- Sep 2024
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In the article by Dearlove et al., the authors present evidence in strong support of nucleotide ubiquitylation by DTX3L, suggesting it is a promiscuous E3 ligase with capacity to ubiquitylate ADP ribose and nucleotides. The authors include data to identify the likely site of attachment and the requirements for nucleotide modification.
While this discovery potentially reveals a whole new mechanism by which nucleotide function can be regulated in cells, there are some weaknesses that should be considered. Is there any evidence of nucleotide ubiquitylation occurring cells? It seems possible, but evidence in support of this would strengthen the manuscript. The NMR data could also be strengthened as the binding interface is not reported or mapped onto the structure/model, this seems of considerable interest given that highly related proteins do have the same activity.
The paper is for the most part well well-written and is potentially highly significant
Comments on revised version:
The revised manuscript has addressed many of the concerns raised and clarified a number of points. As a result the manuscript is improved.
The primary concern that remains is the absence of biological function for Ub-ssDNA/RNA and the inability to detect it in cells. Despite this the manuscript will be of interest to those in the ubiquitin field and will likely provoke further studies and the development of tools to better assess the cellular relevance. As a result this manuscript is important.
Minor issue:<br /> Figure 1A - the authors have now included the constructs used but it would be more informative if the authors lined up the various constructs under the relevant domains in the full-length protein.
-
Reviewer #2 (Public Review):
The manuscript by Dearlove et al. entitled "DTX3L ubiquitin ligase ubiquitinates single-stranded nucleic acids" reports a novel activity of a DELTEX E3 ligase family member, DTX3L, which can conjugate ubiquitin to the 3' hydroxyl of single-stranded oligonucleotides via an ester linkage. The findings that unmodified oligonucleotides can act as substrates for direct ubiquitylation and the identification of DTX3 as the enzyme capable of performing such oligonucleotide modification are novel, intriguing, and impactful because they represent a significant expansion of our view of the ubiquitin biology. The authors perform a detailed and diligent biochemical characterization of this novel activity, and key claims made in the article are well supported by experimental data. However, the studies leave room for some healthy skepticism about the physiological significance of the unique activity of DTX3 and DTX3L described by the authors because DTX3/DTX3L can also robustly attach ubiquitin to the ADP ribose moiety of NAD or ADP-ribosylated substrates. The study could be strengthened by a more direct and quantitative comparison between ubiquitylation of unmodified oligonucleotides by DTX3/DTX3L with the ubiquitylation of ADP-ribose, the activity that DTX3 and DTX3L share with the other members of the DELTEX family.
Comment on revised version:
In my opinion, reviewers' comments are constructively addressed by the authors in the revised manuscript, which further strengthens the revised submission and makes it an important contribution to the field. Specifically, the authors perform a direct quantitative comparison of two distinct ubiquitylation substrates, unmodified oligonucleotides and fluorescently labeled NADH and report that kcat/Km is 5-fold higher for unmodified oligos compared to NADH. This observation suggests that ubiquitylation of unmodified oligos is not a minor artifactual side reaction in vitro and that unmodified oligonucleotides may very well turn out to be the physiological substrates of the enzyme. However, the true identity of the physiological substrates and the functionally relevant modification site(s) remain to be established in further studies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Tian et al. describes how TIPE regulates melanoma progression, stemness, and glycolysis. The authors link high TIPE expression to increased melanoma cell proliferation and tumor growth. TIPE causes dimerization of PKM2, as well as translocation of PKM2 to the nucleus, thereby activating HIF-1alpha. TIPE promotes the phosphorylation of S37 on PKM2 in an ERK-dependent manner. TIPE is shown to increase stem-like phenotype markers. The expression of TIPE is positively correlated with the levels of PKM2 Ser37 phosphorylation in murine and clinical tissue samples. Taken together, the authors demonstrate how TIPE impacts melanoma progression, stemness, and glycolysis through dimeric PKM2 and HIF-1alpha crosstalk.
The authors manipulated TIPE expression using both shRNA and overexpression approaches throughout the manuscript. Using these models, they provide strong evidence of the involvement of TIPE in mediating PKM2 Ser37 phosphorylation and dimerization. The authors also used mutants of PKM2 at S37A to block its interaction with TIPE and HIF-1alpha. In addition, an ERK inhibitor (U0126) was used to block the phosphorylation of Ser37 on PKM2. The authors show how dimerization of PKM2 by TIPE causes nuclear import of PKM2 and activation of HIF-1alpha and target genes. Pyridoxine was used to induce PKM2 dimer formation, while TEPP-46 was used to suppress PKM2 dimer formation. TIPE maintains stem cell phenotypes by increasing expression of stem-like markers. Furthermore, the relationship between TIPE and Ser37 PKM2 was demonstrated in murine and clinical tissue samples.
The evaluation of how TIPE causes metabolic reprogramming can be better assessed using isotope tracing experiments and improved bioenergetic analysis.
-
Reviewer #2 (Public review):
In this article, Tian et al present a convincing analysis of the molecular mechanisms underpinning TIPE-mediated regulation of glycolysis and tumor growth in melanoma. The authors begin by confirming TIPE expression in melanoma cell lines and identify "high" and "low" expressing models for functional analysis. They show that TIPE depletion slows tumour growth in vivo, and using both knockdown and over expression approaches, show that this is associated with changes in glycolysis in vitro. Compelling data using multiple independent approaches is presented to support an interaction between TIPE and the glycolysis regulator PKM2, and over-expression of TIPE promoted nuclear translocation of PKM2 dimers. Mechanistically, the authors also demonstrate that PKM2 is required for TIPE-mediated activation of HIF1a transcriptional activity, as assessed using an HRE-promoter reporter assay, and that TIPE-mediated PKM2 dimerization is p-ERK dependent. Finally, the dependence of TIPE activity on PKM2 dimerization was demonstrated on tumor growth in vivo and in regulation of glycolysis in vitro, and ectopic expression of HIF1a could rescue inhibition of PKM2 dimerization in TIPE overexpressing cells and reduced induction of general cancer stem cell markers, showing a clear role for HIF1a in this pathway.
The detailed mechanistic analysis of TIPE mediated regulation of PKM2 to control aerobic glycolysis and tumor growth is a major strength of the study and provides new insights into the molecular mechanisms that underpin the Warburg effect in melanoma cells. The main conclusions of this paper are well supported by data, however further investigation of a potential oncogenic effect of TIPE in melanoma patients is warranted to support the tumor promoting role of TIPE identified in the experimental models. Analysis of patient samples showed a significant increase in TIPE protein levels in primary melanoma compared to benign skin tumours, and a further increase upon metastatic progression. Moreover, TIPE levels correlate with proliferation (Ki67) and hypoxia gene sets in the TCGA melanoma patient dataset. However, the authors note in the discussion that high TIPE expression associates with better survival outcomes in the TCGA melanoma patients and these data should be included in this paper. Further investigation of how TIPE-mediated regulation of glycolysis contributes to melanoma progression is warranted to confirm the authors claims of a potential oncogenic function. Regardless, the new insights into the molecular mechanisms underpinning TIPE-mediated aerobic glycolysis in melanoma are convincing and will likely generate interest in the cancer metabolism field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This manuscript uses PS-coated and IgG-opsonized targets to model the engulfment of apoptotic cells and pathogens. It demonstrates that differential activation of the respiratory burst accounts for variations in cell morphology, adhesion, and migration following phagocytosis of different particles. Specifically, reactive oxygen species produced by phagosomes containing IgG-opsonized targets activate Rho GTPases. This activation triggers Formin- and ERM-dependent compaction of the cortical actin network, leading to rounded cell morphology, reduced membrane ruffling, disassembly of podosomes, and decreased migration. Some of these findings are validated in cells exposed to pathogens or soluble MAMPs.
Strengths:
The manuscript presents well-executed and controlled experiments. It proposes an intriguing model to explain the distinct behaviors of myeloid cells when confronted with different phagocytic cargoes and offers fresh insights into immune surveillance.
Weaknesses:
Certain aspects of the proposed model require further experimental evidence. The significance of the cellular behavioral differences in response to various phagocytic cargoes warrants further exploration within physiological contexts.
Specific comments:
How do reactive oxygen species lead to an increase in Rho activation while simultaneously reducing Rac activity? The underlying molecular mechanisms remain unresolved, although potential regulatory pathways are discussed.
Given that the number of phagocytosed particles affects cell behavior (SF1), it is important to ensure that an equivalent number of particles are phagocytosed when comparing cells treated with PS-beads and IgG-beads (Figure 1a). How was this experimentally controlled, and how many particles are phagocytosed under each condition?
Why were experiments conducted in BMDM, Raw264.7, and PMN cells under different conditions? For Raw264.7 and PMN cells, cell behavior was only compared between those treated with IgG-RBC and untreated cells. What occurs to these cells when they are exposed to PS-beads as opposed to IgG-beads?
How long does it take for cells treated with IgG-beads to recover and regain their mobility and surveillance activity? Does this recovery occur following a reduction in reactive oxygen species production?
A contractile actin cortex usually requires the activity of both Formin and myosin II. It is a bit surprising that inhibitors of ROCK and myosin II, when added to Raw cells engulfing IgG-RBC, did not affect podosome disassembly. Is the cytoskeletal rearrangement observed in Figure 2 also independent of myosin II activity?
-
Reviewer #2 (Public review):
Summary:
The manuscript by Ferling et al. describes how phagocytosis of IgG but not PS-opsonized targets induces the cells to round up and disassemble their podosomes. The mechanism downstream of the FcR is then dissected. The authors show that RhoA-mediated actin polymerization is involved, as well as actin nucleators of the Formin family, but not ROCK or Myosin II. ERM proteins and ROS production play a role in podosome loss and RhoA activation. Similar observations were made after cells were put in contact with Candida albicans or with soluble LPS.
Strengths:
The manuscript is of very good scientific standards, based on solid cell biology and biochemistry approaches, both in a murine macrophage cell line and in murine primary macrophages. It reaches the criteria for a significant advance in the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The paper examined livestock abortion, as it is an important disease syndrome that affects productivity and livestock economies. If livestock abortion remains unexamined it poses risks to public health.
