10,000 Matching Annotations
  1. Jan 2025
    1. Reviewer #2 (Public review):

      Using multimodal closed-loop behavior and activity monitoring in the neocortex, Solyga and Keller show that the auditory cortex computes the deviation of current sensory input from expectations. Interestingly, in addition, mismatch responses within the auditory stream are non-linearly influenced by concurrent sensorimotor error computations in the visual pathway. These results suggest that non-hierarchical interactions (lateral relational cross-talk) must be considered when analyzing cortical models based on predictive processing. In my opinion, this is a fundamental study that addresses the question of hierarchical vs. no-hierarchical interactions across neocortical areas. Overall, I find the experiments elegantly designed, and the results robust, providing compelling evidence for non-hierarchical interactions across neocortical areas, and more specifically of exchange of sensorimotor prediction error signals across modalities. The authors thoroughly addressed the concerns raised. In my opinion, this has substantially strengthened the manuscript, enabling much clearer interpretation of the results reported.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, the authors have attempted to demonstrate a critical role for the cytoskeletal scaffold protein Ezrin, in the upstream regulation of EGFR/AKT/MTOR signaling. They show that in the absence of Ezrin, ligand-induced EGFR trafficking and activation at the endosomes is perturbed, with decreased endosomal recruitment of the TSC complex, and a corresponding decrease in AKT/MTOR signaling.

      Strengths:

      The authors have used a combination of novel imaging techniques, as well as conventional proteomic and biochemical assays to substantiate their findings. The findings expand our understanding of the upstream regulators of the EGFR/AKT MTOR signaling and lysosomal biogenesis, appear to be conserved in multiple species, and may have important implications for the pathogenesis and treatment of diseases involving endo-lysosomal function, such as diabetes and cancer, as well as neuro-degenerative diseases like macular degeneration. Furthermore, pharmacological targeting of Ezrin could potentially be utilized in diseases with defective TFEB/TFE3 functions like LSDs. While a majority of the findings appear to support the hypotheses, there are substantial gaps in the findings that could be better addressed. Since Ezrin appears to directly regulate MTOR activity, the effects of Ezrin KO on MTOR-regulated, TFEB/TFE3 -driven lysosomal function should be explored more thoroughly. Similarly, a more convincing analysis of autophagic flux should be carried out. Additionally, many immunoblots lack key controls (Control IgG in CO-Ips) and many others merit repetition to either improve upon the quality of the existing data, validate the findings using orthogonal approaches or to provide a more rigorous quantitative assessment of the findings, as highlighted in the recommendation for authors.

      Comments on revisions:

      The authors have satisfactorily addressed most of the concerns raised in the prior version, and have significantly improved upon the overall findings in the revised version.

    1. Reviewer #2 (Public review):

      This study investigates the cortical circuitry at the mesoscopic level of cortical columns in the human secondary visual cortex (V2) using high-resolution fMRI at ultra-high field strength (7T). The findings confirm the columnar organization of color-selective thin and disparity-selective thick stripes, a result previously demonstrated and replicated in human fMRI research. However, this study adds a novel layer of analysis by examining cortical depth, providing insights into feedforward and feedback connections to and from V2. Furthermore, examining texture selectivity in V2 showed no evidence of a columnar structure when compared to color- and disparity-selective activation clusters. Interestingly, texture selectivity in V2 was most pronounced in deeper cortical layers, with significant feedback connectivity from V4. The authors conclude that local columnar circuitry plays a crucial role in color and disparity processing within V2, while texture selectivity is driven by feedback modulation. This research underscores the potential of high-resolution human fMRI to explore the local circuitry of the cortex at the mesoscopic scale.

      However, I still have a few comments that I would like to be addressed:

      (1) In lines 401-403, the authors state that differential BOLD responses can significantly enhance the laminar specificity. Differential contrasts indeed have the potential to reduce macrovascular contributions that are unspecific to both experimental conditions, which was already discussed in the literature (e.g., Yacoub et al., 2008, High-field fMRI unveils orientation columns in humans). This might be especially true for the pial vasculature that drains a larger surface area of the cortex, e.g., multiple columns, which is probably the key factor that enables cortical column mapping using differential BOLD contrasts despite the relatively large spatial point spread function of the BOLD response. However, this may differ for laminar analyses, where neuronal and vascular responses from intracortical and pial veins might be harder to disentangle. It would, therefore, be advisable to tone down this statement somewhat since it could imply that laminar specificity can be readily achieved with GE-BOLD, while this remains an active area of research. This is not to say that the present results are incorrect, but the broader implications of this statement should be cautiously framed.

      (2) Looking at Figure 3, one might also argue (excluding responses from V4) that statistically significant differences in selectivity are only observed where the cortical profiles generally show higher response levels. Could this be simply due to varying signal-to-noise ratios (SNR) achieved by different contrasts (color, disparity, texture)?

      (3) In lines 480-484, the authors state that twenty blocks for each stimulus condition should be sufficient to investigate within-subject effects. It would be helpful if they could elaborate on the basis for this claim. High-resolution fMRI is typically limited by low temporal signal-to-noise ratio (tSNR), and extensive averaging is often required to achieve sufficient signal. Clarifying the rationale behind this assertion would strengthen the argument.

    1. Reviewer #2 (Public review):

      Summary:

      Plectin is a cytolinker that associates with cytoskeletal and intercellular junction proteins and is essential for epithelial integrity and cell migration. Previous reports showed that PLEC regulates tumor growth and metastasis in different cancers. In this manuscript, the authors describe PLEC as a target in initiation and growth of HCC. They show that inhibiting PLEC reduced tumorigenesis in different in vitro and in vivo HCC models, including in a xenograft model, DEN model, oncogene-induced HCC model and a lung metastasis model. A drug PST had similar effects, a purported Plectin inhibitor, suggesting that PLEC inhibition could be a tumor prevention or treatment strategy. Mechanistically, the authors show that inhibiting PLEC results in a disorganized cytoskeleton, deficiency in cell migration, and changes in cancer-relevant signaling pathways. This study demonstrates the importance of understanding mechanobiology of HCC for the development of new treatment strategies.

      Strengths:

      (1) This study used a variety of in vivo models to explore the role of Plectin in HCC formation and metastasis, which extend beyond the cell line-based studies reported in prior research.<br /> (2) Blocking PLEC disrupts pathways that promote tumors and cell migration, thus preventing tumor progression.<br /> (3) Overall, the anti-cancer phenotype is promising, strengthening the important role of PLEC and related factors in tumor growth and metastasis.

      Weaknesses:

      (1) There is limited novel mechanistic insights as the effect of inhibiting PLEC on the cytoskeleton, cell migration and related signaling pathways have previously been reported.<br /> (2) The results associated with PST, should be interpretated with caution. Although it is reported as an inhibitor of PLECTIN, and the phenotypes and pathways affected are similar to the knock-out, additional research is needed to support whether it will be safe and specific in treating or preventing HCC.

    1. Reviewer #3 (Public review):

      Summary:

      Tanaka and colleagues addressed the role of the C-C chemokine receptor 4 (CCR4) in early atherosclerotic plaque development using ApoE-deficient mice on a standard chow diet as a model. Because several CD4+ T cell subsets express CCR4, they examined whether CCR4-deficiency alters the immune response mediated by CD4+ T cells. By histological analysis of aortic lesions, they demonstrated that the absence of CCR4 promoted the development of early atherosclerosis, with heightened inflammation linked to increased macrophages and pro-inflammatory CD4+ T cells, along with reduced collagen content. Flow cytometry and mRNA expression analysis for identifying CD4+ T cell subsets showed that CCR4 deficiency promoted higher proliferation of pro-inflammatory effector CD4+ T cells in peripheral lymphoid tissues and accumulation of Th1 cells in the atherosclerotic lesions. Interestingly, the increased pro-inflammatory CD4+ T cell response occurred despite the expansion of T CD4+ Foxp3+ regulatory cells (Tregs), found in higher numbers in lymphoid tissues of CCR4-deficient mice, suggesting that CCR4 deficiency interfered with Treg's regulatory actions. In addition, CCR4 deficiency induced an augmented Th1/Treg ratio in the aortic lesions. The CCR4-mediated mechanisms underlying the control of early inflammation and atherosclerosis development were not completely elucidated. In vitro studies suggest that CCR4 expression in Tregs plays a role in controlling DC activation and, in turn, the extent of CD4+T cell activation and proliferation. Dependence on CCR4 expression for Treg migration to the atherosclerotic aorta was not proved. The findings contrast with earlier studies in a murine model of advanced atherosclerosis, where CCR4 deficiency did not alter the development of the aortic lesions. The authors included a thoughtful discussion about hypothetical mechanisms explaining these contrasting results, including putative differences in the role played by the CCL17/CCL22-CCR4 axis along the stages of atherosclerosis development in this murine model.

      Major strengths:

      • Demonstration of CCR4 deficiency's impact on early atherosclerosis. CCR4 deficiency effects on the early atherosclerosis development in the Apoe-/-mice model were demonstrated by a quantitative analysis of the lesion area, inflammatory cell content and the expression profile of several pro- and anti-inflammatory markers.<br /> • Analysis of the T CD4+ response in various lymphoid tissues (peripheral and para-aortic lymph nodes and spleen) and the atherosclerotic aorta during the early phase of atherosclerosis in the Apoe-/-mice model. This analysis, combining flow cytometry and mRNA expression, showed that CCR4 deficiency enhanced T CD4+ cell activation, favouring the amplification of the typical biased Th1-mediated inflammatory response observed in the lymphoid tissues of hypercholesterolemic mice.<br /> • Treg transference experiments. Transference of Treg from Apoe-/- or Ccr4-/- Apoe-/- mice to Apoe-/- mice under a standard chow diet was useful for addressing the relevance of CCR4 expression on Tregs for the atheroprotective effect of this regulatory T cell subset during early atherosclerosis.

      Major weaknesses:

      • The effect of CCR4 deficiency on the Th1/Th17 balance was not evaluated. Although the role of Th17 cells in atherosclerosis remains controversial, RORγt+ cells constituted, on average, more than 10% of the effector TCD45+CD3+CD4+ lymphocytes in the aorta of Apoe-/- mice (Fig 4H). Changes in the Th1/Th17 balance in lymphoid tissues and aortic lesions may influence the type and functional properties of inflammatory cells recruited to the atherosclerotic aorta.

      • Lack of in vivo evidence for Treg suppressive effects on DC activation. The proposed CCR4 requirement for the Treg suppressive activity on DC activation is supported by in vitro co-culture assays, in which CCR4-deficiency partially reverted Treg regulatory actions. Higher expression of CD86, a DC activation marker, was found in spleen DCs from Ccr4-/- Apoe-/- mice compared to Apoe-/- mice (Supplementary Fig 5), which would be worth commenting on and discussing.

      • Methodological limitations. Controls in flow cytometry analysis were suboptimal (no viability and doublets were checked) which may have introduced artefacts, especially when measuring less-represented cell populations within complex samples. In addition, assessing Treg migration to the aorta in atherosclerotic mice faced methodological limitations that hindered statistical comparisons between Tregs from Apoe-/- and Ccr4-/- Apoe-/- mice, leading to inconclusive results. The dependence on CCR4 expression for Treg migration to the atherosclerotic aorta was not established.

      • Treg transference experiments did not allow the detection of a reduction in the aortic lesion area by transferred CCR4 expressing Tregs (comparison between saline and Apoe-/- Tregs groups). Using Apoe-/- mice as recipients, the CCR4-dependent protective effect of Tregs was mostly evidenced by analysis of aortic inflammation, which was valuable. When using Ccr4-/- Apoe-/- mice as recipients, analysis of aortic inflammation was not mentioned.

      Study limitations:

      This investigation has some limitations. Current tools for single-cell characterization have revealed the phenotypic heterogeneity and dynamics of aortic leukocytes, including T cells, which are among the principal aortic leukocytes found in mouse and human atherosclerotic lesions (doi:10.1161/CIRCRESAHA.117.312513). The flow cytometry analysis applied in this study cannot distinguish the generation of particular phenotypes within T CD4+ subsets, including putative phenotypes of no-suppressive T cells expressing low levels of Foxp3, as seems could occur in other chronic inflammatory disorders (doi: 10.1038/nm.3432; doi: 10.1172/JCI79014). Limitations due to the use of a complete CCR4 knockout mouse and putative differences in CCR4-mediated mechanisms along atherosclerosis stages and in human atherosclerosis were commented on by the authors in the discussion.

      Global Impact:

      This work opens the way for a deeper analysis of the contribution of CCR4 and its ligands to the activation and differentiation of T CD4+ lymphocytes during atherosclerosis development, with these lymphocytes being fundamental players in the generation of pro-atherogenic and anti-atherogenic immune responses. Differences in the mechanisms mediated by the CCL17/CCL22-CCR4 axis among early and advanced atherosclerosis highlight the complex landscape to examine and validate in human samples and the need to achieve a deep knowledge for identifying genuine and safe targets capable of promoting protective anti-atherogenic immune responses.

    1. Reviewer #2 (Public review):

      Summary:

      Using C. elegans as a model, the authors present an interesting story demonstrating a new regulatory connection between olfactory neurons and the digestive system. Mechanistically, they identified key factors (NSY-1, STR-130 et.al) in neurons, as well as critical 'signaling factors' (INS-23, DAF-2) that bridge different cells/tissues to execute the digestive shutdown induced by poor-quality food (Staphylococcus saprophyticus, SS).

      Strengths:

      The conclusions of this manuscript are mostly well supported by the experimental results shown.

      Weaknesses:

      Several issues could be addressed and clarified to strengthen their conclusions.

      (1) The word "olfactory" should be carefully used and checked in this manuscript. Although AWCs are classic olfactory neurons in C. elegans, no data in this manuscript supports the idea that olfactory signals from SS drive the responses in the digestive system. To validate that it is truly olfaction, the authors may want to check the responses of worms (e.g. AWC, digestive shutdown, INS-23 expression) to odors from SS.

      (2) In line 113, what does "once the digestive system is activated" mean? The authors need to provide a clearer statement about 'digestive activation' and 'digestive shutdown'.

      (3) No control data on OP50. This would affect the conclusions generated from Figures 2A, 2B, 2D, 3B, 3C, 3G, 4D-G, 5D-E, 6B-D.

      (4) Do the authors know which factors are released from AWC neurons to drive the digestive shutdown?

    1. Reviewer #2 (Public review):

      Summary:

      This study aimed to investigate changes in neural responses over time after acute stress and their association with real-life stress. To this end, functional MRI data was collected from 3 tasks (Oddball, 2-back, Associative retrieval) early and late following stress and control conditions. Emotional ratings during a stressful week before an exam and a non-stressful week without an exam were used to index real-world stress. In total, data from 70 individuals were used for the analyses in the paper. Results showed increased oddball related activation early after stress whereas activation to the associative retrieval was reduced across early and late trials following stress compared with control. Brain activation during the oddball task after stress contrasted against control correlated with the index used to measure stress in the real-world. This is a very ambitious study and the findings that stress has opposite effects on the oddball and the associative retrieval tasks is new. However, I am not convinced that brain responses are correlated with real-world stress from the results presented in the paper. I also have several other concerns listed below.

      Strengths:

      The study uses a unique design based on hypothesis firmly grounded in theories of stress related brain function. Large amounts of data are collected for all of the 70 participants included in the analyses and the hypotheses tested using paired tests have strong statistical power. Data collection methods are sound aiming to reduce stress induced by being in the scanner environment for the first time and reducing variation in cortisol due to circadian rhythm.

      Weaknesses:

      An important argument in the paper is that neural responses associated with stress in the lab correspond to stress in real life. This conclusion is based on a single correlation analysis. This is weak evidence because the correlation is based on 70 individuals and may be driven by outliers. In fact, the correlation between the difference in stress-related SN activation (Stress-Control) and real life stress residual is likely to be driven by outliers. In fig 5b, there are 3 persons with SN values of around 2, which is twice as much as the fourth highest value. There is also 1 person with a Real life stress residual of -3 or -4, which is three to four times as much as the person with the second lowest value. These 4 outliers should be removed before calculating the correlation coefficient. Also, no power analysis is presented in the paper showing what effect size is needed for significant results given a sample size of 70.

      It is not clear why the activation maps from the tasks performed in the scanner are referred to as the SN, ECN, and DMN. They are discussed as if they were resting state networks. They are however not resting state networks because they are the results of contrasting two task conditions to each other and not the results from correlating BOLD time-series data from different regions within subjects. Even though masks corresponding to SN, ECN, and DMN are used to calculate means of all voxels, I think these contrasts should be referred to as the tasks that were used to evoke them. It becomes misleading to call them networks which usually refers to nodes and edges in fMRI studies. The first scan was a resting state scan, but these data are not presented in the paper.

      Introduction<br /> In the introduction it is said that there are genomically driven effects of cortisol 1 to 2 hours after stress. This is repeated in the discussion: "[the late stress phase] is thought to be dominated by genomically driven effects of glucocorticoids". (There is no reference to this statement however.) This idea, that gene expression should only be regulated by corticosteroids following stress seems unrealistic. The increase in cortisol was only around 60% from baseline in the current study which seems to be similar to other studies. This means that the baseline cortisol level is far from zero. Therefore, effects of cortisol on gene expression must occur all the time and be tightly regulated by circadian clocks. To propose that genomically driven effects of cortisol only exist 1 to 2 hours following stress is therefore too simplistic.

      In the last paragraph, it says that n=83. However, the final sample consists of 70 people. Correct this number.

      Methods<br /> The EMA data analysis is difficult to understand. Why are the residuals used instead of means for example? I could not understand how the residual values used in the analysis should be interpreted from the way this section was written. Therefore, I cannot judge whether the index is valid or reliable. Using mean values is more common than using residuals when investigating individual differences in stress responses. The use of residuals needs justification and clarification. The results from an analysis using mean values should also be reported.

      How was AUCi calculated? What software was used to calculate AUCi?

      How was the mediation analysis performed? The only information I found was: "We additionally ran separate models with an interaction term modelled for neural activity in the targeted ROI's to examine the relationship between task performance and neural responses, with random slopes and intercepts also modelled for ROI activity." This is not how mediation analyses are done conventionally. It is common to use structural equation modelling or a series of regression analyses. What is meant by separate models? Was a reduced model compared to a full model with an interaction term? In this case, this is not a mediation analysis. I think the term moderation is better to describe this analysis.

    1. Reviewer #2 (Public review):

      Summary:

      Hiramatsu et al. investigated how cognate neurotransmitter receptors with antagonizing downstream effects localize within neurons when co-expressed. They focus on mapping the dopaminergic Dop1R1 and Dop2R receptors, corresponding to the mammalian D1- and D2-like dopamine receptors, which have opposing effects on intracellular cAMP levels, in neurons of the Drosophila mushroom body (MB). To visualize specific receptors in single neuron types within the crowded MB neuropil, the authors use existing dopamine receptor alleles tagged with 7 copies of split GFP to target the reconstitution of GFP tags specifically in the neurons of interest, providing a readout of receptor localization.

      The authors demonstrate that both Dop1R1 and Dop2R are enriched, to differing degrees, in the axonal compartments of Kenyon cells cholinergic presynaptic inputs and in different dopamine neurons (DANs) that project axons to the MB. Co-localization studies of dopamine receptors with the presynaptic marker Brp suggest that Dop1R1, and to a greater extent Dop2R, localize near release sites. This pattern in DANs suggests Dop1R1 and Dop2R serve as dual-feedback autoreceptors. Finally, they provide evidence that the balance of Dop1R1 and Dop2R in the axons of two different DAN populations is differentially modulated by starvation, which plays a role in regulating appetitive behaviors.

      In their revised manuscript, Hiramatsu et al. revisited the localization and functional integrity of Dop1R1 and Dop2R within the Drosophila mushroom body. This revision strengthens their claims with new high-resolution imaging data and additional behavioral assays, supporting the functional integrity of 7X split GFP-tagged receptors and their distinct localizations within neural circuits.

      The revised manuscript by Hiramatsu et al. demonstrates substantial improvements in experimental design and data presentation, effectively addressing concerns raised during the initial review. The addition of advanced imaging techniques and behavioral data confirms the functionality of tagged receptors, while providing deeper insights into their spatial and functional dynamics within neural circuits modulating responses to environmental changes like starvation. This study makes an important contribution to neuroscience, enhancing our understanding of dopamine receptor distribution in circuits underlying learning and memory.

      Strengths:

      The authors use reconstitution of GFP fluorescence of split GFP tags integrated at the endogenous locus of dopamine receptors, providing a precise readout of receptor localization. This method preserves endogenous transcriptional and post-transcriptional regulation, a critical feature for protein localization studies.

      The choice of the Drosophila mushroom body as a model system is excellent, as it is well-studied, its connectome is carefully reconstructed, and its role in behaviors and associative memory enables linking receptor localization patterns to circuit function and behavior. This approach allows the authors to demonstrate that antagonizing dopamine receptors can act as autoreceptors within the axonal compartments of MB-innervating DANs. Moreover, they show that starvation differentially modulates the balance of these receptors in distinct DANs, highlighting the role of this regulation in circuit function and behavior.

      The incorporation of higher-resolution Airyscan microscopy and functional assays in the revision provide evidence that tagged receptors retain functionality and predominantly localize at presynaptic sites within Kenyon cells and DANs. These findings support the dual autoreceptor feedback model proposed.

      Weaknesses:

      While the revision significantly strengthens the manuscript, the absence of specific antibodies against these receptors remains a limitation. This is understandable given the challenges of generating antibodies against such proteins. However, the use of more direct validation methods, such as specific antibodies (if available), and employing higher-resolution techniques like expansion microscopy, could further validate and enhance the robustness of the findings.

    1. Reviewer #2 (Public review):

      The authors evaluate spectral changes in electroencephalography (EEG) data as a function of the congruency of audio and visual information associated with biological motion (BM) or non-biological motion. The results show supra-additive power gains in the neural response to gait dynamics, with trials in which audio and visual information was presented simultaneously producing higher average amplitude than the combined average power for auditory and visual conditions alone. Further analyses suggest that such supra-additivity is specific to BM and emerges from temporoparietal areas. The authors also find that the BM-specific supra-additivity is negatively correlated with autism traits.

    1. Reviewer #2 (Public review):

      Nichols et al studied the role of axon guidance molecules and their receptors and how these work as long-range and/or local cues, using in-vivo time-lapse imaging in C. elegans. They found that the Netrin axon guidance system, work in different modes when acting as a long-range (chemotaxis) cue vs local cue (haptotaxis). As an initial context, they take advantage of the postembryonic-born neuron, PDE, to understand how its axon grows and then is guided into its target. They found that this process occurs in various discrete steps, during which the growth cone migrates and pauses at specific structures, such as the vSLNC. The role of the UNC-6/Netrin and UNC-40/DCC axon guidance ligand-receptor pair was then looked at in terms of its requirement for (1) initial axon outgrowth direction, (2) stabilization at the intermediate target, (3) directional branching from the sublateral region or (4) ventral growth from intermediate target to the VNC. They found that each step is disrupted in the unc-6/Netrin and unc-40/DCC mutants and observed how the localization of these proteins changed during the process of axon guidance in wild type and mutant contexts. These observations were further supported by analysis of a mutant important for the regulation of Netrin signaling, the E3 ubiquitin ligase madd-2/Trim9/Trim67. Remarkably, the authors identified that this mutant affected axonal adhesion and stabilization, but not directional growth. Using membrane-tethered UNC-6 to specific localities, they then found this to be a consequence of the availability of UNC-6 at specific localities within the axon growth path. Altogether, this data and in-vivo analysis provide compelling evidence of the mechanistic foundation of Netrin-mediated axon guidance and how it works step by step.

      The conclusions are well-supported, with both imaging and quantification of each step of axon guidance and localization of UNC-6 and UNC-40. Using a different type of neuron to validate their findings further supports their conclusions and strengthens their model. They also probe the role of the axon guidance ligand-receptor pair SLT-1/Slit and SAX-3/ROBO in this process and find it to work in parallel to UNC-6. This work sets up the stage for future analysis of other axon guidance molecules or regulators using time-lapse in-vivo imaging to better understand their role as long-range and/or local cues.

    1. Reviewer #2 (Public review):

      Summary:

      Members of a conserved family of flavin-containing monooxygenases (FMOs) play key roles in lifespan extension induced by diet restriction and hypoxia. In C. elegans, fmo-2 has received the majority of attention, but there are multiple fmo genes in both worms and mammals, and how overlapping or distinct the functional roles of these paralogs are remains unclear. Here Tuckowski et al. identify that a new family member, fmo-4, is also a positive modulator of lifespan. Based on differential requirements of fmo-2 and fmo-4 in stress resistance and lifespan extension paradigms, however, the authors conclude that fmo-4 acts through mechanisms that are distinct from fmo-2. Ultimately, the authors place fmo-2 genetically within a pathway involving atf-6, calreticulin, the IP3 receptor, and mitochondrial calcium uniporter, which was previously shown to link ER calcium homeostasis to mitochondrial homeostasis and longevity. The authors thus achieve their overarching aim to reveal that different FMO family members regulate stress resistance and lifespan through distinct mechanisms. Furthermore, because the known enzymatic activity of FMOs involves oxygenating xenobiotic and endogenous metabolites, these findings highlight a potential new link between redox/metabolic homeostasis and ER-mitochondrial calcium signaling.

      Strengths:

      The authors demonstrate links between multiple conserved life-extending signaling pathways and fmo-4, expanding both the significance and mechanistic diversity of FMO-family genes in aging and stress biology.

      The authors use genetics to discover an interesting and unanticipated new link between FMOs and calcium pathways known to regulate lifespan.

      The genetic epistasis patterns for lifespan and stress resistance phenotypes are generally clean and compelling.

      Weaknesses:

      The authors achieve a necessary and valuable first step with regard to linking FMO-4 to calcium homeostasis, but the mechanisms involved remain preliminary at this stage. Specifically, the genetic interactions between fmo-4 and conserved mediators of calcium transport and signaling are convincing, but a putative molecular mechanism by which the activity of FMO-4 would alter subcellular calcium transport remains unclear and potentially indirect. The authors effectively highlight this gap as a key pursuit for subsequent studies.

      The authors have shown that carbachol and EDTA produce the expected effects on a cytosolic calcium reporter in neurons, supporting the utility of the chemical approach in general, but validating that carbachol, EDTA and fmo-4 itself have an impact on calcium in the tissues and subcellular compartments relevant to the lifespan phenotypes would still be valuable in supporting the overall model. Notably, however, the hypodermal-specific role of FMO-4 suggests potential cell non-autonomous regulation of lifespan, such that this pathway may ultimately involve complex inter-cellular signaling that would necessitate substantially more time and effort.

      Employing mutants and more sophisticated genetic tools for modulating calcium transport or signaling (in addition to RNAi) would strengthen key conclusions and/or help to elucidate tissue- or age-specific aspects of the proposed mechanism.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript provides experimental evidence on circadian behavioural cycles in Antarctic krill. The krill were obtained directly from krill fishing vessels and the experiments were carried out on board using an advanced incubation device capable of recording activity levels over a number of days. A number of different experiments were carried out where krill were first exposed to simulated light:dark (L:D) regimes for some days followed by continuous darkness (DD). These were carried out on krill collected during late autumn and late summer. A further set of experiments was performed on krill across three different seasons (summer, autumn, winter), where incubations were all DD conditions. Activity was measured as the frequency by which an infrared beam close to the top of the incubation tube was broken over unit time. Results showed that patterns of increased and decreased activity that appeared synchronised to the LD cycle persisted during the DD period. This was interpreted as evidence of the operation of an internal (endogenous) clock. The amplitude of the behavioural cycles decreased with time in DD, which further suggests that this clock is relatively weak. The authors argued that the existence of a weak endogenous clock is an adaptation to life at high latitudes since allowing the clock to be modulated by external (exogenous) factors is an advantage when there is a high degree of seasonality. This hypothesis is further supported by seasonal DD experiments which showed that the periodicity of high and low activity levels differed between seasons.

      Strengths

      Although there has been a lot of field observations of various circadian type behaviour in Antarctic krill, relatively few experimental studies have been published considering this behaviour in terms of circadian patterns of activity. Krill are not a model organism and obtaining them and incubating them in suitable conditions are both difficult undertakings. Furthermore, there is a need to consider what their natural circadian rhythms are without the overinfluence of laboratory-induced artefacts. For this reason alone, the setup of the present study is ideal to consider this aspect of krill biology. Furthermore, the equipment developed for measuring levels of activity is well-designed and likely to minimise artefacts.

      Weaknesses

      I have little criticism of the rationale for carrying out this work, nor of the experimental design. Nevertheless, the manuscript would benefit from a clearer explanation of the experimental design, particularly aimed at readers not familiar with research into circadian rhythms. Furthermore, I have a more fundamental question about the relationship between levels of activity and DVM on which I will expand below. Finally, it was unclear how the observational results made here related to the molecular aspects considered in the Discussion.

      (1) Explanation of experimental design - I acknowledge that the format of this particular journal insists that the Results are the first section that follows the Introduction. This nevertheless presents a problem for the reader since many of the concepts and terms that would generally be in the Methods are yet to be explained to the reader. Hence, right from the start of the Results section, the reader is thrown into the detail of what happened during the LD-DD experiments without being fully aware of why this type of experiment was carried out in the first place. Even after reading the Methods, further explanation would have been helpful. Circadian cycle type research of this sort often entrains organisms to certain light cycles and then takes the light away to see if the cycle continues in complete darkness, but this critical piece of knowledge does not come until much later (e.g. lines 369-372) leaving the reader guessing until this point why the authors took the approach they did. I would suggest the following (1) that more effort is made in the Introduction to explain the exact LD/DD protocols adopted (2) that a schematic figure is placed early on in the manuscript where the protocol is explained including some logical flow charts of e.g. if behavioural cycle continues in DD then internal clock exists versus if cycle does not continue in DD, the exogenous cues dominate - followed by - major decrease in cyclic amplitude = weak clock versus minor decrease = strong clock and so on

      (2) Activity vs kinesis - in this study, we are shown data that (i) krill have a circadian cycle - incubation experiments; (ii) that krill swarms display DVM in this region - echosounder data (although see my later point). My question here is regarding the relationship between what is being measured by the incubation experiments and the in situ swarm behaviour observations. The incubation experiments are essentially measuring the propensity of krill to swim upwards since it logs the number of times an individual (or group) break a beam towards the top of the incubation tube. I argue that krill may be still highly active in the rest of the tube but just do not swim close to the surface, so this approach may not be a good measure of "activity". Otherwise, I suggest a more correct term of what is being measured is the level of "upward kinesis". As the authors themselves note, krill are negatively buoyant and must always be active to remain pelagic. What changes over the day-night cycle is whether they decide to expend that activity on swimming upwards, downwards or remaining at the same depth. Explaining the pattern as upward kinesis then also explains by swarms move upwards during the night. Just being more active at night may not necessarily result in them swimming upwards.

      (3) Molecular relevance - Although I am interested in molecular clock aspects behind these circadian rhythms, it was not made clear how the results of the present study allow any further insight into this. In lines 282 to 284, the findings of the study by Biscontin et al (2017) are discussed with regard to how TIM protein is degraded by light via the clock photreceptor CRYTOCHROME 1. This element of the Discussion would be a lot more relevant if the results of the present study were considered in terms of whether they supported or refuted this or any other molecular clock model. As it stands, this paragraph is purely background knowledge and a candidate for deletion in the interest of shortening the Discussion.

      Other aspects<br /> (i) 'Bimodal swimming' was used in the Abstract and later in the text without the term being fully explained. I could interpret it to mean a number of things so some explanation is required before the term is introduced.<br /> (ii) Midnight sinking - I was struck by Figure 2b with regards to the dip in activity after the initial ascent, as well as the rise in activity predawn. Cushing (1951) Biol Rev 26: 158-192 describes the different phases of a DVM common to a number of marine organisms observed in situ where there is a period of midnight sinking following the initial dusk ascent and a dawn rise prior to dawn descent. Tarling et al (2002) observe midnight sinking pattern in Calanus finmarchicus and consider whether it is a response to feeding satiation or predation avoidance (i.e. exogenous factors). Evidence from the present study indicates that midnight sinking (and potential dawn rise) behaviour could alternatively be under endogenous control to a greater or lesser degree. This is something that should certainly be mentioned in the Discussion, possibly in place of the molecular discussion element mentioned above - possibly adding to the paragraph Lines 303-319.

      (iii) Lines 200-207 - I struggled to follow this argument regarding Piccolin et al identifying a 12 h rhythm whereas the present study indicates a ~24 h rhythm. Is one contradicting the other - please make this clear.

      (iv) Although I agree that the hydroacoustic data should be included and is generally supportive of the results, I think that two further aspects should be made clear for context (a) whether there was any groundtruthing that the acoustic marks were indeed krill and not potentially some other group know to perform DVM such as myctophids (b) how representative were these patterns - I have a sense that they were heavily selected to show only ones with prominent DVM as opposed to other parts of the dataset where such a pattern was less clear - I am aware of a lot of krill research where DVM is not such a clear pattern and it is disingenuous to provide these patterns as the definitive way in which krill behaves. I ask this be made clear to the reader (note also that there is a suggestion of midnight sinking in Fig 5b on 28/2).

    1. Reviewer #2 (Public review):

      Summary:

      authors had previously identified that a colorectal cancer cell line generates small extracellular vesicles (sEVs) via a mechanism where a larger intracellular compartment containing these sEVs is secreted from the surface of the cell and then tears to release its contents. Previous studies had suggested that intraluminal vesicles (ILVs) inside endosomal multivesicular bodies and amphisomes can be secreted by fusion of the compartment with the plasma membrane. The 'torn bag mechanism' considered in this manuscript is distinctly different, because it involves initial budding off of a plasma membrane-enclosed compartment (called the amphiectosome in this manuscript, or MV-lEV). The authors successfully set out to investigate whether this mechanism is common to many cell types and to determine some of the subcellular processes involved.

      The strengths of the study are:

      (1) The high-quality imaging approaches used, including live-cell imaging and EN, which seem to show good examples of the proposed mechanism.<br /> (2) They screen several cell lines for these structures, also search for similar structures in vivo, and show the tearing process by real-time imaging.<br /> (3) Regarding the intracellular mechanisms of ILV production, the authors also try to demonstrate the different stages of amphiectosome production and differently labelled ILVs using immuno-EM.

      Several of the techniques employed are technically challenging to do well, and so these are critical strengths of the manuscript.

      Overall, I think the authors have been successful in identifying amphiectosomes secreted from multiple cell lines and cells in vivo, and in demonstrating that the ILVs inside them have at least two origins (autophagosome membrane and late endosomal multivesicular body) based on the markers that they carry. Inevitably, it remains unclear how universal this mechanism is in vivo and its overall contribution to EV function.<br /> I think there could be a significant impact on the EV field and consequently on our understanding of cell-cell signalling based on these findings. It will flag the importance of investigating the release of amphiectosomes in other studies, especially as the molecular mechanisms involved in this type of 'ectosomal-style' release will be different from multivesicular compartment fusion to the plasma membrane and should be possible to be manipulated independently.<br /> In general, the EV field has struggled to link up analysis of the subcellular biology of sEV secretion and the biochemical/physical analysis of the sEVs themselves, so from that perspective, the manuscript provides a novel angle on this problem.

    1. Reviewer #1 (Public review):

      The study by Aguirre-Botero et al. shows the dynamics of 3D11 anti-CSP monoclonal antibody (mAb) mediated elimination of rodent malaria Plasmodium berghei (Pb) parasites in the liver. The authors show that the anti-CSP mAb could protect against intravenous (i.v.) Pb sporozoite challenge along with the cutaneous challenge, but requires higher concentration of antibody. Importantly, the study shows that the anti-CSP mAb not only affects sporozoite motility, sinusoidal extravasation, and cell invasion but also partially impairs the intracellular development inside the liver parenchyma, indicating a late effect of this antibody during liver stage development. While the study is interesting and conducted well, the only novel yet very important observation made in this manuscript is the effect of the anti-CSP mAb on liver stage development.

      Comments on latest version:

      No further comments.

    1. Reviewer #2 (Public review):

      Summary:

      Kaya et al uncover an intriguing relationship between hippocampal sharp wave-ripple production and peripheral hormone exposure, food intake, and lateral hypothalamic function. These findings significantly expand our understanding of hippocampal function beyond mnemonic processes and point a direction for promising future research.

      Strengths:

      Some of the relationships observed in this paper are highly significant. In particular, the inverse relationship between GLP1/Leptin and Insulin/Ghrelin are particularly compelling as this aligns well with opposing hormone functions on satiety.

      Weaknesses: I would be curious if there were any measurable behavioral differences that occur with different hormone manipulations.

    1. Reviewer #2 (Public review):

      Summary:

      This study elucidated the mechanism underlying drug resistance induced by CDK4/6i as a single agent and proposed a novel and efficacious second-line therapeutic strategy. It highlighted the potential of combining CDK2i with CDK4/6i for the treatment of HR+/HER2- breast cancer.

      Strengths:

      The study demonstrated that CDK4/6 induces drug resistance by impairing Rb activation, which results in diminished E2F activity and a delay in G1 phase progression. It suggests that the synergistic use of CDK2i and CDK4/6i may represent a promising second-line treatment approach. Addressing critical clinical challenges, this study holds substantial practical implications.

      Weaknesses:

      (1) Drug-resistant cell lines: Was a drug concentration gradient treatment employed to establish drug-resistant cell lines? If affirmative, this methodology should be detailed in the materials and methods section.

      (2) What rationale informed the selection of MCF-7 cells for the generation of CDK6 knockout cell lines? Supplementary Figure 3. A indicates that CDK6 expression levels in MCF-7 cells are not notably elevated.

      (3) For each experiment, particularly those involving mice, the author must specify the number of individuals utilized and the number of replicates conducted, as detailed in the materials and methods section.

      (4) Could this treatment approach be extended to triple-negative breast cancer?

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript describes how synthetic polymers, primarily poloxamers of different sizes, influence bacterial mechanosensitive channel MscL gating by modifying the interfacial tension of the membrane. The authors expressed MscL in U2OS cells and chemically blebbed the cells to derive giant plasma membrane vesicles (GPMVs) containing MscL G22S. They applied micropipette aspiration on GPMVs to obtain bending rigidity (kc) and area expansion modulus (kA) and used patch clamping to obtain activation pressure. They found a negative correlation between kc and kA with activation pressure and attributed the changes to activation pressure to the lowering of the interfacial tension in the presence of polymers. They carried out coarse-grain molecular dynamics simulations and showed that under tension the hydrophilic PEO group adsorbs to the bilayer more, thereby lowering the interfacial tension. Besides MscL, they showed similar results with TREK-1 activation. The conclusion that differences in interfacial tension are what drive the changes in activation pressure is based on using a thermodynamic model.

      Strengths:

      (1) Reveals that synthetic polymer that lowers bending rigidity and area expansion modulus increases activation pressure of mechanosensitive channel by lowering interfacial tension - this is an important finding.

      (2) General data quality is high with detailed and thorough analysis. The use of both micropipette aspiration and patch clamp in the same study is noteworthy.

      (3) Discussion on nanoplastics and their effect on membrane properties and therefore their impact on mechanosensitivity is interesting.

      Weaknesses:

      Interfacial tension is not experimentally measured. Given the main argument of this paper is that synthetic polymers reduce interfacial tension, which increases MS channel activation pressure, it would be prudent to show experimental measurements to bolster their analysis.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript presents a new approach for non-invasive, MRI-based, measurements of cerebral blood volume (CBV). Here, the authors use ferumoxytol, a high-contrast agent and apply specific sequences to infer CBV. The authors then move to statistically compare measured regional CBV with known distribution of different types of neurons, markers of metabolic load and others. While the presented methodology captures and estimated 30% of the vasculature, the authors corroborated previous findings regarding lack of vascular compartmentalization around functional neuronal units in the primary visual cortex.

      Strengths:

      Non invasive methodology geared to map vascular properties in vivo.

      Implementation of a highly sensitive approach for measuring blood volume.

      Ability to map vascular structural and functional vascular metrics to other types of published data.

      Weaknesses:

      The key issue here is the underlying assumption about the appropriate spatial sampling frequency needed to captures the architecture of the brain vasculature. Namely, ~7 penetrating vessels / mm2 as derived from Weber et al 2008 (Cer Cor). The cited work, begins by characterizing the spacing of penetrating arteries and ascending veins using vascular cast of 7 monkeys (Macaca mulatta, same as in the current paper). The ~7 penetrating vessels / mm2 is computed by dividing the total number of identified vessels by the area imaged. The problem here is that all measurements were made in a "non-volumetric" manner and only in V1. Extrapolating from here to the entire brain seems like an over-assumption, particularly given the region-dependent heterogeneity that the current paper reports.

      Comments on revisions:

      I appreciate the effort made to improve the manuscript. That said, the direct validation of the underlying assumption about spatial resolution sampling remains unaddressed in the final version of this manuscript. With the only intention to further strengthen the methodology presented here, I would encourage again the authors to seek a direct validation of this assumption for other brain areas.

      In their reply, the authors stated "... line scanning or single-plane sequences, at least on first impression, seem inadequate for whole-brain coverage and cortical surface mapping. ". This seems to emanate for a misunderstanding as the method could be used to validate the mapping, not to map per-se.

    1. Reviewer #2 (Public review):

      Summary:

      Boldt et al., investigated whether previously established relationships between transdiagnostic psychiatric symptom dimensions and confidence distortions would result in downstream influences on the confidence-related behaviour of reminder setting. 600 individuals from the general population completed a battery of psychiatric symptom questionnaires and an online reminder-setting task. In line with previous studies, individuals high in compulsivity (CIT) showed over-confidence in their task performance, whereas individuals high in anxious-depression (AD) tended to be under-confident. Crucially, the over-confidence associated with CIT partially mediated a decreased tendency to use external reminders during task performance, whereas the under-confidence associated with AD did not result in any alteration in external reminder setting. The authors suggest that metacognitive monitoring is impaired in CIT which has a knock-on effect on reminder setting behaviour, but that a direct link also exists between CIT and reduced reminder setting independently of confidence.

      Strengths:

      The study combines the latest advances in transdiagnostic approaches to psychopathology with a cleverly designed external reminder-setting task. The approach allows for investigation of what some of the downstream consequences associated with impaired metacognition in sub-clinical psychopathology may be.

      The experimental design and hypotheses were pre-registered prior to data collection.

      The manuscript is well written and rigorous analysis approaches are used throughout.

      Weaknesses:

      Participants only performed a single task so it remains unclear if the observed effects would generalise to reminder setting in other cognitive domains.

      The sample consisted of participants recruited from the general population. Future studies should investigate whether the effects observed extend to individuals with the highest levels of symptoms (including clinical samples).

    1. Reviewer #2 (Public review):

      Summary:

      The authors aimed to determine whether goal-directed and cue-driven attentional strategies (goal- and sign-tracking phenotypes) were associated with variation in cued motor responses and dorsomedial striatal (DMS) glutamate transmission. They used a treadmill task in which cues indicated whether rats should turn or stop to receive a reward. They collected and analyzed several behavioral measures related to task performance with a focus on turns (performance, latency, duration) for which there are more measures than for stops. First, they established that goal-trackers perform better than sign-trackers in post-criterion turn performance (cued turns completed) and turn initiation. They used glutamate sensors to measure glutamate transmission in DMS. They performed analyses on glutamate traces that suggest phasic glutamate DMS dynamics to cues were primarily associated with successful turn performance and were more characteristic of goal-trackers (ie. rats with "goal-directed" attentional strategy). Smaller and more frequent DMS glutamate peaks were associated with other task events, cued misses (missed turns), cued stops, and reward delivery and were more characteristic of sign-trackers (i.e. rats with "cue-driven" attentional strategies). Consistent with the reported glutamate findings, chemogenetic inhibition of prelimbic-DMS glutamate transmission had an effect on goal-trackers' turn performance without affecting sign-trackers' performance in the treadmill task.

      Strengths:

      The power of the sign- and goal-tracking model to account for neurobiological and behavioral variability is critically important to the field's understanding of heterogeneity of the brain in health and disease. The approach and methodology are sound in their contribution to this important effort.

      The authors establish behavioral differences, measure a neurobiological correlate of relevance, and then manipulate that correlate in a broader circuitry and show a causal role in behavior that is consistent with neurobiological measurements and phenotypic differences.

      Sophisticated analyses provide a compelling description of the authors' observations.

      Limitations:

      Considerable transparency was added in the revised preprint. The "n" for each analysis is now available in Tables 1 and 3, carefully cross-referenced by figure. Readers may now carefully consider the n's in drawing their own conclusions from reported data.

      While more conventional trial-averaged population activity traces are not presented or analyzed, the unique nature of the peak phenotypes is likely to "wash out" potentially meaningful signals if averaged across subjects. The distribution of peaks analyses (and shifts observed with chemogenetic inhibition) are improved in the revised preprint and are informative to illustrate this likelihood. Representative traces should theoretically be consistent with population averages within phenotype, and if not, discussion of such inconsistencies may have enriched the conclusions drawn from the study. For example, population traces of the phasic cue response in GT may resemble the representative peak examples, while smaller irregular peaks of ST may "wash out" in a population average (possibly resulting in a prolonged elevation) and could have strengthened the rationale for more sophisticated analyses of peak probability that remain the focus of the revised preprint.

    1. Reviewer #2 (Public review):

      Summary:

      Sleep has not only been shown to support the strengthening of memory traces, but also their transformation. A special form of such transformation is the abstraction of general rules from the presentation of individual exemplars. The current work used large online experiments with hundreds of participants to shed further light on this question. In the training phase participants saw composite items (scenes) that were made up of pairs of spatially coupled (i.e., they were next to each other) abstract shapes. In the initial training, they saw scenes made up of six horizontally structured pairs and in the second training phase, which took place after a retention phase (2 min awake, 12 hour incl. sleep, 12 h only wake, 24 h incl. sleep), they saw pairs that were horizontally or vertically coupled. After the second training phase, a two-alternatives-forced-choice (2-AFC) paradigm, where participants had to identify true pairs versus randomly assembled foils, was used to measure performance on all pairs. Finally, participants were asked five questions to identify, if they had insight into the pair structure and post-hoc groups were assigned based on this. Mainly the authors find that participants in the 2 minute retention experiment without explicit knowledge of the task structure were at chance level performance for the same structure in the second training phase, but had above chance performance for the vertical structure. The opposite was true for both sleep conditions. In the 12 h wake condition these participants showed no ability to discriminate the pairs from the second training phase at all.

      Strengths:

      All in all, the study was performed to a high standard and the sample size in the implicit condition was large enough to draw robust conclusions. The authors make several important statistical comparisons and also report an interesting resampling approach. There is also a lot of supplemental data regarding robustness.

      Weaknesses:

      My main concern regards the small sample size in the explicit group and the lack of experimental control.

    1. Reviewer #2 (Public review):

      Summary:

      This interesting manuscript describes a study investigating the role of MC4R signalling on kisspeptin neurons. The initial question is a good one. Infertility associated with MC4 mutations in humans has typically been ascribed to the consequent obesity and impaired metabolic regulation. Whether there is a direct role for MC4 in regulating the HPG axis has not been thoroughly examined. Here, the researchers have assembled an elegant combination of targetted loss of function and gain of function in vivo experiments, specifically targetting MC4 expression in kisspeptin neurons. This excellent experimental design should provide compelling evidence for whether melanocortin signalling dirently affects arcuate kisspeptin neurons to support normal reproductive function. There were definite effects on reproductive function (irregular estrous cycle, reduced magnitude of LH surge induced by exogenous estradiol). However, the magnitude of these responses and the overall effect on fertility were relatively minor. The mice lacking MC4R in kisspeptin neurons remained fertile despite these irregularities. The second part of the manuscript describes a series of electrophysiological studies evaluating the pharmacological effects of melanocortin signalling in kisspeptin cells in ex-vivo brain slides. These studies characterised interesting differential actions of melanocortins in two different populations of kisspeptin neurons. Collectively, the study provides some novel insights into how direct actions of melanocortin signalling via the MC4 receptor in kisspeptin neurons contribute to the metabolic regulation of the reproductive system. Importantly, however, it is clear that other mechanisms are also at play.

