8,426 Matching Annotations
  1. Jun 2024
    1. Reviewer #2 (Public Review):

      This paper uses a novel maze design to explore mouse navigation behaviour in an automated analogue of the Barnes maze. A major strength is the novel and clever experimental design which rotates the floor and intramaze cues before the start of each new trial, allowing the previous goal location to become the next starting position. The modelling sampling a Markov chain of navigation strategies is elegant, appropriate and solid, appearing to capture the behavioural data well. This work provides a valuable contribution and I'm excited to see further developments, such as neural correlates of the different strategies and switches between them.

    1. Reviewer #2 (Public Review):

      Summary:

      This paper describes evolution experiments performed on yeast amino acid transporters aiming at the enlargement of the substrate range of these proteins. Yeast cells lacking 10 endogenous amino acid transporters and thus being strongly impaired to feed on amino acids were again complemented with amino acid transporters from yeast and grown on media with amino acids as the sole nitrogen source.

      In the first set of experiments, complementation was done with seven different yeast amino acid transporters, followed by measuring growth rates. Despite most of them having been described before in other experimental contexts, the authors show that many of them have a broader substrate range than initially thought.

      Moving to the evolution experiments, the authors used the OrthoRep system to perform random mutagenesis of the transporter gene while it is actively expressed in yeast. The evolution experiments were conducted such that the medium would allow for poor/slow growth of cells expressing the wt transporters, but much better/faster growth if the amino acid transporter would mutate to efficiently take up a poorly transported (as in case of citrulline and AGP1) or non-transported (as in case of Asp/Glu and PUT4) amino acid.

      This way and using Sanger sequencing of plasmids isolated from faster-growing clones, the authors identified a number of mutations that were repeatedly present in biological replicates. When these mutations were re-introduced into the transporter using site-directed mutagenesis, faster growth on the said amino acids was confirmed. Growth phenotype were confirmed by uptake experiments using radioactive amino acids; corresponding correlation plots show that the assays based on growth rates versus radioactive uptake assays indeed can explain the effect of the mutations to a large extent.

      When mapped to Alphafold prediction models on the transporters, the mutations mapped to the substrate permeation site, which suggests that the changes allow for more favorable molecular interactions with the newly transported amino acids.<br /> Finally, the authors compared growth rates of the evolved transporter variants with those of the wt transporter and found that some variants exhibit a somewhat diminished capacity to transport its original range of amino acids, while other variants were as fit as the wt transporter in terms of uptake of its original range of amino acids.<br /> Based on these findings, the author conclude that transporters can evolve novel substrates through generalist intermediates, either by increasing a weak activity or by establishing a new one.

      Strengths:

      The study provides evidence in favour of an evolutionary model, wherein a transporter can "learn" to translocate novel substrates without "forgetting" what it used to transport before. This evolutionary concept has been proposed for enzymes before, and this study shows that it also can apply to transporters. The concept behind the study is easy to understand, i.e. improving growth by uptake of more amino acids as nitrogen source. In addition, the study contains a large and extensive characterization of the transporter variants, including growth assays and radioactive uptake measurements. The authors performed experiments as part of the revision to show that the studied mutations do not greatly change surface expression of the transporters. Further they showed that in the absence of the evolutionary pressure, overexpression of the mutants versus the wildtype transporters does not affect growth rates, which is important to assess. Finally, the authors make careful conclusions saying that in real life, the evolutionary landscape is way more complex than under these "reductive" laboratory conditions with a strain lacking ten natively expressed amino acid transporters and being selected on a single amino acid in a defined medium.

      Weaknesses:

      The authors took a genetic gain-of-function approach based on random mutagenesis of the transporter. While this experimental approach is suited to find some gain-of-function variants for some of the amino acids, it has also its inherent limitations, the most important being that loss-of-function mutants are not sampled (though they might be interesting) and that mutagenesis is entirely random, thus not targeted. These weaknesses cannot be easily overcome other than by restarting the entire study and conducting for example deep mutational scanning experiments. The authors have done what they could do within the scope of this study to make this manuscript as complete and rigorous as possible.

    1. Reviewer #2 (Public Review):

      Neuromodulators are important for circuit function, but their roles in the retinal circuitry are poorly understood. This study by Gonschorek and colleagues aims to determine the modulatory effect of nitric oxide on the response properties of retinal ganglion cells. The authors used two photon calcium imaging and multi-electrode arrays to classify and compare cell responses before and after applying a NO donor DETA-NO. The authors found that DETA-NO selectively increases activity in a subset of contrast-suppressed RGC types. In addition, the authors found cell-type specific changes in light response in the absence of pharmacological manipulation in their calcium imaging paradigm. While this study focuses on an important question and the results are interesting, the following issues need further clarification for better interpretation of the data.

      (1) Design of the calcium imaging experiments: the control-control pair has a different time course from the control-drug pair (Fig 1e). First, the control-control pair has a 10 minute interval while the control-drug pair has a 25 minute interval. Second, Control 1 Field 2 was imaged 10 min later than Control 1 Field 1 since the start of the calcium imaging paradigm.

      Given that the control dataset is used to control for time-dependent adaptational changes throughout the experiment, I wonder why the authors did not use the same absolute starting time of imaging and the same interval between the first and second round of imaging for both the control-control and the control-drug pairs. This can be readily done in one of the two ways: 1. In a set of experiment, add DETA/NO between "Control 1 Field 1 and "Control 2 Field 1" in Fig. 1e as the drug group; or 2. Omit DETA/NO in the Fig. 1e protocol as the control group to monitor the time course of adaptational changes.

      Related to the concern above, to determine NO-specific effect, the authors used the criterion that "the response changes observed for control (ΔR(Ctrl2−Ctrl1)) and NO (ΔR(NO−Ctrl1)) were significantly different". This criterion assumes that without DETA-NO, imaging data obtained at the time points of "Control 1 Field 2" and "DETA/NO Field 2" would give the same value of ΔR as ΔR(Ctrl2−Ctrl1) for all RGC types. It is not obvious to me why this should be the case, because of the unknown time-dependent trajectory of the adaptational change for each RGC type. For example, a RGC type could show stable response in the first 30 min and then change significantly in the following 30 min. DETA/NO may counteract this adaptational change, leading to the same ΔR as the control condition (false negative). Alternatively, DETA/NO may have no effect, but the nonlinear time-dependent response drift can give false positive results.

      I also wonder why washing-out, a standard protocol for pharmacological experiments, was not done for the calcium protocol since it was done in the MEA experiments. A reversible effect by washing in and out DETA/NO in the calcium protocol would provide a much stronger support that the observed NO modulation is due to NO and not to other adaptive changes.

      (2) Effects of Strychnine: In lines 215-219, " In the light-adapted retina, On-cone BCs boost light-Off responses in Off-cone BCs through cross-over inhibition (83, 84) and hence, strychnine affects Off-response components in RGCs - in line with our observations (Fig. S2)" However, Fig. S2 doesn't seem to show a difference in the Off-response components. Rather, the On response is enhanced with strychnine. In addition, suppressed-by-contrast cells are known to receive glycinergic inhibition from VGluT3 amacrine cells (Tien et al., 2016). However, the G32 cluster in Fig. S2 doesn't seem to show a change with strychnine. More explanation on these discrepancies will be helpful.

      (3) This study uses DETA-NO as an NO donor for enhancing NO release. However, a previous study by Thompson et al., Br J Pharmacol. 2009 reported that DETA-NO can rapidly and reversible induce a cation current independent of NO release at the 100 uM used in the current study, which could potentially cause the observed effect in G32 cluster such as reduced contrast suppression and increased activity. This potential caveat should at least be discussed, and ideally excluded by showing the absence of DETA-NO effects in nNOS knockout mice, and/or by using another pharmacological reagent such as the NO donor SNAP or the nNOS inhibitor l-NAME.

      (4) Clarification of methods: In the Methods, lines 1119-1127, the authors describe the detrending, baseline subtraction, and averaging. Then, line 1129, " the mean activity r(t) was computed and then traces were normalized such that: max t(|r(t)|) = 1. How is the normalization done? Is it over the entire recording (control and wash in) for each ROI? Or is it normalized based on the mean trace under each imaging session (i.e. twice for each imaging field)?

      As for the clustering of RGC types, I assume that each ROI's cluster identity remains unchanged through the comparison. If so, it may be helpful to emphasize this in the text.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript by Liu et al. uses Confetti labeling of hematopoietic stem and progenitor cells in situ to infer the clonal dynamics of adult hematopoiesis. The authors apply a new mathematical framework to analyze the data, allowing them to increase the range of applicability of this tool up to tens of thousands of precursors. With this tool, they (1) provide evidence for the large polyclonality of adult hematopoiesis, (2) offer insights on the expansion dynamics in the fetal liver stage, (3) assess the clonal dynamics in a Fanconi anemia model (Fancc), which has engraftment defects during transplantation.

      Strengths:

      The manuscript is well written, with beautiful and clear figures, and both methods and mathematical models are clear and easy to understand.

      Since 2017, Mikel Ganuza and Shannon McKinney-Freeman have been using these Confetti approaches that rely on calculating the variance across independent biological replicates as a way to infer clonal dynamics. This is a powerful tool and it is a pleasure to see it being implemented in more labs around the world. One of the cool novelties of the current manuscript is using a mathematical model (based on a binomial distribution) to avoid directly regressing the Confetti labeling variance with the number of clones (which only has linearity for a small range of clone numbers). As a result, this current manuscript of Liu et al. methodologically extends the usability of the Confetti approach, allowing them more precise and robust quantification.

      They then use this model to revisit some questions from various Ganuza et al. papers, validating most of their conclusions. The application to the clonal dynamics of hematopoiesis in a model of Fanconi anemia (Fancc mice) is very much another novel aspect, and shows the surprising result that clonal dynamics are remarkably similar to the wild-type (in spite of the defect that these Fancc HSCs have during engraftment).<br /> Overall, the manuscript succeeds at what it proposes to do, stretching out the possibilities of this Confetti model, which I believe will be useful for the entire community of stem cell biologists, and possibly make these assays available to other stem cell regenerating systems.

      Weaknesses:

      My main concern with this work is the choice of CreER driver line, which then relates to some of the conclusions made. Scl-CreER succeeds at being as homogenous as possible in labeling HSC/MPPs... however it is clear that it also labels a subcompartment of HSC clones that become dominant with time... This is seen as the percentage of Confetti-recombined cells never ceases to increase during the 9-month chase of labeled cells, suggesting that non-labeled cells are being replaced by labeled cells. The reason why this is important is that then one cannot really make conclusions about the clonal dynamics of the unlabeled cells (e.g. for estimating the total number of clones, etc.).

      I am not sure about the claims that the data shows little precursor expansion from E11 to E14. First, these experiments are done with fewer than 5 replicates, and thus they have much higher error, which is particularly concerning for distinguishing differences of such a small number of clones. Second, the authors do see a ~0.5-1 log difference between E11 and E14 (when looking at months 2-3). When looking at months 5+, there is already a clear decline in the total number of clones in both adult-labeled and embryonic-labeled, so these time points are not as good for estimating the embryonic expansion. In any case, the number of precursors at E11 (which in the end defines the degree of expansion) is always overestimated (and thus, the expansion underestimated) due to the effects of lingering tamoxifen after injection (which continues to cause Confetti allele recombination as stem cell divide). Thus, I think these results are still compatible with expansion in the fetal liver (the degree of which still remains uncertain to me).

    1. Reviewer #2 (Public Review):

      Summary:

      The authors aimed to understand whether polarised moonlight could be used as a directional cue for nocturnal animals homing at night, particularly at times of night when polarised light is not available from the sun. To do this, the authors used nocturnal ants, and previously established methods, to show that the walking paths of ants can be altered predictably when the angle of polarised moonlight illuminating them from above is turned by a known angle (here +/- 45 degrees).

      Strengths:

      The behavioural data are very clear and unambiguous. The results clearly show that when the angle of downwelling polarised moonlight is turned, ants turn in the same direction. The data also clearly show that this result is maintained even for different phases (and intensities) of the moon, although during the waning cycle of the moon the ants' turn is considerably less than may be expected.

      Weaknesses:

      The final section of the results - concerning the weighting of polarised light cues into the path integrator - lacks clarity and should be reworked and expanded in both the Methods and the Results (also possibly with an extra methods figure). I was really unsure of what these experiments were trying to show or what the meaning of the results actually are.

      Impact:

      The authors have discovered that nocturnal bull ants while homing back to their nest holes at night, are able to use the dim polarised light pattern formed around the moon for path integration. Even though similar methods have previously shown the ability of dung beetles to orient along straight trajectories for short distances using polarised moonlight, this is the first evidence of an animal that uses polarised moonlight in homing. This is quite significant, and their findings are well supported by their data.

    1. Bloomington stock 4559

      DOI: 10.1038/s41598-022-26530-2

      Resource: RRID:BDSC_4559

      Curator: @DavidDeutsch

      SciCrunch record: RRID:BDSC_4559


      What is this?

    2. Bloomington Drosophila Stock Center

      DOI: 10.1038/s41598-022-26530-2

      Resource: Bloomington Drosophila Stock Center (RRID:SCR_006457)

      Curator: @DavidDeutsch

      SciCrunch record: RRID:SCR_006457


      What is this?

    1. Reviewer #2 (Public Review):

      Summary:

      In the manuscript, Hartman et al. present a detailed comparison of 6 distinct multiplexed in situ gene expression profiling technologies, including both academic and commercial systems.

      The main concept of the study is to evaluate publicly accessible mouse brain datasets provided by the platforms' developers, where optimal performance in showcasing their technologies is expected. The authors stress the difficulty of making a comparison with standard metrics, e.g., the count of total molecules per cell, considering the differences in gene panel sizes across platforms. To make a fair comparison, the authors conceived a metric of specificity performance, which is called "MECR", an average of mutually exclusive gene co-expression rates in the sample. The authors found that the rate mainly depends on the choice of cell segmentation method, thus reanalyzed 5 of these datasets (excluding STARmap PLUS, due to the lack of molecule location information) with an independent cell segmentation algorithm (i.e., Baysor). Based on the reanalysis, the authors clearly suggest the best-performing platform at the end of the manuscript.

      Strengths:

      I consider that the paper is a valuable contribution to the community, for the following two reasons:

      (1) As the authors mentioned, I fully agree that the spatial transcriptomics community indeed needs better metrics in terms of comparison across technologies, rather than traditional metrics, e.g., molecule counts per cell. In that regard, I believe introducing a new metric, MECR, is quite valuable.

      (2) This work highlights the differences in results based on the choice of cell segmentation used for each platform, which suggests a need for trying out different segmentation algorithms to derive the right results. I believe this is an urgent warning that should be widespread in the community as soon as possible.

      Weaknesses:

      I disagree with the conclusion of the manuscript where the authors compare the technologies and suggest the best-performing ones, because of the following major points:

      (1) As the authors mentioned, MECR is a measure of "specificity" not "sensitivity". Still, the comparison of sensitivity was done with the mean counts per cell (Figure 3e). However, I strongly disagree with using the mean counts per cell as a measure of sensitivity because the comparison was done with different gene panels. The counts per cell can be highly dependent on the choice of genes, especially due to optical crowding.

      (2) The authors compared sensitivity based on the Baysor cell segmentation, but in fact, Baysor uses spatial gene expression for cell segmentation, which depends on the sensitivity of the platform. Thus, a comparison of sensitivity based on an algorithm that is based on sensitivity seems to be nonsensical.

    1. Reviewer #2 (Public Review):

      Summary:

      This study takes a new approach to studying the role of corticofugal projections from auditory cortex to inferior colliculus. The authors performed two-photon imaging of cortico-recipient IC neurons during a click detection task in mice with and without lesions of auditory cortex. In both groups of animals, they observed similar task performance and relatively small differences in the encoding of task-response variables in the IC population. They conclude that non-cortical inputs to the IC can provide substantial task-related modulation, at least when AC is absent.

      Strengths:

      This study provides valuable new insight into big and challenging questions around top-down modulation of activity in the IC. The approach here is novel and appears to have been executed thoughtfully. Thus, it should be of interest to the community.

      Weaknesses:

      Analysis of single unit activity is limited in its scope.

    1. Reviewer #2 (Public Review):

      Summary:

      Hwang, Ran-Der et al utilized a CRISPR-Cas9 knockout in human retinal pigment epithelium (RPE1) cells to evaluate for suppressors of toxicity by the proteasome inhibitor MG132 and identified that knockout of dihydrolipoamide branched chain transacylase E2 (DBT) suppressed cell death. They show that DBT knockout in RPE1 cells does not alter proteasome or autophagy function at baseline. However, with MG132 treatment, they show a reduction in ubiquitinated proteins but with no change in proteasome function. Instead, they show that DBT knockout cells treated with MG132 have improved autophagy flux compared to wildtype cells treated with MG132. They show that MG132 treatment decreases ATP/ADP ratios to a greater extent in DBT knockout cells, and in accordance causes activation of AMPK. They then show downstream altered autophagy signaling in DBT knockout cells treated with MG132 compared to wild-type cells treated with MG132. Then they express the ALS mutant TDP43 M337 or expanded polyglutamine repeats to model Huntington's disease and show that knockdown of DBT improves cell survival in RPE1 cells with improved autophagic flux. They also utilize a Drosophila models and show that utilizing either a RNAi or CRISPR-Cas9 knockout of DBT improves eye pigment in TDP43M337V and polyglutamine repeat-expressing transgenic flies. Finally, they show evidence for increased DBT in postmortem spinal cord tissue from patients with ALS via both immunoblotting and immunofluorescence.

      Strengths:

      This is a mechanistic and well-designed paper that identifies DBT as a novel regulator of proteotoxicity via activating autophagy in the setting of proteasome inhibition. Major strengths include careful delineation of a mechanistic pathway to define how DBT is protective. These conclusions are well-justified.

      Weaknesses:

      None

    1. Reviewer #2 (Public Review):

      Summary:

      A new toolbox is presented that builds on previous toolboxes to distinguish between real and spurious oscillatory activity, which can be induced by non-sinusoidal waveshapes. Whilst there are many toolboxes that help to distinguish between 1/f noise and oscillations, not many tools are available that help to distinguish true oscillatory activity from spurious oscillatory activity induced in harmonics of the fundamental frequency by non-sinusoidal waveshapes. The authors present a new algorithm which is based on autocorrelation to separate real from spurious oscillatory activity. The algorithm is extensively validated using synthetic (simulated) data, and various empirical datasets from EEG, and intracranial EEG in various locations and domains (i.e. auditory cortex, hippocampus, etc.).

      Strengths:

      Distinguishing real from spurious oscillatory activity due to non-sinusoidal waveshapes is an issue that has plagued the field for quite a long time. The presented toolbox addresses this fundamental problem which will be of great use for the community. The paper is written in a very accessible and clear way so that readers less familiar with the intricacies of Fourier transform and signal processing will also be able to follow it. A particular strength is the broad validation of the toolbox, using synthetic, scalp EEG, EcoG, and stereotactic EEG in various locations and paradigms.

      Weaknesses:

      A weakness is that the algorithm seems to be quite conservative in identifying oscillatory activity which may render it only useful for analyzing very strong oscillatory signals (i.e. alpha), but less suitable for weaker oscillatory signals (i.e. gamma).

    1. Reviewer #2 (Public Review):

      Summary:

      The authors set out to non-invasively track neuronal development in rat neonates, which they achieved with notable success. However, the direct relationship between the results and broader conclusions regarding developmental biology and potential human implications is somewhat overstretched without further validation.

      Strengths:

      If adequately revised and validated, this work could have a significant impact on the field, providing a non-invasive tool for longitudinal studies of brain development and neurodevelopmental disorders in preclinical settings.

      Weaknesses:

      (1) Consistency and Logical Flow:

      - The manuscript suffers from a lack of strategic flow in some sections. Specifically, transitions between major findings and methodological discussions need refinement to ensure a logical progression of ideas. For example, the jump from the introduction of developmental trajectories and the technicalities of MRS (Magnetic Resonance Spectroscopy) processing on page 3 could benefit from a bridging paragraph that explicitly states the study's hypotheses based on existing literature gaps.

      (2) Scientific Rigour:

      - While the novel application of diffusion-weighted MRS is commendable, there's a notable gap in the rigorous validation of this approach against gold-standard histological or molecular techniques. Particularly, the assertions regarding the sphere fraction and morphological changes inferred from biophysical modelling mandates direct validation to solidify the claims made. A study comparing these in vivo findings with ex vivo confirmation in at least a subset of samples would significantly enhance the reliability of these conclusions.

      (3) Clarity and Novelty:

      - The manuscript often delves deeply into technical specifics at the expense of accessibility to readers not deeply familiar with MRS technology. The introduction and discussions would benefit from a clearer elucidation of why these specific metabolite markers were chosen and their known relevance to neuronal and glial cells, placing this in the context of what is novel compared to existing literature.<br /> - The novelty aspect could be reinforced by a more structured discussion on how this method could change the current understanding or practices within neurodevelopmental research, compared to the current state of the art.

      (4) Completeness:

      - The Discussion section requires expansion to offer a more comprehensive interpretation of how these findings impact the broader field of neurodevelopment and psychiatric disorders. Specifically, the implications for human studies or clinical translation are touched upon but not fully explored.<br /> - Further, while supplementary material provides necessary detail on methodology, key findings from these analyses should be summarized and discussed in the main text to ensure the manuscript stands complete on its own.

      (5) Grammar, Style, Orthography:

      - There are sporadic grammatical and typographical errors throughout the text which, while minor, detract from the overall readability. For example, inconsistencies in metabolite abbreviations (e.g., tCr vs Cr+PCr) should be standardized.

      (6) References and Additional Context:

      - The current reference list is extensive but lacks integration into the narrative. Direct comparisons with existing studies, especially those with conflicting or supportive findings, are scant. More dedicated effort to contextualize this work within the existing body of knowledge would be beneficial.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors show that co-expression of bassoon, RIBEYE, Cav1.3-alpha1, Cav-beta3, Cav-alpha2delta1, and RBP2 in a heterologus system (HEK293 cells) is sufficient to generate a protein complex resembling a presyanptic ribbon-type active zone both in morphology and in function (in clustering voltage-gated Ca channels and creating sites for localized Ca2+ entry). If the 3 separate Cav gene products are taken as a single protein (i.e. a Ca channel), the conclusion is that the core of a ribbon synapse comprises 4 proteins: bassoon holds the RIBEYE-containing ribbon to the plasma membrane, and RPB2 binds to bassoon and Ca channels, tethering the Ca channels to the presynaptic active zone.

      Strengths:

      Good use of a heterologous system with generally appropriate controls provides convincing evidence that a presynaptic ribbon-type active zone (without the ability to support exocytosis), with the ability to support localized Ca2+ entry (a key feature of ribbon-type pre-synapses) can be assembled from a few proteins.

      Weaknesses:

      (1) Relies on over-expression, which almost certainly diminishes the experimentally-measured parameters (e.g. pre-synapse clustering, localization of Ca2+ entry).<br /> (2) Are HEK cells the best model? HEK cells secrete substances and have a studied-endocytitic pathway, but they do not create neurosecretory vesicles. Why didn't the authors try to reconstitute a ribbon synapse in a cell that makes neurosecretory vesicles like a PC12 cell?<br /> (3) Related to 1 and 2: the Ca channel localization observed is significant but not so striking given the presence of Cav protein and measurements of Ca2+ influx distributed across the membrane. Presumably, this is the result of overexpression and an absence of pathways for pre-synaptic targeting of Ca channels. But, still, it was surprising that Ca channel localization was so diffuse. I suppose that the authors tried to reduce the effect of over-expression by using an inducible Cav1.3? Even so, the accessory subunits were constitutively over-expressed.

    1. Reviewer #2 (Public Review):

      Summary

      The manuscript "Uncovering Protein Ensembles: Automated Multiconformer Model building for X-ray Crystallography and Cryo-EM" by Wankowicz et al. describes updates to qFit, an algorithm for the characterization of conformational heterogeneity of protein molecules based on X-ray diffraction of Cryo-EM data. The work provides a clear description of the algorithm used by qFit. The authors then proceed to validate the performance of qFit by comparing to deposited X-ray entries in the PDB in the 1.2-1.5 Å resolution range as quantified by Rfree, Rwork-Rfree, detailed examination of the conformations introduced by qFit, and performance on stereochemical measures (MolProbity scores). To examine the effect of experimental resolution of X-ray diffraction data, they start from an ultra high-resolution structure (SARS-CoV2 Nsp3 macrodomain) to determine how the loss of resolution (introduced artificially) degrades the ability of qFit to correctly infer the nature and presence of alternate conformations. The authors observe a gradual loss of ability to correctly infer alternate conformations as resolution degrades past 2 Å. The authors repeat this analysis for a larger set of entries in a more automated fashion and again observe that qFit works well for structures with resolutions better than 2 Å, with a rapid loss of accuracy at lower resolution. Finally, the authors examine the performance of qFit on cryo-EM data. Despite a few prominent examples, the authors find only a handful (8) of datasets for which they can confirm a resolution better than 2.0 Å. The performance of qFit on these maps is encouraging and will be of much interest because cryo-EM maps will, presumably, continue to improve and because of the rapid increase in the availability of such data for many supramolecular biological assemblies. As the authors note, practices in cryo-EM analysis are far from uniform, hampering the development and assessment of tools like qFit.

      Strengths

      qFit improves the quality of refined structures at resolutions better than 2.0 A, in terms of reflecting true conformational heterogeneity and geometry. The algorithm is well-designed and does not introduce spurious or unnecessary conformational heterogeneity. I was able to install and run the program without a problem within a computing cluster environment. The paper is well-written and the validation thorough.<br /> I found the section on cryo-EM particularly enlightening, both because it demonstrates the potential for discovery of conformational heterogeneity from such data by qFit, and because it clearly explains the hurdles towards this becoming common practice, including lack of uniformity in reporting resolution, and differences in map and solvent treatment.

      Weaknesses

      Due to limitations of past software engineering, the paper lacks a careful comparison to past versions of qFit. In light of the extensive assessment of the current version of qFit, this is a minor concern.

      Although qFit can handle supramolecular assemblies and bound organic molecules, analysis in the manuscript is limited to single-chain X-ray structures. I look forward to demonstration of its utility in such cases in future work.

      Appraisal & Discussion

      Overall, the authors convincingly demonstrate that qFit provides a reliable means to detect and model conformational heterogeneity within high-resolution X-ray diffraction datasets and (based on a smaller sample) in cryo-EM density maps. This represents the state of the art in the field and will be of interest to any structural biologist or biochemist seeking to attain an understanding of the structural basis of the function of their system of interest, including potential allosteric mechanisms-an area where there are still few good solutions. That is, I expect qFit to find widespread use.

    1. Reviewer #2 (Public Review):

      In this study, Lopes and colleagues provide evidence to support the potential for gene therapy to restore expression of heparanase-2 (Hpse2) in mice mutant for this gene, as occurs in urofacial syndrome. Building on prior studies describing the nature of urinary tract dysfunction in Hpse2 mutant mice, the authors applied a gene therapy approach to determine whether gene replacement could be achieved, and if so, whether restoration of HPSE2 expression could mitigate the urinary tract dysfunction. Using a viral vector-based strategy, shown to be successful for gene replacement in humans, the authors demonstrated dose-dependent viral transduction of pelvic ganglia and liver in wild type mice. No impact on body weight or liver health was noted suggesting the approach was safe. Administration of AAV9/HPSE2 to Hpse2 mutant mice was associated with similar transduction of pelvic ganglia and a corresponding increase in heparanase-2 protein expression in this site. Analysis of bladder outflow tract and bladder body physiology using organ bath studies showed that re-expression of heparanase-2 in Hpse2 mutant mice was associated with restored neurogenic relaxation of the outflow tract and nerve-evoked contraction of the bladder body, albeit with notable variability in the response at lower frequencies across replicates. Differences were noted in the evoked response to carbachol with bladders from Hpse2 mutant male mice showing increased sensitivity upon HPSE2 replacement compared to wild type, but bladders from female mice showing no difference. Based on these findings the authors concluded that AAV9-based HPSE2 replacement is feasible and safe, mitigates some physiological deficits in outflow tract and bladder tissue from Hpse2 mutant mice and provides proof-of-principle for gene replacement approaches for other genes implicated in lower urinary tract disorders. Strengths include a solid experimental design and data in support of some of the conclusions, and discussion of limitations of the approach. Weaknesses include the variability, albeit acknowledged, in some of the functional assessments, and the limited investigation of bladder tissue morphology in Hpse2 mutant mice.

    1. Reviewer #2 (Public Review):

      Summary:

      Etcheverry et al. present two computational frameworks for exploring the functional capabilities of gene regulatory networks (GRNs). The first is a framework based on intrinsically motivated exploration, here used to reveal the set of steady states achievable by a given gene regulatory network as a function of initial conditions. The second is a behaviorist framework, here used to assess the robustness of steady states to dynamical perturbations experienced along typical trajectories to those steady states. In Figs. 1-5, the authors convincingly show how these frameworks can explore and quantify the diversity of behaviors that can be displayed by GRNs. In Figs. 6-9, the authors present applications of their framework to the analysis and control of GRNs, but the support presented for their case studies is often incomplete.

      Following revision, my overall perspective of the paper remains unchanged. The first half of the paper provides solid evidence to support an important conceptual framework. The evidence presented for the use cases in the latter half is incomplete; as the authors note, they are preliminary and meant to be built on in future work. I have included my first round comments below.

      Strengths:

      Overall, the paper presents an important development for exploring and understanding GRNs/dynamical systems broadly, with solid evidence supporting the first half of their paper in a narratively clear way.

      The behaviorist point of view for robustness is potentially of interest to a broad community, and to my knowledge introduces novel considerations for defining robustness in the GRN context.

      Some specific weaknesses, mostly concerning incomplete analyses in the second half of the paper:

      (1) The analysis presented in Fig. 6 is exciting but preliminary. Are there other appropriate methods for constructing energy landscapes from dynamical trajectories in gene regulatory networks? How do the results in this particular case study compare to other GRNs studied in the paper?

      Additionally, it is unclear whether the analysis presented in Fig. 6C is appropriate. In particular, if the pseudopotential landscapes are constructed from statistics of visited states along trajectories to the steady state, then the trajectories derived from dynamical perturbations do not only reflect the underlying pseudo-landscape of the GRN. Instead, they also include contributions from the perturbations themselves.

      (2) In Fig. 7, I'm not sure how much is possible to take away from the results as given here, as they depend sensitively on the cohort of 432 (GRN, Z) pairs used. The comparison against random networks is well-motivated. However, as the authors note, comparison between organismal categories is more difficult due to low sample size; for instance, the "plant" and "slime mold" categories each only has 1 associated GRN. Additionally, the "n/a" category is difficult to interpret.

      (3) In Fig. 8, it is unclear whether the behavioral catalog generated is important to the intervention design problem of moving a system in one attractor basin to another. The authors note that evolutionary searches or SGD could also be used to solve the problem. Is the analysis somehow enabled by the behavioral catalog in a way that is complementary to those methods? If not, comparison against those methods (or others e.g. optimal control) would strengthen the paper.

      (4) The analysis presented in Fig. 9 also is preliminary. The authors note that there exist many algorithms for choosing/identifying the parameter values of a dynamical system that give rise to a desired time series. It would be a stronger result to compare their approach to more sophisticated methods, as opposed to random search and SGD. Other options from the recent literature include Bayesian techniques, sparse nonlinear regression techniques (e.g. SINDy), and evolutionary searches. The authors note that some methods require fine-tuning in order to be successful, but even so, it would be good to know the degree of fine-tuning which is necessary compared to their method. [second round: the authors have included a comparison against CMA-ES, an evolutionary algorithm]

    1. Reviewer #2 (Public Review):

      In this study by Jing, Fooksman, and colleagues, a Blimp1-CreERT2-based genetic tracing study is employed to label plasma cells. Over the course of several months post-tamoxifen treatment, the only remaining labeled cells are long-lived plasma cells. This system provides a way to sort live long-lived plasma cells and compare them to unlabeled plasma cells, which contain a range of short-to-long-lived cells. From this analysis, several observations are made: 1) the turnover rate of plasma cells is greater in the spleen than in the bone marrow; 2) the turnover rate is highest early in life; 3) subtle transcriptional and cell surface marker differences distinguish long- from shorter-lived plasma cells; 4) long-lived plasma cells in the bone marrow are sessile and localize in clusters with each other; 5) CXCR4 is required for plasma cell retention in these clusters and in the bone marrow; 6) Repertoire analysis hints that the selection of long-lived plasma cells is not random for any cell that lands in the bone marrow.

      Strengths:

      (1) The genetic timestamping approach is a clever and functional way to separate plasma cells of differing longevities.

      (2) This approach led to the identification of several markers that could help prospective separation of long-lived plasma cells from others.

      (3) Functional labeling of long-lived plasma cells allowed for a higher resolution analysis of transcriptomes and motility than was previously possible.

      (4) The genetic system allowed for a revisitation of the importance of CXCR4 in plasma cell retention and survival.

      Weaknesses:

      (1) Most of the labeling studies, likely for practical reasons, were done on polyclonal rather than antigen-specific plasma cells. The triggers of these responses could vary based on age at the time of exposure, anatomical sites, etc. How these differences might influence markers and transcriptomes, independently of longevity, is not completely known.

      (2) The fraction of long-lived plasma cells in the unlabeled fraction varies with age, potentially diluting differences between long- and short-lived plasma cells.

      (3) The authors suggest their data favors a model by which plasma cells compete for niche space. Yet there is no evidence presented here that these niches are limiting. While a finite number of plasma cells may occupy a single niche (Figure 2), it may be that these niches overall are abundant in the bone marrow and do not restrict LLPC numbers. Robinson...Tarlinton and colleagues (Immunity, 2023) in fact provide experimental evidence against an extrinsic limit.

      (4) The functional importance of the observed transcriptome differences between long- and shorter-lived plasma cells is unknown. An assessment as to whether these differences are conserved in human long- and short-lived bone marrow plasma cells might provide circumstantial supporting evidence that these changes are important for longevity.

    1. Reviewer #2 (Public Review):

      Summary:

      Environmental influences on development are ubiquitous, affecting many phenotypes in organisms. However molecular genetic and cellular mechanisms transducing environmental signals are still only barely understood. This study examines part of one such intracellular mechanism in a polyphenic (or dimorphic) aphid.

      Strengths:

      While other published reports have linked phenotypic plasticity to RNA editing before, this study reports such an interaction in insects. The study uses a wide array of molecular tools to identify connections upstream and downstream of the RNA editing to elucidate the regulatory mechanism, which is illuminating.

      Weaknesses:

      While this system is intriguing, this report does not foster confidence in its conclusions. Many of the analyses seem based on very small sample sizes. It is itself problematic that sample sizes are not obvious in most figures, although based on Methods section covering RNAseq, they seem to be either 3, 6 or 9, depending on whether stages were pooled, but that point is not made clear. With such small sample sizes, statistical tests of any kind are unreliable. Besides the ambiguity on sample sizes, it's unclear what error bars or whiskers show in plots throughout this study. When sample sizes are small estimates of variance are not reliable. Student's t-test is not appropriate for comparisons with such small sample sizes. Presently, it is not possible to replicate the tests shown in Figures 3, 4 and 6. (Besides the HT-seq reads, other data should also be made publicly available, following the journal's recommendations.) Regardless, effect sizes in some comparisons (Fig 3J, 4A-C, 6E,H) are clearly not large, making confidence in conclusions low. The authors should be cautious about over-interpreting these data.

    1. Reviewer #3 (Public Review):

      Summary:

      Object classification serves as a vital normative principle in both the study of the primate ventral visual stream and deep learning. Different models exhibit varying classification performances and organize information differently. Consequently, a thriving research area in computational neuroscience involves identifying meaningful properties of neural representations that act as bridges connecting performance and neural implementation. In the work of Lindsey and Issa, the concept of factorization is explored, which has strong connections with emerging concepts like disentanglement [1,2,3] and abstraction [4,5]. Their primary contributions encompass two facets: (1) The proposition of a straightforward method for quantifying the degree of factorization in visual representations. (2) A comprehensive examination of this quantification through correlation analysis across deep learning models.

      To elaborate, their methodology, inspired by prior studies [6], employs visual inputs featuring a foreground object superimposed onto natural backgrounds. Four types of scene variables, such as object pose, are manipulated to induce variations. To assess the level of factorization within a model, they systematically alter one of the scene variables of interest and estimate the proportion of encoding variances attributable to the parameter under consideration.

      The central assertion of this research is that factorization represents a normative principle governing biological visual representation. The authors substantiate this claim by demonstrating an increase in factorization from macaque V4 to IT, supported by evidence from correlated analyses revealing a positive correlation between factorization and decoding performance. Furthermore, they advocate for the inclusion of factorization as part of the objective function for training artificial neural networks. To validate this proposal, the authors systematically conduct correlation analyses across a wide spectrum of deep neural networks and datasets sourced from human and monkey subjects. Specifically, their findings indicate that the degree of factorization in a deep model positively correlates with its predictability concerning neural data (i.e., goodness of fit).

      Strengths:

      The primary strength of this paper is the authors' efforts in systematically conducting analysis across different organisms and recording methods. Also, the definition of factorization is simple and intuitive to understand.

      Weaknesses:

      Comments on revised version:

      I thank the authors for addressing the weaknesses I brought up regarding the manuscript.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors develop a new neoantigen prediction tool (NAP-CNB) which primarily predicts neoantigens based on expression (RNAseq) and ranks mutations using binding affinity. The validated predicted neoantigens in mice demonstrate that neoantigens with higher expression (but not necessarily the highest immunogenicity) lead to the greatest tumor control.

      Strengths:

      There is in vivo validation of the neoantigens.<br /> Demonstrates comparability to other prediction algorithms that are commonly used.<br /> Demonstrates that expression holds a higher value than T-cell responses in actual tumor control.

      Weaknesses:

      Binding affinity does not always predict immune responses or tumor control in vivo which is used as part of the selection criteria.

    1. Reviewer #2 (Public Review):

      Summary:

      In the present study, the authors select the coiled-coil protein CCDC113 and revealed its expression in the stages of spermatogenesis in the testis as well as in the different steps of spermiogenesis with expression also mapped in the different parts of the epididymis. Gene deletion led to male infertility in CRISPR-Cas9 KO mice and PAS staining showed defects mapped in the different stages of the seminiferous cycle and through the different steps of spermiogenesis. EM and IF with several markers of testis germ cells and spermatozoa in the epididymis indicated defects in flagella and head-to-tail coupling for flagella as well as acephaly. The authors' co-IP experiments of expressed CCDC113 in HEK293T cells indicated an association with CFAP91 and DRC2 as well as SUN5 and CENTLEIN.

      The authors propose that CCDC113 connects CFAP91 and DRC2 to doublet microtubules of the axoneme and CCDC113's association with SUN5 and CENTLEIN to stabilize the sperm flagellum head-to-tail coupling apparatus. Extensive experiments mapping CCDC13 during postnatal development are reported as well as negative co-IP experiments and studies with SUN5 KO mice as well as CENTLEIN KO mice.

      Strengths:

      The authors provide compelling observations to indicate the relevance of CCDC113 to flagellum formation with potential protein partners. The data are relevant to sperm flagella formation and its coupling to the sperm head.

      Weaknesses:

      The authors' observations are consistent with the model proposed but the authors' conclusions for the mechanism may require direct demonstration in sperm flagella. The Walton et al paper shows human CCDC96/113 in cilia of human respiratory epithelia. An application of such methodology to the proteins indicated by Wu et al for the sperm axoneme and head-tail coupling apparatus is eagerly awaited as a follow-up study.

    1. Reviewer #2 (Public Review):

      Summary:

      The ability of researchers to identify and compare enhancers across different species is an important facet of understanding gene regulation across development and evolution. Many traditional methods of enhancer identification involve sequence alignments and manual annotations, limiting the ability to expand the scope of regulatory investigations into many species. In order to overcome this obstacle, the authors apply a previously published machine learning method called SCRMshaw to predict enhancers across 33 insect species, using D. melanogaster as a reference. SCRMshaw operates through the selection of a few dozen training loci in a reference genome, marking genomic loci in other species that are significantly enriched with similar k-mer distributions relative to randomly selected genomic backgrounds. Upon identification of predicted enhancer regions, the authors perform post-processing step filtering and identify the most likely predicted enhancer candidates based on the proximity of an orthologous target gene. They then perform reporter gene analysis to validate selected predicted enhancers from other species in D. melanogaster. The analysis of the expression patterns returned variable results across the selected predicted regions.

      Strengths:

      The authors provide annotations of predicted regions across dozens of insect species, with the intention of expanding and refining the annotations for use by the scientific field. This is useful, as researchers will be able to use the identified annotations for their own work or as a benchmark for future methods. This work also showcases the flexible and versatile nature of SCRMshaw, which can readily obtain predictions using training sets of genomic loci requiring only a few dozen annotations as input. SCRMshaw does not require sequence alignments of the enhancers and can operate without prior knowledge of the cis-regulatory sequence rules such as transcription factor binding motifs, making it a useful tool to explore the evolution of enhancers in further distant and less well-studied species.

      Weaknesses:

      This work provides predicted enhancer annotations across many insect species, with reporter gene analysis being conducted on selected regions to test the predictions. However, the code for the SCRMshaw analysis pipeline used in this work is not made available, making reproducibility of this work difficult. Additionally, while the authors claim the predicted enhancers are available within the REDfly database, the predicted enhancer coordinates are currently not downloadable as Supplementary Material or from a linked resource.

      The authors do not validate or benchmark the application of SCRMshaw against other published methods, nor do they seek to apply SCRMshaw under a variety of conditions to confirm the robustness of the returned predicted enhancers across species. Since SCRMshaw relies on an established k-mer enrichment of the training loci, its performance is presumably highly sensitive to the selection of training regions as well as the statistical power of the given k-mer counts. The authors do not justify their selection of training regions by which they perform predictions.

      While there is an attempt made to report and validate the annotated predicted enhancers using previously published data and tools, the validation lacks the depth to conclude with confidence that the predicted set of regions across each species is of high quality. In vivo, reporter assays were conducted to anecdotally confirm the validity of a few selected regions experimentally, but even these results are difficult to interpret. There is no large-scale attempt to assess the conservation of enhancer function across all annotated species.

      Lastly, it is suggested that predicted regions are derived from the shared presence of sequence features such as transcription factor binding motifs, detected through k-mer enrichment via SCRMshaw. This assumption has not been examined, although there are public motif discovery tools that would be appropriate to discover whether SCRMshaw is assigning predicted regions based on previously understood motif grammar, or due to other sequence patterns captured by k-mer count distributions. Understanding the sequence-derived nature of what drives predictions is within the scope of this work and would boost confidence in the predicted enhancers, even if it is limited to a few training examples for the sake of clarity of interpretation.

    1. Reviewer #3 (Public Review):

      Overall:

      ExoIII has been described and commercialized as a dsDNA specific nuclease. Several lines of evidence, albeit incomplete, have indicated this may not be entirely true. Therefore, Wang et al comprehensively characterize the endonuclease and exonuclease enzymatic activities of ExoIII on ssDNA. A strength of the manuscript is the testing of popular kits that utilize ExoIII and coming up with and testing practical solutions (e.g., addition of SSB proteins ExoIII variants such as K121A and varied assay conditions).

      Comments:

      (1) The footprint of ExoIII on DNA is expected to be quite a bit larger than 5-nt, see structure in manuscript reference #5. Therefore, the substrate design in Figure 1A seems inappropriate for studying the enzymatic activity and it seems likely that ExoIII would be interacting with the FAM and/or BHQ1 ends as well as the DNA. Could this cause quenching? Would this represent real ssDNA activity? Is this figure/data necessary for the manuscript?<br /> (2) Based on the descriptions in the text, it seems there is activity with some of the other nucleases in 1C, 1F, and 1I other than ExoIII and Cas12a. Can this be plotted on a scale that allows the reader to see these relative to one other?<br /> (3) The sequence alignment in Figure 2N and corresponding text indicate a region of ExoIII lacking in APE1 that may be responsible for their differences in substrate specificity in regards to ssDNA. Does the mutational analysis support this hypothesis?

    1. Reviewer #3 (Public Review):

      Summary:

      The study offers a compelling molecular model for the organization of rootlets, a critical organelle that links cilia to the basal body. Striations have been observed in rootlets, but their assembly, composition, and function remain unknown. While previous research has explored rootlet structure and organization, this study delivers an unprecedented level of resolution, valuable to the centrosome and cilia field. The authors isolated rootlets from mice's eyes. They apply EM to partially purified rootlets (first negative stain, then cryoET). From these micrographs, they observed striations along the membranes along the rootlet but no regular spacing was observed.

      The thickness of the sample and membranes prevented good contrast in the tomograms. Thus they further purified the rootlets using detergent, which allowed them to obtain cryoET micrographs of the rootlets with greater details. The tomograms were segmented and further processed to improve the features of the rootlet structures. From their analysis, they described 3 regular cross-striations and amorphous densities, which are connected perpendicularly to filaments along the length of the rootlets. They propose that various proteins provide the striations and rootletin (mouse homolog of human c-nap1) forms parallel coiled coils that run along the rootlet. Overall their data provide a detailed model for the molecular organization of the rootlet.

      The major strength is that this high-quality study uses state-of-the-art cryo-electron tomography, sub-tomogram averaging, and image analysis to provide a model of the molecular organization of rootlets. The micrographs are exceptional, with excellent contrast and details, which also implies the sample preparation was well optimized to provide excellent samples for cryo-ET. The manuscript is also clear and accessible.

      This research marks a significant step forward in our understanding of rootlets' molecular organization.

    1. Reviewer #2 (Public Review):

      Summary:

      Dantzer and colleagues are investigating the pivotal role of ß-catenin, a gene that undergoes mutation in various cancer cells, and its influence on promoting the evasion of immune cells. In their initial experiments, the authors developed a HepG2 mutated ß-catenin KD model, conducting transcriptional and proteomic analyses. The results revealed that the silencing of mutated ß-catenin in HepG2 cells led to an up-regulation in the expression of exosome biogenesis genes.

      Furthermore, the researchers verified that these KD cells exhibited an increased production of exosomes, with the mutant form of ß-catenin concurrently decreasing the expression of SDC4 and Rab27a. Intriguingly, applying a GSK inhibitor to the cells resulted in reduced expression of SDC4 and Rab27a. Subsequent findings indicated that mutated ß-catenin actively facilitates immune escape through exosomes, and silencing exosome biogenesis correlates with a decrease in immune cell infiltration.<br /> In a crucial clinical correlation, the study demonstrated that patients with ß-catenin mutations exhibited low levels of exosome biogenesis.

      Strengths:

      Overall, the data robustly supports the outlined conclusions, and the study is commendably designed and executed. However, there are a few suggestions for manuscript improvement.

      Weaknesses: No weakness

    1. Reviewer #2 (Public Review):

      Summary

      Starting from an AlphaFold2 model of the outward-facing conformation of the GAT1 transporter, the authors primarily use state-of-the-art MD simulations to dissect the role of the two Na+ ions that are known to be co-transported with the substrate, GABA (and a co-transported Cl- ion). The simulations indicated that Na+ binding to OF GAT depends on the electrostatic environment. The authors identify an extracellular recruiting site including residues D281 and E283 which they hypothesized to increase transport by locally increasing the available Na+ concentration and thus increasing binding of Na+ to the canonical binding sites NA1 and NA2. The charge-neutralizing double mutant D281A-E283A showed decreased binding in simulations. The authors performed GABA uptake experiments and whole-cell patch clamp experiments that taken together validated the hypothesis that the Na+ staging site is important for transport due to its role in pulling in Na+.

      Detailed analysis of the MD simulations indicated that Na+ binding to NA2 has multiple structural effects: The binding site becomes more compact (reminiscent of induced fit binding) and there is some evidence that it stabilizes the outward-facing conformation.

      Binding to NA1 appears to require the presence of the substrate, GABA, whose carboxylate moiety participates in Na+ binding; thus the simulations predict cooperativity between binding of GABA and Na+ binding to NA1.

      Strengths

      - MD simulations were used to propose a hypothesis (the existence of the staging Na+ site) and then tested with a mutant in simulations AND in experiments. This is an excellent use of simulations in combination with experiments.

      - A large number of repeat MD simulations are generally able to provide a consistent picture of Na+ binding. Simulations are performed according to current best practices and different analyses illuminate the details of the molecular process from different angles.

      - The role of GABA in cooperatively stabilizing Na+ binding to the NA1 site looks convincing and intriguing.

      Weaknesses

      - Assessing the effects of Na+ binding on the large scale motions of the transporter is more speculative because the PCA does not clearly cover all of the conformational space and the use of an AlphaFold2 model may have introduced structural inconsistencies. For example, it is not clear if movements of the inner gate are due to a AF2 model that's not well packed or really a feature of the open outward conformation.

      - Quantitative analyses are difficult with the existing data; for example, the tICA "free energy" landscape is probably not converged because unbinding events haven't been observed.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors report results of QM/MM simulations and kinetic measurements for the phosphoryl-transfer step in adenylate kinase. The main assertion of the paper is that a wide transition state ensemble is a key concept in enzyme catalysis as a strategy to circumvent entropic barriers. This assertion is based on observation of a "structurally wide" set of energetically equivalent configurations that lie along the reaction coordinate in QM/MM simulations, together with kinetic measurements that suggest a decrease of the entropy of activation.

      Strengths:

      The study combines theoretical calculations and supporting experiments.

      Weaknesses:

      The current paper hypothesizes a "wide" transition state ensemble as a catalytic strategy and key concept in enzyme catalysis. Overall, it is not clear the degree to which this hypothesis is fully supported by the data. The reasons are as follows:

      (1) Enzyme catalysis reflects a rate enhancement with respect to a baseline reaction in solution. In order to assert that something is part of a catalytic strategy of an enzyme, it would be necessary to demonstrate from simulations that the activation entropy for the baseline reaction is indeed greater and the transition state ensemble less "wide". Alternatively stated, when indicating there is a "wide transition state ensemble" for the enzyme system - one needs to indicate that is with respect to the non-enzymatic reaction. However, these simulations were not performed and the comparisons not demonstrated. The authors state "This chemical step would take about 7000 years without the enzyme" making it impossible to measure; nonetheless, the simulations of the nonenzymatic reaction would be fairly straight forward to perform in order to demonstrate this key concept that is central to the paper. Rather, the authors examine the reaction in the absence of a catalytically important Mg ion.