Several pathogens are associated with livestock abortions but across Africa however the livestock disease surveillance data rarely include information from abortion events, little is known about the aetiology and impacts of livestock abortions, and data are not available to inform prioritisation of disease interventions. Therefore the current study seeks to examine the issue in detail and proposes some solutions.
The study took place in 15 wards in northern Tanzania spanning pastoral, agropastoral and smallholder agro-ecological systems. The key objective is to investigate the causes and impacts of livestock abortion.
The data collection system was set up such that farmers reported abortion cases to the field officers of the Ministry of Livestock and Fisheries livestock<br /> The reports were made to the investigation teams. The team only included abortion of those that the livestock field officers could attend to within 72 hours of the event occurring.
Also a field investigation was carried out to collect diagnostic samples from aborted materials. In addition aborting dams and questionnaires were administer to collect data on herd/flock management. Laboratory diagnostic tests were carried out for a range of abortigenic pathogens
Over the period of the study 215 abortion events in cattle (n=71), sheep (n=44) and goats (n=100) were investigated. In all 49 investigated cases varied widely across wards, with three .The Aetiological attribution, achieved for 19.5% of cases through PCR-based diagnostics, was significantly affected by delays in field investigation.
The result also revealed that vaginal swabs from aborting dams provided a practical and sensitive source of diagnostic material for pathogen detection.
Livestock abortion surveillance can generate valuable information on causes of zoonotic disease outbreaks, and livestock reproductive losses and can identify important pathogens that are not easily captured through other forms of livestock disease surveillance. The study demonstrated the feasibility of establishing an effective reporting and investigation system that could be implemented across a range of settings, including remote rural areas,
Strengths:
The paper combines both science and socio economic methodology to achieve the aim of the study.
The methodology was well presented and the sequence was great. The authors explain where and how the data was collected. Figure 2 was used to describe the study area which was excellently done. The section on Investigation of cases was well written. The sample analysis was also well written. The authors devoted a section to summarizing the investigated cases and description of the livestock 221-study population. The logic model has been well presented
Weaknesses:
All the weaknesses identified have been resolved by the the authors
-
Reviewer #2 (Public review):
The paper provides a comprehensive analysis of the importance of livestock abortion surveillance in Tanzania. The authors aim to highlight the significance of this surveillance system in identifying disease priorities and guiding interventions to mitigate the impact of livestock abortions on both animal and human health.
Summary:
The paper begins by discussing the context of livestock farming in Tanzania and the significant economic and social impact of livestock abortions. The authors then present a detailed overview of the livestock abortion surveillance system in Tanzania, including its objectives, methods, and data collection process. They analyze the data collected from this surveillance system over a specific period to identify the major causes of livestock abortions and assess their public health implications.
Evaluation:
Overall, this paper provides valuable insights into the importance of livestock abortion surveillance as a tool for disease prioritization and intervention planning in Tanzania. The authors effectively demonstrate the utility of this surveillance system in identifying emerging diseases, monitoring disease trends, and informing evidence-based interventions to control and prevent livestock abortions.
Strengths:
(1) Clear Objective: The paper clearly articulates its objective of highlighting the value of livestock abortion surveillance in Tanzania.
(2) Comprehensive Analysis: The authors provide a thorough analysis of the surveillance system, including its methodology, data collection process, and findings as seen in the supplementary files.
(3) Practical Implications: The paper discusses the practical implications of the surveillance system for disease control and public health interventions in Tanzania.
(4) Well-Structured: The paper is well-organized, with clear sections and subheadings that facilitate understanding and navigation.
All suggestions made for improvement of the manuscript have been appropriately effected.
Final Recommendation:
Overall, this paper makes a significant contribution to the literature on livestock abortion surveillance and its implications for disease control in Tanzania.
-
Reviewer #3 (Public review):
The authors delved into an important aspect of abortifacient diseases of livestock in Tanzania. The thoughts of the authors on the topic and its significance have been clarified. The number of wards in the study area, statistical selection of wards, type of questionnaire ie open or close ended. and statistical analyses of outcomes have been clearly elucidated in the manuscript. The exclusion criteria for two wards out of the fifteen wards mentioned in the text are clearly stated. Observations were from pastoral, agro-pastoral and small holder agro ecological farmers. Sample numbers or questionnaires attributed to the above farming systems correlate findings with management systems. The impacts of the research investigation output are clearly visible as to warrant intervention methods. The identified pathogens from laboratory investigation, particularly with the use of culture and PCR, as well as the zoonotic pathogens encountered are stated in the manuscript and the supplementary files.
In conclusion, based on the intent of the authors and content of this research, and the weight of the research topic, the seeming weaknesses in the critical data analysis observed have been clarified, to demonstrate cause, effect and impact.
The authors have carried out the necessary corrections.
The findings do imply that identification of some of the abortifacient of livestock in Tanzania will necessitate important interventions in the control of the diseases in the study area
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Deletion of the hrp2 and hrp3 loci in P. falciparum poses an immediate public health threat. This manuscript provides a more complete understanding of the dynamic nature with which these deletions are generated. By delving into the likely mechanisms behind their generation, the authors also provide interesting insight into general Plasmodium biology that can inform our broader understanding of the parasite's genomic evolution.
Strengths:
The sub-telomeric regions of P. falciparum (where hrp2 and hrp3 are located) are notoriously difficult to study with short-read sequence data. The authors take an appropriate, targeted approach toward studying the loci of interest, which includes read-depth analysis and local haplotype reconstruction. They additionally use both long-read and short-read data to validate their major findings. There is an extensive set of supplementary plots, which helps clarify several aspects of the data.
Weaknesses:
The revised version of this manuscript has helpfully expanded the details regarding methodology, however, publication of the tool PathWeaver (which is used for local haplotype reconstruction) remains in preparation.
-
Reviewer #2 (Public review):
This work investigates the mechanisms, patterns and geographical distribution of pfhrp2 and pfhrp3 deletions in Plasmodium falciparum. Rapid diagnostic tests (RDTs) detect P. falciparum histidine-rich protein 2 (PfHRP2) and its paralog PfHRP3 located in subtelomeric regions. However, laboratory and field isolates with deletions of pfhrp2 and pfhrp3 that can escape diagnosis by RDTs are spreading in some regions of Africa. They find that pfhrp2 deletions are less common and likely occurs through chromosomal breakage with subsequent telomeric healing. Pfhrp3 deletions are more common and show three distinct patterns: loss of chromosome 13 from pfhrp3 to the telomere with evidence of telomere healing at breakpoint (Asia; Pattern 13-); duplication of a chromosome 5 segment containing pfhrp1 on chromosome 13 through non-allelic homologous recombination (NAHR) (Asia; Pattern 13-5++); and the most common pattern, duplication of a chromosome 11 segment on chromosome 13 through NAHR (Americas/Africa; Pattern 13-11++). The loss of these genes impact the sensitivity od RDTs, and knowing these patterns and geographic distribution makes it possible to make better decisions for malaria control.
Comments on latest version:
The authors answered all my questions.
-
Reviewer #3 (Public review):
The study provides a detailed analysis of the chromosomal rearrangements related to the deletions of histidine-rich protein 2 (pfhrp2) and pfhrp3 genes in P. falciparum that have clinical significance since malaria rapid diagnostic tests detect these parasite proteins. A large number of publicly available short sequence reads for whole-genome of the parasite were analyzed and data on coverage and on discordant mapping allowed to identify deletions, duplications and chromosomal rearrangements related to pfhrp3 deletions. Long-read sequences showed support for the presence of a normal chromosome 11 and a hybrid 13-11 chromosome lacking pfhrp3 in some of the pfhrp3-deleted parasites. The findings support that these translocations have repeatedly occurred in natural populations. The authors discuss the implications of these findings and how they support or not previous hypothesis on the emergence of these deletions and the possible selective pressures involved.
The genomic regions where these genes are located are challenging to study since they are highly repetitive and paralogous and the use of long read sequencing allowed to span the duplicated regions, giving support to the identification of the hybrid 13-11 chromosome.
All publicly available whole-genome sequences of the malaria parasite from around the world were analysed which allowed an overview of the worldwide variability, even though this analysis is biased by the availability of sequences, as the authors recognize.
Despite the reduced sample size, the detailed analysis of haplotypes and identification of location of breakpoints gives support to a single origin event for the 13-5++ parasites.
The analysis of haplotype variation across the duplicated chromosome-11 segment identified breakpoints at varied locations that support multiple translocation events in natural populations. The authors suggest these translocations may be occurring at high frequency in meiosis in natural populations but strongly selected against in most circumstances, which remains to be tested.
In this new version, the authors have addressed the points raised previously and adequately discuss the limitations of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public review):
In this manuscript, Magnuson and colleagues investigate the meiotic functions of ARID1A, a putative DNA binding subunit of the SWI/SNF chromatin remodeler BAF. The authors develop a germ cell specific conditional knockout (cKO) mouse model using Stra8-cre and observe that ARID1A-deficient cells fail to progress beyond pachytene, although due to inefficiency of the Stra8-cre system the mice retain ARID1A-expressing cells that yield sperm and allow fertility. Because ARID1A was found to accumulate at the XY body late in Prophase I, the authors suspected a potential role in meiotic silencing and by RNAseq observe significant misexpression of sex-linked genes that typically are silenced at pachytene. They go on to show that ARID1A is required for exclusion of RNA PolII from the sex body and for limiting promoter accessibility at sex-linked genes, consistent with a meiotic sex chromosome inactivation (MSCI) defect in cKO mice. The authors proceed to investigate the impacts of ARID1A on H3.3 deposition genome-wide. H3.3 is known be regulated by ARID1A and is linked to silencing, and here the authors find that upon loss of ARID1A, overall H3.3 enrichment at the sex body as measured by IF failed to occur, but H3.3 was enriched specifically at transcriptional start sites of sex-linked genes that are normally regulated by ARID1A. The results suggest that ARID1A normally prevents H3.3 accumulation at target promoters on sex chromosomes and based on additional data, restricts H3.3 to intergenic sites. Finally, the authors present data implicating ARID1A and H3.3 occupancy in DSB repair, finding that ARID1A cKO leads to a reduction in focus formation by DMC1, a key repair protein. Overall the paper provides new insights into the process of MSCI from the perspective of chromatin composition and structure and raises interesting new questions about the interplay between chromatin structure, meiotic silencing and DNA repair.