      Strengths:

      The loss of function/gain of function experiments provides a conceptually simple but hugely informative experimental design. This is the key strength of the current paper - especially the knock-in study that showed improved reproductive function even in the presence of ongoing obesity. This is a very convincing result that documents that reproductive deficits in MC4R knockout animals (and humans with deleterious MC4R gene variants) can be ascribed to impaired signalling in the hypothalamic kisspeptin neurons and not necessarily caused as a consequence of obesity. As concluded by the authors: "reproductive impairments observed in MC4R deficient mice, which replicate many of the conditions described in humans, are largely mediated by the direct action of melanocortins via MC4R on Kiss1 neurons and not to their obese phenotype." This is important, as it might change how such fertility problems are treated.

      I would like to see the validation experiments for the genetic manipulation studies given greater prominence in the manuscript because they are critical to interpretation. Presently, only single unquantified images are shown, and a much more comprehensive analysis should be provided.

      Weaknesses:

      (1) Given that mice lacking MC4R in kisspeptin neurons remained fertile despite some reproductive irregularities, this can be described as a contributing pathway, but other mechanisms must also be involved in conveying metabolic information to the reproductive system. This is now appropriately covered in the discussion.

      (2) The mechanistic studies evaluating melanocortin signalling in kisspeptin neurons were all completed in ovariectomised animals (with and without exogenous hormones) that do not experience cyclical hormone changes. Such cyclical changes are fundamental to how these neurons function in vivo and may dynamically alter how they respond to hormones and neuropeptides. Eliminating this variable makes interpretation difficult, but the authors have justified this as a reductionist approach to evaluate estradiol actions specifically. However, this does not reflect the actual complexity of reproductive function.

      For example, the authors focus on a reduced LH response to exogenous estradiol in ovariectomised mice as evidence that there might be a sub-optimal preovulatory LH surge. However, the preovulatory LH sure (in intact animals) was not measured.

      They have not assessed why some follicles ovulated, but most did not. They have focused on the possibility that the ovulation signal (LH surge) was insufficient rather than asking why some follicles responded and others did not. This suggests some issue with follicular development, likely due to changes in gonadotropin secretion during the cycle and not simply due to an insufficient LH surge.

    1. Reviewer #2 (Public review):

      Summary:

      This study by Tünte et al. investigated the development of interoceptive sensitivity during the first year of life, focusing specifically on cardiac and respiratory sensitivity in infants aged 3, 9, and 18 months. The research employed a previously developed experimental paradigm for the cardiac domain and adapted it for a novel paradigm in the respiratory domain. This approach assessed infants' cardiac and respiratory sensitivity based on their preferential looking behavior toward visuo-auditory stimuli displayed on a monitor, which moved either in sync or out of sync with the infants' own heartbeats or breathing. The results in the cardiac domain showed that infants across all age groups preferred stimuli moving synchronously rather than asynchronously with their heartbeat, suggesting the presence of cardiac sensitivity as early as 3 months of age. However, it is noteworthy that this preference direction contradicts a previous study, which found that 5-month-old infants looked longer at stimuli moving asynchronously with their heartbeat (Maister et al., 2017). In the respiratory domain, only the group of 9-month-old infants showed a preference for stimuli presented synchronously with their breathing. The authors conducted various statistical analyses to thoroughly examine the obtained data, providing deeper insights valuable for future research in this field.

      Strengths:

      Few studies have explored the early development of interoception, making the replication of the original study by Maister et al. (2017) particularly valuable. Beyond replication, this study expands the investigation into the respiratory domain, significantly enhancing our understanding of interoceptive development. The provision of longitudinal and cross-sectional data from infants at 3, 9, and 18 months of age is instrumental in understanding their developmental trajectory.

      Weaknesses:

      Due to a technical error, this study failed to counterbalance the conditions of the first trial in both the iBEAT and iBREATH tests. Although the authors addressed this issue as much as possible by employing alternative analyses, it should be noted that this error may have critically influenced the results and, thus, the conclusions.

    1. Reviewer #2 (Public Review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of Milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria.

      The manuscript has several weaknesses. The reader should take extra care while reading this manuscript and when acknowledging the findings and the model in this manuscript.

      The defect in autophagy by the depletion of axonal mitochondria is one of the main claims in the paper. The authors should work more on describing their results of LC3-II/LC3-I ratio, as there are multiple ways to interpret the LC3 blotting for the autophagy assessment. Lysosomal defects result in the accumulation of LC3-II thus the LC3-II/LC3-I ratio gets higher. On the other hand, the defect in the early steps of autophagosome formation could result in a lower LC3-II/LC3-I ratio. From the results of the actual blotting, the LC3-I abundance is the source of the major difference for all conditions (Milton RNAi and eIF2β overexpression and depletion).

      Another main point of the paper is the up-regulation of eIF2β by depleting the axonal mitochondria leads to the proteostasis crisis. This claim is formed by the findings from the proteome analyses. The authors should have presented their proteomic data with much thorough presentation and explanation. As in the experiment scheme shown in Figure 4A, the author did two proteome analyses: one from the 7-day-old sample and the other from the 21-day-old sample. The manuscript only shows a plot of the result from the 7-day-old sample, but that of the result from the 21-day-old sample. For the 21-day-old sample, the authors only provided data in the supplemental table, in which the abundance ratio of eIF2β from the 21-day-old sample is 0.753, meaning eIF2β is depleted in the 21-day-old sample. The authors should have explained the impact of the eIF2β depletion in the 21-day-old sample, so the reader could fully understand the authors' interpretation of the role of eIF2β on proteostasis.

    1. Reviewer #3 (Public review):

      Summary:

      In the manuscript 'Mapping kinase domain resistance mechanisms for the MET receptor tyrosine kinase via deep mutational scanning' by Estevam et al, deep mutational scanning is used to assess the impact of ~5,764 mutants in the MET kinase domain on the binding of 11 inhibitors. Analyses were divided by individual inhibitor and kinase inhibitor subtype (I,II, I 1/2, and III). While a number of mutants were consistent with previous clinical reports, novel potential resistance mutants were also described. This study has implications for the development of combination therapies, namely which combination of inhibitors to avoid based on overlapping resistance mutant profiles. While one suggested pair of inhibitors with least overlapping resistance mutation profiles was suggested, this manuscript presents a proof of concept toward a more systematic approach for improved selection of combination therapeutics. Furthermore, in a final part of this manuscript the data was used to train a machine learning model, the ESM-1b protein language model augmented with an XG Boost Regressor framework, and found that they could improve predictions of resistance mutations above the initial ESM-1b model.

      Strengths:

      Overall this paper is a tour-de-force of data collection and analysis to establish a more systematic approach for the design of combination therapies, especially in targeting MET and other kinases, a family of proteins significant to therapeutic intervention for a variety of diseases. The presentation of the work is mostly concise and clear with thousands of data points presented neatly and clearly. The discovery of novel resistance mutants for individual MET inhibitors, kinase inhibitor subtypes within the context of MET, and all resistance mutants across inhibitor subtypes for MET has clinical relevance. However, probably the most promising outcome of this paper is the proposal of the inhibitor combination of Crizotinib and Cabozantib as Type I and Type II inhibitors, respectively, with the least overlapping resistance mutation profiles and therefore potentially the most successful combination therapy for MET. While this specific combination is not necessarily the point, it illustrates a compelling systematic approach for deciding how to proceed in developing combination therapy schedules for kinases. In an insightful final section of this paper, the authors approach using their data to train a machine learning model, perhaps understanding that performing these experiments for every kinase for every inhibitor could be prohibitive to applying this method in practice.

      Weaknesses:

      This paper presents a clear set of experiments with a compelling justification. The content of the paper is overall of high quality. Below are mostly regarding clarifications in presentation.

      Two places could use more computational experiments and analysis, however. Both are presented as suggestions, but at least a discussion of these topics would improve the overall relevance of this work. In the first case it seems that while the analyses conducted on this dataset were chosen with care to be the most relevant to human health, further analyses of these results and their implications of our understanding of allosteric interactions and their effects on inhibitor binding would be a relevant addition. For example, for any given residue type found to be a resistance mutant are there consistent amino acid mutations to which a large or small or effect is found. For example is a mutation from alanine to phenylalanine always deleterious, though one can assume the exact location of a residue matters significantly. Some of this analysis is done in dividing resistance mutants by those that are near the inhibitor binding site and those that aren't, but more of these types of analyses could help the reader understand the large amount of data presented here. A mention at least of the existing literature in this area and the lack or presence of trends would be worthwhile. For example, is there any correlation with a simpler metric like the Grantham score to predict effects of mutations (in a way the ESM-1b model is a better version of this, so this is somewhat implicitly discussed).

      Indeed, this discussion relates to the second point this manuscript could improve upon: the machine learning section. The main actionable item here is that this results section seems the least polished and could do a better job describing what was done. In the figure it looks like results for certain inhibitors were held out as test data - was this all mutants for a single inhibitor, or some other scheme? Overall I think the implications of this section could be fleshed out, potentially with more experiments. As mentioned in the 'Strengths' section, one of the appealing aspects of this paper is indeed its potential wide applicability across kinases -- could you use this ML model to predict resistance mutants for an entirely different kinase? This doesn't seem far-fetched, and would be an extremely compelling addition to this paper to prove the value of this approach.

      Another area in which this paper could improve its clarity is in the description of caveats of the assay. The exact math used to define resistance mutants and its dependence on the DMSO control is interesting, it is worth discussing where the failure modes of this procedure might be. Could it be that the resistance mutants identified in this assay would differ significantly from those found in patients? That results here are consistent with those seen in the clinic is promising, but discrepancies could remain. Furthermore a more in depth discussion of the MetdelEx14 results is warranted. For example, why is the DMSO signature in Figure 1 - supplement 4 so different from that of Figure 1? And finally, there is a lot of emphasis put on the unexpected results of this assay for the tivantinib "type III" inhibitor - could this in fact be because the molecule "is highly selective for the inactive or unphosphorylated form of c-Met" according to Eathiraj et al JBC 2011? These points are addressed in previous work (Estevam et al 2024) or in the detailed methods section, but are not obvious in the main text of the paper.

      This paper is crisply written with beautiful figures, and the complexity of the data is easy to understand from an in depth discussion of the mutants that have been previously reported.

      Finally, the potential impacts and follow-ups of this excellent study could be used as a resource for the community both as a dataset and as a proof of concept. It is exciting that his approach can be altered and/or improved in the future to facilitate the general application of this approach for combination therapies and the understanding of mechanism for other targets.

      Comments on revisions:

      Thank you for your additions and changes - they have improved the quality of this paper.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Zhu et al describes a novel role for MED26, a subunit of the Mediator complex, in erythroid development. The authors have discovered that MED26 promotes transcriptional pausing of RNA Pol II, by recruiting pausing-related factors.

      Strengths:

      This is a well-executed study. The authors have employed a range of cutting-edge and appropriate techniques to generate their data, including: CUT&Tag to profile chromatin changes and mediator complex distribution; nuclear run-on sequencing (PRO-seq) to study Pol II dynamics; knockout mice to determine the phenotype of MED26 perturbation in vivo; an ex vivo erythroid differentiation system to perform additional, important, biochemical and perturbation experiments; immunoprecipitation mass spectrometry (IP-MS); and the "optoDroplet" assay to study phase-separation and molecular condensates.

      This is a real highlight of the study. The authors have managed to generate a comprehensive picture by employing these multiple techniques. In doing so, they have also managed to provide greater molecular insight into the workings of the MEDIATOR complex, an important multi-protein complex that plays an important role in a range of biological contexts. The insights the authors have uncovered for different subunits in erythropoiesis will very likely have ramifications in many other settings, in both healthy biology and disease contexts.

      Weaknesses:

      There are almost no discernible weaknesses in the techniques used, nor the interpretation of the data. The IP-MS data was generated in HEK293 cells when it could have been performed in the human CD34+ HSPC system that they employed to generate a number of the other data. This would have been a more natural setting and would have enabled a more like-for-like comparison with the other data.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper Hajra et al have attempted to identify the role of Sirt1 and Sirt3 in regulating metabolic reprogramming and macrophage host defense. They have performed gene knock down experiments in RAW macrophage cell line to show that depletion of Sirt1 or Sirt3 enhances the ability of macrophages to eliminate Salmonella Typhimurium. However, in mice inhibition of Sirt1 resulted in dissemination of the bacteria but the bacterial burden was still reduced in macrophages. They suggest that the effect they have observed is due to increased inflammation and ROS production by macrophages. They also try to establish a weak link with metabolism. They present data to show that the switch in metabolism from glycolysis to fatty acid oxidation is regulated by acetylation of Hif1a, and PDHA1.

      Strengths:

      The strength of the manuscript is that the role of Sirtuins in host-pathogen interactions have not been previously explored in-depth making the study interesting. It is also interesting to see that depletion of either Sirt1 or Sirt3 result in a similar outcome.

      Weaknesses:

      The major weakness of the paper is the low quality of data, making it harder to substantiate the claims. Also, there are too many pathways and mechanisms being investigated. It would have been better if the authors had focussed on either Sirt1 or Sirt3 and elucidated how it reprograms metabolism to eventually modulate host response against Salmonella Typhimurium. Experimental evidences are also lacking to prove the proposed mechanisms. For instance they show correlative data that knock down of Sirt1 mediated shift in metabolism is due to HIF1a acetylation but this needs to be proven with further experiments.

    1. Reviewer #2 (Public review):

      This focused study by Lowry and colleagues that identifies a key molecular motif that controls ion permeation vs combined ion permeation and lipid transport in three families of channel/scramblase proteins, in TMEM16 channels, in the plant-expressed and stress-gated cation channel OSCA, and in the mammalian homolog and mechanosensitive cation channel, TMEM63. Between them, these three channels share low sequence similarity and have seemingly differing functions, as anion (TMEM16 channels), or stress-activated cation channels (OSCA/TMEM63). The study finds that in all three families, mutating a single hydrophobic residue in the ion permeation pathway of the channels confers lipid transport through the pores of the channels, indicating that TMEM16 and related OSCA and TMEM63 channels have a conserved potential for both ion and lipid permeation. The authors interpret the findings as revealing that these channel/scramblase proteins have a relatively low "energetic barrier for scramblase" activity. The experiments are done with a high level of rigor and the revised paper is very well written and addresses the previous concerns.

    1. Reviewer #2 (Public review):

      Summary:

      The authors propose that DKK2 is necessary for the metastasis of colon cancer organoids. They then claim that DKK2 mediates this effect by permitting the generation of lysozyme-positive Paneth-like cells within the tumor microenvironmental niche. They argue that these lysozyme-positive cells have Paneth-like properties in both mouse and human contexts. They then implicate HNF4A as the causal factor responsive to DKK2 to generate lysozyme-positive cells through Sox9.

      Strengths:

      The use of a genetically defined organoid line is state-of-the-art. The data in Figure 1 and the dependence of DKK2 for splenic injection and liver engraftment, as well as the long-term effect on animal survival, are interesting and convincing. The rescue using DKK2 administration for some of their phenotype in vitro is good. The inclusion and analysis of human data sets help explore the role of DKK2 in human cancer and help ground the overall work in a clinical context.

      Remaining Weaknesses after revision:

      (1) The authors have effectively explained the regulation of HNF4A at both mRNA and protein levels. To further strengthen their findings, I recommend using CRISPR technology to generate DKK2 and HNF4A double knockout organoids. This approach would allow the authors to investigate whether the AKP liver metastasis is restored in the double knockout condition. Such an experiment would provide more direct evidence that HNF4A protein stabilization is the crucial mechanism for liver metastasis suppression following DKK2 knockout.

    1. Reviewer #2 (Public review):

      Summary:

      The author developed a new device to overcome current limitations in the imaging process of 3D spheroidal structures. In particular, they created a system to follow in real-time tumour spheroid formation, fusion and cell migration without disrupting their integrity. The system has also been exploited to test the effects of a therapeutic agent (chemotherapy) and immune cells.

      Strengths:

      The system allows the in situ observation of the 3D structures along the 3 axes (x,y and z) without disrupting the integrity of the spheroids; in a time-lapse manner it is possible to follow the formation of the 3D structure and the spheroids fusion from multiple angles, allowing a better understanding of the cell aggregation/growth and kinetic of the cells.

      Interestingly the system allows the analysis of cell migration/ escape from the 3D structure analysing not only the morphological changes in the periphery of the spheroids but also from the inner region demonstrating that the proliferating cells in the periphery of the structure are more involved in the migration and dissemination process. The application of the system in the study of the effects of doxorubicin and NK cells would give new insights in the description of the response of tumor 3D structure to killing agents.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have performed endoscopic calcium recordings of individual CeA neuron responses to food and shock, as well as to cues predicting food and shock. They claim that a majority of neurons encode valence, with a substantial minority encoding salience.

      Strengths:

      The use of endoscopic imaging is valuable, as it provides the ability to resolve signals from single cells, while also being able to track these cells across time (though the latter capability was not extensively utilized). Another strength is the use of a sophisticated circular shifting analysis to avoid statistical errors caused by correlations between neighboring image pixels.

      Weaknesses:

      In the first version of this manuscript, my main critique was that the authors didn't fully test whether neurons encode valence. In their rebuttal, the authors justify their use of the terms valence and salience by citing prior works from different labs:

      (1) Li et al., 2019, doi: 10.7554/eLife.41223<br /> (2) Yang et al., 2023, doi: 10.1038/s41586-023-05910-2<br /> (3) Huang et al., 2024, doi: 10.1038/s41586-024-07819<br /> (4) Lin and Nicolelis, 2008, doi: 10.1016/j.neuron.2008.04.031<br /> (5) Stephenson-Jones et al., 2020, doi: 10.1016/j.neuron.2019.12.006<br /> (6) Zhu et al., 2018, doi: 10.1126/science.aat0481<br /> (7) Comoli et al., 2003, doi: 10.1038/nn1113P

      Among these, items #1 and #3 primarily discuss valence, while #2, #4, #6, and #7 discuss salience, and #5 discusses both.

      Upon reviewing these references, the authors' identification of valence encoding patterns is still problematic, and indeed studies cited above show several lines of evidence for valence encoding that are absent here. For example, item #3 ranked behavioral responses to five different odors in drosophila, from most attractive to most repulsive, and saw neuronal responses correlated with the degree of attraction versus repulsion across all five odors. This is robust evidence for valence encoding that is absent here. Items #1 and #5 above are the other two valence-addressing studies cited, and although those only used one rewarding and one aversive stimulus (in rodents), both also added a neutral cue, and most critically, identified substantial subsets of neurons showing a rank-order response, e.g. either aversion > neutral > reward or aversion < neutral < reward. Again, that level of demonstration of valence encoding is not shown in the current study.

      Finally, two of the valence studies above tested responses to omission of reward/punishment, providing yet more evidence of valence encoding that is absent in the current study.

      While there is much to like about the current study, the claims of valence encoding appear hard to justify, and should be toned down.

    1. Reviewer #2 (Public review):

      Summary:

      The authors develop a computational model (and a simplified version thereof) to treat an extremely important issue regarding tumor growth. Specifically, it has been argued that fibroblasts have the ability to support tumor growth by creating physical conditions in the tumor microenvironment that prevent the relevant immune cells from entering into contact with, and ultimately killing, the cancer cells. This inhibition is referred to as immune exclusion. The computational approach follows standard procedures in the formulation of models for mixtures of different material species, adapted to the problem at hand by making a variety of assumptions as to the activity of different types of fibroblasts, namely "normal" versus "cancer-associated". The model itself is relatively complex, but the authors do a convincing job of analyzing possible behaviors and attempting to relate these to experimental observations.

      Strengths:

      As mentioned, the authors do an excellent job of analyzing the behavior of their model both in its full form (which includes spatial variation of the concentrations of the different cellular species) and in its simplified mean field form. The model itself is formulated based on established physical principles, although the extent to which some of these principles apply to active biological systems is perhaps debatable (see Weaknesses). The results of the model do indeed offer some significant insights into the critical factors which determine how fibroblasts might affect tumor growth; these insights could lead to new experimental ways of unraveling these complex sets of issues and enhancing immunotherapy. In this revised version, the authors have properly placed this work within the general context of other research on modeling the tumor-immune ecology.

      Weaknesses:

      Models of the form being studied here rely on a large number of assumptions regarding cellular behavior. One major issue is the degree to which close-to-equilibrium assumptions (such as the dynamics being driven by free energy minimization) can be taken as reliable predictors of the obviously active dynamics of biological cells. The authors have recognized this conceptual issue and have argued that these assumptions provide a reasonable first step for understanding the full complexity of dynamics in the tumor microenvironment.

      The problem of T cell infiltration as well as the patterning of the extracellular matrix (ECM) by fibroblasts necessarily involve understanding cell proliferation, cell motion and cell interactions due e.g. to cell signaling. There is evidence that inherently non-equilibrium interactions between the fibroblasts and the extracellular matrix can lead to patterning of the fiber network and trapping of potentially infiltrating T-cells. it is not clear the extent to which this type of interaction can be captured by the approach being used here, although the authors propose that they can be mimicked by proper terms in their formulation. This to me is the primary concern that I had with this paper.

      The authors have now addressed what used to be a separate weakness concerning the assumption that fibroblasts affect T cell behavior primarily by just making a more dense ECM. Instead, the organization of the ECM (for example, its anisotropy) could be playing a much more essential role than is given credit for here. This possibility is now discussed in some detail and the authors have suggested that the introduction of a nematic order parameter field would be a useful way to treat this effect.

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors create transgenic animals with a CMV promoter driving expression of their DIO-SPOTlight construct in which uORF2 and the authentic ORF of Atf4 are replaced by GFP and tdTomato respectively, such that ISR activation is predicted to diminish GFP expression and enhance RFP expression. The major experimental finding of the paper is that cholinergic neurons have the most robust activation of the reporter, consistent with and extending upon their previous work.

      Strengths:

      It is very likely that the reporter does indeed read out on ISR activation at some level. It is mostly likely to be useful for screening and hypothesis testing than for gaining mechanistic insight, because, as the authors note in the present version, ATF4 itself is but one component of ISR activation. Cells might have robust eIF2a phosphorylation but have suppressed translational regulation (for instance by regulating the expression of eIF2B). The mRNA and protein half-lives of the GFP and Tomato are likely quite different from that of the equivalent components in ATF4, which means that the reporter is likely to behave differently from ATF4 itself over time.

      Weaknesses:

      The major element that the current manuscript lacks is a detailed comparison between how the reporter behaves and how it tracks with eIF2a phosphorylation, ATF4, and the initiation of the gene expression program downstream of ATF4. While this would be difficult to do in vivo, it would seem much more feasible to isolate primary cells (neurons, fibroblasts, hepatocytes, etc.) from the animals and thoroughly characterize the kinetics of reporter-versus-ISR activation. In that way, the reader can have a better idea of how to interpret the behavior of the reporter. As it is, the authors' attempt to account for the reporter's behavior in Figure 3F is purely speculative and not backed by experiment or modeling.

    1. Reviewer #2 (Public review):

      The authors first identify Ankle2 as a regulatory subunit and direct interactor of PP2A, showing they interact both in vitro and in vivo to promote BAF dephosphorylation. The Ankyrin domain of Ankle2 is important for the interaction with PP2A. They then show Ankle2 also interacts with the ER protein Vap33 through FFAT motifs and they particularly co-localize during mitosis. The recruitment of Ankle2 to Vap33 is essential to ER and nuclear envelop membrane in telophase while earlier in mitosis, it relies on the C terminus but not the FFAT motifs for recruitments to the nuclear membrane and spindle envelop in early mitosis. The molecular determinants and receptors are currently not known. The authors check the function of the PP2A recruitment to Ankle2/Vap33 in the context of embryos and show this recruitment pathway is functionally important. While the Ankle2/Vap33 interaction is dispensable in adult flies -looking at wing development, the PP2A/Ankle2 interaction is essential for correct wing and fly development. Overall, this is a very complete paper that reveals the molecular mechanism of PP2A recruitment to Ankle2 and studies both the cellular and the physiological effect of this interaction in the context of fly development.

      The paper is well-written and the narrative is well developed. The figures are of high quality, well-controlled, clearly labelled and easy to understand. They support the claims made by the authors.

      Comments on revisions:

      There are still issues with the statistics. On graphs where multiple conditions are shown, you cannot perform a T-test. You have to use other tests such as ANOVA if the data is normal, and other tests such as KS test if the data is not normally distributed.

    1. Reviewer #2 (Public review):

      Summary:

      In their manuscript the authors address the question whether the inversion polymorphism in D. melanogaster can be explained by sexually antagonistic selection. They designed a new simulation tool to perform computer simulations, which confirmed their hypothesis. They also show a tradeoff between male reproduction and survival. Furthermore, some inversions display sex-specific survival.

      Strengths:

      It is an interesting idea on how chromosomal inversions may be maintained

      Weaknesses:

      The authors motivate their study by the observation that inversions are maintained in D. melanogaster and because inversions are more frequent closer to the equator, the authors conclude that it is unlikely that the inversion contributes to adaptation in more stressful environments. Rather the inversion seems to be more common in habitats that are closer to the native environment of ancestral Drosophila populations.<br /> While I do agree with the authors that this observation is interesting, I do not think that it rules out a role in local adaptation. After all, the inversion is common in Africa, so it is perfectly conceivable that the non-inverted chromosome may have acquired a mutation contributing to the novel environment.

      Based on their hypothesis, the authors propose an alternative strategy, which could maintain the inversion in a population. They perform some computer simulations, which are in line with the predicted behavior. Finally, the authors perform experiments and interpret the results as empirical evidence for their hypothesis. While the reviewer is not fully convinced about the empirical support, the key problem is that the proposed model does not explain the patterns of clinal variation observed for inversions in D. melanogaster. According to the proposed model, the inversions should have a similar frequency along latitudinal clines. So in essence, the authors develop a complicated theory because they felt that the current models do not explain the patterns of clinal variation, but this model also fails to explain the pattern of clinal variation.

    1. Reviewer #2 (Public review):

      Summary:

      Vladimir Khayenko et al. discovered two novel binding pockets on HBc with in vitro binding and electron microscopy experiments. While the geranyl dimer targeting a central hydrophobic pocket displayed a micromolar affinity, the P1-dimer binding to the spike tip of HBc has a nanomolar affinity. In the turbidity assay and at the cellular level, an HBc aggregation from peptide crosslinking was demonstrated.

      Strengths:

      The study identifies two previously unexplored binding pockets on HBc capsids and develops novel binders targeting these sites with promising affinities.

      Weaknesses:

      While the in vitro and cellular HBc aggregation effects are demonstrated, the antiviral potential against HBV infection is not directly evaluated in this study.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors showed the applicability and usefulness of a new AlphaFold2 pipeline called PabFold, which can predict linear antibody epitopes (B-cell epitopes) that can be helpful for the selection of reagents to be applied in competitive ELISA assay.

      Strengths:

      The authors showed the accuracy of the pipeline to identify correctly the binding epitope for three different antibody-antigen systems (Myc, HA, and Sars-Cov2 nucleocapsid protein). The design of scFvs from Fab of the three antibodies to speed up the analysis time is extremely interesting.

      Weaknesses:

      The article justifies correctly the findings and no great weaknesses are present. However, it could be useful for a broader audience to show in detail how pLDDT was calculated for both Simple-Max approach (per residue-pLDDT) and Consensus analysis ( average pLDDT for each peptide), with associated equations.

      Comments on revisions:

      I have read the author's responses to my comments and the revised paper. They addressed the minor comments and concerns. However, I agree with Reviewer #1 that these findings cannot be reproduced without local MSAs and this is a major issue.

    1. Reviewer #2 (Public review):

      Summary:

      ZFHX3 is a transcription factor expressed in discrete populations of adult SCN and was shown by the authors previously to control circadian behavioral rhythms using either a dominant missense mutation in Zfhx3 or conditional null Zfhx3 mutation using the Ubc-Cre line (Wilcox et al., 2017). In the current manuscript, the authors assess the function of ZFHX3 by using a multi-omics approach including ChIPSeq in wildtype SCNs and RNAseq of SCN tissues from both wildtype and conditional null mice. RNAseq analysis showed a loss of oscillation in Bmal1 and changes in expression levels of other clock output genes. Moreover, a phase advance gene transcriptional profile using the TimeTeller algorithm suggests the presence of a regulatory network that could underlie the observed pattern of advanced activity onset in locomotor behavior in knockout mice.

      In figure1, the authors identified tthe ZFHX3 bound sites using ChIPseq and compared the loci with other histone marks that occur at promoters, TSS, enhancers and intergenic regions. And the analysis broadly points to a role for ZFHX3 in transcriptional regulation. The vast majority of nearly 40000 peaks overlapped H3K4me3 and K27ac marks, active promoters which also included genes falling under the GO category circadian rhythms. However, no significant differential ZFHX3 bound peaks were detected between ZT3 and ZT15. In these experiments, it is not clear if and how the different ChIP samples (ZFHX3 and histone PTM ChIPs) were normalized/downsampled for analysis. Moreover, it seems that ZFHX3 binding or recruitment has little to do with whether the promoters are active.

      Based on a enrichment of ARNT domains next to K4Me3 and K27ac PTMs, the authors propose a model where the core-clock TFs and ZFHX3 interact. If the authors develop other assays beyond just predictions to test their hypothesis, it would strengthen the argument for role in circadian transcription in the SCN. It would be important in this context to perform a ChIP-seq experiment for ZFHX3 in the knockout animal (described from Figure 2 onwards) to eliminate the possibility of non-specific enrichment of signal from "open chromatin'. Alternatively, a ChIPseq analysis for BMAL1 or CLOCK could also strengthen this argument to identify the sites co-occupied by ZFHX3 and core-clock TFs.

      Next, they compared locomotor activity rhythms in floxed mice with or without tamoxifen treatment. As reported before in Wilcox et al 2017, the loss of ZFHX3 led to a shorter free running period and reduced amplitude and earlier onset of activity. Overall, the behavioral data in Figure 2 and supplementary figure 2 has been reported before and are not novel.

      Next, the authors performed RNAseq at 4hr intervals on wildtype and knockout animals maintained in light/dark cycles to determine the impact of loss of ZFHX3. Overall transcriptomic analysis indicated changes in gene expression in nearly 36% of expressed genes, with nearly half being upregulated while an equal fraction was downregulated. Pathways affected included mostly neureopeptide neurotransmitter pathways. Surprisingly, there was no correlation between the direction in change in expression and TF binding since nearly all the sites were bound by ZFHX3 and the active histone PTMs. The ChIP-seq experiment for ZFHX3 in the UBC-Cre+Tam mice again could help resolve the real targets of ZFHX3 and the transcriptional state in knockout animals.

      To determine the fraction of rhythmic transcripts, Using dryR, the authors categorise the rhythmic transcriptome into modules that include genes that lose rhythmicity in the KO, gain rhythmicity in the KO or remain unaffected or partially affected. The analysis indicates that a large fraction of the rhythmic transcriptome is affected in the KO model. However, among core-clock genes only Bmal1 expression is affected showing a complete loss of rhythm. The authors state a decrease in Clock mRNA expression (line 294) but the panel figure 4A does not show this data. Instead it depicts the loss in Avp expression - {{ misstated in line 321 ( we noted severe loss in 24-h rhythm for crucial SCN neuropeptides such as Avp (Fig. 3a).}}

      However, core-clock genes such as Pers and Crys show minor or no change in expression patterns while Per2 and Per3 show a ~2hr phase advance. While these could only weakly account for the behavioral phase advance, the authors used TimeTeller to assess circadian phase in wildtype and ZFHX3 deficient mice. This approach clearly indicated that while the clock is not disrupted in the knockout animals, the phase advance can be correctly predicted from a network of gene expression patterns.

      Strengths:

      The authors use a multiomic strategy in order to reveal the role of the ZFHX3 transcription factor with a combination of TF and histone PTM ChIPseq, time-resolved RNAseq from wildtype and knockout mice and modeling the transcriptomic data using TimeTeller. The RNAseq experiments are nicely controlled and the analysis of the data indicates a clear impact on gene-expression levels in the knockout mice and the presence of a regulatory network that could underlie the advanced activity onset behavior.

      Weaknesses:

      It is not clear whether ZFHX3 has a direct role in any of the processes and seems to be a general factor that marks H3K4me3 and K27ac marked chromatin. Why it would specifically impact the core-clock TTFL clock gene expression or indeed daily gene expression rhythms is not clear either. Details for treatment of different ChIP samples (ZFHX3 and histone PTM ChIPs) on data normalization for analysis are needed. The loss of complete rhythmicity of Avp and other neuropeptides or indeed other TFs could instead account for the transcriptional deregulation noted in the knockout mice.

    1. Reviewer #2 (Public review):

      Summary:

      This work addresses the question of how 'leading' and 'lagging' PGCs differ, molecularly, during their migration to the mouse genital ridges/gonads during fetal life (E9.5, E10.5, E11.5), and how this is regulated by different somatic environments encountered during the process of migration. E9.5 and E10.5 cells differed in expression of genes involved in canonical WNT signaling and focal adhesions. Differences in cell adhesion, actin cytoskeletal dynamics were identified between leading and lagging cells, at E9.5, before migration into the gonads. At E10.5, when some PGCs have reached the genital ridges, differences in Nodal signaling response genes and reprogramming factors were identified. This last point was verified by whole mount IF for proteins downstream of Nodal signaling, Lefty1/2. At E11.5, there was upregulation of genes associated with chromatin remodeling and oxidative phosphorylation. Some aspects of the findings were also found to be likely true in human development, established via analysis of a dataset previously published by others.

      Strengths:

      The work is strong in that a large number of PGCs were isolated and sequenced, along with associated somatic cells. The authors dealt with problem of very small number of migrating mouse PGCs by pooling cells from embryos (after ascertaining age matching using somite counting). 'Leading' and 'lagging' populations were separated by anterior and posterior embryo halves and the well-established Oct4-deltaPE-eGFP reporter mouse line was used.

      Weaknesses:

      The work seems to have been carefully done, but I do not feel the manuscript is very accessible, and I do not consider it well written. The novel findings are not easy to find. The addition of at least one figure to show the locations of putative signaling etc. would be welcome.

      (1) The initial discussion of CellRank analysis (under 'Transcriptomic shifts over developmental time...' heading) is somewhat confusing - e.g. If CellRank's 'pseudotime analysis' produces a result that seems surprising (some E9.5 cells remain in a terminal state with other E9.5 cells) and 'realtime analysis' produces something that makes more sense, is there any point including the pseudotime analysis (since you have cells from known timepoints)? Perhaps the 'batch effects' possible explanation (in Discussion) should be introduced here. Do we learn anything novel from this CellRank analysis? The 'genetic drivers' identified seem to be genes already known to be key to cell transitions during this period of development.

      (2) In Discussion - with respect to Y-chromosome correlation, it is not clear why this analysis would be done at E10.5, when E11.5 data is available (because some testis-specific effect might be more apparent at the later stage).

      (3) Figure 2A - it seems surprising that there are two clusters of E9.5 anterior cells

      (4) Figure 5F - there does seem to be more LEFTY1/2 staining in the anterior region, but also more germ cells as highlighted by GFP

    1. Reviewer #2 (Public review):

      Summary:

      Antibodies, thanks to their high binding affinity and specificity to cognate protein targets, are increasingly used as research and therapeutic tools. In this work, Zhou et al. have created, curated, and made publicly available a new database of antibody-antigen complexes to support research in the field of antibody modelling, development, and engineering.

      Strengths:

      The authors have performed a manual curation of antibody-antigen complexes from the Protein Data Bank, rectifying annotation errors; they have added two methods to estimate paratope-epitope interfaces; they have produced a web interface that is capable of both effective visualisation and of summarising the key useful information in one page. The database is also cross-linked to other databases that contain information relevant to antibody developability and therapeutic applications.

      Weaknesses:

      The database does not import all the experimental information from PDB and contains only complexes with large protein targets.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Mackie et al. investigate gustatory behavior and the neural basis of gustation in the predatory nematode Pristionchus pacificus. First, they show that the behavioral preferences of P. pacificus for gustatory cues differ from those reported for C. elegans. Next, they investigate the molecular mechanisms of salt sensing in P. pacificus. They show that although the C. elegans transcription factor gene che-1 is expressed specifically in the ASE neurons, the P. pacificus che-1 gene is expressed in the Ppa-ASE and Ppa-AFD neurons. Moreover, che-1 plays a less critical role in salt chemotaxis in P. pacificus than C. elegans. Chemogenetic silencing of Ppa-ASE and Ppa-AFD neurons results in more severe chemotaxis defects. The authors then use calcium imaging to show that both Ppa-ASE and Ppa-AFD neurons respond to salt stimuli. Calcium imaging experiments also reveal that the left and right Ppa-ASE neurons respond differently to salts, despite the fact that P. pacificus lacks lsy-6, a microRNA that is important for ASE left/right asymmetry in C. elegans. Finally, the authors show that the receptor guanylate cyclase gene Ppa-gcy-23.3 is expressed in the right Ppa-ASE neuron (Ppa-ASER) but not the left Ppa-ASE neuron (Ppa-ASEL) and is required for some of the gustatory responses of Ppa-ASER, further confirming that the Ppa-ASE neurons are asymmetric and suggesting that Ppa-GCY-23.3 is a gustatory receptor. Overall, this work provides insight into the evolution of gustation across nematode species. It illustrates how sensory neuron response properties and molecular mechanisms of cell fate determination can evolve to mediate species-specific behaviors. However, the paper would be greatly strengthened by a direct comparison of calcium responses to gustatory cues in C. elegans and P. pacificus, since the comparison currently relies entirely on published data for C. elegans, where the imaging parameters likely differ. In addition, the conclusions regarding Ppa-AFD neuron function would benefit from additional confirmation of AFD neuron identity. Finally, how prior salt exposure influences gustatory behavior and neural activity in P. pacificus is not discussed.

      Strengths:

      (1) This study provides exciting new insights into how gustatory behaviors and mechanisms differ in nematode species with different lifestyles and ecological niches. The results from salt chemotaxis experiments suggest that P. pacificus shows distinct gustatory preferences from C. elegans. Calcium imaging from Ppa-ASE neurons suggests that the response properties of the ASE neurons differ between the two species. In addition, an analysis of the expression and function of the transcription factor Ppa-che-1 reveals that mechanisms of ASE cell fate determination differ in C. elegans and P. pacificus, although the ASE neurons play a critical role in salt sensing in both species. Thus, the authors identify several differences in gustatory system development and function across nematode species.

      (2) This is the first calcium imaging study of P. pacificus, and it offers some of the first insights into the evolution of gustatory neuron function across nematode species.

      (3) This study addresses the mechanisms that lead to left/right asymmetry in nematodes. It reveals that the ASER and ASEL neurons differ in their response properties, but this asymmetry is achieved by molecular mechanisms that are at least partly distinct from those that operate in C. elegans. Notably, ASEL/R asymmetry in P. pacificus is achieved despite the lack of a P. pacificus lsy-6 homolog.

      Weaknesses:

      (1) The authors observe only weak attraction of C. elegans to NaCl. These results raise the question of whether the weak attraction observed is the result of the prior salt environment experienced by the worms. More generally, this study does not address how prior exposure to gustatory cues shapes gustatory responses in P. pacificus. Is salt sensing in P. pacificus subject to the same type of experience-dependent modulation as salt sensing in C. elegans?

      (2) A key finding of this paper is that the Ppa-CHE-1 transcription factor is expressed in the Ppa-AFD neurons as well as the Ppa-ASE neurons, despite the fact that Ce-CHE-1 is expressed specifically in Ce-ASE. However, additional verification of Ppa-AFD neuron identity is required. Based on the image shown in the manuscript, it is difficult to unequivocally identify the second pair of CHE-1-positive head neurons as the Ppa-AFD neurons. Ppa-AFD neuron identity could be verified by confocal imaging of the CHE-1-positive neurons, co-expression of Ppa-che-1p::GFP with a likely AFD reporter, thermotaxis assays with Ppa-che-1 mutants, and/or calcium imaging from the putative Ppa-AFD neurons.

      (3) Loss of Ppa-che-1 causes a less severe phenotype than loss of Ce-che-1. However, the loss of Ppa-che-1::RFP expression in ASE but not AFD raises the question of whether there might be additional start sites in the Ppa-che-1 gene downstream of the mutation sites. It would be helpful to know whether there are multiple isoforms of Ppa-che-1, and if so, whether the exon with the introduced frameshift is present in all isoforms and results in complete loss of Ppa-CHE-1 protein.

      (4) The authors show that silencing Ppa-ASE has a dramatic effect on salt chemotaxis behavior. However, these data lack control with histamine-treated wild-type animals, with the result that the phenotype of Ppa-ASE-silenced animals could result from exposure to histamine dihydrochloride. This is an especially important control in the context of salt sensing, where histamine dihydrochloride could alter behavioral responses to other salts.

      (5) The calcium imaging data in the paper suggest that the Ppa-ASE and Ce-ASE neurons respond differently to salt solutions. However, to make this point, a direct comparison of calcium responses in C. elegans and P. pacificus using the same calcium indicator is required. By relying on previously published C. elegans data, it is difficult to know how differences in growth conditions or imaging conditions affect ASE responses. In addition, the paper would be strengthened by additional quantitative analysis of the calcium imaging data. For example, the paper states that 25 mM NH4Cl evokes a greater response in ASEL than 250 mM NH4Cl, but a quantitative comparison of the maximum responses to the two stimuli is not shown.

      (6) It would be helpful to examine, or at least discuss, the other P. pacificus paralogs of Ce-gcy-22. Are they expressed in Ppa-ASER? How similar are the different paralogs? Additional discussion of the Ppa-gcy-22 gene expansion in P. pacificus would be especially helpful with respect to understanding the relatively minor phenotype of the Ppa-gcy-22.3 mutants.

      (7) The calcium imaging data from Ppa-ASE is quite variable. It would be helpful to discuss this variability. It would also be helpful to clarify how the ASEL and ASER neurons are being conclusively identified during calcium imaging.

      (8) More information about how the animals were treated prior to calcium imaging would be helpful. In particular, were they exposed to salt solutions prior to imaging? In addition, the animals are in an M9 buffer during imaging - does this affect calcium responses in Ppa-ASE and Ppa-AFD? More information about salt exposure, and how this affects neuron responses, would be very helpful.

      (9) In Figure 6, the authors say that Ppa-gcy-22.3::GFP expression is absent in the Ppa-che-1(ot5012) mutant. However, based on the figure, it looks like there is some expression remaining. Is there a residual expression of Ppa-gcy-22.3::GFP in ASE or possibly ectopic expression in AFD? Does Ppa-che-1 regulate rGC expression in AFD? It would be helpful to address the role of Ppa-che-1 in AFD neuron differentiation.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors report that Meioc is required to upregulate rRNA transcription and promote differentiation of spermatogonial stem cells in zebrafish. The authors show that upregulated protein synthesis is required to support spermatogonial stem cells' differentiation into multi-celled cysts of spermatogonia. Coiled coil protein Meioc is required for this upregulated protein synthesis and for increasing rRNA transcription, such that the Meioc knockout accumulates 1-2 cell spermatogonia and fails to produce cysts with more than 8 spermatogonia. The Meioc knockout exhibits continued transcriptional repression of rDNA. Meioc interacts with and sequesters Piwil1 to the cytoplasm. Loss of Meioc increases Piwil1 localization to the nucleolus, where Piwil1 interacts with transcriptional silencers that repress rRNA transcription.

      Strengths:

      This is a fundamental study that expands our understanding of how ribosome biogenesis contributes to differentiation and demonstrates that zebrafish Meioc plays a role in this process during spermatogenesis. This work also expands our evolutionary understanding of Meioc and Ythdc2's molecular roles in germline differentiation. In mouse, the Meioc knockout phenocopies the Ythdc2 knockout, and studies thus far have indicated that Meioc and Ythdc2 act together to regulate germline differentiation. Here, in zebrafish, Meioc has acquired a Ythdc2-independent function. This study also identifies a new role for Piwil1 in directing transcriptional silencing of rDNA.

      Weaknesses:<br /> There are limited details on the stem cell-enriched hyperplastic testes used as a tool for mass spec experiments, and additional information is needed to fully evaluate the mass spec results. What mutation do these testes carry? Does this protein interact with Meioc in the wildtype testes? How could this mutation affect the results from the Meioc immunoprecipitation?

    1. Reviewer #2 (Public review):

      Summary:

      This work assesses the genetic interaction between the Bmp signaling pathway and the factor Numb, which can inhibit Notch signalling. It follows up on the previous studies of the group (Tian, Elife, 2014; Tian, PNAS, 2014) regarding BMP signaling in controlling stem cell fate decision as well as on the work of another group (Sallé, EMBO, 2017) that investigated the function of Numb on enteroendocrine fate in the midgut. This is an important study providing evidence of a Numb-mediated back up mechanism for stem cell maintenance.

      Strengths:

      (1) Experiments are consistent with these previous publications while also extending our understanding of how Numb functions in the ISC.<br /> (2) Provides an interesting model of a "back up" protection mechanism for ISC maintenance.

      Weaknesses:<br /> (1) Aspects of the experiments could be better controlled or annotated:<br /> (a) As they "randomly chose" the regions analyzed, it would be better to have all from a defined region (R4 or R2, for example) or to at least note the region as there are important regional differences for some aspects of midgut biology.<br /> (b) It is not clear to me why MARCM clones were induced and then flies grown at 18{degree sign}C? It would help to explain why they used this unconventional protocol.

      (2) There are technical limitations with trying to conclude from double-knockdown experiments in the ISC lineage, such as those in Figure 1 where Dl and put are both being knocked down: depending on how fast both proteins are depleted, it may be that only one of them (put, for example) is inactivated and affects the fate decision prior to the other one (Dl) being depleted. Therefore, it is difficult to definitively conclude that the decision is independent of Dl ligand.

      (3) Additional quantification of many phenotypes would be desired.<br /> (a) It would be useful to see esg-GFP cells/total cells and not just field as the density might change (2E for example).<br /> (b) Similarly, for 2F and 2G, it would be nice to see the % of ISC/ total cell and EB/total cell and not only per esgGFP+ cell.<br /> (c) Fig1: There is no quantification - specifically it would be interesting to know how many esg+ are su(H)lacZ positive in Put- Dl- condition compared to WT or Put- alone. What is the n?<br /> (d) Fig2: Pros + cells are not seen in the image? Are they all DllacZ+?<br /> (e) Fig3: it would be nice to have the size clone quantification instead of the distribution between groups of 2 cell 3 cells 4 cell clones.<br /> (f) How many times were experiments performed?

      (4) The authors do not comment on the reduction of clone size in DSS treatment in Figure 6K. How do they interpret this? Does it conflict with their model of Bleo vs DSS?

      (5) There is probably a mistake on sentence line 314 -316 "Indeed, previous studies indicate that endogenous Numb was not undetectable by Numb antibodies that could detect Numb expression in the nervous system".

    1. Reviewer #2 (Public review):

      Summary:<br /> Epigenetic regulation is critical for maintaining cellular function, and its dysregulation contributes to senescence and disease. This manuscript investigates the role of TET2 in β cell aging, proposing that TET2-mediated PTEN DNA methylation promotes H4K16 acetylation (H4K16ac) through MOF, driving β cell senescence. Using TET2 inhibitors, RNA interference, lentiviral overexpression, and knockout mouse models, the authors aim to establish TET2 as a key player in β cell aging and a potential therapeutic target in type 2 diabetes mellitus (T2DM).<br /> However, significant limitations reduce the manuscript's impact. Figures are poorly presented, with illegible fonts and unquantified staining panels, while key analyses, such as β cell specificity and senescence inducers, are missing. The rationale for focusing on H4K16ac and MOF is unclear, and the authors fail to address whether β cell identity gene changes reflect altered gene expression or mass. Additionally, critical controls, such as low-fat diet cohorts, are absent, and the writing lacks clarity and coherence. Together, these weaknesses undermine the validity of the findings.