      (2) The observation of a "wide conformational ensemble" is not a quantitative measure of entropy. In order to make a meaningful computational prediction of the entropic contribution to the activation free energy, one would need to perform free energy simulations over a range of temperatures (for the enzymatic and non-enzymatic systems). Such simulations were not performed, and the entropy of activation was thus not quantified by the computational predictions. The authors instead use a wider TS ensemble as a proxy for larger entropy, and miss an opportunity to compare directly to the experimental measurements.

    1. Reviewer #2 (Public Review):

      In this work, the authors elaborate on an analytically tractable, continuous-attractor model to study an idealized neural network with realistic spiking phase precession/procession. The key ingredient of this analysis is the inclusion of a mechanism for slow firing-rate adaptation in addition to the otherwise fast continuous-attractor dynamics. The latter continuous-attractor dynamics classically arises from a combination of translation invariance and nonlinear rate normalization.

      For strong adaptation/weak external input, the network naturally exhibits an internally generated, travelling-wave dynamics along the attractor with some characteristic speed. For small adaptation/strong external stimulus, the network recovers the classical externally driven continuous-attractor dynamics. Crucially, when both adaptation and external input are moderate, there is a competition with the internally generated and externally generated mechanisms leading to an oscillatory tracking regime. In this tracking regime, the population firing profile oscillates around the neural field tracking the position of the stimulus. The authors demonstrate by a combination of analytical and computational arguments that oscillatory tracking corresponds to realistic phase precession/procession. In particular the authors can account for the emergence of unimodal and bimodal cells, as well as some other experimental observations with respect the dependence of phase precession/procession on the animal's locomotion.

      The strengths of this work are at least three-fold: 1) Given its simplicity, the proposed model has a surprisingly large explanatory power of the various experimental observations. 2) The mechanism responsible for the emergence of precession/procession can be understood as a simple yet rather illuminating competition between internally driven and externally driven dynamical trends. 3) Amazingly, and under some adequate simplifying assumptions, a great deal of analysis can be treated exactly, which allows for a detailed understanding of all parametric dependencies. This exact treatment culminates with a full characterization of the phase space of the network dynamics, as well as the computation of various quantities of interest, including characteristic speeds and oscillating frequencies.

      As mentioned by the authors themselves, the main limitation of this work is that it deals with a very idealized model and it remains to see how the proposed dynamical behaviors would persists in more realistic models. For example, the model is based on a continuous attractor model that assumes perfect translation-invariance of the network connectivity pattern. Would the oscillating tracking behavior persist in the presence of connection heterogeneities? Another limitation is that the system needs to be tuned to exhibit oscillation within the theta range and that this tuning involves a priori variable parameters such as the external input strength. Is the oscillating-tracking behavior overtly sensitive to input strength variations? The author mentioned that an external pacemaker can serve to drive oscillation within the desired theta band but there is no evidence presented supporting this. A final and perhaps secondary limitation has to do with the choice of parameter, namely the time constant of neural firing which is chosen around 3ms. This seems rather short given that the fast time scale of rate models (excluding synaptic processes) is usually given by the membrane time constant, which is typically about 15ms. I suspect this latter point can easily be addressed.

    1. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Arabanian and colleagues presents studies showing how inhibition of mitochondrial transcription and replication with a novel inhibitor of the mitochondrial polymerase, IMT, can promote AML cell death in combination with the Bcl2 inhibitor venetoclax. They further show that this combinatorial efficacy is evident in vivo in both the AML cell line MV411 and in a PDX model. Given the multiple studies showing the importance of Oxphos in maintaining AML cell survival, the current studies provide an additional strategy to inhibit Oxphos and thus improve the therapeutic management of AML.

      Strengths:

      A novel aspect of this work is that IMT is a new class of mitochondrial inhibitor that acts by inhibiting the mitochondrial polymerase. In addition, the demonstration of therapeutic efficacy both in vitro and in vivo (including with PDX), together with some data showing minimal toxicity, adds to the impact of this work. Their overall conclusion that IMT increases the potency of Vex in treating AMLs is supported.

      Weaknesses:

      There are several deficiencies that should be addressed to substantiate the rigor and impact of this study. Of most importance, they need to show that IMT actually inhibits the mitochondrial polymerase in AML cells, and there are additional concerns with their models that if addressed would improve the ability of IMT to be developed clinically.

    1. Reviewer #2 (Public Review):

      Summary:

      In this work, the authors consider why grid cells might exhibit hexagonal symmetry - i.e., for what behavioral function might this hexagonal pattern be uniquely suited? The authors propose that this function is the encoding of spatial trajectories in 2D space. To support their argument, the authors first introduce a set of definitions and axioms, which then lead to their conclusion that a hexagonal pattern is the most efficient or parsimonious pattern one could use to uniquely label different 2D trajectories using sequences of cells. The authors then go through a set of classic experimental results in the grid cell literature - e.g. that the grid modules exhibit a multiplicative scaling, that the grid pattern expands with novelty or is warped by reward, etc. - and describe how these results are either consistent with or predicted by their theory. Overall, this paper asks a very interesting question and provides an intriguing answer. However, the theory appears to be extremely flexible and very similar to ideas that have been previously proposed regarding grid cell function.

      Major strengths:

      The general idea behind the paper is very interesting - why *does* the grid pattern take the form of a hexagonal grid? This is a question that has been raised many times; finding a truly satisfying answer is difficult but of great interest to many in the field. The authors' main assertion that the answer to this question has to do with the ability of a hexagonal arrangement of neurons to uniquely encode 2D trajectories is an intriguing suggestion. It is also impressive that the authors considered such a wide range of experimental results in relation to their theory.

      Major weaknesses:

      One major weakness I perceive is that the paper overstates what it delivers, to an extent that I think it can be a bit confusing to determine what the contributions of the paper are. In the introduction, the authors claim to provide "mathematical proof that ... the nature of the problem being solved by grid cells is coding of trajectories in 2-D space using cell sequences. By doing so, we offer a specific answer to the question of why grid cell firing patterns are observed in the mammalian brain." This paper does not provide proof of what grid cells are doing to support behavior or provide the true answer as to why grid patterns are found in the brain. The authors offer some intriguing suggestions or proposals as to why this might be based on what hexagonal patterns could be good for, but I believe that the language should be clarified to be more in line with what the authors present and what the strength of their evidence is.

      Relatedly, the authors claim that they find a teleological reason for the existence of grid cells - that is, discover the function that they are used for. However, in the paper, they seem to instead assume a function based on what is known and generally predicted for grid cells (encode position), and then show that for this specific function, grid cells have several attractive properties.

      There is also some other work that seems very relevant, as it discusses specific computational advantages of a grid cell code but was not cited here: https://www.nature.com/articles/nn.2901.

      A second major weakness was that some of the claims in the section in which they compared their theory to data seemed either confusing or a bit weak. I am not a mathematician, so I was not able to follow all of the logic of the various axioms, remarks, or definitions to understand how the authors got to their final conclusion, so perhaps that is part of the problem. But below I list some specific examples where I could not follow why their theory predicted the experimental result, or how their theory ultimately operated any differently from the conventional understanding of grid cell coding. In some cases, it also seemed that the general idea was so flexible that it perhaps didn't hold much predictive power, as extra details seemed to be added as necessary to make the theory fit with the data.

      I don't quite follow how, for at least some of their model predictions, the 'sequence code of trajectories' theory differs from the general attractor network theory. It seems from the introduction that these theories are meant to serve different purposes, but the section of the paper in which the authors claim that various experimental results are predicted by their theory makes this comparison difficult for me to understand. For example, in the section describing the effect of environmental manipulations in a familiar environment, the authors state that the experimental results make sense if one assumes that sequences are anchored to landmarks. But this sounds just like the classic attractor-network interpretation of grid cell activity - that it's a spatial metric that becomes anchored to landmarks.

      It was not clear to me why their theory predicted the field size/spacing ratio or the orientation of the grid pattern to the wall.

      I don't understand how repeated advancement of one unit to the next, as shown in Figure 4E, would cause the change in grid spacing near a reward.

      I don't follow how this theory predicts the finding that the grid pattern expands with novelty. The authors propose that this occurs because the animals are not paying attention to fine spatial details, and thus only need a low-resolution spatial map that eventually turns into a higher-resolution one. But it's not clear to me why one needs to invoke the sequence coding hypothesis to make this point.

      The last section, which describes that the grid spacing of different modules is scaled by the square root of 2, says that this is predicted if the resolution is doubled or halved. I am not sure if this is specifically a prediction of the sequence coding theory the authors put forth though since it's unclear why the resolution should be doubled or halved across modules (as opposed to changed by another factor).

    1. Reviewer #2 (Public Review):

      Summary:

      The authors demonstrated that maternal choline supplementation (MCS) improved spatial memory, reduced a marker of hyperexcitability/epilepsy (FosB expression), and reduced oxidative stress (as measured by restored NeuN expression) in an Alzheimer's disease mouse model. This multidisciplinary study spanned behavior, EEG, and histological measures and constituted a large amount of work. Overall, the results supported that MCS does have important effects on hippocampal function, which may substantially impact human AD.

      Strengths:

      The strength of the group was the ability to monitor the incidence of interictal spikes (IIS) over the course of 1.2-6 months in the Tg2576 Alzheimer's disease model, combined with meaningful behavioral and histological measures. The authors were able to demonstrate MCS had protective effects in Tg2576 mice, which was particularly convincing in the hippocampal novel object location task.

      Weaknesses:

      Although choline deficiency was associated with impaired learning and elevated FosB expression, consistent with increased hyperexcitability, IIS was reduced with both low and high choline diets. Although not necessarily a weakness, it complicates the interpretation and requires further evaluation.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors proposed a method to quantitatively analyze 3D live imaging data of early developing embryos, using ascidian development as an example. For this purpose, the previously proposed level set method was used to computationally track the temporal evolution of reference points introduced on the embryo surface. Then, from the obtained three-dimensional trajectories, the velocity field was obtained, from which the strain rate field was computed according to the idea of continuum mechanics. The information in the strain rate field was reduced to a scalar field, determined by taking the square root of the sum of the squares of the eigenvalues. The scalar field is then further decomposed into a spectrum using spherical harmonics. In this paper, the authors focused on the modes with lower order with real coefficients. The time evolution of these modes was analyzed using wavelet transforms. The authors claimed that the results reflected the developmental stages of ascidian embryos.

      Strengths:

      In this way, this manuscript proposes a pipeline of analyses combining various methods. The strength of this method lies in its ability to quantitatively analyze the deformation of the entire embryo without the requirement for cellular segmentation and tracking.

      Weaknesses:

      The limitations of the proposed analysis pipeline are not clearly indicated. Claims such as the identification of developmental stages need more quantitative validation. In addition, it is not clearly shown how the proposed method can distinguish between the superposition of individual cell behavior and the collective behavior of cells.

    1. Reviewer #2 (Public Review):

      Summary:

      The manuscript reports non-invasive measures of activity and neurochemical profiles of the visual cortex in congenitally blind patients who recovered vision through the surgical removal of bilateral dense cataracts. The declared aim of the study is to find out how restoring visual function after several months or years of complete blindness impacts the balance between excitation and inhibition in the visual cortex.

      Strengths:

      The findings are undoubtedly useful for the community, as they contribute towards characterising the many ways this special population differs from normally sighted individuals. The combination of MRS and EEG measures is a promising strategy to estimate a fundamental physiological parameter - the balance between excitation and inhibition in the visual cortex, which animal studies show to be heavily dependent upon early visual experience. Thus, the reported results pave the way for further studies, which may use a similar approach to evaluate more patients and control groups.

      Weaknesses:

      The main issue is the lack of an appropriate comparison group or condition to delineate the effect of sight recovery (as opposed to the effect of congenital blindness). Few previous studies suggested an increased excitation/Inhibition ratio in the visual cortex of congenitally blind patients; the present study reports a decreased E/I ratio instead. The authors claim that this implies a change of E/I ratio following sight recovery. However, supporting this claim would require showing a shift of E/I after vs. before the sight-recovery surgery, or at least it would require comparing patients who did and did not undergo the sight-recovery surgery (as common in the field).

      MR Spectroscopy shows a reduced GLX/GABA ratio in patients vs. sighted controls; however, this finding remains rather isolated, not corroborated by other observations. The difference between patients and controls only emerges for the GLX/GABA ratio, but there is no accompanying difference in either the GLX or the GABA concentrations. There is an attempt to relate the MRS data with acuity measurements and electrophysiological indices, but the explorative correlational analyses do not help to build a coherent picture. A bland correlation between GLX/GABA and visual impairment is reported, but this is specific to the patients' group (N=10) and would not hold across groups (the correlation is positive, predicting the lowest GLX/GABA ratio values for the sighted controls - the opposite of what is found). There is also a strong correlation between GLX concentrations and the EEG power at the lowest temporal frequencies. Although this relation is intriguing, it only holds for a very specific combination of parameters (of the many tested): only with eyes open, only in the patient group.

      For these reasons, the reported findings do not allow us to draw firm conclusions on the relation between EEG parameters and E/I ratio or on the impact of early (vs. late) visual experience on the excitation/inhibition ratio of the human visual cortex.

    1. Reviewer #2 (Public Review):

      In this manuscript, Hallacy et al. used a compressed sensing-based optogenetic screening method to investigate the crucial neurons that regulate pathogenic avoidance behavior in C. elegans. They further substantiate their findings using complementary optogenetic activation and imaging techniques to confirm the roles of the key neurons identified through extensive screening efforts. Notably, they identified AIY and SIA as pivotal neurons in the dynamic process of pathogenic avoidance. Their significant discovery is the delayed or stalled reentry process, which drives avoidance behavior; to my knowledge, this dynamic has not been previously documented. Additionally, the successful integration of quantitative optogenetic tools and compressed sensing algorithms is noteworthy, demonstrating the potential for obtaining highly quantitative data from the C. elegans nervous system. This approach is quite rare in this field, yet it represents a promising direction for studying this simple nervous system.

      However, the paper's main weakness lies in its lack of a detailed mechanism explaining how the delayed reentry process directly influences the actual locomotor output that results in avoidance. The term 'delayed reentry' is used as a dynamic metric for quantifying the screening, yet the causal link between this metric and the mechanistic output remains unclear. Despite this, the study is well-structured, with comprehensive control experiments, and is very well constructed.

    1. Reviewer #2 (Public Review):

      Summary:

      This work reports the existence of spike timing-dependent long-term depression (t-LTD) of excitatory synaptic strength at two synapses of the dentate gyrus granule cell, which are differently connected to the entorhinal cortex via either the lateral or medial perforant pathways (LPP or MPP, respectively). Using patch-clamp electrophysiological recording of tLTD in combination with either pharmacology or a genetically modified mouse model, they provide information on the differences in the molecular mechanism underlying this t-LTD at the two synapses.

      Strengths:

      The two synapses analyzed in this study have been understudied. This new data thus provides interesting new information on a plasticity process at these synapses, and the authors demonstrate subtle differences in the underlying molecular mechanisms at play. Experiments are in general well controlled and provide robust data that are properly interpreted.

      Weaknesses:

      - Caution should be taken in the interpretation of the results to extrapolate to adult brain as the data were obtained in P13-21 days old mice, a period during which synapses are still maturing and highly plastic.<br /> - In experiments where the drug FK506 or thapsigargin are loaded intracellularly, the concentrations used are as high as for extracellular application. Could there be an error of interpretation when stating that the targeted actors are necessarily in the post-synaptic neuron? Is it not possible for the drug to diffuse out of the cell as it is evident that it can enter the cell when applied extracellularly?<br /> - The experiments implicating glutamate release from astrocytes in t-LTD would require additional controls to better support the conclusions made by the authors. As the data stand, it is not clear how the authors identified astrocytes to load BAPTA and if dnSNARE expression in astrocytes does not indirectly perturb glutamate release in neurons.

      Significance:

      While this is the first report of t-LTD at these synapses, this plasticity process has been mechanistically well investigated at other synapses in the hippocampus and in the cortex. Nevertheless, this new data suggests that mechanistic differences in the induction of t-LTD at these two DG synapses could contribute to the differences in the physiological influence of the LPP and MPP pathways.

  2. www.researchsquare.com www.researchsquare.com
    1. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Gao et al. described a study identifying the role of FAK in fine-tuning the activation levels of ERK signaling in BRAF-V600E-driven colorectal cancer. The authors generated new mouse models combining Vill-Cre mediated BRAF-V600E expression with FAK deletion. Analyses of intestinal tumor phenotypes revealed that FAK-loss promotes BRAF-V600E-induced tumor formation, specifically in the cecum. Interestingly, these tumors closely resemble human sessile serrated adenoma/polyps. Using bioinformatics analysis, the authors found that FAK deletion upregulates the intestinal stem cell and fetal-type transcriptomic signatures compared to mice expressing BRAF-V600E alone. In addition, FAK-loss decreases the phosphorylation of ERK whereas it increases the expression of Lgr4 at both mRNA and protein levels. To mechanistically connect FAK-mediated downregulation of ERK and upregulation of Lgr4 in the context of BRAF-V600E mutation, results from biochemical experiments showed that MEK inhibitor treatment decreases the expression of NEDD4, a previously identified ubiquitin E3 ligase of Lgr4, which coincides with increased Lgr4 protein expression both in cells and in vivo. Moreover, the FAK-dependent modulation of ERK signaling is specific to BRAF-V600E-driven tumorigenesis only as knockout of FAK has no effect in Vill-Cre/KRAS-G12D mice. Collectively, the authors proposed a "just right" model in that a tunable FAK expression controls the optimal level of ERK pathway output needed for BRAF-V600E-induced cecal tumor formation.

      Strengths:

      This study provides new insights into the mechanisms underlying the serrated pathway-driven tumorigenesis in colorectal cancer. The newly established mouse model with compound mutations of BRAF and FAK offers a useful resource for future studies of the serrated pathway. The conclusions of this paper are mostly supported by data.

      Weaknesses:

      However, some aspects of the paper can be strengthened with additional mechanistically focused experiments.

      (1) Some of the conclusions of the paper mainly rely on bioinformatic analyses of RNA-seq data. For example, it has been noted in several places in the paper that the knockout of FAK in Vill-Cre/BRAF-V600E mice does not affect the transcriptional outcome downstream of ERK while ERK phosphorylation levels are decreased. This statement is based on the lack of significant difference in the MAPK signature according to GSEA. However, whereas a significant enrichment of certain pathways can be used as support evidence, the lack of enrichment does not necessarily indicate those pathways are not involved. Other experiments are needed to examine the expression of ERK target genes to confirm. Similarly, the upregulation of fetal stem cell signature in FAK knockout mice needs to be verified using other methods besides GSEA.

      (2) According to Figure 5i, the half-life of Lgr4 is around 48 hours in HT29 cells. However, it has been reported by at least two other publications cited in this paper (Ref. 44 and 45) that the half-life of Lgr4 is much shorter. This discrepancy is not explained.

      (3) The effect of decreased ERK signaling on NEDD4 expression has only been briefly explored in Figure 6. The mechanisms by which FAK-loss and/or inhibition of MEK/ERK activity regulate NEDD4 expression are currently unclear. Moreover, the levels of NEDD4 expression are only analyzed in one mouse per group in Figure 6a. Quantitative analysis of NEDD4 as well as Lgr4 expression in additional numbers of mice will provide more solid support for the inverse correlation between NEDD4 and Lgr4 proteins. Since MEK inhibitor treatment also increases Lgr4 mRNA expression as shown in Figure 5f-g, the relative contribution of this altered mRNA expression vs. NEDD4L-mediated ubiquitination has not been investigated.

      (4) It is an interesting finding that knockout FAK has no effect on KRAS-G12D-driven hyperplasia as shown in Figure 7. However, additional studies are needed to further explore the potential mechanisms by which FAK-loss specifically decreases EGFR/ERK signaling in the context of BRAF-V600E mutation.

    1. Reviewer #2 (Public Review):

      Summary:

      In this study, Wang and colleagues study the potential probiotic effects of Bacillus velezensis. Bacillus species have potential benefit to serve as probiotics due to their ability to form endospores and synthesize secondary metabolites. B. velezensis has been shown to have probiotic effects in plants and animals but data for human use are scarce, particularly with respect to salmonella-induced colitis. In this work, the authors identify a strain of B. velezensis and test it for its ability to control colitis in mice.

      Key findings:

      (1) The authors sequence an isolate for B. velezensis - HBXN2020 and describe its genome (roughly 4 mb, 46% GC-content etc).<br /> (2) The authors next describe the growth of this strain in broth culture and survival under acid and temperature stress. The susceptibility of HBXN2020 was tested against various antibiotics and against various pathogenic bacteria. In the case of the latter, the authors set out to determine if HBXN2020 could directly inhibit the growth of pathogenic bacteria. Convincing data, indicating that this is indeed the case, are presented.<br /> (3) To determine the safety profile of BHXN2020 (for possible use as a probiotic), the authors infected the strain in mice and monitored weight, together with cytokine profiles. Infected mice displayed no significant weight loss and expression of inflammatory cytokines remained unchanged. Blood cell profiles of infected mice were consistent with that of uninfected mice. No significant differences in tissues, including the colon were observed.<br /> (4) Next, the authors tested the ability to HBXN2020 to inhibit growth of Salmonella typhimurium (STm) and demonstrate that HBXN2020 inhibits STm in a dose dependent manner. Following this, the authors infect mice with STm to induce colitis and measure the ability of HBXN2020 to control colitis. The first outcome measure was a reduction in STm in faeces. Consistent with this, HBXN2020 reduced STm loads in the ileum, cecum, and colon. Colon length was also affected by HBXN2020 treatment. In addition, treatment with HBXN2020 reduced the appearance colon pathological features associated with colitis, together with a reduction in inflammatory cytokines.<br /> (5) After noting the beneficial (and anti-inflammatory effects) of HBXN2020, the authors set out to investigate effects on microbiota during treatment. Using a variety of algorithms, the authors demonstrate that upon HXBN2020 treatment, microbiota composition is restored to levels akin to that seen in healthy mice.<br /> (6) Finally, the authors assessed the effect of using HBXN2020 as prophylactic treatment for colitis by first treating mice with the spores and then infecting with STm. Their data indicate that treatment with HBXN2020 reduced colitis. A similar beneficial impact was seen with the gut microbiota.

      Strengths:

      (1) Good use of in vitro and animal models to demonstrate a beneficial probiotic effect.<br /> (2) Most observations are supported using multiple approaches.<br /> (3) Mouse experiments are very convincing.

      Weaknesses:

      (1) Whilst a beneficial effect is observed, there no investigation of the mechanism that underpins this.<br /> (2) Mouse experiments would have benefited from the use of standard anti-inflammatory therapies to control colitis. That way the authors could compare their approach of using bacillus spores that current gold standard for treatment.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors aimed to understand the heterogeneity of brain aging by analyzing brain imaging data. Based on the concept of structural brain aging, they divided participants into two groups based on the volume and rate of decrease of gray matter volume (GMV). The group with rapid brain aging showed accelerated biological aging and cognitive decline and was found to be vulnerable to certain neuropsychiatric disorders. Furthermore, the authors claimed the existence of a "last in, first out" mirroring pattern between brain aging and brain development, which they argued is more pronounced in the group with rapid brain aging. Lastly, the authors identified genetic differences between the two groups and speculated that the cause of rapid brain aging may lie in genetic differences.

      Strengths:

      The authors supported their claims by analyzing a large amount of data using various statistical techniques. There seems to be no doubt about the quality and quantity of the data. Additionally, they demonstrated their strength in integrating diverse data through various analysis techniques to conclude.

      Weaknesses:

      The authors provided appropriate answers to the reviewers' questions and revised the manuscript accordingly, and as a result, the paper has been edited to be more easily understood.

    1. Reviewer #2 (Public Review):

      Summary:

      This is a very well-written manuscript by Saenz de Meira and colleagues on a careful study reporting on the key role of glutamate transporter vGlut2 expression in the neurons of the ventral perimammillary nucleus (PMv) of the hypothalamus expressing the leptin receptor LepRb in energy homeostasis, puberty, and estrous cyclicity. The authors first show using cre-dependent chemogenetic viral tools that the selective activation of the PMv LepRb induces luteinizing hormone (LH) release. Then the authors demonstrate that the selective invalidation of vGlut2 in LepRb-expressing cells in the all body induces obesity and mild alteration of sexual maturation in both sexes and blunted estrous cyclicity in females. Finally, the authors knock out vGlut2 in PMv neurons in which they reintroduce LepRb expression in an otherwise LepRb-null background using an AAV Cre approach. This latter very elegant experiment shows that while the sole re-expression of LepRb in PMv neurons in LepRb-null mice was shown before to restore puberty onset, deleting vGlut2 in LepRb-expressing PMv neurons blunts this effect.

      Strengths:

      The authors employ state-of-the-art methods and their conclusions are robustly supported by the results.

      Weaknesses:

      None identified. Only minor comments have been formulated.

    1. Reviewer #3 (Public Review):

      In this work, the authors tried to profile time-dependent changes in gene and protein expression during BMP-induced amnion differentiation from hPSCs. The authors depicted a GATA3 - TFAP2A - ISL1/HAND1 order of amniotic gene activation, which provides a more detailed temporary trajectory of amnion differentiation compared to previous works. As a primary goal of this study, the above temporal gene/protein activation order is amply supported by experimental data. However, the mechanistic insights on amniotic fate decision, as well as the transcriptomic analysis comparing amnion-like cells from this work and other works remain limited. While this work allows us to see more details of amnion differentiation and understand how different transcription factors were turned on in a sequence and might be useful for benchmarking the identity of amnion in ex utero cultured human embryos/embryoids, it provides limited insights on how amnion cells might diverge from primitive streak / mesoderm-like cells, despite some transcriptional similarity they shared, during early development.

      [Editors' note: In the revised manuscript, the authors have added new results and made textual revisions that address the reviewers' concerns. These changes have significantly enhanced the clarity, quality, and impact of the study. ]

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Popli et al investigated the roles of the autophagy-related gene, Atg14, in the female reproductive tract (FRT) using conditional knockout mouse models. By ablation of Atg14 in both oviduct and uterus with PR-Cre (Atg14 cKO), the authors discovered that such females are completely infertile. They went on to show that Atg14 cKO females have impaired embryo implantation and uterus receptivity due to impaired response to P4 stimulation and stromal decidualization. In addition to the uterus defect, the authors also discovered that early embryos are trapped inside the oviduct and cannot be efficiently transported to the uterus in these females. They went on to show that oviduct epithelium in Atg14 cKO females showed increased pyroptosis, which disrupts oviduct epithelial integrity and leads to obstructive oviduct lumen and impaired embryo transport. Therefore, the authors concluded that autophagy is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable proper embryo transport.

      Strengths:

      This study revealed an important and unexpected role of the autophagy-related gene Atg14 in preventing pyroptosis and maintaining oviduct epithelial integrity, which is poorly studied in the field of reproductive biology. The study is well designed to test the roles of ATG14 in mouse oviduct and uterus. The experimental data in general support the conclusion and the interpretations are mostly accurate. This work should be of interest to reproductive biologists and scientists in the field of autophagy and pyroptosis.

      Weaknesses:

      Despite the strengths, there are several major weaknesses raising concerns. In addition, the mismatched figure panels, the undefined acronyms, and the poor description/presentation of some of the data significantly hinder the readability of the manuscript.

      (1) In the abstract, the authors stated that "autophagy is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable embryo transport". This statement is not substantiated. Although Atg14 is an autophagy-related gene and plays a critical role in oviduct homeostasis, the authors did not show a direct link between autophagy and pyroptosis/oviduct integrity. In addition, the authors pointed out in the last paragraph of the introduction that none of the other autophagy-related genes (ATG16L, FIP200, BECN1) exhibited any discernable impact on oviduct function. Therefore, the oviduct defect is caused by Atg14 specifically, not necessarily by autophagy.

      (2) In lines 412-414, the authors stated that "Atg14 ablation in the oviduct causes activation of pyroptosis", which is also not supported by the experimental data. The authors did not show that Atg14 is expressed in oviduct cells. PR-Cre is also not specific in oviduct cells. It is possible that Atg14 knockout in other PR-expressing tissues (such as the uterus) indirectly activates pyroptosis in the oviduct. More experiments will be required to support this claim. In line with the no defect when Atg14 is knocked out in oviduct ciliary cells, it will be good to use the secretory cells Cre, such as Pax8-Cre, to demonstrate that Atg14 functions in the secretory cells of the oviduct thus supporting this conclusion.

      (3) With FOXJ1-Cre, the authors attempted to specifically knockout Atg14 in ciliary cells, but there are no clear fertility and embryo implantation defects in Foxj1/Atg14 cKO mice. The author should provide the verification data to show that Atg14 had been effectively depleted in ciliary cells if Atg14 is normally expressed.

      (4) In lines 307-313, the author tested whether ATG14 is required for the decidualization of HESCs. The author stated that "Control siRNA transfected cells when treated with EPC seemed to change their morphological transformation from fibroblastic to epithelioid (Fig. 2E) and had increased expression of the decidualization markers IGFBP1 and PRL by day three only (Fig. 2F)". First, the labels in Figure 2 are not corresponding to the description in the text. Second, the morphology of the HESCs in control and Atg14 siRNA group showed no obvious difference even at day 3 and day 6. The author should point out the difference in each panel and explain in the text or figure legend.

      (5) In lines 332-336, the authors pointed out that the cKO mice oviduct lining shows marked eosinophilic cytoplasmic change, but there's no data to support the claim. In addition, the authors further described that "some of the cells showed degenerative changes with cytoplasmic vacuolization and nuclear pyknosis, loss of nuclear polarity, and loss of distinct cell borders giving an appearance of fusion of cells (Fig. 3D)". First, Figure 3D did not show all these phenotypes and it is likely a mismatch to Figure 3E. Even in Figure 3E, it is not obvious to notice all the phenotypes described here. The figure legend is overly simple, and there's no explanation of the arrowheads in the panel. More data/images are required to support the claim here and provide a clear indication and explanation in the figure legend.

      (6) In lines 317-325, it is rather confusing about the description of the portion of embryos from the oviduct and uterus. In addition, the total number of embryos was not provided. I would recommend presenting the numerical data to show the average embryos from the oviduct and uterus instead of using the percentage data in Figures 3A and 5G.

      (7) In lines 389-391, authors tested whether Polyphyllin VI treatment led to activated pyroptosis and blocked embryo transport. Although Figures 5F-G showed the expected embryo transport defect, the authors did not show the pyroptosis and oviduct morphology. It will be important to show that the Polyphyllin VI treatment indeed led to oviduct pyroptosis and lumen disruption.

      (8) In line 378, it would be better to include a description of pyroptosis and its molecular mechanisms to help readers to better understand your experiments. Alternatively, you can add it in the introduction.

      (9) Please make sure to provide definitions for the acronyms such as FRT, HESCs, GSDMD, etc.

      (10) It is rather confusing to use oviducal cell plasticity in this manuscript. The work illustrated the oviducal epithelial integrity, not the plasticity.

    1. Reviewer #2 (Public Review):

      Summary:

      A large-scale computational analysis of published sequences of various animal species provides evidence for extensive gene transfer amongst DNA viruses.

      Strengths:

      The study provides evidence for a large number of previously uncharacterized DNA viruses and supports a model whereby DNA viruses have evolved by combining distinct shared replication modules and some of these evolutionary oddities likely remain in the biosphere. The work provides a useful repository and potential framework for additional virus discovery efforts.

      Weaknesses:

      This is an entirely computational story, with very limited experimental validation. A large number of often confusing new acronyms are introduced that may be "cute" (such as the reference to the delicious half-smoke sausage) but are not particularly useful. This is not helped by the somewhat "telegraphic" presentation of the data that is sometimes difficult to digest. Not all paragraphs deliver what they promise. For example under the title "Polyomaviruses and papillomaviruses" there is no discussion of papillomaviruses. Overall, however, these weaknesses do not diminish my enthusiasm for this paper, which will be an important resource for computational and non-computational virus hunters.

    1. Reviewer #2 (Public Review):

      Fruchard et al. investigate the role of the queuosine (Q) modification of the tRNA (Q-tRNA) in the human pathogen Vibrio cholerae. First, the authors state that the absence of Q-modified tRNAs (tgt mutant) increases the translation of TAT codons and proteins with a high TAT codon bias. Second, the absence of Q increases rsxA translation, because rsxA gene has a high TAT codon bias. Third, increased RsxA in the absence of Q inhibits SoxR response, reducing resistance towards the antibiotic tobramycin (TOB). Authors also predict in silico which genes harbor a higher TAT bias and found that among them are some involved in DNA repair, experimentally observing that a tgt mutant is more resistant to UV than the wt strain. It is worth noting that authors employ a wide variety of techniques, both experimental and bioinformatic. However, some aspects of the work need to be clarified or reevaluated.

      (1) The statement that the absence of Q increases the translation of TAT codons and proteins encoded by TAT-enriched genes presents the following problems that should be addressed:

      (1.1) The increase in TAT codon translation in the absence of Q is not supported by proteomics, since there was no detected statistical difference for TAT codon usage in proteins differentially expressed. Furthermore, there are some problems regarding the statistics of proteomics. Some proteins shown in Table S1 have adjusted p-values higher than their p-values, which makes no sense. Maybe there is a mistake in the adjusted p-value calculation. In addition, it is not common to assume that proteins that are quantitatively present in one condition and absent in another are differentially abundant proteins. Proteomics data software typically addresses this issue and applies some corrections. It would be advisable to review that.

      (1.2) Problems with the interpretation of Ribo-seq data (Figure 4D). On the one hand, the Ribo-seq data should be corrected (normalized) with the RNA-seq data in each of the conditions to obtain ribosome profiling data, since some genes could have more transcription in some of the conditions studied. In other articles in which this technique is used (such as in Tuorto et al., EMBO J. 2018; doi: 10.15252/embj.201899777), it is interpreted that those positions in which the ribosome moves most slowly and therefore less efficiently translated), are the most abundant. Assuming this interpretation, according to the hypothesis proposed in this work, the fragments enriched in TAT codons should have been less abundant in the absence of Q-tRNA (tgt mutant) in the Rib-seq experiment. However, what is observed is that TAT-enriched fragments are more abundant in the tgt mutant, and yet the Ribo-seq results are interpreted as RNA-seq, stating that this is because the genes corresponding to those sequences have greater expression in the absence of Q. On the other hand, it would be interesting to calculate the mean of the protein levels encoded by the transcripts with high and low ribosome profiling data.

      (1.3) This statement is contrary to most previously reported studies on this topic in eukaryotes and bacteria, in which ribosome profiling experiments, among others, indicate that translation of TAT codons is slower (or unaffected) than translation of the TAC codons, and the same phenomenon is observed for the rest of the NAC/T codons. This is completely opposed to the results showed in Figure 4. However, the results of these studies are either not mentioned or not discussed in this work. Some examples of articles that should be discussed in this work:<br /> - "Queuosine-modified tRNAs confer nutritional control of protein translation" (Tuorto et al., 2018; 10.15252/embj.201899777)<br /> - "Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis" (Kulkarni et al., 2021; doi:10.1093/nar/gkab567.<br /> - "Queuosine-tRNA promotes sex-dependent learning and memory formation by maintaining codon-biased translation elongation speed" (Cirzi et al., 2023; 10.15252/embj.2022112507)<br /> - "Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth" (Zhao et al., 2023; 10.1016/j.cell.2023.10.026)<br /> - "tRNA queuosine modification is involved in biofilm formation and virulence in bacteria" (Diaz-Rullo and Gonzalez-Pastor, 2023; doi: 10.1093/nar/gkad667). In this work, the authors indicate that Q-tRNA increases NAT codon translation in most bacterial species. Could the regulation of TAT codon-enriched proteins by Q-tRNAs in V. cholerae an exception? In addition, authors use a bioinformatic method to identify genes enriched in NAT codons similar to the one used in this work, and to find in which biological process are involved the genes whose expression is affected by Q-tRNAs (as discussed for the phenotype of UV resistance). It will be worth discussing all of this.

      (1.4) It is proposed that the stress produced by the TOB antibiotic causes greater translation of genes enriched in TAT codons. On the one hand, it is shown that the GFP-TAT version (gene enriched in TAT codons) and the RsxA-TAT-GFP protein (native gene naturally enriched in TAT) are expressed more, compared to their versions enriched in TAC in a tgt mutant than in a wt, in the presence of TBO (Fig. 5C). However, in the absence of TOB, and in a wt context, although the two versions of GFP have a similar expression level (Fig. 3SD), the same does not occur with RsxA, whose RsxA-TAT form (the native one) is expressed significantly more than the RsxA-TAC version (Fig. 3SA). How can it be explained that in a wt context, in which there are also tRNA Q-modification, a gene naturally enriched in TAT is translated better than the same gene enriched in TAC? It would be expected that in the presence of Q-tRNAs the two versions would be translated equally (as happens with GFP) or even the TAT version would be less translated. On the other hand, in the presence of TOB the fluorescence of WT GFP(TAT) is higher than the fluorescence of WT GFP(TAC) (Figure S3E) (mean fluorescence data for RsxA-GFP version in the presence of TOB is not shown). These results may indicate that the apparent better translation of TAT versions could be due to indirect effects rather from TAT codon translation.

      (2) Another problem is related to the already known role of Q in prevention of stop codon readthrough, which is not discuss at all in the work. In the absence of Q, stop codon readthrough is increased. In addition, it is known that aminoglycosides (such as tobramycin) also increase stop codon readthrough ("Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides"; Wanger and Green, 2023; 10.7554/eLife.52611). Absence of Q and presence of aminoglycosides can be synergic, producing devastating increases in stop codon readthrough and a large alteration of global gene expression. All of these needs to be discussed in the work. Moreover, it is known that stop codon readthrough can alter gene expression and mRNA sequence context all influence the likelihood of stop codon readthrough. Thus, this process could also affect to the expression of recoded GFP and RsxA versions.

      (3) The statement about that the TOB resistance depends on RsxA translation, which is related to the presence of Q, also presents some problems:

      (3.1) It is observed that the absence of tgt produces a growth defect in V. cholerae when exposed to TOB (Figure 1A), and it is stated that this is mediated by an increase in the translation of RsxA, because its gene is TAT enriched. However, in Figure S4F, it is shown that the same phenotype is observed in E. coli, but its rsxA gene is not enriched in TAT codons. Therefore, the growth defect observed in the tgt mutant in the presence of TOB may not be due to the increase in the translation of TAT codons of the rsxA gene in the absence of Q. This phenotype is very interesting, but it may be related to another molecular process regulated by Q. Maybe the role of Q in preventing stop codon readthrough is important in this process, reducing cellular stress in the presence of TOB and growing better.

      (3.2) All experiments related to the effect of Q on the translation of TAT codons have been performed with the tgt mutant strain. Considering that the authors have a pSEVA-tgt plasmid to overexpress this gene, they would have to show whether tgt overexpression in a wt strain produces a decrease in the translation of proteins encoded by TAT-enriched genes such as RsxA. This experiment would allow them to conclude that Q reduces RsxA levels, increasing resistance to TOB.

      (3.3) On the other hand, Fig. 1B shows that when the wt and tgt strains compete, both overexpressing tgt, the tgt mutant strain grows better in the presence of TOB. This result is not very well understood, since according to the hypothesis proposed, the absence of modification by Q of the tRNA would increase the translation of genes enriched in TAT, therefore, a strain with a higher proportion of Q-modified tRNAs as in the case of the wt strain overexpressing tgt would express the rsxA gene less than the tgt strain overexpressing tgt and would therefore grow better in the presence of TOB. For all these reasons, it would be necessary to evaluate the effect of tgt overexpression on the translation of RsxA.

      (3.4) According to Figure 1I, the overexpression of tRNA-Tyr(GUA) caused a better growth of tgt mutant in comparison to WT. If the growth defect observed in tgt mutant in the presence of TOB is due to a better translation of the TAT codons of rsxA gene, the overexpression of tRNA-Tyr(GUA) in the tgt mutant should have resulted in even better RsxA translation a worse growth, but not the opposite result.

      (4) It cannot be stated that DNA repair is more efficient in the tgt mutant of V. cholerae, as indicated in the text of the article and in Fig 7. The authors only observe that the tgt mutant is more resistant to UV radiation and it is suggested that the reason may be TAT bias of DNA repair genes. To validate the hypothesis that UV resistance is increased because DNA repair genes are TAT biased, it would be necessary to check if DNA repair is affected by Q. UV not only produces DNA damage, but also oxidative stress. Therefore, maybe this phenotype is due to the increase in proteins related to oxidative stress controlled by RsxA, such as the superoxide dismutase encoded by sodA. It is also stated that these repair genes were found up for the tgt mutant in the Ribo-seq data, with unchanged transcription levels. Again, it is necessary to clarify this interpretation of the Ribo-seq data, since the fact that they are more represented in a tgt mutant perhaps means that translation is slower in those transcripts. Has it been observed in proteomics (wt vs tgt in the absence of TOB) whether these proteins involved in repair are more expressed in a tgt mutant?

      (5) The authors demonstrate that in E. coli the tgt mutant does not show greater resistance to UV radiation (Fig. 7D), unlike what happens in V. cholerae. It should be discussed that in previous works it has been observed that overexpression in E. coli of the tgt gene or the queF gene (Q biosynthesis) is involved in greater resistance to UV radiation (Morgante et al., Environ Microbiol, 2015 doi: 10.1111/1462-2920.12505; and Díaz-Rullo et al., Front Microbiol. 2021 doi: 10.3389/fmicb.2021.723874). As an explanation, it was proposed (Diaz-Rullo and Gonzalez-Pastor, NAR 2023 doi: 10.1093/nar/gkad667) that the observed increase in the capacity to form biofilms in strains that overexpress genes related to Q modification of tRNA would be related to this greater resistance to UV radiation.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors wanted to see if bumblebees could succeed in the string-pulling paradigm with broken strings. They found that bumblebees can learn to pull strings and that they have a preference to pull on intact strings vs broken ones. The authors conclude that bumblebees use image matching to complete the string-pulling task.

      Strengths:

      The study has an excellent experimental design and contributes to our understanding of what information bumblebees use to solve a string-pulling task.

      Weaknesses:

      Overall, I think the manuscript is good, but it is missing some context. Why do bumblebees rely on image matching rather than causal reasoning? Could it have something to do with their ecology? And how is the task relevant for bumblebees in the wild? Does the test translate to any real-life situations? Is pulling a natural behaviour that bees do? Does image matching have adaptive significance?

    1. Reviewer #2 (Public Review):

      Summary:

      The authors present the first single-cell atlas for syngathid fishes, providing a resource for future evolution & development studies in this group.

      Strengths:

      The concept here is simple and I find the manuscript to be well written. I like the in situ hybridization of marker genes - this is really nice. I also appreciate the gene co-expression analysis to identify modules of expression. There are no explicit hypotheses tested in the manuscript, but the discovery of these cell types should have value in this organism and in the determination of morphological novelties in seahorses and their relatives.

      Weaknesses:

      I think there are a few computational analyses that might improve the generality of the results.

      (1) The cell types: The authors use marker gene analysis and KEGG pathways to identify cell types. I'd suggest a tool like SAMap (https://elifesciences.org/articles/66747) which compares single-cell data sets from distinct organisms to identify 'homologous' cell types -- I imagine the zebrafish developmental atlases could serve as a reasonable comparative reference.

      (2) Trajectory analyses: The authors suggest that their analyses might identify progenitor cell states and perhaps related differentiated states. They might explore cytoTRACE and/or pseudotime-based trajectory analyses to more fully delineate these ideas.

      (3) Cell-cell communication: I think it's very difficult to identify 'tooth primordium' cell types, because cell types won't be defined by an organ in this way. For instance, dental glia will cluster with other glia, and dental mesenchyme will likely cluster with other mesenchymal cell types. So the histology and ISH is most convincing in this regard. Having said this, given the known signaling interactions in the developing tooth (and in development generally) the authors might explore cell-cell communication analysis (e.g., CellChat) to identify cell types that may be interacting.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors propose that DKK2 is necessary for the metastasis of colon cancer organoids. They then claim that DKK2 mediates this effect by permitting the generation of lysozyme-positive Paneth-like cells within the tumor microenvironmental niche. They argue that these lysozyme-positive cells have Paneth-like properties in both mouse and human contexts. They then implicate HNF4A as the causal factor responsive to DKK2 to generate lysozyme-positive cells through Sox9.

      Strengths:

      The use of a genetically defined organoid line is state-of-the-art. The data in Figure 1 and the dependence of DKK2 for splenic injection and liver engraftment, as well as the long-term effect on animal survival, are interesting and convincing. The rescue using DKK2 administration for some of their phenotype in vitro is good. The inclusion and analysis of human data sets help explore the role of DKK2 in human cancer and help ground the overall work in a clinical context.

      Weaknesses:

      In this work by Shin et al., the authors expand upon prior work regarding the role of Dickkopf-2 in colorectal cancer (CRC) progression and the necessity of a Paneth-like population in driving CRC metastasis. The general topic of metastatic requirements for colon cancer is of general interest. However, much of the work focuses on characterizing cell populations in a mouse model of hepatic outgrowth via splenic transplantation. In particular, the concept of Paneth-like cells is primarily based on transcriptional programs seen in single-cell RNA sequencing data and needs more validation. Although including human samples is important for potential generality, the strength could be improved by doing immunohistochemistry in primary and metastatic lesions for Lyz+ cancer cells. Experiments that further bolster the causal role of Paneth-like CRC cells in metastasis are needed.

  3. May 2024
    1. Reviewer #2 (Public Review):

      Summary

      This manuscript argues about the similarity between two frameworks describing synaptic plasticity. In the Bayesian inference perspective, due to the noise and the limited available pre- and postsynaptic information, synapses can only have an estimate of what should be their weight. The belief about those weights is described by their mean and variance. In the energy efficient perspective, synaptic parameters (individual means and variances) are adapted such that the neural network achieves some task while penalizing large mean weights as well as small weight variances. Interestingly, the authors show both numerically and analytically the strong link between those two frameworks. In particular, both frameworks predict that (a) synaptic variances should decrease when the input firing rate increases and (b) that the learning rate should increase when the weight variances increase. Both predictions have some experimental support.

      Strengths

      (1) Overall, the paper is very well written and the arguments are clearly presented.

      (2) The tight link between the Bayesian inference perspective and the energy efficiency perspective is elegant and well supported, both with numerical simulations as well as with analytical arguments.

      (3) I also particularly appreciate the derivation of the reliability cost terms as a function of the different biophysical mechanisms (calcium efflux, vesicle membrane, actin and trafficking). Independently of the proposed mapping between the Bayesian inference perspective and the energy efficiency perspective, those reliability costs (expressed as power-law relationships) will be important for further studies on synaptic energetics.

      Weaknesses

      (1) As recognised by the authors, the correspondence between the entropy term in the variational inference description and the reliability cost in the energetic description is strong, but not perfect. Indeed, the entropy term scales as -log(sigma) while reliability cost scales as sigma^(-rho).

      (2) Even though this is not the main point of the paper, I appreciate the effort made by the authors to look for experimental data that could in principle validate the Bayesian/energetic frameworks. A stronger validation will be an interesting avenue for future research.

    1. Reviewer #3 (Public Review):

      This study investigated what kind of reference (allocentric or egocentric) frame we used for perception in darkness. This question is essential and was not addressed much before. The authors compared the perception in the walking condition with that in the stationary condition, which successfully separated the contribution of self-movement to the spatial representation. In addition, the authors also carefully manipulated the contribution of the waiting period, attentional load, vestibular input, testing task, and walking direction (forward or backward) to examine the nature of the reference frame in darkness systematically.

      I am a bit confused by Figure 2b. Allocentric coordinate refers to the representation of the distance and direction of an object relative to other objects but not relative to the observer. In Figure 2, however, the authors assumed that the perceived target was located on the interception between the intrinsic bias curve and the viewing line from the NEW eye position to the target. This suggests that the perceived object depends on the observer's new location, which seems odd with the allocentric coordinate hypothesis.

      According to Fig 2b, the perceived size should be left-shifted and lifted up in the walking condition compared to that in the stationary condition. However, in Figure 3C and Fig 4, the perceived size was the same height as that in the baseline condition.

      Is the left-shifted perceived distance possibly reflecting a kind of compensation mechanism? Participants could not see the target's location but knew they had moved forward. Therefore, their brain automatically compensates for this self-movement when judging the location of a target. This would perfectly predict the left-shifted but not upward-shifted data in Fig 3C. A similar compensation mechanism exists for size constancy in which we tend to compensate for distance in computing object size.

      According to Fig 2a, the target, perceived target, and eye should be aligned in one straight line. This means that connecting the physical targets and the corresponding perceived target results in straight lines that converge at the eye position. This seems, however, unlikely in Figure 3c.

    1. Reviewer #2 (Public Review):

      Summary:

      The goal of this study is to clarify how the brain simultaneously represents item-specific temporal information and item-independent boundary information. The authors report spectral EEG data from intracranial patients performing a delayed free recall task. They perform cosine similarity analyses on principal components derived from gamma band power across stimulus duration. The authors find that similarity between items in serial position 1 (SP1) and all other within-list items decreases as a function of serial position, consistent with temporal context models. The authors find that across-list item similarity to SP1 is greatest for SP1 items relative to items from other serial positions, an effect that is greater in medial parietal lobe compared to lateral temporal cortex and hippocampus. The authors conclude that their findings suggest that perceptual boundary information is represented in medial parietal lobe. Despite a robust dataset, the methodological limitations of the study design prevent strong interpretations from being made from these data. The same-serial position across-list similarity may be driven by attentional mechanisms that are distinct from boundary information.

