in the human brain to demonstrate the impact of the two physical parameters on folding in the ferret brain.

      This is a tightly presented study that demonstrates a key insight into cortical morphogenesis and the impact of deviations from normal development. The dual physical and computational modeling approach offers the potential for unique insights into mechanisms driving malformations. This study establishes a strong foundation for further work directly probing the development of cortical folding in the ferret brain. One weakness of the current study is that the interpretation of the results in the context of human cortical development is at present indirect, as the modelling results are solely derived from the ferret. However, these modelling approaches demonstrate proof of concept for investigating related alterations more directly in future work through similar approaches to models of the human cerebral cortex.

    2. Reviewer #2 (Public review):

      Summary:

      Based on MRI data of the ferret (a gyrencephalic non-primate animal, in whom folding happens postnatally), the authors create in vitro physical gel models and in silico numerical simulations of typical cortical gyrification. They then use genetic manipulations of animal models to demonstrate that cortical thickness and expansion rate are primary drivers of atypical morphogenesis. These observations are then used to explain cortical malformations in humans.

      Strengths:

      The paper is very interesting and original, and combines physical gel experiments, numerical simulations, as well as observations in MCD. The figures are informative, and the results appear to have good overall face validity.

      Weaknesses:

      On the other hand, I perceived some lack of quantitative analyses in the different experiments, and currently, there seems to be rather a visual/qualitative interpretation of the different processes and their similarities/differences.

      Ideally, the authors also quantify local/pointwise surface expansion in the physical and simulation experiments, to more directly compare these processes. Time courses of eg, cortical curvature changes, could also be plotted and compared for those experiments.

      I had a similar impression about the comparisons between simulation results and human MRI data. Again, face validity appears high, but the comparison appeared mainly qualitative.

      I felt that MCDs could have been better contextualized in the introduction.