In general the data are convincing. The conditional KO mouse model has some inherent limitations due to incomplete recombination and the existence of 'escaper' cells that express ARID1A and progress through meiosis normally. This reviewer feels that the authors have addressed this point thoroughly and have demonstrated clear and specific phenotypes using the best available animal model. The data demonstrate that the mutant cells fail to progress past pachytene, although it is unclear whether this specifically reflects pachytene arrest, as accumulation in other stages of Prophase is also suggested by the data in Table 1.
The revised manuscript more appropriately describes the relationship between ARID1A and DNA damage response (DDR) signaling. The authors don't see defects in a few DDR markers in ARID1A CKO cells (including a low resolution assessment of ATR), suggesting that ARID1A may not be required for meiotic DDR signaling. However, as previously noted the data do not rule out the possibility that ARID1A is downstream of DDR signaling, and the authors note the possibility of a role for DDR signaling upstream of ARID1A.
A final comment relates to the impacts of ARID1A loss on DMC1 focus formation and the interesting observation of reduced sex chromosome association by DMC1. The authors additionally assess the related recombinase RAD51 and suggest that it is unaffected by ARID1A loss. However, only a single image of RAD51 staining in the cKO is provided (Fig. S11) and there are no associated quantitative data provided. The data are suggestive and conclusions about the impacts of ARID1A loss on RAD51 must be considered as preliminary until more rigorously assessed.
Comments on latest version:
The authors have effectively addressed the minor issues raised in the most recent round of non-public reviews. This reviewer has no additional recommendations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
In the revision of their paper, N'Guessan et al have improved the report of their study of expression QTL (eQTL) mapping in yeast using single cells. The authors make use of advances in single cell RNAseq (scRNAseq) in yeast to increase the efficiency with which this type of analysis can be undertaken. Building on prior research led by the senior author that entailed genotyping and fitness profiling of almost 100,000 cells derived from a cross between two yeast strains (BY and RM) they performed scRNAseq on a subset of ~5% (n = 4,489) individual cells. To address the sparsity of genotype data in the expression profiling they used a Hidden Markov Model (HMM) to infer genotypes and then identify the most likely known lineage genotype from the original dataset. To address the relationship between variance in fitness and gene expression the authors partition the variance to investigate the sources of variation. They then perform eQTL mapping and study the relationship between eQTL and fitness QTL identified in the earlier study.
This paper seeks to address the question of how quantitative trait variation and expression variation are related. scRNAseq represents an appealing approach to eQTL mapping as it is possible to simultaneously genotype individual cells and measure expression in the same cell. As eQTL mapping requires large sample sizes to identify statistical relationships, the use of scRNAseq is likely to dramatically increase the statistical power of such studies. However, there are several technical challenges associated with scRNAseq and the authors' study is focused on addressing those challenges. Most of the points raised by my review of the initial version have been addressed. However, one point remains and one additional point should be considered.
(1) Given that the authors overcame many technical and analytical challenges in the course of this research, the study would be greatly strengthened through analysis of at least one, and ideally several, more conditions which would expand the conclusions that could be drawn from the study and demonstrate the power of using scRNAseq to efficiently quantify expression in different environments.
(2) In this version the authors have introduced the use of data imputation using a published algorithm, DISCERN. This has greatly increased the variation explained by their model as presented in figure 3. However, it is possible that the explained variance is now an overestimation as a result of using the imputed expression data. I think that it would be appropriate to present figure 3 using the sparse data presented in the initial version of the paper and the newly presented imputed data so that the reader can draw their own conclusions about the interpretation.
-
Reviewer #2 (Public review):
The authors now say the main take-home for their work is (1) they have established methods for linkage mapping with scRNA-seq and that these (2) "can help gain insights about the genotype-phenotype map at a broader scale." My opinion in this revision is much the same as it was in the first round: I agree that they have met the first goal, and the second theme has been so well explored by other literature that I'm not convinced the authors' results meet the bar for novelty and impact. To my mind, success for this manuscript would be to support the claim that the scRNA-seq approach helps "reveal hidden components of the yeast genotype-to-phenotype map." I'm not sure the authors have achieved this. I agree that the new Figure 3 is a nice addition-a result that apparently hasn't been reported elsewhere (30% of growth trait variation can't be explained by expression). The caveats are that this is a negative result that needs to be interpreted with caution; and that it would be useful for the authors to clarify whether the ability to do this calculation is a product of the scRNA-seq method per se or whether they could have used any bulk eQTL study for it. Beside this, I regret to say that I still find that the results in the revision recapitulate what the bulk eQTL literature has already found, especially for the authors' focal yeast cross: heritability, expression hotspots, the role of cis and trans-acting variation, etc.
Likewise, when in the first round of review I recommended that the authors repeat their analyses on previous bulk RNA-seq data from Albert et al., my point was to lead the authors to a means to provide rigorous, compelling justification for the scRNA-seq approach. The response to reviewers and the text (starting on line 413) says the comparison in its current form doesn't serve this purpose because Albert et al. studied fewer segregants. Wouldn't down-sampling the current data set allow a fair comparison? Again, to my mind what the current manuscript needs is concrete evidence that the scRNA-seq method per se affords truly better insights relative to what has come before.
I also recommend that the authors take care to improve the main text for readability and professionalism. It would benefit from further structural revision throughout (especially in the figure captions) to allow high-impact conclusions to be highlighted and low-impact material to be eliminated. Figure 4 and the results text sections from line 319 onward could be edited for concision or perhaps moved to supplementary if they obscure the authors' case for the scRNA-seq approach. The text could also benefit from copy editing (e.g. three clauses starting with "while" in the paragraph starting on line 456; "od ratio" on line 415). I appreciate the authors' work on the discussion, including posing big picture questions for the field (lines 426-429), but I don't see how they have anything to do with the current scRNA-seq method.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The goal of this work is to understand the clinical observation of a subgroup of diabetics who experience extremely high levels of blood glucose levels after a period of high carbohydrate intake. These symptoms are similar to the onset of Type 1 diabetes but, crucially, have been observed to be fully reversible in some cases.
The authors interpret these observations by analyzing a simple yet insightful mathematical model in which β-cells temporarily stop producing insulin when exposed to high levels of glucose. For a specific model realization of such dynamics (and for specific parameter values) they show that such dynamics lead to two distinct stable states. One is the relatively normal/healthy state in which β-cells respond appropriately to glucose by releasing insulin. In contrast, when enough β-cells "refuse" to produce insulin in a high-glucose environment, there is not enough insulin to reduce glucose levels, and the high-glucose state remains locked in because the high-glucose levels keep β-cells in their inactive state. The presented mathematical analysis shows that in their model the high-glucose state can be entered through an episode of high glucose levels and that subsequently the low-glucose state can be re-entered through prolonged insulin intake.
The strength of this work is twofold. First, the intellectual sharpness of translating clinical observations of ketosis-prone type 2 diabetes (KPD) into the need for β-cell responses on intermediate timescales. Second, the analysis of a specific model clearly establishes that the clinical observations can be reproduced with a model in which β-cells dynamics reversibly enter a non-insulin-producing state in a glucose-dependent fashion.
The likely impact of this work is a shift in attention in the field from a focus on the short and long-term dynamics in glucose regulation and diabetes progression to the intermediate timescales of β-cell dynamics. I expect this to lead to much interest in probing the assumptions behind the model to establish what exactly the process is by which patients enter a 'KPD state'. Furthermore, I expect this work to trigger much research on how KPD relates to "regular" type 2 diabetes and to lead to experimental efforts to find/characterize previously overlooked β-cell phenotypes.
In summary, the authors claim that observed clinical dynamics and possible remission of KPD can be explained through introducing a temporarily inactive β-cell state into a "standard model" of diabetes. The evidence for this claim comes from analyzing a mathematical model and clearly presented. Importantly, the authors point out that this does not mean their model is correct. Other hypotheses are that:
- Instead of switching to an inactive state, individual β-cells could adjust how they respond to high glucose levels. If this response function changes reversibly on intermediate timescales the clinical observations could be explained without a reversible inactive state.
- Kidney function is indirectly impaired through chronic high glucose levels. The apparent rapid glucose increase might then not highlight a new type of β-cell phenotype but would reflect rapid changes in kidney function.
- In principle, the remission could be due to a direct response of β-cells to insulin and not mediated through the lowering of glucose levels.
Crucially, the hypothesized reversibly inactive state of β-cells remains to be directly observed. One of the key contributions of this theoretical work is directing experimental focus towards looking for reversible β-cell phenotypes.
-
Reviewer #2 (Public review):
In this manuscript, Ridout et al. present an intriguing extension of beta cell mass-focused models for diabetes. Their model incorporates reversible glucose-dependent inactivation of beta cell mass, which can trigger sudden-onset hyperglycemia due to bistability in beta cell mass dynamics. Notably, this hyperglycemia can be reversed with insulin treatment. The model is simple, elegant, and thought-provoking.
Concerning the grounding in experimental phenomenology, it would be beneficial to identify specific experiments to strengthen the model. In particular, what evidence supports reversible beta cell inactivation? This could potentially be tested in mice, for instance, by using an inducible beta cell reporter, treating the animals with high glucose levels, and then measuring the phenotype of the marked cells. Such experiments, if they exist, would make the motivation for the model more compelling. For quantitative experiments, the authors should be more specific about the features of beta cell dysfunction in KPD. Does the dysfunction manifest in fasting glucose, glycemic responses, or both? Is there a "pre-KPD" condition? What is known about the disease's timescale?