      Strengths:

      (1) The motivation of the study is strong as how both temporal contextual drift and event boundaries contribute to memory mechanisms is an important open question.

      (2) The dataset of spectral EEG data from 99 intracranial patients provides the opportunity for precise spatiotemporal investigation of neural memory mechanisms.

      Weaknesses:

      The goal of reconciling temporal context and event boundary mechanisms is timely and would be of interest; however, an attentional account can still be used to explain the findings. This alternative account is not considered in the manuscript.

      (1) The issue related to interpreting the SP1 similarity effects as reflecting boundary specific representations remains in the revised manuscript. The authors suggest that because cross-list SP1 similarity is found in recalled items that this supports the boundary interpretation. However, the effects could still be explained by variability in attention that is not specific to an event-boundary per se. As both subsequently recalled items and primacy items tend to recruit more gamma power than non-recalled and non-primacy items, recalled items will tend to have greater similarity with one another. It does not necessarily follow though that that this similarity is due to a "boundary representation."

      (2) The authors partly addressed my concern regarding the comparison of recalled pairs. How did the authors account for the fact that the same participants do not contribute equally to all ROIs? If only participants who have electrodes in all ROIs are included, are the effects consistent?

    1. Reviewer #2 (Public Review):

      Summary:

      Padamsey et al build up on previous significant work from the same group which demonstrated robust changes in the visual cortex in male mice from long-term (2-3 weeks) food restriction. Here, the authors extend this finding and reveal striking sex-specific differences in the way the brain responds to food restriction. The measures included the whole-body measure of serum leptin levels, and V1-specific measures of activity of key molecular players (AMPK and PPARα), gene expression patterns, ATP usage in V1, and the sharpness of visual stimulus encoding (orientation tuning). All measures supported the conclusion that the female mouse brain (unlike in males) does not change its energy usage and cortical functional properties on comparable food restriction.

      While the effect of food restriction on more peripheral tissue such as muscle and bones has been well studied, this result contributes to our understanding of how the brain responds to food restriction. This result is particularly significant given that the brain consumes a large fraction of the body's energy consumption (20%), with the cortex accounting for half of that amount. The sex-specific differences found here are also relevant for studies using food restriction to investigate cortical function.

      Strengths:

      The study uses a wide range of approaches mentioned above which converge on the same conclusion, strengthening the core claim of the study.

      Weaknesses:

      Since the absence of a significant effect does not prove the absence of any changes, the study cannot claim that the female mouse brain does not change in response to food restriction. However, the authors do not make this claim. Instead, they make the well-supported claim that there is a sex-specific difference in the response of V1 to food restriction.

    1. Reviewer #2 (Public Review):

      Summary:

      The study investigates whether speech and music processing involve specific or shared brain networks. Using intracranial EEG recordings from 18 epilepsy patients, it examines neural responses to speech and music. The authors found that most neural activity is shared between speech and music processing, without specific regional brain selectivity. Furthermore, domain-selective responses to speech or music are limited to frequency-specific coherent oscillations. The findings challenge the notion of anatomically distinct regions for different cognitive functions in the auditory process.

      Strengths:

      (1) This study uses a relatively large corpus of intracranial EEG data, which provides high spatiotemporal resolution neural recordings, allowing for more precise and dynamic analysis of brain responses. The use of continuous speech and music enhances ecological validity compared to artificial or segmented stimuli.

      (2) This study uses multiple frequency bands in addition to just high-frequency activity (HFA), which has been the focus of many existing studies in the literature. This allows for a more comprehensive analysis of neural processing across the entire spectrum. The heterogeneity across different frequency bands also indicates that different frequency components of the neural activity may reflect different underlying neural computations.

      (3) This study also adds empirical evidence towards distributed representation versus domain-specificity. It challenges the traditional view of highly specialized, anatomically distinct regions for different cognitive functions. Instead, the study suggests a more integrated and overlapping neural network for processing complex stimuli like speech and music.

      Weaknesses:

      While this study is overall convincing, there are still some weaknesses in the methods and analyses that limit the implication of the work.

      The study's main approach, focusing primarily on the grand comparison of response amplitudes between speech and music, may overlook intricate details in neural coding. Speech and music are not entirely orthogonal with each other at different levels of analysis: at the high-level abstraction, these are two different categories of cognitive processes; at the low-level acoustics, they overlap a lot; at intermediate levels, they may also share similar features. For example, the study doesn't adequately address whether purely melodic elements in music correlate with intonations in speech at the neural level. A more granular analysis, dissecting stimuli into distinct features like pitch, phonetics, timbre, and linguistic elements, could unveil more nuanced shared, and unique neural processes between speech and music. Prior research indicates potential overlap in neural coding for certain intermediate features in speech and music (Sankaran et al. 2023), suggesting that a simple averaged response comparison might not fully capture the complexity of neural encoding. Further delineation of phonetic, melodic, linguistic, and other coding, along with an analysis of how different informational aspects (phonetic, linguistic, melodic, etc) are represented in shared neural activities, could enhance our understanding of these processes and strengthen the study's conclusions.

      While classifying electrodes into 3 categories provides valuable insights, it may not fully capture the complexity of the neural response distribution to speech and music. A more nuanced and continuous approach could reveal subtler gradations in neural response, rather than imposing categorical boundaries. This could be done by computing continuous metrics, like unique variances explained by each category or by each acoustic feature, etc. Incorporating such a continuum could enhance our understanding of the neural representation of speech and music, providing a more detailed and comprehensive picture of cortical processing. This goes back to my first comment that the selected set of stimuli may not fully exploit the entire space of speech and music, and there are possible exemplars that violate the preference map here. For example, this study only considered a specific set of multi-instrumental music, it is not clear to me if other types of music would result in different response profiles in individual channels. It is also not clear if a foreign language that the listeners cannot comprehend would evoke similar response profiles. On the contrary, breaking down into the neural coding of more fundamental feature representations that constitute speech and music, and analyzing the unique contribution of each feature would give a more comprehensive understanding.

      The paper's emphasis on shared and overlapping neural activity, as observed through sEEG electrodes, provides valuable insights. It is probably true that domain-specificity for speech and music does not exist at such a macro scale. However, it's important to consider that each electrode records from a large neuronal population, encompassing thousands of neurons. This broad recording scope might mask more granular, non-overlapping feature representations at the single neuron level. Thus, while the study suggests shared neural underpinnings for speech and music perception at a macroscopic level, it cannot definitively rule out the possibility of distinct, non-overlapping neural representations at the microscale of local neuronal circuits for features that are distinctly associated with speech and music. This distinction is crucial for fully understanding the neural mechanisms underlying speech and music perception that merit future endeavors with more advanced large-scale neuronal recordings.

    1. Reviewer #2 (Public Review):

      Summary:

      This study investigates to what extent neural processing of autobiographical memory retrieval is altered in people who are unable to generate mental images ('aphantasia'). Self-report as well as objective measures were used to establish that the aphantasia group indeed had lower imagery vividness than the control group. The aphantasia group also reported fewer sensory and emotional details of autobiographical memories. In terms of brain activity, compared to controls, aphantasics had a reduction in activity in the hippocampus and an increase in the activity in visual cortex during autobiographical memory retrieval. For controls, these two regions were also functionally connected during autobiographical memory retrieval, which did not seem to be the case for aphantasics. Finally, resting-state connectivity between visual cortex and hippocampus was positively related to autobiographical vividness in the control group but negatively in the aphantasia group. The results are in line with the idea that aphantasia is caused by an increase in noise within the visual system combined with a decrease in top-down communication from the hippocampus.

      Recent years have seen a lot of interest in the influence of aphantasia on other cognitive functions and one of the most consistent findings is deficits in autobiographical memory. This is one of the first studies to investigate the neural correlates underlying this difference, thereby substantially increasing our understanding of aphantasia and the relationship between mental imagery and autobiographical memory.

      Strengths:

      One of the major strengths of this study is the use of both self-report as well as objective measures to quantify imagery ability. Furthermore, the fMRI analyses are hypothesis-driven and reveal unambiguous results, with alterations in hippocampal and visual cortex processing seeming to underlie the deficits in autobiographical memory.

      Weaknesses:

      In terms of weaknesses, the control task, doing mathematical sums, also differs from the autobiographical memory task in aspects that are unrelated to imagery or memory, such as self-relevance and emotional salience, which makes it hard to conclude that the differences in activity are reflecting only the cognitive processes under investigation. However, given that the most important comparisons are between groups of participants, this does not diminish the main conclusions about aphantasia.

      Overall, I believe that this is a timely and important contribution to the field and will inspire novel avenues for further investigation.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The manuscript, "A microRNA that controls the emergence of embryonic movement" by Menzies, Chagas, and Alonso provides evidence that Drosophila miR-2b-1 is expressed in neurons and controls the expression of the predicted chloride channel CG3638, here named "Motor". Loss of the miRNA leads to movement phenotypes that can be rescued by downregulation of Motor; using specific drivers, the authors show that a larval movement phenotype (slower movement) can be rescued by knockdown of Motor in the chordotonal organs, suggesting that the increase in Motor found in the chordotonal organs is likely the root of the movement defects. Overall, I found the data presented in the manuscript of reasonable quality and are well enough supported by the presented data.

      The genetic and phenotypic analysis seems to be correct. The nicest part of the manuscript is the connection between the loss of a miRNA and finding its likely target in generating a phenotype. The authors also develop some protocols for the analysis of the movement phenotypes which may be useful for others.

    1. Reviewer #2 (Public Review):

      Summary:

      Peng et al. present a study using scRNA-seq to examine phenotypic properties of cervical cancer, contrasting features of both adenocarcinomas (ADC) and squamous cell carcinoma (SCC), and HPV-positive and negative tumours. They propose several key findings: unique malignant phenotypes in ADC with elevated stemness and aggressive features, interactions of these populations with immune cells to promote an immunosuppressive TME, and SLC26A3 as a biomarker for metastatic (>=Stage III ) tumours.

      Strengths:

      This study provides a valuable resource of scRNA-seq data from a well-curated collection of patient samples. The analysis provides a high-level view of the cellular composition of cervical cancers. The authors introduce some mechanistic explanations of immunosuppression and the involvement of regulatory T cells that are intriguing.

      Weaknesses:

      I believe that many of the proposed conclusions are over-interpretations or unwarranted generalizations of the single-cell analysis. These conclusions are often based on populations in the scRNA-seq data that are described as enriched or specific to a given group of samples (eg. ADC). This conclusion is based on the percentage of cells in that population belonging to the given group; for example, a cluster of cells that dominantly come from ADC. The data includes multiple samples for each group, but statistical approaches are never used to demonstrate the reproducibility of these claims.

      This leads to problematic conclusions. For example, the "ADC-specific" Epi_10_CYSTM1 cluster, which is a central focus of the paper, only contains cells from one of the 11 ADC samples and represents only a small fraction of the malignant cells from that sample (Sample 7, Figure 2A). Yet, this population is used to derive SLC26A3 as a potential biomarker. SLC26A3 transcripts were only detected in this small population of cells (none of the other ADC samples), which makes me question the specificity of the IHC staining on the validation cohort.

      This is compounded by technical aspects of the analysis that hinder interpretation. For example, it is clear that the clustering does not perfectly segregate cell types. In Figures 2B and D, it is evident that C4 and C5 contain mixtures of cell type (eg. half of C4 is EPCAM+/CD3-, the other half EPCAM-/CD3+). These contaminations are carried forward into subclustering and are not addressed. Rather, it is claimed that there is a T cell population that is CD3- and EPCAM+, which does not seem likely.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors employ molecular dynamics simulations to understand the selectivity of FDA approved inhibitors within dimeric and monomeric BRAF species. Through these comprehensive simulations, they shed light on the selectivity of BRAF inhibitors by delineating the main structural changes occurring during dimerization and inhibitor action. Notably, they identify the two pivotal elements in this process: the movement and conformational changes involving the alpha-C helix and the formation of a hydrogen bond involving the Glu-501 residue. These findings find support in the analyses of various structures crystallized from dimers and co-crystallized monomers in the presence of inhibitors. The elucidation of this mechanism holds significant potential for advancing our understanding of kinase signalling and the development of future BRAF inhibitor drugs.

      Strengths:

      The authors employ a diverse array of computational techniques to characterize the binding sites and interactions between inhibitors and the active site of BRAF in both dimeric and monomeric forms. They combine traditional and advanced molecular dynamics simulation techniques such as CpHMD (All-atom continuous constant pH molecular dynamics) to provide mechanistic explanations. Additionally, the paper introduces methods for identifying and characterizing the formation of the hydrogen bond involving the Glu501 residue without the need for extensive molecular dynamics simulations. This approach facilitates the rapid identification of future BRAF inhibitor candidates.

      Weaknesses:

      Despite the use of molecular dynamics yields crucial structural insights and outlines a mechanism to elucidate dimer selectivity and cooperativity in these systems, the authors could consider adoption of free energy methods to estimate the values of hydrogen bond energies and hydrophobic interactions, thereby enhancing the depth of their analysis.

    1. Reviewer #2 (Public Review):

      Summary:

      Gao et al., used single-molecule FRET and step-wise transcription methods to study the conformations of the recently reported guanidine-IV class of bacterial riboswitches that upregulate transcription in the presence of elevated guanidine. Using three riboswitch lengths, the authors analyzed the distributions and transitions between different conformers in response to different Mg2+ and guanidine concentrations. These data led to a three-state kinetic model for the structural switching of this novel class of riboswitches whose structures remain unavailable. Using the PLOR method that the authors previously invented, they further examined the conformations, ligand responses, and gene-regulatory outcomes at discrete transcript lengths along the path of vectorial transcription. These analyses uncover that the riboswitch exhibits differential sensitivity to ligand-induced conformational switching at different steps of transcription, and identify a short window where the regulatory outcome is most sensitive to ligand binding.

      Strengths:

      Dual internal labeling of long RNA transcripts remains technically very challenging, but essential for smFRET analyses of RNA conformations. The authors should be commended for achieving very highly quality and purity in their labelled RNA samples. The data are extensive, robust, thorough, and meticulously controlled. The interpretations are logical and conservative. The writing is reasonably clear and illustrations are of high quality. The findings are significant because the paradigm uncovered here for this relatively simple riboswitch class is likely also employed in numerous other kinetically regulated riboswitches. The ability to quantitatively assess RNA conformations and ligand responses at multiple discrete points along the path towards the full transcript provides a rare and powerful glimpse into co-transcriptional RNA folding, ligand-binding, and conformational switching.

      Weaknesses:

      The use of T7 RNA polymerase instead of a near cognate bacterial RNA polymerase in the termination/antitermination assays is a significant caveat. It is understandable as T7 RNA polymerase is much more robust than its bacterial counterparts, which probably will not survive the extensive washes required by the PLOR method. The major conclusions should still hold, as the RNA conformations are probed by smFRET at static, halted complexes instead of on the fly. However, potential effects of the cognate RNA polymerase cannot be discerned here, including transcriptional rates, pausing, and interactions between the nascent transcript and the RNA exit channel, if any. The authors should refrain from discussing potential effects from the DNA template or the T7 RNA polymerase, as these elements are not cognate with the riboswitch under study.

    1. Reviewer #2 (Public Review):

      Weng and colleagues investigated the relationship between sustained attention and substance use in a large cohort across three longitudinal visits (ages 14, 19, and 23). They employed a stop signal task to assess sustained attention and utilized the Timeline Followback self-report questionnaire to measure substance use. They assessed the linear relationship between sustained attention-associated functional connections and substance use at an earlier visit (age 14 or 19). Subsequently, they utilized this relationship along with the functional connection profile at a later age (age 19 or 23) to predict substance use at those respective ages. The authors found that connections in association with reduced sustained attention predicted subsequent increases in substance use, a conclusion validated in an external dataset. Altogether, the authors suggest that sustained attention could serve as a robust biomarker for predicting future substance use.

      This study by Weng and colleagues focused on an important topic of substance use prediction in adolescence/early adulthood. While the study largely achieves its aims, several points merit further clarification:

      (1) Regarding connectome-based predictive modeling, an assumption is that connections associated with sustained attention remain consistent across age groups. However, this assumption might be challenged by observed differences in the sustained attention network profile (i.e., connections and related connection strength) across age groups (Figures 2 G-I, Fig. 3 G_I). It's unclear how such differences might impact the prediction results.

      (2) Another assumption of the connectome-based predictive modeling is that the relationship between sustained attention network and substance use is linear, and remains linear over development. Such linear evidence from either the literature or their data would be of help.

      (3) Heterogeneity in results suggests individual variability that is not fully captured by group-level analyses. For instance, Figure 1A shows decreasing ICV (better-sustained attention) with age on the group level, while there are both increasing and decreasing patterns on the individual level via visual inspection. Figure 7 demonstrates another example in which the group with a high level of sustained attention has a lower risk of substance use at a later age compared to that in the group with a low level of sustained attention. However, there are individuals in the high sustained attention group who have substance use scores as high as those in the low sustained attention group. This is important to take into consideration and could be a potential future direction for research.

      The above-mentioned points might partly explain the significant but low correlations between the observed and predicted ICV as shown in Figure 4. Addressing these limitations would help enhance the study's conclusions and guide future research efforts.

    1. Reviewer #2 (Public Review):

      Summary:

      Yoo and colleagues studied the cellular mechanism allowing fibro-adipogenic progenitors (FAPs), muscle resident mesenchymal progenitors, to contribute to nerve regeneration upon regenerative injury. In addition to their expected role in the maintenance of muscle tissue, FAPs also contribute to the maturation and maintenance of neural tissue. After nerve injury, they prevent dying back loss of motor neurons. Consistently, muscle denervation activates FAPs, suggesting that FAPs can sense the injured distal peripheral nerve.

      A transcriptomic database was established using flow cytometry protocols and single-cell RNA-seq. FAPs were isolated from sciatic nerve crush (SNC), considered a regenerative condition, and compared to a non-regenerative condition consisting of denervation-affected muscles (DEN) at different time points after injury: early (3 and 7 days post-injury, dpi) and late (14 and 28 dpi), when the regeneration process has started to resolve. Transcriptome changes of the nine different conditions were compared: non-injured, 3, 7, 14, and 28 days after injury. Bioinformatic analysis and other filters were applied, including UMAP plots, hierarchical clustering analysis using differentially expressed genes (DEGs), volcano plots, and RNA velocity analysis. In addition to most of the supplementary material, the first three and a half central figures consist of the analysis of the transcriptome changes comparing the different conditions. Overall, the data indicate similar DEGs after both types of injury at early stages. Still, just after SNC, the gene expression pattern reaches similar levels compared to non-injured, meaning the injured process is resolved. For example, the Interleukin6/Stat3 pathway is upregulated in both injury models but downregulated at 28 days just in SNC. When focusing on the comparison between 28 dpi between both types of injury, it indicates a role of FAPs in the resolution of inflammation in SNC and participation of FAPs in fibrosis and inflammation in DEN at 28 dpi. Genes related to wound healing were enriched in both.

      With the question in mind of how FAPs are sensing injury, the authors identified a subset of FAPs relevant to regeneration in the SNC model. The unsupervised clustering of FAPs cells considering the nine different types of samples resulted in seven clusters of FAPs. Cluster one was exclusive to non-injury animals or regenerated samples. Clusters two and three were exclusive to the early injured or denervated nerve, suggesting that cluster one senses injury and clusters two and three are derived from it. Among the highest DEGs in cluster one were the GDNF receptors Ret and Gfra1. It is known that GDNF is released by Schwann cells after nerve injury in the literature. Also, gene expression analysis in clusters two and three predicts RTK involvement and GDNF signaling. Altogether, transcriptomic data suggest that GDNF is the mechanism by which FAPs sense nerve injury.

      On the other hand, they found BDNF expression limited to cluster two of injured FAPs, suggesting that FAPs respond to GDNF by secreting BDNF. Although the specific role of secreted BDNF by FAPs in nerve regeneration is unknown, BDNF is known to have a regenerative influence on injured sciatic nerves by promoting both axonal growth and myelination. Consistent with their hypothesis, the analysis of gene expression in Schwann cells (sorted using the Plp1CreER Rosatd tomato mouse) and FAPs after injury indicates an initial increase in GDNF gene expression in early time points after injury in Schwann cells, followed by increased expression of BDNF in FAPs. Using conditional knock-out of BDNF in low limb FAPs (Prrx1Cre; Bdnffl/fl), they were able to demonstrate that nerve regeneration is impaired in Prrx1Cre; Bdnffl/fl, by delayed myelinization of axons.

      Strengths:

      I found the article well-written and cleverly maximized the interpretation and analysis of single-cell transcriptome data. Their findings illuminate how growth factors allow communication between cells responding to injury to promote regeneration. I find the data generated by the authors sufficient to support their model and claims,

      Weaknesses:

      Although, I find the data the authors generated enough for their claims. I do see them as relatively poor, and a complementary analysis of protein expression would strengthen the paper through immunostaining of the different genes mentioned for FAPs and Schwann cells. The model is entirely supported by measuring mRNA levels and negative regulation of gene expression in specific cells. Additionally, what happens to the structure of the neuromuscular junction after regeneration when GDNF or BDNF expression is reduced? The determination of decreasing levels of FAPs BDNF mRNA during aging is interesting; is the gain of BDNF expression in FAPs reverting the phenotype?

    1. Reviewer #2 (Public Review):

      Summary:

      Cancer treatments are not just about the tumor - there is an ever-increasing need for treating pain, fatigue, and anhedonia resulting from the disease as patients are undergoing successful but prolonged bouts with cancer. Using an implantable oral tumor model in the mouse, Barr et al describe neural infiltration of tumors, and posit that these nerve fibers are transmitting pain and other sensory signals to the brain that reduce pleasure and motivation. These findings are in part supported by anatomical and transcriptional changes in the tumor that suggest sensory innervation, neural tracing, and neural activity measurements. Further, the authors conduct behavior assays in tumor-bearing animals and inhibit/ablate pain sensory neurons to suggest the involvement of local sensory innervation of tumors in mediating cancer-induced malaise.

      Strengths:

      • This is an important area of research that may have implications for improving the quality of life of cancer patients.

      • The studies use a combination of approaches (tracing and anatomy, transcriptional, neural activity recordings, behavior assays, loss-of-function) to support their claims.

      • Tracing experiments suggest that tumor-innervating afferents are connected to brain nuclei involved in oral pain sensing. Consistent with this, the authors observed increased neural activity in those brain areas of tumor-bearing animals. It should be noted that some of these brain nuclei have also been implicated in cancer-induced behavioral alterations in non-head and neck tumor models.

      • Experiments are for the most part well-controlled, and approaches are validated.

      • The paper is well-written and the layout was easy to follow.

      Weaknesses:

      • The main claim is that tumor-infiltrating nerves underlie cancer-induced behavioral alterations, but the experimental interventions are not specific enough to support this. For example, all TRPV1 neurons, including those innervating the skin and internal organs, are ablated to examine sensory innervation of the tumor. Within the context of cancer, behavioral changes may be due to systemic inflammation, which may alter TRPV1 afferents outside the local proximity of tumor cells. A direct test of the claims of this paper would be to selectively inhibit/ablate nerve fibers innervating the tumor or mouth region.

      • Behavioral results from TRPV1 neuron ablation studies are in part confounded by differing tumor sizes in ablated versus control mice. Are the differences in behavior potentially explained by the ablated animals having significantly smaller tumors? The differences in tumor sizes are not negligible. One way to examine this possibility might be to correlate behavioral outcomes with tumor size.

    1. Reviewer #2 (Public Review):

      Summary:

      To investigate the impact of chemical ischemia induced by blocking mitochondrial function and glycolysis, the authors measured extracellular field potentials, performed whole-cell patch-clamp recordings, and measured glutamate release with optical techniques. They found that shorter two-minute-lasting blockade of energy production initially blocked synaptic transmission but subsequently caused a potentiation of synaptic transmission due to increased glutamate release. In contrast, longer five-minute-lasting blockage of energy production caused a sustained decrease of synaptic transmission. A correlation between the increase of intracellular potassium concentration and the response upon chemical ischemia indicates that the severity of the ischemia determines whether synapses potentiate or depress upon chemical ischemia. A subsequent mechanistic analysis revealed that the speed of uptake of glutamate is unchanged. An increase in the duration of the fiber volley reflecting the extracellular voltage of the action potentials of the axon bundle was interpreted as an action potential broadening, which could provide a mechanistic explanation. In summary, the data convincingly demonstrate that synaptic potentiation induced by chemical ischemia is caused by increased glutamate release.

      Strengths:

      The manuscript is well-written and the experiments are carefully designed. The results are exciting, novel, and important for the field. The main strength of the manuscript is the combination of electrophysiological recordings and optical glutamate imaging. The main conclusion of increased glutamate release was furthermore supported with an independent approach relying on a low-affinity competitive antagonist of glutamate receptors. The data are of exceptional quality. Several important controls were carefully performed, such as the stability of the recordings and the size of the extracellular space. The number of experiments is sufficient for the conclusions. The careful data analysis justifies the classification of two types of responses, namely synaptic potentiation and depression after chemical ischemia. Except for the duration of the presynaptic action potentials (see below weaknesses) the data are carefully discussed and the conclusions are justified.

      Weaknesses:

      The weaknesses are minor and only relate to the interpretation of some of the data regarding the presynaptic mechanisms causing the potentiation of release. The authors measured the fiber volley, which reflects the extracellular voltage of the compound action potential of the fiber bundle. The half-duration of the fiber volley was increased, which could be due to the action potential broadening of the individual axons but could also be due to differences in conduction velocity. We are therefore skeptical whether the conclusion of action broadening is justified.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript describes the use of quantitative imaging approaches, which have been a key element of the labs work over the past years, to address one of the major unresolved discussions in trafficking: intra-Golgi transport. The approach used has been clearly described in the labs previous papers, and is thus clearly described. The authors clearly address the weaknesses in this manuscript and do not overstate the conclusions drawn from the data. The only weakness not addressed is the concept of blocking COPI transport with BFA, which is a strong inhibitor and causes general disruption of the system. This is an interesting element of the paper, which I think could be improved upon by using more specific COPI inhibitors instead, although I understand that this is not necessarily straightforward.

      I commend the authors on their clear and precise presentation of this body of work, incorporating mathematical modelling with a fundamental question in cell biology. In all, I think that this is a very robust body of work, that provides a sound conclusion in support of the stable compartment model for the Golgi.

      General points:

      The manuscript contains a lot of background in its results sections, and the authors may wish to consider rebalancing the text: The section beginning at Line 175 is about 90% background and 10% data. Could some data currently in supplementary be included here to redress this balance, or this part combined with another?

    1. Reviewer #2 (Public Review):

      Summary:

      This study was aimed to study the role of SRSF2 in governing MyoD progenitors to specific muscle regions. The Results confirmed the role of SRSF2 in controlling myogenic differentiation through the regulation of targeted genes and alternative splicing during skeletal muscle development.

      Strengths:

      The study used different methods and techniques to achieve aims and support the conclusions such as RNA sequencing analysis, Gene Ontology analysis, immunostaining analysis.<br /> This study provides novel findings that SRSF2 controls the myogenic differentiation of MyoD+ progenitors, using transgenic mouse model and in vitro studies.

      Weaknesses:

      Although unbiased sequencing methods were used, their findings about SRSF2 served as a transcriptional regulator and functioned in alternative splicing events are not novel.<br /> The introductions and discussion is not clearly written. The authors did not raise clear scientific questions in the introduction part. The last paragraph is only copy-paste of the abstract. The discussion part is mainly the repeat of their results without clear discussion.

    1. Reviewer #2 (Public Review):

      The manuscript by Menon et al describes a set of simulations of alpha-Synuclein (aSYN) and analyses of these and previous simulations in the presence of a small molecule.

      While I agree with the authors that the questions addressed are interesting, I am not sure how much we learn from the present simulations and analyses. In parts, the manuscript reads more like an attempt to apply a whole range of tools rather than with a goal of answering any specific questions.

      There's a lot going on in this paper, and I am not sure it is useful for the authors, readers or me to spell out all of my comments in detail. But here are at least some points that I found confusing/etc

      Major concerns

      p. 5 and elsewhere:<br /> I lack a serious discussion of convergence and the statistics of the differences between the two sets of simulations. On p. 5 it is described how the authors ran multiple simulations of the ligand-free system for a total of 62 µs; that is about 25 times less than for the ligand system. I acknowledge that running 1.5 ms is unfeasible, but at a bare minimum the authors should discuss and analyse the consequences for the relatively small amount of sampling. Here it is important to say that while 62 µs may sound like a lot it is probably not enough to sample the relevant properties of a 140-residue long disordered protein.

      p. 7:<br /> The authors make it sound like a bad thing than some methods are deterministic. Why is that the case? What kind of uncertainty in the data do they mean? One can certainly have deterministic methods and still deal with uncertainty. Again, this seems like a somewhat ad hoc argument for the choice of the method used.

      p. 8:<br /> The authors should make it clear (i) what the reconstruction loss and KL is calculated over and (ii) what the RMSD is calculated over.

      p. 9/figure 1:<br /> The authors select a beta value that may be the minimum, but then is just below a big jump in the cross-validation error. Why does the error jump so much and isn't it slightly dangerous to pick a value close to such a large jump.

      p. 10:<br /> Why was a 2-dimensional representation used in the VAE? What evidence do the authors have that the representation is meaningful? The authors state "The free energy landscape represents a large number of spatially close local minima representative of energetically competitive conformations inherent in αS" but they do not say what they mean by "spatially close". In the original space? If so, where is the evidence.

      p. 10:<br /> It is not clear from the text whether the VAEs are the same for both aSYN and aSYN-Fasudil. I assume they are. Given that the Fasudil dataset is 25x larger, presumably the VAE is mostly driven by that system. Is the VAE an equally good representation of both systems?

      p. 10/11:<br /> Do the authors have any evidence that the latent space representation preserves relevant kinetic properties? This is a key point because the entire analysis is built on this. The choice of using z1 and z2 to build the MSM seems somewhat ad hoc. What does the auto-correlation functions of Z1 and Z2 look like? Are the related to dynamics of some key structural properties like Rg or transient helical structure.

      p. 11:<br /> What's the argument for not building an MSM with states shared for aSYN +- Fasudil?

      p. 12:<br /> Fig. 3b/c show quite clearly that the implied timescales are not converged at the chosen lag time (incidentally, it would have been useful with showing the timescales in physical time). The CK test is stated to be validated with "reasonable accuracy", though it is unclear what that means.

      p. 12:<br /> In Fig. 3d, what are the authors bootstrapping over? What are the errors if the authors analyse sampling noise (e.g. bootstrap over simulation blocks)?

      p. 13:<br /> I appreciate that the authors build an MSM using only a subset of the fasudil simulations. Here, it would be important that this analysis includes the entire workflow so that the VAE is also rebuilt from scratch. Is that the case?

      p. 18:<br /> I don't understand the goal of building the CVAE and DCVAE. Am I correct that the authors are building a complex ML model using only 3/6 input images? What is the goal of this analysis. As it stands, it reads a bit like simply wanting to apply some ML method to the data. Incidentally, the table in Fig. 6C is somewhat intransparent.

      p. 22:<br /> "Our results indicate that the interaction of fasudil with αS residues governs the structural features of the protein."<br /> What results indicate this?

      p. 23:<br /> The authors should add some (realistic) errors to the entropy values quoted. Fig. 8 have some error bars, though they seem unrealistically small. Also, is the water value quoted from the same force field and conditions as for the simulations?

      p. 23:<br /> Has PDB2ENTROPY been validated for use with disordered proteins?

      p. 23/24:<br /> It would be useful to compare (i) the free energies of the states (from their populations), (ii) the entropies (as calculated) and (iii) the enthalpies (as calculated e.g. as the average force field energy). Do they match up?

      p. 31:<br /> It is unclear which previous simulation the new aSYN simulations were launched from. What is the size of the box used?

    1. Reviewer #2 (Public Review):

      Summary:

      Chromatin organization and dynamics are critical for eukaryotic genome functions, but how are they related to each other? To address this question, Chang et al. developed a euchromatic labeling method using CRISPR/dCAS9 targeting Alu elements. These elements are highly enriched in the A compartment, which is closely associated with transcriptionally active and gene-rich regions. Labeling Alu elements allowed live-cell imaging of the gene-rich A compartment (euchromatin). Using the developed system, Chang et al. found while Alu-rich chromatin is depleted in regions with high chromatin density (putative heterochromatin), Alu density and chromatin density are not correlated in the euchromatin. Combining the live-cell imaging of Alu elements with bulk chromatin labeling (fluorescent histone H2B), the authors showed that transcriptionally active chromatin (A compartment) has an increased mobility. Transcription inhibitors flavopiridol and 𝛼-amanitin treatments increased the mobility of Alu-rich chromatin, and ActD had the opposite effect on chromatin mobility.

      Strengths:

      Alu labeling is a valuable euchromatin labeling method, and measuring its mobility would contribute to a comprehensive understanding of the relationship between chromatin dynamics and transcriptional activity.

      Weaknesses:

      Some of the findings are consistent with the previous reports and not new. There are some issues to be addressed. My specific comments are the following:

      Line 58. "these methods generally lack information regarding the local chromatin environment (e.g., epigenetic state) and genomic context (e.g., A/B compartments and TADs)." This description is not accurate because Nozaki et al. (2023) performed euchromatin-specific nucleosome labeling/imaging (Hi-C contact domains with active histone marks, A-compartment). More recently, Semeigazin et al. (2024)(https://www.researchsquare.com/article/rs-3953132/v1) also did euchromatic-specific nucleosome labeling/imaging in living cells.

      Line 154. "we defined the euchromatin regions in our images by excluding heterochromatin (top 5% pixel intensity) and nucleolar areas."<br /> I am not so sure that this definition is reasonable. How were the top 5% H2B intensity regions distributed? Did they include the nuclear periphery region, which is also heterochromatin-rich? Could the authors show the ΔPCC between whole H2B (including both euchromatin and heterochromatin) and dCas9-sgAlu?

      Line 214. "our data suggests that Alu-rich (gene-rich) regions have increased chromatin mobility compared to Alu-poor (gene-poor) regions." A similar finding on nucleosome motion has already been published by Nozaki et al. 2023 and Semeigazin et al. 2024 (described above).

      Line 282. A recent important paper on the relationship between histone acetylation, transcription initiation, and nucleosome mobility (PMID: 37792937) is missing and should be discussed.

      Line 303. "Alu-rich chromatin may be more sensitive upon flavopiridol and 𝛼-amanitin treatments compared to Alu-poor chromatin (Figure 5)." Nagashima et al. (2019) also revealed that 𝛼-amanitin treatment did not increase the chromatin dynamics in heterochromatin-rich nuclear periphery regions.

    1. Reviewer #2 (Public Review):

      Summary:

      In the work by Scerbo et al, the authors aim to better understand the open question of what factors constrain cells that are genetically predisposed to form cancer (e.g. those with a potentially cancer-causing mutation like activated Ras) to only infrequently undergo this malignant transformation, with a focus on the influence of embryonic or pluripotency factors (e.g. VENTX/NANOG). Using genetically defined zebrafish models, the authors can inducibly express the KRASG12V oncogene using a combination of Cre/Lox transgenes further controlled by optogenetically inducible Cre-activated (CreER fusion that becomes active with light-induced uncaging of a tamoxifen-analogue in a targeted region of the zebrafish embryo). They further show that transient expression and activation of a pluripotency factor (e.g. Ventx fused to a GR receptor that is activated with addition of dexamethasone) must occur in the model in order for overgrowth of cells to occur. This paper describes a genetically tractable and modifiable system for studying the requirements for inducing cellular hyperplasia in a whole organism by combining overexpression of canonical genetic drivers of cancer (like Ras) with epigenetic modifiers (like specific transcription factors), which could be used to study an array of combinations and temporal relationships of these cancer drivers/modifiers.

      Strengths:

      The combination of Cre/lox inducible gene expression with potentially localized optogenetic induction (CreER and uncaging of tamoxifen analogues) of recombination as well as well inducible activation of a transcription factor expressed via mRNA injection (GR-fusion to the TF and dex induction) offers a flexible system for manipulating cell growth, identity, and transcriptional programs. With this system, the authors establish that Ras activation and at least transient Ventx overexpression are together required to induce a hyperproliferative phenotype in zebrafish tissues.

      The ability to live image embryos over the course of days with inducible fluorophores indicating recombination events and transgene overexpression offers a tractable in vivo system for studying hyperplastic cells in the context of a whole organism.

      The transplant experiments demonstrate the ability of the induced hyperplastic cells to grow upon transfer to new host.

      Weaknesses:

      There is minimal quantitation of key aspects of the system, most critically in the efficiency of activation of the Ras-TFP fusion (Fig 1) in, purportedly, a single cell. The authors note "On average the oncogene is then activated in a single cell, identified within ~1h by the blue fluorescence of its nuclear marker) but no additional quantitative information is provided. For a system that is aimed at "a statistically relevant single-cell<br /> tracking and characterization of the early stages of tumorigenesis", such information seems essential.

      The authors indicate that a single cell is "initiated" (Fig 2) using the laser optogenetic technique, but without definitive genetic lineage tracing, it is not possible to conclude that cells expressing TFP distant from the target site near the ear are daughter cells of the claimed single "initiated" cell. A plausible alternative explanation is 1) that the optogenetic targeting is more diffuse (i.e. some of the light of the appropriate wavelength hits other cells nearby due to reflection/diffraction), so these adjacent cells are additional independent "initiated" cells or 2) that the uncaged tamoxifen analogue can diffuse to nearby cells and allow for CreER activation and recombination. In Fig 2B, the claim is made that "the activated cell has divided, giving rise to two cells" - unless continuously imaged or genetically traced, this is unproven. In addition, it appears that Figures S3 and S4 are showing that hyperplasica can arise in many different tissues (including intestine, pancreas, and liver, S4C) with broad Ras + Ventx activation (while unclear from the text, it appears these embryos were broadly activated and were not "single cell activated using the set-up in Fig 1E? This should be clarified in the manuscript). In Fig S7 where single cell activation and potential metastasis is discussed, similar gut tissues have TFP+ cells that are called metastatic, but this seems consistent with the possibility that multiple independent sites of initiation are occurring even when focal activation is attempted.

      Although the hyperplastic cells are transplantable (Fig 4), the use of the term "cells of origin of cancer" or metastatic cells should be viewed with care in the experiments showing TFP+ cells (Fig 1, 2, 3) in embryos with targeted activation for the reasons noted above.

    1. Reviewer #2 (Public Review):

      Summary:

      In this study, Ju Q et al performed both in vitro and in vivo experiments to test the effect of TAK1 on cancer metastasis. They demonstrated that TAK1 is capable of directly phosphorylating PLCE1 and this modification represses its enzyme activity, leading to suppression of PIP2 hydrolysis and subsequently signal transduction in the PKC/GSK-3β/β-Catenin axis.

      Strengths:

      The quality of data is good, and the presentation is well organized in a logical way.

      Weaknesses:

      The study missed some key link in connecting the effect of TAK1 on cancer metastasis via phosphorylating PLCE1.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors use the Drosophila model system to study the impact of mild head trauma on sex-dependent brain deficits. They identify Sex Peptide as a modulator of greater negative outcome in female flies. Additionally, they observe that increased age at the time of injury results in worse outcomes, especially in females, and that this is due to chronic suppression of innate immune defense networks in mated females. The results demonstrate a novel signaling pathway that promotes age- and sex-dependent outcomes after head injury.

      Strengths:

      The authors have modified their previously reported TBI model in flies to mimic mild TBI, which is novel. Methods are explained in detail, allowing for reproducibility. Experiments are rigorous with appropriate statistics. A number of important controls are included. The work tells a complete mechanistic story and adds important data to increase our understanding of sex-dependent differences in recovery after TBI. The discussion is comprehensive and puts the work in the context of the field.

      Weaknesses:

      A very minor weakness is that exact n values should be included in the figure legends. There should also be confirmation of knockdown by RNAi in female flies either by immunohistochemistry or qRT-PCR if possible.

    1. Reviewer #2 (Public Review):

      Summary:

      Septin caging has emerged as one of the innate immune responses of eukaryotic cells to infections by intracellular bacteria. This fascinating assembly of eukaryotic proteins into complex structures restricts bacteria motility within the cytoplasm of host cells, thereby facilitating recognition by cytosolic sensors and components of the autophagy machinery. Given the different types of septin caging that have been described thus far, a single-cell, unbiased approach to quantify and characterise septin recruitment at bacteria is important to fully grasp the role and function of caging. Thus, the authors have developed an automated image analysis pipeline allowing bacterial segmentation and classification of septin cages that will be very useful in the future, applied to study the role of host and bacterial factors, compare different bacterial strains, or even compare infections by clinical isolates.

      Strengths:

      The authors developed a solid pipeline that has been thoroughly validated. When tested on infected cells, automated analysis corroborated previous observations and allowed the unbiased quantification of the different types of septin cages as well as the correlation between caging and bacterial metabolic activity. This approach will prove an essential asset in the further characterisation of septin cages for future studies.

      Weaknesses:

      As the main aim of the manuscript is to describe the newly developed analysis pipeline, the results illustrated in the manuscript are essentially descriptive. The developed pipeline seems exceptionally efficient in recognising septin cages in infected cells but its application for a broader purpose or field of study remains limited.

    1. Reviewer #2 (Public Review):

      Summary:

      The findings highlight the importance of targeting the ELF3-MED23 protein-protein interaction (PPI) as a potential therapeutic strategy for HER2-overexpressing cancers, notably gastric cancers, as an alternative to trastuzumab. The evidence, including the strong potency of compound 10 in inhibiting ELF3-MED23 PPI, its capacity to lower HER2 levels, induce apoptosis, and impede proliferation both in laboratory settings and animal models, indicates that compound 10 holds promise as a novel therapeutic option, even for cases resistant to trastuzumab treatment.

      Strengths:

      The experiments conducted are robust and diverse enough to address the hypothesis posed.

      Weaknesses:

      The rationale behind the proposed structural modifications for the three groups of compounds is not clear.

    1. Reviewer #2 (Public Review):

      Summary:

      Previously, the authors published a Leishmania cytosine base editor (CBE) genetic tool that enables the generation of functionally null mutants. This works by utilising a CAS9-cytidine deaminase variant that is targeted to a genetic locus by a small guide RNA (sgRNA) and causes cytosine to thymine conversion. This has the potential to generate a premature stop codon and therefore a loss of function mutant.

      CBE has advantages over existing CAS-based knockout tools because it allows the targeting of multicopy gene families and, potentially, the easier generation of pooled loss of function mutants in complex population experiments. Although successful, the first generation of this genetic tool had several limitations that may have prevented its wider adoption, especially in complex genome-wide screens. These include nonspecific toxicity of the sgRNAs, low transfection efficiencies, low editing efficiencies, a proportion of transfectants that express multiple different sgRNAs, and insufficient effectivity in some Leishmania species.

      Here, the authors set out to systematically solve each of these limitations. By trialling different transfection conditions and different CAS12a cut sites to promote sgRNA expression cassette integration, they increase the transfection efficiency 400-fold and ensure that only a single sgRNA expression cassette integrates that edits with high efficiencies. By trialling different T7 promoters, they significantly reduce the non-specific toxicity of sgRNA expression whilst retaining high editing efficiencies in several Leishmania species (Leishmania major, L. mexicana and L. donovani). By improving the sgRNA design, the authors predict that null mutants will be more efficiently produced after editing.

      This tool will find adoption for producing null mutants of single-copy genes, multicopy gene families, and potentially genome-wide mutational analyses.

      Strengths:

      This is an impressive and thorough study that significantly improves the previous iteration of the CBE. The approach is careful and systematic and reflects the authors' excellent experience developing CRISPR tools. The quality of data and analysis is high and data are clearly presented.

      Weaknesses:

      Figure 4 shows that editing of PF16 is 'reversed' between day 6 and day 16 in L. mexicana WTpTB107 cells. The authors reasonably conclude that in drug-selected cells there is a mixed population of edited and non-edited cells, possibly due to mis-integration of the sgRNA expression construct, and non-edited cells outcompete edited cells due to a growth defect in PF16 loss of function mutants. However, this suggests that the CBE tool will not work well for producing mutants with strong fitness phenotypes without incorporating a limiting dilution cloning step (at least in L. mexicana and quite possibly other Leishmania species). Furthermore, it suggests it will not be possible to incorporate genes associated with a growth defect into a pooled drop-out screen as described in the paper. This issue is not well explored in the paper and the authors have not validated their tool on a gene associated with a severe growth defect, or shown that their tool works in a mixed population setting.

      Although welcome, the improvements to the crRNA CBE design tool are hypothetical and untested.

      The Sanger and Oxford Nanopore Technology analyses on integration sites of the sgRNA expression cassette integration will not detect the mis-integration of the sgRNA expression construct into an entirely different locus.

    1. Reviewer #2 (Public Review):

      Summary:

      The study "Molecular basis of neurodegeneration in a mouse model of Polr3 related disease" by Moir et.al. showed that how RNA Pol III mutation affects production, maturation and transport of tRNAs. Furthermore, their study suggested that RNA pol III mutation leads to behavioural deficits that are commonly observed in neurodegeneration. Although, this study used a mouse model to establish theses aspects, the study seems to lack a clear direction and mechanism as to how the altered level of tRNA affects locomotor behaviour. They should have used conditional mouse to delete the gene in specific brain area to test their hypothesis. Otherwise, this study shows a more generalized developmental effect rather than specific function of altered tRNA level. This is very evident from their bulk RNA sequencing study. This study provides some discrete information rather than a coherent story.

      Strengths:

      The study created a mouse model to investigate role of RNA PolIII transcription. Furthermore, the study provided RNA seq analysis of the mutant mice and highlighted expression specific transcripts affected by the RNA PolIII mutation.

      Weaknesses:

      1) The abstract is not clearly written. It is hard to interpret what is the objective of the study and why they are important to investigate. For example: "The molecular basis of disease pathogenesis is unknown." Which disease? 4H leukodystrophy? All neurodegenerative disease?

      2) How cerebral pathology and exocrine pancreatic atrophy are related? How altered tRNA level connects these two axes?

      3) Authors mentioned that previously observed reduction mature tRNA level also recapitulated in their study. Why this study is novel then?

      4) It is very intuitive that deficit in Pol III transcription would severely affect protein synthesis in all brain areas as well as other organs. Hence, growth defect observed in Polr3a mutant mice is not very specific rather a general phenomenon.

      5) Authors observed specific myelination defect in cortex and hippocampus but not in cerebellum. This is an interesting observation. It is important to find the link between tRNA removal and myelin depletion in hippocampus or cortex? Why is myelination not affected in cerebellum?

      6) How was the locomotor activity measured? The detailed description is missing. Also, locomotion is primarily cerebellum dependent. There is no change in term of growth rate and myelination in cerebellar neurons. I do not understand why locomotor activity was measured.

      7) The correlation with behavioural changes and RNA seq data is missing. There a number of transcripts are affected and mostly very general factors for cellular metabolism. Most of them are RNA Pol II transcribed. How a Pol III mutation influences RNA Pol II driven transcription? I did not find differential expression of any specific transcripts associated with behavioural changes. What is the motivation for transcriptomics analysis? None of these transcripts are very specific for myelination. It is rather a general cellular metabolism effect that indirectly influences myelination.

      8) What genes identified by transcriptomics analysis regulates maturation of tRNA? Authors should at least perform RNAi study to identify possible factor and analyze their importance in maturation of tRNA.

      9) What factors are influencing tRNA transport to cytoplasm? It may be possible that Polr3a mutation affect cytoplasmic transport of tRNA. Authors should study this aspect using an imaging experiment.

      10) Does alteration of cytoplasmic level of tRNA affects translation? Author should perform translation assay using bio-orthoganal amino acid (AHA) labelling.

    1. Reviewer #2 (Public Review):

      Summary:

      Definition of the role of CdK5 in circadian locator activity and light induced neural activity in the mouse SCN in-vivo revealing its mode of action through PKA-CaMK-CREB signaling pathway.

      Strengths:

      The experimental approaches are carried from in-vivo, to cellular and molecular level and provide first evidence for the specific involvement of CdK5 in light-induced phase advance of the free-running rhythm.

      Weaknesses:

      The behavioral analyses are limited to some selected parameters.<br /> Downstream effects on circadian oscillation of gene expression and physiological functions in other brain regions, and organs is missing.

    1. Reviewer #3 (Public Review):

      Summary:

      The manuscript introduces a new computational framework for choosing 'the best method' according to the case for getting the best possible structural prediction for the CDR-H3 loop. The authors show their strategy improves on average the accuracy of the predictions on datasets of increasing difficulty in comparison to several state-of-the-art methods. They also show the benefits of improving the structural predictions of the CDR-H3 in the evaluation of different properties that may be relevant for drug discovery and therapeutic design.

      Strengths:

      The authors introduce a novel framework, which can be easily adapted and improved. Authors use a well-defined dataset to test their new method. A modest average accuracy gain is obtained in comparison to other state-of-the art methods for the same task, while avoiding testing different prediction approaches. Although the accuracy gain is mainly ascribed to easy cases, the accuracy and precision for moderate to challenging cases is comparable to the best PLM methods (see Fig. 4b and Extended Data Fig. 2), reflecting the present methodological limit in the field. The proposed method includes a confidence score for guiding users about the accuracy of the predictions.