      Main Comments<br /> Figures 1 and 2:<br /> The fonts in Figures 1 and 2 are barely visible and should be improved for readability. Additionally, do TET2 protein levels change in mouse and human β cells with aging? Is there evidence from regression analyses using single-cell RNA sequencing on human islets that TET2 expression correlates with age-associated gene signatures in β cells? Are these correlations specific to β cells, or do they extend to other islet cell types? It would also be informative to assess whether TET2 levels increase with senescence inducers such as DNA damage agents (e.g., bleomycin, doxorubicin) or reactive oxygen species (e.g., H₂O₂).<br /> Figure 3:<br /> Why do TET2 protein levels appear stronger in acinar cells? Additionally, the predominant cellular localization of TET2 seems to be cytoplasmic. Can the authors clarify or expand on this observation?<br /> Figure 4:<br /> The data on the impact of TET2 insufficiency in vivo is compelling. There are several quality control experiments to validate their model and main hypothesis (That T2t2 expression increases with aging in beta-cells). Here, authors have the right system to validate their initial Tet2 protein dynamics in the mouse, since they have a KO mouse model. Here, it would be useful to co-stain Tet2 with insulin and glucagon, to infer the dynamics of Tet2 in the two most abundant islet cell types.<br /> Figure 5:<br /> The upregulation of β-cell identity genes in the KO mouse model raises an important question: Is this effect due to an actual increase in gene expression or simply a higher proportion of β cells? Quantifying β-cell mass and performing gene expression analyses on FACS-sorted β cells would help address this. Additionally, the staining panels lack quantification. For instance, GLUT2 staining appears cytoplasmic when it should be membranous. The authors focus on cellular senescence, but does apoptosis increase in wild-type mice under a high-fat diet (HFD)? Including animals on a low-fat diet (LFD) for comparison would add valuable context.<br /> Figure 6:<br /> The data suggest an increase in cell numbers in TET2-overexpressing cells. Does this indicate an effect on β-cell proliferation? Quantification would provide clarity.<br /> Figure 8:<br /> The rationale for focusing on H4K16ac is insufficiently discussed. What is the mechanism linking TET2-induced changes to decreased H4K16ac levels? Including a more thorough explanation in the introduction and discussion would enhance the manuscript.<br /> Figure 9:<br /> The introduction lacks any discussion of H4K16ac or MOF. The discussion paragraph (lines 530-540) that elaborates on these points should instead be moved to the introduction to improve the manuscript's flow. Furthermore, the authors should cite their 2022 paper on H4K16ac as part of the rationale for focusing on this histone modification.

      Minor Comments:<br /> The manuscript would benefit from language refinement. Examples include:<br /> Line 183: Replace "the blood included" with a more precise description.<br /> Line 315: "treated with RNA seq" should be rephrased to clarify methodology (e.g., "analyzed via RNA sequencing").<br /> Line 456: Replace "expression of H4K16ac" with "levels of H4K16ac."<br /> Line 496: The phrase "can solve scientific problems from multiple dimensions" sounds vague and overly broad; consider rephrasing to be more specific.

    1. Reviewer #2 (Public review):

      Summary:

      Previous studies have shown that Topoisomerase 2 (Top2) depletion in yeast can extend the lifespan of the organism, but no known mechanisms have been reported. In the current study, Zhu et al. reported that reduction of Top2 enhances longevity and mitigates aging phenotypes across multiple model organisms, including not yeast, but also C. elegans and mouse. The evidence of reduction of aging phenotypes is particularly strong, which include markers of cellular senescence, nutrient sensing, epigenetic markers, and lysosome biogenesis. They propose that Top2b reduction confers longevity through a conserved mechanism, and may be used a novel therapeutic strategy for countering aging. Overall, their findings should be of broad interest to the fields of Aging and Topoisomerase research. The technical quality of the work is in general solid but can be improved.

      Strengths:

      Top2 is an essential type II topoisomerase that resolves DNA topological stress generated during transcription, replication, chromosome segregation, and other DNA metabolic processes by introducing transient double-strand breaks (DSBs), passing the DNA strands, and re-ligating them. Top2 is a target for anticancer therapies, but its connection to aging and longevity remains largely unexplored. The authors' findings are notable, as Top2 has been deemed indispensable for normal development. Yet, this study suggests that its reduction confers benefits in the context of healthy aging. Their results convincingly show extended lifespan and improvements in physiological and molecular aging phenotypes, supported by behavioral assays and tissue morphology analyses.

      Weaknesses:

      Despite these strengths, the manuscript is weak on the proposed "conserved mechanism". The authors proposed in Discussion that Top2/Top2b knockdown may be similar to the classical insulin/IGF1 and the mTORC pathway, but did not provide any genetic evidence to support this.

      The authors also mentioned in the Discussion that the potential mechanism could be selective down-regulation of transcription of genes of active promoter and high abundance, such as ribosomal genes, which could be relevant to yeast aging. But there is no evidence in worms or mouse that Top2b directly binds and promotes transcription of certain high abundance genes critical for aging.

      I understand that this mechanism issue may be difficult to address, and I do not expect that the authors can fully address this issue. However, as both yeast and worms have been widely-used in aging studies with many tools available, I suggest that the authors can improve their studies by performing the following experiments.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors present a biologically plausible, efficient E-I spiking network model and study various aspects of the model and its relation to experimental observations. This includes a derivation of the network into two (E-I) populations, the study of single-neuron perturbations and lateral-inhibition, the study of the effects of adaptation and metabolic cost, and considerations of optimal parameters. From this, they conclude that their work puts forth a plausible implementation of efficient coding that matches several experimental findings, including feature-specific inhibition, tight instantaneous balance, a 4 to 1 ratio of excitatory to inhibitory neurons, and a 3 to 1 ratio of I-I to E-I connectivity strength.

      Strengths:

      While many network implementations of efficient coding have been developed, such normative models are often abstract and lacking sufficient detail to compare directly to experiments. The intention of this work to produce a more plausible and efficient spiking model and compare it with experimental data is important and necessary in order to test these models. In rigorously deriving the model with real physical units, this work maps efficient spiking networks onto other more classical biophysical spiking neuron models. It also attempts to compare the model to recent single-neuron perturbation experiments, as well as some long-standing puzzles about neural circuits, such as the presence of separate excitatory and inhibitory neurons, the ratio of excitatory to inhibitory neurons, and E/I balance. One of the primary goals of this paper, to determine if these are merely biological constraints or come from some normative efficient coding objective, is also important. Lastly, though several of the observations have been reported and studied before, this work arguably studies them in more depth, which could be useful for comparing more directly to experiments.

      Weaknesses:

      This work is the latest among a line of research papers studying the properties of efficient spiking networks. Many of the characteristics and findings here have been discussed before, thereby limiting the new insights that this work can provide. Thus, the conclusions of this work should be considered and understood in the context of those previous works, as the authors state. Furthermore, the number of assumptions and free parameters in the model, though necessary to bring the model closer to biophysical reality, make it more difficult to understand and to draw clear conclusions from. As the authors state, many of the optimality claims depend on these free parameters, such as the dimensionality of the input signal (M=3), the relative weighting of encoding error and metabolic cost, and several others. This raises the possibility that it is not the case that the set of biophysical properties measured in the brain are accounted for by efficient coding, but rather that theories of efficient coding are flexible enough to be consistent with this regime. With this in mind, some of the conclusions made in the text may be overstated and should be considered in this light.

      Conclusions, Impact, and additional context:

      Notions of optimality are important for normative theories, but they are often studied in simple models with as few free parameters as possible. Biophysically detailed and mechanistic models, on the other hand, will often have many free parameters by their very nature, thereby muddying the connection to optimality. This tradeoff is an important concern in neuroscientific models. Previous efficient spiking models have often been criticized for their lack of biophysically-plausible characteristics, such as large synaptic weights, dense connectivity, and instantaneous communication. This work is an important contribution in showing that such networks can be modified to be much closer to biophysical reality without losing their essential properties. Though the model presented does suffer from complexity issues which raise questions about its connections to "optimal" efficient coding, the extensive study of various parameter dependencies offers a good characterization of the model and puts its conclusions in context.

    1. Reviewer #2 (Public review):

      Summary:

      The study of Rollenhagen et al examines the ultrastructural features of Layer 1 of human temporal cortex. The tissue was derived from drug-resistant epileptic patients undergoing surgery, and was selected as further from the epilepsy focus, and as such considered to be non-epileptic. The analyses has included 4 patients with different age, sex, medication and onset of epilepsy. The MS is a follow-on study with 3 previous publications from the same authors on different layers of the temporal cortex:

      Layer 4 - Yakoubi et al 2019 eLife<br /> Layer 5 - Yakoubi et al 2019 Cerebral Cortex,<br /> Layer 6 - Schmuhl-Giesen et al 2022 Cerebral Cortex

      They find, the L1 synaptic boutons mainly have single active zone a very large pool of synaptic vesicles and are mostly devoid of astrocytic coverage.

      Strengths:

      The MS is well written easy to read. Result section gives a detailed set of figures showing many morphological parameters of synaptic boutons and surrounding glial elements. The authors provide comparative data of all the layers examined by them so far in the Discussion. Given that anatomical data in human brain are still very limited, the current MS has substantial relevance.<br /> The work appears to be generally well done, the EM and EM tomography images are of very good quality. The analyses is clear and precise.

      Weaknesses:

      The authors made all the corrections required, answered most of my concerns, included additional data sets, and clarified statements where needed.

      My remaining points are:

      Synaptic vesicle diameter (that has been established to be ~40nm independent of species) can properly be measured with EM tomography only, as it provides the possibility to find the largest diameter of every given vesicle. Measuring it in 50 nm thick sections result in underestimation (just like here the values are ~25 nm) as the measured diameter will be smaller than the true diameter if the vesicle is not cut in the middle, (which is the least probable scenario). The authors have the EM tomography data set for measuring the vesicle diameter properly.

      It is a bit misleading to call vesicle populations at certain arbitrary distances from the presynaptic active zone as readily releasable pool, recycling pool and resting pool, as these are functional categories, and cannot directly be translated to vesicles at certain distances. Even it is debated whether the morphologically docked vesicles are the ones, that are readily releasable, as further molecular steps, such as proper priming is also a prerequisite for release.<br /> It would help to call these pools as "putative" correlates of the morphological categories.

    1. Reviewer #2 (Public review):

      Summary:

      The study reported by Trutti et al. uses high-field fMRI to test the hypothesized involvement of subcortical structure, particularly striatum, in WM updating. Specifically, participants were scanned while performing the Reference Back task (e.g., Rac-Lubashevsky and Kessler, 2016), which tests constructs like working memory gate opening and closing and substitution. While striatal activation was involved in substitution, it was not observed in gate opening.

      While there have been prior fMRI studies of the reference back task (Nir-Cohen et al., 2020), the present study overcomes limitations in prior work, particularly with regard to subcortical structures, by applying high-field imaging with more precise definition of ROIs. And, the fMRI methods are careful and rigorous, overall. Thus, the empirical observations here are useful and will be of interest to specialists interested in working memory gating or the reference back task specifically. I do not have additional concerns about this contribution.

    1. Reviewer #2 (Public review):

      Franziska Auer et al. successfully applied the TRPV1/capsaicin tool to study the contribution of Purkinje cells to postural control. They leveraged the ability of this tool to both activate and ablate neurons within the same construct and tested its effects using their smart, high-throughput behavioral setup for postural control monitoring. With Purkinje cells ablated, balance did not appear to be disrupted; however, postural control was clearly modified along the pitch axis, with larval zebrafish maintaining, on average, a more nose-down posture compared to controls. While this effect is subtle, it is statistically robust and consistent with the group's previous findings using KillerRed-mediated ablation of Purkinje cells, where the observed postural angle change was explained by a disruption in cerebellar-mediated fin-trunk coordination. Here, the authors present a novel insight, demonstrating that this coordination is swim-speed dependent.

      Furthermore, the authors convincingly activated Purkinje cells at 7 dpf, and reported modifications in posture pitch angle comparable to those observed when ablating Purkinje cells. The authors suggest a potential desynchronization of Purkinje cells to explain this observation. Future characterization and application of this activation method to other developmental time points could be of major interest. The authors successfully validated the transfer of the TRPV1/capsaicin method for targeted cell ablation and activation to the study of cerebellar functions and reinforced our current understanding of the role of Purkinje cells in postural control.

      This study also explores the developmental evolution of cerebellar function in postural control by comparing the effects of Purkinje cell ablation at 7 dpf and 14 dpf. Interestingly, only dive bout posture showed differential effects across these time points, with no significant impact at 7 dpf but a significant change in postural pitch angle at 14 dpf. In contrast, the effect of Purkinje cell ablation on the climbing bout postural angle remained comparable at both ages. Including additional developmental time points would further strengthen this critical characterization of cerebellar maturation in the context of postural control.

      To examine whether Purkinje cell activity encodes postural tilt angle, the authors performed calcium imaging on 31 cells from 8 fish using their Tilt In Place Microscope (TIPM). They found that tilt-angle could be decoded from individual neurons with highly tuned responses, as well as from neurons that were not obviously tuned when pooling their data. The authors refer to this effect as pseudo-population coding because recordings were performed non-simultaneously across animals.

      This study successfully integrates cutting-edge genetic tools, high-throughput behavioral assays, and advanced optical microscopy to investigate the role of populations of Purkinje cells in postural control. The authors have not only validated these powerful tools but have also provided novel insights into the cerebellar involvement in postural control, including the swim-speed dependence of fin-trunk coordination.

      This work represents an important step toward a detailed understanding of cerebellar contributions to postural control and highlights the potential of combining genetically targeted perturbation with quantitative behavioral analysis.

      The authors have addressed my previous concerns, and I congratulate them for their excellent work.

    1. Reviewer #2 (Public review):

      Summary:

      We have known for some time that neural progenitors in the cerebral cortex switch their output from cortical neurons to glia at late embryonic stages, however little is known about how this switch is regulated at the molecular level. Bose et al present a convincing set of findings, demonstrating that the transcription factor Foxg1 plays a key role in this process, mediated through FGF signalling. Foxg1 cell-autonomously inhibits gliogenesis in progenitor cells (thereby promoting neuronal identity), and lower Foxg1 expression in postnatal neurons leads to increased expression of FGF ligand, promoting glial development from nearby progenitors.

      Strengths:

      The study is very well designed, having a systematic, thorough, and logical approach. The data is convincing. The authors make full use of a range of existing transgenic strains, published 'omics data, and elegant genetic approaches such as MADM. This combination of approaches is particularly rigorous, lending significant weight to the study. The manuscript is well-written, clear, and easy to follow.

      Impact

      This manuscript identifies a previously unknown role for Foxg1 in forebrain development and a mechanism underlying the neurogenic-to-gliogenic switch that occurs at late embryonic stages of cortex development. These findings will stimulate further research to uncover more details of how this important switch is controlled and may provide useful insight into some of the symptoms experienced by children with FOXG1 Syndrome.

    1. Reviewer #2 (Public review):

      Summary:

      Using a gerbil model, the authors tested the hypothesis that loss of synapses between sensory hair cells and auditory nerve fibers (which may occur due to noise exposure or aging) affects behavioral discrimination of the rapid temporal fluctuations of sounds. In contrast to previous suggestions in the literature, their results do not support this hypothesis; young animals treated with a compound that reduces the number of synapses did not show impaired discrimination compared to controls. Additionally, their results from older animals showing impaired discrimination suggest that age-related changes aside from synaptopathy are responsible for the age-related decline in discrimination.

      Strengths:

      (1) The rationale and hypothesis are well-motivated and clearly presented.

      (2) The study was well conducted with strong methodology for the most part, and good experimental control. The combination of physiological and behavioral techniques is powerful and informative. Reducing synapse counts fairly directly using ouabain is a cleaner design than using noise exposure or age (as in other studies), since these latter modifiers have additional effects on auditory function.

      (3) The study may have a considerable impact on the field. The findings could have important implications for our understanding of cochlear synaptopathy, one of the most highly researched and potentially impactful developments in hearing science in the past fifteen years.

      Weaknesses:

      (1) My main concern is that the stimuli may not have been appropriate for assessing neural temporal coding behaviorally. Human studies using the same task employed a filter center frequency that was (at least) 11 times the fundamental frequency (Marmel et al., 2015; Moore and Sek, 2009). Moore and Sek wrote: "the default (recommended) value of the centre frequency is 11F0." Here, the center frequency was only 4 or 8 times the fundamental frequency (4F0 or 8F0). Hence, relative to harmonic frequency, the harmonic spacing was considerably greater in the present study. By my calculations, the masking noise used in the present study was also considerably lower in level relative to the harmonic complex than that used in the human studies. These factors may have allowed the animals to perform the task using cues based on the pattern of activity across the neural array (excitation pattern cues), rather than cues related to temporal neural coding. The authors show that mean neural driven rate did not change with frequency shift, but I don't understand the relevance of this. It is the change in response of individual fibers with characteristic frequencies near the lowest audible harmonic that is important here.

      The case against excitation pattern cues needs to be better made in the Discussion. It could be that gerbil frequency selectivity is broad enough for this not to be an issue, but more detail needs to be provided to make this argument. The authors should consider what is the lowest audible harmonic in each case for their stimuli, given the level of each harmonic and the level of the pink noise. Even for the 8F0 center frequency, the lowest audible harmonic may be as low as the 4th (possibly even the 3rd). In human, harmonics are thought to be resolvable by the cochlea up to at least the 8th.

      (2) The synapse reductions in the high ouabain and old groups were relatively small (mean of 19 synapses per hair cell compared to 23 in the young untreated group). In contrast, in some mouse models of the effects of noise exposure or age, a 50% reduction in synapses is observed, and in the human temporal bone study of Wu et al. (2021, https://doi.org/10.1523/JNEUROSCI.3238-20.2021) the age-related reduction in auditory nerve fibres was ~50% or greater for the highest age group across cochlear location. It could be simply that the synapse loss in the present study was too small to produce significant behavioral effects. Hence, although the authors provide evidence that in the gerbil model the age-related behavioral effects are not due to synaptopathy, this may not translate to other species (including human). This should be discussed in the manuscript.

      It would be informative to provide synapse counts separately for the animals who were tested behaviorally, to confirm that the pattern of loss across the group was the same as for the larger sample.

      (3) The study was not pre-registered, and there was no a priori power calculation, so there is less confidence in replicability than could have been the case. Only three old animals were used in the behavioral study, which raises concerns about the reliability of comparisons involving this group.

    1. Reviewer #2 (Public review):

      Summary:

      The authors investigated DG neuronal activity at the population and single cell level across sleep/wake periods. They found an infraslow oscillation (0.01-0.03 Hz) in both granule cells (GC) and mossy cells (MC) during NREM sleep. The important findings are 1) the antiparallel temporal dynamics of DG neuron activities and serotonin neuron activities/extracellular serotonin levels during NREM sleep, and 2) the GC Htr1a-mediated GC infraslow oscillation.

      Strengths:

      (1) The combination of polysomnography, Ca-fiber photometry, two-photon microscopy and gene depletion is technically sound. The coincidence of microarousals and dips in DG population activity is convincing. The dip in activity in upregulated cells is responsible for the dip at the population level.<br /> (2) DG GCs express excitatory Htr4 and Htr7 in addition to inhibitory Htr1a, but deletion of Htr1a is sufficient to disrupt DG GC infraslow oscillation, supporting the importance of Htr1a in DG activity during NREM sleep.

      Weaknesses:

      (1) The current data set and analysis are insufficient to interpret the observation correctly.<br /> a. In Fig 1A, during NREM, the peaks and troughs of GC population activities seem to gradually decrease over time. Please address this point.<br /> b. In Fig 1F, about 30% of Ca dips coincided with MA (EMG increase) and 60% of Ca dips did not coincide with EMG increase. If this is true, the readers can find 8 Ca dips which are not associated with MAs from Fig 1E. If MAs were clustered, please describe this properly.<br /> c. In Fig 1F, the legend stated the percentage during NREM. If the authors want to include the percentage of wake and REM, please show the traces with Ca dips during wake and REM. This concern applies to all pie charts provided by the authors.<br /> d. In Fig 1C, please provide line plots connecting the same session. This request applies to all related figures.<br /> e. In Fig 2C, the significant increase during REM and the same level during NREM are not convincing. In Fig 2A, the several EMG increasing bouts do not appear to be MA, but rather wakefulness, because the duration of the EMG increase is greater than 15 seconds. Therefore, it is possible that the wake bouts were mixed with NREM bouts, leading to the decrease of Ca activity during NREM. In fact, In Fig 2E, the 4th MA bout seems to be the wake bout because the EMG increase lasts more than 15 seconds.<br /> f. Fig 5D REM data are interesting because the DRN activity is stably silenced during REM. The varied correlation means the varied DG activity during REM. The authors need to address it.<br /> g. In Fig 6, the authors should show the impact of DG Htr1a knockdown on sleep/wake structure including the frequency of MAs. I agree with the impact of Htr1a on DG ISO, but possible changes in sleep bout may induce the DG ISO disturbance.

      (2) It is acceptable that DG Htr1a KO induces the reduced freezing in the CFC test (Fig. 6E, F), but it is too much of a stretch that the disruption of DG ISO causes impaired fear memory. There should be a correlation.

      (3) It is necessary to describe the extent of AAV-Cre infection. The authors injected AAV into the dorsal DG (AP -1.9 mm), but the histology shows the ventral DG (Supplementary Fig. 4), which reduces the reliability of this study.

      Comments on revisions:

      In the first revision, I pointed out the inappropriate analysis of the EEG/EMG/photometry data and gave examples. The authors responded only to the points raised and did not seem to see the need to improve the overall analysis and description. In this second revision, I would like to ask the authors to improve them. The biggest problem is that the detection criteria and the quantification of the specific event are not described at all in Methods and it is extremely difficult to follow the statement. All interpretations are made by the inappropriate data analysis; therefore, I have to say that the statement is not supported by the data.

      Please read my following concerns carefully and improve them.

      (1) The definition of the event is critical to the detection of the event and the subsequent analysis. In particular, the authors explicitly describe the definition of MA (microarousal), the trough and peak of the population level of intracellular Ca concentrations, or the onset of the decline and surge of Ca levels.

      (1-1) The authors categorized wake bouts of <15 seconds with high EMG activity as MA (in Methods). What degree of high EMG is relevant to MA and what is the lower limit of high EMG? In Fig 1E, there are some EMG spikes, but it was unclear which spike/wave (amplitude/duration) was detected as MA-relevant spike and which spike was not detected. In Fig 2E, the 3rd MA coincides with the EMG spike, but other EMG spikes have comparable amplitude to the 3rd MA-relevant EMG spike. Correct counting of MA events is critical in Fig 1F, 2F, 4C.

      (1-2) Please describe the definition of Ca trough in your experiments. In Fig 1G, the averaged trough time is clear (~2.5 s), so I can acknowledge that MA is followed by Ca trough. However, the authors state on page 4 that "30% of the calcium troughs during NREM sleep were followed by an MA epoch". This discrepancy should be corrected.

      (1-3) Relating comment 1-2, I agree that the latency is between MA and Ca through in page 4, as the authors explain in the methods, but, in Fig 1G, t (latency) is labeled at incorrect position. Please correct this.

      (1-4) The authors may want to determine the onset of the decline in population Ca activity and the latency between onset and trough (Fig 1G, latency t). If so, please describe how the onset of the decline is determined. In Fig 1G, 2G, S6, I can find the horizontal dashed line and infer that the intersection of the horizontal line and the Ca curve is considered the onset. However, I have to say that the placement of this horizontal line is super arbitrary. The results (t and Drop) are highly dependent on the position of horizontal line, so the authors need to describe how to set the horizontal line.

      (1-5) In order to follow Fig 1F correctly, the authors need to indicate the detection criteria of "Ca dip (in legend)". Please indicate "each Ca dip" in Fig 1E. As a reader, I would like to agree with the Ca dip detection of this Ca curve based on the criteria. Please also indicate "each Ca dip" in Fig 2E and 2F. In the case of the 2nd and 3rd MAs, do they follow a single Ca dip or does each MA follow each Ca dip? This chart is highly dependent on the detection criteria of Ca dip.

      As I mentioned above, most of the quantifications are not based on the clear detection criteria. The authors need to re-analyze the data and fix the quantification. Please interpret data and discuss the cellular mechanism of ISO based on the re-analyzed quantification.

    1. Reviewer #4 (Public review):

      Summary:

      Wilmes and colleagues develop a model for the computation of uncertainty modulated prediction errors based on an experimentally inspired cortical circuit model for predictive processing. Predictive processing is a promising theory of cortical function. An essential aspect of the model is the idea of precision weighting of prediction errors. There is ample experimental evidence for prediction error responses in cortex. However, a central prediction of the theory is that these prediction error responses are regulated by the uncertainty of the input. Testing this idea experimentally has been difficult due to a lack of concrete models. This work provides one such model and makes experimentally testable predictions.

      Strengths:

      The model proposed is novel and well-implemented. It has sufficient biological accuracy to make useful and testable predictions.

      Weaknesses:

      One key idea the model hinges on is that stimulus uncertainty is encoded in the firing rate of parvalbumin positive interneurons. While this assumption is rather speculative, the model also here makes experimentally testable predictions.

      Comments on revisions:

      Congratulations on a very nice paper.

    1. Reviewer #3 (Public review):

      The study by Chen et al reports an interesting and previously unknown phenomenon of generation of supernumerary inner hair cells (IHCs) in response to downregulation of Cldn9 during embryonic or postnatal development. The authors developed an inducible doxycycline (dox)-tet-OFF-Cldn9 transgenic mice to regulate expression levels of Cldn9 and show that downregulation of Cldn9 resulted in additional, although incomplete row of IHCs immediately adjacent to the original IHC row. These induced extra IHCs had similar well-developed hair bundles, able to mechanotransduce and were innervated by auditory neurons, resembling wild-type IHCs. In addition, the authors knock down Cldn9 postnatally using shRNA injections in P1-7 mice with similar induction of extranumerary IHCs next to the original row of IHCs. The conclusions of this paper are mostly well supported by the data. However, some data analyses are limited, and some important controls are not shown.<br /> The data from this study are important and promising for future gene therapy applications. The generation of extra IHCs postnatally using downregulation of Cldn9 by shRNA could potentially be used as a replacement of IHCs lost after noise-induced trauma, ototoxic agents, or other environmental trauma. However, it is not clear if downregulation of CLDN9 in adult mice would lead to extranumerary IHCs. On the other hand, the replacement of lost inner hair cells due to various genetic mutations by inducing supernumerary mutant IHCs with the same abnormalities would not be reasonable.

      The authors show that postnatally generated ectopic IHCs are viable and mechanotransducive, but the hearing function of the mice with ectopic hair cells is not improved. However, the ectopic hair cells seems to be generated from supporting cell trans-differentiation, and the intricate mosaic of the organ of Corti is altered (the extra row of IHCs seems to be positioned immediately adjacent to the original IHC row), which could by itself lead to hearing issues. It is not clear if the newly formed unusual junctions between the ectopic and original IHCs are sufficiently tight to prevent leakage of the endolymph to the basolateral surface of IHCs. Also, it is not clear if the other organ of Corti tight junctions could lose their tightness due to the downregulation of Cldn9, which could over time affect the endocochlear potential and hearing abilities as shown by this study.

      Overall, the manuscript could be of interest to scientists working in the inner ear development and regeneration field, and to the hearing researchers in general and perhaps developmental biologists and cell biologists interested in tight junction proteins and their function.

      Strength

      The methodologies used are solid and convincing. There is a great potential for practical use of these valuable findings and new knowledge on IHC developmental regulation by Cldn9 expression.

      Weakness

      Some of the data in this study would benefit from showing corresponding negative controls and higher-resolution images of CLDN9 localization, which the authors chose not to show in the revised manuscript. Importantly, CLDN9 immunofluorescence staining data look different from previously published observations and show cytoplasmic staining of supporting cells only and did not show the staining of tight junctions between the OHCs and supporting cells as well as between the IHCs and supporting cells as reported previously (Kitajiri et al., 2004; Nakano et al., 2009, Ramzan et al., 2021). The organ of Corti schematics showing CLDN9 expression reflects the authors' immunostaining data but is unusual considering that CLDN9 localizes to the tight junctions of the reticular lamina as was shown by immuno-EM in this study and described in previous publications (Kitajiri et al., 2004; Nakano et al., 2009, Ramzan et al., 2021). However, the authors did not provide an explanation for these discrepancies in the Discussion of the manuscript.

      Also, more detailed investigations would in some instances clarify the data. For example, it is not clear if the downregulation of Cldn9 affects the other genes known to participate in cell fate determination, and why downregulation of Cldn9 expression resulted in production of extranumerary inner hair cells only and not the other cell types, like OHCs, for example.

    1. Reviewer #2 (Public review):

      The author and his team explored a novel neoadjuvant strategy of radiotherapy followed by CDK4/6 inhibitor and exemestane for HR+/HER2- breast cancer. This strategy interestingly reached an ORR of 91.7% and RCB 0-I of 16.7%, with satisfying tolerance.

      There are several questions for your further consideration.

      Firstly, as this is a single-arm preliminary study, we are curious about the order of radiotherapy and the endocrine therapy. Besides, considering the radiotherapy, we also concern about the recovery of the wound after the surgery and whether related data were collected.

      Secondly, in the methodology, please describe the sample size estimation of this study and follow up details.

      Thirdly, in Table 1, the item HER2 expression, it's better to categorise HER2 into 0, 1+, 2+ and FISH-.

    1. Reviewer #1 (Public review):

      Summary:

      The authors set out to evaluate the regulation of interferon (IFN) gene expression in fish, using mainly zebrafish as a model system. Similar to more widely characterized mammalian systems, fish IFN is induced during viral infection through the action of the transcription factor IRF3 which is activated by phosphorylation by the kinase TBK1. It has been previously shown in many systems that TBK1 is subjected to both positive and negative regulation to control IFN production. In this work, the authors find that the cell cycle kinase CDK2 functions as a TBK1 inhibitor by decreasing its abundance through recruitment of the ubiquitinylation ligase, Dtx4, which has been similarly implicated in the regulation of mammalian TBK1. Experimental data are presented showing that CDK2 interacts with both TBK1 and Dtx4, leading to TBK1 K48 ubiqutinylation on K567 and its subsequent degradation by the proteasome.

      Strengths:

      The strengths of this manuscript are its novel demonstration of the involvement of CDK2 in a process in fish that is controlled by different factors in other vertebrates and its clear and supportive experimental data.

      Weaknesses:

      The weaknesses of the study include the following. 1) It remains unclear how CDK is regulated during viral infection and how it specifically recruits E3 ligase to TBK1. 2) The implications and mechanisms for a relationship between the cell cycle and IFN production will be a fascinating topic for future studies.

    1. Reviewer #2 (Public review):

      Summary:

      The authors are trying to test the hypothesis that ATP bursts are the predominant driver of antibiotic lethality of Mycobacteria

      Strengths:

      No significant strengths in the current state as it is written.

      Weaknesses:

      A major weakness is that M. smegmatis has a doubling time of three hours and the authors are trying to conclude that their data would reflect the physiology of M. tuberculossi which has a doubling time of 24 hours. Moreover, the authors try to compare OD measurements with CFU counts and thus observe great variabilities.

      Comments on revisions:

      The authors confirm they are using CFU counts, but then Figure 1 has 0 as the first data point on the Y-axis. This should be somewhere between 10e5 or 10e6. CFU would not start at 0, your initial inoculum has to be more than 0 to have something to challenge.

    1. Reviewer #2 (Public review):

      The manuscript by Christopher N. Rudzitis et al. describes the role of TGFβ2 in the transcription and functional expression of mechanosensitive channel isoforms, alongside studies on TM contractility in biomimetic hydrogels and intraocular pressure. Overall, it is a very interesting study, nicely designed, and will contribute to the available literature on TRPV4 sensitivity to mechanical forces.

      I have the following comment for the authors to address.

      Figure 1A-C.<br /> Often there is a difference between the massage and transcript data. I recommend the authors to confirm with qPCR data with another mode of protein measurements.<br /> Does direct TRPV4 activation also induce the expression of these markers? Does inhibition of TRPV4, after TGF-β treatment, prevent the expression of these markers? Is TRPV4 acting downstream of this response?

      Figure 1D. Beta tubulin is not a membrane marker. Having staining of b tubulin in membrane fraction shows contamination from the cytoplasm.<br /> Does the overall expression also increase?

      Figure 4A: it is not very clear. I recommend including a zoom image or better resolution image.

      Figure 5B and 6B.<br /> Why there is a difference between groups in pre-injection panel. As Figure 5A, in pre-injection, there is no difference between LV-TGFβ and LV-control while in 5B there is a significant difference between these groups.<br /> Discussion section.

      Line 279, . "TRPV4 channels in cells treated with TGFβ2 are likely to be constitutively active" ... needs to be discussed further.

      Line 280: "The residual contractility in HC-06-treated cells may reflect TGFβ2-mediated contributions from Piezo1."<br /> Piezo1 has a low threshold for mechanosensitivity. How do the authors discuss the observation that, in the presence of Piezo1, TRPV4 has a more prominent mechanosensory function? Is this tied to TGFβ signalling?

    1. Reviewer #2 (Public review):

      Summary:

      The paper investigates social-decision making, and how this changes after observing the behaviour of other people, in borderline personality disorder. The paper employs a task including three phases, the first where participants make decision on how to allocate rewards to oneself and to a virtual partner, the second where they observe the same task performed by someone else, and a third phase equivalent to phase one, but with a new partner. Using sophisticated computational modelling to analyse choice data, the study reports that borderline participants (versus controls) are more certain about their preferences in phase one, used more neutral priors and are less flexible during phase two, and are less influenced by partners in phase three.

      Strengths:

      The topic is interesting and important, and the findings are potentially intriguing. The computational methods employed is clever and sophisticated, at the cutting edge of research in the field.

      Weaknesses:

      There are two major weaknesses. First, the paper lacks focus and clarity. The introduction is rather vague and, after reading it, I remained confused about the paper's aims. Rather than relying on specific predictions, the analysis is exploratory. This implies that it is hard to keep track, and to understand the significance, of the many findings that are reported. Second, although the computational approach employed is clever and sophisticated, there is important information missing about model comparison which ultimately makes some of the results hard to assess from the perspective of the reader.

    1. Reviewer #2 (Public review):

      Summary:

      The search for new repellent odors for honey bees has significant practical implications. The authors developed an iterative pipeline through machine learning to predict honey bee-repellent odors based on molecular structures. By screening a large number of candidate compounds, they identified a series of novel repellents. Behavioral tests were then conducted to validate the effectiveness of these repellents. Both the discovery and the methodological approach hold value for related fields.

      Strengths:

      * The study demonstrates that using molecular structures and a relatively small training dataset, the model could predict repellents with a reasonably high success rate. If the iterative approach works as described, it could benefit a wide range of olfaction-related fields.<br /> * The effectiveness of the predicted repellents was validated through both laboratory and field behavioral tests.

      Weaknesses:

      The small size of the training dataset poses a common challenge for machine learning applications. However, the authors did not clearly explain how their iterative approach addresses this limitation in this study. Quantitative evidence demonstrating improvements achieved in the second round of training would strengthen their claims. For instance, details on whether the success rate of predictions or the identification of higher-affinity components would be helpful. Furthermore, given that only 15 new components were added for the second round of training, it is surprising that such a small dataset could result in significant improvements.

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, Wolff et al. describe an impressive collection of newly created split-GAL4 lines targeting specific cell types within the central complex (CX) of Drosophila. The CX is an important area in the brain that has been involved in the regulation of many behaviors including navigation and sleep/wake. The authors advocate that to fully understand how the CX functions, cell-specific driver lines need to be created. In that respect, this manuscript will be of very important value to all neuroscientists trying to elucidate complex behaviors using the fly model. In addition, and providing a further very important finding, the authors went on to assess neurotransmitter/neuropeptides and their receptors expression in different cells of the CX. These findings will also be of great interest to many and will help further studies aimed at understanding the CX circuitries. The authors then investigated how different CX cell types influence sleep and wake. While the description of the new lines and their neurochemical identity is excellent, the behavioral screen seems to be limited.

      Strengths:

      (1) The description of dozens of cell-specific split-GAL4 lines is extremely valuable to the fly community. The strength of the fly system relies on the ability to manipulate specific neurons to investigate their involvement in a specific behavior. Recently, the need to use extremely specific tools has been highlighted by the identification of sleep-promoting neurons located in the VNC of the fly as part of the expression pattern of the most widely used dorsal-Fan Shaped Body (dFB) GAL4 driver. These findings should serve as a warning to every neurobiologist, make sure that your tool is clean. In that respect, the novel lines described in this manuscript are fantastic tools that will help the fly community.<br /> (2) The description of neurotransmitter/neuropeptides expression pattern in the CX is of remarkable importance and will help design experiments aimed at understanding how the CX functions.

      Weaknesses:

      (1) I find the behavioral (sleep) screen of this manuscript to be limited. It appears to me that this part of the paper is not as developed as it could be. The authors have performed neuronal activation using thermogenetic and/or optogenetic approaches. For some cell types, only thermogenetic activation is shown. There is no silencing data and/or assessment of sleep homeostasis or arousal threshold. The authors find that many CX cell types modulate sleep and wake but it's difficult to understand how these findings fit one with the other. It seems that each CX cell type is worthy of its own independent study and paper. I am fully aware that a thorough investigation of every CX neuronal type in sleep and wake regulation is a herculean task. So, altogether I think that this manuscript will pave the way for further studies on the role of CX neurons in sleep regulation.<br /> (2) Linked to point 1, it is possible that the activation protocols used in this study are insufficient for some neuronal types. The authors have used 29{degree sign} for thermogenetic activation (instead of the most widely used 31{degree sign}) and a 2Hz optogenetic activation protocol. The authors should comment on the fact that they may have missed some phenotypes by using these mild activation protocols.<br /> (3) There are multiple spelling errors in the manuscript that need to be addressed.

    1. Reviewer #2 (Public review):

      Summary:

      Bigge and colleagues use a sophisticated free-flight setup to study visuo-motor responses elicited in different parts of the visual field in the hummingbird hawkmoth. Hawkmoths have been previously shown to rely on translational optic flow information for flight control exclusively in the ventral and lateral parts of their visual field. Dorsally presented patterns, elicit a formerly completely unknown response - instead of using dorsal patterns to maintain straight flight paths, hawkmoths fly, more often, in a direction aligned with the main axis of the pattern presented (Bigge et al, 2021). Here, the authors go further and put ventral/lateral and dorsal visual cues into conflict. They found that the different visuomotor pathways act in parallel, and they identified a 'hierarchy': the avoidance of dorsal patterns had the strongest weight and optic flow-based speed regulation the lowest weight.

      Strengths:

      The data are very interesting, unique, and compelling. The manuscript provides a thorough analysis of free-flight behavior in a non-model organism that is extremely interesting for comparative reasons (and on its own). These data are both difficult to obtain and very valuable to the field.

      Weaknesses:

      While the present manuscript clearly goes beyond Bigge et al, 2021, the advance could have perhaps been even stronger with a more fine-grained investigation of the visual responses in the dorsal visual field. Do hawkmoths, for example, show optomotor responses to rotational optic flow in the dorsal visual field?

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript entitled "Sex-specific attenuation of photoreceptor degeneration by reserpine in a rhodopsin P23H rat model of autosomal dominant retinitis pigmentosa" by Beom Song et al., the authors explore the transcriptomic differences between male and female wild-type (WT) and P23H retinas, highlighting significant gene expression variations and sex-specific trends. The study emphasizes the importance of considering biological sex in understanding inherited retinal degeneration and the impact of drug treatments on mutant retinas.

      Strengths:

      (1) Relevance to Clinical Challenges: The study addresses a critical limitation in inherited retinal degeneration (IRD) therapies by exploring a gene-agnostic approach. It emphasizes sex-specific responses, which aligns with recent NIH mandates on sex as a biological variable.<br /> (2) Multi-dimensional Methodology: Combining electroretinography (ERG), optical coherence tomography (OCT), histology, and transcriptomics strengthens the study's findings.<br /> (3) Novel Insights: The transcriptomic analysis uncovers sex-specific pathways impacted by reserpine, laying the foundation for personalized approaches to retinal disease therapy.

      Weaknesses:

      Dose Optimization<br /> The study uses a fixed dose (40 µM), but no dose-response analysis is provided. Sex-specific differences in efficacy might be influenced by suboptimal dosing, particularly considering potential differences in metabolism or drug distribution.

      Statistical Analysis

      In my opinion, there is room for improvement. How were the animals injected? Was the contralateral eye used as control? (no information in the manuscript about it!, line 390 just mentions the volume and concentration of injections). If so, why not use parametric paired analysis? Why use a non-parametric test, as it is the Mann-Whitney U? The Mann-Whitney U test is usually employed for discontinuous count data; is that the case here?<br /> Therefore, please specify whether contralateral eyes or independent groups served as controls. If contralateral controls were used, paired parametric tests (e.g., paired t-tests) would be statistically appropriate. Alternatively, if independent cohorts were used, non-parametric Mann-Whitney U tests may suffice but require clear justification.

      Sex-Specific Pathways

      The authors do identify pathways enriched in female vs. male retinas but fail to explicitly connect these to the changes in phenotype analysed by ERG and OCT. The lack of mechanistic validation weakens the argument.

      The study does not explore why female rats respond better to reserpine. Potential factors such as hormonal differences, retinal size, or differential drug uptake are not discussed.<br /> It remains open, whether observed transcriptomic trends (e.g., proteostasis network genes) correlate with sex-specific functional outcomes.

    1. Reviewer #2 (Public review):

      The study by Zhai et al describes repurposing of artesunate, to be used in combination with EDTA to resensitize Salmonella spp. to colistin. The observed effect applied both to strains with and without mobile colistin resistance determinants (MCR). It is known since earlier that EDTA in combination with colistin has an inhibitory effect on MCR-enzymes, but at the same time both colistin and EDTA can contribute to nephrotoxicity, something which is also true for artesunate. Thus, the triple combination of three nephrotoxic agents has significant challenges in vivo, which is not particularly discussed in this paper.

      The study is sound from a methodological point of view and has many interesting angles to address mechanistically how the three compounds can synergize.

      Comments on revised version:

      After having read the revised version, I have the following comments:

      (1) The antimicrobials tested in Figure 9 are not really very relevant. I would want to see carbapenems and novel beta-lactam/beta-lactamase inhibitors rather than many old drugs with a debatable role in the treatment of Gram-negative infections. At least the authors should be able to test carbapenem resistance<br /> (2) The genomics analysis of the strains should be fairly quick - both in terms of characterizing the mobile resistome and the sequence types. There are publicly available databases for this purpose

      The rest of my comments have been addressed in the revised version. There are still some remaining valid points from other reviewers that could be debatable whether they should be address. The authors refer to plans of studying these aspects in subsequent studies, but it could be discussed whether some of the data could be expected already in this study.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, Zheng et al investigated the role of inflammatory cytokines in protecting cells against SARS-CoV-2 infection. They demonstrate that soluble factors in the supernatants of TLR stimulated THP1 cells reduce fusion events between HEK293 cells expressing SARS-CoV-2 S protein and the ACE2 receptor. Using qRT-PCR and ELISA, they demonstrate that IL-1 cytokines are (not surprisingly) upregulated by TLR treatment in THP1 cells. Further, they convincingly demonstrate that recombinant IL-1 cytokines are sufficient to reduce cell-to-cell fusion mediated by the S protein. Using chemical inhibitors and CRISPR knock-out of key IL-1 receptor signaling components in HEK293 cells, they demonstrate that components of the myddosome (MYD88, IRAK1/4, and TRAF6) are required for fusion inhibition, but that downstream canonical signaling (i.e., TAK1 and NFKB activation) is not required. Instead, they provide evidence that IL-1-dependent non-canonical activation of RhoA/Rock is important for this phenotype. Importantly, the authors demonstrate that expression of a constitutively active RhoA alone is sufficient to inhibit fusion and that chemical inhibition of Rock could reverse this inhibition. The authors followed up these in vitro experiments by examining the effects of IL-1 on SARS-COV-2 infection in vivo and they demonstrate that recombinant IL-1 can reduce viral burden and lung pathogenesis in a mouse model of infection. Use of a ROCK inhibitor in IL-1 treated mice restored the ability of SARS-CoV-2 to spread in the lung, suggesting that this inhibitory process functions in vivo.

      Strengths:

      (1) The bioluminescence cell-cell fusion assay provides a robust quantitative method to examine cytokine effects on viral glycoprotein-mediated fusion.

      (2) The study identifies a new mechanism by which IL-1 cytokines can limit virus infection.

      (3) The authors tested IL-1 mediated inhibition of fusion induced by many different coronavirus S proteins and several SARS-CoV-2 strains.

      (4) The authors demonstrate that recombinant IL-1 mediated inhibition of SARS-CoV-2 infection in mice is dependent on the RhoA/Rock pathway.

    1. Reviewer #2 (Public review):

      Summary:

      The metastasis poses a significant challenge in cancer treatment. During the transition from non-invasive cells to invasive metastasis cells, cancer cells usually experience mechanical stress due to a crowded cellular environment. The molecular mechanisms underlying mechanical signaling during this transition remain largely elusive. In this work, the authors utilize an in vitro cell culture system and advanced imaging techniques to investigate how non-invasive and invasive cells respond to cell crowding, respectively.

      The results clearly show that pre-malignant cells exhibit a more pronounced reduction in cell volume and are more prone to spreading compared to non-invasive cells. Furthermore, the study identifies that TRPV4, a calcium channel, relocates to the plasma membrane both in vitro and in vivo (patient's samples). Activation and inhibition of TRPV4 channel can modulate the cell volume and cell mobility. These results unveil a novel mechanism of mechanical sensing in cancer cells, potentially offering new avenues for therapeutic intervention targeting cancer metastasis by modulating TRPV4 activity. This is a very comprehensive study, and the data presented in the paper are clear and convincing. The study represents a very important advance in our understanding of the mechanical biology of cancer.

    1. Reviewer #2 (Public review):

      Summary:

      The authors evaluate spectral changes in electroencephalography (EEG) data as a function of the congruency of audio and visual information associated with biological motion (BM) or non-biological motion. The results show supra-additive power gains in the neural response to gait dynamics, with trials in which audio and visual information was presented simultaneously producing higher average amplitude than the combined average power for auditory and visual conditions alone. Further analyses suggest that such supra-additivity is specific to BM and emerges from temporoparietal areas. The authors also find that the BM-specific supra-additivity is negatively correlated with autism traits.

      Strengths:

      The manuscript is well-written, with a concise and clear writing style. The visual presentation is largely clear. The study involves multiple experiments with different participant groups. Each experiment involves specific considered changes to the experimental paradigm that both replicate the previous experiment's finding yet extend it in a relevant manner.

      In the first revisions of the paper, the manuscript better relays the results and anticipates analyses, and this version adequately resolves some concerns I had about analysis details. In a further revision, it is clarified better how the results relate to the various competing hypotheses on how biological motion is processed.

      Weaknesses:

      Still, it is my view that the findings of the study are basic neural correlate results that offer only minimal constraint towards the question of how the brain realizes the integration of multisensory information in the service of biological motion perception, and the data do not address the causal relevance of observed neural effects towards behavior and cognition. The presence of an inversion effect suggests that the supra-additivity is related to cognition, but that leaves open whether any detected neural pattern is actually consequential for multi-sensory integration (i.e., correlation is not causation). In other words, the fact that frequency-specific neural responses to the [audio & visual] condition are stronger than those to [audio] and [visual] combined does not mean this has implications for behavioral performance. While the correlation to autism traits could suggest some relation to behavior and is interesting in its own right, this correlation is a highly indirect way of assessing behavioral relevance. It would be helpful to test the relevance of supra-additive cortical tracking on a behavioral task directly related to the processing of biological motion to justify the claim that inputs are being integrated in the service of behavior. Under either framework, cortical tracking or entrainment, the causal relevance of neural findings toward cognition is lacking.