The authors should also consider whether their model could apply to other conditions besides KPD. For example, the phenomenology seems similar to the "honeymoon" phase of T1D. Making a strong case for the model in this scenario would be fascinating.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public review):
Summary:
Barlow and coauthors utilized the high-parameter imaging platform of CODEX to characterize the cellular composition of immune cells in situ from tissues obtained from organ donors with type 1 diabetes, subjects presented with autoantibodies who are at elevated risk, or non-diabetic organ donor controls. The panels used in this important study were based on prior publications using this technology, as well as a priori and domain-specific knowledge of the field by the investigators. Thus, there was some bias in the markers selected for analysis. The authors acknowledge that these types of experiments may be complemented moving forward with the inclusion of unbiased tissue analysis platforms that are emerging that can conduct a more comprehensive analysis of pathological signatures employing emerging technologies for both high-parameter protein imaging and spatial transcriptomics.
Strengths:
In terms of major findings, the authors provide important confirmatory observations regarding a number of autoimmune-associated signatures reported previously. The high parameter staining now increases the resolution for linking these features with specific cellular subsets using machine learning algorithms. These signatures include a robust signature indicative of IFN-driven responses that would be expected to induce a cytotoxic T-cell-mediated immune response within the pancreas. Notable findings include the upregulation of indolamine 2,3-dioxygenase-1 in the islet microvasculature. Furthermore, the authors provide key insights as to the cell:cell interactions within organ donors, again supporting a previously reported interaction between presumably autoreactive T and B cells.
Weaknesses:
These studies also highlight a number of molecular pathways that will require additional validation studies to more completely understand whether they are potentially causal for pathology, or rather, epiphenomenon associated with increased innate inflammation within the pancreas of T1D subjects. Given the limitations noted above, the study does present a rich and integrated dataset for analysis of enriched immune markers that can be segmented and annotated within distinct cellular networks. This enabled the authors to analyze distinct cellular subsets and phenotypes in situ, including within islets that peri-islet infiltration and/or intra-islet insulitis.
Despite the many technical challenges and unique organ donor cohort utilized, the data are still limited in terms of subject numbers - a challenge in a disease characterized by extensive heterogeneity in terms of age of onset and clinical and histopathological presentation. Therefore, these studies cannot adequately account for all of the potential covariates that may drive variability and alterations in the histopathologies observed (such as age of onset, background genetics, and organ donor conditions). In this study, the manuscript and figures could be improved in terms of clarifying how variable the observed signatures were across each individual donor, with the clear notion that non-diabetic donors will present with some similar challenges and variability.
-
Reviewer #2 (Public review):
Summary:
The authors aimed to characterize the cellular phenotype and spatial relationship of cell types infiltrating the islets of Langerhans in human T1D using CODEX, a multiplexed examination of cellular markers
Strengths:
Major strengths of this study are the use of pancreas tissue from well-characterized tissue donors, and the use of CODEX, a state-of-the-art detection technique of extensive characterization and spatial characterization of cell types and cellular interactions. The authors have achieved their aims with the identification of the heterogeneity of the CD8+ T cell populations in insulitis, the identification of a vasculature phenotype and other markers that may mark insulitis-prone islets, and the characterization of tertiary lymphoid structures in the acinar tissue of the pancreas. These findings are very likely to have a positive impact on our understanding (conceptual advance) of the cellular factors involved in T1D pathogenesis which the field requires to make progress in therapeutics.
Weaknesses:
A major limitation of the study is the cohort size, which the authors directly state. However, this study provides avenues of inquiry for researchers to gain further understanding of the pathological process in human T1D.
-
Reviewer #3 (Public review):
Summary:
The authors applied an innovative approach (CO-Detection by indEXing - CODEX) together with sophisticated computational analyses to image pancreas tissues from rare organ donors with type 1 diabetes. They aimed to assess key features of inflammation in both islet and extra-islet tissue areas; they reported that the extra-islet space of lobules with extensive islet infiltration differs from the extra-islet space of less infiltrated areas within the same tissue section. The study also identifies four sub-states of inflamed islets characterized by the activation profiles of CD8+T cells enriched in islets relative to the surrounding tissue. Lymphoid structures are identified in the pancreas tissue away from islets, and these were enriched in CD45RA+ T cells - a population also enriched in one of the inflamed islet sub-states. Together, these data help define the coordination between islets and the extra-islet pancreas in the pathogenesis of human T1D.
Strengths:
The analysis of tissue from well-characterized organ donors, provided by the Network for the Pancreatic Organ Donor with Diabetes, adds strength to the validity of the findings.
By using their innovative imaging/computation approaches, key known features of islet autoimmunity were confirmed, providing validation of the methodology.
The detection of IDO+ vasculature in inflamed islets - but not in normal islets or islets that have lost insulin-expression links this expression to the islet inflammation, and it is a novel observation. IDO expression in the vasculature may be induced by inflammation and may be lost as disease progresses, and it may provide a potential therapeutic avenue.
The high-dimensional spatial phenotyping of CD8+T cells in T1D islets confirmed that most T cells were antigen-experienced. Some additional subsets were noted: a small population of T cells expressing CD45RA and CD69, possibly naive or TEMRA cells, and cells expressing Lag-3, Granzyme-B, and ICOS.
While much attention has been devoted to the study of the insulitis lesion in T1D, our current knowledge is quite limited; the description of four sub-clusters characterized by the activation profile of the islet-infiltrating CD8+T cells is novel. Their presence in all T1D donors indicates that the disease process is asynchronous and is not at the same stage across all islets. Although this concept is not novel, this appears to be the most advanced characterization of insulitis stages.
When examining together both the exocrine and islet areas, which is rarely done, authors report that pancreatic lobules affected by insulitis are characterized by distinct tissue markers. Their data support the concept that disease progression may require crosstalk between cells in the islet and extra-islet compartments. Lobules enriched in β-cell-depleted islets were also enriched in nerves, vasculature, and Granzyme-B+/CD3- cells, which may be natural killer cells.
Lastly, authors report that immature tertiary lymphoid structures (TLS) exist both near and away from islets, where CD45RA+ CD8+T cells aggregate, and also observed an inflamed islet-subcluster characterized by an abundance of CD45RA+/CD8+ T cells. These TLS may represent a point of entry for T cells and this study further supports their role in islet autoimmunity.
Weaknesses:
As the authors themselves acknowledge, the major limitation is that the number of donors examined is limited as those satisfying study criteria are rare. Thus, it is not possible to examine disease heterogeneity and the impact of age at diagnosis. Of 8 T1D donors examined, 4 would be considered newly diagnosed (less than 3 months from onset) and 4 had longer disease durations (2, 2, 5, and 6 years). It was unclear if disease duration impacted the results in this small cohort. In the introduction, the authors discuss that most of the pancreata from nPOD donors with T1D lack insulitis. This is correct, yet it is a function of time from diagnosis. Donors with shorter duration will be more likely to have insulitis. A related point is that the proportion of islets with insulitis is low even near diagnosis, Finally, only one donor was examined that while not diagnosed with T1D, was likely in the preclinical disease stage and had autoantibodies and insulitis. This is a critically important disease stage where the methodology developed by the investigators could be applied in future efforts.
While this was not the focus of this investigation, it appears that the approach was very much immune-focused and there could be value in examining islet cells in greater depth using the methodology the authors developed.
Additional comments:
Overall, the authors were able to study pancreas tissues from T1D donors and perform sophisticated imaging and computational analysis that reproduce and importantly extend our understanding of inflammation in T1D. Despite the limitations associated with the small sample size, the results appear robust, and the claims well-supported.
The study expands the conceptual framework of inflammation and islet autoimmunity, especially by the definition of different clusters (stages) of insulitis and by the characterization of immune cells in and outside the islets.
-
-
netseccloud.com netseccloud.com
-
In response, the Modified EUI-64 format was developed. This version introduces randomness into the address generation process by obfuscating parts of the MAC address, enhancing user privacy on IPv6 networks.
Factually wrong.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Many labs world-wide now use the blind source deconvolution technique to identify the firing patterns of multiple motor units simultaneously in human subjects. This technique has had a truly transformative effective on our understanding of the structure of motor output in both normal subjects and, increasingly, in persons with neurological disorders. The key advance presented here is that the software provides real time identification of these firing patterns.
The main strengths are the clarity of the presentation and the great potential that real-time decoding will provide. Figures are especially effective and statistical analyses are excellent.
-
Reviewer #3 (Public review):
In this manuscript, Rossato and colleagues present a method for real-time decoding of EMG into putative single motor units. Their manuscript details a variety of decision points in their code and data collection pipeline that lead to a final result of recording on the order of ~10 putative motor units per muscle in human males. Overall the manuscript is highly restricted in its potential utility but may be of interest to aficionados. For those outside the field of human or nonhuman primate EMG, these methods will be of limited interest.
Comment on revised version
The revised manuscript has thoroughly and responsively addressed the concerns and suggestions raised in the first review. I think the method will be of use to the field and fits well within the purview of eLife's publications on methods development.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
This study describes a useful antibody-free method to map G-quadruplexes in vertebrate cells. The analysis of the data is solid but it remains primarily descriptive and does not substantially add to existing publications (such as PMID:34792172 for example). Nevertheless, the datasets generated here might constitute a good starting point for more functional studies.
Comments on revised version:
It is disappointing to see that the authors decided to brush aside most of the comments made by the three referees, even though these comments were largely consistent with each other. As a result, the revised manuscript is not substantially changed or improved. Legitimate concerns regarding the specificity of the Cut&Tag signals were not addressed and therefore remain. The sensitivity of the HBD-seq signals to a combination of RNase A and RNase H does not demonstrate that HBD-seq specifically reports the presence of RNA:DNA hybrids. The new Figure 9 comparing HepG4-seq to existing datasets does not unequivocally demonstrate the superiority of the Hemin-based strategy to map G4s.
-
Reviewer #2 (Public review):
Summary:
In this study, Liu et al. explore the interplay between G-quadruplexes (G4s) and R-loops. The authors developed novel techniques, HepG4-seq and HBD-seq, to capture and map these nucleic acid structures genome-wide in human HEK293 cells and mouse embryonic stem cells (mESCs). They identified dynamic, cell-type-specific distributions of co-localized G4s and R-loops, which predominantly localize at active promoters and enhancers of transcriptionally active genes. Furthermore, they assessed the role of helicase Dhx9 in regulating these structures and their impact on gene expression and cellular functions.