    1. Reviewer #2 (Public Review):

      In "Neuroinfectiology of an atypical anthrax-causing pathogen in wild chimpanzees" Tobias et.al. provide a detailed histologic characterization of B.cereus biovar anthracis in the brain of four wild chimpanzees in comparison to an uninfected age-matched chimp. The authors present a combination of special stains, radiography (MRI), bacterial culture, and immunohistochemistry including some quantitative image analysis to support the assessment of the neuropathogenicity of Bcbva. However, the study has major limitations that detract from the conclusions presented regarding the neurovirulence of this strain. Namely, there is a near complete lack of traditional histopathological and radiographic interpretation by qualified experts in which to frame the detailed tissue studies. The authors mention that facultative anaerobes are capable of post-mortem replication. Pathologists use comprehensive pathological assessments to determine the extent of disease caused by the primary infection, none of which is mentioned in this study (spleen, heart, lungs), which makes it difficult to determine if the findings in the brain align with the rest of the post-mortem assessment. If these were not included due to severe post-mortem autolysis, it heightens the risk of post-mortem bacterial replication in the CNS. The most important limitation is the fact that the meninges were removed and were not available for assessment therefore any comparisons with existing data on neuropathogenicity of B. anthracis is not possible. An advantage of the study is the inclusion of the control age-matched chimp, but the controls are not shown for many of the IHC and special stains - limiting interpretations. In general, the article is difficult to follow with the figures since many panels are only discussed and interpreted in the figure legends and not the text. In some cases, the results are overly technical with limited clinical insight which makes the article less easy to interpret next to human clinical reports.

    1. Reviewer #2 (Public Review):

      Summary

      This is a fascinating topic that has intrigued scientists for decades. I applaud the authors for trying to tackle this enigma. In this manuscript, the authors primarily measured hopping biomechanics data from kangaroos and performed inverse dynamics. While these biomechanical analyses were thorough and impressively incorporated collected anatomical data and an Opensim model, I'm afraid that they did not satisfactorily address how kangaroos can hop faster and not consume more metabolic energy, unique from other animals. Noticeably, the authors did not collect metabolic data nor did they model metabolic rates using their modelling framework. Instead, they performed a somewhat traditional inverse dynamics analysis from multiple animals hopping at a self-selected speed. Within these analyses, the authors largely focused on ankle EMA, discussing its potential importance (because it affects tendon stress, which affects tendon strain energy, which affects muscle mechanics) on the metabolic cost of hopping. However, EMA was roughly estimated (CoP was fixed to the foot, not measured) and did not detectibly associate with hopping speed (see results). Yet, the authors interpret their EMA findings as though it systematically related with speed to explain their theory on how metabolic cost is unique in kangaroos vs. other animals. These speed vs. biomechanics relationships were limited by comparisons across different animals hopping at different speeds and could have been strengthened using repeated measures design. There are also multiple inconsistencies between the authors' theory on how mechanics affect energetics and the cited literature, which leaves me somewhat confused and wanting more clarification and information on how mechanics and energetics relate. My apologies for the less-than-favorable review, I think that this is a neat biomechanics study - but am unsure if it adds much to the literature on the topic of kangaroo hopping energetics in its current form.

    1. Reviewer #2 (Public Review):

      Summary:

      Key findings of this research include the sequencing of the wasp's genome, identification of venom constituents and teratocytes, and examination of Trichopria drosophilae (Td)'s ecology and parasitic strategies. It was observed that Td doesn't distinguish between hosts based on age but can recognize previously parasitized hosts. The study also explored whether multiple parasitisms by Td improved outcomes, which indeed it did, possibly by increasing venom and teratocyte levels. Utilizing Drosophila ectopic expression tools, the authors functionally characterized venom components, specifically tissue inhibitors of metalloproteinases (Timps), which were found to cause delays in host development. Additionally, experiments revealed that teratocytes produce numerous proteases, aiding in the digestion of host tissues for parasite consumption. The discussion suggests that genes involved in different aspects of parasitism may arise from gene duplication and shifts in tissue expression to venom glands or teratocytes.

      Strengths:

      This manuscript provides an in-depth and detailed depiction of the parasitic strategies employed by Td wasps, spanning both molecular and behavioral aspects. It consolidates a significant amount of research that, in the past, might have been distributed across multiple papers. By presenting all this data in a single manuscript, it delivers a comprehensive and engaging study that could help future developments in the field of biological control against a major insect pest.

      Weaknesses:

      While none of the findings are particularly groundbreaking, as similar results have been reported for other parasitoid species in prior research, the integration of these results into one comprehensive overview offers valuable biological insights into an interesting new potential biocontrol species.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors examined the hypothesis that eugenol promotes myokines release and f skeletal muscles remoulding by activating the TRPV1-Ca2+-calcineurin-NFATc1 signalling pathway. They first showed that eugenol promotes skeletal muscle transformation and metabolic functions in adipose tissues by analysing changes in the expression of mRNA and proteins of relevant representative protein markers. With similar methodologies, they further found that eugenol increases the expression of mRNA and/or proteins of TRPV1, CaN, NFATC1 and IL-15 in muscle tissues. These processes were, however, prevented by inhibiting TRPV1 and CaN. Similar expression changes were also triggered by increasing intracellular Ca2+ with A23187, suggesting a Ca2+-dependent process.

      Strengths:

      Different proteins markers were used as a readout of the functions of muscles and adipose tissues and mitochondria and analysed at both mRNA and protein levels. The results were mostly consistent. Although the signaling pathway of TRPV1-Ca2+-CaN-NFAT is not new and well documented, they identified IL-15 as a new downstream target of this pathway combined with use of TRPV1 and CaN inhibitors.

      Weaknesses:

      Most of the evidence is limited to the molecular level lacking direct functional assays and system analysis. It will be interesting to examine the effect of eugenol on metabolic rate in animals and the role of TRPV1 in this process, as eugenol enhanced food intake without effect on body weight. TRPV1 and CaN inhibition prevented IL-15 expression in C2C12 cells (Fig.9). It remain unknown whether the effect is reproducible in native muscle tissues.

      It is also unknown how eugenol enhances TRPV1/CaN expression and alters the expression of many other protein markers in muscle and adipose tissues. Are these effects mediated by activated NFAT or by released IL-15 forming a positive feedback loop? It should at least be discussed.

      Many protein blots were presented but no molecular weight markers were shown. It is thus difficult to convince others that the protein bands are the right anticipated positions.

    1. Reviewer #2 (Public Review):

      This manuscript explores the seemingly paradoxical observation that enhanced synaptic plasticity impairs (rather than enhances) certain forms of learning and memory. The central hypothesis is that such impairments arise due to saturation of synaptic plasticity, such that the synaptic plasticity required for learning can no longer be induced. A prior study provided evidence for this hypothesis using transgenic mice that lack major histocompatibility class 1 molecules and show enhanced long-term depression (LTD) at synapses between granule cells and Purkinje cells of the cerebellum. The study found that a form of LTD-dependent motor learning-increasing the gain of the vestibulo-ocular reflex (VOR)-is impaired in these mice and can be rescued by manipulations designed to "unsaturate" LTD. The present study extends this line of investigation to another transgenic mouse line with enhanced LTD, namely, mice with the Fragile X gene knocked out. The main findings are that VOR gain increase learning is selectively impaired in these mice but can be rescued by specific manipulations of visuomotor experience known to reverse cerebellar LTD. Additionally, the authors show that a transient global enhancement of neuronal inhibition also selectively rescues gain increase learning. This latter finding has potential clinical relevance since the drug used to boost inhibition, diazepam, is FDA-approved and commonly used in the clinic. The evidence provided for the saturation is somewhat indirect because directly measuring synaptic strength in vivo is technically difficult. Nevertheless, the experimental results are solid. In particular, the specificity of the effects to forms of plasticity previously shown to require LTD is remarkable.

    1. Reviewer #2 (Public Review):

      Summary:

      This study examined the possible effect of spike-wave discharges (SWDs) on the response to visual or somatosensory stimulation using fMRI and EEG. This is a significant topic because SWDs often are called seizures and because there is non-responsiveness at this time, it would be logical that responses to sensory stimulation are reduced. On the other hand, in rodents with SWDs, sensory stimulation (a noise, for example) often terminates the SWD/seizure.

      In humans, these periods of SWDs are due to thalamocortical oscillations. A certain percentage of the normal population can have SWDs in response to photic stimulation at specific frequencies. Other individuals develop SWDs without stimulation. They disrupt consciousness. Individuals have an absent look, or "absence", which is called absence epilepsy.

      The authors use a rat model to study the responses to stimulation of the visual or somatosensory systems during and in between SWDs. They report that the response to stimulation is reduced during the SWDs. While some data show this nicely, there is also difficulty knowing the effect of the stimulus, SWD and stimulus + SWD.

      The authors also study the hemodynamic response function (HRF) and it is not clear what conclusions can be made from the data. The authors acknowledge this, but it does lessen its significance.

      Finally, the authors use a model to analyze the data. This model is novel and while that is a strength, its validation is with a second model rather than empirical data.

      Strengths:

      Use of fMRI and EEG to study SWDs in rats.

      Weaknesses:

      The paper has been improved by revisions but there are still parts that are unclear, as described below.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript explores infants' attention patterns in real-world settings and their relationship with autonomic arousal and EEG oscillations in the theta frequency band. The study included 5- and 10-month-old infants during free play. The results showed that the 5-month-old group exhibited a decline in HR forward-predicted attentional behaviors, while the 10-month-old group exhibited increased theta power following shifts in gaze, indicating the start of a new attention episode. Additionally, this increase in theta power predicted the duration of infants' looking behavior.

      Strengths:

      The study's strengths lie in its utilization of advanced protocols and cutting-edge techniques to assess infants' neural activity and autonomic arousal associated with their attention patterns, as well as the extensive data coding and processing. Overall, I think this article's findings have important theoretical implications for the development of infant attention.

      Weaknesses:

      The authors have effectively tackled the majority of my concerns within their revised manuscript, resulting in a substantial improvement. While the revised paper notably addresses many points, one question regarding the potential contamination of saccades on EEG power remains partially unresolved. However, I appreciate the authors' explanation that resolving this issue was challenging due to the absence of eye-tracking data in the current study. Additionally, I acknowledge their inclusion of this concern in the limitations section.

    1. Reviewer #2 (Public Review):

      Summary:

      A bidirectional occasion-setting design is used to examine sex differences in the contextual modulation of reward-related behaviour. It is shown that females are slower to acquire contextual control over cue-evoked reward seeking. However, once established, the contextual control over behaviour was more robust in female rats (i.e., less within-session variability and greater resistance to stress) and this was also associated with increased OFC activation.

      Strengths:

      The authors use sophisticated behavioural paradigms to study the hierarchical contextual modulation of behaviour. The behavioural controls are particularly impressive and do, to some extent, support the specificity of the conclusions. The analyses of the behavioural data are also elegant, thoughtful, and rigorous.

      Comments on revised version:

      In this revised version the authors have addressed the major weaknesses that I identified in my previous review.

    1. Reviewer #2 (Public Review):

      Summary:

      The idea that various clinical conditions may be associated, at least partially, with a disrupted corollary discharge mechanism has been present for long. In this paper, the authors draw a link between sensory overload, a characteristic of autism spectrum disorder, and a disturbance in the corollary discharge mechanism. The authors substantiate their hypothesis with strong evidence from both the motor and perceptual domains. As a result, they broaden the clinical relevance of the corollary discharge mechanism to encompass autism spectrum disorder.

      Public comments:

      The authors write:

      "Imagine a scenario in which you're watching a video of a fast-moving car on a bumpy road. As the car hits a pothole, your eyes naturally make quick, involuntary saccades to keep the car in your visual field. Without a functional efference copy system, your brain would have difficulty accurately determining the current position of your eye in space, which in turn affects its ability to anticipate where the car should appear after each eye movement."

      I appreciate the use of examples to clarify the concept of efference copy. However, I believe this example is more related to a gain-field mechanism, informing the system about the position of the eye with respect to the head, rather than an example of efference copy per-se.

      Without an efference copy mechanism, the brain would have trouble to accurately determine where the eyes will be in space after an eye movement, and it will have trouble predicting the sensory consequences of the eye movement. But it can be argued that the gain-field mechanism would be sufficient to inform the brain about the current position of the eyes with respect the head.

      The authors write:

      "In the double-step paradigm, two consecutive saccades are made to briefly displayed targets 21,22. The first saccade occurs without visual references, relying on internal updating to determine the eye's position."

      Maybe I am missed something, but in the double-step paradigm the first saccade can occur without the help of visual references if no visual feedback is present, that is, when saccades are performed in total darkness. Was this the case for this experiment? I could not find details about room conditions in the methods. Please provide further details.<br /> In case saccades were not performed in total darkness, then the first saccade can be based on the remembered location of the first target presented, which can be derived from the retinotopic trace of the first stimuli, as well as contribution from the surroundings, that is: the remembered relative location of the first target with respect to the screen border along the horizontal meridian (i.e. allocentric cues)<br /> A similar logic could be applied to the second saccade. If the second saccade were based only on the retinotopic trace, without updating, then it would go up and 45 deg to the right, based on the example shown in Figure 1. With appropriate updating, the second saccade would go straight up. However, if saccades were not performed in total darkness, then the location of the second target could also be derived from its relationship with the surroundings (for example, the remembered distance from screen borders, i.e. allocentric cues).<br /> If saccades were not performed in total darkness, the results shown in Figures 2 and 3 could then be related to: i) differences in motor updating between AQ score groups; ii) differences in the use of allocentric cues between AQ score groups; iii) a combination of i) and ii). I believe this is a point worth mentioning in the discussion."

      The authors write:

      "According to theories of saccadic suppression, an efference copy is necessary to predict the occurrence of a saccade."

      I would also refer to alternative accounts, where saccadic suppression appears to arise as early as the retina, due to the interaction between the visual shift introduced by the eye movement, and the retinal signal associated with the probe used to measure saccadic suppression. This could potentially account for the scaling of saccadic suppression magnitude with saccade amplitude.

      Idrees, S., Baumann, M.P., Franke, F., Münch, T.A. and Hafed, Z.M., 2020. Perceptual saccadic suppression starts in the retina. Nature communications, 11(1), p.1977.

    1. Reviewer #3 (Public Review):

      Summary:

      Deng et al. assess neonatal cord blood methylation profiles and the association with (self-reported) maternal smoking in multiple populations, including two European (CHILD, FAMILY) and one South Asian (START), via two approaches: 1) they perform an independent epigenome-wide association study (EWAS) and meta-analysis across the CHILD and FAMILY cohort, during which they also benchmark previously reported maternal-smoking associated sites, and 2) they generate new composite methylation risk scores for maternal smoking, and assess their performance and association with phenotypic characteristics in the three populations, in addition to previously described maternal smoking methylation risk scores.

      Strengths and weaknesses:

      Their meta-analysis across multiple cohorts and comparison with previous findings represents a strength. In particular the inclusion of a South Asian birth cohort is commendable as it may help to bolster generalizability. However, their conclusions are limited by several important weaknesses:

      (1) the low number of (self-reported) maternal smokers in particular their South Asian population, resulting in an inability to conduct benchmarking of maternal smoking sites in this cohort. As such, the inclusion of the START cohort in certain figures is not warranted (e.g., Figure 3) and the overall statement that smoking-associated MRS are portable across populations are not fully supported;<br /> (2) different methylation profiling tools were used: START and CHILD methylation profiles were generated using the more comprehensive 450K array while the FAMILY cohort blood samples were profiled using a targeted array covering only 3,000, as opposed to 450,000 sites, resulting in different coverage of certain sites which affects downstream analyses and MRS, and importantly, omission of potentially relevant sites as the array was designed in 2016 and substantial additional work into epigenetic traits has been conducted since then;<br /> (3) the authors train methylation risk scores (MRS) in CHILD or FAMILY populations based on sites that are associated with maternal smoking in both cohorts and internally validate them in the other cohort, respectively. As START cohort due to insufficient numbers of self-reported maternal smokers, the authors cannot fully independently validated their MRS, thus limiting the strength of their results.

      Overall strength of evidence and conclusions:

      Despite these limitations, the study overall does explore the feasibility of using neonatal cord blood for the assessment of maternal smoking. However, their conclusion on generalizability of the maternal smoking risk score is currently not supported by their data as they were not able to validate their score in a sufficiently large number of maternal smokers and never smokers of South Asian populations.

      While their generalizability remains limited due to small sample numbers and previous studies with methylation risk scores exist, their findings may nonetheless provide the basis for future work into prenatal exposures which will be of interest to the research community. In particular their finding that the maternal smoking-associated MRS was associated with small birth sizes and weights across birth cohorts, including the South Asian birth cohort that had very few self-reported smokers, is interesting and the author suggest these findings could be associated with factors other than smoking alone (e.g., pollution), which warrant further investigation and would be highly novel.<br /> Future exploration should also include a strong focus on more diverse health outcomes, including respiratory conditions that may have long-lasting health consequences.

    1. Reviewer #2 (Public Review):

      Summary:

      Utilizing transgene expression of Wnd in sensory neurons in Drosophila, the authors found that Wnd is enriched in axonal terminals. This enrichment could be blocked by preventing palmitoylation or inhibiting Rab1 or Rab11 activity. Indeed, subsequent experiments showed that inhibiting Wnd can prevent toxicity by Rab11 loss of function.

      Strengths:

      This paper evaluates in detail Wnd location in sensory neurons, and identifies a novel genetic interaction between Rab11 and Wnd that affects Wnd cellular distribution.

      Weaknesses:

      The authors report low endogenous expression of wnd, and expressing mutant hiw or overexpressing wnd is necessary to see axonal terminal enrichment. It is unclear if this overexpression model (which is known to promote synaptic overgrowth) would be relevant to normal physiology.

      Palmitoylation of the Wnd orthologue DLK in sensory neurons has previously been identified as important for DLK trafficking in a cell culture model.

      The authors find genetic interaction between Wnd and Rab11, but these studies are incomplete and they do not support the authors' mechanistic interpretation.

    1. Reviewer #2 (Public Review):

      Overview

      In this work, Manley and Vaziri investigate the neural basis for variability in the way an animal responds to visual stimuli evoking prey-capture or predator-avoidance decisions. This is an interesting problem and the authors have generated a potentially rich and relevant data set. To do so, the authors deployed Fourier light field microscopy (Flfm) of larval zebrafish, improving upon prior designs and image processing schemes to enable volumetric imaging of calcium signals in the brain at up to 10 Hz. They then examined associations between neural activity and tail movement to identify populations primarily related to the visual stimulus, responsiveness, or turn direction - moreover, they found that the activity of the latter two populations appears to predict upcoming responsiveness or turn direction even before the stimulus is presented. While these findings may be valuable for future more mechanistic studies, issues with resolution, rigor of analysis, clarity of presentation, and depth of connection to the prior literature significantly dampen enthusiasm.

      Imaging

      - Resolution: It is difficult to tell from the displayed images how good the imaging resolution is in the brain. Given scattering and lensing, it is important for data interpretation to have an understanding of how much PSF degrades with depth.

      - Depth: In the methods it is indicated that the imaging depth was 280 microns, but from the images of Figure 1 it appears data was collected only up to 150 microns. This suggests regions like the hypothalamus, which may be important for controlling variation in internal states relevant to the behaviors being studied, were not included.

      - Flfm data processing: It is important for data interpretation that the authors are clearer about how the raw images were processed. The de-noising process specifically needs to be explained in greater detail. What are the characteristics of the noise being removed? How is time-varying signal being distinguished from noise? Please provide a supplemental with images and algorithm specifics for each key step.

      - Merging: It is noted that nearby pixels with a correlation greater than 0.7 were merged. Why was this done? Is this largely due to cross-contamination due to a drop in resolution? How common was this occurrence? What was the distribution of pixel volumes after aggregation? Should we interpret this to mean that a 'neuron' in this data set is really a small cluster of 10-20 neurons? This of course has great bearing on how we think about variability in the response shown later.

      - Bleaching: Please give the time constants used in the fit for assessing bleaching.

      Analysis

      - Slow calcium dynamics: It does not appear that the authors properly account for the slow dynamics of calcium-sensing in their analysis. Nuclear-localized GCaMP6s will likely have a kernel with a multiple-second decay time constant for many of the cells being studied. The value used needs to be given and the authors should account for variability in this kernel time across cell types. Moreover, by not deconvolving their signals, the authors allow for contamination of their signal at any given time with a signal from multiple seconds prior. For example, in Figure 4A (left turns), it appears that much of the activity in the first half of the time-warped stimulus window began before stimulus presentation - without properly accounting for the kernel, we don't know if the stimulus-associated activity reported is really stimulus-associated firing or a mix of stimulus and pre-stimulus firing. This also suggests that in some cases the signals from the prior trial may contaminate the current trial.

      - Partial Least Squares (PLS) regression: The steps taken to identify stimulus coding and noise dimensions are not sufficiently clear. Please provide a mathematical description.

      - No response: It is not clear from the methods description if cases where the animal has no tail response are being lumped with cases where the animal decides to swim forward and thus has a large absolute but small mean tail curvature. These should be treated separately.

      Results

      - Behavioral variability: Related to Figure 2, within- and across-subject variability are confounded. Please disambiguate. It may also be informative on a per-fish basis to examine associations between reaction time and body movement.

      - Data presentation clarity: All figure panels need scale bars - for example, in Figure 3A there is no indication of timescale (or time of stimulus presentation). Figure 3I should also show the time series of the w_opt projection.

      - Pixel locations: Given the poor quality of the brain images, it is difficult to tell the location of highlighted pixels relative to brain anatomy. In addition, given that the midbrain consists of much more than the tectum, it is not appropriate to put all highlighted pixels from the midbrain under the category of tectum. To aid in data interpretation and better connect this work with the literature, it is recommended that the authors register their data sets to standard brain atlases and determine if there is any clustering of relevant pixels in regions previously associated with prey-capture or predator-avoidance behavior.

      Interpretation

      - W_opt and e_1 orthogonality: The statement that these two vectors, determined from analysis of the fluorescence data, are orthogonal, actually brings into question the idea that true signal and leading noise vectors in firing-rate state-space are orthogonal. First, the current analysis is confounding signals across different time periods - one could assume linearity all the way through the transformations, but this would only work if earlier sources of activation were being accounted for. Second, the transformation between firing rate and fluorescence is most likely not linear for GCaMP6s in most of the cells recorded. Thus, one would expect a change in the relationship between these vectors as one maps from fluorescence to firing rate.

      - Sources of variability: The authors do not take into account a fairly obvious source of variability in trial-to-trial response - eye position. We know that prey capture responsiveness is dependent on eye position during stimulus (see Figure 4 of PMID: 22203793). We also expect that neurons fairly early in the visual pathway with relatively narrow receptive fields will show variable responses to visual stimuli as the degree of overlap with the receptive field varies with eye movement. There can also be small eye-tracking movements ahead of the decision to engage in prey capture (Figure 1D, PMID: 31591961) that can serve as a drive to initiate movements in a particular direction. Given these possibilities indicating that the behavioral measure of interest is gaze, and the fact that eye movements were apparently monitored, it is surprising that the authors did not include eye movements in the analysis and interpretation of their data.

    1. Reviewer #2 (Public Review):

      The novelty of this study stems from the observations that neuro-estrogens appear to interact with brain androgen receptors to support male-typical behaviors. The study provides a step forward in clarifying the somewhat contradictory findings that, in teleosts and unlike other vertebrates, androgens regulate male-typical behaviors without requiring aromatization, but at the same time estrogens appear to also be involved in regulating male-typical behaviors. They manipulate the expression of one aromatase isoform, cyp19a1b, that is purported to be brain-specific in teleosts. Their findings are important in that brain estrogen content is sensitive to the brain-specific cyp19a1b deficiency, leading to alterations in both sexual behavior and aggressive behavior. Interestingly, these males have relatively intact fertility rates, despite the effects on the brain.

      That said, the framing of the study, the relevant context, and several aspects of the methods and results raise concerns. Two interpretations need to be addressed/tempered:

      (1) that the rescue of cyp19a1b deficiency by tank-applied estradiol is not necessarily a brain/neuro-estrogen mode of action, and<br /> (2) the large increases in peripheral and brain androgen levels in the cyp19a1b deficient animals imply some indirect/compensatory effects of lifelong cyp19a1b deficiency.

    1. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Bock and colleagues describes the generation of an AAV-delivered adenine base editing strategy to knockdown PTBP1 and the behavioral and neurorestorative effects of specifically knocking down striatal or nigral PTBP1 in astrocytes or neurons in a mouse model of Parkinson's disease. The authors found that knocking down PTBP1 in neurons, but not astrocytes, and in striatum, but not nigra, results in the phenotypic reorganization of neurons to TH+ cells sufficient to rescue motor phenotypes, though insufficient to normalize responses to dopaminomimetic drugs.

      Strengths:

      The manuscript is generally well-written and adds to the growing literature challenging previous findings by Qian et al., 2020 and Zhou et al., 2020 indicating that astrocytic downregulation of PTBP1 can induce conversion to dopaminergic neurons in the midbrain and improve parkinsonian symptoms. The base editing approach is interesting and potentially more therapeutically relevant than previous approaches.

      Weaknesses:

      The manuscript has several weaknesses in approach and interpretation. In terms of approach, the animal model utilized, the 6-OHDA model, though useful to examine dopaminergic cell loss, exhibits accelerated neurodegeneration and none of the typical pathological hallmarks (synucleinopathy, Lewy bodies, etc.) compared to the typical etiology of Parkinson's disease, limiting its translational interpretation. In addition, there is no confirmation of a neuronal or astrocytic knockdown of PTBP1 in vivo; all base editing validation experiments were completed in cell lines. Finally, it is unclear why the base editing approach was used to induce loss-of-function rather than a cell-type specific knockout, if the goal is to assess the effects of PTBP1 loss in specific neurons. In terms of interpretation, the conclusion by the authors that PTBP1 knockdown has little likelihood to be therapeutically relevant seems overstated, particularly since they did observe a beneficial effect on motor behavior. We know that in PD, patients often display negligible symptoms until 50-70% of dopaminergic input to the striatum is lost, due to compensatory activity of remaining dopaminergic cells. Presumably, a small recovery of dopaminergic neurons would have an outsized effect on motor ability and may improve the efficacy of dopaminergic drugs, particularly levodopa, at lower doses, averting many problematic side effects. Since striatal dopamine was assessed by whole-tissue analysis, which is not necessarily reflective of synaptic dopamine availability, it is difficult to assess whether the ~10% increase in TH+ cells in the striatum was sufficient to improve dopamine function. However, the improvement in motor activity suggests that it was.

    1. Reviewer #2 (Public Review):

      Summary:

      This paper documents an attempt to accurately determine the locations and boundaries of the anatomically and functionally defined layers in macaque primary visual cortex using voltage signals recorded from a high-density electrode array that spans the full depth of cortex with contacts at 20 um spacing. First, the authors attempt to use current source density (CSD) analysis to determine layer locations, but they report a striking failure because the results vary greatly from one electrode penetration to the next and because the spatial resolution of the underlying local field potential (LFP) signal is coarse compared to the electrical contact spacing. The authors thus turn to examining higher frequency signals related to action potentials and provide evidence that these signals reflect changes in neuronal size and packing density, response latency and visual selectivity.

      Strengths:

      There is a lot of nice data to look at in this paper that shows interesting quantities as a function of depth in V1. Bringing all of these together offers the reader a rich data set: CSD, action potential shape, response power and coherence spectrum, and post-stimulus time response traces. Furthermore, data are displayed as a function of eye (dominant or non-dominant) and for achromatic and cone-isolating stimuli.

      This paper takes a strong stand in pointing out weaknesses in the ability of CSD analysis to make consistent determinations about cortical layering in V1. Many researchers have found CSD to be problematic, and the observations here may be important to motivate other researchers to carry out rigorous comparisons and publish their results, even if they reflect negatively on the value of CSD analysis.

      The paper provides a thoughtful, practical and comprehensive recipe for assigning traditional cortical layers based on easily-computed metrics from electophysiological recordings in V1, and this is likely to be useful for electrophysiologists who are now more frequently using high-density electrode arrays.

      Weaknesses:

      Much effort is spent pointing out features that are well known, for example, the latency difference associated with different retinogeniculate pathways, the activity level differences associated with input layers, and the action potential shape differences associated with white vs. gray matter. These have been used for decades as indicators of depth and location of recordings in visual cortex as electrodes were carefully advanced. High density electrodes allow this type of data to now be collected in parallel, but at discrete, regular sampling points. Rather than showing examples of what is already accepted, the emphasis should be placed on developing a rigorous analysis of how variable vs. reproducible are quantitative metrics of these features across penetrations, as a function of distance or functional domain, and from animal to animal. Ultimately, a more quantitative approach to the question of consistency is needed to assess the value of the methods proposed here.

      Another important piece of information for assessing the ability to determine layers from spiking activity is to carry out post-mortem histological processing so that the layer determination made in this paper could be compared to anatomical layering.

      On line 162, the text states that there is a clear lack of consistency across penetrations, but why should there be consistency: how far apart in the cortex were the penetrations? How long were the electrodes allowed to settle before recording, how much damage was done to tissue during insertion? Do you have data taken over time - how consistent is the pattern across several hours, and how long was the time between the collection of the penetrations shown here?

      The impact of the paper is lessened because it emphasizes consistency but not in a consistent manner. Some demonstrations of consistency are shown for CSDs, but not quantified. Figure 4A is used to make a point about consistency in cell density, but across animals, whereas the previous text was pointing out inconsistency across penetrations. What if you took a 40 or 60 um column of tissue and computed cell density, then you would be comparing consistency across potentially similar scales. Overall, it is not clear how all of these different metrics compare quantitatively to each other in terms of consistency.

      In many places, the text makes assertions that A is a consistent indicator of B, but then there appear to be clear counterexamples in the data shown in the figures. There is some sense that the reasoning is relying too much on examples, and not enough on statistical quantities.

      Overall

      Overall, this paper makes a solid argument in favor of using action potentials and stimulus driven responses, instead of CSD measurements, to assign cortical layers to electrode contacts in V1. It is nice to look at the data in this paper and to read the authors' highly educated interpretation and speculation about how useful such measurements will be in general to make layer assignments. It is easy to agree with much of what they say, and to hope that in the future there will be reliable, quantitative methods to make meaningful segmentations of neurons in terms of their differentiated roles in cortical computation. How much this will end up corresponding to the canonical layer numbering that has been used for many decades now remains unclear.

    1. Reviewer #2 (Public Review):

      Summary:

      This groundbreaking study characterizes the structure of activity correlations over a millimeter scale in the mouse cortex with the goal of identifying visual channels, specialized conduits of visual information that show preferential connectivity. Examining the statistical structure of the visual activity of L2/3 neurons, the study finds pairs of neurons located near each other or across distances of hundreds of micrometers with significantly correlated activity in response to visual stimulation. These highly correlated pairs have closely related visual tuning sharing orientation and/or spatial and/or temporal preference as would be expected from dedicated visual channels with specific connectivity.

      Strengths:

      The study presents best-in-class mesoscopic-scale 2-photon recordings from neuronal populations in pairs of visual areas (V1-LM, V1-PM, V1-AL, V1-LI). The study employs diverse visual stimuli that capture some of the specialization and heterogeneity of neuronal tuning in mouse visual areas. The rigorous data quantification takes into consideration functional cell groups as well as other variables that influence trial-to-trial correlations (similarity of tuning, neuronal distance, receptive field overlap). The paper convincingly demonstrates the robustness of the clustering analysis and of the activity correlation measurements. The calcium imaging results convincingly show that noise correlations are correlated across visual stimuli and are strongest within cell classes which could reflect distributed visual channels. A simple simulation is provided that suggests that recurrent connectivity is required for the stimulus invariance of the results. The paper is well-written and conceptually clear. The figures are beautiful and clear. The arguments are well laid out and the claims appear in large part supported by the data and analysis results (but see weaknesses).

      Weaknesses:

      An inherent limitation of the approach is that it cannot reveal which anatomical connectivity patterns are responsible for observed network structure. The modeling results presented, however, suggest interestingly that a simple feedforward architecture may not account for fundamental characteristics of the data. A limitation of the study is the lack of a behavioral task. The paper shows nicely that the correlation structure generalizes across visual stimuli. However, the correlation structure could differ widely when animals are actively responding to visual stimuli. I do think that, because of the complexity involved, a characterization of correlations during a visual task is beyond the scope of the current study.

      An important question that does not seem addressed (but it is addressed indirectly, I could be mistaken) is the extent to which it is possible to obtain reliable measurements of noise correlation from cell pairs that have widely distinct tuning. L2/3 activity in the visual cortex is quite sparse. The cell groups laid out in Figure S2 have very sharp tuning. Cells whose tuning does not overlap may not yield significant trial-to-trial correlations because they do not show significant responses to the same set of stimuli, if at all any time. Could this bias the noise correlation measurements or explain some of the dependence of the observed noise correlations on signal correlations/similarity of tuning? Could the variable overlap in the responses to visual responses explain the dependence of correlations on cell classes and groups?

      With electrophysiology, this issue is less of a problem because many if not most neurons will show some activity in response to suboptimal stimuli. For the present study which uses calcium imaging together with deconvolution, some of the activity may not be visible to the experimenters. The correlation measure is shown to be robust to changes in firing rates due to missing spikes. However, the degree of overlap of responses between cell pairs and their consequences for measures of noise correlations are not explored.

      Beyond that comment, the remaining issues are relatively minor issues related to manuscript text, figures, and statistical analyses. There are typos left in the manuscript. Some of the methodological details and results of statistical testing also seem to be missing. Some of the visuals and analyses chosen to examine the data (e.g., box plots) may not be the most effective in highlighting differences across groups. If addressed, this would make a very strong paper.

    1. Reviewer #2 (Public Review):

      Summary:

      This paper reports a role for a substantial number of RNA binding proteins (RBPs), in particular hnRNPs, in the function of ASAR "genes". ASARs are (very) long, non-coding RNAs (lncRNAs) that control allelic expression imbalance (e.g.: mono-allelic expression) and replication timing of their resident chromosomes. These relatively novel "genes" have recently been identified on all human autosomes and are of broad significance given their critical importance for basic chromosomal functions and stability. However, the mechanism(s) of ASAR function remain unclear. ASARs exhibit some functional relatedness to Xist RNA, including persistent association of the expressed RNA with its resident chromosome, and similarities in the composition of RNA sequences associated with ASARs, in particular Line1 RNAs. Recent findings that certain hnRNPs control the chromosome territory retention of Cot1-bearing RNAs (which includes Line1) led the authors to test hypothesis that hnRNPs might regulate ASARs.

      Specific new findings in this paper:

      -Analysis of eCLIP (RNA-protein interaction) ENCODE data shows numerous interactions of the ASAR6-141 RNA with RBPs, including hnRNPs (e.g.: HNRNPU) that have been implicated in the retention of RNAs within local chromosome territories.<br /> -most of these interactions can be mapped to a 7kb region of the 185kb ASAR6-141 RNA<br /> -deletion of this 7kb region is sufficient to induce the DMC/DRT phenotype associated with deletion of the entire ASAR region<br /> -ectopic integration into mouse autosomes of the 7kb region is sufficient to cause DMC/DRT of the targeted autosome, and a similar effect upon ectopic integration into inactive X. This raises the question about integration into the active X, which was not mentioned. Is integration into the active X observed? Is it possible that integration might alter Xist expression confounding this interpretation?<br /> -Knockdown of RBPs that bind the 7kb region causes dissociation of ASAR6-141 RNA from its chromosome territory, and, remarkably, dissociation of Xist RNA from inactive X, and mis-colocalization of the ASAR6-141 and Xist RNAs. Depletion of these RBPs causes DMC/DRT on all autosomes.

      Strengths:

      These are compelling results suggesting shared mechanism(s) in the regulation of ASARs and Xist RNAs by RBPs that bind Cot1 sequences in these lncRNAs. The identification of these RBPs as shared effectors of ASARs and Xist that are required for RNA territory localization mechanistically links previously independent phenomena.

      The data are convincing and support the conclusions. The replication timing method is low resolution and is only a relative measure but seems adequate for the task at hand. The FISH experiments are convincing. The quality of the images is impressive.

      Links to other subfields like X-inactivation and RNA association with chromosome territories provide novel context and protein players, new phenotypes to examine

      Weaknesses:

      The exact effects of knockdown experiments are unclear and may be indirect, which is acknowledged.

      The mechanism is not much clearer than before.

    1. Reviewer #2 (Public Review):

      Davidsen and Sullivan present an improved method for quantifying tRNA aminoacylation levels by deep sequencing. By combining recent advances in tRNA sequencing with lysine-based chemistry that is more gentle on RNA, splint oligo-based adapter ligation, and full alignment of tRNA reads, they generate an interesting new protocol. The lab protocol is complemented by a software tool that is openly available on Github. Many of the points highlighted in this protocol are not new, but have been used in recent protocols such as Behrens et al. (2021) or McGlincy and Ingolia (2017). Nevertheless, a strength of this study is that the authors carefully test different conditions to optimize their protocol using a set of well-designed controls.

      The conclusions of the manuscript appear to be well supported by the data presented. However, the lack of benchmarking relative to other methods remains as a key criticism also after this revision.

      (1) The manuscript reports a different method to measure aminoacylation of tRNA. The main point that remains unsatisfactory is a better benchmarking of such aminoacylation measurements against the state of the art. In the current form of the revised manuscript it is not possible to estimate how much the results of this new protocol differ from alternative methods and in particular from Behrens et al. (2021). Here it will be helpful to perform experiments with samples similar to those (like HEK cells or yeast cells) used in the mim-tRNAseq study and not with H1299 cells.

      The claim that a comparison to every published protocol is not feasible is not a good argument for not performing any benchmarking experiments. Such benchmarking experiments are not meant to define the ground truth but are needed to estimate the difference in the outcome of different protocols. I agree with the authors that precision/reproducibility is essential when developing a new protocol. But the analysis and comparison should not stop there.

      (2) The reported protocol can not only be used for quantification of tRNA aminoacylation but it can also be used for tRNA quantification and analysis of tRNA modifications. It will increase the impact of this study if the authors benchmark the outcomes of their protocol with other tRNA sequencing protocols with samples similar to these papers, which will be important for certain research teams that are unlikely to implement two different tRNA sequencing methods.

      The authors decided not to perform further experiments in cell lines or mutants that allow a comparison to other published methods. In my opinion this limits the impact of the work. But as a reviewer I can only make recommendations. It is the authors decision to take those or not.

    1. Reviewer #2 (Public Review):

      Summary:

      This article mainly explores the neural circuit mechanism of recovery of consciousness after midazolam administration and proves that the LC-VLPO NEergic neural circuit helps to promote the recovery of midazolam, and this effect is mainly caused by α1 adrenergic receptors. (α1-R) mediated.

      Strengths:

      This article uses innovative methods such as optogenetics and fiber optic photometry in the experimental methods section to make the stimulation of neuronal cells more precise and the stimulation intensity more accurate in experimental research. In addition, fiber optic photometry adds confidence to the results of calcium detection in mouse neuronal cells.

      This article explains the results from the entire system down to cells, and then cells gradually unfold to explain the entire mechanism. The entire explanation process is logical and orderly. At the same time, this article conducted a large number of rescue experiments, which greatly increased the credibility of the experimental conclusions.

      Throughout the full text and all conclusions, this article has elucidated the neural circuit mechanism of recovery of consciousness after midazolam administration and successfully verified that the LC-VLPO NEergic neural circuit helps promote the recovery of midazolam.

      The conclusions of this article are crucial to ameliorate the complications of its abuse. It will pinpoint relevant regions involved in midazolam response and provide a perspective to help elucidate the dynamic changes in neural circuits in the brain during altered consciousness and suggest a promising approach towards the goal of timely recovery from midazolam. New research avenues.

      At the same time, this article also has important clinical translation significance. The application of clinical drug midazolam and animal experiments have certain guiding significance for subsequent related clinical research.

    1. Reviewer #2 (Public Review):

      Summary:

      By analyzing cells' frequency-dependent viscoelastic properties and intracellular activity through microrheology, Münker et al simplify the complex active mechanical state into six key parameters that constitute the mechanical fingerprint. They apply this concept to cells treated with cytoskeleton-inhibiting drugs. Additionally, a comprehensive statistical analysis across various cell types shows how cells coordinate their mechanical properties within a defined phase-space marked by activity, mechanical resistance, and fluidity.

      Strengths:

      (1) The distribution of the six parameters: they have been well characterized based on established theories, and they can be used to understand cell-type-specific biomechanical differences. The examples of muscle cells and immune cells were profound and informative.<br /> (2) Efforts to perform dimension reduction of parameter space into activity (E), fluidity (C1) and resistance (A) are insightful and will be helpful for future characterization of cell mechanics.

      Weaknesses:

      (1) The most difficult part of the method is the part with actin polymerization inhibition with cytochalasin B. The data shows that viscoelastic parameters as well as active energy parameters are unaffected by cytochalasin B. It is reasonable to expect that elasticity will reduce and fluidity will increase upon application of such a drug. The stiffness-reducing effect was observed only when CB was used with nocodazole most likely because of phagocytosis of the bead, which is governed by microtubule. The use of other actin-depolymerizing drugs such as latrunculin A would be needed to test actin's role in mechanical fingerprints. If actin's role is only explained by accompanying microtubule inhibition, it is not a convenient system to directly test the mechano-adaptation process.<br /> (2) Depolymerization of MT with nocodazole did not reduce the solid-like property A. Adding discussion and comparison with other papers in the literature using nocodazole will be helpful in understanding why.<br /> (3) Overall, the usefulness of the concept of mechanical fingerprints and comparisons with other cell mechanics studies (from other groups) will make this manuscript stronger.

    1. Reviewer #2 (Public Review):

      Summary:

      This work delineates the larval zebrafish behavioral phenotypes caused by the F0 knockout of several important genes that increase the risk for Alzheimer's disease. Using behavioral pharmacology, comparing the behavioral fingerprint of previously assayed molecules to the newly generated knockout data, compounds were discovered that impacted larval movement in ways that suggest interaction with or recovery of disrupted mechanisms.

      Strengths:

      This is a well-written manuscript that uses newly developed analysis methods to present the findings in a clear, high-quality way. The addition of an extensive behavioral analysis pipeline is of value to the field of zebrafish neuroscience and will be particularly helpful for researchers who prefer the R programming language. Even the behavioral profiling of these AD risk genes, regardless of the pharmacology aspect, is an important contribution. The recovery of most behavioral parameters in the psen2 knockout with betamethasone, predicted by comparing fingerprints, is an exciting demonstration of the approach. The hypotheses generated by this work are important stepping stones to future studies uncovering the molecular basis of the proposed gene-drug interactions and discovering novel therapeutics to treat AD or co-occurring conditions such as sleep disturbance.

      Weaknesses:

      - The overarching concept of the work is that comparing behavioral fingerprints can align genes and molecules with similarly disrupted molecular pathways. While the recovery of the psen2 phenotypes by one molecule with the opposite phenotype is interesting, as are previous studies that show similar behaviorally-based recoveries, the underlying assumption that normalizing the larval movement normalizes the mechanism still lacks substantial support. There are many ways that a reduction in movement bouts could be returned to baseline that are unrelated to the root cause of the genetically driven phenotype. An ideal experiment would be to thoroughly characterize a mutant, such as by identifying a missing population of neurons, and use this approach to find a small molecule that rescues both behavior and the cellular phenotype. If the connection to serotonin in the sorl1 was more complete, for example, the overarching idea would be more compelling.

      - The behavioral difference between the sorl1 KO and scrambled at the higher dose of the citalopram is based on a small number of animals. The KO Euclidean distance measure is also more spread out than for the other datasets, and it looks like only five or so fish are driving the group difference. It also appears as though the numbers were also from two injection series. While there is nothing obviously wrong with the data, I would feel more comfortable if such a strong statement of a result from a relatively subtle phenotype were backed up by a higher N or a stable line. It is not impossible that the observed difference is an experimental fluke. If something obvious had emerged through the HCR, that would have also supported the conclusions. As it stands, if no more experiments are done to bolster the claim, the confidence in the strength of the link to serotonin should be reduced (possibly putting the entire section in the supplement and modifying the discussion). The discussion section about serotonin and AD is interesting, but I think that it is excessive without additional evidence.

      - The authors suggest two hypotheses for the behavioral difference between the sorl1 KO and scrambled at the higher dose of the citalopram. While the first is tested, and found to not be supported, the second is not tested at all ("Ruling out the first hypothesis, sorl1 knockouts may react excessively to a given spike in serotonin." and "Second, sorl1 knockouts may be overly sensitive to serotonin itself because post-synaptic neurons have higher levels of serotonin receptors."). Assuming that the finding is robust, there are probably other reasons why the mutants could have a different sensitivity to this molecule. However, if this particular one is going to be mentioned, it is surprising that it was not tested alongside the first hypothesis. This work could proceed without a complete explanation, but additional discussion of the possibilities would be helpful or why the second hypothesis was not tested.

      - The authors claim that "all four genes produced a fairly consistent phenotype at night". While it is interesting that this result arose in the different lines, the second clutch for some genes did not replicate as well as others. I think the findings are compelling, regardless, but the sometimes missing replicability should be discussed. I wonder if the F0 strategy adds noise to the results and if clean null lines would yield stronger phenotypes. Please discuss this possibility, or others, in regard to the variability in some phenotypes.

      - In this work, the knockout of appa/appb is included. While APP is a well-known risk gene, there is no clear justification for making a knockout model. It is well known that the upregulation of app is the driver of Alzheimer's, not downregulation. The authors even indicate an expectation that it could be similar to the other knockouts ("Moreover, the behavioural phenotypes of appa/appb and psen1 knockout larvae had little overlap while they presumably both resulted in the loss of Aβ." and "Comparing with early-onset genes, psen1 knockouts had similar night-time phenotypes, but loss of psen2 or appa/appb had no effect on night-time sleep."). There is no reason to expect similarity between appa/appb and psen1/2. I understand that the app knockouts could unveil interesting early neurodevelopmental roles, but the manuscript needs to be clarified that any findings could be the opposite of expectation in AD.

    1. Reviewer #2 (Public Review):

      In this manuscript, Hoops et al., using two different model systems, identified key developmental changes in Netrin-1 and UNC5C signaling that correspond to behavioral changes and are sensitive to environmental factors that affect the timing of development. They found that Netrin-1 expression is highest in regions of the striatum and cortex where TH+ axons are travelling, and that knocking down Netrin-1 reduces TH+ varicosities in mPFC and reduces impulsive behaviors in a Go-No-Go test. Further, they show that the onset of Unc5 expression is sexually dimorphic in mice, and that in Siberian hamsters, environmental effects on development are also sexually dimorophic. This study addresses an important question using approaches that link molecular, circuit and behavioral changes. Understanding developmental trajectories of adolescence, and how they can be impacted by environmental factors, is an understudied area of neuroscience that is highly relevant to understanding the onset of mental health disorders. I appreciated the inclusion of replication cohorts within the study.

    1. Reviewer #2 (Public Review):

      van Vliet and colleagues present the results of a study correlating internal states of a convolutional neural network trained on visual word stimuli with evoked MEG potentials during reading.

      In this study, a standard deep learning image recognition model (VGG-11) trained on a large natural image set (ImageNet) that begins illiterate but is then further trained on visual word stimuli, is used on a set of predefined stimulus images to extract strings of characters from "noisy" words, pseudowords and real words. This methodology is used in hopes of creating a model that learns to apply the same nonlinear transforms that could be happening in different regions of the brain - which would be validated by studying the correlations between the weights of this model and neural responses. Specifically, the aim is that the model learns some vector embedding space, as quantified by the spread of activations across a layer's units (L2 Norm after ReLu Activation Function), for the different kinds of stimuli, that creates a parameterized decision boundary that is similar to amplitude changes at different times for a MEG signal. More importantly, the way that the stimuli are ordered or ranked in that space should be separable to the degree we see separation in neural activity. This study shows that the activation corresponding to five different broad classes of stimuli statistically correlates with three specific components in the ERP. However, I believe there are fundamental theoretical issues that limit the implications of the results of this study.

      As has been shown over many decades, many potential computational algorithms, with varied model architectures, can perform the task of text recognition from an image. However, there is no evidence presented here that this particular algorithm has comparable performance to human behavior (i.e. similar accuracy with a comparable pattern of mistakes). This is a fundamental prerequisite before attempting to meaningfully correlate these layer activations to human neural activations. Therefore, it is unlikely that correlating these derived layer weights to neural activity provides meaningful novel insights into neural computation beyond what is seen using traditional experimental methods.

      One example of a substantial discrepancy between this model and neural activations is that, while incorporating frequency weighting into the training data is shown to slightly increase neural correlation with the model, Figure 7 shows that no layer of the model appears directly sensitive to word frequency. This is in stark contrast to the strong neural sensitivity to word frequency seen in EEG (e.g. Dambacher et al 2006 Brain Research), fMRI (e.g. Kronbichler et al 2004 NeuroImage), MEG (e.g. Huizeling et al 2021 Neurobio. Lang.), and intracranial (e.g. Woolnough et al 2022 J. Neurosci.) recordings. Figure 7 also demonstrates that the late stages of the model show a strong negative correlation with font size, whereas later stages of neural visual word processing are typically insensitive to differences in visual features, instead showing sensitivity to lexical factors.

      Another example of the mismatch between this model and the visual cortex is the lack of feedback connections in the model. Within the visual cortex, there are extensive feedback connections, with later processing stages providing recursive feedback to earlier stages. This is especially evident in reading, where feedback from lexical-level processes feeds back to letter-level processes (e.g. Heilbron et al 2020 Nature Comms.). This feedback is especially relevant for the reading of words in noisy conditions, as tested in the current manuscript, as lexical knowledge enhances letter representation in the visual cortex (the word superiority effect). This results in neural activity in multiple cortical areas varying over time, changing selectivity within a region at different measured time points (e.g. Woolnough et al 2021 Nature Human Behav.), which in the current study is simplified down to three discrete time windows, each attributed to different spatial locations.

      The presented model needs substantial further development to be able to replicate, both behaviorally and neurally, many of the well-characterized phenomena seen in human behavior and neural recordings that are fundamental hallmarks of human visual word processing. Until that point, it is unclear what novel contributions can be gleaned from correlating low-dimensional model weights from these computational models with human neural data.