      Overall, I believe this study finds neural correlates of biological motion that offer some constraint toward mechanism, and it is possible that the effects are behaviorally relevant, but based on the current task and associated analyses this has not been shown (or could not have been, given the paradigm).

    1. Reviewer #2 (Public review):

      Summary:

      This study utilized two complimentary techniques (EEG and 7T MRI/MRS) to directly test a theory of dyslexia: the neural noise hypothesis. The authors report finding no evidence to support an excitatory/inhibitory balance, as quantified by beta in EEG and Glutamate/GABA ratio in MRS. This is important work and speaks to one potential mechanism by which increased neural noise may occur in dyslexia.

      Strengths:

      This is a well-conceived study with in depth analyses and publicly available data for independent review. The authors provide transparency with their statistics and display the raw data points along with the averages in figures for review and interpretation. The data suggest that an E/I balance issue may not underlie deficits in dyslexia and is a meaningful and needed test of a possible mechanism for increased neural noise.

      Weaknesses:

      The researchers did not include a visual print task in the EEG task, which limits analysis of reading specific regions such as the visual word form area, which is a commonly hypoactivated region in dyslexia. This region is a common one of interest in dyslexia, yet the researchers measured the I/E balance in only one region of interest, specific to the language network.

    1. Reviewer #2 (Public review):

      In recent years, lots of researchers tried to explore the existence of new acetyltransferase and deacetylase by using specific antibody enrichment technologies and high resolution mass spectrometry. Here is an example for this effort. Yuqian Wang et al. studied a novel Zn2+- and NAD+-independent KDAC protein, AhCobQ, in Aeromonas hydrophila. They studied the biological function of AhCobQ by using biochemistry method and MS identification technology to confirm it. These results extended our understanding of the regulatory mechanism of bacterial lysine acetylation modifications. However, I find this conclusion is a little speculative, and unfortunately it also doesn't totally support the conclusion as the authors provided.

      Major concerns:

      -It is a little arbitrary to come to the title "Aeromonas hydrophila CobQ is a new type of NAD+- and Zn2+-independent protein lysine deacetylase in prokaryotes." It should be modified to delete the "in the prokaryotes" except that the authors get new more evidence in the other prokaryotes for the existence of the AhCobQ.<br /> -I was confused about the arrangement of the supplementary results. Because there are no citations for Figures S9-S19.<br /> -Same to the above, there are no data about Tables S1-S6.<br /> -All the load control is not integrated. Please provide all of the load controls with whole PAGE gel or whole membrane western blot results. Without these whole results, it is not convincing to come the conclusion as the authors mentioned in the context.<br /> -Thoroughly review the materials & methods section. It is unclear to me what exactly the authors describe in the method. All the experimental designs and protocols should be described in detail, including growth conditions, assay conditions, and purification conditions, etc.<br /> -Include relevant information about the experiments performed in the figure legends, such as experimental conditions, replicates, etc. Often it is not clear what was done based on the figure legend description.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aimed to study the activation of gliogenesis and the role of newborn astrocytes in a post-ischemic scenario. Combining immunofluorescence, BrdU-tracing and genetic cellular labelling, they tracked the migration of newborn astrocytes (expressing Thbs4) and found that Thbs4-positive astrocytes modulate the extracellular matrix at the lesion border by synthesis but also degradation of hyaluronan. Their results point to a relevant function of SVZ newborn astrocytes in the modulation of the glial scar after brain ischemia. This work's major strength is the fact that it is tackling the function of SVZ newborn astrocytes, whose role is undisclosed so far.

      Strengths:

      The article is innovative, of good quality, and clearly written, with properly described Materials and Methods, data analysis and presentation. In general, the methods are designed properly to answer the main question of the authors, being a major strength. Interpretation of the data is also in general well done, with results supporting the main conclusions of this article.

      In this revised version, the points raised/weaknesses were clarified and discussed in the article.

    1. Reviewer #2 (Public review):

      Summary:

      This work is one of the best instances of a well-controlled experiment and theoretically impactful findings within the literature on templates guiding attentional selection. I am a fan of the work that comes out of this lab and this particular manuscript is an excellent example as to why that is the case. Here, the authors use fMRI (employing MVPA) to test whether during the preparatory search period, a search template is invoked within the corresponding sensory regions, in the absence of physical stimulation. By associating faces with scenes, a strong association was created between two types of stimuli that recruit very specific neural processing regions - FFA for faces and PPA for scenes. The critical results showed that scene information that was associated with a particular cue could be decoded from PPA during the delay period. This result strongly supports the invoking of a very specific attentional template.

      Strengths:

      There is so much to be impressed with in this report. The writing of the manuscript is incredibly clear. The experimental design is clever and innovative. The analysis is sophisticated and also innovative. The results are solid and convincing.

      Weaknesses:

      I only have a few weaknesses to point out.<br /> This point is not so much of a weakness, but a further test of the hypothesis put forward by the authors. The delay period was long - 8 seconds. It would be interesting to split the delay period into the first 4seconds and the last 4seconds and run the same decoding analyses. The hypothesis here is that semantic associations take time to evolve, and it would be great to show that decoding gets stronger in the second delay period as opposed to the period right after the cue. I don't think this is necessary for publication, but I think it would be a stronger test of the template hypothesis.<br /> Type in the abstract "curing" vs "during."<br /> It is hard to know what to do with significant results in ROIs that are not motivated by specific hypotheses. However, for Figure 3, what are the explanations for ROIs that show significant differences above and beyond the direct hypotheses set out by the authors?

    1. Reviewer #2 (Public review):

      Summary of the manuscript:

      Authors present MGPfactXMBD, a novel model-based manifold-learning framework designed to address the challenges of interpreting complex cellular state spaces from single-cell RNA sequences. To overcome current limitations, MGPfactXMBD factorizes complex development trajectories into independent bifurcation processes of gene sets, enabling trajectory inference based on relevant features. As a result, it is expected that the method provides a deeper understanding of the biological processes underlying cellular trajectories and their potential determinants.

      MGPfactXMBD was tested across 239 datasets, and the method demonstrated similar to slightly superior performance in key quality-control metrics to state-of-the-art methods. When applied to case studies, MGPfactXMBD successfully identified critical pathways and cell types in microglia development, validating experimentally identified regulons and markers. Additionally, it uncovered evolutionary trajectories of tumor-associated CD8+ T cells, revealing new subtypes with gene expression signatures that predict responses to immune checkpoint inhibitors in independent cohorts.

      Overall, MGPfactXMBD represents a relevant tool in manifold-learning for scRNA-seq data, enabling feature selection for specific biological processes and enhancing our understanding of the biological determinants of cell fate.

      Summary of the outcome:

      The novel method addresses core state-of-the-art questions in biology related to trajectory identification. The design and the case studies are of relevance.

      Comments on revisions:

      The authors have addressed all my previous comments to satisfaction.

    1. Reviewer #2 (Public review):

      The goal of HiJee Kang et al. in this study is to explore the interaction between assemblies of neurons with similar pure-tone selectivity in mouse auditory cortex. Using holographic optogenetic stimulation in a small subset of target cells selective for a given pure tone (PTsel), while optically monitoring calcium activity in surrounding non-target cells, they discovered a subtle rebalancing process: co-tuned neurons that are not optogenetically stimulated tend to reduce their activity. The cortical network reacts as if an increased response to PTsel in some tuned assemblies is immediately offset by a reduction in activity in the rest of the PTsel-tuned assemblies, leaving the overall response to PTsel unchanged. The authors show that this rebalancing process affects only the responses of neurons to PTsel, not to other pure tones. They also show that assemblies of neurons that are not selective for PTsel don't participate in the rebalancing process. They conclude that assemblies of neurons with similar pure-tone selectivity must interact in some way to organize this rebalancing process, and they suggest that mechanisms based on homeostatic signaling may play a role.

      The conclusions of this paper are very interesting but some aspects of the study including methods for optogenetic stimulation, statistical analysis of the results and interpretation of the underlying mechanisms need to be clarified and extended.

      (1) This study uses an all-optical approach to excite a restricted group of neurons chosen for their functional characteristics (their frequency tuning), and simultaneously record from the entire network observable in the FOV. As stated by the authors, this approach is applied for the first time to the auditory cortex, which is a tour de force. However, such an approach is complex and requires precise controls to be convincing. In the manuscript, several methodological aspects are not sufficiently described to allow a proper understanding.<br /> (i) The use of CRmine together with GCaMP8s has been reported as problematic as the 2Ph excitation of GCaMP8s also excites the opsin. Here, the authors use a red-shifted version of CRmine to prevent such cross excitation by the imaging laser. To be convincing, they should explain how they controlled for the absence of rsCRmine activation by the 940nm light. Showing the fluorescence traces immediately after the onset of the imaging session would ensure that neurons are not excited as they are imaged.<br /> (ii) Holographic patterns used to excite 5 cells simultaneously may be associated with out-of-focus laser hot spots. Cells located outside of the FOV could be activated, therefore engaging other cells than the targeted ones in the stimulation. This would be problematic in this study as their tuning may be unrelated to the tuning of the targeted cells. To control for such an effect, one could in principle decouple the imaging and the excitation planes, and check for the absence of out-of-focus unwanted excitation.<br /> (iii) The control shown in Figure 1B is intended to demonstrate the precision of the optogenetic stimulation: when the stimulation spiral is played at a distance larger or equal to 20 µm from a cell, it does not activate it. However, in the rest of the study, the stimulation is applied with a holographic approach, targeting 5 cells simultaneously instead of just one. As the holographic pattern of light could produce out-of-focus hot spots (absent in the single cell control), we don't know what is the extent of the contamination from non-targeted cells in this case. This is important because it would determine an objective criterion to exclude non-targeted but excited cells (last paragraph of the Result section: "For the stimulation condition, we excluded non-target cells that were within 15 µm distance of the target cells...")

      (2) A strength of this study comes from the design of the experimental protocol used to compare the activity in non-target co-tuned cells when the optogenetic stimulation is paired with their preferred tone versus a non-preferred pure tone. The difficulty lies in the co-occurrence of the rebalancing process and the adaptation to repeated auditory stimuli, especially when these auditory stimuli correspond to a cell's preferred pure tones. To distinguish between the two effects, the authors use a comparison with a control condition similar to the optogenetic stimulation conditions, except that the laser power is kept at 0 mW. The observed effect is shown as an extra reduction of activity in the condition with the optogenetic paired with the preferred tone, compared to the control condition. The specificity of this extra reduction when stimulation is synchronized with the preferred tone, but not with a non-preferred tone, is a potentially powerful result, as it points to an underlying mechanism that links the assemblies of cells that share the same preferred pure tones.<br /> The evidence for this specificity is shown in Figure 3A and 3D. However, the universality of this specificity is challenged by the fact that it is observed for 16kHz preferring cells, but not so clearly for 54kHz preferring cells: these 54kHz preferring cells also significantly (p = 0.044) reduce their response to 54kHz in the optogenetic stimulation condition applied to 16kHz preferring target cells compared to the control condition. The proposed explanation for this is the presence of many cells with a broad frequency tuning, meaning that these cells could have been categorized as 54kHz preferring cells, while they also responded significantly to a 16kHz pure tone. To account for this, the authors divide each category of pure tone cells into three subgroups with low, medium and high frequency preferences. Following the previous reasoning, one would expect at least the "high" subgroups to show a strong and significant specificity for an additional reduction only if the optogenetic stimulation is targeted to a group of cells with the same preferred frequency. Figure 3D fails to show this. The extra reduction for the "high" subgroups is significant only when the condition of opto-stimulation synchronized with the preferred frequency is compared to the control condition, but not when it is compared to the condition of opto-stimulation synchronized with the non-preferred frequency.<br /> Therefore, the claim that "these results indicate that the effect of holographic optogenetic stimulation depends not on the specific tuning of cells, but on the co-tuning between stimulated and non-stimulated neurons" (end of paragraph "Optogenetic holographic stimulation decreases activity in non-target co-tuned ensembles") seems somewhat exaggerated. Perhaps increasing the number of sessions in the 54kHz target cell optogenetic stimulation condition (12 FOV) to the number of sessions in the 16kHz target cell optogenetic stimulation condition (18 FOV) could help to reach significance levels consistent with this claim.

      (3) To interpret the results of this study, the authors suggest that mechanisms based on homeostatic signaling could be important to allow the rebalancing of the activity of assemblies of co-tuned neurons. In particular, the authors try to rule out the possibility that inhibition plays a central role. Both mechanisms could produce effects on short timescales, making them potential candidates. The authors quantify the spatial distribution of the balanced non-targeted cells and show that they are not localized in the vicinity of the targeted cells. They conclude that local inhibition is unlikely to be responsible for the observed effect. This argument raises some questions. The method used to quantify spatial distribution calculates the minimum distance of a non-target cell to any target cell. If local inhibition is activated by the closest target cell, one would expect the decrease in activity to be stronger for non-target cells with a small minimum distance and to fade away for larger minimum distances. This is not what the authors observe (Figure 4B), so they reject inhibition as a plausible explanation. However, their quantification doesn't exclude the possibility that non-target cells in the minimum distance range could also be close and connected to the other 4 target cells, thus masking any inhibitory effect mediated by the closest target cell. In addition, the authors should provide a quantitative estimate of the range of local inhibition in layers 2/3 of the mouse auditory cortex to compare with the range of distances examined in this study (< 300 µm). Finally, the possibility that some target cells could be inhibitory cells themselves is considered unlikely by the authors, given the proportions of excitatory and inhibitory neurons in the upper cortical layers. On the other hand, it should be acknowledged that inhibitory cells are more electrically compact, making them easier to be activated optogenetically with low laser power.

    1. Reviewer #2 (Public review):

      In this work, the authors comprehensively describe the transcriptional regulatory network of Pseudomonas aeruginosa through the analysis of transcription factor binding characteristics. They reveal the hierarchical structure of the network through ChIP-seq, categorizing transcription factors into top-, middle-, and bottom-level, and reveal a diverse set of relationships among the transcription factors. Additionally, the authors conduct a pangenome analysis across the Pseudomonas aeruginosa species complex as well as other species to study the evolution of transcription factors. Moreover, the authors present a database with new and existing data to enable the storage and search of transcription factor binding sites. The findings of this study broaden our knowledge on the transcriptome of P. aeruginosa.

      This study sheds light on the complex interconnections between various cellular functions that contribute to the pathogenicity of P. aeruginosa, along with the associated regulatory mechanisms. Certain findings, such as the regulatory tendencies of DNA-binding domain-types, provides valuable insights on the possible functions of uncharacterized transcription factors and new functions of those that have already been characterized. The techniques used hold great potential for discovery of transcription factor functions in understudied organisms as well.

      The study would benefit from a more clear discussion on the implications of various findings, such as binding preferences, regulatory preferences, and the link between regulatory crosstalk and virulence. Additionally, the pangenome analysis would be furthered through a discussion of the divergence of the transcription factors of P. aeruginosa PAO1across species in relation to the findings on the hierarchical structure of the transcriptional regulatory network.

    1. Reviewer #2 (Public review):

      Summary:

      The study tries to assess how the rise of the Qinghai-Tibet Plateau affected patterns of bird migration between their breeding and wintering sites. They do so by correlating the present distribution of the species with a set of environmental variables. The data on species distributions come from eBird. The main issue lies in the problematic assumption that species correlations between their current distribution and environment were about the same before the rise of the Plateau. There is no ground truthing and the study relies on Movebank data of only 7 species which are not even listed in the study. Similarly, the study does not outline the boundaries of breeding sites NE of the Plateau. Thus it is absolutely unclear potentially which breeding populations it covers.

      Strengths:

      I like the approach for how you combined various environmental datasets for the modelling part.

      Weaknesses:

      The major weakness of the study lies in the assumption that species correlations between their current distribution and environments found today are back-projected to the far past before the rise of the Q-T Plateau. This would mean that species responses to the environmental cues do not evolve which is clearly not true. Thus, your study is a very nice intellectual exercise of too many ifs.

      The second major drawback lies in the way you estimate the migratory routes of particular birds. No matter how good the data eBird provides is, you do not know population-specific connections between wintering and breeding sites. Some might overwinter in India, some populations in Africa and you will never know the teleconnections between breeding and wintering sites of particular species. The few available tracking studies (seven!) are too coarse and with limited aspects of migratory connectivity to give answer on the target questions of your study.

      Your set of species is unclear, selection criteria for the 50 species are unknown and variability in their migratory strategies is likely to affect the direction of the effects. In addition, the position of the breeding sites relative to the Q-T plate will affect the azimuths and resulting migratory flyways. So in fact, we have no idea what your estimates mean in Figure 2.

      There is no way one can assess the performance of your statistical exercises, e.g. performances of the models.

    1. Reviewer #2 (Public review):

      In this manuscript Luo et al uncover that the ZNRF3/RNF43 E3 ubiquitin ligases participate in the selective endocytosis and degradation of FZD5/8 receptors in response to Wnt stimulation. Interestingly, DVL proteins have previously been shown to be important for RNF43/ZNRF3-dependent ubiquitination of Frizzled receptors but in this study the authors show that DVL proteins are only important for ligand and RNF43/ZNRF3-independent FZD endocytosis. Although it is well established that ZNRF3 and RNF43 promote the endocytosis and degradation of FZD receptors as part of a negative regulatory loop to dampened B-catenin signaling, the dependency of Wnt stimulation for this process and the specificity of this degradation for different FZD receptors remained poorly characterized.

      In my opinion there are two significant findings of this study: 1) Wnt proteins are required for ZNRF3/RNF43 mediated endocytosis and degradation of FZD receptors and this constitutes an important negative regulatory loop. 2) The ZNRF3/RNF43 substrate selectivity for FZD5/8 over the other 8 Frizzleds. Of course, many questions remain, and new ones emerge as is often the case, but these findings challenge our dogmatic view on how the ZNRF3/RNF43 regulate Wnt signaling and emphasize their role in Wnt-dependent Frizzled endocytosis/degradation and beta-catenin signaling. Below I have suggestions to strengthen the manuscript.

      (1) Given their results the authors conclude that upregulation of Frizzled on the plasma membrane is not sufficient to explain the stabilization of beta-catenin seen in the ZNRF3/RNF43 mutant cells. This interpretation is sound, and they suggest in the discussion that ZNRF3/RNF43-mediated ubiquitination could serve as a sorting signal to sort endocytosed FZD to lysosomes for degradation and that absence or inhibition of this process would promote FZD recycling. This should be relatively easy to test using surface biotinylation experiments and would considerably strengthen the manuscript.<br /> (2) The authors show that the FZD5 CRD domain is required for endocytosis since a mutant FZD5 protein in which the CRD is removed does not undergo endocytosis. This is perhaps not surprising since this is the site of Wnt binding, but the authors show that a chimeric FZD5CRD-FZD4 receptor can confer Wnt-dependent endocytosis to an otherwise endocytosis incompetent FZD4 protein. Since the linker region between the CRD and the first TM differs between FZD5 and FZD4 it would be interesting to understand whether the CRD specifically or the overall arrangement (such as the spacing) is the most important determinant.<br /> (3) I find it surprising that only FZD5 and FZD8 appear to undergo endocytosis or be stabilized at the cell surface upon ZNRF3/RNF43 knockout. Is this consistent with previous literature? Is that a cell-specific feature? These findings should be tested in a different cell line, with possibly different relative levels of ZNRF3 and RNF43 expression.<br /> (4) If FZD7 is not a substrate of ZNRF3/RNF43 and therefore is not ubiquitinated and degraded, how do the authors reconcile that its overexpression does not lead to elevated cytosolic beta-catenin levels in Figure 5B?<br /> (5) For Figure 5B, it would be interesting if the authors could evaluate whether overexpression of FZD5 in the ZNRF3/RNF43 double knockout lines would synergize and lead to further increase in cytosolic beta-catenin levels. As control if the substrate selectivity is clear FZD7 overexpression in that line should not do anything.<br /> (6) In Figure 6G, the authors need to show cytosolic levels of beta-catenin in the absence of Wnt in all cases.<br /> (7) Since the authors show that DVL is not involved in the Wnt and ZRNF3-dependent endocytosis they should repeat the proximity biotinylation experiment in figure 7 in the DVL triple KO cells. This is an important experiment since previous studies showed that DVL was required for the ZRNF3/RNF43-mediated ubiqtuonation of FZD.

    1. Reviewer #2 (Public review):

      Summary:

      It was first reported in 2000 that Smad2/3/4 are sequestered to microtubules in resting cells and TGF-β stimulation releases Smad2/3/4 from microtubules, allowing activation of the Smad signaling pathway. Although the finding was subsequently confirmed in a few papers, the underlying mechanism has not been explored. In the present study, the authors found that Rudhira/breast carcinoma amplified sequence 3 is involved in release Smad2/3 from microtubules in response to TGF-β stimulation. Rudhira is also induced by TGF-β and probably involved in stabilization of microtubules in the delayed phase after TGF-β stimulation. Therefore, Rudhira has two important functions downstream of TGF-β in the early as well as delayed phase.

      Strengths:

      This work aimed to address an unsolved question on one of the earliest events after TGF-β stimulation. Based on loss-of-function experiments, the authors identified Rudhira, as a key player that triggers Smad2/3 release from microtubules after TGF-β stimulation. This is an important first step for understanding the initial phase of Smad signaling activation.

      Weaknesses:

      Currently, the processes how Rudhira causes the release of Smad proteins from microtubules and how Rudhira is mobilized to microtubules in response to TGF-β remain unclear. The authors are expected to address these points experimentally in the future.

      This reviewer is also afraid that some of the biochemical data lack appropriate controls and are not convincing enough.

    1. Reviewer #2 (Public review):

      Summary:

      In their manuscript, Ardaya et al address the impact of ischemia-induced astrogliogenesis from the adult SVZ and their effect on remodeling of the extracellular matrix (ECM) in the glial scar. The authors show that the levels of Thbs4, a marker previously identified to be expressed in astrocytes and neural stem cells (NSCs) of the SVZ, strongly increase upon ischemia. While proliferation is significantly increase shortly after ischemia, Nestin and DCX (markers for NSCs and neuroblasts, respectively) decrease and Thbs4 levels suggesting that the neurogenic program is halted and astrogenesis is enhanced. By fate-mapping, the authors show that astrocytes derive from SVZ NSCs and migrate towards the lesion. These SVZ-derived astrocytes strongly express Thbs4 and populate the border of the lesion, while local astrocytes do not express Thbs4 and localize to both scar and border. Interestingly, the Thbs4-positive astrocytes appear to represent a second wave of astrocytes accumulating at the scar, following an immediate reaction of first wave reactive gliosis by local astrocytes. Mechanistically, the study presents evidence that the degradation of hyaluronan (HA), a key component of the extracellular matrix (ECM) is downregulated in the SVZ after ischemia, potentially inducing astrogliogenesis, while HA accumulation at the lesion side represents at least one signal to recruit the newly generated astrocytes. In the aim to facilitate tissue regeneration after ischemic injury, the authors propose that the Thbs4-positive astrocytes could be a promising therapeutical target to modulate the glial scar after brain ischemia.

      Strengths:

      This topic is timely and important since the focus of previous studies was almost exclusively on the role of neurogenesis. The generation of adult-born astrocytes has been proven in both neurogenic niches under physiological conditions, but the implicated function in pathology has not been sufficiently addressed yet.

      Weaknesses:

      The study presented by Ardaya et al presents good evidence that a population of astrocytes that express Thbs4 contribute to scar formation after ischemic injury. The authors demonstrate that ischemic injury increases proliferation in the SVZ, decreases neurogenesis and increases astrogenesis. However, whether astrogenesis is a result of terminal differentiation of type B cells or their proliferation remains unclear. Here, a combination of fate mapping and thymidine analogue-tracing would have been conclusively.

    1. Reviewer #2 (Public review):

      The authors present behaviorMate, an open-source behavior control system including a central GUI and compatible treadmill and display components. Notably, the system utilize the "Intranet of things" scheme and the components communicate through local network, making the system modular, which in turn allows user to configure the setup to suit their experimental needs. Overall, behaviorMate is a useful resource for researchers performing head-fixed VR imaging studies involving 1D navigation tasks, as the commercial alternatives are often expensive and inflexible to modify.

      One major utility of behaviorMate is an open-source alternative to commercial behavior apparatus for head-fixed imaging studies involving 1D navigation tasks. The documentation, BOM, CAD files, circuit design, source and compiled software, along with the manuscript, create an invaluable resource for neuroscience researcher looking to set up a budget-friendly VR and head-fixed imaging rig. Some features of behaviorMate, including the computer vision-based calibration of treadmill, and the decentralized, Android-based display devices, are very innovative approaches and can be quite useful in practical settings.

      behaviorMate can also be used as a set of generic schema and communication protocols that allows the users to incorporate recording and stimulation devices during a head-fixed imaging experiment. Due to the "Intranet of things" approach taken in the design, any hardware that supports UDP communication can in theory be incorporated into the system. In terms of current capability, behaviorMate supports experimental contingencies based on animal position and time and synchronization with external recording devices using a TTL start signal. Further customization involving more complicated experimental contingencies, more accurate recording synchronization (for example with ephys recording devices), incorporation of novel behavior and high-speed neural recording hardware beyond GPIO signaling would require modification of the Java source and custom hardware implementation. Modification to the Java source of behaviorMate can be performed with basic familiarity with object-oriented programming using the Java programming language, and a JavaFX-based plugin system is under development to make such customizations more approachable for users.

      In summary, the manuscript presents a well-developed and useful open-source behavior control system for head-fixed VR imaging experiments with innovative features.

    1. Reviewer #2 (Public review):

      Sensory experiences during developmental critical periods have long-lasting impacts on neural circuit function and behavior. However, the underlying molecular and cellular mechanisms that drive these enduring changes are not fully understood. In Drosophila, the antennal lobe is composed of synapses between olfactory sensory neurons (OSNs) and projection neurons (PNs), arranged into distinct glomeruli. Many of these glomeruli show structural plasticity in response to early-life odor exposure, reflecting the sensitivity of the olfactory circuitry to early sensory experiences.<br /> In their study, the authors explored the role of glia in the development of the antennal lobe in young adult flies, proposing that glial cells might also play a role in experience-dependent plasticity. They identified a critical period during which both structural and functional plasticity of OSN-PN synapses occur within the ethyl butyrate (EB)-responsive VM7 glomerulus. When flies were exposed to EB within the first two days post-eclosion, significant reductions in glomerular volume, presynaptic terminal numbers, and postsynaptic activity were observed. The study further highlights the importance of the highly conserved engulfment receptor Draper in facilitating this critical period plasticity. The authors demonstrated that, in response to EB exposure during this developmental window, ensheathing glia increase Draper expression, infiltrate the VM7 glomerulus, and actively phagocytose OSN presynaptic terminals. This synapse pruning has lasting effects on circuit function, leading to persistent decreases in both OSN-PN synapse numbers and spontaneous PN activity as analyzed by perforated patch-clamp electrophysiology to record spontaneous activity from PNs postsynaptic to Or42a OSNs .

      In my view, this is an intriguing and potentially valuable set of data.

      Comments on latest version:

      After carefully reviewing the revised manuscript, I am satisfied with the authors' responses to my initial suggestions, particularly regarding the synaptic readouts used in their analyses. The authors have clarified their approach with appropriate changes in wording, which enhance the manuscript's clarity and address my previous concerns. Although I believe it could have been beneficial to incorporate postsynaptic markers to further substantiate the findings, I understand this may not have been feasible within the scope of the current study.

      Overall, I find that the major claims of the manuscript are now sufficiently supported by the presented data. The revisions have improved the manuscript, and I am confident it meets the standards for publication. I therefore recommend the manuscript for publication in its current form.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors investigate the role of fluid flow in shaping the colony size of a freshwater cyanobacterium Microcystis. To do so, they have created a novel assay by combining a rheometer with a bright field microscope. This allows them to exert precise shear forces on cyanobacterial cultures and field samples, and then quantify the effect of these shear forces on the colony size distribution. Shear force can affect the colony size in two ways: reducing size by fragmentation and increasing size by aggregation. They find limited aggregation at low shear rates, but high shear forces can create erosion-type fragmentation: colonies do not break in large pieces, but many small colonies are sheared off the large colonies. Overall, bacterial colonies from field samples seem to be more inert to shear than laboratory cultures, which the authors explain in terms of enhanced intercellular adhesion mediated by secreted polysaccharides.

      Strengths:

      -This study is timely, as cyanobacterial blooms are an increasing problem in freshwater lakes. They are expected to increase in frequency and severeness because of rising temperatures, and it is worthwhile learning how these blooms are formed. More generally, how physical aspects such as flow and shear influence colony formation is often overlooked, at least in part because of experimental challenges. Therefore, the method developed by the authors is useful and innovative, and I expect applications beyond the presented system here.<br /> -A strong feature of this paper is the highly quantitative approach, combining theory with experiments, and the combination of laboratory experiments and field samples.

      Weaknesses:

      -Especially the introduction seems to imply that shear force is a very important parameter controlling colony formation. However, if one looks at the results this effect is overall rather modest, especially considering the shear forces that these bacterial colonies may experience in lakes. The main conclusion seems that not shear but bacterial adhesion is the most important factor in determining colony size. As the importance of adhesion had been described elsewhere, it is not clear what this study reveals about cyanobacterial colonies that was not known before.<br /> -The agreement between model and experiments is impressive, but the role of the fit parameters in achieving this agreement needs to be further clarified.<br /> -The article may not be very accessible for readers with a biology background. Overall, the presentation of the material can be improved by better describing their new method.

    1. Reviewer #2 (Public review):

      This work investigates the possible association between language experience and morphology of the superior temporal cortex, a part of the brain responsible for the processing of auditory stimuli. Previous studies have found associations between language and music proficiency as well as language learning aptitude and cortical morphometric measures in regions in the primary and associated auditory cortex. These studies have most often, however, focused on finding neuroanatomical effects of difference between features in a few (often two) languages or from learning single phonetic/phonological features and have often been limited in terms of N. On this background, the authors use more sophisticated measures of language experience that take into account the age of onset and the differences in phonology between languages the subjects have been exposed as well as a larger number of subjects (N = 146 + 69) to relate language experience to the shape and structure of the superior temporal cortex, measured from T1-weighted MRI data. It shows solid evidence for there being a negative relationship between language experience and the right 2nd transverse temporal gyrus as well as some evidence for the relationship representing phoneme-level cross-linguistic information.

      Strengths

      The use of entropy measures to quantify language experience and include typological distance measures allows for a more general interpretation of the results and is an important step toward respecting and making use of linguistic diversity in neurolinguistic experiments.

      A relatively large group of subjects with a range of linguistic backgrounds.

      The full analysis of the structure of the superior temporal cortex including cortical volume, area, as well as the shape of the transverse gyrus/gyri. There is a growing literature on the meaning of the shape and number of the transverse gyri in relation to language proficiency and the authors explore all measures given the available data.

      The authors chose to use a replication data set to verify their data, which is applaudable. However, see the relevant point under "Weaknesses".

      Weaknesses

      Even if the language experience and typological distance measures are a step in the right direction for correctly associating language exposure with cortical plasticity, it still is a measure that is insensitive to the intensity of the exposure.

      Only the result from the multiple transverse temporal gyri (2nd TTG) is analyzed in the replicated dataset. Only the association in the right hemisphere 2nd TTG is replicated but this is not reflected in the discussion or the conclusions. The positive correlation in the right TTG is thus not attempted to be replicated.

      The replication dataset differed in more ways than the more frequent combination of English and German experience, as mentioned in the discussion. Specifically, the fraction of monolinguals was higher in the replication dataset and the samples came from different scanners. It would be better if the primary and replication datasets were more equally matched.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Cozzolino et al. demonstrate that inhibition of the Mediator kinase CDK8 and its paralog CDK19 suppresses hyperactive interferon (IFN) signaling in Down syndrome (DS), which results from trisomy of chromosome 21 (T21). Numerous pathologies associated with DS are considered direct consequences of chronic IFN pathway activation, and thus hyperactive IFN signaling lies at the heart of pathophysiology. The collective interrogation of transcriptomics, metabolomics, and cytokine screens in sibling-matched cell lines (T21 vs D21) allows the authors to conclude that Mediator kinase inhibition could mitigate chronic, hyperactive IFN signaling in T21. To probe the functional outcomes of Mediator kinase inhibition, the authors performed cytokine screens, transcriptomic, and untargeted metabolomics. This collective approach revealed that Mediator kinases establish IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Mediator kinase inhibition suppresses cell responses during hyperactive IFN signaling through inhibition of pro-inflammatory transcription factor activity (anti-inflammatory effect) and alteration of core metabolic pathways, including upregulation of anti-inflammatory lipid mediators, which served as ligands for specific nuclear receptors and downstream phenotypic outcomes (e.g., oxygen consumption). These data provided a mechanistic link between Mediator kinase activity and nuclear receptor function. Finally, the authors also disclosed that Mediator kinase inhibition alters splicing outcomes.

      Overall, this study reveals a mechanism by which Mediator kinases regulate gene expression and establish that its inhibition antagonizes chronic IFN signaling through collective transcriptional, metabolic, and cytokine responses. The data have implications for DS and other chronic inflammatory conditions, as Mediator kinase inhibition could potentially mitigate pathological immune system hyperactivation.

      Comments on revisions:

      In the record of version, the authors have improved readability and also incorporated experiments that provide compelling support to the main discovery of the story. Below I summarize the previous strengths and how they improved noted weaknesses.

      (1) One major strength of this study is the mechanistic evidence linking Mediator kinases to hyperactive IFN signaling through transcriptional changes impacting cell signaling and metabolism.<br /> (2) Another major strength of this study is the use of sibling matched cell lines (T21 vs D21) from various donors (not just one sibling pair), and further cross-referencing with data from large cohorts, suggesting that part of the data and conclusions are generalizable.<br /> (3) Another major strength of this study is the combined experimental approach including transcriptomics, untargeted metabolomics and cytokine screens to define the mechanisms underlying suppression of hyperactive interferon signaling in DS upon Mediator kinase inhibition.<br /> (4) Another major strength of this study is the significance of the work to DS and its potential impact to other chronic inflammatory conditions.<br /> (5) The previously noted weakness regarding the roles of nuclear receptors to activation of an anti-inflammatory program upon Mediator kinase inhibition was not directly experimentally addressed because existing data from other studies (referenced in this version) have linked specific nuclear receptors to lipid biosynthesis and anti-inflammatory cascades. This is considered acceptable.<br /> (6) The presentation of the splicing data analysis is not better integrated in the overall story.<br /> (7) The authors improved the readability of the manuscript by providing specific details throughout.<br /> (8) Figures were improved and simplified when possible to facilitate readability.<br /> (9) The authors now clarified the PRO-Seq (TFEA analysis) explaining that their data is consistent with the general observation that stimulus-responsive genes is controlled by enhancer-bound TFs.

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript "Decoding m6Am by simultaneous transcription-start mapping and methylation quantification" Liu and co-workers describe the development and application of CROWN-Seq, a new specialized library preparation and sequencing technique designed to detect the presence of cap-adjacent N6,2'-O-dimethyladenosine (m6Am) with single nucleotide resolution. Such a technique was a key need in the field since prior attempts to get accurate positional or quantitative measurements of m6Am positioning yielded starkly different results and failed to generate a consistent set of targets. As noted in the strengths section below the authors have developed a robust assay that moves the field forward.

      Furthermore, their results show that most mRNAs whose transcription start nucleotide (TSN) is an 'A' are in fact m6Am (85%+ for most cell lines). They also show that snRNAs and snoRNAs have a substantially lower prevalence of m6Am TSNs.

      Strengths:

      Critically, the authors spent substantial time and effort to validate and benchmark the new technique with spike-in standards during development, cross-comparison with prior techniques, and validation of the technique's performance using a genetic PCIF1 knockout. Finally, they assayed nine different cell lines to cross-validate their results. The outcome of their work (a reliable and accurate method to catalog cap-adjacent m6Am) is a particularly notable achievement and is a needed advance for the field.

      Weaknesses:

      No major concerns were identified by this reviewer.

      Mid-level Concerns: All previous concerns were addressed in the revised version

    1. Reviewer #2 (Public review):

      Summary:

      In this work, Cheng et al use the TPP/MS-CETSA strategy to discover new components for the mitochondria arm of the Integrated Stress Response. By using short exposures of several drugs that potentially induce mitochondrial stress, they find significant CETSA shifts for the scaffold protein PEBP1 both for antimycinA and oligomycin, making PEBP1 a candidate for mitochondrial-induced ISR signaling. After extensive follow-up work, they provide good support that PEBP1 is likely involved in ISR, and possibly act through an interaction with the key ISR effector node EIF2a.

      Strengths:

      The work adds an important understanding of ISR signaling where PEBP1 might also constitute a druggable node to attenuate cellular stress. Although CETSA has great potential for dissecting cellular pathways, there are few studies where this has been explored, particularly with such an extensive follow-up, also giving the work methodological implications. Together I therefore think this study could have a significant impact.

      Weaknesses:

      The TPP/MS-CETSA experiment is quite briefly described and might have a too relaxed cut-off. The assays confirming interactions between PEBP1 and EIF2a might not be fully conclusive.

    1. Reviewer #2 (Public review):

      Summary:

      The work by Arafi et al. show the effect of Familial Alzheimer's Disease presenilin-1 mutants on endoproteinase and carboxylase activity. They have elegantly demonstrated how some of mutants alter each step of processing. Together with FLIM experiments, this study provides additional evidence to support their 'stalled complex hypotheses'.

      Strengths:

      This is a beautiful biochemical work. The approach is comprehensive.

      Weaknesses:

      However, the novelty of this manuscript is questionable since this group has published similar work with different mutants (Ref 11) .

    1. Reviewer #2 (Public Review):

      Kanie et al have recently characterized DAP protein CEP89 as important for the recruitment of the ciliary vesicle. Here, they describe a novel interacting partner for CEP89 that can bind membranes and therefore mediates its role in ciliary vesicle recruitment. An initial LAP tag pull-down and mass spectrometry experiment finds NCS-1 and C3ORF14 as CEP89 interactors. This interaction is mapped in the context of the ciliary vesicle formation. From the data presented, it is clear that, upon knockout, the function of these proteins might be compensated by others, as the phenotype can eventually recover over time.

      In terms of the biological significance of this interaction, it would be good to examine (via co-immunoprecipitation) whether the CEP89/NCS-1/C3ORF14 interaction takes place upon serum starvation. Does the complex change?

      Also, for the subdistal appendage localization of NCS-1 and C3ORF14, would this also change upon serum starvation?

      For the ciliation results and the recruitment of IFT88 in CEP89 knockout cell lines, this contradicts previous work from Tanos et al (PMID: 23348840), as well as Hou et al (PMID: 36669498). A parallel comparison using siRNA, a transient knockout system, or a degron system would help understand this. A similar point goes for Figure 4, where the effect on ciliogenesis is minimal in knockout cells, but acute siRNA has been shown to have a stronger phenotype.

      An elegant phenotype rescue is shown in Figure 5. An interesting question would be, how does this mutant and/or the myristoylation affect the recruitment of C3ORF14?

      For the EF-hand mutants, it would be good to use control mutants, from known Ca2+ binding proteins as a control for the experiment shown.

    1. Reviewer #2 (Public review):

      This revised manuscript mostly addresses previous concerns by doubling down on the model without providing additional direct evidence of interactions between Srs2 and PCNA, and that "precise sites of Srs2 actions in the genome remain to be determined." One additional Srs2 allele has been examined, showing some effect in combination with rfa1-zm2.

      Many of the conclusions are based on reasonable assumptions about the consequences of various mutations, but direct evidence of changes in Srs2 association with PNCA or other interactors is still missing. There is an assumption that a deletion of a Rad51-interacting domain or a PCNA-interacting domain have no pleiotropic effects, which may not be the case. How SLX4 might interact with Srs2 is unclear to me, again assuming that the SLX4 defect is "surgical" - removing only one of its many interactions.

      One point of concern is the use of t-tests without some sort of correction for multiple comparisons - in several figures. I'm quite sceptical about some of the p < 0.05 calls surviving a Bonferroni correction. Also in 4B, which comparison is **? Also, admittedly by eye, the changes in "active" Rad53 seem much greater than 5x. (also in Fig. 3, normalizing to a non-WT sample seems odd).

      What is the WT doubling time for this strain? From the FACS it seems as if in 2 h the cells have completed more than 1 complete cell cycle. Also in 5D. Seems fast...

      I have one over-arching confusion. Srs2 was shown initially to remove Rad51 from ssDNA and the suppression of some of srs2's defects by deleting rad51 made a nice, compact story, though exactly how srs2's "suppression of rad6" fit in isn't so clear (since Rad6 ties into Rad18 and into PCNA ubiquitylation and into PCNA SUMOylation). Now Srs2 is invoked to remove RPA. It seems to me that any model needs to explain how Srs2 can be doing both. I assume that if RPA and Rad51 are both removed from the same ssDNA, the ssDNA will be "trashed" as suggested by Symington's RPA depletion experiments. So building a model that accounts for selective Srs2 action at only some ssDNA regions might be enhanced by also explaining how Rad51 fits into this scheme.

      As a previous reviewer has pointed out, CPT creates multiple forms of damage. Foiani showed that 4NQO would activate the Mec1/Rad53 checkpoint in G1- arrested cells, presumably because there would be single-strand gaps but no DSBs. Whether this would be a way to look specifically at one type of damage is worth considering; but UV might be a simpler way to look.

      As also noted, the effects on the checkpoint and on viability are quite modest. Because it isn't clear (at least to me) why rfa1 mutants are so sensitive to CPT, it's hard for me to understand how srs2-zm2 has a modest suppressive effect: is it by changing the checkpoint response or facilitating repair or both? Or how srs2-3KR or srs2-dPIM differ from Rfa1-zm2 in this respect. The authors seem to lump all these small suppressions under the rubric of "proper levels of RPA-ssDNA" but there are no assays that directly get at this. This is the biggest limitation.

      Srs2 has also been implicated as a helicase in dissolving "toxic joint molecules" (Elango et al. 2017). Whether this activity is changed by any of the mutants (or by mutations in Rfa1) is unclear. In their paper, Elango writes: "Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules" Given the involvement of SLX4, perhaps the authors should examine the roles of structure-specific nucleases in CPT survival?

      Experiments that might clarify some of these ambiguities are proposed to be done in the future. For now, we have a number of very interesting interactions that may be understood in terms of a model that supposes discriminating among gaps and ssDNA extensions by the presence of PCNA, perhaps modified by SUMO. As noted above, it would be useful to think about the relation to Rad6.

    1. Reviewer #2 (Public review):

      While the findings might be valid, there is enough uncertainty that these results should not be considered anything other than preliminary, warranting a more thorough and rigorous investigation.

      Comments on revisions:

      As the author mentioned that due to the receptor internalisation of AT1 and/or LOX1 induced by AngII or Ox-LDL makes it difficult to detect receptor interaction at the membrane by Co-IP. If so, the GPCR internalisation related pathway should be activated, such as GRKs, arrestin2 could be activated and enhanced during this process, whether they could further provide the evidence for these changes in different groups by Western blot or IF images.

      If the authors don't know why the results across experiments can vary so greatly nor control them, how do we know that their interpretation of the very modest intra-experimental variability they observe is correct? They explain away the difference in biosensor activity response to the likely respective insertion sites that were used. While this can be true, and even might be true, it is important to note that the publication they cite shows that the sensors in the third loop and the C-terminus respond very similarly. In fact, the authors concluded: "Our results also suggest that positioning conformational biosensors into ICL3 and the C-tail effectively reports canonical G protein-mediated signaling downstream of the AT1R." Moreover, it is unclear why the less sensitive biosensor (as least as measured by degree of DBRET) is the one that appears to show enhancement. I suppose one could argue that the activity is maximal using the C-tail and one must use a less responsive reporter to detect the effect, but this is a rationalization for an unexplained result rather than a validated mechanistic explanation. If the other results were more compelling, perhaps this would be less of an issue. Finally, they did not explain why a control, non-specific antibody wasn't used for the studies presented in panel 2d. This would have been an easy study to have done in the interim. It also would have been important to test the effect of the LOX1-ab on the effects of AngII treatment alone.

      In their response to the gene expression studies, the authors attribute the lack of a robust response for some genes to the low dose of oxLDL that was used but give no justification for their choice for this low dose. More importantly, they present the data for a number of hand-picked genes rather than a global assessment of response. Their justification---cost constraints---isn't sufficient to justify this incomplete analysis. Their selective rt-PCR results are a pilot study.

      There is no direct evidence in this study that shows that "partial" EMT is occurring in vivo. The rt-PCR studies presented in Fig 8 are not sufficient. Even if one accepts their incomplete analysis of transcriptomic studies using RT-PCR rather than a complete transcriptomic assessment, the study was done on bulk RNA from the entire kidney. The source material includes all cell types, not just epithelial cells, so there is no way to be sure that EMT is occurring. As noted elsewhere, they found no histologic evidence for injury and had no immunostaining results demonstrating "partial EMT" of damaged renal epithelial cells.

      All of the evidence described is indirect, and the responses, while plausible, are generally excuses for lack of truly unequivocally positive results. The authors acknowledge the potential confounders of lower BP response in the Lox1-KO, unexpected weight loss in response to high fat diet, the lack of meaningful histologic evidence of injury, and they also acknowledge the absence of increased Gq signaling in the kidney, which is central to their model, but defend the entire model based on some minor changes in urinary 8-OHdG and albumin levels and a curated set of transcriptional changes. Their data could support their model---loss of Lox1 seems to reduce the levels somewhat, but the data are preliminary.

      There remain serious reservations about the immunostaining results, with explanations and new data not reassuring. The authors report that they are unable to co-stain for Lox1 and AT1R because both were generated in rabbit, but this reviewer didn't ask for co-staining of the two markers. Rather, it was co-staining showing that Lox1 and ATR1 in fact stain in a specific manner to the same nephron segments. The authors have added a supplementary figure showing co-staining for LOX1/AT1R with megalin, a marker for proximal tubules. However, several aspects of this are problematic:

      i. The pattern in the new Supp Fig 10 does not look like that in Fig 9. In the latter, staining is virtually everywhere, all nephron segments, and predominantly basolateral. In Supp Fig 10, they note that the pattern is primarily in the microvilli of the proximal tubule, where megalin is present. The new studies also seem to be a bit more specific, ie there are some tubules that appear to not stain with the markers.

      ii. It is difficult to be certain that the megalin staining isn't simply "bleed-through" of the signal from the other antibody. The paper doesn't describe the secondary antibody used for megalin to be sure that the emission spectra completely non-overlapping and it isn't clear that the microscope that was used offers necessary precision.

      iii. Their explanation for the pattern of AT1R staining is unconvincing. AT1R immunolocalization is known to be challenging, prompting Schrankl et al to do a definitive study using RNAscope to localize its expression in mice, rats and humans (Am J Physiol Renal Physiol 320: F644-F653, 2021). It argues against the pattern seen in Figure 9 (diffuse tubular expression), though it does suggest it is present in proximal tubules in mice. But perhaps more problematic for their model is that AT1R is not expressed in human tubules (or at least the RNA is undetectable).

      Why isn't there more colocalization apparent for the AT1R and LOX1 if they form a co-receptor complex? They say that the complexes may be very dynamic, yet their movie in Suppl Fig 1 does not really support that. Not only are there few overlapping puncta in the static image, there is very little change over the duration of the movie. We don't see complexes form and then disappear and we see few new complexes form.

      The explanation for why the number of replicates is variable is not reassuring. The authors note that it was because of the higher variability of the results, necessitating a higher "N" to achieve significance, but this has the appearance of P-chasing.