The manuscript provides a detailed catalogue of the genome-wide distribution of G4s and R-loops. However, the conceptual advance and the physiological relevance of the findings are not obvious. Overall, the impact of the work on the field is limited to the utility of the presented methods and datasets.
Strengths:<br /> (1) The development and optimization of HepG4-seq and HBD-seq offer novel methods to map native G4s and R-loops.<br /> (2) The study provides extensive data on the distribution of G4s and R-loops, highlighting their co-localization in human and mouse cells.<br /> (3) The study consolidates the role of Dhx9 in modulating these structures and explores its impact on mESC self-renewal and differentiation.
Comments on revised version:
In this revised manuscript, Liu et al. address most of the previous concerns raised by this reviewer. Namely, the comparison between the novel methods and existing ones is an important addition.
-
Reviewer #3 (Public review):
Summary:
The authors developed and optimized the methods for detecting G4s and R-loops independent of BG4 and S9.6 antibody, and mapped genomic native G4s and R-loops by HepG4-seq and HBD-seq, revealing that co-localized G4s and R-loops participate in regulating transcription and affecting the self-renewal and differentiation capabilities of mESCs.
Strengths:
By utilizing the peroxidase activity of G4-hemin complex and combining proximity labeling technology, the authors developed HepG4-seq (high throughput sequencing of hemin-induced proximal labelled G4s) , which can detect the dynamics of G4s in vivo. Meanwhile, the "GST-His6-2xHBD"-mediated CUT&Tag protocol (Wang et al., 2021) was optimized by replacing fusion protein and tag, the optimized HBD-seq avoids the generation of GST fusion protein aggregates and can reflect the genome-wide distribution of R-loops in vivo.
The authors employed HepG4-seq and HBD-seq to establish comprehensive maps of native co-localized G4s and R-loops in human HEK293 cells and mouse embryonic stem cells (mESCs). The data indicate that co-localized G4s and R-loops are dynamically altered in a cell type-dependent manner and are largely localized at active promoters and enhancers of transcriptional active genes.
Combined with Dhx9 ChIP-seq and co-localized G4s and R-loops data in wild-type and dhx9KO mESCs, the authors found that the helicase Dhx9, a major regulator of co-localized G4s and R-loops, affects the self-renewal and differentiation capacities of mESCs.
In conclusion, the authors provide an approach to study the interplay between G4s and R-loops, shedding light on the important roles of co-localized G4s and R-loops in development and disease by regulating the transcription of related genes.
Weaknesses:
As we know, there are at least two structure data of S9.6 antibody very recently, and the questions about the specificity of the S9.6 antibody on RNA:DNA hybrids should be finished. The authors referred (Hartono et al., 2018; Konig et al., 2017; Phillips et al., 2013) need to be updated, and the author's bias against S9.6 antibodies needs also to be changed. In contrast to S9.6 CUT&Tag and other inactive ribonucleotide H1-based methods including MapR (inactive ribonucleotide H1-mediated CUT&Run) (Yan et al., 2019)and GST-2xHBD CUT&Tag (Wang et al., 2021), HBD-seq did not perform satisfactorily and its binding specificity was questionable.
Although HepG4-seq is an effective G4s detection technique, and the authors have also verified its reliability to some extent, given the strong link between ROS homeostasis and G4s formation, hemin's affinity for different types of G4s and their differences in peroxidase activities, whether HepG4-seq reflects the dynamics of G4s in vivo more accurately than existing detection techniques still needs to be more carefully corroborated.
The authors focus on the interaction of non-B DNA structures G4s and R-loops and their roles in development and disease by regulating the transcription of related genes. Compared to the complex regulatory network of G4s and R-loops, the authors provide limited mechanistic insight into the major regulator of co-localized G4s and R-loops, helicase Dhx9. However, the authors propose that "A degron system-mediated simultaneous and/or stepwise degradation system of multiple regulators will help us elucidate the interplaying effects between G4s and R-loops." is attractive. The main innovations of this article are the proposal of new antibody-independent methods for detecting G4s and the optimization of the GST-2xHBD CUT&Tag (Wang et al., 2021) method for detecting R-loops. Unfortunately, however, the reliability and accuracy of these methods are still debatable, and the reference value of the G4s and R-loops datasets based on these methods is relatively limited.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Qin, Sanbo and Zhou, Huan-Xiang created a model, SeqDYN, to predict nuclear magnetic resonance (NMR) spin relaxation spectra of intrinsically disordered proteins (IDPs), based primarily on amino acid sequence. To fit NMR data, SeqDYN uses 21 parameters, 20 that correspond to each amino acid, and a sequence correlation length for interactions. The model demonstrates that local sequence features impact the dynamics of the IDP, as SeqDYN performs better than a one residue predictor, despite having similar numbers of parameters. SeqDYN is trained using 45 IDP sequences and is retrained using both leave-one-out cross validation and five-fold cross validation, ensuring the model's robustness. While SeqDYN can provide reasonably accurate predictions in many cases, the authors note that improvements can be made by incorporating secondary structure predictions, especially for alpha-helices that exceed the correlation length of the model. The authors apply SeqDYN to study nine IDPs and a denatured ordered protein, demonstrating its predictive power. The model can be easily accessed via the website mentioned in the text.
The authors have adequately addressed the majority of my previous concerns. However, I still wonder if an attempt to fit the individual protein fitting parameter based on temperature and magnetic field strength would be possible. The authors would have 45 data points on which to fit such a parameter, which would only depend on two variables.
-
Reviewer #3 (Public review):
The revised manuscript adds some new relevant analyses. It still, however, is unclear which timescales of motions the method refers to and there is confusion about whether the model can predict "slower motions". While the authors answer some of my points, others are left unanswered. That is of course the authors' prerogative, and readers will in any case be able to read the reviewer comments. I am not sure it is productive to add further comments at this point.
Below are my comments from the first round of review:
The manuscript by Qin and Zhou presents an approach to predict dynamical properties of an intrinsically disordered protein (IDP) from sequence alone. In particular, the authors train a simple (but useful) machine learning model to predict (rescaled) NMR R2 values from sequence. Although these R2 rates only probe some aspects of IDR dynamics and the method does not provide insight into the molecular aspects of processes that lead to perturbed dynamics, the method can be useful to guide experiments.
A strength of the work is that the authors train their model on an observable that directly relates to protein dynamics. They also analyse a relatively broad set of proteins which means that one can see actual variation in accuracy across the proteins.
A weakness of the work is that it is not always clear what the measured R2 rates mean. In some cases, these may include both fast and slow motions (intrinsic R2 rates and exchange contributions). This in turn means that it is actually not clear what the authors are predicting. The work would also be strengthened by making the code available (in addition to the webservice), and by making it easier to compare the accuracy on the training and testing data.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
The paper sought to determine the number of myosin 10 molecules per cell and localized to filopodia, where they are known to be involved in formation, transport within, and dynamics of these important actin-based protrusions. The authors used a novel method to determine the number of molecules per cell. First, they expressed HALO tagged Myo10 in U20S cells and generated cell lysates of a certain number of cells and detected Myo10 after SDS-PAGE, with fluorescence and a stained free method. They used a purified HALO tagged standard protein to generate a standard curve which allowed for determining Myo10 concentration in cell lysates and thus an estimate of the number of Myo10 molecules per cell. They also examined the fluorescence intensity in fixed cell images to determine the average fluorescence intensity per Myo10 molecule, which allowed the number of Myo10 molecules per region of the cell to be determined. They found a relatively small fraction of Myo10 (6%) localizes to filopodia. There are hundreds of Myo10 in each filopodia, which suggests some filopodia have more Myo10 than actin binding sites. Thus, there may be crowding of Myo10 at the tips, which could impact transport, the morphology at the tips, and dynamics of the protrusions themselves. Overall, the study forms the basis for a novel technique to estimate the number of molecules per cell and their localization to actin-based structures. The implications are broad also for being able to understand the role of myosins in actin protrusions, which is important for cancer metastasis and wound healing.
Comments on latest version (from the Reviewing Editor):
One of the main critiques that still remains is that the results were derived from experiments with overexpressed Myo10 and therefore are hard to extrapolate to physiological conditions. Measurement were also only performed in a single cell line. The authors counter this critique with the argument that their results provide insight into a system in which Myo10 is a limiting factor for controlling filopodia formation. They demonstrate that U20S cells do not express detectable levels of Myo10 and thus introducing Myo10 expression demonstrates how triggering Myo10 expression impacts filopodia. An example is given of how melanoma cells often heavily upregulate Myo10.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors provide an genome annotation resource of 33 insects using a motif-blind prediction methods for tissue-specific cis-regulatory modules. This is a welcome addition that may facilitate further research in new laboratory systems, and the approach seem to be relatively accurate, although it should be combined with other sources of evidence to be practical.
Strengths:
The paper clearly presents the resource, including the testing of candidate enhancers identified from various insects in Drosophila. This cross-species analysis, and the inherent suggestion that training datasets generated in flies can predict a cis-regulatory activity in distant insects, is interesting. While I can not be sure this approach will prevail in the future, for example with approaches that leverage the prediction of TF binding motifs, the SCRMShaw tool is certainly useful and worth of consideration for the large community of genome scientists working on insects.
Weaknesses from the previous version were appropriately corrected in this revision, as the authors improved data availability including with genome annotation resources.
-
Reviewer #3 (Public review):
Summary:
In this ambitious paper, the authors develop an unparalleled community resource of insect genome regulatory annotations spanning five insect orders. They employ their previously-developed SCRMshaw method for computational cross-species enhancer prediction, drawing on available training datasets of validated enhancer sequence and expression from Drosophila melanogaster, which had been previously shown to perform well across select holometabolous insects (representing 160-345MY divergence). In this work they expand regulatory sequence annotation to 33 insect genomes spanning Holometabola and Hemiptera, which is even more distantly related to the fly model. They perform multiple downstream analyses of sets of predicted enhancers to assess the true-positive rate of predictions; the independent comparisons of real predictions with simulated predictions and with chromatin accessibility data, as well as the functional validation through reporter gene analysis strengthen their conclusions that their annotation pipeline achieves a high true-positive rate and can be used across long divergence times to computationally annotate regulatory genome regions, an ability that has been largely inaccessible for non-model insects and now is possible across the many newly-sequenced insect scaffold-level genomes.