    1. Reviewer #2 (Public Review):

      Apiwat Sangphukieo et al. have developed machine learning models, exomeDELFI and xDELFI trained on 4 public datasets comprising 721 cfDNA samples. They demonstrate the exomeDELFI model utilizing DNA from whole exome, exhibits higher AUC values compared to the original DELFI model at equal whole-genome sequencing depth for distinguishing patients with and without cancer. Additionally, the xDELFI model, integrating coverage of overall fragments, fragments within 3 fragment size thresholds (short, medium, long) and fragment size distribution (FSD), resulting in 2,952 features, shows improved enhanced prediction performance. Furthermore, the authors have devised a multiclass machine learning model capable of classifying the tissue of origin for eight cancer types, using distinct tissue-specific fragmentomic patterns in cfDNA from whole-exome regions.

      However, the conclusions drawn in this paper rely heavily on cross-validation of machine learning models constructed from hundreds of samples but employing thousands of features, posing a risk of overfitting. Thus, more rigorous validation is warranted.

      (1) The claim in line 18 is misleading. The authors assert that the high cost of whole-genome sequencing (WGS) limited the application of cfDNA in clinic, and therefore imply their model are more cost-efficient by using fewer DNA molecules only originated from exosmic regions. However, WGS is essential in their analysis. Instead of using whole-exome sequencing data, they extracted DNA molecules from WGS data which fall within gene exome regions for feature extraction and downstream analysis, resulting in the same cost for DNA sequencing. In this regard, xDELFI, which selectively uses DNA from exomic regions, demonstrates inferior performance compared to the DELFI model using all WGS data (AUC: 0.896 vs. 0.920) at the same cost using same WGS data.

      (2) The utilization of WGS data from 4 distinct datasets (Jiang et al., 2015, Snyder et al., 2016, Cristiano et al., 2019 and Sun et al., 2019) raises concerns about potential batch effects arising from different DNA library preparation kits (e.g., Kapa Library Preparation Kit (Kapa Biosystems); ThruPLEX DNA-seq kits (Rubicon Genomics); NEBNext DNA Library Prep Kit for Illumina (New England Biolabs); and KAPA HTP Library Preparation Kit (Kapa Biosystems), receptivity). Each kit may induce varying pre-analytical effects on cfDNA fragmentomic features, as evidenced by differing size distribution profiles (e.g., in Fig.4 in Jiang et al., 2015, the cfDNA size distribution profiles show the major peak at ~166 bp with frequency of ~3%. However, in Fig.1B in Snyder et al., 2016, the major peak at ~166 bp is ~2%). To enhance the robustness of their models, the authors should develop sophisticated normalization pipeline to mitigate batch effects and split training and testing sets without mixing any dataset. The author should demonstrate their model performs equally well between training and testing sets and across different datasets.

      (3) The uneven distribution of cancer patients across different datasets introduces another layer of complexity, potentially confounding the analysis of tissue of origin. In line 300, the authors find that liver, colorectal, and lung cancers had the highest prediction accuracy in their models. However, the cancer patient distribution is not even across different datasets (e.g., liver cancer patients are all from Jiang et al., 2015; colorectal cancer patients are mostly from Sun et al., 2019, and Cristiano et al., 2019; and lung cancer patients are mainly from Cristiano et al., 2019. The potential pre-analytical differences in each dataset, coupled with overwhelming cancer types in each database, underscores the importance of addressing these discrepancies to ensure the validity of tissue of origin predictions.

      (4) In Line 145, the authors mention selection of features used in the xDELFI model but did not specify the number of remaining features in each fragmentomic category post-selection. Providing this information would enhance the transparency and reproducibility of their methodology.

    1. Reviewer #2 (Public Review):

      Summary:

      In their manuscript, Lin et al. present a comprehensive single-cell analysis of tea plant roots. They measured the transcriptomes of 10,435 cells from tea plant root tips, leading to the identification and annotation of 8 distinct cell clusters using marker genes. Through this dataset, they delved into the cell-type-specific expression profiles of genes crucial for the biosynthesis, transport, and storage of theanine, revealing potential multicellular compartmentalization in theanine biosynthesis pathways. Furthermore, their findings highlight CsLBD37 as a novel transcription factor with dual regulatory roles in both theanine biosynthesis and lateral root development.

      Strengths:

      This manuscript provides the first single-cell dataset analysis of roots of the tea plants. It also enables detailed analysis of the specific expression patterns of the gene involved in theanine biosynthesis. Some of these gene expression patterns in roots were further validated through in-situ RT-PCR. Additionally, a novel TF gene CsLBD37's role in regulating theanine biosynthesis was identified through their analysis.

      Weaknesses:

      Several issues need to be addressed:

      (1) The annotation of single-cell clusters (1-8) in Figure 2 could benefit from further improvement. Currently, the authors utilize several key genes, such as CsAAP1, CsLHW, CsWAT1, CsIRX9, CsWOX5, CsGL3, and CsSCR, to annotate cell types. However, it is notable that some of these genes are expressed in only a limited number of cells within their respective clusters, such as CsAAP1, CsLHW, CsGL3, CsIRX9, and CsWOX5. It would be advisable to utilize other marker genes expressed in a higher percentage of cells or employ a combination of multiple marker genes for more accurate annotation.

      (2) Figure 3 could enhance clarity by displaying the trajectory of cell differentiation atop the UMAP, similar to the examples demonstrated by Monocle 3.

      (3) The identification of CsLBD37 primarily relies on bulk RNA-seq data. The manuscript could benefit from elaborating on the role of the single-cell dataset in this context.

      (4) The manuscript's conclusions predominantly rely on the expression patterns of key genes. This reliance might stem from the inherent challenges of tea research, which often faces limitations in exploring molecular mechanisms due to the lack of suitable genetic and molecular methods. The authors may consider discussing this point further in the discussion section.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors utilize a new technique to measure mitochondrial respiration from frozen tissue extracts, which goes around the historical problem of purifying mitochondria prior to analysis, a process that requires a fair amount of time and cannot be easily scaled up.

      Strengths:

      A comprehensive analysis of mitochondrial respiration across tissues, sexes, and two different ages provides foundational knowledge needed in the field.

      Weaknesses:

      While many of the findings are mostly descriptive, this paper provides a large amount of data for the community and can be used as a reference for further studies. As the authors suggest, this is a new atlas of mitochondrial function in mouse. The inclusion of a middle aged time point and a slightly older young point (3-6 months) would be beneficial to the study.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors consider the effects of eugenol (EUG), a plant-produced substance known to reduce oxidative stress in various cellular contexts via Nrf2, in alleviating the effects of streptozotocin (STZ), a known rodent beta cell toxin. They claim that EUG treatment would be useful for T1D therapy.

      Strengths:

      The experiments shown are sufficiently clear and rather convincing in documenting that eugenol can revert the effects of streptozotocin on animal physiology as well as beta cell oxidative stress and cell death via activation of Nrf2.

      Weaknesses:

      In my view, there are major concerns with the basic premises of the manuscript.

      (1) While oxidative stress may be implicated in T1D they are neither the primary nor the main reason for autoimmune beta cell destruction. In T1DM, ER stress rather than oxidative stress is the main intracellular mediator of cell death. Thus, the abstract statement that 'oxidative stress plays a major role in T1D' is an exaggeration.

      (2) Streptozotocin induces beta cell death through mechanisms that only partially overlap with autoimmune beta cell destruction. The main players ie beta cell / immune system crosstalk and T-cell mediated cell death are not present in the STZ model.

      In short, because the interplay between the immune system and beta cell-intrinsic factors that trigger and accelerate the disease is completely missing, STZ treatment cannot be used as a T1DM model when beta cell demise mechanisms are concerned. The statement that STZ-treated mice are, in this context, a T1DM model, is misleading.

      There are inconsistencies in the manuscript. Mechanistically, the manuscript remains at a rather superficial level demonstrating that the eugenol effects are mediated by Nrf2 upregulation and a downregulation of its partner inhibitor protein Keap1. How is eugenol penetrating the cell, is there a receptor that could be potentially targeted? Are there intermediary proteins that convey the effect to the Nrf2/Keap1 complex or is eugenol directly disrupting their interaction? What are direct downstream Nrf2 effectors? Besides, streptozotocin is also a powerful DNA alkylating agent. Are these effects mitigated by EUG?

    1. Reviewer #2 (Public Review):

      Summary:

      This study uses a coarse-grained model for double-stranded DNA, cgNA+, to assess nucleosome sequence affinity. cgNA+ coarse-grains DNA on the level of bases and accounts also explicitly for the positions of the backbone phosphates. It has been proven to reproduce all-atom MD data very accurately. It is also ideally suited to be incorporated into a nucleosome model because it is known that DNA is bound to the protein core of the nucleosome via the phosphates.

      It is still unclear whether this harmonic model parametrized for unbound DNA is accurate in describing DNA inside the nucleosome. Previous models by other authors, using more coarse-grained models of DNA, have been rather successful in predicting base pair sequence-dependent nucleosome behavior. This is at least the case as far as DNA shape is concerned whereas assessing the role of DNA bendability (something this paper focuses on) has been consistently challenging in all nucleosome models, to my knowledge.

      It is thus of major interest whether this more sophisticated model is also more successful in handling this issue. As far as I can tell the work is technically sound and properly accounts for not only the energy required in wrapping DNA but also entropic effects, namely the change in entropy that DNA experiences when going from the free state to the bound state. The authors make an approximation here which seems to me to be a reasonable first step.

      Of interest is also that the authors have the parameters at hand to study the effect of methylation of CpG-steps. This is especially interesting as it allows us to study a scenario where changes in the physical properties of base pair steps via methylation might influence nucleosome positioning and stability in a cell-type-specific way.

      Overall, this is an important contribution to the question of how the sequence affects nucleosome positioning and affinity. The findings suggest that cgNA+ has something new to offer. But the problem is complex, also on the experimental side, so many questions remain open.

      Strengths:

      The authors use their state-of-the-art coarse-grained DNA model which seems ideally suited to be applied to nucleosomes as it accounts explicitly for the backbone phosphates.

      Weaknesses:

      (1) According to the abstract the authors consider two "scalar measures of the sequence-dependent propensity of DNA to wrap into nucleosomes". One is the bending energy and the other, is the free energy. Specifically in the latter, the authors take the difference between the free energies of the wrapped and the free DNA. Whereas the entropy of the latter can be calculated exactly, they assume that the bound DNA always has the same entropy (independent of sequence) in its more confined state. The problem is the way in which this is written (e.g. below Eq. 6) which is hard to understand. The authors should mention that the negative of Eq. 6 is what physicists call free energy, namely especially the free energy difference between bound and free DNA.

      (2) In Eq. 5 the authors introduce penalty coefficients c_i. They write that values are "set by numerical experiment to keep distances ... within the ranges observed in the PDB structure, while avoiding sterical clashes in DNA." This is rather vague, especially since it is unclear to me what type of sterical clashes might occur. Figure 1 shows then a comparison between crystal structures and simulated structures. They are reasonably similar but standard deviations in the fluctuations of the simulation are smaller than in the experiments. Why did the authors not choose smaller c_i-values to have a better fit? Do smaller values lead to unwanted large fluctuations that would lead to steric clashes between the two DNA turns? I also wonder what side views of the nucleosomes look like (experiments and simulations) and whether in this side view larger fluctuations of the phosphates can be observed in the simulation that would eventually lead to turn-turn clashes for smaller c_i-values.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors observed an aggravated vascular endothelial dysfunction upon overexpressing circHMGCS1 and inhibiting miR-4521. This study discovered that circHMGCS1 promotes arginase 1 expression by sponging miR-4521, which accelerated the impairment of vascular endothelial function.

      Strengths:

      The study is systematic and establishes the regulatory role of the circHMGCS1-miR-4521 axis in diabetes-induced cardiovascular diseases.

      Weaknesses:

      (1) The authors selected the miR-4521 as the target based on their reduced expression upon circHMGCS1 overexpression. Since the miRNA level is downregulated, the downstream target gene is expected to be upregulated even in the absence of circRNA. The changes in miRNA expression opposite to the levels of target circRNA could be through Target RNA-Directed MicroRNA Degradation. In addition, miRNA can also be stabilized by circRNAs. Hence, selecting miRNA targets based on opposite expression patterns and concluding miRNA sponging by circRNA needs further evidence of direct interactions.

      (2) The majority of the experiments were performed with an overexpression vector which can generate a lot of linear RNAs along with circRNAs. The linear RNAs produced by the overexpression vectors can have a similar effect to the circRNA due to sequence identity.

      (3) There is a lack of data of circHMGCS1 silencing and its effect on target miRNA & mRNAs.

    1. Reviewer #2 (Public Review):

      Summary:

      Zhang et al. performed a proteogenomic analysis of lung adenocarcinoma (LUAD) in 169 female never-smokers from the Xuanwei area (XWLC) in China. These analyses reveal that XWLC is a distinct subtype of LUAD and that BaP is a major risk factor associated with EGFR G719X mutations found in the XWLC cohort. Four subtypes of XWLC were classified with unique features based on multi-omics data clustering.

      Strengths:

      The authors made great efforts in performing several large-scale proteogenomic analyses and characterizing molecular features of XWLCs. Datasets from this study will be a valuable resource to further explore the etiology and therapeutic strategies of air-pollution-associated lung cancers, particularly for XWLC.

      Weaknesses:

      (1) While analyzing and interpreting the datasets, however, this reviewer thinks that authors should provide more detailed procedures of (i) data processing, (ii) justification for choosing methods of various analyses, and (iii) justification of focusing on a few target gene/proteins in the datasets for further validation in the main text.

      (2) Importantly, while providing the large datasets, validating key findings is minimally performed, and surprisingly there is no interrogation of XWLC drug response/efficacy based on their findings, which makes this manuscript descriptive and incomplete rather than conclusive. For example, testing the efficacy of XWLC response to afatinib combined with other drugs targeting activated kinases in EGFR G719X mutated XWLC tumors would be one way to validate their datasets and new therapeutic options.

      (3) The authors found MAD1 and TPRN are novel therapeutic targets in XWLC. Are these two genes more frequently mutated in one subtype than the other 3 XWLC subtypes? How these mutations could be targeted in patients?

      (4) In Figures 2a and b: while Figure 2a shows distinct genomic mutations among each LC cohort, Figure 2b shows similarity in affected oncogenic pathways (cell cycle, Hippo, NOTCH, PI3K, RTK-RAS, and WNT) between XWLC and TNLC/CNLC. Considering that different genomic mutations could converge into common pathways and biological processes, wouldn't these results indicate commonalities among XWLC, TNLC, and CNLC? How about other oncogenic pathways not shown in Figure 2b?

      (5) In Figure 2c, how and why were the four genes (EGFR, TP53, RBM10, KRAS) selected? What about other genes? In this regard, given tumor genome sequencing was done, it would be more informative to provide the oncoprints of XWLC, TSLC, TNLC, and CNLC for complete genomic alteration comparison.

      (6) Supplementary Table 11 shows a number of mutations at the interface and length of interface between a given protein-protein interaction pair. Such that, it does not provide what mutation(s) in a given PPI interface is found in each LC cohort. For example, it fails to provide whether MAD1 R558H and TPRN H550Q mutations are found significantly in each LC cohort.

      (7) Figure 7c and d are simulation data not from an actual binding assay. The authors should perform a biochemical binding assay with proteins or show that the mutation significantly alters the interaction to support the conclusion.

    1. Reviewer #2 (Public Review):

      In this exciting new paper from the Ramaswamy group at Purdue, the authors provide a new structure of the membrane domains of a tripartite ATP-independent periplasmic (TRAP) transporter for the important sugar acid, N-acetylneuraminic acid or sialic acid (Neu5Ac). While there have been a number of other structures in the last couple of years (the first for any TRAP-T) this is the first to trap the structure with Neu5Ac bound to the membrane domains. This is an important breakthrough as in this system the ligand is delivered by a substrate-binding protein (SBP), in this case, called SiaP, where Neu5Ac binding is well studied but the 'hand over' to the membrane component is not clear. The structure of the membrane domains, SiaQM, revealed strong similarities to other SBP-independent Na+-dependent carriers that use an elevator mechanism and have defined Na+ and ligand binding sites. Here they solve the cryo-EM structure of the protein from the bacterial oral pathogen Fusobacterium nucleatum and identify a potential third (and theoretically predicted) Na+ binding site but also locate for the first time the Neu5Ac binding site. While this sits in a region of the protein that one might expect it to sit, based on comparison to other transporters like VcINDY, it provides the first molecular details of the binding site architecture and identifies a key role for Ser300 in the transport process, which their structure suggests coordinates the carboxylate group of Neu5Ac. The work also uses biochemical methods to confirm the transporter from F. nucleatum is active and similar to those used by selected other human and animal pathogens and now provides a framework for the design of inhibitors of these systems.

      The strengths of the paper lie in the locating of Neu5Ac bound to SiaQM, providing important new information on how TRAP transporters function. The complementary biochemical analysis also confirms that this is not an atypical system and that the results are likely true for all sialic acid-specific TRAP systems.

      The main weakness is the lack of follow-up on the identified binding site in terms of structure-function analysis. While Ser300 is shown to be important, only one other residue is mutated and a much more extensive analysis of the newly identified binding site would have been useful.

    1. Reviewer #2 (Public Review):

      Cryo_EM structures of the Kv1.2 channel in the open, inactivated, toxin complex and in Na+ are reported. The structures of the open and inactivated channels are merely confirmatory of previous reports. The structures of the dendrotoxin bound Kv1.2 and the channel in Na+ are new findings that will of interest to the general channel community.

      Review of the resubmission:

      I thank the authors for making the changes in their manuscript as suggested in the previous review. The changes in the figures and the additions to the text do improve the manuscript. The new findings from a further analysis of the toxin channel complex are welcome information on the mode of the binding of dendrotoxin.

      A few minor concerns:<br /> (1) Line 93-96, 352: I am not sure as to what is it the authors are referring to when they say NaK2P. It is either NaK or NaK2K. I don't think that it has been shown in the reference suggested that either of these channels change conformation based on the K+ concentration. Please check if there is a mistake and that the Nichols et. al. reference is what is being referred to.

      (2) Line 365: In the study by Cabral et. al., Rb+ ions were observed by crystallography in the S1, S3 and S4 site, not the S2 site. Please correct.

    1. Reviewer #2 (Public Review):

      This manuscript by Geng et al. aims to demonstrate that MDA5 compensates for the loss of RIG-I in certain species, such as teleofish miiuy croacker. The authors use siniperca cheats rhabdovirus (SCRV) and poly(I:C) to demonstrate that these RNA ligands induce an IFN response in an MDA5-dependent manner in m.miiuy derived cells. Furthermore, they show that MDA5 requires its RD domain to directly bind to SCRV RNA and to induce an IFN response. They use in vitro synthesized RNA with a 5'triphosphate (or lacking a 5'triphosphate as a control) to demonstrate that MDA5 can directly bind to 5'-triphosphorylated RNA. The second part of the paper is devoted to m6A modification of MDA5 transcripts by SCRV as an immune evasion strategy. The authors demonstrate that the modification of MDA5 with m6A is increased upon infection and that this causes increased decay of MDA5 and consequently a decreased IFN response.

      - One critical caveat in this study is that it does not address whether ppp-SCRV RNA induces IRF3-dimerization and type I IFN induction in an MDA5 dependent manner. The data demonstrate that mmiMDA5 can bind to triphosphorylated RNA (Fig. 4D). In addition, triphosphorylated RNA can dimerize IRF3 (4C). However, a key experiment that ties these two observations together is missing.<br /> - Specifically, although Fig. 4C demonstrates that 5'ppp-SCRV RNA induces dimerization (unlike its dephosphorylated or capped derivatives), this does not proof that this happens in an MDA5-dependent manner. This experiment should have been done in WT and siMDA5 MKC cells side-by-side to demonstrate that the IRF3 dimerization that is observed here is mediated by MDA5 and not by another (unknown) protein. The same holds true for Fig. 4J.<br /> - Fig 1C-D: these experiments are not sufficiently convincing, i.e. the difference in IRF3 dimerization between VSV-RNA and VSV-RNA+CIAP transfection is minimal.<br /> - Fig. 2N and 2O: why did the authors decide to use overexpression of MDA5 to assess the impact of STING on MDA5-mediated IFN induction? This should have been done in cells transfected with SCRV or polyIC (as in 2D-G) or in infected cells (as in 2H-K). In addition, it is a pity that the authors did not include an siMAVS condition alongside siSTING, to investigate the relative contribution of MAVS versus STING to the MDA5-mediated IFN response. Panel O suggests that the IFN response is completely dependent on STING, which is hard to envision.<br /> - Fig. 3F and 3G: where are the mock-transfected/infected conditions? Given that ectopic expression of hMDA5 is known to cause autoactivation of the IFN pathway, the baseline ISG levels should be shown (ie. In absence of a stimulus or infection). Normalization of the data does not reveal whether this is the case and is therefore misleading.<br /> - Fig. 4F and 4G: can the authors please indicate in the figure which area of the gel is relevant here? The band that runs halfway the gel? If so, the effects described in the text are not supported by the data (i.e. the 5'OH-SCRV and 5'pppGG-SCRV appear to compete with Bio-5'ppp-SCRV as well as 5'ppp-SCRV).<br /> - My concerns about Fig. 5 remain unaltered. The fact that MDA5 is an ISG explains its increased expression and increased methylation pattern. The authors should at the very least mention in their text that MDA5 is an ISG and that their observations may be partially explained by this fact.

    1. Reviewer #2 (Public Review):

      Summary:

      This study marks a noteworthy advance in the targeted design of AMPs, leveraging a pioneering deep-learning framework to generate potent bifunctional peptides with specificity against both bacteria and viruses. The introduction of a GAN for generation and a GCN-based AMPredictor for MIC predictions is methodologically robust and a major stride in computational biology. Experimental validation in vitro and in animal models, notably with the highly potent P076 against a multidrug-resistant bacterium and P002's broad-spectrum viral inhibition, underpins the strength of their evidence. The findings are significant, showcasing not just promising therapeutic candidates, but also demonstrating a replicable means to rapidly develop new antimicrobials against the threat of drug-resistant pathogens.

      Strengths:

      The de novo AMP design framework combines a generative adversarial network (GAN) with an AMP predictor (AMPredictor), which is a novel approach in the field. The integration of deep generative models and graph-encoding activity regressors for discovering bifunctional AMPs is cutting-edge and addresses the need for new antimicrobial agents against drug-resistant pathogens. The in vitro and in vivo experimental validations of the AMPs provide strong evidence to support the computational predictions. The successful inhibition of a spectrum of pathogens in vitro and in animal models gives credibility to the claims. The discovery of effective peptides, such as P076, which demonstrates potent bactericidal activity against multidrug-resistant A. baumannii with low cytotoxicity, is noteworthy. This could have far-reaching implications for addressing antibiotic resistance. The demonstrated activity of the peptides against both bacterial and viral pathogens suggests that the discovered AMPs have a wide therapeutic potential and could be effective against a range of pathogens.

    1. Reviewer #2 (Public Review):

      In this study, the authors address discrepancies in determining the local bacterial burden in osteomyelitis between that determined by culture and enumeration by DNA-directed assay. Discrepancies between culture and other means of bacterial enumeration are long established and highlighted by Staley and Konopka's classic, "The great plate count anomaly" (1985). Here, the authors first present data demonstrating the emergence of discrepancies between CFU counts and genome copy numbers detected by PCR in S. aureus strains infecting osteocyte-like cells. They go on to demonstrate PCR evidence that S. aureus can be detected in bone samples from sites meeting a widely accepted clinico-pathological definition of osteomyelitis. They conclude their approach offers advantages in quantifying intracellular bacterial load in their in vitro "co-culture" system.

      WEAKNESSES

      (A) My main concern here is the significance of these results outside the model osteocyte system used by this group. Although they carefully avoid over-interpreting their results, there is a strong undercurrent suggesting their approach could enhance aetiologic diagnosis in osteomyelitis and that enumeration of the infecting pathogen might have clinical value. In the first place molecular diagnostics such as 16S rDNA-directed PCR are well established in identifying pathogens that don't grow. Secondly, it is hard to see how enumeration could have value beyond in vitro and animal model studies since serial samples will rarely be available from clinical cases.

      (B) I have further concerns regarding interpretation of the combined bacterial and host cell-directed PCRs against the CFU results. Significance is attached to the relatively sustained genome counts against CFU declines. On the one hand it must be clearly recognised that detection of bacterial genomes does not equate to viable bacterial cells with potential for further replication or production of pathogenic factors. Of equal importance is the potential contribution of extracellular DNA from lysed bacteria and host cells to these results. The authors must clarify what steps, if any, they have taken to eliminate such contributions for both bacteria and host cells. Even the treatment with lysotaphin may have coated their osteocyte cultures with bacterial DNA, contributing downstream to the ddPCR results presented.

      STRENGTHS

      (C) On the positive side, the authors provide clear evidence for the value of the direct buffer extraction system they used as well as confirming the utility of ddPCR for quantification. In addition, the successful application of MinION technology to sequence the EF-Tu amplicons from clinical samples is of interest.

      (D) Moreover, the phenomenology of the infection studies indicating greater DNA than CFU persistence and differences between the strains and the different MOI inoculations are interesting and well-described, although I have concerns regarding interpretation.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors have carried out a comprehensive analysis regarding the kinetics of viraemia and clinical disease severity.

      Strengths:

      The manuscript provides important information, especially regarding the time of clearance of the virus and disease severity.

      Weaknesses:

      Due to the lower number of patients with primary dengue, cannot get an idea regarding viraemia kinetics and disease severity for different serotypes during primary infection.

    1. Reviewer #2 (Public Review):

      Lentiviral infection of primate species has been linked to the rapid mutational evolution of numerous primate genes that interact with these viruses, including genes that inhibit lentiviruses as well as genes required for viral infection. In this manuscript, Warren et al. provide further support for the diversification of CD4, the lentiviral entry receptor, to resist lentiviral infection in great ape populations. This work builds on their prior publication (Warren et al. 2019, PMCID: PMC6561292 ) and that of other groups (e.g., Russell et al. 2021, PMCID: PMC8020793; Bibollet-Ruche et al. 2019, PMCID: PMC6386711) documenting both sequence and functional diversity in CD4, specifically within (1) the CD4 domain that binds to the lentiviral envelope and (2) great ape populations with endemic lentiviruses. Thus, the paper's finding that gorilla populations exhibit diverse CD4 alleles that differ in their susceptibility to lentiviral infection is well demonstrated both here and in a prior publication.

      Strengths:

      By reconstructing the CD4 sequence from the ancestor of gorillas and chimpanzees, the authors document that modern species have evolved more resistance to (admittedly modern) lentiviruses. They also deconstruct the molecular basis of this resistance by showing that one mutation, which adds a glycosylation site to CD4, is sufficient to confer lentiviral resistance to the susceptible human allele.

      Weaknesses:

      Warren et al. also pursue two novel lines of evidence to suggest that lentiviruses are the causative driver of great ape CD4 diversification, which seems likely from a logical perspective but is difficult to prove. First, they demonstrate that resistance to lentiviral infection is a derived trait in chimpanzees and gorillas, which have been co-evolving with endemic lentiviruses, but not in humans, which only recently acquired HIV. Nevertheless, these three examples are insufficient to prove that derived resistance is not stochastic or due to drift. The argument would be strengthened by demonstrating that bonobo and orangutan CD4, which also do not have endemic lentiviruses, resemble the ancestral and human susceptibility to great-ape-infecting lentiviruses.

      Second, Warren et al. provide a population genetic argument that only endemically infected primates exhibit diversifying selection, again arguing for endemic lentiviruses being the evolutionary driver. The authors compare SNP occurrence in CD4 to neighboring genes, demonstrating that non-synonymous SNP frequency is only elevated in endemically infected species. Moreover, these amino-acid-coding changes are significantly concentrated in the CD4 domain that binds the lentiviral envelope. This is a creative analysis to overcome the problem of very small sample sizes, with very few great ape individuals sequenced. However, the small number of species compared (2-4 in each group) also limits the power of the analysis. Expanding the analysis to Old World Monkey species that do or do not have endemic lentiviruses, as well as great apes, would strengthen this argument.

      Overall, this manuscript lends additional support to a well-documented example of a host-virus arms race: that of lentiviruses and the viral entry receptor.

    1. Reviewer #3 (Public Review):

      Summary:

      The paper proposes an alternative to the attractor hypothesis, as an explanation for the fact that grid cell population activity patterns (within a module) span a toroidal manifold. The proposal is based on a class of models that were extensively studied in the past, in which grid cells are driven by synaptic inputs from place cells in the hippocampus. The synapses are updated according to a Hebbian plasticity rule. Combined with an adaptation mechanism, this leads to patterning of the inputs from place cells to grid cells such that the spatial activity patterns are organized as an array of localized firing fields with hexagonal order. I refer to these models below as feedforward models.

      It has already been shown by Si, Kropff, and Treves in 2012 that recurrent connections between grid cells can lead to alignment of their spatial response patterns. This idea was revisited by Urdapilleta, Si, and Treves in 2017. Thus, it should already be clear that in such models, the population activity pattern spans a manifold with toroidal topology. The main new contributions in the present paper are (i) in considering a form of recurrent connectivity that was not directly addressed before. (ii) in applying topological analysis to simulations of the model. (iii) in interpreting the results as a potential explanation for the observations of Gardner et al.

      Strengths:

      The exploration of learning in a feedforward model, when recurrent connectivity in the grid cell layer is structured in a ring topology, is interesting. The insight that this not only align the grid cells in a common direction but also creates a correspondence between their intrinsic coordinate (in terms of the ring-like recurrent connectivity) and their tuning on the torus is interesting as well, and the paper as a whole may influence future theoretical thinking on the mechanisms giving rise to the properties of grid cells.

      Weaknesses:

      (1) In Si, Kropff and Treves (2012) recurrent connectivity was dependent on the head direction tuning, in addition to the location on a 2d plane, and therefore involved a ring structure. Urdapilleta, Si, and Treves considered connectivity that depends on the distance on a 2d plane. The novelty here is that the initial connectivity is structured uniquely according to latent coordinates residing on a ring.

      (2) The paper refers to the initial connectivity within the grid cell layer as one that produces an attractor. However, it is not shown that this connectivity, on its own, indeed sustains persistent attractor states. Furthermore, it is not clear whether this is even necessary to obtain the results of the model. It seems possible that (possibly weaker) connections with ring topology, that do not produce attractor dynamics but induce correlations between neurons with similar locations on the ring would be sufficient to align the spatial response patterns during the learning of feedforward weights.

      (3) Given that all the grid cells are driven by an input from place cells that span a 2d manifold, and that the activity in the grid cell network settles on a steady state which is uniquely determined by the inputs, it is expected that the manifold of activity states in the grid cell layer, corresponding to inputs that locally span a 2d surface, would also locally span a 2d plane. The result is not surprising. My understanding is that this result is derived as a prerequisite for the topological analysis, and it is therefore quite technical.

      (4) The modeling is all done in planar 2d environments, where the feedforward learning mechanism promotes the emergence of a hexagonal pattern in the single neuron tuning curve. Under the scenario in which grid cell responses are aligned (i.e. all neurons develop spatial patterns with the same spacing and orientation) it is already quite clear, even without any topological analysis that the emerging topology of the population activity is a torus.

      However, the toroidal topology of grid cells in reality has been observed by Gardner et al also in the wagon wheel environment, in sleep, and close to boundaries (whereas here the analysis is restricted to the a sub-region of the environment, far away from the walls). There is substantial evidence based on pairwise correlations that it persists also in various other situations, in which the spatial response pattern is not a hexagonal firing pattern. It is not clear that the mechanism proposed in the present paper would generate toroidal topology of the population activity in more complex environments. In fact, it seems likely that it will not do so, and this is not explored in the manuscript.

      (5) Moreover, the recent work of Gardner et al. demonstrated much more than the preservation of the topology in the different environments and in sleep: the toroidal tuning curves of individual neurons remained the same in different environments. Previous works, that analyzed pairwise correlations under hippocampal inactivation and various other manipulations, also pointed towards the same conclusion. Thus, the same population activity patterns are expressed in many different conditions. In the present model, this preservation across environments is not expected. Moreover, the results of Figure 6 suggest that even across distinct rectangular environments, toroidal tuning curves will not be preserved, because there are multiple possible arrangements of the phases on the torus which emerge in different simulations.

      (6) In real grid cells, there is a dense and fairly uniform representation of all phases (see the toroidal tuning of grid cells measured by Gardner et al). Thus, the highly clustered phases obtained in the model (Fig. S1) seem incompatible with the experimental reality. I suspect that this may be related to the difficulty in identifying the topology of a torus in persistent homology analysis based on the transpose of the matrix M.

      (7) The motivations stated in the introduction came across to me as weak. As now acknolwledged in the manuscript, attractor models can be fully compatible with distortions of the hexagonal spatial response patterns - they become incompatible with this spatial distortions only if one adopts a highly naive and implausible hypothesis that the attractor state is updated only by path integration. While attractor models are compatible with distortions of the spatial response pattern, it is very difficult to explain why the population activity patterns are tightly preserved across multiple conditions without a rigid two-dimentional attractor structure. This strong prediction of attractor models withstood many experimental tests - in fact, I am not aware of any data set where substantial distortions of the toroidal activity manifold were observed, despite many attempts to challenge the model. This is the main motivation for attractor models. The present model does not explain these features, yet it also does not directly offer an explanation for distortions in the spatial response pattern.

      (8). There is also some weakness in the mathematical description of the dynamics. Mathematical equations are formulated in discrete time steps, without a clear interpretation in terms of biophysically relevant time scales. It appears that there are no terms in the dynamics associated with an intrinsic time scale of the neurons or the synapses (a leak time constant and/or synaptic time constants). I generally favor simple models without lots of complexity, yet within this style of modelling, the formulation adopted in this manuscript is unconventional, introducing a difficulty in interpreting synaptic weights as being weak or strong, and a difficulty in interpreting the model in the context of other studies.

      In my view, the weaknesses discussed above limit the ability of the model, as it stands, to offer a compelling explanation for the toroidal topology of grid cell population activity patterns, and especially the rigidity of the manifold across environments and behavioral states. Still, the work offers an interesting way of thinking on how the toroidal topology might emerge.

    1. Reviewer #3 (Public Review):

      The study investigated how statistical aspects of temperature sequences, such as manipulations of stochasticity (i.e., randomness of a sequence) and volatility (i.e., speed at which a sequence unfolded) influenced pain perception. Using an innovative stimulation paradigm and computational modelling of perceptual variables, this study demonstrated that perception is weighted by expectations. Overall, the findings support the conclusion that pain perception is mediated by expectations in a Bayesian manner. The provision of additional details during the review process strengthens the reliability of this conclusion. The methods presented offer tools and frameworks for further research in pain perception and can be extended to investigations into chronic pain processes.

    1. Reviewer #2 (Public Review):

      In this manuscript, Li and collaborators set out to investigate the neuronal mechanisms underlying "subjective time estimation" in rats. For this purpose, they conducted calcium imaging in the prefrontal cortex of water-restricted rats that were required to perform an action (nosepoking) for a short duration to obtain drops of water. The authors provided evidence that animals progressively improved in performing their task. They subsequently analyzed the calcium imaging activity of neurons and identify start, duration, and stop cells associated with the nose poke. Specifically, they focused on duration cells and demonstrated that these cells served as a good proxy for timing on a trial-by-trial basis, scaling their pattern of actvity in accordance with changes in behavioral performance. In summary, as stated in the title, the authors claim to provide mechanistic insights into subjective time estimation in rats, a function they deem important for various cognitive conditions.

      This study aligns with a wide range of studies in system neuroscience that presume that rodents solve timing tasks through an explicit internal estimation of duration, underpinned by neuronal representations of time. Within this framework, the authors performed complex and challenging experiments, along with advanced data analysis, which undoubtedly merits acknowledgement. However, the question of time perception is a challenging one, and caution should be exercised when applying abstract ideas derived from human cognition to animals. Studying so-called time perception in rats has significant shortcomings because, whether acknowledged or not, rats do not passively estimate time in their heads. They are constantly in motion. Moreover, rats do not perform the task for the sake of estimating time but to obtain their rewards are they water restricted. Their behavior will therefore reflects their motivation and urgency to obtain rewards. Unfortunately, it appears that the authors are not aware of these shortcomings. These alternative processes (motivation, sensorimotor dynamics) that occur during task performance are likely to influence neuronal activity. Consequently, my review will be rather critical. It is not however intended to be dismissive. I acknowledge that the authors may have been influenced by numerous published studies that already draw similar conclusions. Unfortunately, all the data presented in this study can be explained without invoking the concept of time estimation. Therefore, I hope the authors will find my comments constructive and understand that as scientists, we cannot ignore alternative interpretations, even if they conflict with our a priori philosophical stance (e.g., duration can be explicitly estimated by reading neuronal representation of time) and anthropomorphic assumptions (e.g., rats estimate time as humans do). While space is limited in a review, if the authors are interested, they can refer to a lengthy review I recently published on this topic, which demonstrates that my criticism is supported by a wide range of timing experiments across species (Robbe, 2023). In addition to this major conceptual issue that cast doubt on most of the conclusions of the study, there are also several major statistical issues.

      Main Concerns

      (#1) The authors used a task in which rats must poke for a minimal amount of time (300 ms and then 1500 ms) to be able to obtain a drop of water delivered a few centimeters right below the nosepoke. They claim that their task is a time estimation task. However, they forget that they work with thirsty rats that are eager to get water sooner than later (there is a reason why they start by a short duration!). This task is mainly probing the animals ability to wait (that is impulse control) rather than time estimation per se. Second, the task does not require to estimate precisely time because there appear to be no penalties when the nosepokes are too short or when they exceed. So it will be unclear if the variation in nosepoke reflects motivational changes rather than time estimation changes. The fact that this behavioral task is a poor assay for time estimation and rather reflects impulse control is shown by the tendency of animals to perform nose-pokes that are too short, the very slow improvement in their performance (Figure 1, with most of the mice making short responses), and the huge variability. Not only do the behavioral data not support the claim of the authors in terms of what the animals are actually doing (estimating time), but this also completely annhilates the interpretation of the Ca++ imaging data, which can be explained by motivational factors (changes in neuronal activity occurring while the animals nose poke may reflect a growing sens of urgency to check if water is available).

      (#2) A second issue is that the authors seem to assume that rats are perfectly immobile and perform like some kind of robots that would initiate nose pokes, maintain them, and remove them in a very discretized manner. However, in this kind of task, rats are constantly moving from the reward magazine to the nose poke. They also move while nose-poking (either their body or their mouth), and when they come out of the nose poke, they immediately move toward the reward spout. Thus, there is a continuous stream of movements, including fidgeting, that will covary with timing. Numerous studies have shown that sensorimotor dynamics influence neural activity, even in the prefrontal cortex. Therefore, the authors cannot rule out that what the records reflect are movements (and the scaling of movement) rather than underlying processes of time estimation (some kind of timer). Concretely, start cells could represent the ending of the movement going from the water spout to the nosepoke, and end cells could be neurons that initiate (if one can really isolate any initiation, which I doubt) the movement from the nosepoke to the water spout. Duration cells could reflect fidgeting or orofacial movements combined with an increasing urgency to leave the nose pokes.

      (#3) The statistics should be rethought for both the behavioral and neuronal data. They should be conducted separately for all the rats, as there is likely interindividual variability in the impulsivity of the animals.

      (#4) The fact that neuronal activity reflects an integration of movement and motivational factors rather than some abstract timing appears to be well compatible with the analysis conducted on the error trials (Figure 4), considering that the sensorimotor and motivational dynamics will rescale with the durations of the nose poke.

      (#5) The authors should mention upfront in the main text (result section) the temporal resolution allowed by their Ca+ probe and discuss whether it is fast enough in regard of behavioral dynamics occurring in the task.

    1. Reviewer #2 (Public Review):

      This work introduces a Vermouth library framework to enhance software development within the Martini community. Specifically, it presents a Vermouth-powered program, Martinize2, for generating coarse-grained structures and topologies from atomistic structures. In addition to introducing the Vermouth library and the Martinize2 program, this paper illustrates how Martinize2 identifies atoms, maps them to the Martini model, generates topology files, and identifies protonation states or post-translational modifications. Compared with the prior version, the authors provide a new figure to show that Martinize2 can be applied to various molecules, such as proteins, cofactors, and lipids. To demonstrate the general application, Martinize2 was used for converting 73% of 87,084 protein structures from the template library, with failed cases primarily blamed on missing coordinates.

      I was hoping to see some fundamental changes in the resubmitted version. To my disappointment, the manuscript remains largely unchanged (even the typo I pointed out previously was not fixed). I do not doubt that Martinize2 and Vermouth are useful to the Martini community, and this paper will have some impact. The manuscript is very technical and limited to the Martini community. The scientific insight for the general coarse-grained modeling community is unclear. The goal of the work is ambitious (such as high-throughput simulations and whole-cell modeling), but the results show just a validation of Martinize2. This version does not reverse my previous impression that it is incremental. As I pointed out in my previous review (and no response from the authors), all the issues associated with the Martini model are still there, e.g. the need for ENM. In this shape, I feel this manuscript is suitable for a specialized journal in computational biophysics or stays as part of the GitHub repository.

    1. Reviewer #2 (Public Review):

      The authors provide an analytical framework to model the artificial selection of the composition of communities comprised of strains growing at different rates. Their approach takes into account the competition between the targeted selection at the level of the meta-community and the selection that automatically favors fast-growing cells within each replicate community. Their main finding is a tipping point or path-dependence effect, whereby compositions dominated by slow-growing types can only be reached by community-level selection if the community does not start and never crosses into a range of compositions dominated by fast growers during the dynamics.

      These results seem to us both technically correct and interesting. We commend the authors on their efforts to make their work reproducible even when it comes to calculations via extensive appendices, though perhaps a table of contents and a short description of these appendices at the start of SI would help navigate them.

      The main limitation in the current form of the article is that it could clarify how its assumptions and findings differ from and improve upon the rest of the literature:

      - Many studies discuss the interplay between community-level evolution and species- or strain-level evolution. But "evolution" can be a mix of various forces, including selection, drift/randomness, and mutation/innovation.

      - This work's specificity is that it focuses strictly on constant community-level selection versus constant strain-level selection, all other forces being negligible (neither stochasticity nor innovation/mutation matter at either level, as we try to clarify now).

      - Regarding constant community-level selection, it is only briefly noted that "once a target frequency is achieved, inter-collective selection is always required to maintain that frequency due to the fitness difference between the two types" [pg. 3 {section sign}2]. In other words, action from the selector is required indefinitely to maintain the community in the desired state. This assumption is found in a fraction of the literature, but is still worth clarifying from the start as it can inform the practical applicability of the results.

      - More importantly, strain-level evolution also boils down here to pure selection with a constant target, which is less usual in the relevant literature. Here, (1) drift from limited population sizes is very small, with no meaningful counterbalancing of selection, (2) pure exponential regime with constant fitness, no interactions, no density- or frequency-dependence, (3) there is no innovation in the sense that available types are unchanging through time (no evolution of traits such as growth rate or interactions) and (4) all the results presented seem unchanged when mutation rate mu = 0 (as noted in Appendix III), meaning that the conclusions are not "about" mutation in any meaningful way.

      - Furthermore, the choice of mutation mechanism is peculiar, as it happens only from slow to fast grower: more commonly, one assumes random non-directional mutations, rather than purely directional ones from less fit to fitter (which is more of a "Lamarckian" idea). Given that mutation does not seem to matter here, this choice might create unnecessary opposition from some readers or could be considered as just one possibility among others.

      It would be helpful to have all these points stated clearly so that it becomes easy to see where this article stands in an abundant literature and contributes to our understanding of multi-level evolution, and why it may have different conclusions or focus than others tackling very similar questions.

      Finally, a microbial context is given to the study, but the assumptions and results are in no way truly tied to that context, so it should be clear that this is just for flavor.

    1. Reviewer #2 (Public Review):

      Summary:

      Kume et al. found for the first time that Semaphorin 4A (Sema4A) was downregulated in both mRNA and protein levels in L and NL keratinocytes of psoriasis patients compared to control keratinocytes. In peripheral blood, they found that Sema4A is not only expressed in keratinocytes but is also upregulated in hematopoietic cells such as lymphocytes and monocytes in the blood of psoriasis patients. They investigated how the down-regulation of Sema4A expression in psoriatic epidermal cells affects the immunological inflammation of psoriasis by using a psoriasis mice model in which Sema4A KO mice were treated with IMQ. Kume et al. hypothesized that down-regulation of Sema4A expression in keratinocytes might be responsible for the augmentation of psoriasis inflammation. Using bone marrow chimeric mice, Kume et al. showed that KO of Sema4A in non-hematopoietic cells was responsible for the enhanced inflammation in psoriasis. The expression of CCL20, TNF, IL-17, and mTOR was upregulated in the Sema4AKO epidermis compared to the WT epidermis, and the infiltration of IL-17-producing T cells was also enhanced.

      Strengths:

      Decreased Sema4A expression may be involved in psoriasis exacerbation through epidermal proliferation and enhanced infiltration of Th17 cells, which helps understand psoriasis immunopathogenesis.

      Weaknesses:

      The mechanism by which decreased Sema4A expression may exacerbate psoriasis is unclear as yet.

    1. Reviewer #3 (Public Review):

      The authors used existing mouse models to compare the effects of ablating the CD47 receptor and its signaling ligand Thrombospondin. They analyze the cell composition of the spleens from CD47-KO and Thsp-KO using Flow Cytometry and single cell sequencing and focus mostly on early hematopoietic and erythroid populations. The data broadly shows that splenomegaly in the CD47-KO is largely due to an increase in committed erythroid progenitors, whereas the Thsp-KO shows a slight depletion of committed erythroid progenitors but is otherwise similar to WT in splenic cell composition. Thus, both their datasets supports the main conclusions of the study. One caveat of the single-cell dataset is that, insofar as the authors have explored and presented it, a clear picture of the mechanism driving extra medullary erythropoiesis in CD47-KO is lacking. This would be extremely valuable since one of the stated translational implications of this study is to assess and remedy the anemia caused by anti-CD47 therapy used in subtypes of AML. Nevertheless, this study provides novel insights into a putative role of Thsp-CD47 signaling in triggering definitive erythropoiesis in the mouse spleen in response to anemic stress and constitutes a good resource for researchers seeking to understand extramedullary erythropoiesis. This study also has generated data that will enable exploration of the possible adverse effects of using anti-CD47 therapies to treat AML.

    1. Reviewer #2 (Public Review):

      In recent years, lots of researchers have tried to explore the existence of new acetyltransferase and deacetylase by using specific antibody enrichment technologies and high-resolution mass spectrometry. This study adds to this effort. The authors studied a novel Zn2+- and NAD+-independent KDAC protein, AhCobQ, in Aeromonas hydrophila. They studied the biological function of AhCobQ by using a biochemistry method and used MS identification technology to confirm it. The results extend our understanding of the regulatory mechanism of bacterial lysine acetylation modifications. However, I find their conclusion to be a little speculative, and unfortunately, it also doesn't totally support the conclusion that the authors provided. In addition, regarding the figure arrangement, lots of the supplementary figures are not mentioned, and tables are not all placed in context.

      Major concerns:

      -In the opinion of this reviewer, is a little arbitrary to come to the title "Aeromonas hydrophila CobQ is a new type of NAD+- and Zn2+-independent protein lysine deacetylase in prokaryotes." This should be modified to delete the "in the prokaryotes", unless the authors get new or more evidence in the other prokaryotes for the existence of the AhCobQ.

      -I was confused about the arrangement of the supplementary results. There are no citations for Figures S9-S19.

      -No data are included for Tables S1-S6.

      -The load control is not all integrated. All of the load controls with whole PAGE gel or whole membrane western blot results should be provided. Without these whole results, it is not convincing to come to the conclusion that the authors have.

      -The materials & methods section should be thoroughly reviewed. It is unclear to me what exactly the authors are describing in the method. All the experimental designs and protocols should be described in detail, including growth conditions, assay conditions, purification conditions, etc.

      -Relevant information should be included about the experiments performed in the figure legends, such as experimental conditions, replicates, etc. Often it is not clear what was done based on the figure legend description.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, inhibitors of the P. vivax liver stages are identified from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library as well as a 773-member collection of epigenetic inhibitors. This study led to the discovery that epigenetics pathway inhibitors are selectively active against P. vivax and P. cynomolgi hypnozoites. Several inhibitors of histone post-translational modifications were found among the hits and genomic DNA methylation mapping revealed the modification on most genes. Experiments were completed to show that the level of methylation upstream of the gene (promoter or first exon) may impact gene expression. With the limited number of small molecules that act against hypnozoites, this work is critically important for future drug leads. Additionally, the authors gleaned biological insights from their molecules to advance the current understanding of essential molecular processes during this elusive parasite stage.

      Strengths:<br /> -This is a tremendously impactful study that assesses molecules for the ability to inhibit Plasmodium hypnozoites. The comparison of various species is especially relevant for probing biological processes and advancing drug leads.

      -The SI is wonderfully organized and includes relevant data/details. These results will inspire numerous studies beyond the current work.

    1. Reviewer #2 (Public Review):

      Summary:

      Yang and colleagues developed a new in vitro blood-brain barrier model that is relatively simple yet outperforms previous models. By incorporating a neuroblastoma cell line, they demonstrated increased electrical resistance and decreased permeability to small molecules.

      Strengths:

      The authors initially elucidated the soluble mediator responsible for enhancing endothelial functionality, namely GDNF. Subsequently, they elucidated the mechanisms by which GDNF upregulates the expression of VE-cadherin and Claudin-5. They further validated these findings in vivo, and demonstrated predictive value for molecular permeability as well. The study is meticulously conducted and easily comprehensible. The conclusions are firmly supported by the data, and the objectives are successfully achieved. This research is poised to advance future investigations in BBB permeability, leakage, dysfunction, disease modeling, and drug delivery, particularly in high-throughput experiments. I anticipate an enthusiastic reception from the community interested in this area. While other studies have produced similar results with tri-cultures (PMID: 25630899), this study notably enhances electrical resistance compared to previous attempts.

      Weaknesses:

      Considerable effort has been directed towards developing in vitro models that more closely resemble their in vivo counterparts, utilizing stem cell-derived NVU cells. Although these examples are currently rudimentary, they offer better BBB mimicry than Yang's study.