    1. Reviewer #2 (Public Review):

      Summary:

      Complementary to mammalian models, zebrafish has emerged as a powerful system to study vertebrate development and to serve as a go-to model for many human disorders. All vertebrates share the ancestral capacity to form a skeleton. Teleost fish models have been a key model to understand the foundations of skeletal development and plasticity, pairing with more classical work in amniotes such as the chicken and mouse. However, the genetic foundation of the diversity of skeletal programs in teleosts has been hampered by mapping similarities from amniotes back and not objectively establishing more ancestral states. This is most obvious in systematic, objective analysis of transcriptional regulation and tissue specification in differentiated skeletal tissues. Thus, the molecular events regulating bone-producing cells in teleosts have remained largely elusive. In this study, Petratou et al. leverage spatial experimental delineation of specific skeletal tissues -- that they term 'classical' vs 'non-classical' osteoblasts -- with associated cartilage of the endo/peri-chondrial skeleton and inter-segmental regions of the forming spine during development of the zebrafish, to delineate molecular specification of these cells by current chromatin and transcriptome analysis. The authors further show functional evidence of the utility of these datasets to identify functional enhancer regions delineating entp5 expression in 'classical' or 'non-classical' osteoblast populations. By integration with paired RNA-seq, they delineate broad patterns of transcriptional regulation of these populations as well as specific details of regional regulation via predictive binding sites within ATACseq profiles. Overall the paper was very well written and provides an essential contribution to the field that will provide a foundation to promote modeling of skeletal development and disease in an evolutionary and developmentally informed manner.

      Strengths:

      Taken together, this study provides a comprehensive resource of ATAC-seq and RNA-seq data that will be very useful for a wide variety of researchers studying skeletal development and bone pathologies. The authors show specificity in the different skeletal lineages and show the utility of the broad datasets for defining regulatory control of gene regulation in these different lineages, providing a foundation for hypothesis testing of not only agents of skeletal change in evolution but also function of genes and variations of unknown significance as it pertains to disease modeling in zebrafish. The paper is excellently written, integrating a complex history and experimental analysis into a useful and coherent whole. The terminology of 'classical' and 'non-classical' will be useful for the community in discussing the biology of skeletal lineages and their regulation.

      Weaknesses:

      Two items arose that were not critical weaknesses but areas for extending the description of methods and integration into the existing data on the role of non-classical osteoblasts and establishment/canalization of this lineage of skeletal cells.

      (1) In reading the text it was unclear how specific the authors' experimental dissection of the head/trunk was in isolating different entp5a osteoblast populations. Obviously, this was successful given the specificity in DEG of results, however, analysis of contaminating cells/lineages in each population would be useful - e.g. using specific marker genes to assess. The text uses terms such as 'specific to' and 'enriched in' without seemingly grounded meaning of the accuracy of these comments. Is it really specific - e.g. not seen in one or other dataset - or is there some experimental variation in this?

      (2) Further, it would be valuable to discuss NSC-specific genes such as calymmin (Peskin 2020) which has species and lineage-specific regulation of non-classical osteoblasts likely being a key mechanistic node for ratcheting centra-specific patterning of the spine in teleost fishes. What are dynamics observed in this gene in datasets between the different populations, especially when compared with paralogues - are there obvious cis-regulatory changes that correlate with the co-option of this gene in the early regulation of non-classical osteoblasts? The addition of this analysis/discussion would anchor discussions of the differential between different osteoblasts lineages in the paper.

    1. Reviewer #3 (Public review):

      Summary:

      The work by Graca et al. describes a GMC flavoprotein dehydrogenase (MftG) in the ethanol metabolism of mycobacteria and provides evidence that it shuttles electrons from the mycofactocin redox cofactor to the electron transport chain.

      Strengths:

      Overall, this study is compelling, exceptionally well-designed and thoroughly conducted. An impressively diverse set of different experimental approaches is combined to pin down the role of this enzyme and scrutinize the effects of its presence or absence in mycobacteria cells growing on ethanol and other substrates. Other strengths of this work are the clear writing style and stellar data presentation in the figures, which makes it easy also for non-experts to follow the logic of the paper. Overall, this work therefore closes an important gap in our understanding of ethanol oxidation in mycobacteria, with possible implications for the future treatment of bacterial infections.

      Weaknesses:

      I see no major weaknesses in this work, which in my opinion leaves no doubt about the role of MftG.

    1. Reviewer #2 (Public review):

      Summary

      Roiuk et al describe a work in which they have investigated the role of eIF2A in translation initiation in mammals without much success. Thus, the manuscript focuses on negative results. Further, the results, while original, are generally not novel, but confirmatory, since related claims have been made before independently in different systems with Haikwad et al study recently published in eLife being the most relevant.

      Despite this, we find this work highly important. This is because of a massive wealth of unreliable information and speculations regarding eIF2A role in translation arising from series of artifacts that began at the moment of eIF2A discovery. This, in combination with its misfortunate naming (eIF2A is often mixed up with alpha subunit of eIF2, eIF2S1) has generated a widespread confusion among researchers who are not experts in eukaryotic translation initiation. Given this, it is not only justifiable but critical to make independent efforts to clear up this confusion and I very much appreciate the authors' efforts in this regard.

      Strengths

      The experimental investigation described in this manuscript is thorough, appropriate and convincing.

      Weaknesses

      However, we are not entirely satisfied with the presentation of this work which we think should be improved.

    1. Reviewer #3 (Public review):

      Summary:

      The overall goal of this manuscript is to understand how Notch signaling is activated in specific regions of the endocardium, including the OFT and AVC, that undergo EMT to form the endocardial cushions. Using dofetilide to transiently block circulation in E9.5 mice, the authors show that Notch receptor cleavage still occurs in the valve-forming regions due to mechanical sheer stress as Notch ligand expression and oxygen levels are unaffected. The authors go on to show that changes in lipid membrane structure activate mTOR signaling, which causes phosphorylation of PKC and Notch receptor cleavage. The data are largely convincing and support their hypothesis. The conclusions are also novel and significantly add to the field of endocardial cushion biology.

      The strengths of the manuscript include the dual pharmacological and genetic approaches to block blood flow in the mouse, the inclusion of many controls including those for hypoxia, the quality of the imaging, and the clarity of the text. In the revision, the authors put forth a good faith effort to address experimentally or textually the concerns of the reviewers. Most weaknesses that were identified in the first submission were addressed and the main claims are convincing. In general, the authors achieved their aims and the results support their conclusions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors tried to test the hypothesis that Cdk8 and Cdk19 stabilize the cytoplasmic CcNC protein, the partner protein of Mediator complex including CDK8/19 and Mediator protein via a kinase-independent function by generating induced double knockout of Cdk8/19. However the evidence presented suffer from a lack of focus and rigor and does not support their claims.

      Strengths:

      This is the first comprehensive report on the effect of a double knockout of CDK8 and CDK19 in mice on male fertility, hormones and single cell testicular cellular expression. The inducible knockout mice led to male sterility with severe spermatogenic defects, and the authors attempted to use this animal model to test the kinase-independent function of CDK8/19, previously reported for human. Single cell RNA-seq of knockout testis presented a high resolution of molecular defects of all the major cell types in the testes of the inducible double knockout mice. The authors also have several interesting findings such as reentry into cell cycles by Sertoli cells, loss of Testosterone in induced dko that could be investigated further.

      Weaknesses:

      The claim of reproductive defects in the induced double knockout of CDK8/19 resulted from the loss of CCNC via a kinase-independent mechanism is interesting but was not supported by the data presented. While the construction and analysis of the systemic induced knockout model of Cdk8 in Cdk19KO mice is not trivial, the analysis and data is weakened by systemic effect of Cdk8 loss, making it difficult to separate the systemic effect from the local testis effect.

      The analysis of male sterile phenotype is also inadequate with poor image quality, especially testis HE sections. Male reproductive tract picture is also small and difficult to evaluate. The mice crossing scheme is unusual as you have three mice to cross to produce genotypes, while we could understand that it is possible to produce pups of desired genotypes with different mating schemes, such vague crossing scheme is not desirable and of poor genetics practice. Also using TAM treated wild type as control is ok, but a better control will be TAM treated ERT2-cre; CDK8f/f or TAM treated ERT2 Cre CDK19/19 KO, so as to minimize the impact from well-recognized effect of TAM.

      While the authors proposed that the inducible loss of CDK8 in the CDK19 knockout background is responsible for spermatogenic defects, it was not clear in which cells CDK8/19 genes are interested and which cell types might have a major role in spermatogenesis. The authors also put forward the evidence that reduction/loss of Testosterone might be the main cause of spermatogenic defects, which is consistent with the expression change in genes involved in steroigenesis pathway in Leydig cells of inducible double knockout. But it is not clear how the loss of Testosterone contributed to the loss of CcnC protein.

      The authors should clarify or present the data on where CDK8 and CDK19 as well as CcnC are expressed so as to help the readers to understand which tissues that both CDK might be functioning and cause the loss of CcnC. It should be easier to test the hypothesis of CDK8/19 stabilize CcnC protein using double knock out primary cells, instead of the whole testis.

      Since CDK8KO and CDK19KO both have significantly reduced fertility in comparison with wildtype, it might be important to measure the sperm quantity and motility among CDK8 KO, CDK19KO and induced DKO to evaluate spermatogenesis based on their sperm production.

      Some data for the inducible knockout efficiency of Cdk8 were presented in Supplemental figure 1, but there is no legend for the supplemental figures, it was not clear which band represented deletion band, which tissues were examined? Tail or testis? It seems that two months after the injection of Tam, all the Cdk8 were completely deleted, indicating extremely efficient deletion of Tam induction by two-month post administration. Were the complete deletion of Cdk8 happening even earlier ? an examination of timepoints of induced loss would be useful and instructional as to when is the best time to examine phenotypes.

      The authors found that Sertoli cells re-entered cell cycle in the inducible double knockout but stop short of careful characterization other than increased expression of cell cycle genes.

      Overall this work suffered from a lack of focus and rigor in the analysis and lack of sufficient evidence to support their main conclusions.

      Comments on revisions:

      This reviewer appreciated the authors' effort in improving the quality of this manuscript during their revision. While some concerns remain, the revision is a much improved work and the authors addressed most of my major concerns.<br /> Figure 2E CDK8 and CDK19 immunofluorescent staining images seem to show CDK8 and CDK19 location are completely distinct and in different cells, the authors need to elaborate on this results and discuss what such a distinct location means in line of their double knockout data.

      Minor comments:

      Supplemental figure 1(C) legend typo : (C) Periodic acid-Schiff stained sections of ilea of tamoxifen treated R26/Cre/ERI2 and DKO mice.

      While the effort to identify and generate new antibodies is appreciated, the specificity of the antibodies used should be examined and presented if available.

    1. Reviewer #2 (Public review):

      Summary.

      Mitochondrial dysfunction is associated with a wide spectrum of genetic and age-related diseases. Healthy mitochondria form a dynamic reticular network and constantly fuse, divide, and move. In contrast, dysfunctional mitochondria have altered dynamic properties resulting in fragmentation of the network and more static mitochondria. It has recently been reported that different types of mitochondrial stress or dysfunction activate kinases that control the integrated stress response, including HRI, PERK and GCN2. Kinase activity results in decreased global translation and increased transcription of stress response genes via ATF4, including genes that encode mitochondrial protein chaperones and proteases (HSP70 and LON). In addition, the ISR kinases regulate other mitochondrial functions including mitochondrial morphology, phospholipid composition, inner membrane organization, and respiratory chain activity. Increased mitochondrial connectivity may be a protective mechanism that could be initiated by pharmacological activation of ISR kinases, as was recently demonstrated for GCN2.

      A small molecule screening platform was used to identify nucleoside mimetic compounds that activate HRI. These compounds promote mitochondrial elongation and protect against acute mitochondrial fragmentation induced by a calcium ionophore. Mitochondrial connectivity is also increased in patient cells with a dominant mutation in MFN2 by treatment with the compounds.

      Strengths:

      (1) The screen leverages a well-characterized reporter of the ISR: translation of ATF4-FLuc is activated in response to ER stress or mitochondrial stress. Nucleoside mimetic compounds were screened for activation of the reporter, which resulted in the identification of nine hits. The two most efficacious in dose response tests were chosen for further analysis (0357 and 3610). The authors clearly state that the compounds have low potency. These compounds were specific to the ISR and did not activate the unfolded protein response or the heat shock response. Kinases activated in the ISR were systematically depleted by CRISPRi revealing that the compounds activate HRI.<br /> (2) The status of the mitochondrial network was assessed with an Imaris analysis pipeline and attributes such as length, sphericity, and ellipsoid principal axis length were quantified. The characteristics of the mitochondrial network in cells treated with the compounds were consistent with increased connectivity. Rigorous controls were included. These changes were attenuated with pharmacological inhibition of the ISR.<br /> (3) Treatment of cells with the calcium ionophore results in rapid mitochondrial fragmentation. This was diminished by pre-treatment with 0357 or 3610 and control treatment with thapsigargin and halofuginone.<br /> (4) Pathogenic mutations in MFN2 result in the neurodegenerative disease Charcot-Marie-Tooth Syndrome Type 2A (CMT2A). Patient cells that express Mfn2-D414V possess fragmented mitochondrial networks and treatment with 0357 or 3610 increased mitochondrial connectivity in these cells.

      Weaknesses:

      The weakness is the limited analysis of cellular changes following treatment with the compounds.<br /> (1) Unclear how 0357 or 3610 alter other aspects of cellular physiology. While this would be satisfying to know, it may be that the authors determined that broad, unbiased experiments such as RNAseq or proteomic analysis are not justified due to the limited translational potential of these specific compounds.<br /> (2) There are many changes in Mfn2-D414V patient cells including reduced respiratory capacity, reduced mtDNA copy number, and fewer mitochondrial-ER contact sites. These experiments are relatively narrow in scope and quantifying more than mitochondrial structure would reveal if the compounds improve mitochondrial function, as is predicted by their model.

      Comments on revisions:

      Many reviewer concerns have been addressed or will be addressed in forthcoming manuscripts.

    1. Reviewer #2 (Public review):

      Summary:

      Complementary to mammalian models, zebrafish has emerged as a powerful system to study vertebrate development and serve as a go-to model for many human disorders. All vertebrates share the ancestral capacity to form a skeleton. Teleost fish models have been a key model to understand the foundations of skeletal development and plasticity, pairing with more classical work in amniotes such as the chicken and mouse. However, the genetic foundation of the diversity of skeletal programs in teleosts have been hampered by mapping similarities from amniotes back and not objectively establishing more ancestral states. This is most obvious in systematic, objective analysis of transcriptional regulation and tissue specification in differentiated skeletal tissues. Thus, the molecular events regulating bone-producing cells in teleosts have remained largely elusive. In this study, Petratou et al. leverage spatial experimental delineation of specific skeletal tissues -- that they term 'classical' vs 'non-classical' osteoblasts -- with associated cartilage of the endo/peri-chondrial skeleton and inter-segmental regions of the forming spine during development of the zebrafish, to delineate molecular specification of these cells by current chromatin and transcriptome analysis. The authors further show functional evidence of the utility of these datasets to identify functional enhancer regions delineating entp5 expression delineated in 'classical' or 'non-classical' osteoblast populations. By integration with paired RNA-seq, they delineate broad patterns of transcriptional regulation of these populations as well as specific detail of regional regulation via predictive binding sites within ATACseq profiles. Overall the paper was very well written and provides an essential contribution to the field that will provide a foundation to promote modeling of skeletal development and disease in an evolutionary and developmentally informed manner.

      Strengths:

      Taken together, this study provides a comprehensive resource of ATAC-seq and RNA-seq data that will be very useful for a wide variety of researchers studying skeletal development and bone pathologies. The authors show specificity in the different skeletal lineages and show utility of the broad datasets for defining regulatory control of gene regulation in these different lineages, providing the foundation for hypothesis testing of not only agents of skeletal change in evolution but also function of genes and variations of unknown significance as it pertains to disease modeling in zebrafish. The paper is excellently written, integrating a complex history and experimental analysis into a useful and coherent whole. The terminology of 'classical' and 'non-classical' will be useful for the community in discussing biology of skeletal lineages and their regulation.

      Weaknesses:

      Two items arose that proposed areas for extending the description to integrate the data into the existing data on role of non-classical osteobasts and establishment/canalization of this lineage of skeletal cells.

      (1) It was unclear how specific the authors' experimental dissection of head/trunk was in isolating different entp5a osteoblast populations. Obviously, this was successful given the specificity in DEG of results, however an analysis of contaminating cells/lineages in each population would be useful - e.g. maybe use specific marker genes to assess. The text uses terms such as 'specific to' and 'enriched in' without seemingly grounded meaning of the accuracy of these comments. Is it really specific e.g. not seen in one or other dataset, or is there some experimental variation in this?

      (2) Further, it would be valuable to discuss NSC-specific genes such as calymmin (Peskin 2020) which has species and lineage specific regulation of non-classical osteoblasts likely being a key mechanistic node for ratcheting centra-specific patterning of the spine in teleost fishes. What are dynamics observed in this gene in datasets between the different populations, especially when compared with paralogues - is there obvious cis-regulatory changes that correlate with the co-option of this gene in early regulation of non-classical osteoblasts? The addition of this analysis/discussion would anchor discussions of a differential between different osteoblasts lineages in the paper.

      Comments on revisions: All issues have been addressed.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors report results of QM/MM simulations and kinetic measurements for the phosphoryl-transfer step in adenylate kinase. The main assertion of the paper is that a wide transition state ensemble is a key concept in enzyme catalysis as a strategy to circumvent entropic barriers. This assertion is based on observation of a "structurally wide" set of energetically equivalent configurations that lie along the reaction coordinate in QM/MM simulations, together with kinetic measurements that suggest a decrease of the entropy of activation.

      Strengths:

      The study combines theoretical calculations and supporting experiments.

      Weaknesses:

      The current paper hypothesizes a "wide" transition state ensemble as a catalytic strategy and key concept in enzyme catalysis. Overall, it is not clear the degree to which this hypothesis is fully supported by the data. The reasons are as follows:

      (1) Enzyme catalysis reflects a rate enhancement with respect to a baseline reaction in solution. In order to assert that something is part of a catalytic strategy of an enzyme, it would be necessary to demonstrate from simulations that the activation entropy for the baseline reaction is indeed greater and the transition state ensemble less "wide". Alternatively stated, when indicating there is a "wide transition state ensemble" for the enzyme system - one needs to indicate that is with respect to the non-enzymatic reaction. However, these simulations were not performed and the comparisons not demonstrated. The authors state "This chemical step would take about 7000 years without the enzyme" making it impossible to measure; nonetheless, the simulations of the nonenzymatic reaction would be fairly straightforward to perform in order to demonstrate this key concept that is central to the paper. Rather, the authors examine the reaction in the absence of a catalytically important Mg ion.

      (2) The observation of a "wide conformational ensemble" is not a quantitative measure of entropy. In order to make a meaningful computational prediction of the entropic contribution to the activation free energy, one would need to perform free energy simulations over a range of temperatures (for the enzymatic and non-enzymatic systems). Such simulations were not performed, and the entropy of activation was thus not quantified by the computational predictions. The authors instead use a wider TS ensemble as a proxy for larger entropy, and miss an opportunity to compare directly to the experimental measurements.

      Comments on revisions:

      Overall, I do not think the authors have been able to quantitatively support their conclusion, and the qualitative support is somewhat weak. This makes the interpretation of the computational results somewhat speculative. Nonetheless, comparison was made for models with and without divalent ions, and the experimental data is valuable.

    1. Reviewer #2 (Public review):

      In this paper, Banerjee & Banerjee argue that a solely autocatalytic assembly model of the centrosome leads to size inequality. The authors instead propose a catalytic growth model with a shared enzyme pool. Using this model, the authors predict that size control is enzyme-mediate and are able to reproduce various experimental results such as centrosome size scaling with cell size and centrosome growth curves in C. elegans.

      The paper contains interesting results and is well-written and easy to follow/understand.

      Comments on revised version:

      The authors made a number of revisions that significantly improved the manuscript, including analyzing the impact of finite diffusion, more thorough stability analysis, and enhanced comparison to experimental results.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript addresses an important impediment in the field of Alzheimer's disease (AD) and tauapathy research by showing that 12 specific phosphomimetic mutations in full-length tau allow the protein to aggregate into fibrils with the AD fold and the fold of chronic traumatic encephalopathy fibrils in vitro. The paper presents comprehensive structural and cell based seeding data indicating the improvement of their approach over previous in vitro attempts on non-full-length tau constructs. The main weaknesses of this work results from the fact that only up to 70% of the tau fibrils form the desired fibril polymorphs. In addition, some of the figures are of low quality and confusing.

      Strengths:

      This study provides significant progress towards a very important and timely topic in the amyloid community, namely the in vitro production of tau fibrils found in patients.

      The 12 specific phosphomimetic mutations presented in this work will have an immediate impact in the field since they can be easily reproduced.

      Multiple high-resolution structures support the success of the phosphomimetic mutation approach.

      Additional data show the seeding efficiency of the resulting fibrils, their reduced tendency to bundle, and their ability to be labeled without affecting core structure or seeding capability.

      Weaknesses:

      Despite the success of making full-length AD tau fibrils, still ~30% of the fibrils are either not PHF, or not accounted for. A small fraction of the fibrils are single filaments and another ~20% are not accounted for. The authors mention that ~20% of these fibrils were not picked by the automated algorithm. However, it would be important to get additional clarity about these fibrils. Therefore, it would improve the impact of the paper if the authors could manually analyze passed-over particles to see if they are compatible with PHF or fall into a different class of fibrils. In addition, it would be helpful if the authors could comment on what can be done/tried to get the PHF yield closer to 90-100%

    1. Reviewer #2 (Public review):

      Summary:

      The work in this paper discusses the use of CG-MD simulations and nMS to describe cardiolipin binding sites in a synthetically designed that can be extrapolated to a naturally occurring membrane protein. While the authors acknowledge their work illuminates the challenges in engineering lipid binding they are able to describe some features that highlight residues within GlpG that may be involved in lipid regulation of protease activity, although further study of this site is required to confirm it's role in protein activity.

      Comments<br /> Discrepancy between total CDL binding in CG simulations (Fig 1d) and nMS (Fig 2b,c) should be further discussed. Limitations in nMS methodology selecting for tightest bound lipids?<br /> Mutation of helical residues to alanine not only results in loss of lipid binding residues but may also impact overall helix flexibility, is this observed by the authors in CG-MD simulations? Change in helix overall RMSD throughout simulation? The figures shown in Fig.1H show what appear to be quite significant differences in APO protein arrangement between ROCKET and ROCKET AAXWA.<br /> CG-MD force experiments could be corroborated experimentally with magnetic tweezer unfolding assays as has been performed for the unfolding of artificial protein TMHC2. Alternatively this work could benefit to referencing Wang et al 2019 "On the Interpretation of Force-Induced Unfolding Studies of Membrane Proteins Using Fast Simulations" to support MD vs experimental values.<br /> Did the authors investigate if ROCKET or ROCKETAAXWA copurifies with endogenous lipids? Membrane proteins with stabilising CDL often copurify in detergent and can be detected by MS without the addition of CDL to the detergent solution. Differences in retention of endogenous lipid may also indicate differences in stability between the proteins and is worth investigation.<br /> Do the AAXWA and ROCKET have significantly similar intensities from nMS? The AAXWA appears to show slight lower intensities than the ROCKET.<br /> Can the authors extend their comments on why densities are observed only around site 2 in the cryo-em structures when site 1 is the apparent preferential site for ROCKET.<br /> The authors state that nMS is consistent with CDL binding preferentially to Site 1 in ROCKET and preferentially to Site 2 in the ROCKET AAXWA variant, yet it unclear from the text exactly how these experiments demonstrate this.<br /> As carried out for ROCKET AAXWA the total CDL binding to A61P and R66A would add to supporting information of characterisation of lipid stabilising mutations.<br /> Did the authors investigate a double mutation to Site 2 (e.g. R66A + M16A)?<br /> Was the stability of R66A ever compared to the WT or only to AAXWA?<br /> How many CDL sites in the database used are structurally verified?<br /> The work on GlpG could benefit from mutagenesis or discussion of mutagenesis to this site. The Y160F mutation has already been shown to have little impact on stability or activity (Baker and Urban Nat Chem Biol. 2012).

    1. Reviewer #2 (Public review):

      The Gram-positive cell wall contains for a large part of TAs, and is essential for most bacteria. However, TA biosynthesis and regulation is highly understudied because of the difficulties in working with these molecules. This study closes some of our important knowledge gaps related to this and provides new and improved methods to study TAs. It also shows an interesting role for TAs in maintaining a 'periplasmic space' in Gram positives. Overall, this is an important piece of work. It would have been more satisfying if the possible causal link between TAs and periplasmic space would have been more deeply investigated with complemented mutants and CEMOVIS. For the moment, there is clearly something happening but it is not clear if this only happens in TA mutants or also in strains with capsules/without capsules and in PG mutants, or in lafB (essential for production of another glycolipid) mutants. Finally, some very strong statements are made suggesting several papers in the literature are incorrect, without actually providing any substantiation/evidence supporting these claims. This work pioneers some new methods that will definitively move the field forward.

    1. Reviewer #2 (Public review):

      Summary:

      Jia and colleagues developed a fluorescence resonance energy transfer (FRET)-based biosensor to study programmed cell death in the zebrafish spinal cord. They applied this tool to study death of zebrafish spinal motor neurons.

      Strengths:

      Their analysis shows that the tool is a useful biosensor of motor neuron apoptosis in living zebrafish and can reveal which part of the neuron undergoes caspase activation first, achieving two of their aims.

      Weaknesses:

      The third aim, to provide novel insights into the spatiotemporal properties and occurrence rates of motor neuron death requires additional context and investigation, especially to understand the significance of the differences they report between zebrafish motor neuron programmed cell death and what has been previously described in chicks and rodents. For example, mnx1 expresses not only in motor neurons, but also in interneurons. However, the way the authors counted living and dead cells does not take this into consideration, potentially underestimating the percentage of motor neurons that died. Previous studies of chicks and rodents showed widespread differences in the timing of motor neuron programmed cell death and the number of cells that died depending on the spinal cord region examined. The authors have not described which spinal cord segments they examined or whether they examined motor neurons in limb-bearing segments which have been best studied in other species. Previous literature investigated the death of an identified zebrafish motor neuron and provided experimental evidence that it is independent of limitations in muscle innervation area, suggesting it is not coupled to muscle-derived neurotrophic factors. Thus, the authors need to acknowledge that even previous to their study, there was literature suggesting that programmed cell death of at least one motor neuron in zebrafish does not easily fit into the "neurotrophic hypothesis" as it is generally formulated. Finally, the authors need to be mindful that showing that something does not happen in an observational study cannot reveal the capabilities of the cells involved without an experimental test.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Yu and coworkers investigates the potential role of Secretory leukocyte protease inhibitor (SLPI) in Lyme arthritis. They show that, after needle inoculation of the Lyme disease (LD) agent, B. burgdorferi, compared to wild type mice, a SLPI-deficient mouse suffers elevated bacterial burden, joint swelling and inflammation, pro-inflammatory cytokines in the joint, and levels of serum neutrophil elastase (NE). They suggest that SLPI levels of Lyme disease patients are diminished relative to healthy controls. Finally, they find that SLPI may interact directly the B. burgdorferi.

      Strengths:

      Many of these observations are interesting and the use of SLPI-deficient mice is useful (and has not previously been done).

      Weaknesses:

      (a) The known role of SLPI in dampening inflammation and inflammatory damage by inhibition of NE makes the enhanced inflammation in the joint of B. burgdorferi-infected mice a predicted result; (b) The potential contribution of the greater bacterial burden to the enhanced inflammation is not addressed; (c) The relationship of SLPI binding by B. burgdorferi to the enhanced disease of SLPI-deficient mice is not clear; and (d) Several methodological aspects of the study are unclear.

    1. Reviewer #2 (Public review):

      Summary:

      The Crenarchaeal Cdv division system represents a reduced form of the universal and ubiquitous ESCRT membrane reverse-topology scission machinery, and therefore a prime candidate for synthetic and reconstitution studies. The work here represents a solid extension of previous work in the field, clarifying the order of recruitment of Cdv proteins to curved membranes.

      Strengths:

      The use of a recently developed approach to produce dumbbell-shaped liposomes (De Franceschi et al. 2022), which allowed the authors to assess recruitment of various Cdv assemblies to curved membranes or membrane necks; reconstitution of a quaternary Cdv complex at a membrane neck.

      Weaknesses:

      The manuscript is a bit light on quantitative detail, across the various figures, and several key controls are missing (CdvA, B alone to better interpret the co-polymerisation phenotypes and establish the true order of recruitment, for example) - addressing this would make the paper much stronger. The authors could also include in the discussion a short paragraph on implications for our understanding of ESCRT function in other contexts and/or in archaeal evolution, as well as a brief exploration of the possible reasons for the discrepancy between the foci observed in their liposome assays and the large rings observed in cells - to better serve the interests of a broad audience.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the role of IκBα in regulating mouse embryonic stem cell (ESC) pluripotency and differentiation. The authors demonstrate that IκBα knockout impairs the exit from the naïve pluripotent state during embryoid body differentiation. Through mechanistic studies using various mutants, they show that IκBα regulates ESC differentiation through chromatin-related functions, independent of the canonical NF-κB pathway.

      Strengths:

      The authors nicely investigate the role of IκBα in pluripotency exit, using embryoid body formation and complementing the phenotypic analysis with a number of genome-wide approaches, including transcriptomic, histone marks deposition, and DNA methylation analyses. Moreover, they generate a first-of-its-kind mutant set that allows them to uncouple IκBα's function in chromatin regulation versus its NF-κB-related functions. This work contributes to our understanding of cellular plasticity and development, potentially interesting a broad audience including developmental biologists, chromatin biology researchers, and cell signaling experts.

      Weaknesses:<br /> - The study's main limitation is the lack of crucial controls using bona fide naïve cells across key experiments, including DNA methylation analysis, gene expression profiling in embryoid bodies, and histone mark deposition. This omission makes it difficult to evaluate whether the observed changes in IκBα-KO cells truly reflect naïve pluripotency characteristics.<br /> - Several conclusions in the manuscript require a more measured interpretation. The authors should revise their statements regarding the strength of the pluripotency exit block, the extent of hypomethylation, and the global nature of chromatin changes.<br /> - From a methodological perspective, the manuscript would benefit from additional orthogonal approaches to strengthen the knockout findings, which may be influenced by clonal expansion of ES cells.

      Overall, this study makes an important contribution to the field. However, the concerns raised regarding controls, data interpretation, and methodology should be addressed to strengthen the manuscript and support the authors' conclusions.

    1. Reviewer #2 (Public review):

      Summary:<br /> Authors introduced a computational framework, DyNoPy, that integrates residue coevolution analysis with molecular dynamics (MD) simulations to identify functionally important residues in proteins. DyNoPy identifies key residues and residue-residue coupling to generate an interaction graph and attempts to validate using two clinically relevant β-lactamases (SHV-1 and PDC-3).

      Strengths:<br /> DyNoPy could not only show clinically relevance of mutations but also predict new potential evolutionary mutations. Authors have provided biologically relevant insights into protein dynamics which can have potential applications in drug discovery and understanding molecular evolution.

      Weaknesses:<br /> Although DyNoPy could show the relevance of key residues in active and non-active site residues, no experiments have been performed to validate their predictions. In addition, they should compare their method with conventional techniques and show how their method could be different.

      An explanation of "communities" divided in the work and how these communities are relevant to the article should be provided. In addition, choice of collective variables and their relevance in residue coupling movement is also not very well explained. Dynamics cross correlation map can also be a good method for understanding the residue movements and can explain the residue-residue coupling, it is not explained how DyNoPy is different from the conventional methods or can perform better.

      In the sentence "DyNoPy identified eight significant communities of strongly coupled residues within SHV-1 (Supporting Fig. S4A)" I could not find a clear description of eight significant communities.

      Again the description of communities is not clear to me in the following sentence "Detailed description of the other three communities is provided in the supporting information (Fig. S6)."

      In the sentence "N170 acts as an intermediary between N136 and E166". Kindly cite the reference figure to show N179 as intermediate residue.

      Please be careful with the numbers. In the sentence "These residues not only interact with each other directly but are also indirectly coupled via 21 other residues." I could count 22 other residues and not 21.

      In the sentence "Unlike other substitution sites that are adjacent to the active site, R205 is situated more than 16 Å away from catalytic serine S70". Please add this label somewhere in the figure.

      Please cite a reference in the sentence "This indicates that mutations on G238 would result in an alteration on protein catalytic function, as well as an increased flexibility of the protein, which strongly aligns with previous finding."

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript reports the application of a combined targeted therapeutic approach to gastric cancer treatment. The RTK, FGFR2 and the phosphatase, SHP2 are targeted with existing drugs; AZD457 and SHP099 respectively. Having shown increased mRNA levels of FGFR2 and SHP2 in a patient population and highlighted the issue of resistance to single therapies the combination of inhibitors is shown to reduce cancer-related signalling in two gastric cell lines. The efficacy of the dual therapy is further demonstrated in a single patient case study and mouse xenograft models. Finally, the rationale for SHP2 inhibition is shown to be linked to immune response.

      Strengths:

      The data is generally well presented and the study invokes a novel patient data set which could have wider value. The study provides additional evidence to support the combined therapeutic approach of RTK and phosphatase inhibition.

      Weaknesses:

      Combined therapy approaches targeting RTKs and SHP2 have been widely reported. Indeed, SHP099 in combination with FGFR inhibitors has been shown to overcome adaptive resistance in FGFR-driven cancers. Furthermore, the inhibition of SHP2 has been documented to have important implications in both targeting proliferative signalling as well as immune response. Thus, it is difficult to see novelty or a significant scientific advance in this manuscript. Although the data is generally well presented, there is inconsistency in the interpretation of the experimental outcomes from ex vivo, patient and mouse systems investigated. In addition, the study provides only minor or circumstantial understanding of the dual mechanism.

      Using data from a 161 patient cohort FGFR2 was identified as displaying amplification of FGFR2 in ~6% with concomitant elevation of mRNA of patients which correlated with PTPN11 (SHP2) mRNA expression. The broader context of this data is of value and could add a different patient demographic to other data on gastric cancer. However, there is no detail on patient stratification or prior therapeutic intervention.

      In SNU16 and KATOIII cells the combined therapy is shown to be effective and appears to be correlated with increased apoptotic effects (i.e. not immune response).

      Fig 2E suggests that the combined therapy in SNU16 cells is a little better than FGFR2-directed AZD457 inhibitor alone, particularly at the higher dose.

      The individual patient case study described via Fig 3 suggests efficacy of the combined therapy (at very high dosage), however, the cell biopsies only show reduced phosphorylation of ERK, but not AKT. This is at odds with the ex vivo cell-based assays. Thus, it is not clear how relevant this study is.

      The mouse xenograft study shows a convincing reduction in tumor mass/volume and clear reduction in pAKT, whilst pERK remains largely unaffected by the combined therapeutic approach. This is in conflict with the previous data which seems to show the opposite effect. In all, the impact of the dual therapy is unclear with respect to the two pathways mediated by ERK and AKT.

      Finally, the authors demonstrate the impact of SHP2 on PD-1 expression and propose that the SHP099/AZD4547 combination therapy significantly induces the production of IFN-γ in CD8+ T cells. This part of the study is unconvincing and would benefit from the investigation of the tumor micro-environment to assess T cell infiltration.

    1. Reviewer #2 (Public review):

      Summary:

      The authors define the m6A methyltransferase Mettl5 as a novel sleep-regulatory gene that contributes to specific aspects of Drosophila sleep behaviors (i.e., sleep drive and arousal at early night; sleep homeostasis) and propose the possible implication of Mettl5-dependent clocks in this process. The model was primarily based on the assessment of sleep changes upon genetic/transgenic manipulations of Mettl5 expression (including CRISPR-deletion allele); differentially expressed genes between wild-type vs. Mettl5 mutant; and interaction effects of Mettl5 and clock genes on sleep. These findings exemplify how a subclass of m6A modifications (i.e., Mettl5-dependent m6A) and possible epi-transcriptomic control of gene expression could impact animal behaviors.

      Strengths:

      Comprehensive DEG analyses between control and Mettl5 mutant flies reveal the landscape of Mettl5-dependent gene regulation at both transcriptome and translatome levels. The molecular/genetic features underlying Mettl5-dependent gene expression may provide important clues to molecular substrates for circadian clocks, sleep, and other physiology relevant to Mettl5 function in Drosophila.

      Weaknesses:

      While these findings indicate the potential implication of Mettl5-dependent gene regulation in circadian clocks and sleep, several key data require substantial improvement and rigor of experimental design and data interpretation for fair conclusions. Weaknesses of this study and possible complications in the original observations include but are not limited to:

      (1) Genetic backgrounds in Mettl5 mutants: the heterozygosity of Mettl5 deletion causes sleep suppression at early night and long-period rhythms in circadian behaviors. The transgenic rescue using Gal4/UAS may support the specificity of the Mettl5 effects on sleep. However, it does not necessarily exclude the possibility that the Mettl5 deletion stocks somehow acquired long-period mutation allelic to other clock genes. Additional genetic/transgenic models of Mettl5 (e.g., homozygous or trans-heterozygous mutants of independent Mettl5 alleles; Mettl5 RNAi etc.) can address the background issue and determine 1) whether sleep suppression tightly correlates with long-period rhythms in Mettl5 mutants; and 2) whether Mettl5 effects are actually mapped to circadian pacemaker neurons (e.g., PDF- or tim-positive neurons) to affect circadian behaviors, clock gene expression, and synaptic plasticity in a cell-autonomous manner and thereby regulate sleep. Unfortunately, most experiments in the current study rely on a single genetic model (i.e., Mettl5 heterozygous mutant).

      (2) Gene expression and synaptic plasticity: gene expression profiles and the synaptic plasticity should be assessed by multiple time-point analyses since 1) they display high-amplitude oscillations over the 24-h window and 2) any phase-delaying mutation (e.g., Mettl5 deletion) could significantly affect their circadian changes. The current study performed a single time-point assessment of circadian clock/synaptic gene expression, misleading the conclusion for Mettl5 effects. Considering long-period rhythms in Mettl5 mutant clocks, transcriptome/translatome profiles in Mettl5 cannot distinguish between direct vs. indirect targets of Mettl5 (i.e., gene regulation by the loss of Mettl5-dependent m6A vs. by the delayed circadian phase in Mettl5 mutants). 

      (3) The text description for gene expression profiling and Mettl5-dependent gene regulation was very detailed, yet there is a huge gap between gene expression profiling and sleep/behavioral analyses. The model in Figure 5 should be better addressed and validated.

    1. Reviewer #2 (Public review):

      In this manuscript, the authors seek to demonstrate that it is possible to sequence antibody variable domains from cryoEM reconstructions in combination with bottom-up LC-MSMS. In particular, they extract de novo sequences from single particle-cryo-EM-derived maps of antibodies using the "deep-learning tool ModelAngelo", which are run through the program Stitch to try to select the top scoring V-gene and construct a placeholder sequence for the CDR3 of both the heavy and light chain of the antibody under investigation. These reconstructed variable domains are then used as templates to guide the assembly of de novo peptides from LC-MS/MS data to improve the accuracy of the candidate sequence.

      Using this approach the authors claim to have demonstrated that "cryoEM reconstructions of monoclonal antigen-antibody complexes may contain sufficient information to accurately narrow down candidate V-genes and that this can be integrated with proteomics data to improve the accuracy of candidate sequences".

      WhiIe the approach is clearly a work in progress, the manuscript should made easier to understand for the general reader. Indeed, I had a hard time understanding the workflow until I got to Fig. 3. So re-ordering the figures, for example, may be helpful in this regard.

      It would be useful to provide additional concrete examples where the described workflow would assist in the elucidation of CDR3's, in cases where this isn't already known. (In the benchmark dataset from the Electron Microscopy Data Bank, all the antibodies and Fabs are presumably known, as is the case for the monoclonal antibody CR3022). I am having difficulty envisioning how one would prepare samples from actual plasma samples that would be appropriate for single particle cryo-EM and MS data on dominant antibodies of interest. In my experience, most of these samples tend to be quite complex mixtures. So additional discussion of this point would be helpful.

    1. Reviewer #2 (Public review):

      Summary:

      Kim et al. report that two disease mutations in proBMP4, Ser91Cys and Glu93Gly, which disrupt the Ser91 FAM20C phosphorylation site, block the activation of proBMP4 homodimers. Consequently, analysis of DMZ explants from Xenopus embryos expressing the proBMP4 S91C or E93G mutants showed reduced pSmad1 and tbxt1 expression. The block in BMP4 activity caused by the mutations could be overcome by co-expression of BMP7, suggesting that the missense mutations selectively affect the activity of BMP4 homodimers but not BMP4/7 heterodimers. The expert amphibian tissue transplant studies were extended to in vivo studies in Bmp4S91C/+ and Bmp4E93G/+ mice, demonstrating the impact of these mutations on embryonic development, particularly in female mice, in line with patient studies. Finally, studies in MEFs revealed that the mutations did not affect proBMP4 glycosylation or ER-to-Golgi transport but appeared to inhibit the furin-dependent cleavage of proBMP4 to BMP4. Based on these findings and AI (AlphaFold) modeling of proBMP4, the authors speculate that pSer91 influences access of furin to its cleavage site at Arg289AlaLysArg292.

      Strengths:

      The Xenopus and mouse studies are valuable and elegantly describe the impact of the S91C and E93G disease mutations on BMP signaling and embryonic development.

      Weaknesses:

      The interpretation of how the mutations may disturb the furin-mediated cleavage of proBMP4 is underdeveloped and does not consider all of their data. Understanding how pS91 influences the furin-dependent cleavage at Arg292 seems to be the crux of this work and thus warrants more consideration. Specifically:

      (1) Figure S1 may be significantly more informative than implied. The authors report that BMP4S91D activates pSmad1 only incrementally better than S91C and much less than WT BMP4. However, Fig. S1B does not support the conclusion on page 7 (numbering beginning with title page); "these findings suggest that phosphorylation of S91 is required to generate fully active BMP4 homodimers". The authors rightly note that the S91C change likely has manifold effects beyond inhibiting furin cleavage. The E93G change may also affect proBMP4 beyond disturbing FAM20C phosphorylation. Additional mutation analyses would strengthen the work.

      (2) These findings in Figure S1 are potentially significant because they may inform how proBMP4 is protected from cleavage during transit through the TGN and entry into peripheral cellular compartments. Intriguing modeling studies in Figure 6 suggest that pSer91 is proximal to the furin cleavage site. Based on their presentation, pSer91 may contact Arg289, the critical P4 residue at the furin site. If so, might that suggest how pS91 may prevent furin cleavage, thus explaining why the S91D mutation inhibits processing as presented, and possibly how proBMP4 processing is delayed until transit to distal compartments (perhaps activated by a change in the endosomal microenvironment or a Ser91 phosphatase)? Have the authors considered or ruled out these possibilities? In addition to additional mutation analyses of the FAM20C site, moving the discussion of this model to an "Ideas and Speculation" subsection may be warranted.

      (3) The lack of an in vitro protease assay to test the effect of the S91 mutations on furin cleavage is problematic.

    1. Reviewer #2 (Public review):

      Summary:

      The membrane mimetic thermal proteome profiling (MM-TPP) presented by Jandu et al. seems to be a useful way to minimize the interference of detergents in efficient mass spectrometry analysis of membrane proteins. Thermal proteome profiling is a mass spectrometric method that measures binding of a drug to different proteins in a cell lysate by monitoring thermal stabilization of the proteins because of the interaction with the ligands that are being studied. This method has been underexplored for membrane proteome because of the inefficient mass spectrometric detection of membrane proteins and because of the interference from detergents that are used often for membrane protein solubilization.

      Strengths:

      In this report the binding of ligands to membrane protein targets has been monitored in crude membrane lysates or tissue homogenates exalting the efficacy of the method to detect both intended and off-target binding events in a complex physiologically relevant sample setting.

      The manuscript is lucidly written and the data presented seems clear. The only insignificant grammatical error I found was that the 'P' in the word peptidisc is not capitalized in the beginning of the methods section "MM-TPP profiling on membrane proteomes". The clear writing made it easy to understand and evaluate what has been presented. Kudos to the authors.

      Weaknesses:

      While this is a solid report and a promising tool for analyzing membrane protein drug interactions, addressing some of the minor caveats listed below could make it much more impactful.

      The authors claim that MM-TPP is done by "completely circumventing structural perturbations invoked by detergents". This may not be entirely accurate, because before reconstitution of the membrane proteins in peptidisc, the membrane fractions are solubilized by 1% DDM. The solubilization and following centrifugation step lasts at least for 45 min. It is less likely that all the structural perturbations caused by DDM to various membrane proteins and their transient interactions become completely reversed or rescued by peptidisc reconstitution. In the introduction, the authors make statements such as "..it is widely acknowledged that even mild detergents can disrupt protein structures and activities, leading to challenges in accurately identifying drug targets.." and "[peptidisc] libraries are instrumental in capturing and stabilizing IMPs in their functional states while preserving their interactomes and lipid allosteric modulators...'. These need to be rephrased, as it has been shown by countless studies that even with membrane protein suspended in micelles robust ligand binding assays and binding kinetics have been performed leading to physiologically relevant conclusions and identification of protein-protein and protein-ligand interactions.

      If the method involves detergent solubilization, for example using 1% DDM, it is a bit disingenuous to argue that 'interactomes and lipid allosteric modulators' characterized by low-affinity interactions will remain intact or can be rescued upon detergent removal. Authors should discuss this or at least highlight the primary caveat of the peptidisc method of membrane protein reconstitution - which is that it begins with detergent solubilization of the proteome and does not completely circumvent structural perturbations invoked by detergents.

      It would also be important to test detergents that are even milder than 1% DDM and ones which are harsher than 1% DDM to show that this method of reconstitution can indeed rescue the perturbations to the structure and interactions of the membrane protein done by detergents during solubilization step. Based on the methods provided, it appears that the final amount of detergent in peptidisc membrane protein library was 0.008%, which is ~150 uM. The CMC of DDM depending on the amount of NaCl could be between 120-170 uM. Perhaps, to completely circumvent the perturbations from detergents other methods of detergent-free solubilization such as using SMA polymers and SMALP reconstitution could be explored for a comparison. Moreover, a comparison of the peptidisc reconstitution with detergent-free extraction strategies, such as SMA copolymers, could lend more strength to the presented method.

      Cross-verification of the identified interactions, and subsequent stabilization or destabilizations, should be demonstrated by other in vitro methods of thermal stability and ligand binding analysis using purified protein to support the efficacy of the MM-TPP method. An example cross-verification using SDS-PAGE, of the well-studied MsbA, is shown in Figure 2. In a similar fashion, other discussed targets such as, BCS1L, P2RX4, DgkA, Mao-B, and some un-annotated IMPs shown in supplementary figure 3 that display substantial stabilization or destabilization should be cross-verified.

    1. Reviewer #2 (Public review):

      Summary:

      The study in question utilizes functional magnetic resonance imaging (fMRI) to dynamically estimate the locus and extent of covert spatial attention from visuocortical activity. The authors aim to address an important gap in our understanding of how the size of the attentional field is represented within the visual cortex. They present a novel paradigm that allows for the estimation of the spatial tuning of the attentional field and demonstrate the ability to reliably recover both the location and width of the attentional field based on BOLD responses.

      Strengths:

      (1) Innovative Paradigm: The development of a new approach to estimate the spatial tuning of the attentional field is a significant strength of this study. It provides a fresh perspective on how spatial attention modulates visual perception.<br /> (2) Refined fMRI Analysis: The use of fMRI to track the spatial tuning of the attentional field across different visual regions is methodologically rigorous and provides valuable insights into the neural mechanisms underlying attentional modulation.<br /> (3) Clear Presentation: The manuscript is well-organized, and the results are presented clearly, which aids in the reader's comprehension of the complex data and analyses involved.