Strengths:
This work fills a large gap in current methods and resources for predicting regulatory regions of the genome, a task that has long lagged behind that of coding region prediction and analysis.
Despite technical constraints in working outside of well-developed model insect systems, the authors creatively draw on existing resources to scaffold a pipeline and independently assess likelihood of prediction validity.
The established database will be a welcome community resource in its current state, and even more so as the authors continue to expand their annotations to more insect genomes as they indicate. Their available analysis pipeline itself will be useful to the community as well for research groups that may want to undertake their own regulatory genome annotation.
Weaknesses:
The work here is limited by the field-wide lack of an independently validated set of tissue specific enhancers that could be used to directly benchmark this pipeline. The prediction of true positive enhancer identification rates and in vivo reporter gene assays offer some insight into the rates of successful prediction, but the output of SCRMshaw regulatory annotation should be regarded as another prediction-generating tool.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
This study comes to an interesting conclusion: a polyunsaturated fatty acid, Lin-Glycine, increases the conductance of KCNQ1/KCNE1 channels by stabilizing a state of the selectivity filter that allows K+ conduction. The stabilization of a conducting state is well supported by single channel analysis, which shows that normally infrequent opening bursts occur more often in the presence of the PUFA. The linkage to PUFA action through the selectivity filter is supported by disruption of PUFA effects by mutation of residues which change conformation in two KCNQ1 structures from the literature. A definitive functional experiment is conducted by single channel recordings with selectivity filter domain mutation Y315F which ablates the Lin-Glycine effect on Gmax. The computational exploration of two selectivity filter structures proposed to interact distinctly with Lin-Glycine is informative. Both mutation results and simulations converge on the proposed selectivity filter mechanism, although other possibilities for Lin-Glycine binding and action might be possible. Overall, the major claim of the abstract is well-supported: "... that the selectivity filter in KCNQ1 is normally unstable ... and that the PUFA-induced increase in Gmax is caused by a stabilization of the selectivity filter in an open-conductive state."
-
Reviewer #2 (Public review):
Golluscio et al. address one of the mechanisms of IKs (KCNQ1/KCNE1) channel upregulation by polyunsaturated fatty acids (PUFAs). PUFAs are known to upregulate KCNQ1 and KCNQ1/KCNE1 channels through two mechanisms: one shifts the voltage dependence in a negative direction, and the other increases the maximum conductance (Gmax). While the first mechanism is known to affect the voltage sensor equilibrium through a charge effect, the second mechanism is less understood. Using single-channel recordings and mutagenesis at putative PUFA binding sites, they successfully demonstrate that the selectivity filter is stabilized in a conducting state by PUFA binding, and that this is the mechanism by which PUFAs increase Gmax. Their single-channel recordings are straightforward and clearly show that the selectivity filter tends to become conductive upon PUFA binding. Since PUFAs are potential therapeutic reagents for cardiac arrhythmias such as long QT syndrome, their findings are beneficial for future research and applications of these compounds.
-
Reviewer #3 (Public review):
Summary:
This manuscript reveals an important mechanism of KCNQ1/IKs channel gating such that the open state of the pore is unstable and undergoes intermittent closed and open conformations. PUFA enhances the maximum open probability of IKs by binding to a crevice adjacent to the pore and stabilize the open conformation. This mechanism is supported by convincing single channel recordings that show empty and open channel traces and the ratio of such traces is affected by PUFA. In addition, mutations of the pore residues alter PUFA effects, convincingly supporting that PUFA alters the interactions among these pore residues.
Strengths:
The data are of high quality and the description is clear.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors demonstrate impairments induced by a high cholesterol diet on GLP-1R dependent glucoregulation in vivo as well as an improvement after reduction in cholesterol synthesis with simvastatin in pancreatic islets. They also map sites of cholesterol high occupancy and residence time on active versus inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations and screened for key residues selected from these sites and performed detailed analyses of the effects of mutating one of these residues, Val229, to alanine on GLP-1R interactions with cholesterol, plasma membrane behaviour, clustering, trafficking and signalling in pancreatic beta cells and primary islets, and describe an improved insulin secretion profile for the V229A mutant receptor.
These are extensive and very impressive studies indeed. I am impressed with the tireless effort exerted to understand the details of molecular mechanisms involved in the effects of cholesterol for GLP-1 activation of its receptor. In general the study is convincing, the manuscript well written and the data well presented. Some of the changes are small and insignificant which makes one wonder how important the observations are. For instance in figure 2 E (which is difficult to interpret anyway because the data are presented in percent, conveniently hiding the absolute results) does not show a significant result of the cyclodextrin except for insignificant increases in basal secretion. That is not identical to impairment of GLP-1 receptor signaling!
To me the most important experiment of them all is the simvastatin experiment, but the results rest on very few numbers and there is a large variation. Apparently, in a previous study using more extensive reduction in cholesterol the opposite response was detected casting doubt on the significance of the current observation. I agree with the authors that the use of cyclodextrin may have been associated with other changes in plasma membrane structure than cholesterol depletion at the GLP-1 receptor. The entire discussion regarding he importance of cholesterol would benefit tremendously from studies of GLP-1 induced insulin secretion in people with different cholesterol levels before and after treatment with cholesterol-lowering agents. I suspect that such a study would not reveal major differences.
-
Reviewer #2 (Public review):
Summary:
In this manuscript the authors provided a proof of concept that they can identify and mutate a cholesterol-binding site of a high-interest class B receptor, the GLP-1R, and functionally characterize the impact of this mutation on receptor behavior in the membrane and downstream signaling with the intent that similar methods can be useful to optimize small molecules that as ligands or allosteric modulators of GLP-1R can improve the therapeutic tools targeting this signaling system.
Strengths:
The majority of results on receptor behavior are elucidated in INS-1 cells expressing the wt or mutant GLP-1R, with one experiment translating the findings to primary mouse beta-cells. I think this paper lays a very strong foundation to characterize this mutation and does a good job discussing how complex cholesterol-receptor interactions can be (ie lower cholesterol binding to V229A GLP-1R, yet increased segregation to lipid rafts). Table 1 and Figure 9 are very beneficial to summarize the findings. The lower interaction with cholesterol and lower membrane diffusion in V229A GLP-1R resembles the reduced diffusion of wt GLP-1R with simv-induced cholesterol reductions, although by presumably decreasing the cholesterol available to interact with wt GLP-1R. This could be interesting to see if lowering cholesterol alters other behaviors of wt GLP-1R that look similar to V229A GLP-1R. I further wonder if the authors expect that increased cholesterol content of islets (with loading of MβCD saturated with cholesterol or high-cholesterol diets) would elevate baseline GLP-1R membrane diffusion, and if a more broad relationship can be drawn between GLP-1R membrane movement and downstream signaling.
Weaknesses:
I think there are no obvious weaknesses in this manuscript and overall, I believe the authors achieved their aims and have demonstrated the importance of cholesterol interactions on GLP-1R functioning in beta-cells. I think this paper will be of interest to many physiologists who may not be familiar with many of the techniques used in this paper and the authors largely do a good job explaining the goals of using each method in the results section. The intent of some methods, for example the Laurdan probe studies, are better expanded in the discussion. I found it unclear what exactly was being measured to assess 'receptor activity' in Fig 7E and F.
Certainly many follow-up experiments are possible from these initial findings and of primary interest is how this mutation affects insulin homeostasis in vivo under different physiological conditions. One of the biggest pathologies in insulin homeostasis in obesity/t2d is an elevation of baseline insulin release (as modeled in Fig 1E) that renders the fold-change in glucose stimulated insulin levels lower and physiologically less effective. No difference in primary mouse islet baseline insulin secretion was seen here but I wonder if this mutation would ameliorate diet-induced baseline hyperinsulinemia.
I would have liked to see the actual islet cholesterol content after 5wks high-cholesterol diet measured to correlate increased cholesterol load with diminished glucose-stimulated inulin. While not necessary for this paper, a comparison of islet cholesterol content after this cholesterol diet vs the more typical 60% HFD used in obesity research would be beneficial for GLP-1 physiology research broadly to take these findings into consideration with model choice.
Another area to further investigate is does this mutation alter ex4 interaction/affinity/time of binding to GLP-1 or are all of the described findings due to changes in behavior and function of the receptor?
Lastly, I wonder if V229A would have the same impact in a different cell type, especially in neurons? How similar are the cholesterol profiles of beta-cells and neurons? How this mutation (and future developed small molecules) may affect satiation, gut motility, and especially nausea, are of high translational interest. The comparison is drawn in the discussion between this mutation and ex4-phe1 to have biased agonism towards Gs over beta-arrestin signaling. Ex4-phe1 lowered pica behavior (a proxy for nausea) in the authors previously co-authored paper on ex4-phe1 (PMID 29686402) and I think drawing a parallel for this mutation or modification of cholesterol binding to potentially mitigate nausea is worth highlighting.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this study, the authors investigate a very interesting but often overlooked aspect of abstract vs. concrete processing in language. Specifically, they study if the differences in processing of abstract vs. concrete concepts in the brain is static or dependent on the (visual) context in which the words occur. This study takes a two-step approach to investigate how context might affect the perception of concepts. First, the authors analyze if concrete concepts, expectedly, activate more sensory systems while abstract concepts activate higher-order processing regions. Second, they measure the contextual situatedness vs. displacement of each word with respect to the visual scenes in which it is spoken and then evaluate if this contextual measure correlates with more activation in the sensory vs. higher-order regions respectively.
Strengths:
This study raises a pertinent and understudied question in language neuroscience. It also combines both computational and meta-analytic approaches.