      Additionally, some instances might benefit from more robust statistical tests; nonetheless, I do not think this would significantly alter the experimental conclusions.

      Similar experiments with tri-cultures yielding analogous results have been reported by other authors (PMID: 25630899). TEER values are a bit higher than the aforementioned experiments; however, this study has values at least one order of magnitude lower than physiological levels.

    1. Reviewer #2 (Public Review):

      Liu et al., by focusing on the regulation of G protein-signaling 10 (RGS10), reported that RGS10 expression was significantly lower in patients with breast cancer, compared with normal adjacent tissue. Genetic inhibition of RGS10 caused epithelial-mesenchymal transition, and enhanced cell proliferation, migration, and invasion, respectively. These results suggest an inhibitory role of RGS10 in tumor metastasis. Furthermore, bioinformatic analyses determined signaling cascades for RGS10-mediated breast cancer distant metastasis. More importantly, both in vitro and in vivo studies evidenced that alteration of RGS10 expression by modulating its upstream regulator miR-539-5p affects breast cancer metastasis. Altogether, these findings provide insight into the pathogenesis of breast tumors and hence identify potential therapeutic targets in breast cancer.

      The conclusions of this study are mostly well supported by data.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Bosch et al. reveal Flamingo (Fmi), a planar cell polarity (PCP) protein, is essential for maintaining 'winner' cells in cell competition, using Drosophila imaginal epithelia as a model. They argue that tumor growth induced by scrib-RNAi and RasV12 competition is slowed by Fmi depletion. This effect is unique to Fmi, not seen with other PCP proteins. Additional cell competition models are applied to further confirm Fmi's role in 'winner' cells. The authors also show that Fmi's role in cell competition is separate from its function in PCP formation.

      Strengths:

      (1) The identification of Fmi as a potential regulator of cell competition under various conditions is interesting.

      (2) The authors demonstrate that the involvement of Fmi in cell competition is distinct from its role in planar cell polarity (PCP) development.

      Weaknesses:

      (1) The authors provide a superficial description of the related phenotypes, lacking a comprehensive mechanistic understanding. Induction of apoptosis and JNK activation are general outcomes, but it is important to determine how they are specifically induced in Fmi-depleted clones. The authors should take advantage of the power of fly genetics and conduct a series of genetic epistasis analyses.

      (2) The depletion of Fmi may not have had a significant impact on cell competition; instead, it is more likely to have solely facilitated the induction of apoptosis.

      (3) To make a solid conclusion for Figure 1, the authors should investigate whether complete removal of Fmi by a mutant allele affects tumor growth induced by expressing RasV12 and scrib RNAi throughout the eye.

      (4) The authors should test whether the expression level of Fmi (both mRNA and protein) changes during tumorigenesis and cell competition.

    1. Reviewer #2 (Public Review):

      Summary:

      Herdering et al. introduced research on an archaeal glutamine synthetase (GS) from Methanosarcina mazei, which exhibits sensitivity to the environmental presence of 2-oxoglutarate (2-OG). While previous studies have indicated 2-OG's ability to enhance GS activity, the precise underlying mechanism remains unclear. Initially, the authors utilized biophysical characterization, primarily employing a nanomolar-scale detection method called mass photometry, to explore the molecular assembly of Methanosarcina mazei GS (M. mazei GS) in the absence or presence of 2-OG. Similar to other GS enzymes, the target M. mazei GS forms a stable dodecamer, with two hexameric rings stacked in tail-to-tail interactions. Despite approximately 40% of M. mazei GS existing as monomeric or dimeric entities in the detectable solution, the majority spontaneously assemble into a dodecameric state. Upon mixing 2-OG with M. mazei GS, the population of the dodecameric form increases proportionally with the concentration of 2-OG, indicating that 2-OG either promotes or stabilizes the assembly process. The cryo-electron microscopy (cryo-EM) structure reveals that 2-OG is positioned near the interface of two hexameric rings. At a resolution of 2.39 Å, the cryo-EM map vividly illustrates 2-OG forming hydrogen bonds with two individual GS subunits as well as with solvent water molecules. Moreover, local side-chain reorientation and conformational changes of loops in response to 2-OG further delineate the 2-OG-stabilized assembly of M. mazei GS.

      Strengths & Weaknesses:

      The investigation studies the impact of 2-oxoglutarate (2-OG) on the assembly of Methanosarcina mazei glutamine synthetase (M mazei GS). Utilizing cutting-edge mass photometry, the authors scrutinized the population dynamics of GS assembly in response to varying concentrations of 2-OG. Notably, the findings demonstrate a promising and straightforward correlation, revealing that dodecamer formation can be stimulated by 2-OG concentrations of up to 10 mM, although GS assembly never reaches 100% dodecamerization in this study. Furthermore, catalytic activities showed a remarkable enhancement, escalating from 0.0 U/mg to 7.8 U/mg with increasing concentrations of 2-OG, peaking at 12.5 mM. However, an intriguing gap arises between the incomplete dodecameric formation observed at 10 mM 2-OG, as revealed by mass photometry, and the continued increase in activity from 5 mM to 10 mM 2-OG for M mazei GS. This prompts questions regarding the inability of M mazei GS to achieve complete dodecamer formation and the underlying factors that further enhance GS activity within this concentration range of 2-OG.

      Moreover, the cryo-electron microscopy (cryo-EM) analysis provides additional support for the biophysical and biochemical characterization, elucidating the precise localization of 2-OG at the interface of two GS subunits within two hexameric rings. The observed correlation between GS assembly facilitated by 2-OG and its catalytic activity is substantiated by structural reorientations at the GS-GS interface, confirming the previously reported phenomenon of "funnel activation" in GS. However, the authors did not present the cryo-EM structure of M. mazei GS in complex with ATP and glutamate in the presence of 2-OG, which could have shed light on the differences in glutamine biosynthesis between previously reported GS enzymes and the 2-OG-bound M. mazei GS.

      Furthermore, besides revealing the cryo-EM structure of 2-OG-bound GS, the study also observed the filamentous form of GS, suggesting that filament formation may be a universal stacking mechanism across archaeal and bacterial species. However, efforts to enhance resolution to investigate whether the stacked polymer is induced by 2-OG or other factors such as ions or metabolites were not undertaken by the authors, leaving room for further exploration into the mechanisms underlying filament formation in GS.

    1. Reviewer #2 (Public Review):

      Summary:

      In the manuscript Lewis and Hegde present a structural study of the ribosome-bound multipass translocon (MPT) based on re-analysis of cryo-EM single particle data of ribosome-MPTs processing the multipass transmembrane substrate RhoTM2 from a previous publication (Smalinskaité et al, Nature 2022) and AlphaFold2 multimer modeling. Detailed analysis of the laterally open Sec61 is obtained from PAT-less particles.

      The following major claims are made:

      - TMs can bind similarly to the Sec61 lateral gate as signal peptides.

      - Ribosomal H59 is in immediate proximity to basic residues of TMs and signal peptides, suggesting it may contribute to the positive-inside rule.

      - RAMP4/SERP1 binds to the Sec61 lateral gate and the ribosome near 28S rRNA's helices 47, 57, and 59 as well as eL19, eL22, and eL31.

      - uL22 C-terminal tail binds H24/47 blocking a potential escape route for nascent peptides to the cytosol.

      - TRAP and BOS compete for binding to Sec61 hinge.

      - Calnexin TM binds to TRAPg.

      - NOMO wedges between TRAP and MPT.

      Strengths:

      The manuscript contains numerous novel new structural analyses and their potential functional implications. While all findings are exciting, the highlight is the discovery of RAMP4/SERP1 near the Sec61 lateral gate. Overall, the strength is the thorough and extensive structural analysis of the different high-resolution RTC classes as well as the expert bioinformatic evolutionary analysis.

    1. Reviewer #2 (Public Review):

      This manuscript from Liu et al. examines the role of Fat and Dachsous, two transmembrane proto-cadherins that function both in planar cell polarity and in tissue growth control mediated by the Hippo pathway. The authors developed a new method for measuring growth of the wing imaginal disc during late larval development and then used this approach to examine the effects of disruption of Fat/Dachsous function on disc growth. The authors show that during mid to late third instar the wing imaginal disc normally grows in a linear rather than exponential fashion and that this occurs due to slowing of the mitotic cell cycle as the disc grows during this period. Consistent with their known role in regulating Hippo pathway activity, this slowing of growth is disrupted by loss of Fat/Dachsous function. The authors also observed a previously unreported gradient of Fat protein across the wing blade. However, graded expression of Fat or Dachsous is not necessary for proper growth regulation in the late third instar because ectopic Dachsous expression, which affects gradients of both Dachsous and Fat, has no growth phenotype.

    1. Reviewer #2 (Public Review):

      This model of skeletal muscle includes springs and dampers which aim to capture the effect of crossbridge and titin stiffness during the stretch of active muscle. While both crossbridge and titin stiffness have previously been incorporated, in some form, into models, this model is the first to simultaneously include both. The authors suggest that this will allow for the prediction of muscle force in response to short-, mid- and long-range stretches. All these types of stretch are likely to be experienced by muscle during in vivo perturbations, and are known to elicit different muscle responses. Hence, it is valuable to have a single model which can predict muscle force under all these physiologically relevant conditions. In addition, this model dramatically simplifies sarcomere structure to enable this muscle model to be used in multi-muscle simulations of whole-body movement.

      In order to test this model, its force predictions are compared to 3 sets of experimental data which focus on short-, mid- and long-range perturbations, and to the predictions of a Hill-type muscle model. The choice of data sets is excellent and provide a robust test of the model's ability to predict forces over a range of length perturbations. However, I find the comparison to a Hill-type muscle model to be somewhat limiting. It is well established that Hill-type models do not have any mechanism by which they can predict the effect of active muscle stretch. Hence, that the model proposed here represents an improvement over such a model is not a surprise. Many other models, some of which are also simple enough to be incorporated into whole-body simulations, have incorporated mechanistic elements which allow for the prediction of force responses to muscle stretch. And it is not clear from the results presented here that this model would outperform such models.

      The paper begins by outlining the phenomenological vs mechanistic approaches taken to muscle modelling, historically. It appears, although is not directly specified, that this model combines these approaches. A somewhat mechanistic model of the response of the crossbridges and titin to active stretch is combined with a phenomenological implementation of force-length and force-velocity relationships. This combination of approaches may be useful improving the accuracy of predictions of muscle models and whole-body simulations, which is certainly a worthy goal. However, it also may limit the insight that can be gained. For example, it does not seem that this model could reflect any effect of active titin properties on muscle shortening. In addition, it is not clear to me, either physiologically or in the model, what drives the shift from the high stiffness in short-range perturbations to the somewhat lower stiffness in mid-range perturbations.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In a proof-of-concept study with the aspiration of developing a treatment to delay HD onset, Choi et al. design and test an A>G DNA base editing strategy to exploit the recently established inverse relationship between the number of uninterrupted CAG repeats in polyglutamine repeat expansions and the age-of-onset of Huntington's Disease (HD). Most of the study is devoted to optimizing a base editing strategy typified by BE4max and gRNA2. The base editing is performed in human HEK293 cells engineered with a 51 CAG canonical repeat and in HD knock-in mice harboring 105+ CAG repeats.

      Weaknesses:<br /> Genotypic data on DNA editing are not portrayed in a clear manner consistent with the study's goal, namely reducing the number of uninterrupted CAG repeats by a clinically relevant amount according to the authors' least square approximated mean age-at-onset. No phenotypic data are presented to show that editing performed in either model would lead to reduced hallmarks of HD onset.

      More evidence is needed to support the central claims and therapeutic potential needs to be more adequate.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors had two aims: First, to decompose the attentional blink (AB) deficit into the two components of signal detection theory; sensitivity and bias. Second, the authors aimed to assess the two subcomponents of sensitivity; detection and discrimination. They observed that the AB is only expressed in sensitivity. Furthermore, detection and discrimination were doubly dissociated. Detection modulated N2p and P3 ERP amplitude, but not frontoparietal beta-band coherence, whereas this pattern was reversed for discrimination.

      Strengths:

      The experiment is elegantly designed, and the data - both behavioral and electrophysiological - are aptly analyzed. The outcomes, in particular the dissociation between detection and discrimination blinks, are consistently and clearly supported by the results. The discussion of the results is also appropriately balanced.

      Weaknesses:

      The lack of an effect of stimulus contrast does not seem very surprising from what we know of the nature of AB already. Low-level perceptual factors are not thought to cause AB. This is fine, as there are also other, novel findings reported, but perhaps the authors could bolster the importance of these (null) findings by referring to AB-specific papers, if there are indeed any, that would have predicted different outcomes in this regard.

      On an analytical note, the ERP analysis could be finetuned a little more. The task design does not allow measurement of the N2pc or N400 components, which are also relevant to the AB, but the N1 component could additionally be analyzed. In doing so, I would furthermore recommend selecting more lateral electrode sites for both the N1, as well as the P1. Both P1 and N1 are likely not maximal near the midline, where the authors currently focused their P1 analysis.

      Impact & Context:

      The results of this study will likely influence how we think about selective attention in the context of the AB phenomenon. However, I think its impact could be further improved by extending its theoretical framing. In particular, there has been some recent work on the nature of the AB deficit, showing that it can be discrete (all-or-none) and gradual (Sy et al., 2021; Karabay et al., 2022, both in JEP: General). These different faces of target awareness in the AB may be linked directly to the detection and discrimination subcomponents that are analyzed in the present paper. I would encourage the authors to discuss this potential link and comment on the bearing of the present work on these previous behavioral findings.

    1. Reviewer #2 (Public Review):

      Summary:

      In the present manuscript So et al utilize single-nucleus RNA sequencing to characterize cell populations in lean and obese adipose tissues.

      Strengths:

      The authors utilize a modified nuclear isolation protocol incorporating VRC that results in higher-quality sequencing reads compared with previous studies.

      Weaknesses:

      The use of VRC to enhance snRNA-seq has been previously published in other tissues. The snRNA-seq snRNA-seq data sets presented in this manuscript, when compared with numerous previously published single-cell analyses of adipose tissue, do not represent a significant scientific advance.

      Figure 1-3: The snRNA-seq data obtained by the authors using their enhanced protocol does not represent a significant improvement in cell profiling for the majority of the highlighted cell types including APCs, macrophages, and lymphocytes. These cell populations have been extensively characterized by cytoplasmic scRNA-seq which can achieve sufficient sequencing depth, and thus this study does not contribute meaningful additional insight into these cell types. The authors note an increase in the number of rare endothelial cell types recovered, however this is not translated into any kind of functional analysis of these populations.

      Figure 4: The authors did not provide any evidence that the relative fluorescent brightness of GFP and mCherry is a direct measure of the nuclear size, and the nuclear size is only a moderate correlation with the cell size. Thus sorting the nuclei based on GFP/mCherry brightness is not a great proxy for adipocyte diameter. Furthermore, no meaningful insights are provided about the functional significance of the reported transcriptional differences between small and large adipocyte nuclei.

      Figure 5-6: The Ad6 population is highly transcriptionally analogous to the mAd3 population from Emont et al, and is thus not a novel finding. Furthermore, in the present data set, the authors conclude that Ad6 are likely stressed/dying hypertrophic adipocytes with a global loss of gene expression, which is a well-documented finding in eWAT > iWAT, for which the snRNA-seq reported in the present manuscript does not provide any novel scientific insight.

    1. Reviewer #2 (Public Review):

      Summary

      In this manuscript, Beath et al. use primarily C. elegans zygotes to test the overarching hypothesis that cytoplasmic mechanisms exit to prevent interaction between paternal chromosomes and the meiotic spindle, which are present in a shared zygotic cytoplasm after fertilization. Previous work, much of which by this group, had characterized cytoplasmic streaming in the zygote and the behavior of paternal components shortly after fertilization, primarily the clustering of paternal mitochondria and membranous organelles around the paternal chromosomes. This work set out to identify the molecular mechanisms responsible for that clustering and test the specific hypothesis that the "paternal cloud" helps prevent the association of paternal chromosomes with the meiotic spindle.

      Strengths

      This work is a collection of technical achievements. The data are primarily 3- and 4-channel time-lapse images of zygotes shortly after fertilization, which were performed inside intact animals. There are many instances in which the experiments show extreme technical skill, such as tracking the paternal chromosomes over large displacements throughout the volume of the embryo. The authors employ a wide variety of fluorescent reporters to provide a remarkably clear picture of what is going on in the zygote. These reagents and the novel characterization of these stages that they provide will be widely beneficial to the community.

      The data provide direct visualization of what had previously been a mostly hypothetical structure, the "paternal cloud," using simultaneous labeling of paternal DNA and mitochondria in combination with a variety of maternal proteins including maternal mitochondria, yolk granules, tubulin, and plasma membrane. Together, these images provided convincing evidence of the existence of this specified cytoplasmic domain. They go on to show that the knockdown of the ataxin-2 homolog ALX-2, a protein previously shown to affect ER dynamics, disrupted the paternal cloud, identifying a role for ER organization in this structure.

      The authors then used the system to test the functional consequences of perturbing the cytoplasmic organization. Consistent with the paternal cloud being a stable structure, it stayed intact during large movements the authors generated using previously published knockdowns (of mei-1/katanin and kinesin-13/kpl-7) that increased cytoplasmic streaming. They used this data to document instances in which the paternal chromosomes were likely to have been attached to the spindle. They concluded with direct evidence of spindle fibers connecting to the paternal chromatin upon knockdown of ATX-2 in combination with increased cytoplasmic streaming, providing strong, direct support for their overarching hypothesis.

      Weaknesses

      While the data is convincing, the narrative of the paper could be streamlined to highlight the novelty of the experiments and better articulate the aims. For example, the cloud of paternal mitochondria and membranous organelles was previously shown, but Figures 1-2 largely reiterate that observation. The innovation seems to be that the combination of ER, yolk, and maternal mitochondrial markers makes the existence of a specified domain more concrete. There are also some instances where more description is needed to make the conclusions from the images clear.

      The manuscript intersperses what read like basic characterizations of fluorescent markers that, as written, can distract from the main story. The authors characterized the dynamics of ER organization throughout the substages of meiosis and the permeability of the envelope of ER that surrounds the paternal chromatin, but it could be more clearly established how the ability to visualize these structures allowed them to address their aims. More background on what was previously known about ER organization in M-phase and the role of ataxin proteins specifically may help provide more continuity.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript by Knudsen-Palmer et al. describes and models the contribution of MUT-16 and RDE-10 in the silencing through RNAi by the Argonaute protein NRDE-3 or others. The authors show that MUT-16 and RDE-10 constitute an intersecting network that can be redundant or not depending on the gene being targeted by RNAi. In addition, the authors provide evidence that increasing dsRNA processing can compensate for NRDE-3 mutants. Overall, the authors provide convincing evidence to understand the factors involved in RNAi in C. elegans by using a genetic approach.

      Major Strengths:

      The author's work presents a compelling case for understanding the intricacies of RNA interference (RNAi) within the model organism Caenorhabditis elegans through a meticulous genetic approach. By harnessing genetic manipulation, they delve into the role of MUT-16 and RDE-10 in RNAi, offering a nuanced understanding of the molecular mechanisms at play in two independent case study targets (unc-22 and bli-1).

      Major Weaknesses:

      (1) It is unclear how the molecular mechanisms of amplification are different under the MUT-16 and RDE-10 branches of the regulatory pathway, since they are clearly distinct proteins structurally. It would be interesting to do some small-RNA-seq of products generated from unc-22 and bli-1, on wild-type conditions and some of the mutants studied (eg. mut-16, rde-10 and mut-16 + rde-10). That would provide some insights into whether the products of the 2 amplifications are the same in all conditions, just changing in abundance, or whether they are distinct in sequence patterns.

      (2) In the same line, Figure 5 aims to provide insights into the sequence determinants that influence the RNAi of bli-1. It is unclear whether the changes in transcript stability dictated by the 3'UTR are the sole factor governing the preference for the MUT-16 and RDE-10 branches of the regulatory pathway. In line with the mutant jam297, it might be interesting to test whether factors like codon optimality, splicing, ... of the ORF region upstream from bli-1-dsRNA can affect its sensitivity to the MUT-16 and RDE-10 branches of the regulatory pathway.

    1. Reviewer #2 (Public Review):

      Summary:

      The manuscript by Ziegler et al, entitled 'Structural characterization and dynamics of AdhE ultrastructure from Clostridium thermocellum: A containment strategy for toxic intermediates?" presents the atomic resolution cryo-EM structure of C. thermocellum AdhE showing that it show dominantly an extended form while E.coli AdhE shows dominantly a compact form. With comparative analysis of their C. thermocellum structure and the previous E.coli AdhE structure, they tried to reveal the mechanism by which C.thermocellum and E.coli show different dominant conformations. In addition, they also analyzed the substrate channel by comparative and computational approaches. Lastly, their computational analysis using CryoDRGN reveals conformational heterogeneity in the sample. Although this manuscript suggests a potential mechanism of the different features of AdhEs, this manuscript is very descriptive and does not provide sufficient data to support the authors' conclusions, which may be due to the lack of experimental data to support their findings from the computational analysis.

      Strengths:

      This manuscript provides the first C. thermocellum (Ct) AdhE structure and comparatively analyzed this structure with E.coli AdhE.

      Weaknesses:

      Their main conclusions obtained mostly by computational and comparative analysis are not supported by experimental data.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors developed an imaging-based device that provides both spatial confinement and stiffness gradient to investigate if and how amoeboid cells, including T cells, neutrophils, and Dictyostelium, can durotax. Furthermore, the authors showed that the mechanism for the directional migration of T cells and neutrophils depends on non-muscle myosin IIA (NMIIA) polarized towards the soft-matrix-side. Finally, they developed a mathematical model of an active gel that captures the behavior of the cells described in vitro.

      Strengths:

      The topic is intriguing as durotaxis is essentially thought to be a direct consequence of mechanosensing at focal adhesions. To the best of my knowledge, this is the first report on amoeboid cells that do not depend on FAs to exert durotaxis. The authors developed an imaging-based durotaxis device that provides both spatial confinement and stiffness gradient and they also utilized several techniques such as quantitative fluorescent speckle microscopy and expansion microscopy. The results of this study have well-designed control experiments and are therefore convincing.

      Weaknesses:

      Overall this study is well performed but there are still some minor issues I recommend the authors address:

      (1) When using NMIIA/NMIIB knockdown cell lines to distinguish the role of NMIIA and NMIIB in amoeboid durotaxis, it would be better if the authors took compensatory effects into account.<br /> (2) The expansion microscopy assay is not clearly described and some details are missed such as how the assay is performed on cells under confinement.<br /> (3) In this study, an active gel model was employed to capture experimental observations. Previously, some active nematic models were also considered to describe cell migration, which is controlled by filament contraction. I suggest the authors provide a short discussion on the comparison between the present theory and those prior models.<br /> (4) In the present model, actin flow contributes to cell migration while myosin distribution determines cell polarity. How does this model couple actin and myosin together?

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript describes a very eloquent study of disrupted stimulus-secretion coupling in salivary acinar cells in the early stages of an animal model (DMXAA) of Sjogren's syndrome (SS). The study utilizes a range of technically innovative in vivo imaging of Ca signaling, in vivo salivary secretion, patch clamp electrophysiology to assess TMEM16a activity, immunofluorescence and electron microscopy, and a range of morphological and functional assays of mitochondrial function. Results show that in mice with DMXAA-induced Sjogren's syndrome, there was a reduced nerve-stimulation-induced salivary secretion, yet surprisingly the nerve-stimulation-induced Ca signaling was enhanced. There was also a reduced carbachol (CCh)-induced activation of TMEM16a currents in acinar cells from DMXAA-induced SS mice, whereas the intrinsic Ca-activated TMEM16a currents were unaltered, further supporting that stimulus-secretion coupling was impaired. Consistent with this, high-resolution STED microscopy revealed that there was a loss of close physical spatial coupling between IP3Rs and TMEM16a, which may contribute to the impaired stimulus-secretion coupling. Furthermore, the authors show that the mitochondria were both morphologically and functionally impaired, suggesting that bioenergetics may be impaired in salivary acinar cells of DMXAA-induced SS mice.

      Strengths:

      Overall, this is an outstanding manuscript, that will have a huge impact on the field. The manuscript is beautifully well-written with a very clear narrative. The experiments are technically innovative, very well executed, and with a logical design The data are very well presented and appropriately analyzed and interpreted.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors conduct a detailed analysis of the molecular cues that control guidance of bifurcated dorsal root ganglion axons in a key region of the spinal cord called the dorsal funiculus. This is a specific case of axon guidance that occurs in a precise way. The authors knew that Slit was important but many axons still target correctly in Slit knockouts, suggesting a role for other guidance factors. Netrin1 is also expressed in this region, so they looked at netrin mutants. The authors found axons outside the DREZ in the Ntn1 mutants, and they show by single neuron genetic labeling that many of these come from DRG neurons. Quantified axonal tracing studies in Slit1/2, Ntn1, or triple mutant embryos supports the idea that Slit and Ntr1 have distinct functions in guidance and that the effect of their loss is additive. Interestingly none of these knockouts affect bifurcation itself but rather the guidance of one or both of the bifurcated axon terminals. Knockout of the Slit receptors (Robo1/2) or the Netrin 1 receptor (DCC) in embryos causes similar guidance defects to loss of the ligands, providing an additional confirmation of the requirement for both guidance pathways. This study expands understanding of the role of the axon guidance factors Ntr1/DCC and Slit/Robo in a specific axon guidance decision. The strength of the study is the careful axonal labeling and quantification, which allows the authors to establish precise consequences of the loss of each guidance factor or receptor.

    1. Reviewer #3 (Public Review):

      Summary:

      The receptor binding domain of SARS-Cov-2 spike protein contains two N-glycans which have been conserved the variants observed in these last 4 years. Through the use of extensive molecular dynamics, the authors demonstrate that even if glycosylation is conserved, the stabilization role of glycans at N343 differs among the strains. They also investigate the effect of this glycosylation on the binding of RBD towards sialylated gangliosides, also as a function of evolution

      Strengths:

      The molecular dynamics characterization is well performed and demonstrates differences on the effect of glycosylation as a factor of evolution. The binding of different strains to human gangliosides shows variations of strong interest. Analyzing structure function of glycans on SARS-Cov-2 surface as a function of evolution is important for the surveillance of novel variants, since it can influence their virulence.

      Weaknesses:

      The revised article does not hold significant weaknesses

    1. Reviewer #2 (Public Review):

      Summary:

      The authors aimed to explore the role of climbing fibers (CFs) in cerebellar learning, with a focus on optokinetic reflex (OKR) adaptation. Their goal was to understand how CF activity influences memory acquisition, memory consolidation, and memory retrieval by optogenetically suppressing CF inputs at various stages of the learning process.

      Strengths:

      The study addresses a significant question in the cerebellar field by focusing on the specific role of CFs in adaptive learning. The authors use optogenetic tools to manipulate CF activity. This provides a direct method to test the causal relationship between CF activity and learning outcomes.

      Weaknesses:

      Despite shedding light on the potential role of CFs in cerebellar learning, the study is hampered by significant methodological issues that question the validity of its conclusions. The absence of detailed evidence on the effectiveness of CF suppression and concerns over tissue damage from optogenetic stimulation weakens the argument that CFs are not essential for memory consolidation. These challenges make it difficult to confirm whether the study's objectives were fully met or if the findings conclusively support the authors' claims. The research commendably attempts to unravel the temporal involvement of CFs in learning but also underscores the difficulties in pinpointing specific neural mechanisms that underlie the phases of learning. Addressing these methodological issues, investigating other signals that might instruct consolidation, and understanding CFs' broader impact on various learning behaviors are crucial steps for future studies.

    1. Reviewer #2 (Public Review):

      This manuscript by Amen, Yoo, Fabra-Garcia et al describes a human monoclonal antibody B1E11K, targeting EENV repeats which are present in parasite antigens such as Pfs230, RESAs, and 11.1. The authors isolated B1E11K using an initial target agnostic approach for antibodies that would bind gamete/gametocyte lysate which they made 14 mAbs. Following a suite of highly appropriate characterization methods from Western blotting of recombinant proteins to native parasite material, use of knockout lines to validate specificity, ITC, peptide mapping, SEC-MALS, negative stain EM, and crystallography, the authors have built a compelling case that B1E11K does indeed bind EENV repeats. In addition, using X-ray crystallography they show that two B1E11K Fabs bind to a 16 aa RESA repeat in a head-to-head conformation using homotypic interactions and provide a separate example from CSP, of affinity-matured homotypic interactions.

      There are some minor comments and considerations identified by this reviewer, These include that one of the main conclusions in the paper is the binding of B1E11K to RESAs which are blood stage antigens that are exported to the infected parasite surface. It would have been interesting if immunofluorescence assays with B1E11K mAb were performed with blood-stage parasites to understand its cellular localization in those stages.

    1. Reviewer #2 (Public Review):

      Summary:

      In this work, Xiong and colleagues examine the relationship between the profile of the morphogen Shh and the resulting cell fate decisions in the zebrafish neural tube. For this, the authors combine high-resolution live imaging of an established Shh reporter with reporter lines for the different progenitor types arising in the forming neural tube. One of the key observations in this manuscript is that, while, on average, cells respond to differences in Shh activity to adopt distinct progenitor fates, at the single cell level there is strong heterogeneity between Shh response and fate choices. Further, the authors showed that this heterogeneity was particularly prominent for the pMN fate, with similar Shh response dynamics to those observed in neighboring LFP progenitors.

      Strengths:

      It is important to directly correlate Shh activity with the downstream TFs marking distinct progenitor types in vivo and with single cell resolution. This additional analysis is in line with previous observations from these authors, namely in Xiong, 2013. Further, the authors show that cells in different anterior-posterior positions within the neural tube show distinct levels of heterogeneity in their response to Shh, which is a very interesting observation and merits further investigation.

      Weaknesses:

      This is a convincing work, however, adding a few more analyses and clarifications would, in my view, strengthen the key finding of heterogeneity between Shh response and the resulting cell fate choices.

    1. Reviewer #2 (Public Review):

      Summary:

      Zylberberg and colleagues show that food choice outcomes and BOLD signal in the vmPFC are better explained by algorithms that update subjective values during the sequence of choices compared to algorithms based on static values acquired before the decision phase. This study presents a valuable means of reducing the apparent stochasticity of choices in common laboratory experiment designs. The evidence supporting the claims of the authors is solid, although currently limited to choices between food items because no other goods were examined. The work will be of interest to researchers examining decision-making across various social and biological sciences.

      Strengths:

      The paper analyses multiple food choice datasets to check the robustness of its findings in that domain.

      The paper presents simulations and robustness checks to back up its core claims.

      Weaknesses:

      To avoid potential misunderstandings of their work, I think it would be useful for the authors to clarify their statements and implications regarding the utility of item ratings/bids (e-values) in explaining choice behavior. Currently, the paper emphasizes that e-values have limited power to predict choices without explicitly stating the likely reason for this limitation given its own results or pointing out that this limitation is not unique to e-values and would apply to choice outcomes or any other preference elicitation measure too. The core of the paper rests on the argument that the subjective values of the food items are not stored as a relatively constant value, but instead are constructed at the time of choice based on the individual's current state. That is, a food's subjective value is a dynamic creation, and any measure of subjective value will become less accurate with time or new inputs (see Figure 3 regarding choice outcomes, for example). The e-values will change with time, choice deliberation, or other experiences to reflect the change in subjective value. Indeed, most previous studies of choice-induced preference change, including those cited in this manuscript, use multiple elicitations of e-values to detect these changes. It is important to clearly state that this paper provides no data on whether e-values are more or less limited than any other measure of eliciting subjective value. Rather, the paper shows that a static estimate of a food's subjective value at a single point in time has limited power to predict future choices. Thus, a more accurate label for the e-values would be static values because stationarity is the key assumption rather than the means by which the values are elicited or inferred.

      There is a puzzling discrepancy between the fits of a DDM using e-values in Figure 1 versus Figure 5. In Figure 1, the DDM using e-values provides a rather good fit to the empirical data, while in Figure 5 its match to the same empirical data appears to be substantially worse. I suspect that this is because the value difference on the x-axis in Figure 1 is based on the e-values, while in Figure 5 it is based on the r-values from the Reval algorithm. However, the computation of the value difference measure on the two x-axes is not explicitly described in the figures or methods section and these details should be added to the manuscript. If my guess is correct, then I think it is misleading to plot the DDM fit to e-values against choice and RT curves derived from r-values. Comparing Figures 1 and 5, it seems that changing the axes creates an artificial impression that the DDM using e-values is much worse than the one fit using r-values.

      Relatedly, do model comparison metrics favor a DDM using r-values over one using e-values in any of the datasets tested? Such tests, which use the full distribution of response times without dividing the continuum of decision difficulty into arbitrary hard and easy bins, would be more convincing than the tests of RT differences between the categorical divisions of hard versus easy.

      Revaluation and reduction in the imprecision of subjective value representations during (or after) a choice are not mutually exclusive. The fact that applying Reval in the forward trial order leads to lower deviance than applying it in the backwards order (Figure 7) suggests that revaluation does occur. It doesn't tell us if there is also a reduction in imprecision. A comparison of backwards Reval versus no Reval would indicate whether there is a reduction in imprecision in addition to revaluation. Model comparison metrics and plots of the deviance from the logistic regression fit using e-values against backward and forward Reval models would be useful to show the relative improvement for both forms of Reval.

      Did the analyses of BOLD activity shown in Figure 9 orthogonalize between the various e-value- and r-value-based regressors? I assume they were not because the idea was to let the two types of regressors compete for variance, but orthogonalization is common in fMRI analyses so it would be good to clarify that this was not used in this case. Assuming no orthogonalization, the unique variance for the r-value of the chosen option in a model that also includes the e-value of the chosen option is the delta term that distinguishes the r and e-values. The delta term is a scaled count of how often the food item was chosen and rejected in previous trials. It would be useful to know if the vmPFC BOLD activity correlates directly with this count or the entire r-value (e-value + delta). That is easily tested using two additional models that include only the r-value or only the delta term for each trial.

      Please confirm that the correlation coefficients shown in Figure 11 B are autocorrelations in the MCMC chains at various lags. If this interpretation is incorrect, please give more detail on how these coefficients were computed and what they represent.

      The paper presents the ceDDM as a proof-of-principle type model that can reproduce certain features of the empirical data. There are other plausible modifications to bounded evidence accumulation (BEA) models that may also reproduce these features as well or better than the ceDDM. For example, a DDM in which the starting point bias is a function of how often the two items were chosen or rejected in previous trials. My point is not that I think other BEA models would be better than the ceDDM, but rather that we don't know because the tests have not been run. Naturally, no paper can test all potential models and I am not suggesting that this paper should compare the ceDDM to other BEA processes. However, it should clearly state what we can and cannot conclude from the results it presents.

      This work has important practical implications for many studies in the decision sciences that seek to understand how various factors influence choice outcomes. By better accounting for the context-specific nature of value construction, studies can gain more precise estimates of the effects of treatments of interest on decision processes. That said, there are limitations to the generalizability of these findings that should be noted.

      These limitations stem from the fact that the paper only analyzes choices between food items and the outcomes of the choices are not realized until the end of the study (i.e., participants do not eat the chosen item before making the next choice). This creates at least two important limitations. First, preferences over food items may be particularly sensitive to mindsets/bodily states. We don't yet know how large the choice deltas may be for other types of goods whose value is less sensitive to satiety and other dynamic bodily states. Second, the somewhat artificial situation of making numerous choices between different pairs of items without receiving or consuming anything may eliminate potential decreases in the preference for the chosen item that would occur in the wild outside the lab setting. It seems quite probable that in many real-world decisions, the value of a chosen good is reduced in future choices because the individual does not need or want multiples of that item. Naturally, this depends on the durability of the good and the time between choices. A decrease in the value of chosen goods is still an example of dynamic value construction, but I don't see how such a decrease could be produced by the ceDDM.

    1. Reviewer #2 (Public Review):

      Summary:

      Takemura et al. achieved a milestone in connectomics with their dense reconstruction of the Male Adult Nerve Cord (MANC) in Drosophila, revealing the neural circuitry of the primary premotor and motor domains in the CNS of the fruit fly. The team meticulously reconstructed neuron morphologies and synaptic connections and registered these data with light microscopy datasets (of driver lines for example), made neuronal lineage annotations and neurotransmitter predictions, providing the basis for new hypotheses about motor control. A description of the dataset and methods are presented here, while cell type annotations and characterisation of connectivity between brain descending neurons and motor neurons are provided in two companion papers, Marin et al. and Cheong, Eichler, Stürner et al., respectively. This dataset and analysis will provide a rich resource for future neuroscientific exploration.

      Strengths:

      The authors fully utilise a wealth of tools and techniques developed over the course of over a decade to produce a new publicly available dataset with an impressive number of reconstructed neurons and synapses. The precision and recall of connections are as high or higher than past datasets (e.g. the Hemibrain), pointing to the reliability of any downstream analyses performed on this connectome. These data are augmented with neurotransmitter identities, providing essential information for modelling and computational analysis. The MANC connectome can also be linked to genetic tools through registration to pre-existing light microscopy datasets, allowing experimentalists to test hypotheses made based on the connectome.

      Weaknesses:

      This dataset presents the nerve cord connectome of just a single animal, so connectivity variability and validity will be hard to assess. However, it is bilaterally reconstructed, which does allow comparison between bilaterally symmetrical neurons on the left and right sides of the nerve cord, increasing confidence in connections observed on both sides. Damage occurred to the nerves during sample preparation, which will have to be considered when analysing sensory connectivity.

    1. Reviewer #2 (Public Review):

      This paper explores the importance of zinc metabolism in host defense against the intracellular pathogen Salmonella Typhimurium. Using conditional mice with a deletion of the Slc30a1 zinc exporter, the authors show a critical role for zinc homeostasis in the pathogenesis of Salmonella. Specifically, mice deficient in Slc30a1 gene in LysM+ myeloid cells are hypersusceptible to Salmonella infection, and their macrophages show alter phenotypes in response to Salmonella. The study adds important new information on the role metal homeostasis plays in microbe host interactions. Despite the strengths, the manuscript has some weaknesses. The authors conclude that lack of slc30a1 in macrophages impairs nos2-dependent anti-Salmonella activity. However, this idea is not tested experimentally. In addition, the research presented on Mt1 is preliminary. The text related to Figure 7 could be deleted without affecting the overall impact of the findings.

    1. Reviewer #2 (Public Review):

      The manuscript by Chan et al reports results of a systematic mutagenesis approach to study the surface expression and APP+ transport mechanism of serotonin transporter. They complement this experimental evidence with large-scale molecular simulations of the transporter in the presence of APP+. The use of deep mutagenesis and large-scale adaptive sampling simulations is impressive and could be very exciting contributions to the field.

      On the whole, the results appear to provide a fascinating insight into the effects of mutations on transport mechanisms, and how those interrelate with the structural fold and biophysical properties of a dynamic protein and its substrate pathways. A weakness of the conclusions based on the molecular simulation is that it relies on comparison with previously-published work involving non-identical simulation systems (i.e. different protonation states).

      Conclusions in this work about the origins of the sodium:serotonin 1:1 stoichiometry should also be considered in the context of the fact that there are two sodium ions bound in the structures of SERT, and more work is needed to explain why this ion is not also released/co-transported.

      Some of the methods require additional information to be provided to be reproducible, for example, for the Transition Path Theory results, and so it is not possible to assess these conclusions with the manuscript in its current form.

    1. Reviewer #2 (Public Review):

      The manuscript describes the genome assembly and analysis of Xenoturbella bocki, a worm that bears many morphological features ascribed to basal bilateria. The authors aim to analyse this genome in an attempt to determine the phylogenetic position of X. bocki as a representative of Xenacoelomorpha and its associated acoelomorphs. In doing so, they want to inform the debate as to whether xenacoelomorph belong among, or is in fact paraphyletic to all bilaterians.

      This paper presents a high-quality assembly of the X. bocki genome. By virtue of the phylogenetic position of this species, this genome has considerable scientific interest. This assembly appears to be highly complete and is a strength of the paper. The further characterisation of the genome is well executed and presented. Solid results from this paper include a comprehensive description of the Hox genes, miRNA and neruopeptide repertoire, as well as a description of the linkage group and how they relate to the ancestral linkage groups.

      Where this paper is weaker is that for the central claims and questions of this paper, i.e,. the question of the phylogenetic position of xenacoelomorph and whether X. bocki is a slowly evolving, but otherwise representative member of this clade, remains insufficiently resolved.

      The authors have achieved the goal of describing the X. bocki genome very well. By contrast, it is unclear, based on the presented evidence, whether xenacoelomorph is truly a monophyletic group. The balance of the evidence seems to suggest that the X. bocki genome belongs within the bilateria group. However, it is unclear as to what is driving the position of the other acoels. Assumign that X. bocki and the other two species in that group are monophyletic, then the evidence will favour the authors' conclusion (but without clearly rejecting the alternatives).

      This paper will likely further animate the debate regarding this basal species, and also questions related to the ancestral characters of bilateria as a whole. In particular the results from the HOX and paraHOX clusters, may provide an interesting counterpoint to the previous results based on the acoels.

    1. Reviewer #2 (Public Review):

      The origin and function of proliferative chondrocyte columns in the growth plate that are generally aligned with predicted longitudinal growth vectors have been robustly debated since the implementation of clonal analysis and live cell imaging techniques more than a decade ago. In particular, live cell imaging demonstrated that in the proliferative zone, most daughter pairs rotate fully or partially after division to form columns of stacked cells and a minority of pairs fail to rotate. These observations and others led to a mechanistic model of column formation, but limitations in the live cell imaging methods that only visualize a single round of division and rotation left open an important question - what is the effect of different rotation profiles on column formation, bone growth, and morphology?

      This manuscript describes the use of an inducible lineage tracing system in the mouse combined with a novel image analysis pipeline to analyze column formation over multiple cell divisions. The main conclusion is that many clones generate single columns in postnatal mice (as expected), but clones in embryonic growth plate cartilage form clusters distributed laterally, not aligned with longitudinal growth. These findings are interpreted to suggest that column formation is not required for long bone growth in the embryo and that lateral expansion of proliferative chondrocyte clusters may drive an increase in bone width.

      Although these findings are intriguing and potentially impactful, there are important caveats to the approach that generate significant uncertainty in both the measurements and the conclusions. (1) The claim that embryonic growth plate chondrocytes do not form columns conflicts with the observation of columnar stacks in the clusters. (2) Interpretation of nuclear elevation data is based on the unproven assumption that nuclei should be stacked in cell columns. (3) Clonal analysis of proliferative chondrocyte cell division and stacking behaviors is only valid if clone labeling is initiated in a proliferative chondrocyte, not when the founder cell is a resting chondrocyte. The data are insufficient to validate this absolute requirement.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this study, the authors have used virtual transneuronal tracing technology to identify for the first time the central sympathetic nervous system outflow sites that innervate bone.

      Strengths:<br /> The study provides a comprehensive atlas of the brain regions that potentially play a role in coding and decoding sympathetic nervous system signals to bone.

      Weaknesses:<br /> While the study provides compelling evidence for the brain-bone sympathetic nervous system neuroaxis, it is unclear if diseases that affect bone (e.g. diabetes, osteoporosis, kidney failure) disrupt brain-bone sympathetic neural circuits.

    1. Reviewer #2 (Public Review):

      This is a valuable study of the relationships between aspects of white matter structure in the brain and the accuracy of tapping performance on auditory and visual versions of a synchronization-continuation task. The authors find brain-behaviour relationships between absolute asynchrony (precision of phase alignment between taps and stimulus events), but only for certain temporal rates (650 and 750 ms ISI, not 550, 850, or 950 ms ISI). Other behavioural metrics do not significantly correlate with white matter measures, and no visual condition behavioural metrics correlate either. The methodology and findings are solid, and of interest to those studying the neural mechanisms of timing.

      The question is interesting, as the neural mechanisms of timing, and the nature of how modality differences in timing arise, are important, given that certain modality differences in timing accuracy (e.g., auditory benefits relative to visual) are less striking in our closest evolutionary relatives. Overall, the methods are well-presented and both behavioural and neural measures are appropriate.

      The results are generally well-reported, although there is a lack of clarity about multiple comparison corrections for the number of separate behavioural metrics, different interval lengths examined, and the two sensory modalities.

      Some weaknesses:<br /> The use of absolute (unsigned) asynchrony as a measure of 'predictive' ability is not fully justified. Signed asynchrony may be a more informative measure of predictive ability, as (small) negative asynchronies (taps prior to event onset) are often interpreted as indicating prediction, whereas positive asynchronies (taps after the event onset) are not.<br /> The work may benefit from considering the 'phase' and 'period' nature of the different behavioural measures, as they may tap different aspects of timing. Separating the behavioural metrics into those reflecting phase synchrony versus period matching may be a useful distinction, as the period-related metrics are the ones that do not have evidence of correlation with brain metrics.<br /> The manuscript does not present a very clear framework for why certain measures might be predicted to correlate with white matter structure and others not, and the pattern of results is also not easily interpretable. This may just be the nature of the data, but it would help clarify if more justification for the selection of task and stimulus rates was presented, along with an idea of the predictions made by different theoretical approaches for what relationships between this particular set of behavioural and brain data might exist. Similarly, a more nuanced discussion might further explore the potential reasons for the lack of evidence for a relationship at shorter and longer auditory interval lengths, as well as for any of the visual condition measures.

      Overall, the authors find white-matter structure relationships with absolute asynchrony measures during auditory (but not visual) synchronization-continuation at certain rates. These findings appear reasonably justified.

    1. Reviewer #2 (Public Review):

      This study assesses how inputs from primary motor cortex layer 5 (M1L5), basal ganglia output nuclei (GPi and SNr), and cerebellum (Cb) converge onto motor thalamus nuclei (VA/VL).

      Methodology includes anatomical tracing, optogenetics and electrophysiological recordings in mouse brain slices.

      The major findings are:<br /> - Some motor thalamic neurons receive input from both cerebellar and basal ganglia. This is contrary to the common belief that assumes these two inputs are segregated in the motor thalamus.

      - Some motor thalamus neurons receive converging input from both motor cortex (M1L5) and basal ganglia.

      - Both M1L5 and Cb inputs to the motor thalamus have driver-type synaptic properties, indicating a strong influence on thalamic relay neurons.

      Functional implications are:<br /> - Given the inhibitory nature of basal ganglia output neurons, the converging inputs can allow for basal ganglia to gate information flow through the motor thalamus. This applies to transthalamic information, ie information conveyed through the thalamus across cortical regions, as well as cerebellar information flow to motor cortex.

      - The direct projection from M1L5 to motor thalamus suggests that motor cortex can affect motor thalamic activity not only indirectly, through the traditional cortico-basal ganglia-thalamo-cortical loop, but also through direct projections.

      The study is convincing and has important implications for the field. Methodology involves elegant viral techniques.

      The main weakness is that there is no direct functional demonstration of all the 3 inputs from motor cortex, cerebellum, and basal ganglia, converging onto the same cells in motor thalamus. All the recordings concern dual area stimulations, and the anatomical studies show a very small overlap of all the 3 inputs onto motor thalamus.

    1. Reviewer #2 (Public Review):

      This manuscript used DC-iDEP, a technology previously used on other organelle preparations to isolate insulin secretory granules from INS1 cells based on differences in dielectrophoretic and electrokinetic properties of synaptotagmin V positive insulin granules.

      The major motivation presented for this work is to provide a methodology to allow for more sensitive isolation of subpopulations of granules allowing better understanding of the biochemical composition of these populations. This manuscript clearly demonstrates the ability of this technology to separate these subpopulations which will allow for future biochemical characterizations of insulin granules in future studies.

      After proving these subpopulations can be observed, this method was then utilized to show there are shifts in these subpopulations when granules are isolated from glucose stimulated cells. Overall the method of isolation is novel and could provide a tool for further characterization of purified secretory granules.

      The observation of glucose stimulation causing shifts in subpopulations is unsurprising. Glucose stimulation could cause a depletion of insulin and other secretory content from a subset of granules. It would be expected that this loss of content would cause a shift in electrochemical properties of the granules, but this is a nice confirmation that the isolation method has the sensitivity to delineate these changes.

      Major comments:

      (1) It is unclear what Synaptotagmin isoform is being looked at. Synaptotagmin V and IX have been repetitively interchanged in the literature. See note in syt IX section of "Moghadam and Jackson 2013 Front. Endocrinology" or read "Fukuda and Sagi-Eisenberg Calcium Bind Proteins 2008".

      The 386 aa. isoform that is abundant in PC12 cells has been robustly observed in INS1 cells in multiple studies and has been frequently referred to as syt IX. The sequence the antibody was raised against should be determined from the company where this was purchased and then this should be mapped to to which isoform of Synaptotagmin by sequence and clarified in the text.

      (2) Immunofluorescence of insulin and syt V is confusing. The example images do not appear to show robust punctate structures that are characteristic of secretory granules (in both the insulin and syt V stain).

      (3) In the discussion it says, "Finally, this method provides a mechanism for the isolation and concentration of fractions which show the largest difference between the two population patterns for further bioanalysis (imaging, proteomics, lipidomics, etc.) that otherwise would not be possible given the low-abundance components of these subpopulations."

      It would help to elaborate more on the yield and concentrations of isolated granules. This would give a better sense of what level of biochemical characterization could be performed on sub-populations of granules.