      Weaknesses:

      (1) Lack of Neutral Cue Condition: The study does not include a neutral cue condition where the cue width spans 360{degree sign}, which could serve as a valuable baseline for assessing the BOLD response enhancements and diminishments in both attended and non-attended areas.<br /> (2) Clarity on Task Difficulty Ratios: The explicit reasoning for the chosen letter-to-number ratios for various cue widths is not detailed. Ensuring clarity on these ratios is crucial, as it affects the task difficulty and the comparability of behavioral performance across different cue widths. It is essential that observed differences in behavior and BOLD signals are attributable solely to changes in cue width and not confounded by variations in task difficulty.

    1. Reviewer #2 (Public review):

      Summary:

      Kapoor et. al. investigated the role of the mycobacterial protein Wag31 in lipid and peptidoglycan synthesis and sought to delineate the role of the N- and C- terminal domains of Wag31. They demonstrated that modulating Wag31 levels influences lipid homeostasis in M. smegmatis and cardiolipin (CL) localisation in cells. Wag31 was found to preferentially bind CL-containing liposomes, and deleting the N-terminus of the protein significantly decreased this interaction. Novel interactions between Wag31 and proteins involved in lipid metabolism and cell wall synthesis were identified, suggesting that Wag31 recruits proteins to the intracellular membrane domain by direct interaction.

      Strengths:

      (1) The importance of Wag31 in maintaining lipid homeostasis is supported by several lines of evidence.<br /> (2) The interaction between Wag31 and cardiolipin, and the role of the N-terminus in this interaction was convincingly demonstrated.

      Weaknesses:

      (1) MS experiments provide some evidence for novel protein-protein interactions, however, the pull-down experiments are lacking a valid negative control.<br /> (2) The role of the N-terminus in the protein-protein interaction has not been ruled out.

    1. Reviewer #2 (Public review):

      Summary of goals:

      Untranslated regions are key cis-regulatory elements that control mRNA stability, translation, and translocation. Through interactions with small RNAs and RNA binding proteins, UTRs form complex transcriptional circuitry that allows cells to fine-tune gene expression. Functional annotation of UTR variants has been very limited, and improvements could offer insights into disease relevant regulatory mechanisms. The goals were to advance our understanding of the determinants of UTR regulatory elements and characterize the effects of a set of "disease-relevant" UTR variants.

      Strengths:

      The use of a massively parallel reporter assay allowed for analysis of a substantial set (6,555 pairs) of 5' and 3' UTR fragments compiled from known disease associated variants. Two cell types were used.

      The findings confirm previous work about the importance of AREs, which helps show validity and adds some detailed comparisons of specific AU-rich motif effects in these two cell types.

      Using a Lasso regression, TA-dinucleotide content is identified as a strong regulator of RNA stability in a context dependent manner based on GC content and presence of RNA binding protein binding motifs. The findings have potential importance, drawing attention to a UTR feature that is not well characterized.

      The use of complementary datasets, including from half-life analyses of RNAs and from random sequence library MRPA's, is a useful addition and supports several important findings. The finding the TA dinucleotides have explanatory power separate from (and in some cases interacting with) GC content is valuable.

      The functional enrichment analysis suggests some new ideas about how UTRs may contribute to regulation of certain classes of genes.

      Weaknesses:

      In this section, original reviewer comments about the initial submission and the responses of the authors are listed together with new reviewer responses to the authors:

      Reviewer original comment 1: It is difficult to understand how the calculations for half-life were performed. The sequencing approach measures the relative frequency of each sequence at each time point (less stable sequences become relatively less frequent after time 0, whereas more stable sequences become relatively more frequent after time 0). Since there is no discussion of whether the abundance of the transfected RNA population is referenced to some external standard (e.g., housekeeping RNAs), it is not clear how absolute (rather than relative) half-lives were determined.

      Author response: [The authors showed the equations used to calculate half lives based on read counts.] They stated that "The absolute abundance was not required for the half-life calculation."

      Reviewer response to authors: The methods section states that DESeq2 was used to normalize read counts. DESeq2 normalization assumes that levels of most RNAs are not different between samples. That assumption is not valid here, since RNAs in the library are introduced into cells at time 0 and all RNAs decrease over time. If DESeq2 is applied without modification to normalize across timepoints, normalized reads from less stable RNAs will decrease over time (as expected) but normalized reads from more stable RNAs will increase. Can the authors please clarify in the methods how the read counts were normalized to account for this issue?

      Reviewer original comment 2: Fig. S1A and B are used to assess reproducibility. They show that read counts at a given time point correlate well across replicate experiments. However, this is not a good way to assess reproducibility or accuracy of the measurements of t1/2 are. (The major source of variability in read counts in these plots - especially at early time points - is likely starting abundance of each RNA sequence, not stability.) This creates concerns about how well the method is measuring t1/2. Also creating concern is the observation that many RNAs are associated with half-lives that are much longer than the time points analyzed in the study. For example, based upon Figure S1 and Table S1 correctly, the median t1/2 for the 5' UTR library in HEK cells appears to be >700 minutes. Given that RNA was collected at 30, 75, and 120 minutes, accurate measurements of RNAs with such long half lives would seem to be very difficult.

      Author response: ... The calculation of the half-life involves first determining the decay constant 𝜆, which represents a constant rate of decay. Since 𝜆 is a constant, it is possible to accurately calculate it without needing data over the entire decay range. Our experimental design considers this by selecting appropriate time points to ensure a reliable estimation of 𝜆, and thus, the half-life. To determine the most suitable time points, we conducted preliminary experiments using RT-PCR. These experiments indicated that 30, 75, and 120 minutes provided an effective range for capturing the decay dynamics of the transcripts.

      Reviewer response to author comments: Based on Fig. S1D, for 3' UTRs in both cell types and for 5' UTRs in SH-SY5Y cells, median t1/2 is in the range of ~30 to 90 minutes (corresponding to ln t1/2 = 3.5 to 4.5). Measuring RNAs at 30, 75, and 120 minutes would therefore be a good choice for these cases, However, median t1/2 in HEK cells appears to be ~600 minutes (corresponding to ln t1/2 ~6.4) for HEK cells. For t1/2 of 600 minutes, RNA levels at the final time point (120 minutes) would be 90% of the those at the first time point (30 minutes), which illustrates why the method would need to be able to reliably capture very small changes in RNA abundance to accurately measure t1/2 for transcripts with half-lives much longer than 120 minutes. As suggested in our original review, this concern could be addressed by showing the correlation of half-lives across replicates for the 5' and 3' UTR libraries in both cell types. Alternatively, the authors could show other measures of reproducibility for the half-life measurements across replicates. This requires no additional experimentation and can be done using the data from replicate runs shown in Fig. S1A and B. We remain concerned that for sequences with very long half-lives, extrapolating the half-life from small changes between 30 and 120 minutes will lead to imprecise measurements.

      Reviewer original comment 3: There is no direct comparison of t1/2 between the two cell types studied for the full set of sequences studied. This would be helpful in understanding whether the regulatory effects of UTRs are generally similar across cell lines (as has been shown in some previous studies) or whether there are fundamental differences. The distribution of t1/2's is clearly quite different in the two cell lines, but it is important to know if this reflects generally slow RNA turnover in HEK cells or whether there are a large number of sequence-specific effects on stability between cell lines. A related issue is that it is not clear whether the relatively small number of significant variant effects detected in HEK cells versus SH-SY5Y cells is attributable to real biological differences between cell types or to technical issues (many fewer read counts and much longer half lives in HEK cells).

      Author response: For both cell lines, we selected oligonucleotides with R2 > 0.5 and mean squared error (MSE) < 1 for analysis when estimating half-life (λ) by linear regression. This selection criterion was implemented to minimize the effect of experimental noise. After quality control, we selected common UTRs and compared the RNA half-lives of the two cell lines using a scatter plot. The figure below shows that RNA half-lives are quite different between the cell lines, with a moderate similarity observed in the 5' UTRs (R = 0.21), while the correlation in the 3' UTRs is non-significant. Despite the low correlation of mRNA half-life between the two cell lines, UA-dinucleotide and UA-rich sequences consistently emerge as the most significant destabilizing features, suggesting a shared regulatory mechanism across diverse cellular environments.

      Reviewer response to author comments: We appreciate that the authors shared this additional analysis of the data. We believe that this is an important finding and that the additional figure showing correlations of half-lives across cell types should be included in the manuscript or supplement. Discussion of this result in the manuscript would also be useful for readers. This result is surprising to us since we would have expected that widely expressed RNA-binding proteins would have led to more similar effects between the two cell types, as previously found using other approaches (e.g., studies of 3' UTR effects in MPRAs). It would also be appropriate to discuss that differences seen between the two cell types indicate that caution is warranted when trying to generalize the results of this study to other cell types.

      Reviewer original comment 4 has been addressed adequately in the revised manuscript.

      Appraisal and impact:

      Reviewer original comment 1: The work adds to existing studies that previously identified sequence features, including AREs and other RNA binding protein motifs, that regulate stability and puts a new emphasis on the role of "TA" (better "UA") dinucleotides. It is not clear how potential problems with the RNA stability measurements discussed above might influence the overall conclusions, which may limit the impact unless these can be addressed.

      It is difficult to understand whether the importance of TA dinucleotides is best explained by their occurrence in a related set of longer RBP binding motifs (see Fig 5J, these motifs may be encompassed by the "WWWWWW cluster") or whether some other explanation applies. Further discussion of this would be helpful. Does the LASSO method tend to collapse a more diverse set of longer motifs that are each relatively rare compared to the dinucleotide? It remains unclear whether TA dinucleotides are associated with less stability independent of the presence of the known larger WWWWWWW motif. As noted above, the importance of TA dinucleotides in the HEK experiments appears to be less than is implied in the text.

      Author response: To ensure the representativeness of the features entered into the LASSO model, we pre-selected those with an occurrence greater than 10% among all UTRs. There is no evidence to support a preference for dinucleotides by LASSO. To address whether the destabilizing effect of UA dinucleotides is part of the broader WWWWWW motif, we divided UA dinucleotides into two groups: those within the WWWWWW motif and those outside of it. Specifically, we divided UTRs into two categories: 'at least one UA within a WWWWWW motif' and 'no UA within a WWWWWW motif,' and visualized the results using a boxplot. As shown in [figures provided to the reviewers], the destabilizing trend still remains for UA dinucleotides outside of the WWWWWW motif, although the effect appears to be more pronounced when UA is within the WWWWWW motif. This suggests that while UA dinucleotides have a destabilizing effect independently, their impact is amplified when they are part of the broader WWWWWW motif.

      Reviewer response to authors: These are useful additional analyses, and we suggest that the additional figure and discussion should be included in the manuscript/supplement so that readers can benefit from them.

      Reviewer original comment 2: The inclusion of more than a single cell type is an acknowledgement of the importance of evaluating cell type-specific effects. The work suggests a number of cell type-specific differences, but due to technical issues (especially with the HEK data, as outlined above) and the use of only two cell lines, it is difficult to understand cell type effects from the work.

      The inclusion of both 3' and 5' UTR sequences distinguishes this work from most prior studies in the field. Contrasting the effects of these regions on stability is of interest, although the role of these UTRs (especially the 5' UTR) in translational regulation is not assessed here.

      Author response: We examined the role of UTR and UTR variants in translation regulation using polysome profiling. By both univariate analysis and an elastic regression model, we identified motifs of short repeated sequences, including SRSF2 binding sites, as mutation hotspots that lead to aberrant translation. Furthermore, these polysome-shifting mutations had a considerable impact on RNA secondary structures, particularly in upstream AUG-containing 5' UTRs. Integrating these features, our model achieved high accuracy (AUROC > 0.8) in predicting polysome-shifting mutations in the test dataset. Additionally, metagene analysis indicated that pathogenic variants were enriched at the upstream open reading frame (uORF) translation start site, suggesting changes in uORF usage underlie the translation deficiencies caused by these mutations. Illustrating this, we demonstrated that a pathogenic mutation in the IRF6 5' UTR suppresses translation of the primary open reading frame by creating a uORF. Remarkably, site-directed ADAR editing of the mutant mRNA rescued this translation deficiency. Because the regulation of translation and stability does not converge, we illustrate these two mechanisms in two separate manuscripts (this one and doi.org/10.1101/2024.04.11.589132).

      Reviewer response to authors: This is useful context. No further comment.

    1. Reviewer #2 (Public review):

      Summary:

      Bloch et al. studied the relationships between aerial foragers (lesser swifts) tracked using an automated radio telemetry system (Atlas) and their prey (flying insects) monitored using a small vertical-looking radar (BirdScan MR1). The aim of the study was to check whether swifts optimise their foraging according to the abundance of their prey. The results provide evidence that small swifts can increase their foraging rate when aerial insect abundance is high, but found no correlation between insect abundance and flight energy expenditure.

      Key points:

      This study fills gaps in fundamental knowledge of prey-predator dynamics in the air. It describes the coincidence between the abundance of flying insects and the characteristics derived from monitoring individual swifts.

      Weaknesses:

      The paper uses assumptions largely derived from optimal foraging theory, but mixes up the form of natural selection: parental energy, parental survival (predation risk), nestling foraging and reproductive success. The results are partly inconsistent, and confounding factors (e.g., the brooding phase versus the nestling phase) remained ignored. In conclusion, the analyses performed are insufficient to rigorously assess whether lesser swifts are optimising their foraging beyond making shorter foraging trips.

      The filters applied to the monitoring data are necessary but may strongly influence the characteristics derived based on maximum or mean values. Sensitivity tests or the use of characteristics that are less dependent on extreme values could provide more robust results.

    1. Reviewer #2 (Public review):

      Summary:

      Li et al.'s goal is to understand the mechanisms of audiovisual temporal recalibration. This is an interesting challenge that the brain readily solves in order to compensate for real-world latency differences in the time of arrival of audio/visual signals. To do this they perform a 3-phase recalibration experiment on 9 observers that involves a temporal order judgment (TOJ) pretest and posttest (in which observers are required to judge whether an auditory and visual stimulus were coincident, auditory leading or visual leading) and a conditioning phase in which participants are exposed to a sequence of AV stimuli with a particular temporal disparity. Participants are required to monitor both streams of information for infrequent oddballs, before being tested again in the TOJ, although this time there are 3 conditioning trials for every 1 TOJ trial. Like many previous studies, they demonstrate that conditioning stimuli shift the point of subjective simultaneity (pss) in the direction of the exposure sequence.

      These shifts are modest - maxing out at around -50 ms for auditory leading sequences and slightly less than that for visual leading sequences. Similar effects are observed even for the longest offsets where it seems unlikely listeners would perceive the stimuli as synchronous (and therefore under a causal inference model you might intuitively expect no recalibration, and indeed simulations in Figure 5 seem to predict exactly that which isn't what most of their human observers did). Overall I think their data contribute evidence that a causal inference step is likely included within the process of recalibration.

      Strengths:

      The manuscript performs comprehensive testing over 9 days and 100s of trials and accompanies this with mathematical models to explain the data. The paper is reasonably clearly written and the data appear to support the conclusions.

      Comments on revision:

      In the revised manuscript the authors incorporate an alternative model (the asynchrony contingent model), and demonstrate that the causal inference model still out performs this. They provide additional analysis with Bayes factors to perform model comparisons, and provide significant individual subject data in the supplementary materials. Overall they have addressed most of the key points that my original review raised, including a demonstration of the conditions under which recalibration effects do not delay to zero over long delays. The number of subjects remains rather low, but at least we can now appreciate the heterogeneity within them. I still have some reservations about the magnitude of the conceptual advance that this study makes.

    1. Reviewer #2 (Public review):

      Summary:

      This work by Bimbard et al., introduces a new implant for Neuropixels probes. While Neuropixels probes have critically improved and extended our ability to record the activity of a large number of neurons with high temporal resolution, the use of these expensive devices in chronic experiments has so far been hampered by the difficulty of safely implanting them and, importantly, to explant and reuse them after conclusion of the experiment. The authors present a newly designed two-part implant, consisting of a docking and a payload module, that allows for secure implantation and straightforward recovery of the probes. The implant is lightweight, making it amenable for use in mice and rats, and customizable. The authors provide schematics and files for printing of the implants, which can be easily modified and adapted to custom experiments by researchers with little to no design experience. Importantly, the authors demonstrate the successful use of this implant across multiple use cases, in head-fixed and freely moving experiments, in mice and rats, with different versions of Neuropixels probes and across 8 different labs. Taken together, the presented implants promise to make chronic Neuropixels recordings and long-term studies of neuronal activity significantly easier and attainable for both current and future Neuropixels users.

      Strengths:<br /> - The implants have been successfully tested across 8 different laboratories, in mice and rats, in head-fixed and freely moving conditions and have been adapted in multiple ways for a number of distinct experiments.<br /> - Implants are easily customizable and authors provide a straightforward approach for customization across multiple design dimensions even for researchers not experienced in design.<br /> - The authors provide clear and straightforward descriptions of the construction, implantation and explant of the described implants.<br /> - The split of the implant into a docking and payload module makes reuse even in different experiments (using different docking modules) easy.<br /> - The authors demonstrate that implants can be re-used multiple times and still allow for high-quality recordings.<br /> - The authors show that the chronic implantations allow for the tracking of individual neurons across days and weeks (using additional software tracking solutions), which is critical for a large number of experiments requiring the description of neuronal activity, e.g. throughout learning processes.<br /> - The authors show that implanted animals can even perform complex behavioral tasks, with no apparent reduction in their performance.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript investigates to what degree neonates show evidence for statistical learning from regularities in streams of syllables, either with respect to phonemes or with respect to speaker identity. Using EEG, the authors found evidence for both, stronger entrainment to regularities as well as ERP differences in response to violations of previously introduced regularities. In addition, violations of phoneme regularities elicited an ERP pattern which the authors argue might index a precursor of the N400 response in older children and adults.

      Strengths:

      All in all, this is a very convincing paper, which uses a clever manipulation of syllable streams to target the processing of different features. The combination of neural entrainment and ERP analysis allows for the assessment of different processing stages, and implementing this paradigm in a comparably large sample of neonates is impressive.

      Weaknesses

      The authors addressed all the concerns I previously raised well and I have no further comments.

    1. Reviewer #2 (Public review):

      In this manuscript, Hou et al. investigate the interplay between OCT4 and SOX2 in driving the pluripotent state during early embryonic lineage development. Using knockout (KO) embryos, the authors specifically analyze the transcriptome and chromatin state within the ICM-to-EPI developmental trajectory. They emphasize the critical role of OCT4 and the supportive function of SOX2, along with other factors, in promoting embryonic fate. Although the paper presents high-quality data, several key claims are not well-supported, and direct evidence is generally lacking.

      Comments on revisions:

      The authors have addressed many of the concerns raised in the initial review and provided alternative analytical approaches to address the relevant questions in this revision. Some of these are useful; however, they have not fully addressed one critical point.<br /> In my original critique, I noted that the maternal KO might not be suitable as a control, given that there is no significant phenotypic difference between the maternal-only KO and the maternal-zygotic KO. While we did not dispute the molecular differences presented in Figure 2, so how the authors conclude in the Response "embryos with a maternal KO or zygotic heterozygous KO of Oct4 or Sox2 show no noticeable ... molecular difference (Figure 2-figure supplement 4A)"? The authors should recheck whether this is a typographical error or a valid statement.

      Additionally, I recommend the removal of phrases such as "absolutely priority" and "pivotal" throughout the manuscript, as these terms are overly assertive without sufficient supporting evidence.

    1. Reviewer #2 (Public review):

      Summary:

      Canonical Wnt signaling has previously been shown to be responsible for correct patterning of the oral-aboral axis as well as germ layer formation in several cnidarians. In the post-gastrula stage, the planula larvae are not only elongated, they have a specific swimming direction due to the decentralized cellular positioning and slanted anchoring of the cilia. This in turn is in most other animals the result of a Wnt-Planar-cell polarity pathway. This paper by Uveira et al investigates the role of Wnt3 signaling in serving as a local cue for the PCP pathway which then is responsible for the orientation of the cilia and elongation of the planula larva of the hydrozoan Clytia hemisphaerica. Wnt3 was shown before to activate the canonical pathway via ß-catenin and to act as an axial organizer. The authors provide compelling evidence for this somewhat unusual direct link between the pathways through the same signaling molecule, Wnt3. In conclusion, they propose a two-step model: (1) local orientation by Wnt3 secretion and (2) global propagation by the PCP pathway over the whole embryo.

      Strengths:

      In a series of elegant and also seemingly sophisticated experiments, they show that Wnt3 activates the PCP pathway directly, as it happens in the absence of canonical Wnt signaling (e.g. through co-expression of dnTCF). Conversely, constitutive active ß-catenin was not able to rescue PCP coordination upon Wnt3 depletion, yet restored gastrulation. This uncouples the effect of Wnt3 on axis specification and morphogenetic movements from the elongation via PCP. Through transplantation of single blastomeres providing a local source of Wnt3, they also demonstrate the reorganization of cellular polarity immediately adjacent to the Wnt3-expressing cell patch. These transplantation experiments also uncover that mechanical cues can also trigger polarization, suggesting a mechanotransduction or direct influence on subcellular structures, e.g. actin fiber orientation.

      This is a beautiful and elegant study addressing an important question. The results have significant implications also for our understanding of the evolutionary origin of axis formation and the link of these two ancient pathways, which in most animals are controlled by distinct Wnt ligands and Frizzled receptors. The quality of the data is stunning and the paper is written in a clear and succinct manner. This paper has the potential to become a widely cited milestone paper.

      Weaknesses:

      I can not detect any major weaknesses. The work only raises a few more follow-up questions, which the authors are invited to comment on.

    1. Reviewer #2 (Public Review):

      Kanie et all have carried out a tour-de-force effort to further understand the hierarchy and function of centriole distal appendages in ciliogenesis. They made a thorough effort to understand the localization of all the known distal appendage proteins. To examine the distal appendage hierarchy, they used an automated analysis of centrosomal localization. It is not clear how this was quantified and pictures are not shown. They used CEP170, a marker for subdistal appendages, to define a mask around centrioles. It is not clear how the experiment was analyzed and normalized. The techniques used in this study cannot be compared with those commonly used in the field which normally include storm and other super-resolution techniques (which are less prone to artifacts) and correlated electron microscopy. Thus, it is not possible to make a head-to-head comparison. The lack of rescue experiments further weakens the conclusions of this paper.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Guayasamin et al. show that early-life stress (ELS) can induce a shift in fear generalisation in mice. They took advantage of a fear conditioning paradigm followed by a discrimination test and complement learning and memory findings with measurements for anxiety-like behaviors. Next, astrocytic dysfunction in the lateral amygdala was investigated at the cellular level by combining staining for c-Fos with astrocyte-related proteins. Changes in excitatory neurotransmission were observed in acute brains slices after ELS suggesting impaired communication between neurons and astrocytes. To confirm causality of astrocytic-neuronal dysfunction in behavioral changes, viral manipulations were performed in unstressed mice. Occlusion of functional coupling with a dominant negative construct for gap junction connexin 43 or reduction in astrocytic calcium with CalEx mimicked the behavioral changes observed after ELS suggesting that dysfunction of the astrocytic network underlies ELS-induced memory impairments.

      Strengths:

      Overall, this well written manuscript highlights a key role for astrocytes in regulating stress-induced behavioral and synaptic deficits in the lateral amygdala in the context of ELS. Results are innovative, and methodological approaches relevant to decipher the role of astrocytes in behaviors. As mentioned by the authors, non-neuronal cells are receiving increasing attention in the neuroscience, stress and psychiatry fields.

      Weaknesses:

      I did have several suggestions and comments that were addressed during the review process. I believe that it improved clarity and will increase the impact of the work.

    1. Reviewer #3 (Public review):

      Summary:

      In this work, the authors use a Hidden Markov Model (HMM) to describe dynamic connectivity and amplitude patterns in fMRI data, and propose to integrate these features with the Fisher kernel to improve the prediction of individual traits. The approach is tested using a large sample of healthy young adults from the Human Connectome Project. The HMM-Fisher Kernel approach was shown to achieve higher prediction accuracy with lower variance on many individual traits compared to alternate kernels and measures of static connectivity. As an additional finding, the authors demonstrate that parameters of the HMM state matrix may be more informative in predicting behavioral/cognitive variables in this data compared to state-transition probabilities.

      Comments on revisions:

      The authors have now addressed my comments, and I believe this work will be an interesting contribution to the literature.

    1. Reviewer #2 (Public review):

      This is a nice article that presents interesting findings. The model's predictions match the data, which is good. The discussion points to modeling plasticity after SCI, which will be important.

      The manuscript is well-written and interesting, and the putative neural circuit mechanisms that the model uncovers are super cool if they can be tested in an animal.

    1. Reviewer #2 (Public review):

      Summary:

      Tsurumi et al. show that recurrent neural networks can learn state and value representations in simple reinforcement learning tasks when trained with random feedback weights. The traditional method of learning for recurrent network in such tasks (backpropagation through time) requires feedback weights which are a transposed copy of the feed-forward weights, a biologically implausible assumption. This manuscript builds on previous work regarding "random feedback alignment" and "value-RNNs", and extends them to a reinforcement learning context. The authors also demonstrate that certain non-negative constraints can enforce a "loose alignment" of feedback weights. The author's results suggest that random feedback may be a powerful tool of learning in biological networks, even in reinforcement learning tasks.

      Strengths:

      The authors describe well the issues regarding biologically plausible learning in recurrent networks and in reinforcement learning tasks. They take care to propose networks which might be implemented in biological systems and compare their proposed learning rules to those already existing in literature. Further, they use small networks on relatively simple tasks, which allows for easier intuition into the learning dynamics.

      Weaknesses:

      The principles discovered by the authors in these smaller networks are not applied to deeper networks or more complicated tasks, so it remains unclear to what degree these methods can scale up, or can be used more generally.

    1. Reviewer #2 (Public review):

      RNA guanine-rich G-quadruplexes (rG4s) are non-canonical higher order nucleic acid structures that can form under physiological conditions. Interestingly, cellular stress is positively correlated with rG4 induction.

      In this study, the authors examined human hippocampal postmortem tissue for the formation ofrG4s in aging and Alzheimer Disease (AD). rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. 21 cases were used in this study (age range 30-92).

      This immunostaining co-localized with hyper-phosphorylated tau immunostaining in neurons. The BG4 staining levels were also impacted by APOE status. rG4 structure was previously found to drive tau aggregation. Based on these observations, the authors propose a model of neurodegeneration in which chronic rG4 formation drives proteostasis collapse.

      This model is interesting, and would explain different observations (e.g., RNA is present in AD aggregates and rG4s can enhance protein oligomerization and tau aggregation).

      Main issue from the previous round of review:

      There is indeed a positive correlation between Braak stage severity and BG4 staining, but this correlation is relatively weak and borderline significant ((R = 0.52, p value = 0.028). This is probably the main limitation of this study, which should be clearly acknowledged (together with a reminder that "correlation is not causality"). Related to this, here is no clear justification to exclude the four individuals in Fig 1d (without them R increases to 0.78). Please remove this statement. On the other hand, the difference based on APOE status is more striking.

      Comments on current version:

      The authors have made laudable efforts to address the criticisms I made in my evaluation of the original manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      The authors study the function of HCN channels in L2/3 pyramidal neurons, employing somatic whole-cell recordings in acute slices of visual cortex in adult mice and a bevy of technically challenging techniques. Their primary claim is a non-uniform HCN distribution across the dendritic arbor with greater density closer to the soma (roughly opposite of the gradient found in L5 PT-type neurons). The second major claim is that multiple sources of long-range excitatory input (cortical and thalamic) are differentially affected by the HCN distribution. They further describe an interesting interplay of NMDAR and HCN, serotonergic modulation of HCN, and compare HCN-related properties at 1-, 2- and 6-weeks of age. Several results are accompanied by biophysical simulations.

      Strengths:

      The authors collected data from both male and female mice, at an age (6-10 weeks) that permits comparison with in vivo studies, in sufficient numbers for each condition, and they collected a good number of data points for almost all figure panels. This is all the more positive, considering the demanding nature of multi-electrode recording configurations and pipette-perfusion. The main strength of the study is the question and focus.

      Weaknesses:

      Unfortunately, in its present form, the main claims are not adequately supported by the experimental evidence: primarily because the evidence is indirect and circumstantial, but also because multiple unusual experimental choices (along with poor presentation of results) undermine the reader's confidence. Additionally, the authors overstate the novelty of certain results and fail to cite important related publications. Some of these weaknesses can be addressed by improved analysis, statistics, resolving inconsistent data across figures, reorganizing/improving figure panels, more complete methods, improved citations, and proofreading. In particular, given the emphasis on EPSPs, the primary data (example EPSPs, overlaid conditions) should be shown much more.

      However on the experimental side, addressing the reviewer's concerns would require a very substantial additional effort: direct measurement of HCN density at different points in the dendritic arbor and soma; the internal solution chosen here (K-gluconate) is reported to inhibit HCN; bath-applied cesium at the concentrations used blocks multiple potassium channels, i.e. is not selective for HCN (the authors have concerns about using the more selective blocker ZD7288, but did use it in a subset of experiments, some of which show quantitatively different results). In response to initial review, the authors performed pathway-specific synaptic stimulation, via optogenetic activation of specific long-range inputs - this approach is valuable and interesting, however the results are presented very minimally and only partially match those obtained by layer-specific electrical stimulation.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors employ molecular dynamics simulations to understand the selectivity of FDA approved inhibitors within dimeric and monomeric BRAF species. Through these comprehensive simulations, they shed light on the selectivity of BRAF inhibitors by delineating the main structural changes occurring during dimerization and inhibitor action. Notably, they identify the two pivotal elements in this process: the movement and conformational changes involving the alpha-C helix and the formation of a hydrogen bond involving the Glu-501 residue. These findings find support in the analyses of various structures crystallized from dimers and co-crystallized monomers in the presence of inhibitors. The elucidation of this mechanism holds significant potential for advancing our understanding of kinase signalling and the development of future BRAF inhibitor drugs.

      Strengths:

      The authors employ a diverse array of computational techniques to characterize the binding sites and interactions between inhibitors and the active site of BRAF in both dimeric and monomeric forms. They combine traditional and advanced molecular dynamics simulation techniques such as CpHMD (All-atom continuous constant pH molecular dynamics) to provide mechanistic explanations. Additionally, the paper introduces methods for identifying and characterizing the formation of the hydrogen bond involving the Glu501 residue without the need for extensive molecular dynamics simulations. This approach facilitates the rapid identification of future BRAF inhibitor candidates.

    1. Reviewer #2 (Public review):

      Although recent cochlear micromechanical measurements in living animals have shown that outer hair cells drive broadband vibration of the reticular lamina, the role of this vibration in cochlear fluid circulation remains unclear. The authors hypothesized that motile outer hair cells facilitate cochlear fluid circulation. To test this, they investigated the effects of acoustic stimuli and salicylate on kainic acid-induced changes in the cochlear nucleus activities. The results reveal that low-frequency tones accelerate the effect of kainic acid, while salicylate reduces the impact of acoustic stimuli, indicating that outer hair cells actively drive cochlear fluid circulation.

      The major strengths of this study lie in its high significance and the synergistic use of both electrophysiological recording and computational modeling. Recent in vivo observations of the broadband reticular lamina vibration challenge the traditional view of frequency-specific cochlear amplification. Furthermore, there is currently no effective noninvasive method to deliver the drugs or genes to the cochlea. This study addresses these important questions by observing outer hair cells' roles in the cochlear transport of kainic acid. The author utilized a well-established electrophysiological method to produce valuable new data and a custom-developed computational model to enhanced the interpretation of their experimental results.

      The authors successfully validated their hypothesis, showing through the experimental and modeling results that active outer hair cells enhance cochlear fluid circulation in the living cochlea.

      These findings have significant implications for advancing our understanding of cochlear amplification and offer promising clinical applications for treating hearing loss by accelerating cochlear drug delivery.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aim to provide a comprehensive understanding of the evolutionary history of the Major Histocompatibility Complex (MHC) gene family across primate species. Specifically, they sought to:

      (1) Analyze the evolutionary patterns of MHC genes and pseudogenes across the entire primate order, spanning 60 million years of evolution.

      (2) Build gene and allele trees to compare the evolutionary rates of MHC Class I and Class II genes, with a focus on identifying which genes have evolved rapidly and which have remained stable.

      (3) Investigate the role of often-overlooked pseudogenes in reconstructing evolutionary events, especially within the Class I region.

      (4) Highlight how different primate species use varied MHC genes, haplotypes, and genetic variation to mount successful immune responses, despite the shared function of the MHC across species.

      (5) Fill gaps in the current understanding of MHC evolution by taking a broader, multi-species perspective using (a) phylogenomic analytical computing methods such as Beast2, Geneconv, BLAST, and the much larger computing capacities that have been developed and made available to researchers over the past few decades, (b) literature review for gene content and arrangement, and genomic rearrangements via haplotype comparisons.

      (6) The authors overall conclusions based on their analyses and results are that 'different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response'.

      Strengths:

      Essentially, much of the information presented in this paper is already well-known in the MHC field of genomic and genetic research, with few new conclusions and with insufficient respect to past studies. Nevertheless, while MHC evolution is a well-studied area, this paper potentially adds some originality through its comprehensive, cross-species evolutionary analysis of primates, focus on pseudogenes and the modern, large-scale methods employed. Its originality lies in its broad evolutionary scope of the primate order among mammals with solid methodological and phylogenetic analyses.

      The main strengths of this study are the use of large publicly available databases for primate MHC sequences, the intensive computing involved, the phylogenetic tool Beast2 to create multigene Bayesian phylogenetic trees using sequences from all genes and species, separated into Class I and Class II groups to provide a backbone of broad relationships to investigate subtrees, and the presentation of various subtrees as species and gene trees in an attempt to elucidate the unique gene duplications within the different species. The study provides some additional insights with summaries of MHC reference genomes and haplotypes in the context of a literature review to identify the gene content and haplotypes known to be present in different primate species. The phylogenetic overlays or ideograms (Figures 6 and 7) in part show the complexity of the evolution and organisation of the primate MHC genes via the orthologous and paralogous gene and species pathways progressively from the poorly-studied NWM, across a few moderately studied ape species, to the better-studied human MHC genes and haplotypes.

      Weaknesses:

      The title 'The Primate Major Histocompatibility Complex: An Illustrative Example of Gene Family Evolution' suggests that the paper will explore how the Major Histocompatibility Complex (MHC) in primates serves as a model for understanding gene family evolution. The term 'Illustrative Example' in the title would be appropriate if the paper aimed to use the primate Major Histocompatibility Complex (MHC) as a clear and representative case to demonstrate broader principles of gene family evolution. That is, the MHC gene family is not just one instance of gene family evolution but serves as a well-studied, insightful example that can highlight key mechanisms and concepts applicable to other gene families. However, this is not the case, this paper only covers specific details of primate MHC evolution without drawing broader lessons to any other gene families. So, the term 'Illustrative Example' is too broad or generalizing. In this case, a term like 'Case Study' or simply 'Example' would be more suitable. Perhaps, 'An Example of Gene Family Diversity' would be more precise. Also, an explanation or 'reminder' is suggested that this study is not about the origins of the MHC genes from the earliest jawed vertebrates per se (~600 mya), but it is an extension within a subspecies set that has emerged relatively late (~60 mya) in the evolutionary divergent pathways of the MHC genes, systems, and various vertebrate species.

      Phylogenomics. Particular weaknesses in this study are the limitations and problems associated with providing phylogenetic gene and species trees to try and solve the complex issue of the molecular mechanisms involved with imperfect gene duplications, losses, and rearrangements in a complex genomic region such as the MHC that is involved in various effects on the response and regulation of the immune system. A particular deficiency is drawing conclusions based on a single exon of the genes. Different exons present different trees. Which are the more reliable? Why were introns not included in the analyses? The authors attempt to overcome these limitations by including genomic haplotype analysis, duplication models, and the supporting or contradictory information available in previous publications. They succeed in part with this multidiscipline approach, but much is missed because of biased literature selection. The authors should include a paragraph about the benefits and limitations of the software that they have chosen for their analysis, and perhaps suggest some alternative tools that they might have tried comparatively. How were problems with Bayesian phylogeny such as computational intensity, choosing probabilities, choosing particular exons for analysis, assumptions of evolutionary models, rates of evolution, systemic bias, and absence of structural and functional information addressed and controlled for in this study?

      Gene families as haplotypes. In the Introduction, the MHC is referred to as a 'gene family', and in paragraph 2, it is described as being united by the 'MHC fold', despite exhibiting 'very diverse functions'. However, the MHC region is more accurately described as a multigene region containing diverse, haplotype-specific Conserved Polymorphic Sequences, many of which are likely to be regulatory rather than protein-coding. These regulatory elements are essential for controlling the expression of multiple MHC-related products, such as TNF and complement proteins, a relationship demonstrated over 30 years ago. Non-MHC fold loci such as TNF, complement, POU5F1, lncRNA, TRIM genes, LTA, LTB, NFkBIL1, etc, are present across all MHC haplotypes and play significant roles in regulation. Evolutionary selection must act on genotypes, considering both paternal and maternal haplotypes, rather than on individual genes alone. While it is valuable to compile databases for public use, their utility is diminished if they perpetuate outdated theories like the 'birth-and-death model'. The inclusion of prior information or assumptions used in a statistical or computational model, typically in Bayesian analysis, is commendable, but they should be based on genotypic data rather than older models. A more robust approach would consider the imperfect duplication of segments, the history of their conservation, and the functional differences in inheritance patterns. Additionally, the MHC should be examined as a genomic region, with ancestral haplotypes and sequence changes or rearrangements serving as key indicators of human evolution after the 'Out of Africa' migration, and with disease susceptibility providing a measurable outcome. There are more than 7000 different HLA-B and -C alleles at each locus, which suggests that there are many thousands of human HLA haplotypes to study. In this regard, the studies by Dawkins et al (1999 Immunol Rev 167,275), Shiina et al. (2006 Genetics 173,1555) on human MHC gene diversity and disease hitchhiking (haplotypes), and Sznarkowska et al. (2020 Cancers 12,1155) on the complex regulatory networks governing MHC expression, both in terms of immune transcription factor binding sites and regulatory non-coding RNAs, should be examined in greater detail, particularly in the context of MHC gene allelic diversity and locus organization in humans and other primates.

      Diversifying and/or concerted evolution. Both this and past studies highlight diversifying selection or balancing selection model is the dominant force in MHC evolution. This is primarily because the extreme polymorphism observed in MHC genes is advantageous for populations in terms of pathogen defence. Diversification increases the range of peptides that can be presented to T cells, enhancing the immune response. The peptide-binding regions of MHC genes are highly variable, and this variability is maintained through selection for immune function, especially in the face of rapidly evolving pathogens. In contrast, concerted evolution, which typically involves the homogenization of gene duplicates through processes like gene conversion or unequal crossing-over, seems to play a minimal role in MHC evolution. Although gene duplication events have occurred in the MHC region leading to the expansion of gene families, the resulting paralogs often undergo divergent evolution rather than being kept similar or homozygous by concerted evolution. Therefore, unlike gene families such as ribosomal RNA genes or histone genes, where concerted evolution leads to highly similar copies, MHC genes display much higher levels of allelic and functional diversification. Each MHC gene copy tends to evolve independently after duplication, acquiring unique polymorphisms that enhance the repertoire of antigen presentation, rather than undergoing homogenization through gene conversion. Also, in some populations with high polymorphism or genetic drift, allele frequencies may become similar over time without the influence of gene conversion. This similarity can be mistaken for gene conversion when it is simply due to neutral evolution or drift, particularly in small populations or bottlenecked species. Moreover, gene conversion might contribute to greater diversity by creating hybrids or mosaics between different MHC genes. In this regard, can the authors indicate what percentage of the gene numbers in their study have been homogenised by gene conversion compared to those that have been diversified by gene conversion?

      Duplication models. The phylogenetic overlays or ideograms (Figures 6 and 7) show considerable imperfect multigene duplications, losses, and rearrangements, but the paper's Discussion provides no in-depth consideration of the various multigenic models or mechanisms that can be used to explain the occurrence of such events. How do their duplication models compare to those proposed by others? For example, their text simply says on line 292, 'the proposed series of events is not always consistent with phylogenetic data'. How, why, when? Duplication models for the generation and extension of the human MHC class I genes as duplicons (extended gene or segmental genomic structures) by parsimonious imperfect tandem duplications with deletions and rearrangements in the alpha, beta, and kappa blocks were already formulated in the late 1990s and extended to the rhesus macaque in 2004 based on genomic haplotypic sequences. These studies were based on genomic sequences (genes, pseudogenes, retroelements), dot plot matrix comparisons, and phylogenetic analyses of gene and retroelement sequences using computer programs. It already was noted or proposed in these earlier 1999 studies that (1) the ancestor of HLA-P(90)/-T(16)/W(80) represented an old lineage separate from the other HLA class I genes in the alpha block, (2) HLA-U(21) is a duplicated fragment of HLA-A, (3) HLA-F and HLA-V(75) are among the earliest (progenitor) genes or outgroups within the alpha block, (4) distinct Alu and L1 retroelement sequences adjoining HLA-L(30), and HLA-N genomic segments (duplicons) in the kappa block are closely related to those in the HLA-B and HLA-C in the beta block; suggesting an inverted duplication and transposition of the HLA genes and retroelements between the beta and kappa regions. None of these prior human studies were referenced by Fortier and Pritchard in their paper. How does their human MHC class I gene duplication model (Fig. 6) such as gene duplication numbers and turnovers differ from those previously proposed and described by Kulski et al (1997 JME 45,599), (1999 JME 49,84), (2000 JME 50,510), Dawkins et al (1999 Immunol Rev 167,275), and Gaudieri et al (1999 GR 9,541)? Is this a case of reinventing the wheel?

      Results. The results are presented as new findings, whereas most if not all of the results' significance and importance already have been discussed in various other publications. Therefore, the authors might do better to combine the results and discussion into a single section with appropriate citations to previously published findings presented among their results for comparison. Do the trees and subsets differ from previous publications, albeit that they might have fewer comparative examples and samples than the present preprint? Alternatively, the results and discussion could be combined and presented as a review of the field, which would make more sense and be more honest than the current format of essentially rehashing old data.

      Minor corrections:

      (1) Abstract, line 19: 'modern methods'. Too general. What modern methods?

      (2) Abstract, line 25: 'look into [primate] MHC evolution.' The analysis is on the primate MHC genes, not on the entire vertebrate MHC evolution with a gene collection from sharks to humans. The non-primate MHC genes are often differently organised and structurally evolved in comparison to primate MHC.

      (3) Introduction, line 113. 'In a companion paper (Fortier and Pritchard, 2024)' This paper appears to be unpublished. If it's unpublished, it should not be referenced.

      (4) Figures 1 and 2. Use the term 'gene symbols' (circle, square, triangle, inverted triangle, diamond) or 'gene markers' instead of 'points'. 'Asterisks "within symbols" indicate new information.

      (5) Figures. A variety of colours have been applied for visualisation. However, some coloured texts are so light in colour that they are difficult to read against a white background. Could darker colours or black be used for all or most texts?

      (6) Results, line 135. '(Fortier and Pritchard, 2024)' This paper appears to be unpublished. If it's unpublished, it should not be referenced.

      (7) Results, lines 152 to 153, 164, 165, etc. 'Points with an asterisk'. Use the term 'gene symbols' (circle, square, triangle, inverted triangle, diamond) or 'gene markers' instead of 'points'. A point is a small dot such as those used in data points for plotting graphs .... The figures are so small that the asterisks in the circles, squares, triangles, etc, look like points (dots) and the points/asterisks terminology that is used is very confusing visually.

      (8) Line 178 (BEA, 2024) is not listed alphabetically in the References.

      (9) Lines 188-190. 'NWM MHC-G does not group with ape/OWM MHC-G, instead falling outside of the clade containing ape/OWM MHC-A, -G, -J and -K.' This is not surprising given that MHC-A, -G, -J, and -K are paralogs of each other and that some of them, especially in NWM have diverged over time from the paralogs and/or orthologs and might be closer to one paralog than another and not be an actual ortholog of OWM, apes or humans.

      (10) Line 249. Gene conversion: This is recombination between two different genes where a portion of the genes are exchanged with one another so that different portions of the gene can group within one or other of the two gene clades. Alternatively, the gene has been annotated incorrectly if the gene does not group within either of the two alternative clades. Another possibility is that one or two nucleotide mutations have occurred without a recombination resulting in a mistaken interpretation or conclusion of a recombination event. What measures are taken to avoid false-positive conclusions? How many MHC gene conversion (recombination) events have occurred according to the authors' estimates? What measures are taken to avoid false-positive conclusions?

      (11) Lines 284-286. 'The Class I MHC region is further divided into three polymorphic blocks-alpha, beta, and kappa blocks-that each contains MHC genes but are separated by well-conserved non-MHC genes.' The MHC class I region was first designated into conserved polymorphic duplication blocks, alpha and beta by Dawkins et al (1999 Immunol Rev 167,275), and kappa by Kulski et al (2002 Immunol Rev 190,95), and should be acknowledged (cited) accordingly.

      (12) Lines 285-286. 'The majority of the Class I genes are located in the alpha-block, which in humans includes 12 MHC genes and pseudogenes.' This is not strictly correct for many other species, because the majority of class I genes might be in the beta block of new and old-world monkeys, and the authors haven't provided respective counts of duplication numbers to show otherwise. The alpha block in some non-primate mammalian species such as pigs, rats, and mice has no MHC class I genes or only a few. Most MHC class I genes in non-primate mammalian species are found in other regions. For example, see Ando et al (2005 Immunogenetics 57,864) for the pig alpha, beta, and kappa regions in the MHC class I region. There are no pig MHC genes in the alpha block.

      (13) Line 297 to 299. 'The alpha-block also contains a large number of repetitive elements and gene fragments belonging to other gene families, and their specific repeating pattern in humans led to the conclusion that the region was formed by successive block duplications (Shiina et al., 1999).' There are different models for successive block duplications in the alpha block and some are more parsimonious based on imperfect multigenic segmental duplications (Kulski et al 1999, 2000) than others (Shiina et al., 1999). In this regard, Kulski et al (1999, 2000) also used duplicated repetitive elements neighbouring MHC genes to support their phylogenetic analyses and multigenic segmental duplication models. For comparison, can the authors indicate how many duplications and deletions they have in their models for each species?

      (14) Lines 315-315. 'Ours is the first work to show that MHC-U is actually an MHC-A-related gene fragment.' This sentence should be deleted. Other researchers had already inferred that MHC-U is actually an MHC-A-related gene fragment more than 25 years ago (Kulski et al 1999, 2000) when the MHC-U was originally named MHC-21.

      (15) Lines 361-362. 'Notably, our work has revealed that MHC-V is an old fragment.' This is not a new finding or hypothesis. Previous phylogenetic analysis and gene duplication modelling had already inferred HLA-V (formerly HLA-75) to be an old fragment (Kulski et al 1999, 2000).

      (16) Line 431-433. 'the Class II genes have been largely stable across the mammals, although we do see some lineage-specific expansions and contractions (Figure 2 and Figure 2-gure Supplement 2).' Please provide one or two references to support this statement. Is 'gure' a typo?

      (17) Line 437. 'We discovered far more "specific" events in Class I, while "broad-scale" events were predominant in Class II.' Please define the difference between 'specific' and 'broad-scale'.<br /> 450-451. 'This shows that classical genes experience more turnover and are more often affected by long-term balancing selection or convergent evolution.' Is balancing selection a form of divergent evolution that is different from convergent evolution? Please explain in more detail how and why balancing selection or convergent evolution affects classical and nonclassical genes differently.

      References. Some references in the supplementary materials such as Alvarez (1997), Daza-Vamenta (2004), Rojo (2005), Aarnink (2014), Kulski (2022), and others are missing from the Reference list. Please check that all the references in the text and the supplementary materials are listed correctly and alphabetically.