-
Reviewer #2 (Public review):
Summary:
This study tests a plausible and intriguing hypothesis that one cause of the differences in the neural underpinnings of concrete and abstract words is differences in their grounding in the current sensory context. The authors reasoned that, in this case, an abstract word presented with a relevant visual scene would be processed in a more similar way to a concrete word. Typically, abstract and concrete words are tested in isolation. In contrast, this study takes advantage of naturalistic movie stimuli to assess the neural effects of concreteness in both abstract and concrete words (the speech within the film), when the visual context is more or less tied to the word meaning (measured as the similarity between the word co-occurrence-based vector for the spoken word and the average of this vector across all present objects). This novel approach allows a test of the dynamic nature of abstract and concrete word processing, and as such provides a useful perspective accounting for differences in processing these word types.
The measure of contextual situatedness (how related a spoken word is to the average of the visually presented objects in a scene) is an interesting approach allowing parametric variation within naturalistic stimuli, which is a potential strength of the study. Additionally, the authors use an interesting peak and valley method and provide a rationale for this approach. This provided additional temporal information on the processing of spoken concrete and abstract words.
The authors predicted that sensory areas would be more active for concrete words, affective areas for abstract and language areas would be involved in both. The use of reverse inference to interpret areas such as the inferior frontal gyrus post hoc, as sensory, affective or language related deserves some caution. It is also important to remember that the different areas identified for each comparison do not necessarily have the same roles. As the number of clusters may therefore be a misleading way to assess the relationship of these areas with the sensory terms, the relationship between each area and the different sensory terms is provided in the supplemental to allow more nuanced interpretation. The study could benefit from being better situated in the prior literature on context and concrete vs abstract regional differences. Overall, the authors successfully demonstrate the context-dependent nature of abstract and concrete word processing.
-
Reviewer #3 (Public review):
Summary:
The primary aim of this manuscript was to investigate how context, defined from visual object information in multimodal movies, impacts the neural representation of concrete and abstract conceptual knowledge. The authors first conduct a series of analyses to identify context independent regional response to concrete and abstract concepts in order to compare these results with the networks observed in prior research using non-naturalistic paradigms. The authors then conduct analyses to investigate whether regional response to abstract and concrete concepts changes when the concepts are either contextually situated or displaced. A concept is considered displaced if the visual information immediately preceding the word is weakly associated with the word whereas a concept is situated if the association is high. The results suggest that, when ignoring context, abstract and concrete concepts engage different brain regions with overlap in core language areas. When context is accounted for, however, similar brain regions are activated for processing concrete and situated abstract concepts and for processing abstract and displaced concrete concepts. The authors suggest that contextual information dynamically changes the brain regions that support the representation of abstract and concrete conceptual knowledge.
Strengths:
There is significant interest in understanding both the acquisition and neural representation of abstract and concrete concepts, and most of the work in this area has used highly constrained, decontextualized experimental stimuli and paradigms to do so. This manuscript addresses this limitation by using multimodal narratives which allows for an investigation of how context-sensitive the regional response to abstract and concrete concepts is. The authors characterize the regional response in a comprehensive way.
Weaknesses:
The edits made to the manuscript in response to the reviewer comments have clarified and strengthened the methodological concerns flagged by all reviewers, giving me greater confidence that the authors are capturing what they aimed to and are making appropriate inferences given the results.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public review):
Summary:
The study made fundamental findings in investigations of the dynamic functional states during sleep. Twenty-one HMM states were revealed from the fMRI data, surpassing the number of EEG-defined sleep stages, which can define sub-states of N2 and REM. Importantly, these findings were reproducible over two nights, shedding new light on the dynamics of brain function during sleep.
Strengths:
The study provides the most compelling evidence on the sub-states of both REM and N2 sleep. Moreover, they showed these findings on dynamics states and their transitions were reproducible over two nights of sleep. These novel findings offered unique information in the field of sleep neuroimaging.
Comments on revised version:
Nice work! All my concerns have been addressed, and I have no further suggestions.
-
Reviewer #2 (Public review):
Summary:
Yang and colleagues used a Hidden Markov Model (HMM) on whole-night fMRI to isolate sleep and wake brain states in a data-driven fashion. They identify more brain states (21) than the five sleep/wake stages described in conventional PSG-based sleep staging, show that the identified brain states are stable across nights, and characterize the brain states in terms of which networks they primarily engage.
Strengths:
This work's primary strengths are its dataset of two nights of whole-night concurrent EEG-fMRI (including REM sleep), and its sound methodology.
Weaknesses:
Weaknesses are its small sample size, and limited attempts at relating the identified fMRI brain states back to EEG.
General appraisal:
The paper's conclusions are generally well-supported, but additional analyses could improve the work further.<br /> The authors' main focus lies in identifying fMRI-based brain states, and they succeed at demonstrating both the presence and robustness of these states in terms of cross-night stability. Additional characterization of brain states in terms of which networks these brain states primarily engage adds additional insights.
A missed opportunity remains the absence of more analyses relating the HMM states back to EEG. While the authors show how power in different EEG bands varies with HMM state (Supplementary Figures 10 and 11) it would be much more informative to show the complete EEG spectra for each of the 21 HMM states, organized by PSG-based sleep/wake state. This would enable answering how EEG spectra of, say, different N2-related HMM states compare. Similarly, it is presently unclear whether anything noticeable happens within the EEG timecourse at the moment of an HMM class switch (particularly when the PSG stage remains stable). Such analyses might have shown that fMRI-based brain states map onto familiar EEG substates, or reveal novel EEG changes that have so far gone unnoticed. Furthermore, if band-specific analyses are to be performed, care should be taken to specify bands in accordance with the dominant sleep EEG features (e.g., slow oscillation and sigma/spindle bands are currently missing).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors aimed to develop and validate an automated, deep learning-based system for scoring the Rey-Osterrieth Complex Figure Test (ROCF), a widely used tool in neuropsychology for assessing memory deficits. Their goal was to overcome the limitations of manual scoring, such as subjectivity and time consumption, by creating a model that provides automatic, accurate, objective, and efficient assessments of memory deterioration in individuals with various neurological and psychiatric conditions.
Strengths:
Comprehensive Data Collection: The authors collected over 20,000 hand-drawn ROCF images from a wide demographic and geographic range, ensuring a robust and diverse dataset. This extensive data collection is critical for training a generalizable and effective deep learning model.
Advanced Deep Learning Approach: Utilizing a multi-head convolutional neural network to automate ROCF scoring represents a sophisticated application of current AI technologies. This approach allows for detailed analysis of individual figure elements, potentially increasing the accuracy and reliability of assessments.
Validation and Performance Assessment: The model's performance was rigorously evaluated against crowdsourced human intelligence and professional clinician scores, demonstrating its ability to outperform both groups. The inclusion of an independent prospective validation study further strengthens the credibility of the results.
Robustness Analysis Efficacy: The model underwent a thorough robustness analysis, testing its adaptability to variations in rotation, perspective, brightness, and contrast. Such meticulous examination ensures the model's consistent performance across different clinical imaging scenarios, significantly bolstering its utility for real-world applications.
Appraisal and discussion:
By leveraging a comprehensive dataset and employing advanced deep learning techniques, they demonstrated the model's ability to outperform both crowdsourced raters and professional clinicians in scoring the ROCF. This achievement represents a significant step forward in automating neuropsychological assessments, potentially revolutionizing how memory deficits are evaluated in clinical settings. Furthermore, the application of deep learning to clinical neuropsychology opens avenues for future research, including the potential automation of other neuropsychological tests and the integration of AI tools into clinical practice. The success of this project may encourage further exploration into how AI can be leveraged to improve diagnostic accuracy and efficiency in healthcare.
However, the critique regarding the lack of detailed analysis across different patient demographics, the inadequacy of network explainability, and concerns about the selection of median crowdsourced scores as ground truth raises questions about the completeness of their objectives. These aspects suggest that while the aims were achieved to a considerable extent, there are areas of improvement that could make the results more robust and the conclusions stronger.
Comments on revised version:
I appreciate the opportunity to review this revised submission. Having considered the other reviews, I believe this study presents an important advance in using AI methods for clinical applications, which is both innovative and has implications beyond a single subfield.
The authors have developed a system using fundamental AI that appears sufficient for clinical use in scoring the Rey-Osterrieth Complex Figure (ROCF) test. In human neuropsychology, tests that generate scores like this are a key part of assessing patients. The evidence supporting the validity of the AI scoring system is compelling. This represents a valuable step towards evaluating more complex neurobehavioral functions.
However, one area where the study could be strengthened is in the explainability of the AI methods used. To ensure the scores are fully transparent and consistent for clinical use, it will be important for future work to test the robustness of the approach, potentially by comparing multiple methods. Examining other latent variables that can explain patients' cognitive functioning would also be informative.
In summary, I believe this study provides an important proof-of-concept with compelling evidence, while also highlighting key areas for further development as this technology moves towards real-world clinical applications.
-
Reviewer #2 (Public Review):
The authors aimed to develop and validate a machine-learning driven neural network capable of automatic scoring of the Rey-Osterrieth Complex Figure. They aimed to further assess the robustness of the model to various parameters such as tilt and perspective shift in real drawings. The authors leveraged the use of a huge sample of lay workers in scoring figures and also a large sample of trained clinicians to score a subsample of figures. Overall, the authors found their model to have exceptional accuracy and perform similarly to crowdsourced workers and clinicians with, in some cases, less degree of error/score dispersion than clinicians.
-
Reviewer #3 (Public Review):
This study presented a valuable inventory of scoring a neuropsychological test, ROCFT, with constructing an artificial intelligence model.
Comments on latest version:
The authors made the system with fundamental AI that is sufficient for clinical use for humans. In human neuropsychology, the test that generates the score is fundamental and relatively easy. Neuropsychologists apply patients to many tests; therefore, the present system is one of them, where we cannot tell the total neurofunction of a patient. The evidence for scoring is thought to be compelling quality, enough for clinical use now and we progress to evaluate other more complicated human neuropsychological functions. For example, persons with dementia change their performance easily when they feel other emotions (worry, boredom, etc. ) and notice other stimulation (announcements in the hospital, a walking nurse by chance, etc.). The score of ROCF is definitely changing, compelling the effort of AI scoring. We should grasp this behavior of humans with diverse tests totally. Therefore, scoring AI with compelling quality is a fundamental step for the next, evaluation against the changeable and ambiguous neurobehavior of humans.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This study investigated how traumatic brain injury affects oscillatory and single-unit hippocampal activity in awake-behaving rats.