    1. Reviewer #2 (Public Review):

      Xu et al. introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection. In this study, the author first analyzes the single-cell RNA sequencing data from experiments and identifies four clusters of cells at 48 hours post-viral infection, including susceptible cells (O), infected cells (V), IFN-secreting cells (N), and antiviral cells (A). Next, a cellular automaton model (NOVAa model) is introduced by assuming the existence of a transient pre-antiviral state (a). The model consists of an LxL lattice; each site represents one cell. The cells change their state following the rules depending on the interaction of neighboring cells. The model introduces a key parameter, p_a, representing the fraction of pre-antiviral state cells. Cell apoptosis is omitted in the model. Model simulations show a threshold-like behavior of the final attack rate of the virus when p_a changes continuously. There is a critical value p_c, so that when p_a < p_c, infections typically spread to the entire system, while at a higher p_a > p_c, the propagation of the infected state is inhibited. Moreover, the radius R that quantifies the diffusion range of N cells may affect the critical value p_c; a larger R yields a smaller value of the critical value p_c. The authors further examine the result with stochastic version dynamics, and the main findings are unchanged upon stochastic dynamics. The structure of clusters is different for different values of R; greater R leads to a different microscopic structure with fewer A and N cells in the final state. Compared with the single-cell RNA seq data, which implies a low fraction of IFN-positive cells of around 1.7%, the model simulation suggests R=5. The authors also explored a simplified version of the model, the OVA model, with only three states. The OVA model also has an outbreak size. The OVA model shows dynamics similar to the NOVAa model. However, the change in microstructure as a function of the IFN range R observed in the NOVAa model is not observed in the OVA model.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors present a comparison of two models of cancer evolution with advantageous drivers and deleterious passengers: a fixed-population "Moran" model, and a "Branching Process" (BP) model with dynamic population size. The Moran model is more mathematically-tractable, but since cancer is a disease of uncontrolled growth, it is unclear to me how clinically-relevant it is to consider a model with constant population size. Intriguingly, both models can explain observed Site Frequency Spectrums (SFSs) in three breast cancers, which suggests that the Moran model may have some value. This distinction between the two models is addressed well.

      Strengths:

      The comparisons of the various BP models (extinction/non-extinction, and balanced/supercritical) are very interesting. The survivability of rare, fitness-disadvantaged clones has huge implications for treatment resistance in general - drug resistant clones are very often disadvantaged in the absence of drug. Clinical sequencing is, most decidedly, investigating population dynamics conditioned on non-extinction, however most published models do not condition on non-extinction - an unfortunate community oversight that this publication rectifies.

      Site Frequency Spectrums in three breast cancers are measured with unprecedented resolution to my knowledge (allele abundances below one in a thousand).

      Detailed description of the behavior of the various models.

      Weaknesses:

      I do not believe Moran B is a useful theoretical distinction between Moran A. Incorporating fitness effects into the birth process, instead of the death process, is generally mathematically equivalent when time is measured in generations (or cell divisions). Visible differences in the two models in Figures 2-6 by all accounts seem to be due to the fact that Moran B experiences more evolution in the balanced/driver-dominated case, and less evolution in the passenger dominated case. We generally do not use arbitrary time steps for this reason - we quantify time in 'generations'.

    1. Reviewer #2 (Public Review):

      Summary:

      How dynamics of gene expression accompany cell fate and cellular morphological changes is important for our understanding of molecular mechanisms that govern development and diseases. The phenomenon is particularly prominent during spermatogenesis, the process which spermatogonia stem cells develop into sperm through a series of steps of cell division, differentiation, meiosis, and cellular morphogenesis. The intricacy of various aspects of cellular processes and gene expression during spermatogenesis remains to be fully understood. In this study, the authors found that testis-specific actin-related proteins (which usually participate in modifying cells' cytoskeletal systems) ACTL7A and ACTL7B were expressed and localized in the nuclei of mouse spermatocytes and spermatids. Based on this observation, the authors analyzed protein sequence conservations of ACTL7B across dozens of species and identified a putative nuclear localization sequence (NLS) that is often responsible for the nuclear import of proteins that carry them. Using molecular biology experiments in a heterologous cell system, the authors verified the potential role of this internal NLS and found it indeed could facilitate the nuclear localization of marker proteins when expressed in cells. Using gene-deleted mouse models they generated previously, the authors showed that deletion of Actl7b caused changes in gene expression and mis-localization of nucleosomal histone H3 and chromatin regulator histone deacetylase HDAC1 and 2, supporting their proposed roles of ACTL7B in regulating gene expression. The authors further used alpha-Fold 2 to model the potential protein complexes that could be formed between the ARPs (ACTL7A and ACTL7B) and known chromatin modifiers, such as INO80 and SWI/SNF complexes and found that consistent with previous findings, it is likely that ACTL7A and ACTL7B interact with the chromatin-modifying complexes through binding to their alpha-helical HSA domain cooperatively. These results suggest that ACTL7B possesses novel functions in regulating chromatin structure and thus gene expression beyond conventional roles of cytoskeleton regulation, providing alternative pathways for understanding how gene expression is regulated during spermatogenesis and the etiology of relevant infertility diseases.

      Strengths:

      The authors provided sufficient background to the study and discussions of the results. Based on their previous research, this study utilized numerous methods, including protein complex structural modeling method alpha-fold 2 Multimers, to further investigate the functional roles of ACTL7B. The results presented here are in general of good quality. The identification of a potential internal NLS in ACTL7B is mostly convincing, in line with the phenotypes presented in the gene deletion model.

      Weaknesses:

      While the study offered an interesting new look at the functions of ARP proteins during spermatogenesis, some of the study is mainly theoretical speculations, including the protein complex formation. Some of the results may need further experimental verifications, for example, differentially expressed genes that were found in potentially spermatogenic cells at different developmental stages, in order to support the conclusions and avoid undermining the significance of the study.

    1. Reviewer #3 (Public Review):

      Summary:

      Raudales et al. aimed at providing an insight into the brain-wide distribution and synaptic connectivity of bona fide GABAergic inhibitory interneuron subtypes focusing on the axo-axonic cell (AAC), one of the most distinctive interneuron subtypes, which innervates the axon initial segments of glutamatergic projection neurons. They establish intersectional genetic strategies that enable them to specifically and comprehensively capture AACs based on their lineage (Nkx2.1) and marker expression (Unc5b, Pthlh). They find that AACs are deployed across essentially all the pallium-derived brain structures as well as anterior olfactory nucleus, taenia tecta, and lateral septum. They show that AACs in distinct areas and layers of the neocortex as well as different subregions of the hippocampal formation display unique soma and synaptic density and morphological variations. Rabies virus-based retrograde monosynaptic input tracing reveals that AACs in the neocortex, the hippocampus, and the basolateral amygdala receive synaptic inputs from common as well as specific brain regions and supports the utility of this novel genetic approach. This study elucidates brain-wide neuroanatomical features and morphological variations of AACs with solid techniques and analysis. Their novel AAC-targeting strategies will facilitate the study of their development and function in different brain regions. The conclusions in this paper are well supported by the data. However, there are a few minor comments.

      (1) The authors added a description about validation of ChCs in the method section: "Validation was conducted with high-magnification confocal microscopy and defined by a cell exhibiting at least two RFP-labelled axons colocalized with AIS labelled by AnkryinG or Phospho-IκBα". However, this does not clearly define pAACs themselves. If they follow this criteria, an RFP-labeled cell exhibiting only one synaptic cartridge that is colocalized with an AIS should be a pAAC. Is this what the authors are triying to say?

      On the other hand, in the response to reviewers, the authors apparently define pAACs in a different way, in which they more focus on the number of cells exhibiting cartridges that are associated with AISs in a certain anatomical region rather than the number of cartridges per cell.

      "For BNST we did not positively identify more than a few exhibiting overlap with AnkryinG/IκBα, so we currently leave them as pAACs"<br /> "Putative AAC (pAACs) refers to populations in which relatively few single cell examples of AACs exhibiting co-localized cartridges were found"

      The authors need to directly define pAACs.

      (2) In the response to reviewers, the authors claimed that both Pthlh and Unc5b mice are useful for studying developing AACs. It would be nice if they include this content in the text (e.g. Discussion).

    1. Reviewer #2 (Public Review):

      Summary:

      This study focused on using strictly the slope of the power spectral density (PSD) to perform automated sleep scoring and evaluation of the durations of sleep cycles. The method appears to work well because the slope of the PSD is highest during slow-wave sleep, and lowest during waking and REM sleep. Therefore, when smoothed and analyzed across time, there are cyclical variations in the slope of the PSD, fit using an IRASA (Irregularly resampled auto-spectral analysis) algorithm proposed by Wen & Liu (2016).

      Strengths:

      The main novelty of the study is that the non-fractal (oscillatory) components of the PSD that are more typically used during sleep scoring can be essentially ignored because the key information is already contained within the fractal (slope) component. The authors show that for the most part, results are fairly consistent between this and conventional sleep scoring, but in some cases show disagreements that may be scientifically interesting.

      Weaknesses:

      One weakness of the study, from my perspective, was that the IRASA fits to the data (e.g. the PSD, such as in Figure 1B), were not illustrated. One cannot get a sense of whether or not the algorithm is based entirely on the fractal component or whether the oscillatory component of the PSD also influences the slope calculations. This should be better illustrated, but I assume the fits are quite good.

      The cycles detected using IRASA are called fractal cycles. I appreciate the use of a simple term for this, but I am also concerned whether it could be potentially misleading? The term suggests there is something fractal about the cycle, whereas it's really just that the fractal component of the PSD is used to detect the cycle. A more appropriate term could be "fractal-detected cycles" or "fractal-based cycle" perhaps?

      The study performs various comparisons of the durations of sleep cycles evaluated by the IRASA-based algorithm vs. conventional sleep scoring. One concern I had was that it appears cycles were simply identified by their order (first, second, etc.) but were not otherwise matched. This is problematic because, as evident from examples such as Figure 3B, sometimes one cycle conventionally scored is matched onto two fractal-based cycles. In the case of the Figure 3B example, it would be more appropriate to compare the duration of conventional cycle 5 vs. fractal cycle 7, rather than 5 vs. 5, as it appears is currently being performed.

      There are a few statements in the discussion that I felt were either not well-supported. L629: about the "little biological foundation" of categorical definitions, e.g. for REM sleep or wake? I cannot agree with this statement as written. Also about "the gradual nature of typical biological processes". Surely the action potential is not gradual and there are many other examples of all-or-none biological events.

      The authors appear to acknowledge a key point, which is that their methods do not discriminate between awake and REM periods. Thus their algorithm essentially detected cycles of slow-wave sleep alternating with wake/REM. Judging by the examples provided this appears to account for both the correspondence between fractal-based and conventional cycles, as well as their disagreements during the early part of the sleep cycle. While this point is acknowledged in the discussion section around L686. I am surprised that the authors then argue against this correspondence on L695. I did not find the "not-a-number" controls to be convincing. No examples were provided of such cycles, and it's hard to understand how positive z-values of the slopes are possible without the presence of some wake unless N1 stages are sufficient to provide a detected cycle (in which case, then the argument still holds except that its alterations between slow-wave sleep and N1 that could be what drives the detection).

      To me, it seems important to make clear whether the paper is proposing a different definition of cycles that could be easily detected without considering fractals or spectral slopes, but simply adjusting what one calls the onset/offset of a cycle, or whether there is something fundamentally important about measuring the PSD slope. The paper seems to be suggesting the latter but my sense from the results is that it's rather the former.

    1. Reviewer #2 (Public Review):

      The manuscript by Okholm and colleagues identified an interesting new instance of ceRNA involving a circular RNA. The data are clearly presented and support the conclusions. Quantification of the copy number of circRNA and quantification of the protein were performed, and this is important to support the ceRNA mechanism.

      This is the second rebuttal and the authors further improved the manuscript. The data are of interest for the large spectrum of readers of the journal.

    1. Reviewer #2 (Public Review):

      The authors characterized activity of the dorsal periaqueductal gray (dPAG) - basolateral amygdala (BLA) circuit. They show that BLA cells that are activated by dPAG stimulation are also more likely to be activated by a robot predator. These same cells are also more likely to display synchronous firing.

      The authors also replicate prior results showing that dPAG stimulation evokes fear and the dPAG is activated by a predator.

      Lastly, the report performs anatomical tracing to show that the dPAG may act on the BLA via the paraventricular thalamus (PVT). Indeed, the PVT receives dPAG projections and also projects to the BLA. However, the authors do not show if the PVT mediates dPAG to BLA communication with any functional behavioral assay. Furthermore, the authors also do not thoroughly characterize the activity of BLA cells during the predatory assay.

      The major impact in the field would be to add evidence to their prior work, strengthening the view that the BLA can be downstream of the dPAG.

    1. Reviewer #2 (Public Review):

      Secretion of the prototypical F-associated filamentous phage (Ff) of E. coli depends on the selective binding of a hairpin (the packaging signal, PS) by two phage encoded protein, pVII and pIX. PVII and pIX target the PS to IM channels formed by pI and pIV. However, integrative filamentous phages lack a homologue of pIX and pIV, and many of them also lack a homologue of pVII, raising questions on the assembly and secretion of new phages. In the manuscript, Yueh et al. present the identification of a phage-encoded protein, PSB15, which binds to the PS signal of a Xanthomonas integrative filamentous phage, ΦLf-UK. They showed that PSB15 is required for viral assembly and is conserved in several other integrative filamentous phages. They further analyzed how PSB15 binds to PS and demonstrated that it associates to the IM, which targets phage DNA to it. Finally, they show that thioredoxin, the only host protein that was found to be essential for Ff secretion, interacts with PSB15 and releases the PSB15-PS complex from the IM. These results are important because they elucidate a major step in the secretion of integrative filamentous phage, and the role of thioredoxin on filamentous phage secretion in general.

      I found the data and interpretation convincing. However, the presentation and description are confusing in places because the reader has to juggle between figures. A scheme depicting what is known and unknown in the integration of Ff phages and interactive filamentous phages in the introduction would be useful to the general reader.

    1. Reviewer #2 (Public Review):

      General comment:

      This is a very valuable and unique comparative study. An excellent combination of scanning and histological data from three different species is presented. Obtaining the material for such a comparative study is never trivial. The study presents new data and thus provides the basis for an in-depth discussion about chondrichthyan mineralised skeletal tissues. I have, however, some comments. Some information is lacking and should be added to the manuscript text. I also suggest changes in the result and the discussion section of the manuscript.

      Introduction:

      The reader gets the impression almost no research on chondrichthyan skeletal tissues was done before the 2010 ("last 15 years", L45). I suggest to correct that and to cite also previous studies on chondrichthyan skeletal tissues, this includes studies from before 1900.

      Material and Methods:

      Please complete L473-492: Three different Micro-CT scanners were used for three different species? ScyScan 117 for the skate samples. Catshark different scanner, please provide full details. Chimera Scncrotron Scan? Please provide full details for all scanning protocols.

      TMD is established in the same way in all three scanners? Actually not possible. Or, all specimens were scanned with the same scanner to establish TMD? If so please provide the protocol.

      Please complete L494 ff: Tissue embedding medium and embedding protocol is missing. Specimens have been decalcified, if yes how? Have specimens been sectioned non-decalcified or decalcified?

      Please complete L506 ff: Tissue embedding medium and embedding protocol is missing. Description of controls are missing.

      Results:

      L147: It is valuable and interesting to compare the degree of mineralisation in individuals from the three different species. It appears, however, not possible to provide numerical data for Tissue Mineral Density (TMD). First requirement, all specimens must be scanned with the same scanner and the same calibration values. This in not stated in the M&M section. But even if this was the case, all specimens derive from different sample locations and have, been preserved differently. Type of fixation, extension of fixation time in formalin, frozen, unfrozen, conditions of sample storage, age of the samples, and many more parameters, all influence TMD values. Likewise the relative age of the animals (adult is not the same as adult) influences TMD. One must assume different sampling and storage conditions and different types of progression into adulthood. Thus, the observation of different degrees of mineralisation is very interesting but I suggest not to link this observation to numerical values.

      Parts of the results are mixed with discussion. Sometimes, a result chapter also needs a few references but this result chapter is full of references.

      Based on different protocols, the staining characteristics of the tissue are analysed. This is very good and provides valuable additional data. The authors should inform the not only about the staining (positive of negative) abut also about the histochemical characters of the staining. L218: "fast green positive" means what? L234: "marked by Trichrome acid fuchsin" means what? And so on, see also L237, L289, L291<br /> Discussion

      Please completely remove figure 7, please adjust and severely downsize the discussion related to figure 7. It is very interesting and valuable to compare three species from three different groups of elasmobranchs. Results of this comparison also validate an interesting discussion about possible phylogenetic aspects. This is, however, not the basis for claims about the skeletal tissue organisation of all extinct and extant members of the groups to which the three species belong. The discussion refers to "selected representatives" (L364), but how representative are the selected species? Can there be a extant species that represents the entire large group, all sharks, rays or chimeras? Are the three selected species basal representatives with a generalist life style?

      Please completely remove the discussion about paedomorphosis in chimeras (already in the result section). This discussion is based on a wrong idea about the definition of paedomorphosis. Paedomorphosis can occur in members of the same group. Humans have paedormorphic characters within the primates, Ambystoma mexicanum is paedormorphic within the urodeals. Paedomorphosis does not extend to members of different vertebrate branches. That elasmobranchs have a developmental stage that resembles chimera vertebra mineralisation does not define chimera vertebra centra as paedomorphic. Teleost have a herocercal caudal fin anlage during development, that does not mean the heterocercal fins in sturgeons or elasmobranchs are paedomorphic characters.

      L432-435: In times of Gadow & Abott (1895) science had completely wrong ideas bout the phylogenic position of chondrichthyans within the gnathostomes. It is curious that Gadow & Abott (1895) are being cited in support of the paedomorphosis claim.

      The SCPP part of the discussion is unrelated to the data obtained by this study. Kawaki & WEISS (2003) describe a gene family (called SCPP) that control Ca-binding extracellular phosphoproteins in enamel, in bone and dentine, in saliva and in milk. It evolved by gene duplication and differentiation. They date it back to a first enamel matrix protein in conodonts (Reif 2006). Conodonts, a group of enigmatic invertebrates have mineralised structures but these structure are neither bone nor mineralised cartilage. Cat fish (6 % of all vertebrate species) on the other hand, have bone but do not have SCPP genes (Lui et al. 206). Other calcium binding proteins, such as osteocalcin, were initially believed to be required for mineralisation. It turned out that osteocalcin is rather a mineralisation inhibitor, at best it regulates the arrangement collagen fiber bundles. The osteocalcin -/- mouse has fully mineralised bone. As the function of the SCPP gene product for bone formation is unknown, there is no need to discuss SCPP genes. It would perhaps be better to finish the manuscript with summery that focuses on the subject and the methodology of this nice study.

    1. Reviewer #2 (Public Review):

      The authors showed that CRISP1 and CRISP3, secreted proteins in the epididymis, are required for early embryogenesis after fertilization through DNA integrity in cauda epididymal sperm. This paper is the first report showing that the epididymal proteins are required for embryogenesis after fertilization. However, some data in this paper (Table 1 and Figure 2A) are overlapped in a published paper (Curci et al., FASEB J, 34,15718-15733, 2020; PMID: 33037689). Furthermore, the authors did not address why the disruption of CRISP1/3 leads to these phenomena (the increased level of the intracellular Ca2+ level and impaired DNA integrity in sperm) with direct evidence. Therefore, if the authors can address the following comments to improve the paper's novelty and clarification, this paper may be worthwhile to readers.

    1. for - recombination of proteins in higher level proteins - from - youtube - Evolution 2 podcast interview - book - Understanding Living Systems - Denis Noble - Ray Noble

      from - youtube - Evolution 2 podcast interview - book - Understanding Living Systems - Denis Noble - Ray Noble - https://hyp.is/OttWABYFEe--gLNFyeNyTw/docdrop.org/video/oHZI1zZ_BhY/

    1. Reviewer #2 (Public Review):

      Summary:

      Chang et al. investigated neuronal activity firing patterns across various cortical regions in an interesting context-dependent tactile vs visual detection task, developed previously by the authors (Chevee et al., 2021; doi: 10.1016/j.neuron.2021.11.013). The authors report the important involvement of a medial frontal cortical region (MM, probably a similar location to wM2 as described in Esmaeili et al., 2021 & 2022; doi: 10.1016/j.neuron.2021.05.005; doi: 10.1371/journal.pbio.3001667) in mice for determining task rules.

      Strengths:

      The experiments appear to have been well carried out and the data well analysed. The manuscript clearly describes the motivation for the analyses and reaches clear and well-justified conclusions. I find the manuscript interesting and exciting!

      Weaknesses:

      I did not find any major weaknesses.

    1. Reviewer #2 (Public Review):

      Goldstein et al. provide a thorough characterization of the interaction of attention and eye movement planning. These processes have been thought to be intertwined since at least the development of the Premotor Theory of Attention in 1987, and their relationship has been a continual source of debate and research for decades. Here, Goldstein et al. capitalize on their novel urgent saccade task to dissociate the effects of endogenous and exogenous attention on saccades towards and away from the cue. They find that attention and eye movements are, to some extent, linked to one another but that this link is transient and depends on the nature of the task. A primary strength of the work is that the researchers are able to carefully measure the timecourse of the interaction between attention and eye movements in various well-controlled experimental conditions. As a result, the behavioral interplay of two forms of attention (endogenous and exogenous) is illustrated at the level of tens of milliseconds as they interact with the planning and execution of saccades towards and away from the cued location. Overall, the results allow the authors to make meaningful claims about the time course of visual behavior, attention, and the potential neural mechanisms at a timescale relevant to everyday human behavior.

    1. Reviewer #3 (Public Review):

      Summary:

      The receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) in humans is nervous system expressed and plays an important role as an oncogene. A number of groups have been studying ALK signalling in flies to gain mechanistic insight into its various roles. In flies, ALK plays a critical role in development, particularly embryonic development and axon targeting. In addition, ALK was also shown to regulate adult functions including sleep and memory. In this manuscript, Sukumar et al., used a suite of molecular techniques to identify downstream targets of ALK signalling. They first used targeted DamID, a technique that involves a DNA methylase to RNA polymerase II, so that GATC sites in close proximity to PolII binding sites are marked. They performed these experiments in wild type and ALK loss of function mutants (using an Alk dominant negative ALkDN), to identify Alk responsive loci. Comparing these loci with a larval single cell RNAseq dataset identified neuroendocrine cells as an important site of Alk action. They further combined these TaDa hits with data from RNA seq in Alk Loss and Gain of Function manipulations to identify a single novel target of Alk signalling - a neuropeptide precursor they named Sparkly (Spar) for its expression pattern. They generated a mutant allele of Spar, raised an antibody against Spar, and characterised its expression pattern and mutant behavioural phenotypes including defects in sleep and circadian function.

      Strengths:

      The molecular biology experiments using TaDa and RNAseq were elegant and very convincing. The authors identified a novel gene they named Spar. They also generated a mutant allele of Spar (using CrisprCas technology) and raised an antibody against Spar. These experiments are lovely, and the reagents will be useful to the community. The paper is also well written, and the figures are very nicely laid out making the manuscript a pleasure to read.

      Weaknesses:

      The manuscript has improved very substantially in revision. The authors have clearly taken the comments on board in good faith.

      Editors' note: The authors have satisfactorily addressed the concerns raised in the previous rounds of review. These were related to the unconventional analysis of the TaDa data, the addition of other means of down regulated gene function, and the nature of analyses of behavioural data.

    1. Reviewer #2 (Public Review):

      Summary:

      Hall et al describe the superiority of ONT sequencing and deep learning-based variant callers to deliver higher SNP and Indel accuracy compared to previous gold-standard Illumina short-read sequencing. Furthermore, they provide recommendations for read sequencing depth and computational requirements when performing variant calling.

      Strengths:

      The study describes compelling data showing ONT superiority when using deep learning-based variant callers, such as Clair3, compared to Illumina sequencing. This challenges the paradigm that Illumina sequencing is the gold standard for variant calling in bacterial genomes. The authors provide evidence that homopolymeric regions, a systematic and problematic issue with ONT data, are no longer a concern in ONT sequencing.

      Weaknesses:

      (1) The inclusion of a larger number of reference genomes would have strengthened the study to accommodate larger variability (a limitation mentioned by the authors).

      (2) In Figure 2, there are clearly one or two samples that perform worse than others in all combinations (are always below the box plots). No information about species-specific variant calls is provided by the authors but one would like to know if those are recurrently associated with one or two species. Species-specific recommendations could also help the scientific community to choose the best sequencing/variant calling approaches.

      (3) The authors support that a read depth of 10x is sufficient to achieve variant calls that match or exceed Illumina sequencing. However, the standard here should be the optimal discriminatory power for clinical and public health utility (namely outbreak analysis). In such scenarios, the highest discriminatory power is always desirable and as such an F1 score, Recall and Precision that is as close to 100% as possible should be maintained (which changes the minimum read sequencing depth to at least 25x, which is the inflection point).

      (4) The sequencing of the samples was not performed with the same Illumina and ONT method/equipment, which could have introduced specific equipment/preparation artefacts that were not considered in the study. See for example https://academic.oup.com/nargab/article/3/1/lqab019/6193612.

    1. Reviewer #2 (Public Review):

      Summary:

      This is a tour de force study that aims to understand the genetic basis of male germ cell development across three animal species (human, mouse, and flies) by performing a genetic program conservation analysis (using phylostratigraphy and network science) with a special emphasis on genes that peak or decline during mitosis-to-meiosis. This analysis, in agreement with previous findings, reveals that several genes active during and before meiosis are deeply conserved across species, suggesting ancient regulatory mechanisms. To identify critical genes in germ cell development, the investigators integrated clinical genetics data, performing gene knockdown and knockout experiments in both mice and flies. Specifically, over 900 conserved genes were investigated in flies, with three of these genes further studied in mice. Of the 900 genes in flies, ~250 RNAi knockdowns had fertility phenotypes. The fertility phenotypes for the fly data can be viewed using the following browser link: https://pages.igc.pt/meionav. The scope of target gene validation is impressive. Below are a few minor comments.

      (1) In Supplemental Figure 2, it is notable that enterocyte transcriptomes are predominantly composed of younger genes, contrasting with the genetic age profile observed in brain and muscle cells. This difference is an intriguing observation and it would be curious to hear the author's comments.

      (2) Regarding the document, the figures provided only include supplemental data; none of the main text figures are in the full PDF.

      (3) Lastly, it would be great to section and stain mouse testis to classify the different stages of arrest during meiosis for each of the mouse mutants in order to compare more precisely to flies.

      This paper serves as a vital resource, emphasizing that only through the analysis of hundreds of genes can we prioritize essential genes for germ cell development. its remarkable that about 60% of conserved genes have no apparent phenotype during germ cell development.

      Strengths:

      The high-throughput screening was conducted on a conserved network of 920 genes expressed during the mitosis-to-meiosis transition. Approximately 250 of these genes were associated with fertility phenotypes. Notably, mutations in 5 of the 250 genes have been identified in human male infertility patients. Furthermore, 3 of these genes were modeled in mice, where they were also linked to infertility. This study establishes a crucial groundwork for future investigations into germ cell development genes, aiming to delineate their essential roles and functions.

      Weaknesses:

      The fertility phenotyping in this study is limited, yet dissecting the mechanistic roles of these proteins falls beyond its scope. Nevertheless, this work serves as an invaluable resource for further exploration of specific genes of interest.

    1. Reviewer #2 (Public Review):

      A large number of ovarian experiments have been conducted - especially in morphological and molecular biology studies - specifically removing the ovarian membrane. This experiment is a good supplement to existing knowledge and plays an important role in early ovarian development and the regulation of ovarian homeostasis during the estrous cycle. There are also innovations in research ideas and methods, which will meet the requirements of experimental design and provide inspiration for other researchers.

      This reviewer did not identify any major issues with the article. However, the following points could be further clarified:

      (1) Is there any comparative data on the proteomics of RO and rete testis in early development? With some molecular markers also derived from rete testis, it would be better to provide the data or references.

      (2) Although the size of RO and its components is quite small and difficult to operate, the researchers in this article had already been able to perform intracavitary injection of EOR and extract EOR or CR for mass spectrometry analysis. Therefore, can EOR, CR, or IOR be damaged or removed, providing further strong evidence of ovarian development function?

      (3) Although IOR is shown on the schematic diagram, it cannot be observed in the immunohistochemistry pictures in Figure 1 and Figure 3. The authors should provide a detailed explanation.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript described the second earliest known winged ovule without a capule in the Famennian of Late Devonian. Using Mathematical analysis, the authors suggest that the integuments of the earliest ovules without a cupule, as in the new taxon and Guazia, evolved functions in wind dispersal.

      Strengths:

      The new ovule taxon's morphological part is convincing. It provides additional evidence for the earliest winged ovules, and the mathematical analysis helps to understand their function.

      Weaknesses:

      The discussion should be enhanced to clarify the significance of this finding. What is the new advance compared with the Guazia finding? The authors can illustrate the character transformations using a simplified cladogram. The present version of the main text looks flat.

    1. Reviewer #2 (Public Review):

      Summary:

      This paper develops an under-flow migration tracker to evaluate all the steps of the extravasation cascade of immune cells across the BBB. The algorithm is useful and has important applications.

      Strengths:

      Algorithm is almost as accurate as manual tracking and importantly saves time for researchers.

      Weaknesses:

      Applicability can be questioned because the device used is 2D and physiological biology is in 3D. Comparisons to other automated tools was not performed by the authors.

    1. Reviewer #2 (Public Review):

      The document "Mapping spatial patterns to energetic benefits in groups of flow-coupled swimmers" by Heydari et al. uses several types of simulations and models to address aspects of stability of position and power consumption in few-body groups of pitching foils. I think the work has the potential to be a valuable and timely contribution to an important subject area. The supporting evidence is largely quite convincing, though some details could raise questions, and there is room for improvement in the presentation. My recommendations are focused on clarifying the presentation and perhaps spurring the authors to assess additional aspects:

      (1) Why do the authors choose to set the swimmers free only in the propulsion direction? I can understand constraining all the positions/orientations for investigating the resulting forces and power, and I can also understand the value of allowing the bodies to be fully free in x, y, and their orientation angle to see if possible configurations spontaneously emerge from the flow interactions. But why constrain some degrees of freedom and not others? What's the motivation, and what's the relevance to animals, which are fully free?

      (2) The model description in Eq. (1) and the surrounding text is confusing. Aren't the authors computing forces via CFD or the VS method and then simply driving the propulsive dynamics according to the net horizontal force? It seems then irrelevant to decompose things into thrust and drag, and it seems irrelevant to claim that the thrust comes from pressure and the drag from viscous effects. The latter claim may in fact be incorrect since the body has a shape and the normal and tangential components of the surface stress along the body may be complex.

      (3) The parameter taudiss in the VS simulations takes on unusual values such as 2.45T, making it seem like this value is somehow very special, and perhaps 2.44 or 2.46 would lead to significantly different results. If the value is special, the authors should discuss and assess it. Otherwise, I recommend picking a round value, like 2 or 3, which would avoid distraction.

      (4) Some of the COT plots/information were difficult to interpret because the correspondence of beneficial with the mathematical sign was changing. For example, DeltaCOT as introduced on p. 5 is such that negative indicates bad energetics as compared to a solo swimmer. But elsewhere, lower or more negative COT is good in terms of savings. Given the many plots, large amounts of data, and many quantities being assessed, the paper needs a highly uniform presentation to aid the reader.

      (5) I didn't understand the value of the "flow agreement parameter," and I didn't understand the authors' interpretation of its significance. Firstly, it would help if this and all other quantities were given explicit definitions as complete equations (including normalization). As I understand it, the quantity indicates the match of the flow velocity at some location with the flapping velocity of a "ghost swimmer" at that location. This does not seem to be exactly relevant to the equilibrium locations. In particular, if the match were perfect, then the swimmer would generate no relative flow and thus no thrust, meaning such a location could not be an equilibrium. So, some degree of mismatch seems necessary. I believe such a mismatch is indeed present, but the plots such as those in Figure 4 may disguise the effect. The color bar is saturated to the point of essentially being three tones (blue, white, red), so we cannot see that the observed equilibria are likely between the max and min values of this parameter.

      (6) More generally, and related to the above, I am favorable towards the authors' attempts to find approximate flow metrics that could be used to predict the equilibrium positions and their stability, but I think the reasoning needs to be more solid. It seems the authors are seeking a parameter that can indicate equilibrium and another that can indicate stability. Can they clearly lay out the motivation behind any proposed metrics, and clearly present complete equations for their definitions? Further, is there a related power metric that can be appropriately defined and which proves to be useful?

      (7) Why do the authors not carry out CFD simulations on the larger groups? Some explanations should be given, or some corresponding CFD simulations should be carried out. It would be interesting if CFD simulations were done and included, especially for the in-line case of many swimmers. This is because the results seem to be quite nuanced and dependent on many-body effects beyond nearest-neighbor interactions. It would certainly be comforting to see something similar happen in CFD.

      (8) Related to the above, the authors should discuss seemingly significant differences in their results for long in-line formations as compared to the CFD work of Peng et al. [48]. That work showed apparently stable groups for numbers of swimmers quite larger than that studied here. Why such a qualitatively different result, and how should we interpret these differences regarding the more general issue of the stability of tandem groups?

      (9) The authors seem to have all the tools needed to address the general question about how dynamically stable configurations relate to those that are energetically optimal. Are stable solutions optimal, or not? This would seem to have very important implications for animal groups, and the work addresses closely related topics but seems to miss the opportunity to give a definitive answer to this big question.

      (10) Time-delay particle model: This model seems to construct a simplified wake flow. But does the constructed flow satisfy basic properties that we demand of any flow, such as being divergence-free? If not, then the formulation may be troublesome.

    1. Reviewer #3 (Public Review):

      This article is the first report to study the effects of T. pallidum on the neural development of an iSPC-derived brain organoid model. The study indicates that T. pallidum inhibits the differentiation of subNPC1B neurons into hindbrain neurons, hence affecting brain organoid neurodevelopment. Additionally, the TCF3 and notch signaling pathways may be involved in the inhibition of the subNPC1B-hindbrain neuron differentiation axis. While the majority of the data in this study support the conclusions, there are still some questions that need to be addressed and data quality needs to be improved. The study provides valuable insights for future investigations into the mechanisms underlying congenital neurodevelopment disability.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors study through theory and simulations the diffusion of microscopic particles, and aim to account for the effects of inhomogeneous viscosity and diffusion - in particular regarding the intracellular environment. They propose a mechanism, termed "Diffusive lensing", by which particles are attracted towards low-diffusivity regions where they remain trapped. To obtain these results, the authors rely on agent-based simulations using custom rules performed within the Ito stochastic calculus convention, without drift. They acknowledge the fact that this convention does not describe equilibrium systems, and that their results would not hold at equilibrium - and discard these facts by invoking the facts that cells are out-of-equilibrium. Finally, they show some applications of their findings, in particular enhanced clustering in the low-diffusivity regions. The authors conclude that as inhomogeneous diffusion is ubiquitous in life, so must their mechanism be, and hence it must be important.

      Strengths:

      The article is well-written, clearly intelligible, its hypotheses are stated relatively clearly and the models and mathematical derivations are compatible with these hypotheses. In the appendices, the authors connect their findings to known results for classic stochastic differential equation formalisms.

      Weaknesses:

      This study is, in my opinion, deeply flawed. The main problem lies in the hypotheses, in particular the choice of considering drift-less dynamics in the Ito convention. It is regrettable that the authors choose to use agent-based custom simulations with little physical motivation, rather than a well-established stochastic differential equations framework.

      Indeed, stochastic conventions are a notoriously tricky business, but they are both mathematically and physically well-understood and do not result in any "dilemma" [some citations in the article, such as (Lau and Lubensky) and (Volpe and Wehr), make an unambiguous resolution of these]. In the continuous-time limit, conventions are not an intrinsic, fixed property of a system, but a choice of writing; however, whenever going from one to another, one must include a corresponding "spurious drift" that compensates the effect of this change - a mathematical subtlety that is omitted in the article (except in a quick note in the appendix): in the presence of diffusive gradients, if the drift is zero in one convention, it will thus be non-zero in another. It is well established that for equilibrium systems obeying fluctuation-dissipation, the spurious drift vanishes in the anti-Ito stochastic convention; more precisely one can write in the anti-Ito convention

      dx/dt = - D(x)/kT grad U(x) + sqrt(2D(x)) dW

      with D(x) the diffusion, kT the thermal energy (which is space-independent at equilibrium), and dW a d-dimensional Wiener process. Equivalently one can write in the Ito convention:

      dx/dt = - D(x)/kT grad U(x) + sqrt(2D(x)) dW + div D(x) (*)

      where the latter term is the spurious drift arising from convention change. This ensures that the diffusion gradients do not induce currents and probability gradients, and thus that the steady-state PDF is the Gibbs measure (this form has been confirmed experimentally, for instance, for colloidal particles near walls, that have strong diffusivity gradients despite not having significant forces). It generalizes to near-equilibrium systems with non-conservative forces and/or temperature gradient in the form:

      dx/dt = F(x) + sqrt(2D(x)) dW + div D(x) (**)

      where the drift field F(x) encodes these forces. In some cases, it has been shown through careful microscopic analysis that one can have effectively a different form for the last term, namely

      dx/dt = F(x) + sqrt(2D(x)) dW + alpha div D(x)

      where alpha is a "convention parameter" that would be =1 at equilibrium. For instance, in the Volpe and Wehr review this can occur through memory effects in robotic dynamics, or through strong fluctuation-dissipation breakdown. In a near-equilibrium system, this should be strongly justified, as the continuous-time dynamics with alpha \neq 1 and drift F would be indistinguishable from one with alpha = 1 and drift F + (1-alpha) div D: the authors would have the burden of proving that the observed (absence of) drift is indeed due to alpha\neq 1, rather than to much more common force fields F(x).

      Here, without further motivation than the statement that cells are out-of-equilibrium, drifts are arbitrarily set to zero in the Ito convention, which is in (**) the equivalent to adding a force with drift $-div D$ exactly compensating the spurious drift. It is the effects of this arbitrary force that are studied in the article. The fact that it results in probability gradients is trivial once formulated this way (and in no way is this new - many of the references, for instance Volpe and Wehr, mention this). Enhanced clustering is also a trivial effect of this probability gradient (the local concentration is increased by this force field, so phase separation can occur). As a side note the "neighbor sensing" scheme to describe interactions is itself very peculiar and not physically motivated - it violates stochastic thermodynamics laws too, as detailed balance is apparently not respected. There again, the authors have chosen to disregard a century of stochastic thermodynamics in favor of a non-justified unphysical custom rule.

      The authors make no further justification of their choice of driftless Ito simulations than the fact that cells are out-of-equilibrium, leaving the feeling that this is a detail. They make mentions of systems (eg glycogen, prebiotic environment) for which (near-)equilibrium physics should mostly prevail, and of fluctuation dissipation ("Diffusivity varies inversely with viscosity", in the introduction). Yet the "phenomenon" they discuss is entirely reliant on an undiscussed mechanism by which these assumptions would be completely violated (the citations they make for this - Gnesotto '18 and Phillips '12 - are simply discussions of the fact that cells are out-of-equilibrium, not on any consequences on the convention).

      Finally, while inhomogeneous diffusion is ubiquitous, the strength of this effect in realistic conditions is not discussed. Even in the most "optimistic" case where alpha=0 would make sense (knowing that in the cellular context we are discussing thermal systems immersed in water and if energy consumption and metabolism were stopped alpha would relax back to 1), the equation (*) above shows that having zero ito drift is equivalent to having a potential countering the spurious drift, with value

      U(x) = kT log(D(x) / D0 )

      [I have assumed isotropic diffusion for simplicity here, so the div is replaced by a grad]. This means that the diffusion contrasts logarithmically compare to the chemical potential ones -- for instance a major diffusion difference of 100x is equivalent to 4.6kT in potential energy, a relatively modest effect. To prove that the authors' effect of "diffusive lensing" is involved in such a system, one would thus have to<br /> 1) observe strong spatial variations of the diffusion coefficient (this is doable, and was done before), AND<br /> 2) show that there is an enrichment of the diffusing species in the low-diffusion region inversely proportional to the diffusion, AND<br /> 3) show that this enrichment cannot be attributed to mild differences in potential energy, for instance by showing that if nonequilibrium energy consumption stops, the concentration fully homogenizes while the diffusion gradients remain.

      If the authors were to successfully show all that in an experimental system, or design a theoretical framework where these effects convincingly emerge from physically realistic microscopic dynamical rules, they would have indeed discovered a new phenomenon. In contrast, the current article only demonstrates the well-known fact that when using arbitrary dynamical rules in heterogeneous diffusion simulations, one can get concentration gradients.

    1. Reviewer #2 (Public Review):

      This work aggregates data across 5 openly available stopping studies (3 at 7 tesla and 2 at 3 tesla) to evaluate activity patterns across the common contrasts of Failed Stop (FS) > Go, FS > stop success (SS), and SS > Go. Previous work has implicated a set of regions that tend to be positively active in one or more of these contrasts, including the bilateral inferior frontal gyrus, preSMA, and multiple basal ganglia structures. However, the authors argue that upon closer examination, many previous papers have not found subcortical structures to be more active on SS than FS trials, bringing into question whether they play an essential role in (successful) inhibition. In order to evaluate this with more data and power, the authors aggregate across five datasets and find many areas that are *more* active for FS than SS, including bilateral preSMA, GPE, thalamus, and VTA. They argue that this brings into question the role of these areas in inhibition, based upon the assumption that areas involved in inhibition should be more active on successful stop than failed stop trials, not the opposite as they observed.

      Since the initial submission, the authors have improved their theoretical synthesis and changed their SSRT calculation method to the more appropriate integration method with replacement for go omissions. They have also done a better job of explaining how these fMRI results situate within the broader response inhibition literature including work using other neuroscience methods.

      They have also included a new Bayes Factor analysis. In the process of evaluating this new analysis, I recognized the following comments that I believe justify additional analyses and discussion:

      First, if I understand the author's pipeline, for the ROI analyses it is not appropriate to run FSL's FILM method on the data that were generated by repeating the same time series across all voxels of an ROI. FSL's FILM uses neighboring voxels in parts of the estimation to stabilize temporal correlation and variance estimates and was intended and evaluated for use on voxelwise data. Instead, I believe it would be more appropriate to average the level 1 contrast estimates over the voxels of each ROI to serve as the dependent variables in the ROI analysis.

      Second, for the group-level ROI analyses there seems to be inconsistencies when comparing the z-statistics (Figure 3) to the Bayes Factors (Figure 4) in that very similar z-statistics have very different Bayes Factors within the same contrast across different brain areas, which seemed surprising (e.g., a z of 6.64 has a BF of .858 while another with a z of 6.76 has a BF of 3.18). The authors do briefly discuss some instances in the frequentist and Bayesian results differ, but they do not ever explain by similar z-stats yield very different bayes factors for a given contrast across different brain areas. I believe a discussion of this would be useful.

      Third, since the Bayes Factor analysis appears to be based on repeated measures ANOVA and the z-statistics are from Flame1+2, the BayesFactor analysis model does not pair with the frequentist analysis model very cleanly. To facilitate comparison, I would recommend that the same repeated measures ANOVA model should be used in both cases. My reading of the literature is that there is no need to be concerned about any benefits of using Flame being lost, since heteroscedasticity does not impact type I errors and will only potentially impact power (Mumford & Nichols, 2009 NeuroImage).

      Fourth, though frequentist statistics suggest that many basal ganglia structures are significantly more active in the FS > SS contrast (see 2nd row of Figure 3), the Bayesian analyses are much more equivocal, with no basal ganglia areas showing Log10BF > 1 (which would be indicative of strong evidence). The authors suggest that "the frequentist and Bayesian analyses are monst in line with one another", but in my view, this frequentist vs. Bayesian analysis for the FS > SS contrast seems to suggest substantially different conclusions. More specifically, the frequentist analyses suggest greater activity in FS than SS in most basal ganglia ROIs (all but 2), but the Bayesian analysis did not find *any* basal ganglia ROIs with strong evidence for the alternative hypothesis (or a difference), and several with more evidence for the null than the alternative hypothesis. This difference between the frequentist and Bayesian analyses seems to warrant discussion, but unless I overlooked it, the Bayesian analyses are not mentioned in the Discussion at all. In my view, the frequentist analyses are treated as the results, and the Bayesian analyses were largely ignored.

      Overall, I think this paper makes a useful and mostly solid contribution to the literature. I have made some suggestions for adjustments and clarification of the neuroimaging pipeline and Bayesian analyses that I believe would strengthen the work further.

    1. Reviewer #2 (Public Review):

      This work clarifies neural mechanisms that can lead to a phenomenology consistent with motor preparation in its broader sense. In this context, motor preparation refers to activity that occurs before the corresponding movement. Another property often associated with preparatory activity is a correlation with global movement characteristics such as reach speed (Churchland et al., Neuron 2006), reach angle (Sun et al., Nature 2022), or grasp type (Meirhaeghe et al., Cell Reports 2023). Such activity has notably been observed in premotor and primary motor cortices, and it has been hypothesized to serve as an input to a motor execution circuit. The timing and mechanisms by which such 'preparatory' inputs are made available to motor execution circuits remain however unclear in general, especially in light of the presence of a 'trigger-like' signal that appears to relate to the transition from preparatory dynamics to execution activity (Kaufman et al. eNeuron 2016, Iganaki et al., Cell 2022, Zimnik and Churchland, Nature Neuroscience 2021).

      The preparatory inputs have been hypothesized to fulfill one or several (non-mutually-exclusive) possible objectives. Two notable hypotheses are that these inputs could be shaped to maximize output accuracy under regularization of the input magnitude; or that they may help the flexible re-use of the neural machinery involved in the control of movements in different contexts.

      Here, the authors investigate in detail how the former hypothesis may be compatible with the presence of early inputs in recurrent network models driving arm movements, and compare models to data.

      Strengths:

      The authors are able to deploy an in-depth evaluation of inputs that are optimized for producing an accurate output at a pre-defined time while using a regularization term on the input magnitude, in the case of movements that are thought to be controlled in a quasi-open loop fashion such as reaches.

      First, the authors have identified that optimal control theory is a great framework to study this question as it provides methods to find and analyze exact solutions to this cost function in the case of models with linear dynamics. The authors not only use this framework to get an exact assessment of how much pre-movement input arises in large recurrent networks, but also give insight into the mechanisms by which it happens by dissecting in detail low-dimensional networks. The authors find that two key network properties - observability of the readout's nullspace and limited controllability - give rise to optimal inputs that are large before the start of the movement (while the corresponding network activity lies in the nullspace of the readout). Further, the authors numerically investigate the timing of optimized inputs in models with nonlinear dynamics, and find that pre-movement inputs can also arise in these more general networks. The authors also explore how some variations on their model's constraints - such as penalizing the input roughness or changing task contingencies about the go cue timing - affect their results. Finally, the authors point out some coarse-grained similarities between the pre-movement activity driven by the optimized inputs in some of the models they studied, and the phenomenology of preparation observed in the brain during single reaches and reach sequences. Overall, the authors deploy an impressive arsenal of tools and a very in-depth analysis of their models.

      Limitations:

      (1) Though the optimal control theory framework is ideal to determine inputs that minimize output error while regularizing the input norm or other simple input features, it cannot easily account for some other varied types of objectives - especially those that may lead to a complex optimization landscape. For instance, the reusability of parts of the circuit, sparse use of additional neurons when learning many movements, and ease of planning (especially under uncertainty about when to start the movement), may be alternative or additional reasons that could help explain the preparatory activity observed in the brain. It is interesting to note that inputs that optimize the objective chosen by the authors arguably lead to a trade-off in terms of other desirable objectives. Specifically, the inputs the authors derive are time-dependent, so a recurrent network would be needed to produce them and it may not be easy to interpolate between them to drive new movement variants. In addition, these inputs depend on the desired time of output and therefore make it difficult to plan, e.g. in circumstances when timing should be decided depending on sensory signals. Finally, these inputs are specific to the full movement chain that will unfold, so they do not permit reuse of the inputs e.g. in movement sequences of different orders. Of note, the authors have pointed out in the discussion how their framework may be extended in future work to account for some additional objectives, such as inputs' temporal smoothness or some strategies for dealing with go cue timing uncertainty.

      (2) Relatedly, if the motor circuits were to balance different types of objectives, the activity and inputs occurring before each movement may be broken down into different categories that may each specialize into their own objective. For instance, previous work (Kaufman et al. eNeuron 2016, Iganaki et al., Cell 2022, Zimnik and Churchland, Nature Neuroscience 2021) has suggested that inputs occurring before the movement could be broken down into preparatory inputs 'stricto sensu' - relating to the planned characteristics of the movement - and a trigger signal, relating to the transition from planning to execution - irrespective of whether the movement is internally timed or triggered by an external event. The current work does not address which type(s) of early input may be labeled as 'preparatory' or may be thought of as a part of 'planning' computations, or whether these inputs may come from several different source circuits.

      (3) While the authors rightly point out some similarities between the inputs that they derive and observed preparatory activity in the brain, notably during motor sequences, there are also some differences. For instance, while both the derived inputs and the data show two peaks during sequences, the data reproduced from Zimnik and Churchland show preparatory inputs that have a very asymmetric shape that really plummets before the start of the next movement, whereas the derived inputs have larger amplitude during the movement period - especially for the second movement of the sequence. In addition, the data show trigger-like signals before each of the two reaches. Finally, while the data show a very high correlation between the pattern of preparatory activity of the second reach in the double reach and compound reach conditions, the derived inputs appear to be more different between the two conditions. Note that the data would be consistent with separate planning of the two reaches even in the compound reach condition, as well as the re-use of the preparatory input between the compound and double reach conditions. Therefore, different motor sequence datasets - notably, those that would show even more coarticulation between submovements - may be more promising to find a tight match between the data and the author's inputs. Further analyses in these datasets could help determine whether the coarticulation could be due to simple filtering by the circuits and muscles downstream of M1, planning of movements with adjusted curvature to mitigate the work performed by the muscles while permitting some amount of re-use across different sequences, or - as suggested by the authors - inputs fully tailored to one specific movement sequence that maximize accuracy and minimize the M1 input magnitude.