    1. Reviewer #2 (Public review):

      Summary:

      The aim was to decipher the regulatory networks of KRAB-ZNFs and TEs that have changed during human brain evolution and in Alzheimer's disease.

      Strengths:

      This solid study presents a valuable analysis and successfully confirms previous assumptions, but also goes beyond the current state of the art.

      Weaknesses:

      The design of the analysis needs to be slightly modified and a more in-depth analysis of the positive correlation cases would be beneficial. Some of the conclusions need to be reinterpreted.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, Cho et al. investigate the role of ether lipid biosynthesis in B cell biology, particularly focusing on GC B cell, by inducible deletion of PexRAP, an enzyme responsible for the synthesis of ether lipids.

      Strengths:

      Overall, the data are well-presented, the paper is well-written and provides valuable mechanistic insights into the importance of PexRAP enzyme in GC B cell proliferation.

      Weaknesses:

      More detailed mechanisms of the impaired GC B cell proliferation by PexRAP deficiency remain to be further investigated. In the minor part, there are issues with the interpretation of the data which might cause confusion for the readers.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors aimed to investigate how humans learn and adapt their behavior in dynamic environments characterized by two distinct types of uncertainty: volatility (systematic changes in outcomes) and noise (random variability in outcomes). Specifically, they sought to understand how participants adjust their learning rates in response to changes in these forms of uncertainty.

      To achieve this, the authors employed a two-step approach:

      (1) Reinforcement Learning (RL) Model: They first used an RL model to fit participants' behavior, revealing that the learning rate was context-dependent. In other words, it varied based on the levels of volatility and noise. However, the RL model showed that participants misattributed noise as volatility, leading to higher learning rates in noisy conditions, where the optimal strategy would be to be less sensitive to random fluctuations.

      (2) Bayesian Observer Model (BOM): To better account for this context dependency, they introduced a Bayesian Observer Model (BOM), which models how an ideal Bayesian learner would update their beliefs about environmental uncertainty. They found that a degraded version of the BOM, where the agent had a coarser representation of noise compared to volatility, best fit the participants' behavior. This suggested that participants were not fully distinguishing between noise and volatility, instead treating noise as volatility and adjusting their learning rates accordingly.

      The authors also aimed to use pupillometry data (measuring pupil dilation) as a physiological marker to arbitrate between models and understand how participants' internal representations of uncertainty influenced both their behavior and physiological responses. Their objective was to explore whether the BOM could explain not just behavioral choices but also these physiological responses, thereby providing stronger evidence for the model's validity.

      Overall, the study sought to reconcile approximate rationality in human learning by showing that participants still follow a Bayesian-like learning process, but with simplified internal models that lead to suboptimal decisions in noisy environments.

      Strengths:

      The generative model presented in the study is both innovative and insightful. The authors first employ a Reinforcement Learning (RL) model to fit participants' behavior, revealing that the learning rate is context-dependent-specifically, it varies based on the levels of volatility and noise in the task. They then introduce a Bayesian Observer Model (BOM) to account for this context dependency, ultimately finding that a degraded BOM - in which the agent has a coarser representation of noise compared to volatility - provides the best fit for the participants' behavior. This suggests that participants do not fully distinguish between noise and volatility, leading to the misattribution of noise as volatility. Consequently, participants adopt higher learning rates even in noisy contexts, where an optimal strategy would involve being less sensitive to new information (i.e., using lower learning rates). This finding highlights a rational but approximate learning process, as described in the paper.

      Weaknesses:

      While the RL and Bayesian models both successfully predict behavior, it remains unclear how to fully reconcile the two approaches. The RL model captures behavior in terms of a fixed or context-dependent learning rate, while the BOM provides a more nuanced account with dynamic updates based on volatility and noise. Both models can predict actions when fit appropriately, but the pupillometry data offers a promising avenue to arbitrate between the models. However, the current study does not provide a direct comparison between the RL framework and the Bayesian model in terms of how well they explain the pupillometry data. It would be valuable to see whether the RL model can also account for physiological markers of learning, such as pupil responses, or if the BOM offers a unique advantage in this regard. A comparison of the two models using pupillometry data could strengthen the argument for the BOM's superiority, as currently, the possibility that RL models could explain the physiological data remains unexplored.

      The model comparison between the Bayesian Observer Model and the self-defined degraded internal model could be further enhanced. Since different assumptions about the internal model's structure lead to varying levels of model complexity, using a formal criterion such as Bayesian Information Criterion (BIC) or Akaike Information Criterion (AIC) would allow for a more rigorous comparison of model fit. Including such comparisons would ensure that the degraded BOM is not simply favored due to its flexibility or higher complexity, but rather because it genuinely captures the participants' behavioral and physiological data better than alternative models. This would also help address concerns about overfitting and provide a clearer justification for using the degraded BOM over other potential models.

    1. Reviewer #2 (Public review):

      Summary:

      This study aims to show how structural and functional brain organization develops during childhood and adolescence using two large neuroimaging datasets. It addresses whether core principles of brain organization are stable across development, how they change over time, and how these changes relate to cognition and psychopathology. The study finds that brain organization is established early and remains stable but undergoes gradual refinement, particularly in higher-order networks. Structural-functional coupling is linked to better working memory but shows no clear relationship with psychopathology.

      Strengths:

      This study effectively integrates two different modalities (structural and functional) to identify shared patterns. It is supported by a relatively large dataset, which enhances its value and robustness.

      Weaknesses:

      General Comments:<br /> - The introduction is overly long and includes numerous examples that can distract readers unfamiliar with the topic from the main research questions.

      - While the methods are thorough, it is not always clear whether the optimal approaches were chosen for each step, considering the available data.<br /> Detailed Comments:<br /> - The use of COMBAT may have excluded extreme participants from both datasets, which could explain the lack of correlations found with psychopathology.<br /> - Some differences in developmental trajectories between CALM and NKI (e.g., Figure 4d) are not explained. Are these differences expected, or do they suggest underlying factors that require further investigation?<br /> - There is no discussion of whether the stable patterns of brain organization could result from preprocessing choices or summarizing data to the mean. This should be addressed to rule out methodological artifacts.

    1. It makes a lot of sense to have this different strategy of being rooted in the real physical world and have digital nomads being as like a guild of knowledge workers that seed their specialized knowledge because localism is necessary and good, but it's also not necessarily very innovative. Most people at the local level just keep repeating stuff. It's good to have people coming in from the outside and innovating.

      for - insight - good for digital nomads to be rooted somewhere in the physical word - they are like a cosmo guild of knowledge workers - localities tend to repeat the same things - digital nomads as outsiders can inject new patterns - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    2. Even for themselves, it's going to be necessary because if things get really bad and you're seen as a parasitical force, they'll come after you.

      for - shadow side - of root-less digital nomads - when the sh*t hits the fan, working class will target digital nomads - as they will be seen as a parasitical force - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    3. role for digital nomads. There's an author called Austin Wade Smith

      for - cosmolocal strategy - locals - permaculture, bioregional regeneration - cosmo - digital nomads - share collective protocols with locals to create cosmolocal networks - Austin Wade Smith - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    4. global coding class, which is about 34 million digital nomads right now and maybe 10 million with a crypto wallet. Again, they're not rooted. They're rootless, and they should be root-full.

      for - stats - 2025 - digital nomads - 34 million - with crypto - 10 million - rootless - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    5. Fundamentally, I think Web3 is mainly an exit strategy for privileged layers of society. First of all, people within capital will see the system is not doing well and they want to do arbitrage between nation-states.

      for - quote - Web3 is mainly an exit (escape) strategy for privileged layers of society - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    6. was sitting with a climate denier, a collapsist, a deep adaptationist, and an impact investor. You can say a greenwasher if you want to be mean about it. Anyway, they were talking peacefully and respectfully, and I thought, "Wow, this is more than what I thought. This is not just money. This is, there's community there

      for - open space for perspectival knowing - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    7. voting systems, which are essentially anti-oligarchic, like quadratic voting. Basically, one share, one vote. That's your first vote, but then to have a second vote, you need the-- How do you call it? The square root? Anyway, so the next, I think, is 4 and then 16. You basically cream off the power of money and give it to the contributors, to the people collaborating on the project.

      for - investigate - quadratic voting - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    8. history of labor

      for - paraphrase - history of labor - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2 - to - stats - Gallup Chairman's Blog - world poll 2024 - 15% of employees worldwide are engaged - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

      paraphrase - history of labor - Michel gives a nice succinct summary of the broad strokes of the history of labor over the last few millennia: - Civilizations have begun as slave-based societies first - Then when the Christian revolution occurred after the fall of the Roman Empire, "Ora et Labora (Pray and Work)" was adopted to transform work into a spiritually meaningful endeavor - Then in the 16th century, this philosophy was replaced by turning labor into a commodity, where it has remained ever since, - resulting in a world where 85% of those surveyed say they are not engaged with their job

      to - stats - Gallup Chairman's Blog - world poll 2024 - 15% of employees worldwide are engaged - https://hyp.is/iOlXbNBOEe-t6hdOWtvTYw/news.gallup.com/opinion/chairman/212045/world-broken-workplace.aspx

    9. for - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

      // - COMMENTS - This is a very insightful interview with Michel that provides a lot of historical contexts for the many challenges faced by contemporary society - Within these historical contexts, we can glimpse how today's problems are part of a repeating pattern, albeit with many new elements that have emerged - He offers the possibility of a commons approach of mutualization, - in particular cosmolocalism - as a powerful leverage point to evolve a future wellbeing civilization - Contexualizing modernity in the alternate growth and downfall periods of human civilizations, he points out how we are in a transition period in which the current system is fraying - He outlines the many seed forms that exist now which, just like those that appeared in past cycles of downfall, combined to emerge the next growth cycle - crypto and blockchain - which can provide a global way of coordinating planetary health - the internet in general, which can bring mutualization of knowledge for locailzed production - There are some strong exemplars of promising seed forms but to scale, - the cosmo processes have to integrate with - local, place-anchored processes such as permacutlure and bioregion-based regeneration.

      //

    10. Funding the Commons

      for - event - Funding the Commons - Bangkok conference 2024 - Michel Bauwens - guest - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2 - to - Funding the Commons - Bangkok conference 2024

      to - Funding the Commons - Bangkok conference 2024 - https://hyp.is/fF-mVNBJEe-OWvM5g4ZLOQ/www.fundingthecommons.io/bangkok-2024

    11. coalition of community land trusts. They're all local, doing their work locally, but they also have a global commons. That global commons has all the common protocols of cooperation, the common knowledge, the common patterns, but also it's a vehicle to attract capital that can go local.

      for - bottom up mobilization - leverage the strength of the commons - create global coalition of local projects within in a common area - IE. Land trust - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    12. What's missing, and that's what I try to work on is, because at the same time we have this exponential growth of millions of people doing regenerative local work, but they're underfunded, they're undercapitalized. Usually, it's like two people getting half a wage from an NGO, and they work 16 hours a day. After five years, they totally burn out. How can we fund that? I think that Web3 can be the vehicle for capital to be invested in regeneration.

      for - work to find way to use web 3 / crypto to fund currently underfunded regenerative work done by millions of people - the missing link - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    13. trans-financial capital. Now we cannot regulate market anymore, and that's why everybody is so frustrated with politics because it doesn't matter whether you vote left or right. The power is not there. The power is in the power of capital to move around and to basically punish you if you do anything that goes against their interest.

      for - adjacency - trans-financial capital - political polarization - powerlessness of two party politics - culture wars distraction - Yanis Varoufakis - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    14. use the commons as a new regulatory mechanism. That would mean not local commons but trans-local commons. What I imagine, I call this the magisteria of the commons, you have a coalition of, let's say, permaculture, a particular way of doing respectful agriculture. Locally, they're weak. It's just a bunch of people. Globally, what if there are 12,000 of them? What if they have a common social power, like common property that can help the nodes individually? I think that would create the premises and the seeds for a new type of institution that can operate at the trans-local level. That's what I call cosmolocalism

      for - cosmolicalism - nice articulation - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    15. Imagine we do that at scale everywhere. Every provisioning system, we re-localize it, we mutualize it to a certain degree again. If we do that, we can maintain a very high level of complexity in our societies. Everything we love about modernity, despite all the things that we hate about it,

      for - mutualise at scale - add much in the SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    16. A shared car association, every shared car replaces 9 to 13 private cars for the same amount of travel freedom, point to point. You don't lose any freedom like you would in public transport. It's just like a neighborhood shares a dozen cars. 95% of the cars are in the garage at any time.

      for - example - efficacy of mutualisation - transportation - cars - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2 - stats - mutualisation - transportation - cars - 1 car can replace 13 - car is parked most of the time - 10% of existing cars doubles our requirement - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

    17. Jordan Hall calls this the Civium, right? Civilization is place-based, and the civium is not place-based. You can still learn.

      for - definition - Civium - Jordan Hall - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2 - adjacency - Civium - Tipping Point Festival - SOURCE - Youtube Ma Earth channel interview - Devcon 2024 - Cosmo Local Commoning with Web 3 - Michel Bauwens - 2025, Jan 2

      adjacency - between - civium - Tipping Point Festival - Civiums are the terminology that applies for the vision of the TIpping Point Festival, where twice a year, - solstice - equinox - People gather and converge at a central temporary, cosmolocal event to mutually exchange ideas, network, seed new projects and review the past years successes and failures - This is an event also used to operationalize a planetary framework for restoration and regeneration that is syncrhonized to earth system boundaries, but contextualized to each locality, - but needs to be done at the scale of thousands of cities to have planetary-scale impact - It is, by design, a cosmolocal event

    Tags

    Annotators

    URL

    1. Reviewer #2 (Public review):

      Summary:

      The authors use yeast genetics, lipidomic and biochemical approaches to demonstrate the DAG isoforms (36:0 and 36:1) can specifically activate PKC. Further, these DAG isoforms originate from PI and PI(4,5)P2. The authors propose that the Psi1-Plc1-Dip2 functions to maintain a normal level of specific DAG species to modulate PKC signalling.

      Strengths:

      Data from yeast genetics are clear and strong. The concept is potentially interesting and novel.

      Weaknesses:

      More evidence is needed to support the central hypothesis. The authors may consider the following:

      (1) Figure 2: the authors should show/examine C36:1 DAG. Also, some structural evidence would be highly useful here. What is the structural basis for the assertion that the PKC C1 domain can only be activated by C36:0/1 DAG but not other DAGs? This is a critical conclusion of this work and clear evidence is needed.

      (2) Does Dip2 colocalize with Plc1 or Pkc1? Does Dip2 reach the plasma membrane upon Plc activation?

    1. Reviewer #2 (Public review):

      This is an interesting paper from Alonso-Caraballo and colleagues that examines the influence of opioid use, abstinence, and sex on paraventricular thalamus (PVT) to nucleus accumbens shell (NAcSh) medium spiny neurons circuit physiology. The authors first find that prolonged abstinence from extended access to oxycodone self-administration leads to profoundly increased cue-induced reinstatement in females. Next, they found that prolonged abstinence increased PVT-NAcSh MSN synaptic strength, an effect that was likely due to presynaptic adaptation (paired-pulse ratio was decreased in both sexes).

      While this paper is certainly interesting, and well-written, and the experiments seem to be well performed, the behavioral and physiological effects observed are somewhat divorced. Specifically, what accounts for the heightened relapse in females? Since no opioid-related sex differences were observed in PVT-NAcSh neurophysiology, it is unclear how the behavioral and neurophysiological data fit together. Furthermore, the lack of functional manipulation of PVT-NAcSh circuitry leaves one to wonder if this circuit is even important for the behavior that the authors are measuring. I would be more positive about this study if the authors were able to resolve either of the two issues noted above.

      I also noted more moderate weaknesses that the authors should consider:

      (1) There are insufficient animals in some cases. For example, in Figure 4, the Male Saline 14-day abstinence group (n = 3 rats) has less than half of the excitability as compared to the Male Saline 1-day abstinence group (n = 7 rats). This is likely due to variance between animals and, possibly, oversampling. Thus, more rats need to be added to the 14-day abstinence group. Additionally, the range of n neurons/rat should be reported for each experiment to ensure readers that oversampling from single animals is not occurring.

      (2) The IPSC data, for example in Figure 4, is one of the more novel experiments in the manuscript. However, it is quite challenging to see the difference between males and females, saline and oxycodone, at low stimulation intensities within the graph. Authors should expand this so that reviewers/readers can see those data, especially considering other work suggesting that PVT synaptic input onto select NAc interneurons is disrupted following opioid self-administration. Additional comment: It's also interesting that the IPSC amplitude seems to be maximal at ~2mW of light, whereas ~11 mW is required to evoke maximal EPSC amplitude. It would be interesting to know the authors' thoughts on why this may be.

      (3) There is an inadequate description of what has been done to date on the PVT-NAc projection regarding opioid withdrawal, seeking, disinhibition, and the effects on synaptic physiology therein. For example, a critical paper, Keyes et al., 2020 Neuron, is not cited. Additionally, Paniccia et al., 2024 Neuron is inaccurately cited and insufficiently described. Both manuscripts should be described in some detail within the introduction, and the findings should be accurately contextualized within the broader circuit within the discussion.

      (4) Related to the above, the authors should provide a more comprehensive description of how PVT synapses onto cell-type specific neurons in the NAc which expands beyond MSNs, especially considering that PVT has been shown to influence drug/opioid seeking through the innervation of NAc neurons that are not MSNs. For example, see PMIDs 33947849, 36369508, 28973852, 38141605.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript examines expression of orexin receptors in midbrain - with a focus on dopamine neurons - and uses several fairly sophisticated manipulation techniques to explore the role of this peptide neurotransmitter in reward-related behaviors. Specifically, in situ hybridization is used to show that substantia nigra dopamine neurons predominantly express orexin receptor 1 subtype and then go on to delete this receptor in dopamine transporter-expressing neurons using a transgenic strategy. Ex vivo calcium imaging of midbrain neurons is used to show that, in the absence of this receptor, orexin is no longer able to excite dopamine neurons of the substantia nigra.

      The authors proceed to use this same model to study the effect of orexin receptor 1 deletion on a series of behavioral tests, namely, novelty-induced locomotion and exploration, anxiety-related behavior, preference for sweet solutions, cocaine-induced conditioned place preference, and energy metabolism. Of these, the most consistent effects are seen in the tests of novelty-induced locomotion and exploration in which the mice with orexin 1 receptor deletion are observed to show greater levels of exploration, relative to wild-type, when placed in a novel environment, an effect that is augmented after icv administration of orexin.

      In the final part of the paper, the authors use PET imaging to compare brain-wide activity patterns in the mutant mice compared to wildtype. They find differences in several areas both under control conditions (i.e., after injection of saline) as well as after injection of orexin. They focus in on changes in dorsal bed nucleus of stria terminalis (dBNST) and the lateral paragigantocellular nucleus (LPGi) and perform analysis of the dopaminergic projections to these areas. They provide anatomical evidence that these regions are innervated by dopamine fibers from midbrain, are activated by orexin in control, but not mutant mice, and that dopamine receptors are present. They also show changes in receptor expression in the transgenic mice. Thus, they argue these anatomical data support the hypothesis that behavioral effects of orexin receptor 1 deletion in dopamine neurons are due to changes in dopamine signaling in these areas.

      Strengths:

      Understanding how orexin interacts with the dopamine system is an important question and this paper contains several novel findings along these lines. Specifically:<br /> (1) Distribution of orexin receptor subtypes in VTA and SN is explored thoroughly.<br /> (2) Use of the genetic model that knocks out a specific orexin receptor subtype from dopamine-transporter-expressing neurons is a useful model and helps to narrow down the behavioral significance of this interaction.<br /> (3) PET studies showing how central administration of orexin evokes dopamine release across the brain is intriguing, especially since two key areas are pursued - BNST and LPGi - where the dopamine projection is not as well described/understood.

      Weaknesses:

      The role of the orexin-dopamine interaction is not explored in enough detail. The manuscript presents several related findings, but the combination of anatomy and manipulation studies do not quite tell a cogent story. Ideally, one would like to see the authors focus on a specific behavioral parameter and show that one of their final target areas (dBNST or LPGi) was responsible or at least correlated with this behavioral readout. In addition, the authors' working model for how they think orexin-dopamine interactions contribute to behavior under normal physiological conditions is not well-described.

    1. Reviewer #2 (Public review):

      Summary:

      The authors have tested effects of partial- or whole-chromosome aneuploidy on the m6A RNA modification in Drosophila. The data reveal that overall m6A levels trend up but that the number of sites found by meRIP-seq trend down, which seems to suggest that aneuploidy causes a subset of sites become hyper-methylated. Subsequent bioinformatic analysis of other published datasets establish correlations between activity of the H4K16 acetyltransferase dosage compensation complex (DCC) and expression of m6A components and m6A abundance, suggesting that DCC and m6A can act in a feedback loop. Western blots confirm that Msl2 and MOF alleles alter levels of Mettl3 complex components, but the underlying mechanism remains undefined.

      Strengths:

      • Thorough bioinformatic analysis of their data<br /> • Incorporation of other published datasets that enhances scope and rigor<br /> • Finds trends that suggest that a chromosome counting mechanism can control m6A, as fits with pub data that the Sxl mRNA is m6A modified in XX females and not XY males<br /> • Provides preliminary evidence that this counting mechanism may be due to DCC effects on expression of m6A components.

      Weaknesses:

      • The linkage between H4K16 machinery and m6A levels on specific sites remains unclear in this revision.<br /> • The paper relies on m6A comparisons across tissues and developmental stages, which introduces some uncertainty about where and when the DCC-m6A loop acts.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aimed to investigate how noradrenergic and glucocorticoid activity after retrieval influence subsequent memory recall with a 24-hour interval, by using a controlled three-day fMRI study involving pharmacological manipulation. They found that noradrenergic activity after retrieval selectively impairs subsequent memory recall, depending on hippocampal and cortical reactivation during retrieval.

      Overall, there are several significant strengths for this well-written manuscript.

    1. Reviewer #2 (Public review):

      The manuscript by Erli Jin and Jennifer Briggs et al. utilizes light sheet microscopy to image islet beta cell calcium oscillations in 3D and determine where beta cell populations are located that begin and coordinate glucose-stimulated calcium oscillations. The light sheet technique allowed clear 3D mapping of beta cell calcium responses to glucose, glucokinase activation, and pyruvate kinase activation. The manuscript finds that synchronized beta-cells are found at the islet center, that leader beta cells showing the first calcium responses are located on the islet periphery, that glucokinase activation helped maintain beta cells that lead calcium responses, and that pyruvate kinase activation primarily increases islet calcium oscillation frequency. The study is well-designed, contains a significant amount of high quality data, and the conclusions are largely supported by the results.

      Comments on revisions:

      The manuscript by Erli Jin et al. has been improved with the revisions, which have addressed my previous concerns. The manuscript significantly improves the mechanistic underpinnings of islet calcium oscillations and resulting pulsatile insulin secretion.

    1. Reviewer #2 (Public review):

      Summary:

      The authors describe the development of a novel inhibitor (AVI-4206) for the first macrodomains of the nsp3 protein of SARS-CoV-2 (Mac1). This involves both medical chemical synthesis, structural work as well as biochemical characterisation. Subsequently, the authors present their findings of the efficacy of the inhibitor both on cell culture, as well as animal models of SARS-CoV-2 infection. They find that despite high affinity for Mac1 and the known replicatory defects of catalytically inactive Mac1 only moderate beneficial effects can be observed in their chosen models.

      Strengths:

      The authors employ a variety of different assay to study the affinity, selectivity and potency of the novel inhibitor and thus the in vitro data are very compelling.<br /> Similarly, the authors use several cell culture and in vivo models to strengthen their findings.

      Weaknesses:

      (a) The selection of Targ1 and MacroD2 as off-target human macrodomains is poor as several studies have shown that the first macrodomains of PARP9 and PARP14 are much closer related to coronaviral macrodomains and both macrodomains are implicated in antiviral defence and immunity.

      (b) The authors utilize only replication efficiency and general infection markers as read out for their Mac1 inhibitor. It would be good if they could show impact on the ADP-ribosylation of a known Mac1 target such as PARP14.

    1. Reviewer #2 (Public review):

      Summary:

      Striking experimental results by Chettih et al 2024 have identified high-dimensional, sparse patterns of activity in the chickadee hippocampus when birds store or retrieve food at a given site. These barcode-like patterns were interpreted as "indexes" allowing the birds to retrieve from memory the locations of stored food.<br /> The present manuscript proposes a recurrent network model that generates such barcode activity and uses it to form attractor-like memories that bind information about location and food. The manuscript then examines the computational role of barcode activity in the model by simulating two behavioral tasks, and by comparing the model with an alternate model in which barcode activity is ablated.

      Strengths of the study:

      - Proposes a potential neural implementation for the indexing theory of episodic memory<br /> - Provides a mechanistic model of striking experimental findings: barcode-like, sparse patterns of activity when birds store a grain at a specific location<br /> - A particularly interesting aspect of the model is that it proposes a mechanism for binding discrete events to a continuous spatial map, and demonstrates the computational advantages of this mechanism

      Weaknesses:

      - The relation between the model and experimentally recorded activity needs some clarification<br /> - The relation with indexing theory could be made more clear<br /> - The importance of different modeling ingredients and dynamical mechanisms could be made more clear<br /> - The paper would be strengthened by focusing on the most essential aspects

    1. Reviewer #2 (Public review):

      The authors have conducted a valuable comparative analysis of perturbation responses in three nonlinear kinetic models of E. coli central carbon metabolism found in the literature. They aimed to uncover commonalities and emergent properties in the perturbation responses of bacterial metabolism. They discovered that perturbations in the initial concentrations of specific metabolites, such as adenylate cofactors and pyruvate, significantly affect the maximal deviation of the responses from steady-state values. Furthermore, they explored whether the network connectivity (sparse versus dense connections) influences these perturbation responses. The manuscript is reasonably well written.

      Comments on revised version:

      The authors have addressed my concerns to a large extent. However, a few minor issues remain, as listed below:

      (1) The authors identified key metabolites affecting responses to perturbations in two ways: (i) by fixing a metabolite's value and (ii) by performing a sensitivity analysis. It would be helpful for the modeling community to understand better the differences and similarities in the obtained results. Do both methods identify substrate-level regulators? Is freezing a metabolite's dynamics dramatically changing the metabolic response (and if yes, which ones are so different in the two cases)? Does the scope of the network affect these differences and similarities?

      (2) Regarding the issues the authors encountered when performing the sensitivity analysis, they can be approached in two ways. First, the authors can check the methods for computing conserved moieties nicely explained by Sauro's group (doi:10.1093/bioinformatics/bti800) and compute them for large-scale networks (but beware of metabolites that belong to several conserved pools). Otherwise, the conserved pools of metabolites can be considered as variables in the sensitivity analysis-grouping multiple parameters is a common approach in sensitivity analysis.

    1. Reviewer #2 (Public review):

      Summary:

      The group around Prof. Scheiffele has made seminal discoveries reg. alternative splicing that is reflected by a current ERC advanced grant and landmark papers in eLife (2015), Science (2016), and Nature Neuroscience (2019). Recently, the group investigated proteins that contain an RRM motif in the mouse cortex. One of them, termed RBM20, was originally thought to be muscle-specific and involved in alternative splicing in cardiomyocytes. However, upon close inspection, RBP20 is expressed in a particular set of interneurons (PV positive cells of the somatosensory cortex) in the cortex as well as in mitral cells of the olfactory bulb (OB). Importantly, they used CLIP to identify targets in the OB and heart. Next and quite importantly, they generated a knock-in mouse line with a His-biotin acceptor peptide and a HA epitope to perform specific biochemistry. Not surprisingly, this allowed them to specifically identify transcripts with long introns, however, most of the intronic binding sites were very distant to the splice sites. Closer GO term inspection revealed that RBM20 specifically regulates synapse-related transcripts. In order to get in vivo insight into its function in the brain, the authors generated both global as well as conditional KO mice. Surprisingly, there were no significant differences in in RBM20 ΔPV interneurons, however, 409 transcripts were deregulated in in OB glutamatergic neurons. Here, CLIP sites were mostly found to be very distant from differentially expressed exons. Furthermore, loss-of-function RBM20 primarily yields loss of transcripts, whereas upregulation appears to be indirect. Together, these results strongly suggest a role of RBM20 in the inclusion of cryptic exons thereby promoting target degradation.

      Strengths:

      The quality of the data and the figures is high, impressive and convincing. The reported results strongly suggest a role of RBM20 in the inclusion of cryptic exons thereby promoting target degradation.

      Weaknesses:

      I would not use the term weakness here.<br /> The description of the results is sometimes too dense and technical. As eLife does not have a size limit, there is no reason for the results section to be less than three pages. Especially the last paragraph of the results part (p4) does not do justice to the high importance of Fig. 5, which I consider of high importance and originality. Here are a few suggestions from a person that is not working on splicing, to improve the text part of this important manuscript.

      (1) Introduction: too short, include a paragraph on splicing and cryptic exons<br /> (2) Results:<br /> - shortly describe the phenotypes of the mice mentioned<br /> - expand the section on Fig. 5 and cryptic exons especially<br /> (3) Discussion: too short, expand on the possible new role of RBM20 and target degradation, possibly by adding a scheme?

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the inhibition of Aurora A and its impact on β-glucan-induced trained immunity via the FOXO3/GNMT pathway. The study demonstrates that inhibition of Aurora A leads to overconsumption of SAM, which subsequently impairs the epigenetic reprogramming of H3K4me3 and H3K36me3, effectively abolishing the training effect.

      Strengths:

      The authors identify the role of Aurora A through small molecule screening and validation using a variety of molecular and biochemical approaches. Overall, the findings are interesting and shed light on the previously underexplored role of Aurora A in the induction of β-glucan-driven epigenetic change.

      Weaknesses:

      Given the established role of histone methylations, such as H3K4me3, in trained immunity, it is not surprising that depletion of the methyl donor SAM impairs the training response. Nonetheless, this study provides solid evidence supporting the role of Aurora A in β-glucan-induced trained immunity in murine macrophages. The part of in vivo trained immunity antitumor effect is insufficient to support the final claim as using Alisertib could inhibits Aurora A other cell types other than myeloid cells.

    1. Reviewer #2 (Public Review):

      Fortier and Pritchard investigated the breadth and depth of trans-species polymorphism (TSP) within six primate classical (antigen-presenting) major histocompatibility complex (MHC) genes (three MHC class I and three MHC class II). The MHC is of wide interest because of its unique evolutionary patterns within the genomes of jawed vertebrates and for its extensive and consistent associations with disease phenotypes. The findings of the paper are:<br /> 1) Trans-species polymorphism (TSP) within major histocompatibility complex (MHC) genes, whereby some alleles are more similar between rather than within species, occurs between humans and non-human primates despite rapid allelic turnover.<br /> 2) Highly polymorphic/rapidly evolving sites are mostly involved in peptide binding.<br /> 3) The identified, rapidly-evolving sites are associated with disease.

      However, because these general findings have been previously demonstrated to varying extents by numerous other studies, these are not the strength of this paper. The strength and importance of this paper are in its utilization of a large evolutionary range of species and genes and its methodological approach and the extent of analyses undertaken to characterize the depth and extent of the TSP among primates. The major contribution of this paper is showing that TSP in the MHC is widespread among diverse primate taxa, and, depending on the particular MHC gene, TSP can be detected between humans and non-human primates as distantly diverged from the human lineage as new world monkeys of the Americas, ~45 million years ago. The paper, overall, made good methodological choices to account for the fascinating but challenging nature of the MHC, which includes its extensive allelic polymorphism (much of which is only characterized for the peptide-binding domain, encoded by exons 2 and 3), the difficulty in assessing phylogenetic relationships (particularly due to recombination and/or interallelic gene conversion), and differentiating convergence from conservation. There is no single analysis that can perfectly account for all these factors. This paper used two methods to test for TSP, Bayesian evolutionary analysis and synonymous nucleotide distances (dS), each with their respective strengths and limitations articulated. TSP, to varying degrees, is supported by both analyses. The paper further identifies rapidly evolving positions within the MHC molecules (predominantly located in the MHC peptide-binding domain), quantitatively shows that they are more likely to be in proximity to the bound peptide within the peptide binding domain, and shows, via a literature review of HLA fine-mapping studies, that those positions are associated with both infectious and autoimmune disease.

      The conclusions of the paper, therefore, are supported and appropriate with the most important caveats noted, but the paper would benefit from:<br /> 1) Addressing how copy number variation of MHC class I genes among primate species might have affected their analyses and results (only single representative genes of the class II MHC, which also exhibit copy number variation, were used for this study).<br /> 2) Considering the differences between class I and class II MHC roles in immune function and how those might relate to the observed patterns.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript makes the claim that pUb is elevated in a number of degenerative conditions including Alzheimer's Disease and cerebral ischaemia. Some of this is based on antibody staining which is poorly controlled and difficult to accept at this point. They confirm previous results that a cytosolic form of PINK1 accumulates following proteasome inhibition and that this can be active. Accumulation of pUb is proposed to interfere with proteostasis through inhibition of the proteasome. Much of the data relies on over-expression and there is little support for this reflecting physiological mechanisms.

      Weaknesses:

      The manuscript is poorly written. I appreciate this may be difficult in a non-native tongue, but felt that many of the problems are organisational. Less data of higher quality, better controls and incision would be preferable. Overall the referencing of past work is lamentable.<br /> Methods are also very poor and difficult to follow.

      Until technical issues are addressed I think this would represent an unreliable contribution to the field.

    1. Reviewer #2 (Public review):

      In this study, Maillie et al. have carried out a set of multiscale molecular dynamics simulations to investigate the interactions between the viral membrane and four broadly neutralizing antibodies that target the membrane proximal exposed region (MPER) of the HIV-1 envelope trimer. The simulation recapitulated in several cases the binding sites of lipid head groups that were observed experimentally by X-ray crystallography, as well as some new binding sites. These binding sites were further validated using a structural bioinformatics approach. Finally, steered molecular dynamics was used to measure the binding strength between the membrane and variants of the 4E10 and PGZL1 antibodies.

      The use of multiscale MD simulations allows for a detailed exploration of the system at different time and length scales. The combination of MD simulations and structural bioinformatics provides a comprehensive approach to validate the identified binding sites. Finally, the steered MD simulations offer quantitative insights into the binding strength between the membrane and bnAbs.

      While the simulations and analyses provide qualitative insights into the binding interactions, they do not offer a quantitative assessment of energetics. The coarse-grained simulations exhibit artifacts and thus require careful analysis.

      This study contributes to a deeper understanding of the molecular mechanisms underlying bnAb recognition of the HIV-1 envelope. The insights gained from this work could inform the design of more potent and broadly neutralizing antibodies.

    1. Reviewer #2 (Public review):

      Summary:

      The author provide evidence that helps resolve long-standing questions about the differential involvement of frontal and posterior cortex in working memory. They show that whereas early visual cortex shows stronger decoding of memory content in a memorization task vs a more complex categorization task, frontal cortex shows stronger decoding during categorization tasks than memorization tasks. They find that task-optimized RNNs trained to reproduce the memorized orientations show some similarities in neural decoding to people. Together, this paper presents interesting evidence for differential responsibilities of brain areas in working memory.

      Strengths:

      This paper was overall strong. It had a well-designed task, best-practice decoding methods, and careful control analyses. The neural network modeling adds additional insight into the potential computational roles of different regions.

      Weaknesses:

      Few. While more could be perhaps done to understand the RNN-fMRI correspondence, the paper contributes a compelling set of empirical findings and interpretations that can inform future research.

    1. Reviewer #2 (Public review):

      Summary:

      This paper extends a Bayesian perception/action model of habituation behavior (RANCH) to infant-looking behavior. The authors test the model predictions against data from several groups of infants and adults tested in habituation paradigms that vary the number of familiarisation stimuli and the nature of the test stimuli. Model sampling was taken as a proxy for looking times. The predictions of the model generally resemble the empirical data collected, though there are some potentially important differences.

      Strengths:

      This study addresses an important question, given the fundamental nature of habituation to learning and memory. Previous explanations of infant habituation have typically not been in the form of formal models, making falsification difficult. This Bayesian model is relatively simple but also incorporates a CNN to which the actual stimulus image can be presented, which enables principled predictions about image similarity to be derived.

      The paper contains data from a relatively large number of adults and infants, allowing parameter differences across age to be probed.

      The data suggests that the noise prior parameter is higher in infants, suggesting one mechanism through which infant and adult habituation is different, though of course, this depends on whether there is sufficient empirical evidence that other explanations can be ruled out, which isn't clear in the manuscript currently.

      Weaknesses:

      There are no formal tests of the predictions of RANCH against other leading hypotheses or models of habituation. This makes it difficult to evaluate the degree to which RANCH provides an alternative account that makes distinct predictions from other accounts. I appreciate that because other theoretical descriptions haven't been instantiated in formal models this might be difficult, but some way of formalising them to enable comparison would be useful.

      The justification for using the RMSEA fitting approach could also be stronger - why is this the best way to compare the predictions of the formal model to the empirical data? Are there others? As always, the main issue with formal models is determining the degree to which they just match surface features of empirical data versus providing mechanistic insights, so some discussion of the level of fit necessary for strong inference would be useful.

      The difference in model predictions for identity vs number relative to the empirical data seems important but isn't given sufficient weight in terms of evaluating whether the model is or is not providing a good explanation of infant behavior. What would falsification look like in this context?

      For the novel image similarity analysis, it is difficult to determine whether any differences are due to differences in the way the CNN encodes images vs in the habituation model itself - there are perhaps too many free parameters to pinpoint the nature of any disparities. Would there be another way to test the model without the CNN introducing additional unknowns?

      Related to that, the model contains lots of parts - the CNN, the EIG approach, and the parameters, all of which may or may not match how the infant's brain operates. EIG is systematically compared to two other algorithms, with KL working similarly - does this then imply we can't tell the difference between an explanation based on those two mechanisms? Are there situations in which they would make distinct predictions where they could be pulled apart? Also in this section, there doesn't appear to be any formal testing of the fits, so it is hard to determine whether this is a meaningful difference. However, other parts of the model don't seem to be systematically varied, so it isn't always clear what the precise question addressed in the manuscript is (e.g. is it about the algorithm controlling learning? or just that this model in general when fitted in a certain way resembles the empirical data?)

    1. Reviewer #2 (Public review):

      The article titled "Identification of neurodevelopmental organization of the cell populations of juvenile Huntington's disease using dorso-ventral HD organoids and HD mouse embryos" analyses an in vitro human brain organoid model containig dorsal and ventral telencephalum structures derived from human iPSC from Huntington's disease patients or control subjects.

      The authors describe differences in the pattern of expression of genes related to proliferation and neuronal maturation, with a slower pattern of differentiation present in HD cells. Moreover, the authors described a higher differentiation capacity of HD cells to generate choroid plexus identity following dorsal telencephalon prime protocol differentiation when compared to control cells. Whereas the claims related to Choroid plexus identity are intriguing, most of the claims made through the manuscript are not sustained by quantitative data or consistent results in the different conditions analysed, or many experiments seem to be missing to reach final conclusions.

      In addition, the quality of the organoids used for experiments does not seem to have been assessed or satisfactorily presented in the figures of this paper. Many important details related to the experimental execution are missing in the current version of this manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      Shin et al aim to identify in a very extensive piece of work a mechanism that contributes to dynamic regulation of synaptic output in the rat cortex at the second time scale. This mechanism is related to a new powerful model is well versed to test if the pool of SV ready for fusion is dynamically scaled to adjust supply demand aspects. The methods applied are state-of-the-art and both address quantitative aspects with high signal to noise. In addition, the authors examine both excitatory output onto glutamatergic and GABAergic neurons, which provides important information on how general the observed signals are in neural networks, The results are compellingly clear and show that pool regulation may be predominantly responsible. Their results suggests that a regulation of release probability, the alternative contender for regulation, is unlikely to be involved in the observed short term plasticity behavior (but see below). Besides providing a clear analysis pof the underlying physiology, they test two molecular contenders for the observed mechanism by showing that loss of Synaptotagmin7 function and the role of the Ca dependent phospholipase activity seems critical for the short term plasticity behavior. The authors go on to test the in vivo role of the mechanism by modulating Syt7 function and examining working memory tasks as well as overall changes in network activity using immediate early gene activity. Finally, they model their data, providing strong support for their interpretation of TS pool occupancy regulation.

      Strengths:

      This is a very thorough study, addressing the research question from many different angles and the experimental execution is superb. The impact of the work is high, as it applies recent models of short term plasticity behavior to in vivo circuits further providing insights how synapses provide dynamic control to enable working memory related behavior through nonpermanent changes in synaptic output.

      Weaknesses:

      While this work is carefully examined and the results are presented and discussed in a detailed manner, the reviewer is still not fully convinced that regulation of release provability is not a putative contributor to the observed behavior. No additional work is needed but in the moment I am not convinced that changes in release probability are not in play. One solution may be to extend the discussion of changes in rules probability as an alternative.

      Fig 3 I am confused about the interpretation of the Mean Variance analysis outcome. Since the data points follow the curve during induction of short term plasticity, aren't these suggesting that release probability and not the pool size increases? Related, to measure the absolute release probability and failure rate using the optogenetic stimulation technique is not trivial as the experimental paradigm bias the experiment to a given output strength, and therefore a change in release probability cannot be excluded.

      Fig4B interprets the phorbol ester stimulation to be the result of pool overfilling, however, phorbol ester stimulation has also been shown to increase release probability without changing the size of the readily releasable pool. The high frequency of stimulation may occlude an increased paired pulse depression in presence of OAG, which others have interpreted in mammalian synapses as an increase in release probability.

      The literature on Syt7 function is still quite controversial. An observation in the literature that loss of Syt7 function in the fly synapse leads to an increase of release probability. Thus the observed changes in short term plasticity characteristics in the Syt7 KD experiments may contain a release probability component. Can the authors really exclude this possibility? Figure 5 shows for the Syt7 KD group a very prominent depression of the EPSC/IPSC with the second stimulus, particularly for the short interpulse intervals, usually a strong sign of increased release probability, as lack of pool refilling can unlikely explain the strong drop in synaptic output.

    1. Reviewer #2 (Public review):

      Summary:

      The authors make the interesting discovery of increased chromosome non-dysjunction in aging yeast mother cells. The phenotype is quite striking and well supported with solid experimental evidence. This is quite significant to a haploid cell (as used here) - loss of an essential chromosome leads to death soon thereafter. The authors then work to tie this phenotype to other age-associated phenotypes that have been previously characterized: accumulation of extrachromosomal rDNA circles that then correlate with compromised nuclear pore export functions, which correlates with "leaky" pores that permit unspliced mRNA messages to be inappropriately exported to the cytoplasm. They then infer that three intron containing mRNAs that encode portions in resolving sister chromatid separation during mitosis, are unspliced in this age-associated defect and thus lead to the non-dysjunction problem.

      Strengths: The discovery of age-associated chromosome non-dysjunction is an interesting discovery, and it is demonstrated in a convincing fashion with "classic" microscopy-based single cell fluorescent chromosome assays that are appropriate and seem robust. The correlation of this phenotype with other age-associated phenotypes - specifically extrachromosomal rDNA circles and nuclear pore dysfunction - is supported by in vivo genetic manipulations that have been well-characterized in the past.

      In addition, the application of the single cell mRNA splicing defect reporter showed very convincingly that general mRNA splicing is compromised in aged cells. Such a pleiotropic event certainly has big implications.

      Weaknesses:

      The biggest weakness is "connecting all the dots" of causality and linking the splicing defect to chromosome disjunction. I commend the authors for making a valiant effort in this regard, but there are many caveats to this interpretation. While the "triple intron" removal suppressed the non-dysjunction defect in aged cells, this could simply be a kinetic fix, where a slowdown in the relevant aspects of mitosis, could give the cell time to resolve the syntelic attachment of the chromatids. To this point, I note that the intronless version of GLC7, which affects the most dramatic suppression of the three genes, is reported by one of the authors to have a slow growth rate (Parenteau et al, 2008 - https://doi.org/10.1091/mbc.e07-12-1254).

      Lastly, the Herculean effort to perform FISH of the introns in the cytoplasm is quite literally at the statistical limit of this assay. The data were not as robust as the other assays employed through this study. The data show either "no" signal for the young cells or a signal of 0, 1,or 2 FISH foci in the aged cells. In a Poisson distribution, which this follows, it is improbable to distinguish between these differences.

    1. Reviewer #2 (Public review):

      Summary:

      This paper by Misra and Pessoa uses switching linear dynamical systems (SLDS) to investigate the neural network dynamics underlying threat processing at varying levels of proximity. Using an existing dataset from a threat-of-shock paradigm in which threat proximity is manipulated in a continuous fashion, the authors first show that they can identify states that each has their own linear dynamical system and are consistently associated with distinct phases of the threat-of-shock task (e.g., "peri-shock", "not near", etc). They then show how activity maps associated with these states are in agreement with existing literature on neural mechanisms of threat processing, and how activity in underlying brain regions alters around state transitions. The central novelty of the paper lies in its analyses of how intrinsic and extrinsic factors contribute to within-state trajectories and between-state transitions. A final set of analyses shows how the findings generalize to another (related) threat paradigm.

      Strengths:

      The analyses for this study are conducted at a very high level of mathematical and theoretical sophistication. The paper is very well written and effectively communicates complex concepts from dynamical systems. I am enthusiastic about this paper, but I think the authors have not yet exploited the full potential of their analyses in making this work meaningful toward increasing our neuroscientific understanding of threat processing, as explained below.

      Weaknesses:

      (1) I appreciate the sophistication of the analyses applied and/or developed by the authors. These methods have many potential use cases for investigating the network dynamics underlying various cognitive and affective processes. However, I am somewhat disappointed by the level of inferences made by the authors based on these analyses at the level of systems neuroscience. As an illustration consider the following citations from the abstract: "The results revealed that threat processing benefits from being viewed in terms of dynamic multivariate patterns whose trajectories are a combination of intrinsic and extrinsic factors that jointly determine how the brain temporally evolves during dynamic threat" and "We propose that viewing threat processing through the lens of dynamical systems offers important avenues to uncover properties of the dynamics of threat that are not unveiled with standard experimental designs and analyses". I can agree to the claim that we may be able to better describe the intrinsic and extrinsic dynamics of threat processing using this method, but what is now the contribution that this makes toward understanding these processes?

      (2) How sure can we be that it is possible to separate extrinsically and intrinsically driven dynamics?

    1. Reviewer #2 (Public review):

      Summary:

      This is a strong and well-described study showing for the first time the use and publicly available resources to use a specific PET tracer to track proliferating transplanted cells in vivo, in a full murine immunecompetent environment.

      In this study the authors described a previously developed set of VHH-based PET tracers to track transplants (cancer cells, embryo's) in a murine immune-competent environment.

      Strengths:

      Unique set of PET tracer and mouse strain to track transplanted cells in vivo without genetic modification of the transplanted cells. This is a unique asset, and a first-in-kind.

      Weaknesses:

      -some methodological aspects and controls are missing

      -no clinical relevance?

    1. Reviewer #2 (Public review):

      Summary:

      This is an interesting, timely, and high-quality study on the potential neuroprotective capabilities of C-C chemokine receptor type 5 (CCR5) antagonists in ischemic stroke. The focus is on preclinical investigations.

      Strengths:

      The results are timely and interesting. An outstanding feature is that stroke patient representatives have directly participated in the work. Although this is often called for, it is hardly realized in research practice, so the work goes beyond established standards.

      The included studies were assessed regarding the therapeutic impact and their adherence to current quality assurance guidelines such as STAIR and SRRR, another important feature of this work. While overall results were promising, there were some shortcomings regarding guideline adherence.

      The paper is very well written and concise yet provides much highly useful information. It also has very good illustrations and extremely detailed and transparent supplements.