      (4) Though iLQR is a powerful optimization method to find inputs optimizing the author's cost function, it also has some limitations. First, given that it relies on a linearization of the dynamics at each timestep, it has a limited ability to leverage potential advantages of nonlinearities in the dynamics. Second, the iLQR algorithm is not a biologically plausible learning rule and therefore it might be difficult for the brain to learn to produce the inputs that it finds. Therefore, when observing differences between model and data, this can confound the question of whether it comes from a difference of assumed objective or a difference of optimization procedure. It remains unclear whether using alternative algorithms with different limitations - for instance, using variants of BPTT to train a separate RNN to produce the inputs in question - could impact some of the results.

      (5) Under the objective considered by the authors, the amount of input occurring before the movement might be impacted by the presence of online sensory signals for closed-loop control. Even if considering that the inputs could include some sensory activity and/or that the RNN activity could represent general variables whose states can be decoded from M1, the model would not include mechanisms that process imperfect (delayed, noisy) sensory feedback to adapt the output in a trial-specific manner. It is therefore an open question whether the objective and network characteristics suggested by the authors could also explain the presence of preparatory activity before e.g. grasping movements that are thought to be more sensory-driven (Meirhaeghe et al., Cell Reports 2023).

    1. Reviewer #2 (Public Review):

      In this work, Dasgupta et al. investigate the role of Sema7a in the formation of peripheral sensory circuit in the lateral line system of zebrafish. They show that Sema7a protein is present during neuromast maturation and localized, in part, to the base of hair cells (HCs). This would be consistent with pre-synaptic Sema7a mediating formation and/or stabilization of the synapse. They use sema7a loss-of-function strain to show that lateral line sensory terminals display abnormal arborization. They provide highly quantitative analysis of the lateral line terminal arborization to show that a number of specific topological parameters are affected in mutants. Next, they ectopically express a secreted form of Sema7a to show that lateral line terminals can be ectopically attracted to the source. Finally, they also demonstrate that the synaptic assembly is impaired in the sema7a mutant. Overall, the data are of high quality and properly controlled. The availability of Sema7a antibody is a big plus, as it allows to address the endogenous protein localization as well to show the signal absence in the sema7a mutant. The quantification of the arbor topology should be useful to people in the field who are looking at the lateral line as well as other axonal terminals.

    1. Reviewer #2 (Public Review):

      In this paper, Boi et al. thoroughly classified the electrophysiological and morphological characteristics of serotonergic and dopaminergic neurons in the DRN and examined the alterations of these neurons in the 6-OHDA-induced mouse PD model. Using whole-cell patch clamp recording, they found that 5-HT and dopamine (DA) neurons in the DRN are electrophysiologically distinct from each other. Additionally, they characterized distinct morphological features of 5-HT and DA neurons in the DRN. Notably, these specific features of 5-HT and DA neurons in the DRN exhibited different changes in the 6-OHDA-induced PD model. Then the authors utilized desipramine (DMI) to separate the effects of nigrostriatal DA depletion and noradrenaline (NA) depletion induced by 6-OHDA. Interestingly, protection from NA depletion by DMI pretreatment reversed the changes in 5-HT neurons, while having a minor impact on the changes in DA neurons in the DRN. These data indicate that the role of NA lesion in the altered properties of DRN 5-HT neurons by 6-OHDA is more critical than that of DA lesions.

      Overall, this study provides foundational data on the 5-HT and DA neurons in the DRN and their potential involvement in PD symptoms. Given the deficits of the DRN in PD, this paper may offer insights into the cellular mechanisms underlying non-motor symptoms associated with PD.

    1. Reviewer #3 (Public Review):

      The authors presented point light displays of human walkers to children (mean = 9 years) with and without ADHD to compare their biological motion perception abilities, and relate them to IQ, social responsiveness scale (SRS) scores and age. They report that children with ADHD were worse at all three biological motion tasks, but that those loading more heavily on local processing related to social interaction skills and global processing to age. The valuable and solid findings are informative for understanding this complex condition, as well as biological motion processing mechanisms in general. However, the correlations present a pattern that needs further examination in future studies because many of the differences between correlations are not significant.

      Strengths:

      The authors present differences between ADHD and TD children in biological motion processing, and this question has not received as much attention as equivalent processing capabilities in autism. They use a task that appears well controlled. They raise some interesting mechanistic possibilities for differences in local and global motion processing, which are distinctions worth exploring. The group differences will therefore be of interest to those studying ADHD, as well as other developmental conditions, and those examining biological motion processing mechanisms in general.

      Weaknesses:

      The data are not strong enough to support claims about differences between global and lobal processing wrt social communication skills and age. The mechanistic possibilities for why these abilities may dissociate in such a way are interesting, but the crucial tests of differences between correlations do not present a clear picture. Further empirical work would be needed to test this further. Specifics:

      The authors state frequently that it was the local BM task that related to social communication skills (SRS) and not the global tasks. However, the results section shows a correlation between SRS and all three tasks. The only difference is that when looking specifically within the ADHD group, the correlation is only significant for the local task. The supplementary materials demonstrate that tests of differences between correlations present an incomplete picture. Currently they have small samples for correlations, so this is unsurprising.

      Theoretical assumptions. The authors make some statements about local vs global biological motion processing that may have been made in previous studies, but would appear controversial and not definitive. E.g., that local BM processing does not improve with age and is uninfluenced by attention.

    1. Reviewer #2 (Public Review):

      The paper presents a novel approach to expand iPSC-derived pdx1+/nkx6.1+ pancreas progenitors, making them potentially suitable for GMP-compatible protocols. This advancement represents a significant breakthrough for diabetes cell replacement therapies, as one of the current bottlenecks is the inability of expanding PP without compromising their differentiation potential. The study employs a robust dataset and state-of-the-art methodology, unveiling crucial signaling pathways (eg TGF, Notch...) responsible for sustaining pancreas progenitors while preserving their differentiation potential in vitro.

      The current version of the paper has improved, increasing the clarity and providing clear explanations to the comments raised regarding quantifications, functionality of the cells in vivo etc...

      The discussion on challenges adds depth to the study and encourages future research to build upon these important findings

    1. Reviewer #2 (Public Review):

      Nagy et al investigated the role of volume increase and swelling in neutrophils in response to the chemoattractant. Authors show that following chemoattractant response cells lose their volume slightly owing to the cell spreading phase and then have a relatively rapid increase in the cell volume that is concomitant with cell migration. Authors performed an impressive genome-wide CRISPR screen and buoyant density assay to identify the regulators of neutrophil swelling. This assay showed that stimulating cells with chemoattractant fMLP lead to an increase in the cell volume that was abrogated with the FPR1 receptor knockout. The screen revealed a cascade that could potentially be involved cell swelling including NHE1 (sodium-proton antiporter) and PI3K. NHE1 and PI3K is required for chemoattractant-induced swelling in human primary neutrophils. Authors also suggest slightly different functions of NHE1 and PI3K activity where PI3K is also required for maintain chemoattractant-induced cell shape changes. Authors convincingly show that chemoattractant induced cell swelling is linked to cell migration and NHE1 is required for swelling at the later stages of swelling since the cells at the early point work on low-volume and low-velocity regime. Interesting authors also show that lack of swelling in NHE1 inhibited cells could be rescued by mild hypo-osmotic swelling strengthening the argument that water influx followed chemoattractant stimulation is important for potentiation for migration.

      The conclusions of this paper are mostly well supported by data and is pretty convincing

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript seeks to reconcile observations in multisensory perception - from behavior and neural responses. It is intuitively obvious that perceiving a stimulus via two senses results in better performance than one alone. In fact, it is not uncommon to observe that for a perceptual task, the percentage of correct responses seen with two senses is higher than the sum of the percentage correct obtained with each modality individually. i.e. the gains are "superadditive". The gains of adding a second sense are typically larger when the performance with the first sense is relatively poor - this effect is often called the principle of inverse effectiveness. More generally, what this tells us is that performance in a multisensory perceptual task is a non-linear sum of performance for each sensory modality alone.

      Despite this abundant evidence of behavioral non-linearity in multisensory integration, evoked responses (EEG) to such sensory stimuli often show little evidence of it - and this is the problem this manuscript tackles. The key assertion made is that univariate analysis of the EEG signal is likely to average out the non-linear effects of integration. This is a reasonable assertion, and their analysis does indeed provide evidence that a multivariate approach can reveal non-linear interactions in the evoked responses.

      Strengths:

      It is of great value to understand how the process of multisensory integration occurs, and despite a wealth of observations of the benefits of perceiving the world with multiple senses, we still lack a reasonable understanding of how the brain integrates information. For example - what underlies the large individual differences in the benefits of two senses over one? One way to tackle this is via brain imaging, but this is problematic if important features of the processing - such as non-linear interactions are obscured by the lack of specificity of the measurements. The approach they take to the analysis of the EEG data allows the authors to look in more detail at the variation in activity across EEG electrodes, which averaging across electrodes cannot.

      This version of the manuscript is well-written and for the most part clear. It shows a good understanding of the non-linear effects described above (where many studies show a poor understanding of "superadditivity" of perceptual performance) and the report of non-linear summation of neural responses is convincing.

      A particular strength of the paper is their use of a statistical model of multisensory integration as their "null" model of neural responses, and the "inverted-encoder" which infers an internal representation of the stimulus which can explain the EEG responses. This encoder generates a prediction of decoding performance, which can be used to generate predictions of multisensory decoding from unisensory decoding, or from a sum of the unisensory internal representations.

      In behavioural performance, it is frequently observed that the performance increase from two senses is close to what is expected from the optimal integration of information across the senses, in a statistical sense. It can be plausibly explained by assuming that people are able to weigh sensory inputs according to their reliability - and somewhat optimally. Critically the apparent "superadditive" effect on performance described above does not require any non-linearity in the sum of information across the senses but can arise from correctly weighting the information according to reliability.

      The authors apply a similar model to predict the neural responses expected to audiovisual stimuli from the neural responses to audio and visual stimuli alone, assuming optimal statistical integration of information. The neural responses to audiovisual stimuli exceed the predictions of this model and this is the main evidence supporting their conclusion, and it is convincing.

      Weaknesses:

      The main weakness of the manuscript is that their behavioural data show no evidence of performance that exceeds the predictions of these statistical models. In fact, the models predict multisensory performance from unisensory performance pretty well. So this manuscript presents the opposite problem to that which motivated the study - neural interactions across the senses which appear to be more non-linear than perception. This makes it hard to interpret their results, as surely if these nonlinear neural interactions underlie the behaviour, then we should be able to see evidence of it in the behaviour? I cannot offer an easy explanation for this.

      Overall, therefore, I applaud the motivation and the sophistication of the analysis method and think it shows great promise for tackling these problems, but the manuscript unfortunately brushes over an important problem specific to the results. It appeals to the higher-level reasoning - that non-linearity is a behavioural hallmark of integration and therefore we should see it in neural responses. Yet it ignores the fact that the behaviour observed here does not exceed the predictions of the "null" model applied to the neural response.

      Part of the problem, I think, is that the authors never explain the difference between superadditivity of perceptual performance (proportion correct) and superadditivity of the underlying processing, which is implied by the EEG results but not their behavior. This is of course a difficult matter to describe succinctly or clearly (I somehow doubt I have). It is however worth addressing. The literature is full of confusing claims of superadditivity. I believe these authors understand this distinction and have an opportunity to represent it clearly for the benefit of all.

    1. Reviewer #2 (Public Review):

      Summary:

      In this work, Duan and Curtis addressed an important issue related to the nature of working memory representations. This work is motivated by findings illustrating that orientation decoding performance for perceptual representations can be biased by the stimulus aperture (modulator). Here, the authors examined whether the decoding performance for working memory representations is similarly influenced by these aperture biases. The results provide convincing evidence that working memory representations have a different representational structure, as the decoding performance was not influenced by the type of stimulus aperture.

      Strengths:

      The strength of this work lies in the direct comparison of decoding performance for perceptual representations with working memory representations. The authors take well-motivated approach and illustrate that perceptual and working memory representations do not share a similar representational structure. The authors test a clear question, with a rigorous approach and provide compelling evidence. First, the presented oriented stimuli are carefully manipulated to create orthogonal biases introduced by the stimulus aperture (radial or angular modulator), regardless of the stimulus carrier orientation. Second, the authors implement advanced methods to decode the orientation information, in visual and parietal cortical regions, when directly perceiving or holding an oriented stimulus in memory. The data illustrates that working memory decoding is not influenced by the type of aperture, while this is the case in perception. In sum, the main claims are important and shed light on the nature of working memory representations.

      Weaknesses:

      After the authors revised the original manuscript, a few of my initial concerns remain.

      (1) Theoretical framing in the introduction. The introduction proposes that decoding of orientation information during perception does not reflect orientation selectivity, and it is instead driven by coarse scale biases. This is an overstatement. Recent work shows that orientation decoding is indeed influenced by coarse biases, but also reflects orientation selectivity (Roth, Kay & Merriam, 2022).

      (2) The description of the image computable V1 model remains incomplete. The steerable pyramid is a model that simulates the responses of V1 neurons. To do so, it incorporates a set of linear receptive fields with varying orientation and spatial frequency tuning. However, the information that is lacking in the Methods is whether the implemented pyramid also included two quadrature phase pairs (odd and even phase Gabor filters making the output phase invariant). The sum of the squares of the responses to these offset phase filters computes the stimulus energy within each orientation and spatial frequency channel. Without this description, it is unclear what the model output represents.

    1. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Alam et al. sought to understand how memory interacts with incoming visual information to effectively guide human behavior by using a task that combines spatial contexts (houses) with objects of one or multiple semantic categories. Three additional datasets (all from separate participants) were also employed: one that functionally localized regions of interest (ROIs) based on subtractions of different visually presented category types (in this case, scenes, objects, and scrambled objects); another consisting of resting-state functional connectivity scans, and a section of the Human Connectome Project that employed DTI data for structural connectivity analysis. Across multiple analyses, the authors identify dissociations between regions preferentially activated during scene or object judgments, between the functional connectivity of regions demonstrating such preferences, and in the anatomical connectivity of these same regions. The authors conclude that the processing streams that take in visual information and support semantic or spatial processing are largely parallel and distinct.

      Strengths:

      (1) Recent work has reconceptualized the classic default mode network as two parallel and interdigitated systems (e.g., Braga & Buckner, 2017; DiNicola et al., 2021). The current manuscript is timely in that it attempts to describe how information is differentially processed by two streams that appear to begin in visual cortex and connect to different default subnetworks. Even at a group level where neuroanatomy is necessarily blurred across individuals, these results provide clear evidence of stimulus-based dissociation.

      (2) The manuscript contains a large number of analyses across multiple independent datasets. It is therefore unlikely that a single experimenter choice in any given analysis would spuriously produce the overall pattern of results reported in this work.

      Weaknesses:

      (1) Throughout the manuscript, a strong distinction is drawn between semantic and spatial processing. However, given that only objects and spatial contexts were employed in the primary experiment, it is not clear that a broader conceptual distinction is warranted between "semantic" and "spatial" cognition. There are multiple grounds for concern regarding this basic premise of the manuscript.<br /> a. One can have conceptual knowledge of different types of scenes or spatial contexts. A city street will consistently differ from a beach in predictable ways, and a kitchen context provides different expectations than a living room. Such distinctions reflect semantic knowledge of scene-related concepts, but in the present work spatial and "all other" semantic information are considered and discussed as distinct and separate.<br /> b. As a related question, are scenes uniquely different from all other types of semantic/category information? If faces were used instead of scenes, could one expect to see different regions of the visual cortex coupling with task-defined face > object ROIs? The current data do not speak to this possibility, but as written the manuscript suggests that all (non-spatial) semantic knowledge should be processed by the FT-DMN.<br /> c. Recent precision fMRI studies characterizing networks corresponding to the FT-DMN and MTL-DMN have associated the former with social cognition and the latter with scene construction/spatial processing (DiNicola et al., 2020; 2021; 2023). This is only briefly mentioned by the authors in the current manuscript (p. 28), and when discussed, the authors draw a distinction between semantic and social or emotional "codes" when noting that future work is necessary to support the generality of the current claims. However, if generality is a concern, then emphasizing the distinction between object-centric and spatial cognition, rather than semantic and spatial cognition, would represent a more conservative and better-supported theoretical point in the current manuscript.

      (2) Both the retrosplenial/parieto-occipital sulcus and parahippocampal regions are adjacent to the visual network as defined using the Yeo et al. atlas, and spatial smoothness of the data could be impacting connectivity metrics here in a way that qualitatively differs from the (non-adjacent) FT-DMN ROIs. Although this proximity is a basic property of network locations on the cortical surface, the authors have several tools at their disposal that could be employed to help rule out this possibility. They might, for instance, reduce the smoothing in their multi-echo data, as the current 5 mm kernel is larger than the kernel used in Experiment 2's single-echo resting-state data. Spatial smoothing is less necessary in multi-echo data, as thermal noise can be attenuated by averaging over time (echoes) instead of space (see Gonzalez-Castillo et al., 2016 for discussion). Some multi-echo users have eschewed explicit spatial smoothing entirely (e.g., Ramot et al., 2021), just as the authors of the current paper did for their RSA analysis. Less smoothing of E1 data, combined with a local erosion of either the MTL-DMN and VIS masks (or both) near their points of overlap in the RSFC data, would improve confidence that the current results are not driven, at least in part, by spatial mixing of otherwise distinct network signals.

      (3) The authors identify a region of the right angular gyrus as demonstrating a "potential role in integrating the visual-to-DMN pathways." This would seem to imply that lesion damage to right AG should produce difficulties in integrating "semantic" and "spatial" knowledge. Are the authors aware of such a literature? If so, this would be an important point to make in the manuscript as it would tie in yet another independent source of information relevant to the framework being presented. The closest of which I am aware involves deficits in cued recall performance when associates consisted of auditory-visual pairings (Ben-Zvi et al., 2015), but that form of multi-modal pairing is distinct from the "spatial-semantic" integration forwarded in the current manuscript.

    1. Reviewer #2 (Public Review):

      The authors attempt to establish presaccadic pupil size as an index of 'saccade effort' and propose this index as one new predictor of saccade target selection. They only partially achieved their aim: When choosing between two saccade directions, the less costly direction, according to preceding pupil size, is preferred. However, the claim that with increased cognitive demand participants would especially cut costly directions is not supported by the data. I would have expected to see a negative correlation between saccade effort and saccade direction 'change' under increased load. Yet participants mostly cut upwards saccades, but not other directions that, according to pupil size, are equally or even more costly (e.g. oblique saccades).

      Strengths:

      The paper is well-written, easy to understand, and nicely illustrated.

      The sample size seems appropriate, and the data were collected and analyzed using solid and validated methodology.

      Overall, I find the topic of investigating factors that drive saccade choices highly interesting and relevant.

      Weaknesses:

      The authors obtain pupil size and saccade preference measures in two separate tasks. Relating these two measures is problematic because the computations that underly saccade preparation differ. In Experiment 1, the saccade is cued centrally, and has to be delayed until a "go-signal" is presented; In Experiment 2, an immediate saccade is executed to an exogenously cued peripheral target. The 'costs' in Experiment 1 (computing the saccade target location from a central cue; withholding the saccade) do not relate to Experiment 2. It is unfortunate, that measuring presaccadic pupil size directly in the comparatively more 'natural' Experiment 2 (where saccades did not have to be artificially withheld) does not seem to be possible. This questions the practical application of pupil size as an index of saccade effort

      The authors claim that the observed direction-specific 'saccade costs' obtained in Experiment 1 "were not mediated by differences in saccade properties, such as duration, amplitude, peak velocity, and landing precision (Figure 1e,f)". Saccade latency, however, was not taken into account here but is discussed for Experiment 2.

      The apparent similarity of saccade latencies and pupil size, however, is striking. Previous work shows shorter latencies for cardinal than oblique saccades, and shorter latencies for horizontal and upward saccades than downward saccades - directly reflecting the pupil sizes obtained in Experiment 1 as well as in the authors' previous study (Koevoet et al., 2023, PsychScience).

      -

      The authors state that "from a costs-perspective, it should be efficient to not only adjust the number of saccades (non-specific), but also by cutting especially expensive directions the most (specific)". However, saccade targets should be selected based on the maximum expected information gain. If cognitive load increases (due to an additional task) an effective strategy seems to be to perform less - but still meaningful - saccades. How would it help natural orienting to selectively cut saccades in certain (effortful) directions? Choosing saccade targets based on comfort, over information gain, would result in overall more saccades to be made - which is non-optimal, also from a cost perspective.

      Overall, I am not sure what practical relevance the relation between pupil size (measured in a separate experiment) and saccade decisions has for eye movement research/vision science. Pupil size does not seem to be a straightforward measure of saccade effort. Saccade latency, instead, can be easily extracted in any eye movement experiment (no need to conduct a separate, delayed saccade task to measure pupil dilation), and seems to be an equally good index.

    1. Reviewer #2 (Public Review):

      Summary:

      In this study, Vicaro et al. aimed to quantify and characterize mosaic mutations in human sporadic Alzheimer's disease (AD) brain samples. They focused on three broad classes of brain cells, neurons that express the marker NeuN, microglia that express the marker PU.1, and double-negative cells that presumably comprise all other brain cell types, including astrocytes, oligodendrocytes, oligodendrocyte progenitor cells, and endothelial cells. The authors find an enrichment of potentially pathogenic somatic mutations in AD microglia compared to controls, with MAPK pathway genes being particularly enriched for somatic mutations in those cells. The authors report a striking enrichment for mutations in the gene CBL and use in vitro functional assays to show that these mutations indeed induce MAPK pathway activation.

      The current state of the AD and somatic mutation fields puts this work into context. First, AD is a devastating disease whose prevalence is only increasing as the population of the U.S. is aging, necessitating the investigation of novel features of AD to identify new therapeutic opportunities. Second, microglia have recently come into focus as important players in AD pathogenesis. Many AD risk genes are selectively expressed in microglia, and microglia from AD brain samples show a distinct transcriptional profile indicating an inflammatory phenotype. The authors' previous work shows that a genetic mouse model of mosaic BRAF activation in macrophages (including microglia) displays a neurodegenerative phenotype similar to AD (Mass et al., 2017, doi:10.1038/nature23672). Third, new technological developments have allowed for identifying mosaic mutations present in only a small fraction of or even single cells. Together, these data form a rationale for studying mosaic mutations in microglia in AD. In light of the authors' findings regarding MAPK pathway gene somatic mutations, it is also important to note that MAPK has previously been implicated in AD neuroinflammation in the literature.

      Strengths:

      The study demonstrated several strengths.

      Firstly, the authors used two methods to identify mosaic mutations:<br /> (1) deep (~1,100x) DNA sequencing of a targeted panel of 716 genes they hypothesized might, if mutated somatically, play a role in AD, and<br /> (2) deep (400x) whole-exome sequencing (WES) to identify clonal mosaics outside of those 716 genes.

      A second strength is the agreement between these experiments, where WES found many variants identified in the panel experiment, and both experiments revealed somatic mutations in MAPK pathway genes.

      Third, the authors demonstrated in several in vitro systems that many mutations they identified in MAPK genes activate MAPK signaling. Finally, the authors showed that in some human brain samples, single-cell gene expression analysis revealed that cells bearing a mosaic MAPK pathway mutation displayed dysregulated inflammatory signaling and dysregulation in other pathways. This single-cell analysis was in agreement with their in vitro analyses.

      Weaknesses:

      The study also showed some weaknesses. The sample size (45 AD donors and 44 controls) is small, reflected in the relatively modest effect sizes and p-values observed. This weakness is partially ameliorated by the authors' extensive molecular and functional validation of mutation candidates. Another weakness is the lack of discussion of whether the genes found to be mutated somatically in AD show any AD-risk alleles in the population. If they did, it would further support the authors' conclusions that they are playing a role in AD. Finally, as the authors point out, this study cannot conclude whether microglial mosaic mutations cause AD or are an effect of AD. Future studies may shed more light on this important question.

      Conclusions and Impact:

      Considering the study's aims, strengths, and weaknesses, I conclude that the authors achieved their goal of characterizing the role of mosaic mutations in human AD. Their data strongly suggest that mosaic MAPK mutations in microglia are associated with AD. The impacts of this study remain to be seen, but they could include attempts to target CBL or other mutated genes in the treatment of AD. This work also suggests a similar approach to identifying potentially causative somatic mutations in other neurodegenerative diseases.

    1. Reviewer #2 (Public Review):

      Summary:

      This is a very interesting paper that leveraged several publicly available datasets: invasive cortical recording in epilepsy patients, functional and structural connectomic data, and PET data related to dopaminergic and gaba-ergic synapses. These were combined to create a unified hypothesis of beta band oscillatory activity in the human brain. They show that beta frequency activity is ubiquitous, not just in sensorimotor areas, and cortical regions where beta predominated had high connectivity to regions high in dopamine re-update.

      Strengths:

      The authors leverage and integrate three publicly available human brain datasets in a creative way. While these public datasets are powerful tools for human neuroscience, it is innovative to combine these three types of data into a common brain space to generate novel findings and hypotheses. Findings are nicely controlled by separately examining cortical regions where alpha predominates (which have a different connectivity pattern). GABA uptake from PET studies is used as a control for the specificity of the relationship between beta activity and dopamine uptake. There is much interest in synchronized oscillatory activity as a mechanism of brain function and dysfunction, but the field is short on unifying hypotheses of why particular rhythms predominate in particular regions. This paper contributes nicely to that gap. It is ambitious in generating hypotheses, particularly that modulation of beta activity may be used as a "proxy" for modulating phasic dopamine release.

      Weaknesses:

      As the authors point out, the use of normative data is excellent for exploring hypotheses but does not address or explore individual variations which could lead to other insights. It is also biased to resting state activity; maps of task-related activity (if they were available) might show different findings.

      The figures, results, introduction, and methods are admirably clear and succinct but the discussion could be both shorter and more convincing.

    1. Reviewer #2 (Public Review):

      Summary:

      Recent studies have identified specific regions within the occipito-temporal cortex as part of a broader fronto-parietal, domain-general, or "multiple-demand" (MD) network that mediates fluid intelligence (gF). According to the abstract, the authors aim to explore the mechanistic roles of these occipito-temporal regions by examining GABA/glutamate concentrations. However, the introduction presents a different rationale: investigating whether area MT+ specifically, could be a core component of the MD network.

      Strengths:

      The authors provide evidence that GABA concentrations in MT+ and its functional connectivity with frontal areas significantly correlate with visuo-spatial intelligence performance. Additionally, serial mediation analysis suggests that inhibitory mechanisms in MT+ contribute to individual differences in a specific subtest of the Wechsler Adult Intelligence Scale, which assesses visuo-spatial aspects of gF.

      Weaknesses:

      While the findings are compelling and the analyses robust, the study's rationale and interpretations need strengthening. For instance, Assem et al. (2020) have previously defined the core and extended MD networks, identifying the occipito-temporal regions as TE1m and TE1p, which are located more rostrally than MT+. Area MT+ might overlap with brain regions identified previously in Fedorenko et al., 2013, however the authors attribute these activations to attentional enhancement of visual representations in the more difficult conditions of their tasks. For the aforementioned reasons, It is unclear why the authors chose MT+ as their focus. A stronger rationale for this selection is necessary and how it fits with the core/extended MD networks.

      Moreover, although the study links MT+ inhibitory mechanisms to a visuo-spatial component of gF, this evidence alone may not suffice to position MT+ as a new core of the MD network. The MD network's definition typically encompasses a range of cognitive domains, including working memory, mathematics, language, and relational reasoning. Therefore, the claim that MT+ represents a new core of MD needs to be supported by more comprehensive evidence.

    1. Reviewer #2 (Public Review):

      Summary:

      This study takes advantage of multiple methodological advances to perform layer-specific staining of cortical neurons and tracking of their axons to identify the pattern of their projections. This publication offers a mesoscale view of the projection patterns of neurons in the whisker primary and secondary somatosensory cortex. The authors report that, consistent with the literature, the pattern of projection is highly different across cortical layers and subtype, with targets being located around the whole brain. This was tested across 6 different mouse types that expressed a marker in layer 2/3, layer 4, layer 5 (3 sub-types) and layer 6.<br /> Looking more closely at the projections from primary somatosensory cortex into the primary motor cortex, they found that there was a significant spatial clustering of projections from topographically separated neurons across the primary somatosensory cortex. This was true for neurons with cell bodies located across all tested layers/types.

      Strengths:

      This study successfully looks at the relevant scale to study projection patterns, which is the whole brain. This is achieved thanks to an ambitious combination of mouse lines, immuno-histochemistry, imaging and image processing, which results in a standardized histological pipeline that processes the whole-brain projection patterns of layer-selected neurons of the primary and secondary somatosensory cortex.<br /> This standardization means that comparisons between cell-types projection patterns are possible and that both the large-scale structure of the pattern and the minute details of the intra-areas pattern are available.<br /> This reference dataset and the corresponding analysis code are made available to the research community.

      Weaknesses:

      One major question raised by this dataset is the risk of missing axons during the post-processing step. Indeed, it appears that the control and training efforts have focused on the risk of false positives (see Figure 1 supplementary panels). And indeed, the risk of overlooking existing axons in the raw fluorescence data id discussed in the article.

      Based on the data reported in the article, this is more than a risk. In particular, Figure 2 shows an example Rbp4-L5 mouse where axonal spread seems massive in Hippocampus, while there is no mention of this area in the processed projection data for this mouse line.

      Similarily, the Ntsr1-L6CT example shows a striking level of fluorescence in Striatum, that does not reflect in the amount of axons that are detected by the algorithms in the next figures.<br /> These apparent discrepancies may be due to non axonal-specific fluorescence in the samples. In any case, further analysis of such anatomical areas would be useful to consolidate the valuable dataset provided by the article.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors re-analyse MEG data from a speech production and perception study and extend their previous Granger causality analysis to a larger number of cortical-cortical and in particular cortical-subcortical connections. Regions of interest were defined by means of a meta-analysis using Neurosynth.org and connectivity patterns were determined by calculating directed influence asymmetry indices from the Granger causality analysis results for each pair of brain regions. Abbasi et al. report feedforward signals communicated via fast rhythms and feedback signals via slow rhythms below 40 Hz, particularly during speaking. The authors highlight one of these connections between the right cerebellum lobule VI and auditory association area A5, where in addition the connection strength correlates negatively with the strength of speech tracking in the theta band during speaking (significant before multiple comparison correction). Results are interpreted within a framework of active inference by minimising prediction errors.

      While I find investigating the role of cortical-subcortical connections in speech production and perception interesting and relevant to the field, I am not yet convinced that the methods employed are fully suitable to this endeavour or that the results provide sufficient evidence to make the strong claim of dissociation of bottom-up and top-down information flow during speaking in distinct frequency bands.

      Strengths:

      The investigation of electrophysiological cortical-subcortical connections in speech production and perception is interesting and relevant to the field. The authors analyse a valuable dataset, where they spent a considerable amount of effort to correct for speech production-related artefacts. Overall, the manuscript is well-written and clearly structured.

      Weaknesses:

      The description of the multivariate Granger causality analysis did not allow me to fully grasp how the analysis was performed and I hence struggled to evaluate its appropriateness.<br /> Knowing that (1) filtered Granger causality is prone to false positives and (2) recent work demonstrates that significant Granger causality can simply arise from frequency-specific activity being present in the source but not the target area without functional relevance for communication (Schneider et al. 2021) raises doubts about the validity of the results, in particular with respect to their frequency specificity. These doubts are reinforced by what I perceive as an overemphasis on results that support the assumption of specific frequencies for feedforward and top-down connections, while findings not aligning with this hypothesis appear to be underreported. Furthermore, the authors report some main findings that I found difficult to reconcile with the data presented in the figures. Overall, I feel the conclusions with respect to frequency-specific bottom-up and top-down information flow need to be moderated and that some of the reported findings need to be checked and if necessary corrected.

      Major points

      (1) I think more details on the multivariate GC approach are needed. I found the reference to Schaum et al., 2021 not sufficient to understand what has been done in this paper. Some questions that remained for me are:

      (i) Does multivariate here refer to the use of the authors' three components per parcel or to the conditioning on the remaining twelve sources? I think the latter is implied when citing Schaum et al., but I'm not sure this is what was done here?

      If it was not: how can we account for spurious results based on indirect effects?

      (ii) Did the authors check whether the GC of the course-target pairs was reliably above the bias level (as Schaum et. al. did for each condition separately)? If not, can they argue why they think that their results would still be valid? Does it make sense to compute DAIs on connections that were below the bias level? Should the data be re-analysed to take this concern into account?

      (iii) You may consider citing the paper that introduced the non-parametric GC analysis (which Schaum et al. then went on to apply): Dhamala M, Rangarajan G, Ding M. Analyzing Information Flow in Brain Networks with Nonparametric Granger Causality. Neuroimage. 2008; 41(2):354-362. https://doi.org/10.1016/j.neuroimage.2008.02. 020

      (2) GC has been discouraged for filtered data as it gives rise to false positives due to phase distortions and the ineffectiveness of filtering in the information-theoretic setting as reducing the power of a signal does not reduce the information contained in it (Florin et al., 2010; Barnett and Seth, 2011; Weber et al. 2017; Pinzuti et al., 2020 - who also suggest an approach that would circumvent those filter-related issues). With this in mind, I am wondering whether the strong frequency-specific claims in this work still hold.

      (3) I found it difficult to reconcile some statements in the manuscript with the data presented in the figures:

      (i) Most notably, the considerable number of feedforward connections from A5 and STS that project to areas further up the hierarchy at slower rhythms (e.g. L-A5 to R-PEF, R-Crus2, L CB6 L-Tha, L-FOP and L-STS to R-PEF, L-FOP, L-TOPJ or R-A5 as well as R-STS both to R-Crus2, L-CB6, L-Th) contradict the authors' main message that 'feedback signals were communicated via slow rhythms below 40 Hz, whereas feedforward signals were communicated via faster rhythms'. I struggled to recognise a principled approach that determined which connections were highlighted and reported and which ones were not.

      (ii) "Our analysis also revealed robust connectivity between the right cerebellum and the left parietal cortex, evident in both speaking and listening conditions, with stronger connectivity observed during speaking. Notably, Figure 4 depicts a prominent frequency peak in the alpha band, illustrating the specific frequency range through which information flows from the cerebellum to the parietal areas." There are two peaks discernible in Figure 4, one notably lower than the alpha band (rather theta or even delta), the other at around 30 Hz. Nevertheless, the authors report and discuss a peak in the alpha band.

      (iii) In the abstract: "Notably, high-frequency connectivity was absent during the listening condition." and p.9 "In contrast with what we reported for the speaking condition, during listening, there is only a significant connectivity in low frequency to the left temporal area but not a reverse connection in the high frequencies."<br /> While Fig. 4 shows significant connectivity from R-CB6 to A5 in the gamma frequency range for the speaking, but not for the listening condition, interpreting comparisons between two effects without directly comparing them is a common statistical mistake (Makin and Orban de Xivry). The spectrally-resolved connectivity in the two conditions actually look remarkably similar and I would thus refrain from highlighting this statement and indicate clearly that there were no significant differences between the two conditions.

      (iv) "This result indicates that in low frequencies, the sensory-motor area and cerebellum predominantly transmit information, while in higher frequencies, they are more involved in receiving it."<br /> I don't think that this statement holds in its generality: L-CB6 and R-3b both show strong output at high frequencies, particularly in the speaking condition. While they seem to transmit information mainly to areas outside A5 and STS these effects are strong and should be discussed.

      (4) "However, definitive conclusions should be drawn with caution given recent studies raising concerns about the notion that top-down and bottom-up signals can only be transmitted via separate frequency channels (Ferro et al., 2021; Schneider et al., 2021; Vinck et al., 2023)."

      I appreciate this note of caution and think it would be useful if it were spelled out to the reader why this is the case so that they would be better able to grasp the main concerns here. For example, Schneider et al. make a strong point that we expect to find Granger-causality with a peak in a specific frequency band for areas that are anatomically connected when the sending area shows stronger activity in that band than the receiving one, simply because of the coherence of a signal with its own linear projection onto the other area. The direction of a Granger causal connection would in that case only indicate that one area shows stronger activity than the other in the given frequency band. I am wondering to what degree the reported connectivity pattern can be traced back to regional differences in frequency-specific source strength or to differences in source strength across the two conditions.

    1. Reviewer #2 (Public Review):

      Summary:

      Han et al. present a manuscript focusing on difference metabolism and the regulatory circuits controlling it in C. elegans fed two bacterial diets. In the first three figures and a half figures, using a combination of methods, they investigate lipid levels, changes in gene expression and genetic assays to come to the conclusion that vitamin B12 acts through the S-adenosylmethioine synthase sams-1 to perturb phosphatidylcholine levels, which in turn stimulate the C. elegans ortholog of the SREBP transcription factors to activate fatty acid synthesis genes such as fat-7/SCD1. Thus, while connections between diet, metabolic pathways and gene regulation is of general interest, this study largely confirms the work of others without direct credit in many instances, then fails to develop a more novel cell non-autonomous link between the pathways in the last two figures. Thus, this study would be expected to have a useful impact on the field, if it can be placed in context of previously published work.

      Strengths:

      (1) Connections between diet, metabolic pathways and gene regulation is of general interest<br /> (2) Figures 1-4 confirm data/observations from previously published work from MacNeil, et al. Cell 2015; Walker, et al. Cell 2011; Svensk, et al. PLoS Genetics 2013; Smulan, et al. Cell Reports, 2016; Giese, et al. eLife 2020 and Qin, et al. Cell Reports 2022..<br /> (3) The data in figures 5 and 6 showing importance of non-cell autonomous effects on metabolism.

      Weaknesses:

      (1) In order to differentiate their study from previous work, it seems that the authors try to make the argument that PC is higher in Comomonas than E. coli, therefore they are looking at repression of SBP-1-dependent function, however, the pairing of the diets is arbitrary, and the comparisons could easily be reversed. They are simply comparing a higher to a lower level of PC, rather than a basal to a lower, thus the concepts are the same. In addition, they fail to cite the larger body of literature linking phospholipid balance to SREBP function. For example, multiple studies in mammalian models link phospholipid balance, not just lowered PC, to SREBP function: Lim, Genes and Dev 2011; Wang, et al. Cell Stem Cell, 2018; Rong, et al. J Clin Invest 2017; Smulan et al, Cell Reports, 2016; Dobrosotskaya, Science. 2002 and recently, Rong, et al. Cell Met 2024.

      (2) Figure 1: For example, the data in figure 1, shows measures of lipid content, RNA seq showing changes in metabolic enzymes such as fat-7/SCD-1 and lipid levels have already been shown in MacNeil, et al. Cell 2013 (lipid levels and gene expression changes) and the lipid levels in Comomonas vs E. coli were published in Ditot, et al. Nature Communications 2022 by Dr. Marian Walhout's lab.

      (3) Figure 2/3: In Figure 2 and 3, they use a genetic screen to find regulators of fat-7/scd1 expression, and unsurprisingly, pull out genes with known to regulate this pathway. The authors go on to show that changes in SAM lead to changes in PC, and affect SBP-1/SREBP-1-dependent lipogenesis. This is a well described pathway from publications by the Walhout lab, Dr. Amy Walker's lab and Dr. Marc Pilon's lab (Walker, et al. Cell 2011; Svensk, et al. PLoS Genetics 2013; Smulan, et al. Cell Reports, 2016; Giese, et al. eLife 2020) in addition to a recent publication, Qin, et al. Cell Reports 2022. While some of these studies are cited in other places in the manuscript, the authors describe their results as "discovery", then fail to cite the relevant studies at those points (selected examples below

      (4) Selected examples of citation issues:

      a) Selected example: pg 6: "To understand the mechanism underlying the regulation of host lipid content triggered by DA, we examined the gene expression changes elicited by the two different bacterial diets in young adult animals by RNA-seq...In particular, genes related to the biosynthesis of unsaturated fatty acids showed a significant decrease in expression in DA-fed worms. For example, the delta-(9) fatty acid desaturases, fat-5 and fat-7, (which convert fatty acids 16:0 to 16:1n7 and 18:0 to 18:1n9, respectively32) decreased"

      MacNeil et al Cell 2013 published a transcriptomics comparing young adult DA and Op50, which demonstrated decreases in fat-5 and fat-7. While MacNeil is cited in other parts of the paper, since the authors have performed a highly similar experiment and obtained similar results, this should be described as confirming the MacNeil study rather than as new data.

      b) Selected Example: pg 10: "To determine whether PC levels have a causal effect on organismal lipid content, we supplemented worm diets with choline, the PC precursor, and uncovered a dose-dependent decrease in lipid content as measured by O.R.O staining (Figure 3B)."

      Addition of choline to supplement defects in PC synthesis was first shown by Brendza, et al. Biochem J 2007. It was confirmed in Walker, et al. 2011, and further confirmation of PC rescue show in Ding, et al. 2015. The Brendza study is not cited at all and while studies from the Walker lab are cited in other places, the authors omit that changes in the DA diet are the same as changes seen when choline rescues PC loss from other perturbations.

      c) Selected Example: pg 9: "Notably, DA has been reported as a B12-rich bacterium compared to OP16, hinting at the possibility that the DA diet might boost dietary B12 levels."

      Reference 16 is Watson, et al. Cell 2015 where the Walhout lab demonstrates that DA does in fact act through the diet to alter the Met/SAM cycle and other B12 dependent processes in C. elegans. This paper, along with MacNeil above broke ground in linking B12 and the Met/SAM cycle to specific phenotypes in C. elegans, which was followed up by extensive work from the Walhout lab on this cycle, thus, it seems odd that the authors describe their own data as "hinting" at this connection.

      d) Selected example: pg 17: "Indeed, this is further supported by our observation that mutants of histone methyltransferases SET-2 and SET-30 (which install H3K4me1 and H3K4me2, respectively) exhibited elevated lipid content on DA diet (data not shown). Notably, while both set-2 and set-30 mutants had this effect, only set-2 appears to control fat-7 expression (data not shown)". Extensive work from Dr. Anne Brunet's lab (Greer, et al. Nature 2010; Greer, et al. Nature 2011; Han, et al. Nature 2017) link set-2 and H3K4 methylation to lipid accumulation and fat-7. The authors fail to cite these studies.

    1. Reviewer #2 (Public Review):

      Summary:

      The study by Li et al. aimed to demonstrate the role of the G𝛾13-mediated signal transduction pathway in tuft cell-driven inflammation resolution and repairing injured lung tissue. The authors showed the reduced number of tuft cells in the parenchyma of G𝛾13 null lungs following viral infection. Mice with a G𝛾13 null mutation showed increased lung damage and heightened macrophage infiltration when exposed to the H1N1 virus. Their further findings suggested that lung inflammation resolution, epithelial barrier and fibrosis were worsen in G𝛾13 null mutants.

      Strengths:

      The revised study carefully analyzed phenotypes in mice lacking G𝛾13 in response to viral infection, providing further support that G𝛾13+ tuft cells play a role in the resolution of inflammation and injury repair.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript shows detailed evidence about the role of cohesin regulator in rice meiosis and mitosis

      Strengths:

      There is a very clear mechanism for its role during replication

      Weaknesses:

      The authors did not consider to create heterozygous mutants for the replication fork.

      April 15. Revisions read.

    1. Reviewer #2 (Public Review):

      The authors identify a third component in the interaction between myosin Va and melanophilin- an interaction between a 32-residue sequence encoded by exon-g in myosin Va and melanophilin's actin binding domain. This interaction has implications for how melanosome motility may be regulated.

      The authors have now included some necessary controls that were requested. In terms of adding new information to increase the significance and impact of the paper, they added a single affinity measurement. Unfortunately, it did not involve Exon G specifically. Moreover, they did not add any new mechanistic or functional data to provide a more conceptual advance. For example, is the Exon G interaction regulated by phosphorylation? Is this what dictates the choice between Mlph's actin binding domain (ABD) binding to actin or to exon-G. How does local actin concentration influence this decision. What changes regarding melanosome dynamics in cells between these two alternatives? Do in vitro reconstitution assays show that binding to Exon-G instead of actin affects the processivity of a Rab27a/Myosin 5a/Mlph transport complex? Finally, while the authors make clear in the abstract and text that they are just identifying a third component that mediates the Melanophilin-dependent association of myosin-5a with melanosomes, the title gives the impression that they identified all three in this manuscript. I really think the title should be changed to something like Identification of a third component that mediates the Melanophilin-dependent association of myosin-5a with melanosomes, as this accurately reflects what is new in this work.

    1. Reviewer #2 (Public Review):

      Summary:

      In this new paper, the authors used biochemical, structural, and biophysical methods to elucidate the mechanisms by which IP4, the PIP3 headgroup, can induce an autoinhibit form of P-Rex1 and propose a model of how PIP3 can trigger long-range conformational changes of P-Rex1 to relieve this autoinhibition. The main findings of this study are that a new P-Rex1 autoinhibition is driven by an IP4-induced binding of the PH domain to the DH domain active site and that this autoinhibit form stabilized by two key interactions between DEP1 and DH and between PH and IP4P 4-helix bundle (4HB) subdomain. Moreover, they found that the binding of phospholipid PIP3 to the PH domain can disrupt these interactions to relieve P-Rex1 autoinhibition.

      Strengths:

      The study provides good evidence that binding of IP4 to the P-Rex1 PH domain can make the two long-range interactions between the catalytic DH domain and the first DEP domain, and between the PH domain and the C-terminal IP4P 4HB subdomain that generate a novel P-Rex1 autoinhibition mechanism. This valuable finding adds an extra layer of P-Rex1 regulation (perhaps in the cytoplasm) to the synergistic activation by phospholipid PIP3 and the heterotrimeric Gβγ subunits at the plasma membrane. Overall, this manuscript's goal sounds interesting, the experimental data were carried out carefully and reliably.

      Weakness:

      The set of experiments with the disulfide bond S235C/M244C caused a bit of confusion for interpretation, it should be moved into the supplement, and the text and Figure 4 were altered accordingly.

    1. Reviewer #2 (Public Review):

      Summary:

      This study represents an ambitious endeavor to comprehensively analyze the role of miR-199a/b-5p and its networks in cartilage formation. By conducting experiments that go beyond in vitro MSC differentiation models, more robust conclusions can be achieved.

      Strengths:

      This research investigates the role of miR-199a/b-5p during chondrogenesis using bioinformatics and in vitro experimental systems. The significance of miRNAs in chondrogenesis and OA is crucial, warranting further research, and this study contributes novel insights.

      Weaknesses:

      While miR-140 and miR-455 are used as controls, these miRNAs have been demonstrated to be more relevant to Cartilage Homeostasis than chondrogenesis itself. Their deficiency has been genetically proven to induce Osteoarthritis in mice. Therefore, the results of this study should be considered in comparison with these existing findings.

    1. Reviewer #2 (Public Review):

      Summary:

      This manuscript mainly studied the biological effect of tenascin XB (TNXB) on hemophilic arthropathy (HA) progression. Using bioinformatic and histopathological approaches, the authors identified the novel candidate gene TNXB for HA. Next, authors showed that TNXB knockdown lead to chondrocyte apoptosis, matrix degeneration and subchondral bone loss in vivo/vitro. Furthermore, AKT agonist promoted extracellular matrix synthesis and prevented apoptosis in TNXB knockdown chondrocytes.

      Strengths:

      In general, this study significantly advances our understanding of HA pathogenesis. The authors utilize comprehensive experimental strategies to demonstrate the role of TNXB in cartilage degeneration associated with HA. The results are clearly presented, and the conclusions appear appropriate.

      Weaknesses:

      Additional clarification is required regarding the gender of the F8-/- mouse in the study. Is the mouse male or female?

    1. Reviewer #2 (Public Review):

      Summary:

      This study takes a new approach to studying the role of corticofugal projections from auditory cortex to inferior colliculus. The authors performed two-photon imaging of cortico-recipient IC neurons during a click detection task in mice with and without lesions of auditory cortex. In both groups of animals, they observed similar task performance and relatively small differences in the encoding of task-response variables in the IC population. They conclude that non-cortical inputs to the IC provide can substantial task-related modulation, at least when AC is absent.

      Strengths:

      This study provides valuable new insight into big and challenging questions around top-down modulation of activity in the IC. The approach here is novel and appears to have been executed thoughtfully. Thus, it should be of interest to the community.

      Weaknesses:

      There are however, substantial concerns about the interpretation of the findings and limitations to the current analysis. In particular, Analysis of single unit activity is absent, making interpretation of population clusters and decoding less interpretable. These concerns should be addressed to make sure that the results can be interpreted clearly in an active field that already contains a number of confusing and possibly contradictory findings.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors' report describes a novel vaccine platform derived from a newly discovered organelle called a migrasome. First, the authors address a technical hurdle in using migrasomes as a vaccine platform. Natural migrasome formation occurs at low levels and is labor intensive, however, by understanding the molecular underpinning of migrasome formation, the authors have designed a method to make engineered migrasomes from cultured, cells at higher yields utilizing a robust process. These engineered migrasomes behave like natural migrasomes. Next, the authors immunized mice with migrasomes that either expressed a model peptide or the SARS-CoV-2 spike protein. Antibodies against the spike protein were raised that could be boosted by a 2nd vaccination and these antibodies were functional as assessed by an in vitro pseudoviral assay. This new vaccine platform has the potential to overcome obstacles such as cold chain issues for vaccines like messenger RNA that require very stringent storage conditions.

      Strengths:

      The authors present very robust studies detailing the biology behind migrasome formation and this fundamental understanding was used to form engineered migrasomes, which makes it possible to utilize migrasomes as a vaccine platform. The characterization of engineered migrasomes is thorough and establishes comparability with naturally occurring migrasomes. The biophysical characterization of the migrasomes is well done including thermal stability and characterization of the particle size (important characterizations for a good vaccine).

      Weaknesses:

      With a new vaccine platform technology, it would be nice to compare them head-to-head against a proven technology. The authors would improve the manuscript if they made some comparisons to other vaccine platforms such as a SARS-CoV-2 mRNA vaccine or even an adjuvanted recombinant spike protein. This would demonstrate a migrasome-based vaccine could elicit responses comparable to a proven vaccine technology. Additionally, understanding the integrity of the antigens expressed in their migrasomes could be useful. This could be done by looking at functional monoclonal antibodies binding to their migrasomes in a confocal microscopy experiment.