      Weaknesses:

      Although the paper is of very high quality, a couple of items that may require the authors' attention to increase the impact of this exciting work further. Specifically:

      Major aspects:

      (1) I hope I did not miss that (apologies if I did), but when exactly was the search conducted? Is it possible to screen the recent literature (maybe up to 12/2024) to see whether any additional studies were published?

      (2) Please clearly define the difference between "study" and "experiment," as this is not entirely clear. Is an "experiment" a distinct investigation within a particular publication (=study) that can describe more than one such "experiment"? Thanks for clarifying.

      (3) Is there an opportunity to conduct a correlation analysis between the quality of a study (for instance, after transforming the ROB assessment into a kind of score) and reported effect sizes for particular experiments or studies? This might be highly interesting.

    1. Reviewer #2 (Public review):

      Summary:

      The inferior colliculus (IC) has been explored for its possible functions in behavioral tasks and has been suggested to play more important roles rather than simple sensory transmission. The authors show us two major findings based on their experiments. The first one is climbing effect, which means that neurons' activities continue to increase along time course. The second one is reward effect, which refers to sudden increase of IC neurons' activities when the rewarding is given. Climbing effect is a surprising finding, but reward effect has not been explored clearly here.

      Strengths:

      Complex cognitive behaviors can be regarded as simple ideals of generating output based on information input, which depends on all kinds of input from sensory systems. The auditory system has hierarchic structures no less complex than those areas in charge of complex functions. Meanwhile, IC receives projections from higher areas, such as the auditory cortex, which implies IC is involved in complex behaviors. Experiments in behavioral monkeys are always time-consuming work with hardship, and this will offer more approximate knowledge of how the human brain works.

      Weaknesses:

      These findings are more about correlation but not causality of IC function in behaviors.

      About 'reward effect', it is still unknown if the true nature of reward effect is the simple response to the sound elicited by the electromagnetic valve of rewarding system. The authors claimed the testing space is sound-proofed and believed this is enough to support their opinion. Since the electromagnetic valve was connected to the water tube, and the water tube was attached to a monkey-chair or even in monkey's mouth, the click sound may transmit to the monkey independently on air. There are simple ways to test what happens. One is to add a few trials without reward and see what happens, or to vary the latency between sound sequence and reward.

      Only one of the major findings is convincing, this definitely reduces the credibility of the authors' statements.

    1. Reviewer #2 (Public review):

      This study addresses the question of how UBCs transform synaptic input patterns into spiking output patterns and how different glutamate receptors contribute to their transformations. The first figure utilizes recorded patterns of mossy fiber firing during eye movements in the flocculus of rhesus monkeys obtained from another laboratory. In the first figure, these patterns are used to stimulate mossy fibers in the mouse cerebellum during extracellular recordings of UBCs in acute mouse brain slices. The remaining experiments stimulate mossy fiber inputs at different rates or burst durations, which is described as 'mossy-fiber like', although they are quite simpler than those recorded in vivo. As expected from previous work, AMPA mediates the fast responses, and mGluR1 and mGluR2/3 mediate the majority of longer-duration and delayed responses. The manuscript is well organized and the discussion contextualizes the results effectively.

      Comments on revisions:

      The authors have adequately addressed my concerns.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, Solomon and colleagues demonstrate that trained immunity induced by BCG can reprogram myeloid cells within localised tissue, which can sustain prolonged protective effects. The authors further demonstrate an activation of STAT1-dependent pathways.

      Strengths:

      The main strength of this paper is the in-depth investigation of cell populations affected by BCG training, and how their transcriptome changes at different time points post-training. Through use of flow cytometry and sequencing methods, the authors identify a new cell population derived from classical monocytes. They also show that long-term trained immunity protection in the spleen is dependent on resident cells. Through sequencing, drug and recombinant inhibition of IFNg pathways, the authors reveal STAT1-dependent responses are required for changes in the myeloid population upon training, and recruitment of trained monocytes.

      Weaknesses:

      A significant amount of work has already been performed for this study. No significant weaknesses were found.

      Comments on revisions:

      I thank the authors for carefully considering all reviewer comments. I have no further recommendations for the authors.

    1. Reviewer #2 (Public review):

      (1) Summary<br /> Kleinman and Foster's study investigates the role of dopamine signaling in the ventral tegmental area (VTA) on hippocampal replay and sharp-wave ripples (SWR) in rats exposed to changes in reward magnitude and environmental novelty. The authors utilize chemogenetic silencing techniques to modulate dopamine neuron activity in the VTA while conducting simultaneous electrophysiological recordings from the hippocampal CA1 region. Their findings suggest that VTA dopamine signaling is critical for modulating hippocampal replay in response to changes in reward context and novelty, with specific disruptions observed in replay dynamics when VTA is inhibited, particularly in novel environments.

      (2) Strengths<br /> The research addresses a significant gap in our understanding of the neurobiological underpinnings of memory and spatial learning, highlighting the importance of dopamine-mediated processes. The methodological approach is robust, combining chemogenetic silencing with precise electrophysiological measurements, which allows for a detailed examination of the neural circuits involved. The study provides important insights into how hippocampal replay and SWR are influenced by reward prediction errors, as well as the role of dopamine in these processes. Specifically, the authors note that VTA silencing unexpectedly did not prevent increases in ripple activities where reward was increased, but induced significant aberrant increases in environments where reward levels were unchanged, highlighting a novel dependency of hippocampal replay on dopamine and a VTA-independent reward prediction error signal in familiar environments. These findings are critical for understanding the consolidation of episodic memory and the neural basis of learning.

      (3) Weaknesses<br /> Despite the strengths in methodology and conceptual framework, the study has several weaknesses that could affect the interpretation of the results. There is a need for more rigorous histological validation to confirm the extent and specificity of viral expression (from all animals ideally), which is crucial for ensuring the accuracy of the findings. Variability in the dosing and timing of chemogenetic interventions could also lead to inconsistencies in the data, suggesting a need for more standardized experimental protocols.

      Comments on revisions:

      I commend the authors for their work in addressing my and the other reviewers' comments. I think these changes have improved the paper, and no further changes are absolutely necessary.

    1. Reviewer #2 (Public review):

      Summary:

      The study investigates the brain's functional connectivity (FC) dynamics across different timescales using simultaneous recordings of intracranial EEG/source-localized EEG and fMRI. The primary research goal was to determine which of three convergence/divergence scenarios is the most likely to occur.

      The results indicate that despite similar FC patterns found in different data modalities, the timepoints were not aligned, indicating spatial convergence but temporal divergence.

      The researchers also found that FC patterns in different frequencies do not overlap significantly, emphasizing the multi-frequency nature of brain connectivity. Such asynchronous activity across frequency bands supports the idea of multiple connectivity states that operate independently and are organized into a multiplex system.

      Strengths:

      The data supporting the authors' claims are convincing and come from simultaneous recordings of fMRI and iEEG/EEG, which has been recently developed and adapted.

      The analysis methods are solid and involved a novel approach to analyzing the co-occurrence of FC patterns across modalities (cross-modal recurrence plot, CRP) and robust statistics, including replication of the main results using multiple operationalizations of the functional connectome (e.g., amplitude, orthogonalized, and phase-based coupling).

      In addition, the authors provided a detailed interpretation of the results, placing them in the context of recent advances and understanding of the relationships between functional connectivity and cognitive states.

      The authors also did a control analysis and verified the effect of temporal window size or different functional connecvitity operationalizations. I also applaud their effort to make the analysis code open-sourced.

    1. Reviewer #2 (Public review):

      Summary:

      Yamawaki et al., conducted a series of neuroanatomical tracing and whole cell recording experiments to elucidate and characterise a relatively unknown pathway between the endopiriform (EN) and CA1 of the ventral hippocampus (vCA1) and to assess its functional role in social and object recognition using fibre photometry and dual vector chemogenetics. The main findings were that the EN sends robust projections to the vCA1 that collateralise to the prefrontal cortex, lateral entorhinal cortex and piriform cortex, and these EN projection neurons terminate in the stratum lacunosum-moleculare (SLM) layer of distal vCA1, synapsing onto GABAergic neurons that span across the Pyramidal-Stratum Radiatum (SR) and SR-SML borders. It was also demonstrated that EN input disynaptically inhibits vCA1 pyramidal neurons. vCA1 projecting EN neurons receive afferent input from piriform cortex, and from within EN. Finally, fibre photometry experiments revealed that vCA1 projecting EN neurons are most active when mice explore novel objects or conspecifics, and pathway-specific chemogenetic inhibition led to an impairment in the ability to discriminate between novel vs. familiar objects and conspecifics.

      This is an interesting mechanistic study that provides valuable insights into the function and connectivity patterns of afferent input from the endopiriform to the CA1 subfield of the ventral hippocampus. The authors propose that the EN input to the vCA1 interneurons provides a feedforward inhibition mechanism by which memory-based novelty detection could be promoted. The experiments are carefully conducted, and the methodological approaches used are sound. The conclusions of the paper are supported by the data presented.

    1. Reviewer #2 (Public review):

      Liu et al. applied hidden Markov models (HMM) to fMRI data from 64 participants listening to audio stories. The authors identified three brain states, characterized by specific patterns of activity and connectivity, that the brain transitions between during story listening. Drawing on a theoretical framework proposed by Berwick et al. (TICS 2023), the authors interpret these states as corresponding to external sensory-motor processing (State 1), lexical processing (State 2), and internal mental representations (State 3). States 1 and 3 were more likely to transition to State 2 than between one another, suggesting that State 2 acts as a transition hub between states. Participants whose brain state trajectories closely matched those of an individual with high comprehension scores tended to have higher comprehension scores themselves, suggesting that optimal transitions between brain states facilitated narrative comprehension.

      Overall, the conclusions of the paper are well-supported by the data. Several recent studies (e.g., Song, Shim, and Rosenberg, eLife, 2023) have found that the brain transitions between a small number of states; however, the functional role of these states remains under-explored. An important contribution of this paper is that it relates the expression of brain states to specific features of the stimulus in a manner that is consistent with theoretical predictions.

      The correlation between narrative features and brain state expression was reliable, but relatively low (~0.03). As discussed in the manuscript, this could be due to measurement noise, as well as narrative features accounting for a small proportion of cognitive processes underlying the brain states.

      A strength of the paper is that the authors repeated the HMM analyses across different tasks (Figure 5) and an independent dataset (Figure S3) and found that the data was consistently best fit by 3 brain states. Across tasks, however, the spatial regions associated with each state varied. For example, state 2 during narrative comprehension was similar to both states 2 and 3 during rest (Fig. 5A), suggesting that the organization of the three states was task dependent.

      The three states identified in the manuscript correspond rather well to areas with short, medium, and long temporal timescales (see Hasson, Chen & Honey, TiCs, 2015). Given the relationship with behavior, where State 1 responds to acoustic properties, State 2 responds to word-level properties, and State 3 responds to clause-level properties, a "single-process" account where the states differ in terms of the temporal window for which one needs to integrate information over may offer a more parsimonious account than a multi-process account where the states correspond to distinct processes. This possibility is mentioned briefly in the introduction, but not developed further.

    1. Reviewer #2 (Public review):

      This paper examined how the activity of neurons in the entopeduncular nucleus (EPN) of mice relates to kinematics, value, and reward. The authors recorded neural activity during an auditory cued two-alternative choice task, allowing them to examine how neuronal firing relates to specific movements like licking or paw movements, as well as how contextual factors like task stage or proximity to a goal influence the coding of kinematic and spatiotemporal features. The data shows that the firing of individual neurons is linked to kinematic features such as lick or step cycles. However, the majority of neurons exhibited activity related to both movement types, suggesting that EPN neuronal activity does not merely reflect muscle-level representations. This contradicts what would be expected from traditional action selection or action specification models of the basal ganglia.

      The authors also show that spatiotemporal variables account for more variability compared to kinematic features alone. Using demixed Principal Component Analysis, they reveal that at the population level, the three principal components explaining the most variance were related to specific temporal or spatial features of the task, such as ramping activity as mice approached reward ports, rather than trial outcome or specific actions. Notably, this activity was present in neurons whose firing was also modulated by kinematic features, demonstrating that individual EPN neurons integrate multiple features. A weakness is that what the spatiotemporal activity reflects is not well specified. The authors suggest some may relate to action value due to greater modulation when approaching a reward port, but acknowledge action value is not well parametrized or separated from variables like reward expectation.

      A key goal was to determine whether activity related to expected value and reward delivery arose from a distinct population of EPN neurons or was also present in neurons modulated by kinematic and spatiotemporal features. In contrast to previous studies (Hong & Hikosaka 2008 and Stephenson-Jones et al., 2016), the current data reveals that individual neurons can exhibit modulation by both reward and kinematic parameters. Two potential differences may explain this discrepancy: First, the previous studies used head-fixed recordings, where it may have been easier to isolate movement versus reward-related responses. Second, those studies observed prominent phasic responses to the delivery or omission of expected rewards - responses that are present but not common in the current paper. This suggests a possibility that the VGlut2+ EPN neurons that project to the LHb were under/not sampled, antidromic or optogenetic tagging would have been needed to confirm the identity of the populations that were recorded. Alternatively, in the head-fixed recordings, kinematic/spatial coding may have gone undetected due to the forced immobility.

      Overall, this paper offers needed insight into how the basal ganglia output encodes behavior. The EPN recordings from freely moving mice clearly demonstrate that individual neurons integrate reward, kinematic, and spatiotemporal features, challenging traditional models. However, the specific relationship between the spatiotemporal activity and factors like action value remains unclear.

    1. Reviewer #2 (Public review):

      Kreeger et.al provided mechanistic evidence for flexible coincidence detection of auditory nerve synaptic inputs by octopus cells in the mouse cochlear nucleus. The octopus cells are highly specialized neurons that, with appropriate stimuli, can fire repetitively at very high rates (> 800 Hz in vivo), yield responses dominated by the onset of sound for simple stimuli, and integrate auditory nerve inputs over a wide frequency span. Previously, it was thought that octopus cells received little inhibitory input, and their integration of auditory input depended principally on temporally precise coincidence detection of excitatory auditory nerve inputs, coupled with a low input resistance established by high levels of expression of certain potassium channels and hyperpolarization-activated channels.

      This study provides convincing evidence that octopus cells do in fact receive glycinergic synaptic input that can influence the efficacy of excitatory dendritic synaptic activity. By coupling selected genetic mouse models to characterize synaptic inputs and enable optogenetic stimulation of subsets of afferents, fluorescent microscopy, detailed reconstructions of the location of inhibitory synapses on the soma and dendrites of octopus cells, slice physiology, and computational modeling, they have been able to clarify the presence of functional inhibition and elucidate some of the features of the inhibitory inputs to octopus cells at a biophysical level. They also show through modeling that inhibition is predicted to both provide shunting of synaptic currents and to change the peak timing of dendritic EPSPs as they travel to the soma. Both of these effects are potentially critically important in integration in these fast, coincidence-detecting neurons, and the magnitudes of the effects could have physiological significance. Overall, this work extends thinking about the functional sensory processing roles of octopus cells beyond the pre-existing hypotheses that are focussed primarily on the coincidence detection of excitatory inputs.

      The authors have addressed all of my prior concerns, including improving several aspects of the presentation. The modeling is better described, which is critical because it provides a foundation to help interpret some of the physiology and to propose specific functions.

    1. Reviewer #3 (Public review):

      Summary and strengths:

      In the manuscript, Abd El Hay et al investigate the role of thermally sensitive ion channels TRPM2 and TRPV1 in warm preference and their dynamic response features to thermal stimulation. They develop a novel thermal preference task, where both the floor and air temperature are controlled, and conclude that mice likely integrate floor with air temperature to form a thermal preference. They go on to use knockout mice and show that TRPM2-/- mice play a role in the avoidance of warmer temperatures. Using a new approach for culturing DRG neurons they show the involvement of both channels in warm responsiveness and dynamics. This is an interesting study with novel methods that generate important new information on the different roles of TRPV1 and TRPM2 on thermal behavior.

      Comments on revisions:

      Thanks to the authors for addressing all the points raised. They now include more details about the classifier, better place their work in context of the literature, corrected the FOVs, and explained the model a bit further. The new analysis in Figure 2 has thrown up some surprising results about cellular responses that seem to reduce the connection between the cellular and behavioral data and there are a few things to address because of this:

      TRPM2 deficient responses: The differences in the proportion of TRPM2 deficient responders compared to WT are only observed at one amplitude (39C), and even at this amplitude the effect is subtle. Most surprisingly, TRPM2 deficient cells have an enhanced response to warm compared to WT mice to 33C, but the same response amplitude as WT at 36C and 39C. The authors discuss why this disconnect might be the case, but together with the lack of differences between WT and TRPM2 deficient mice in Fig 3, the data seem in good agreement with ref 7 that there is little effect of TRPM2 on DRG responses to warm in contrast to a larger effect of TRPV1. This doesn't take away from the fact there is a behavioral phenotype in the TRPM2 deficient mice, but the impact of TRPM2 on DRG cellular warm responses is weak and the authors should tone down or remove statements about the strength of TRPM2's impact throughout the manuscript, for example:<br /> "Trpv1 and Trpm2 knockouts have decreased proportions of WSNs."<br /> "this is the first cellular evidence for the involvement of TRPM2 on the response of DRG sensory neurons to warm-temperature stimuli"<br /> "we demonstrate that TRPV1 and TRPM2 channels contribute differently to temperature detection, supported by behavioural and cellular data"<br /> "TRPV1 and TRPM2 affect the abundance of WSNs, with TRPV1 mediating the rapid, dynamic response to warmth and TRPM2 affecting the population response of WSNs."<br /> "Lack of TRPV1 or TRPM2 led to a significant reduction in the proportion of WSNs, compared to wildtype cultures".

      The new analysis also shows that the removal of TRPV1 leads to cellular responses with smaller responses at low stimulus levels but larger responses with longer latencies at higher stimulus levels. Authors should discuss this further and how it fits with the behavioral data.

      Analysis clarification: authors state that TRPM2 deficient WSNs show "Their response to the second and third stimulus, however, are similar to wildtype WSNs, suggesting that tuning of the response magnitude to different warmth stimuli is degraded in Trpm2-/- animals." but is there a graded response in WT mice? It looks like there is in terms of the %responders but not in terms of response amplitude or AUC. Authors could show stats on the figure showing differences in response amplitude/AUC/responders% to different stimulus amplitudes within the WT group.

      New discussion point: sex differences are "similar to what has been shown for an operant-based thermal choice assay (11,56)", but in their rebuttal, they mention that ref 11 did not report sex differences. 56 does. Check this.

      The authors added in new text about the drift diffusion model in the results, however it's still not completely clear whether the "noise" is due to a perceptual deficit or some other underlying cause. Perhaps authors could discuss this further in the discussion.

    1. Reviewer #3 (Public review):

      Summary:

      Günther and colleagues leverage ancient DNA data to track the genomic history of one of the most important farm animals (cattle) in Iberia, a region showing peculiarities both in terms of cultural practices as well as a climatic refugium during the LGM, the latter of which could have allowed the survival of endemic lineages. They document interesting trends of hybridisation with wild aurochs over the last 8-9 millennia, including a stabilisation of auroch ancestry ~4000 years ago, at ~20%, a time coincidental with the arrival of domestic horses from the Pontic steppe. Modern breeds such as the iconic Lidia used in bullfighting or bull running retain a comparable level of auroch ancestry.

      Strengths:

      The generation of ancient DNA data has been proven crucial to unravel the domestication history of traditional livestock, and this is challenging due to the environmental conditions of the Iberian peninsula, less favourable to DNA preservation. The authors leverage samples unearthed from key archaeological sites in Spain, including the karstic system of Atapuerca. Their results provide fresher insights into past management practices and permit characterisation of significant shifts in hybridization with wild aurochs.

      Comments on revisions:

      The authors have satisfactorily addressed my previous concerns. Last questions:

      - How many MCMC iterations were run for Structf4? Can they show the likelihood of the last 10% of MCMC iterations? The results seem way too different for K = 4 vs. K = 5, but only for moo014 and moo019.

      - I guess the authors also lack an "a" superindex in Table 1 for moo019.

      - That Gyu2-related ancestry appears systematically for K=5 suggests that the Caucasus-related ancestry was already present in the pool that led to domesticates. Is it not important to discuss the implications of this possibility, for future analyses?

      - If monophyletic, why choose between Bed3 and CPC98 if both could be combined as a single population to further reduce qpAdm and f4 confidence intervals?

      - Why not combine all auroch Iberian samples as a single population for testing gene flow from this whole group of samples to ancient Iberian cattle? Would be the resulting coverage still too low?

      - What is subindex 1 in the denominator of the f4 ratio (main methods)?

      Thanks for your efforts

    1. Reviewer #2 (Public review):

      uORFs, short open reading frames located in the 5' UTR, are pervasive in genomes. However, their roles in maintaining protein abundance are not clear. In this study, the authors propose that uORFs act as "molecular dam", limiting the fluctuation of the translation of downstream coding sequences. First, they performed in silico simulations using an improved ICIER model, and demonstrated that uORF translation reduces CDS translational variability, with buffering capacity increasing in proportion to uORF efficiency, length, and number. Next, they analzed the translatome between two related Drosophila species, revealing that genes with uORFs exhibit smaller fluctuations in translation between the two species and across different developmental stages within the same specify. Moreover, they identified that bicoid, a critical gene for Drosophila development, contains a uORF with substantial changes in translation efficiency. Deleting this uORF in Drosophila melanogaster significantly affected its gene expression, hatching rates, and survival under stress condition. Lastly, by leveraging public Ribo-seq data, the authors showed that the buffering effect of uORFs is also evident between primates and within human populations. Collectively, the study advances our understanding of how uORFs regulate the translation of downstream coding sequences at the genome-wide scale, as well as during development and evolution.

      The conclusions of this paper are mostly well supported by data, but some definitions and data analysis need to be clarified and extended.

      (1) There are two definitions of translation efficiency (TE) in the manuscript: one refers to the number of 80S ribosomes that complete translation at the stop codon of a CDS within a given time interval, while the other is calculated based on Ribo-seq and mRNA-seq data (as described on Page 7, line 209). To avoid potential misunderstandings, please use distinct terms to differentiate these two definitions.

      (2) Page 7, line 209: "The translational efficiencies (TEs) of the conserved uORFs were highly correlated between the two species across all developmental stages and tissues examined, with Spearman correlation coefficients ranging from 0.478 to 0.573 (Fig. 2A)." However, the authors did not analyze the correlation of translation efficiency of conserved CDSs between the two species, and compare this correlation to the correlation between the TEs of CDSs. These analyzes will further support the authors conclusion regarding the role of conserved uORFs in translation regulation.

      (3) Page 8, line 217: "Among genes with multiple uORFs, one uORF generally emerged as dominant, displaying a higher TE than the others within the same gene (Fig. 2C)." The basis for determining dominance among uORFs is not explained and this lack of clarification undermines the interpretation of these findings.

      (4) According to the simulation, the translation of uORFs should exhibit greater variability than that of CDSs. However, the authors observed significantly fewer uORFs with significant TE changes compared to CDSs. This discrepancy may be due to lower sequencing depth resulting in fewer reads mapped to uORFs. Therefore, the authors may compare this variability specifically among highly expressed genes.

      (5) If possible, the author may need to use antibodies against bicoid to test the effect of ATG deletion on bicoid expression, particularly under different developmental stages or growth conditions. According to the authors' conclusions, the deletion mutant should exhibit greater variability in bicoid protein abundance. This experiment could provide strong support for the proposed mechanisms.

    1. Reviewer #2 (Public review):

      This study by Cook and colleagues utilizes genomic techniques to examine gene regulation in the craniofacial region of the fat-tailed dunnart at perinatal stages. Their goal is to understand how accelerated craniofacial development is achieved in marsupials compared to placental mammals.

      The authors employ state-of-the-art genomic techniques, including ChIP-seq, transcriptomics, and high-quality genome assembly, to explore how accelerated craniofacial development is achieved in marsupials compared to placental mammals. This work addresses an important biological question and contributes a valuable dataset to the field of comparative developmental biology. The study represents a commendable effort to expand our understanding of marsupial development, a group often underrepresented in genomic studies.

      The dunnart's unique biology, characterized by a short gestation and rapid craniofacial development, provides a powerful model for examining developmental timing and gene regulation. The authors successfully identified putative regulatory elements in dunnart facial tissue and linked them to genes involved in key developmental processes such as muscle, skin, bone, and blood formation. Comparative analyses between dunnart and mouse chromatin landscapes suggest intriguing differences in deployment of regulatory elements and gene expression patterns.

      Strengths

      (1) The authors employ a broad range of cutting-edge genomic tools to tackle a challenging model organism. The data generated - particularly ChIP-seq and RNA-seq from craniofacial tissue - are a valuable resource for the community, which can be employed for comparative studies. The use of multiple histone marks in the ChIP-seq experiments also adds to the utility of the datasets.

      (2) Marsupial occupy an important phylogenetic position, but they remain an understudied group. By focusing on the dunnart, this study addresses a significant gap in our understanding of mammalian development and evolution. Obtaining enough biological specimens for these experiments studies was likely a big challenge that the authors were able to overcome.

      (3) The comparison of enhancer landscapes and transcriptomes between dunnarts and can serve as the basis of subsequent studies that will examine the mechanisms of developmental timing shifts. The authors also carried out liftover analyses to identify orthologous enhancers and promoters in mice and dunnart.

      Weaknesses and Recommendations

      (1) The absence of genome browser tracks for ChIP-seq data makes it difficult to assess the quality of the datasets, including peak resolution and signal-to-noise ratios. Including browser tracks would significantly strengthen the paper by provide further support for adequate data quality.

      (2) The first two figures of the paper heavily rely in gene orthology analysis, motif enrichment, etc, to describe the genomic data generated from the dunnart. The main point of these figures is to demonstrate that the authors are capturing the epigenetic signature of the craniofacial region, but this is not clearly supported in the results. The manuscript should directly state what these analyses aim to accomplish - and provide statistical tests that strengthen confidence on the quality of the datasets.

      (3) The observation that "promoters are located on average 106 kb from the nearest TSS" raises significant concerns about the quality of the ChIP-seq data and/or genome annotation. The results and supplemental information suggest a combination of factors, including unannotated transcripts and enhancer-associated H3K4me3 peaks - but this issue is not fully resolved in the manuscript. The authors should confirm that this is not caused by spurious peaks in the CHIP-seq analysis - and possibly improve genome annotation with the transcriptomic datasets presented on the study.

      (4) The comparison of gene regulation between a single dunnart stage (P1) and multiple mouse stages lacks proper benchmarking. Morphological and gene expression comparisons should be integrated to identify equivalent developmental stages. This "alignment" is essential for interpreting observed differences as true heterochrony rather than intrinsic regulatory differences.

      (5) The low conservation of putative enhancers between mouse and dunnart (0.74-6.77%) is surprising given previous reports of higher tissue-specific enhancer conservation across mammals. The authors should address whether this low conservation reflects genuine biological divergence or methodological artifacts (e.g., peak-calling parameters or genome quality). Comparisons with published studies could contextualize these findings.

      (6) Focusing only on genes associated with shared enhancers excludes potentially relevant genes without clear regulatory conservation. A broader analysis incorporating all orthologous genes may reveal additional insights into craniofacial heterochrony.

      In conclusion, this study provides an important dataset for understanding marsupial craniofacial development and highlights the potential of genomic approaches in non-traditional model organisms. However, methodological limitations, including incomplete genome annotation and lack of developmental benchmarking weaken the robustness and of the findings. Addressing these issues would significantly enhance the study's utility to the field and its ability to support the study's central conclusion that dunnart-specific enhancers drive accelerated craniofacial development.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by the Root laboratory and colleagues describes how the posterolateral cortical amygdala (plCoA) generates valenced behaviors. Using a suite of methods, the authors demonstrate that valence encoding is mediated by several factors, including spatial localization of neurons within the plCoA, glutamatergic markers, and projection. The manuscript shows convincingly that multiple features (spatial, genetic, and projection) contribute to overall population encoding of valence. Overall, the authors conduct many challenging experiments, each of which contains the relevant controls, and the results are interpreted within the framework of their experiments.

      Strengths:

      -For a first submission the manuscript is well constructed, containing lots of data sets and clearly presented, in spite of the abundance of experimental results.<br /> -The authors should be commended for their rigorous anatomical characterizations and post-hoc analysis. In the field of circuit neuroscience, this is rarely done so carefully, and when it is, often new insights are gleaned as is the case in the current manuscript.<br /> -The combination of molecular markers, behavioral readouts and projection mapping together substantially strengthen the results.<br /> -The focus on this relatively understudied brain region in the context is valence is well appreciated, exciting and novel.

      Weaknesses:

      -Interpretation of calcium imaging data is very limited and requires additional analysis and behavioral responses specific to odors should be considered. If there are neural responses behavioral epochs and responses to those neuronal responses should be displayed and analyzed.<br /> -The effect of odor habituation is not considered.<br /> -Optogenetic data in the two subregions relies on very careful viral spread and fiber placement. The current anatomy results provided should be clear about the spread of virus in A-P, and D-V axis, providing coordinates for this, to ensure readers the specificity of each sub-zone is real.<br /> -The choice of behavioral assays across the two regions doesn't seem balanced and would benefit from more congruency,<br /> -Rationale for some of the choices of photo-stimulation experiment parameters isn't well defined.

    1. Reviewer #2 (Public review):

      Summary

      In this study, the authors characterized population genetic variation in the MHC locus across primates and looked for signals of long-term balancing selection (specifically trans-species polymorphism, TSP) in this highly polymorphic region. To carry out these tasks, they used Bayesian methods for phylogenetic inference (i.e. BEAST2) and applied a new Bayesian test to quantify evidence supporting monophyly vs. transspecies polymorphism for each exon across different species pairs. Their results, although mostly confirmatory, represent the most comprehensive analyses of primate MHC evolution to date and novel findings or possible discrepancies are clearly pointed out. However, as the authors discuss, the available data are insufficient to fully capture primates' MHC evolution.

      Strengths of the paper include: using appropriate methods and statistically rigorous analyses; very clear figures and detailed description of the results methods that make it easy to follow despite the complexity of the region and approach; a clever test for TSP that is then complemented by positive selection tests and the protein structures for a quite comprehensive study.

      That said, weaknesses include: lack of information about how many sequences are included and whether uneven sampling across taxa might results in some comparisons without evidence for TSP; frequent reference to the companion paper instead of summarizing (at least some of) the critical relevant information (e.g., how was orthology inferred?); no mention of the quality of sequences in the database and whether there is still potential effects of mismapping or copy number variation affecting the sequence comparison.

    1. As we consider the complexity of people, the layered, living contexts of problems faced and the entangled factors that contribute — the monster metaphor seems appropriate

      for - multiple reinforcing feedback loops between many different levels - source - article - Medium - Dancing with "Monsters" - Donna Nelham - 2022, May 2

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript describes the creation and curation of a collection of genetic driver lines that specifically label small numbers of neurons, often just a single to handful of cell types, in the central nervous system of the fruit fly, Drosophila melanogaster. The authors screened over 77,000 split hemidriver combinations to yield a collection of 3060 lines targeting a range of cell types in the adult Drosophila central nervous system and 1373 lines characterized in third-instar larvae. These genetic driver lines have already contributed to several important publications and will no doubt continue to do so. It is a truly valuable resource that represents the cooperation of several labs throughout the Drosophila community.

      Strengths:

      The authors have thoughtfully curated and documented the lines that they have created, so that they may be maximally useful to the greater community. This documentation includes confocal images of neurons labeled by each driver line and when possible, a list of cell types labeled by the genetic driver line and their identity in an EM connectome dataset. The authors have also made available some information from the other lines they created and tested but deemed not specific or strong enough to be included as part of the collection. This additional resource will be a valuable aid for those seeking to label cell types that may not be included in the main collection.

      The added revisions help to clarify important points relating to the creation of the lines, which lines were included as part of this specific collection, and caveats to be mindful of when using any of the described lines. These revisions will increase the manuscript's utility to users who may be less familiar with this resource.

      Weaknesses:

      The major weakness, which is also in some ways a strength, is the stringent requirement that lines that be included be highly specific across the CNS. As a result, the lines that are part of this specific collection are sparse and specific but also limited in which cell types they cover. Doubtless there are many missing cell types.

    1. Reviewer #2 (Public review):

      Patsy R. Tomlinson et al; investigated the impact of different p85 alpha variants associated with SHORT syndrome or APDS2 on insulin mediated signaling in dermal fibroblasts and preadipocytes. They perform this study as APDS2 patients oftern present with features of SHORT syndrome. They found no evidence of hyperactive PI3K signalling monitored by pAKT in a APDS2 patient-derived dermal fibroblast cells. In these cells p110 alpha protein levels were comparable to levels in control cells, however, p110 delta protein levels were strongly reduced. Remarkably, the truncated APDS2-causal p85 alpha variant was less abundant in these cells than p85 alpha wildtype. Afterwards they studied the impact of ectopically expressed p85 alpha variants on insulin mediated PI3K signaling in 3T3-L1 preadipocytes. Interestingly they found that the truncated APDS2-causal p85 alpha variant impaired insulin induced signaling. Using immunoprecipitation of p110 alpha they did not find truncated APDS2-causal p85 alpha variant in p110 alpha precipitates. Furthermore, by immunoprecipitating IRS1 and IRS2 they observed that the truncated APDS2-causal p85 alpha variant was very abundant in IRS1 and IRS2 precipitates, even in the absence of insulin stimulation. These important findings add in an interesting way possible mechanistic explanation for the growing number of APDS2 patients described with features of SHORT syndrome.

      Strengths:

      Based on state-of-the-art functional studies, the authors show that the p85 alpha variant responsible for APDS2, known to be associated with increased PI3K-delta signaling, can attenuate PI3K-alpha signalling in preadipocytes, providing a possible mechanistic explanation for the growing number of APDS2 patients with features of SHORT syndrome.

      Weaknesses:

      The proposed paradigm is based on one cell line derived from an APDS2 patient and an overexpressing system. The investigation of a larger number of cell lines derived from APDS2 patients would further substantiate the conclusion.

    1. Reviewer #2 (Public review):

      Summary:

      Zhang et al. analyzed the functional role of hepatocyte RIPK1 during metabolic stress, particularly its scaffold function rather than kinase function. They show that Ripk1 knockout sensitizes the liver to cell death and inflammation in response to short-term fasting, a condition that would not induce obvious abnormality in wild-type mice.

      Strengths:

      The findings are based on a knockout mouse model and supported by bulk RNA-seq and scRNA-seq. The work consolidates the complex role of RIPK1 in metabolic stress.

      Comments on revision:

      The authors have addressed my concerns. The added experiments consolidated the findings. I do not have further comments.

    1. Reviewer #2 (Public Review):

      Summary:

      The article by Shuai et al. describes a comprehensive collection of over 800 split-GAL4 and split-LexA drivers, covering approximately 300 cell types in Drosophila, aimed at advancing the understanding of associative learning. The mushroom body (MB) in the insect brain is central to associative learning, with Kenyon cells (KCs) as primary intrinsic neurons and dopaminergic neurons (DANs) and MB output neurons (MBONs) forming compartmental zones for memory storage and behavior modulation. This study focuses on characterizing sensory input as well as direct upstream connections to the MB both anatomically and, to some extent, behaviorally. Genetic access to specific, sparsely expressed cell types is crucial for investigating the impact of single cells on computational and functional aspects within the circuitry. As such, this new and extensive collection significantly extends the range of targeted cell types related to the MB and will be an outstanding resource to elucidate MB-related processes in the future.

      Strengths:

      The work by Shuai et al. provides novel and essential resources to study MB-related processes and beyond. The resulting tools are publicly available and, together with the linked information, will be foundational for many future studies. The importance and impact of this tool development approach, along with previous ones, for the field cannot be overstated. One of many interesting aspects arises from the anatomical analysis of cell types that are less stereotypical across flies. These discoveries might open new avenues for future investigations into how such asymmetry and individuality arise from development and other factors, and how it impacts the computations performed by the circuitry that contains these elements.

    1. Reviewer #2 (Public review):

      Knudstrup and colleagues investigate response to short and rapid sequences of stimuli in layer 2/3 of mouse visual cortex. To quote the authors themselves: "the work continues the recent tradition of providing ambiguous support for the idea that cortical dynamics are best described by predictive coding models". Unfortunately, the ambiguity here is largely a result of the choice of experimental design and analysis, and the data provide only incomplete support for the authors' conclusions.

      The authors have addressed some of the concerns of the first revision. However, many still remain.

      (1) From the first review: "There appears to be some confusion regarding the conceptual framing of predictive coding. Assuming the mouse learns to expect the sequence ABCD, then ABBD does not probe just for negative prediction errors, and ACBD not just positive prediction errors. With ABBD, there is a combination of a negative prediction error for the missing C in the 3rd position, and a positive prediction error for B in 3rd. Likewise, with ACBD, there is negative prediction error for the missing B at 2nd and missing C at 3rd, and a positive prediction error for the C in 2nd and B in 3rd. Thus, the authors' experimental design does not have the power to isolate either negative or positive prediction errors. Moreover, looking at the raw data in Figure 2C, this does not look like an "omission" response to C, more like a stronger response to a longer B. The pitch of the paper as investigating prediction error responses is probably not warranted - we see no way to align the authors' results with this interpretation."

      The authors acknowledge in their response that this is a problem, but do not appear to discuss this in the manuscript. This should be fixed.

      (2) From the first review: "Recording from the same neurons over the course of this paradigm is well within the technical standards of the field, and there is no reason not to do this. Given that the authors chose to record from different neurons, it is difficult to distinguish representational drift from drift in the population of neurons recorded. "

      The authors respond by pointing out that what they mean by "drift" is within day changes. This has been clarified. However, the analyses in Figures 3 and 5 still are done across days. Figure 3: "Experience modifies activity in PCA space ..." and figure 5: "Stimulus responses shift with training". Both rely on comparisons of population activity across days. This concern remains unchanged here. It would probably be best to remove any analysis done across days - or use data where the same neurons were tracked. Performing chronic two-photon imaging experiments without tracking the same neurons is simply bad practice (assuming one intends to do any analysis across recording sessions).

      (3) From the first revision: "The block paradigm to test for prediction errors appears ill chosen. Why not interleave oddball stimuli randomly in a sequence of normal stimuli? The concern is related to the question of how many repetitions it takes to learn a sequence. Can the mice not learn ACBD over 100x repetitions? The authors should definitely look at early vs. late responses in the oddball block. Also the first few presentations after block transition might be potentially interesting. The authors' analysis in the paper already strongly suggests that the mice learn rather rapidly. The authors conclude: "we expected ABCD would be more-or-less indistinguishable from ABBD and ACBD since A occurs first in each sequence and always preceded by a long (800 ms) gray period. This was not the case. Most often, the decoder correctly identified which sequence stimulus A came from." This would suggest that whatever learning/drift could happen within one block did indeed happen and responses to different sequences are harder to interpret."

      Again, the authors acknowledge the problem and state that "there is no indication that this is a learned effect". However, they provide no evidence for this and perform no analysis to mitigate the concern.

      (4) Some of the minor comments also appear unaddressed and uncommented. E.g. the response amplitudes are still shown in "a.u." instead of dF/F or z-score or spikes.

    1. Reviewer #2 (Public review):

      Summary:

      Yonk and colleagues show that the posterior medial thalamus (POm), which is interconnected with sensory and motor systems, projects directly to major categories of neurons in the striatum, including direct and indirect pathway MSNs, and PV interneurons. Activity in POm-striatal neurons during a sensory-based learning task indicates a relationship between reward expectation and arousal. Inhibition of these neurons slows reaction to stimuli and overall learning. This circuit is positioned to feed salient event activation to the striatum to set the stage for effective learning and action selection.

      Strengths:

      The results are well presented and offer interesting insight into an understudied thalamostriatal circuit. In general, this work is important as part of a general need for an increased understanding of thalamostriatal circuits in complex learning and action selection processes, which have generally received less attention than corticostriatal systems.

      Weaknesses:

      There could be a stronger connection between the connectivity part of the data - showing that POm neurons context D1, D2, and PV neurons in striatum but with some different properties - and the functional side of the project. One wonders whether the POm neurons projecting to these subtypes or striatal neurons have unique signaling properties related to learning, or if there is a uniform, bulk signal sent to striatum. This is not a weakness per se, as it's reasonable for these questions to be answered in future papers.

      All the in vivo activity-related conclusions stem from data from just 5 mice, which is a relatively small sample set. Optogenetic groups are also on the small side.

      Comments on revisions:

      The revision has a lot of thoughtful discussion added. I think overall the paper is more thorough and will also be a nice set up for a number of future research questions.

    1. Reviewer #2 (Public review):

      Summary:

      This paper aimed to determine the role EP sst+ neurons play in a probabilistic switching task.

      Strengths:

      - The in vivo recording of the EP sst+ neurons activity in the task is one of the strongest parts of this paper. Previous work had recorded from the EP-LHb population in rodents and primates in head fixed configurations, the recordings of this population in a freely moving context is a valuable addition to these studies and has highlighted more clearly that these neurons respond both at the time of choice and outcome.

      - The use of a refined intersectional technique to record specifically the EP sst+ neurons is also an important strength of the paper. This is because previous work has shown that there are two genetically different types of glutamatergic EP neurons that project to the LHb. Previous work had not distinguished between these types in their recordings so the current results showing that the bidirectional value signaling is present in the EP sst+ population is valuable.

      Weaknesses:

      - One of the main weaknesses of the paper is to do with how the effect of the EP sst+ neurons on the behavior was assessed.

      o All the manipulations (blocking synaptic release and blocking glutamatergic transmission) are chronic and more importantly the mice are given weeks of training after the manipulation before the behavioral effect is assessed. This means that as the authors point out in their discussion the mice will have time to adjust to the behavioral manipulation and compensate for the manipulations. The results do show that mice can adapt to these chronic manipulations and that the EP sst+ are not required to perform the task. What is unclear is whether the mice have compensated for the loss of EP sst+ neurons and whether they play a role in the task under normal conditions. Acute manipulations or chronic manipulations without additional training would be needed to assess this.

      o Another weakness is that the effect of the manipulations was assessed in the 90/10 contingency version of the task. Under these contingencies, mice integrate past outcomes over fewer trials to determine their choice and animals act closer to a simple win-stay-lose switch strategy. Due to this it is unclear if the EP sst+ neurons would play a role in the task when they must integrate over a larger number of conditions in the less deterministic 70/30 version of the task. Indeed it is not clear that lesioning any other regions involved in evaluation of action outcomes such as VTA dopamine neurons, that encode reward prediction errors, would have any deficit when assessed in this way. Due to this, it's not clear if the mice have adapted to solve the task without evaluating action outcomes at all and are just acting in a more deterministic lose switch manner that would not presumably involve any of the circuitry in evaluating action outcomes.

      - The authors conclude that they do not see any evidence for bidirectional prediction errors. It is not possible to conclude this. First, they see a large response in the EP sst+ neurons to the omission of an expected reward. This is what would be expected of a negative reward prediction error. There are much more specific well controlled tests for this that are commonplace in head-fixed and freely moving paradigms that could be tested to probe this. The authors do look at the effect of previous trials on the response and do not see strong consistent results, but this is not a strong formal test of what would be expected of a prediction error, either a positive or negative. The other way they assess this is by looking at the size of the responses in different recording sessions with different reward contingencies. They claim that the size of the reward expectation and prediction error should scale with the different reward probabilities. If all the reward probabilities were present in the same session this should be true as lots of others have shown for RPE. Because however this data was taken from different sessions it is not expected that the responses should scale, this is because reward prediction errors have been shown to adaptively scale to cover the range of values on offer (Tobler et al., Science 2005). A better test of positive prediction error would be to give a larger than expected reward on a subset of trials. Either way there is already evidence that responses reflect a negative prediction error in their data and more specific tests would be needed to formally rule in or out prediction error coding especially as previous recordings have shown it is present in previous primate and rodent recordings.

      - There are a lot of variables in the GLM that occur extremely close in time such as the entry and exit of a port. If two variables occur closely in time and are always correlated it will be difficult if not impossible for a regression model to assign weights accurately to each event. This is not a large issue, but it is misleading to have regression kernels for port entry and exits unless the authors can show these are separable due to behavioral jitter or a lack of correlation under specific conditions, which does not seem to be the case.

    1. Reviewer #3 (Public review):

      Summary:

      Bell and colleagues studied how different splice isoforms of voltage-gated CaV2 calcium channels affect channel expression, localization, function, synaptic transmission, and locomotor behavior at the larval Drosophila neuromuscular junction. They reveal that one mutually exclusive exon located in the fourth transmembrane domain encoding the voltage sensor is essential for calcium channel expression, function, active zone localization, and synaptic transmission. Furthermore, a second mutually exclusive exon residing in an intracellular loop containing the binding sites for Caβ and G-protein βγ subunits promotes the expression and synaptic localization of around ~50% of CaV2 channels, thereby contributing to ~50% of synaptic transmission. This isoform enhances release probability, as evident from increased short-term depression, is vital for homeostatic potentiation of neurotransmitter release induced by glutamate receptor impairment, and promotes locomotion. The roles of the two other tested isoforms remain less clear.

      Strengths:

      The study is based on solid data that was obtained with a diverse set of approaches. Moreover, it generated valuable transgenic flies that will facilitate future research on the role of calcium channel splice isoforms in neural function.

      Weaknesses:

      Comments on revisions:

      The authors addressed most points. However, from my point of view, the new data (somatodendritic cac currents in adult motoneurons of IS4B mutants without the pre-pulse, and localization of IS4A channels in the larval brain) do not strongly support that the IS4B exon is required for cacophony localization. According to their definition of localization, IS4B is required for cacophony channels to enter motoneuron boutons and to localize to active zones. In case of a true localization defect (without degradation, as they claim), IS4A channels should mislocalize to the soma, axon, or dendrite. However, they do not find them in motoneurons of IS4B mutants. Furthermore, I find the interpretation of the voltage clamp data in flight motoneurons rather difficult. On the one hand, sustained HVA cac currents are strongly attenuated/absent in IS4B mutants. On the other hand, total cac currents (without the -50 mV pre-pulse, not shown in the original submission) are less affected in IS4B mutants. Based on these data, they conclude that IS4B is required for sustained HVA cac currents and that IS4A channel isoforms are expressed and functional. How does this relate to a localization defect at the NMJ? Finally, detecting IS4A channels in other cell types and regions is not a strong argument for a localization defect at the NMJ. I, therefore, suggest toning down the conclusions regarding a localization defect in IS4B mutants/a role for the IS4B exon in cac localization. It should be also discussed how a splice isoform in S4 may result in no detectable cac channels at the NMJ or regulate subcellular channel localization.

      I have a few additional points, mainly related to the responses to my previous points:

      (1) The authors state "active zones at the NMJ contain only cac isoforms with the IS4B exon. Nevertheless, the small representative EPSC remaining in IS4B mutants suggests that there is synchronous release in the absence of IS4B (Fig. 3B). Are the small EPSCs in dIS4B (Fig. 3B) indeed different from noise/indicative of evoked release? If yes, which cac channels may drive these EPSCs? IS4A channels?<br /> (2) (Related to previous point 4) The authors argue that EPSC amplitudes are not statistically different between Canton S and IS4A mutants (Fig. 2F). However, the Canton S group appears undersampled, thus precluding conclusions based on statistics. Moreover, the effect size Canton S vs. dIS4A looks similar to the one of Canton S vs. dIS4A/dIS4B.<br /> (3) (Related to previous point 11): Can they cite a paper relating calcium channel inactivation to EPSC half width/decay kinetics to support their speculation that "decreased EPSC half width could be caused by significantly faster channel inactivation kinetics" (p. 42, l.42). In addition, many papers have demonstrated that mini decay kinetics provide valuable insights into GluR subunit composition at the Drosophila NMJ (e.g., Schmid et al., 2008 https://doi.org/10.1038/nn.2122). Thus, the statement "Mini decay kinetic analysis because this depends strongly on the distance of the recording electrode to the actual site of transmission in these large muscle cells" is not valid and should be revised.