Strengths:
The use of high-density laminar electrodes enabled precise localization of recording sites. To ensure an unbiased, rigorous approach, single-unit analysis was performed by a reviewer who was blind to experimental conditions. A proof of concept study was undertaken to characterize the pathology that resulted from the specific TBI model used in the main study. There was an effort to link abnormalities in hippocampal activity to memory disruption by running a cohort of rats on the Morris Water Maze task.
Weaknesses:
The paper is written as if the experiment was exploratory and not hypothesis-driven despite the fact that there is a wealth of experimental evidence about this TBI model that could have informed very specific predictions to test a hypothesis that is only hinted at in the discussion. The number of rats used for the spatial working memory experiment is not reported. Some of the statistics are not completely reported. It is also unclear what the rationale was for recording single units in a novel and familiar environment. Furthermore, this analysis comparing single-unit activity between familiar and novel environments is quite rudimentary. There are much more rigorous analyses to answer the question of how hippocampal single-unit firing patterns differ across changes in environments. There are details lacking about the number of units recorded per session and per rat, all of which are usually reported in studies that record single units. Spatial working memory assessment is delegated to a single panel of a supplementary figure. More importantly, there is no effort to dissociate between spatial working memory deficits and other motor, motivational, or sensory deficits that could have been driving the lower "memory score" in the experimental group.
-
Reviewer #2 (Public review):
Summary:
The authors investigate changes in theta-gamma phase amplitude coupling, and action potential entrainment to theta following traumatic brain injury (TBI). Both phenomena are widely hypothesized to be important for cognition, and the authors report deficits in both after TBI. The manuscript is well-written, the figures are well-constructed, and the author's use of high-level analysis methods for TBI EEG data collected from awake, behaving animals is welcome.
Major Comments:
- The animal n's are small (4 sham and 5 injured). In Figure 3, for instance, one wonders if panels D and E might have shown significant differences if more animals had been recorded.
- The text focuses on deficits in the theta and gamma bands, but the reduction in power appears to be broadband (see Figure 1F, especially Pyramidal cell layer panel). Therefore, the overall decrease in broadband (in the injured population) must be normalized between sham and injured animals before a selective comparison between sham and injured animals can be conducted. That is the only way that selective narrow bands i.e., theta and low gamma can be compared between the two cohorts. A brief discussion of the significance of a broadband decrease would be appreciated.
-
Reviewer #3 (Public review):
Summary:
In this study, the authors studied the effects of traumatic brain injury created by LFPI procedure on the CA1 at the network level. The major findings in this study seem to be that the TBI reduces theta and gamma powers in CA1, reduces phase-amplitude coupling in between theta and gamma bands as well as disrupts the gamma entrainment of interneurons. I think the authors have made some important discoveries that could help advance the understanding of TBI effects at the physiological level, however, more investigations into deciphering the relationship of the behavioral and brain states to the observed effects would help clarify the interpretations for the readers.
Strengths:
The authors in this study were able to combine behavioral verification of the TBI model with the laminar electrophysiological recordings of the CA1 region to bring forward network-level anomalies such as the temporal coordination of network-level oscillations as well as in the firing of the interneurons. Indeed, it seems that the findings may serve future studies to functionally better understand and/or refine the therapies for the TBI.
Weaknesses:
Discoveries made in the paper and their broad interpretations can be helped with further characterization and comparison among the brain and behavioral states both during immobility and movement. The impact of brain injury in several parts of the brain can alter brain-wide LFP and/or behavior. The altered behavior and/or LFP patterns might then lead to reduced spiking and unreliable LFP oscillations in the hippocampus. Hence, claims made in the abstract such as "These results reveal deficits in information encoding and retrieval schemes essential to cognition that likely underlie TBI-associated learning and memory impairments, and elucidate potential targets for future neuromodulation therapies" do not have enough evidence to test whether the disruptions were information encoding and retrieval related or due to sensory-motor and/or behavioral deficits that could also occur during TBI.
Movement velocity is already known to be correlated to the entrainment of spikes with the theta rhythm and also in some cases with the gamma oscillations. So, it is important to disentangle the differences in behavioral variables and the observed effects. As an example, the author's claims of disrupted temporal coding (as shown in the graphical abstract) might have suffered from these confounds. The observed results of reduced entrainment might, on one hand, be due to the decreased LFP power (induced by injury in different brain areas) resulting in altered behavior and/or the unreliable oscillations of the LFP bands such as theta and gamma, rather than memory encoding and retrieval related disruption of spikes synchrony to the rhythms, while on the other hand, they may simply be due to reduced excitability in the neurons particularly in the behavioral and brain state in which the effects were observed, rather than disrupted temporal code. Hence, further investigations into dissociating these factors could help readers mechanistically understand the interesting results observed by the authors.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review
Summary:
The authors sought to elucidate the mechanism by which infections increase sleep in Drosophila. Their work is important because it further supports the idea that the blood-brain barrier is involved in brain-body communication, and because it advances the field of sleep research. Using knock-down and knock-out of cytokines and cytokine receptors specifically in the endocrine cells of the gut (cytokines) as well as in the glia forming the blood-brain barrier (BBB) (cytokines receptors), the authors show that cytokines, upd2 and upd3, secreted by entero-endocrine cells in response to infections increase sleep through the Dome receptor in the BBB. They also show that gut-derived Allatostatin (Alst) A promotes wakefulness by inhibiting Alst A signaling that is mediated by Alst receptors expressed in BBB glia. Their results suggest there may be additional mechanisms that promote elevated sleep during gut inflammation.<br /> The authors suggest that upd3 is more critical than upd2, which is not sufficiently addressed or explained. In addition, the study uses the gut's response to reactive oxygen molecules as a proxy for infection, which is not sufficiently justified. Finally, further verification of some fundamental tools used in this paper would further solidify these findings making them more convincing.
Strengths:
(1) The work addresses an important topic and proposes an intriguing mechanism that involves several interconnected tissues. The authors place their research in the appropriate context and reference related work, such as literature about sickness-induced sleep, ROS, the effect of nutritional deprivation on sleep, sleep deprivation and sleep rebound, upregulated receptor expression as a compensatory mechanism in response to low levels of a ligand, and information about Alst A.
(2) The work is, in general, supported by well-performed experiments that use a variety of different tools, including multiple RNAi lines, CRISPR, and mutants, to dissect both signal-sending and receiving sides of the signaling pathway.
(3) The authors provide compelling evidence that shows that endocrine cells from the gut are the source of the upd cytokines that increase daytime sleep, that the glial cells of the BBB are the targets of these upds, and that upd action causes the downregulation of Alst receptors in the BBB via the Jak/Stat pathways.
Weaknesses:
(1) There is a limited characterization of cell types in the midgut which are classically associated with upd cytokine production.
(2) Some of the main tools used in this manuscript to manipulate the gut while not influencing the brain (e.g., Voilà and Voilà + R57C10-GAL80), are not directly shown to not affect gene expression in the brain. This is critical for a manuscript delving into intra-organ communication, as even limited expression in the brain may lead to wrong conclusions.
(3) The model of gut inflammation used by the authors is based on the increase in reactive oxygen species (ROS) obtained by feeding flies food containing 1% H2O2. The use of this model is supported by the authors rather weakly in two papers (refs. 26 and 27 ): The paper by Jiang et al. (ref. 26) shows that the infection by Pseudomonas entomophila induces cytokine responses upd2 and 3, which are also induced by the Jnk pathway. In addition, no mention of ROS could be found in Buchon et al. (ref 27); this is a review that refers to results showing that ROS are produced by the NADPH oxidase DUOX as part of the immune response to pathogens in the gut. Thus, there is no strong support for the use of this model.
(4) Likewise, there is no support for the use of ROS in the food instead a direct infection by pathogenic bacteria. Furthermore, it is known that ROS damages the gut epithelium, which in turn induces the expression of the cytokines studied. Thus the effects observed may not reflect the response to infection. In addition, Majcin Dorcikova et al. (2023). Circadian clock disruption promotes the degeneration of dopaminergic neurons in male Drosophila. Nat Commun. 2023 14(1):5908. doi: 10.1038/s41467-023-41540-y report that the feeding of adult flies with H2O2 results in neurodegeneration if associated with circadian clock defects. Thus, it would be important to discuss or present controls that show that the feeding of H2O2 does not cause neuronal damage.
(5) The novelty of the work is difficult to evaluate because of the numerous publications on sleep in Drosophila. Thus, it would be very helpful to read from the authors how this work is different and novel from other closely related works such as: Li et al. (2023) Gut AstA mediates sleep deprivation-induced energy wasting in Drosophila. Cell Discov. 23;9(1):49. doi: 10.1038/s41421-023-00541-3.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This study represents valuable insight into the potential contribution of ciliation deficits and cholinergic neuron survival in an etiologically appropriate Parkinson's disease mouse model. The evidence presented is convincing, employing a validated methodology to assess measures across multiple brain regions and time points, with adequate observation numbers. Similarities between some of the data here and human patients further validate the model, and the study provides numerous avenues to aid future advances.
Strengths:
Overall, this study presents a thorough analysis of ciliary defects and cell loss in cholinergic neurons throughout the brain in the LRRK2 G2019S knockin mouse model of Parkinson's disease. The authors aimed to characterize ciliary defects in areas not only implicated in PD but also in cholinergic neuron function. Additionally, they repeated measures across age and sex, presenting a body of work that is more readily translatable to human disease states. The strengths of the paper included the breadth of brain regions tested and additional mechanistic contributions of LRRK2 that may correlate to their observed phenotypes. The study conveys to the reader the ciliary phenotype observed in all the cholinergic neurons assessed throughout the brains of knock-in LRRK2 mutant mice. Importantly, the pattern of changes is, in some instances, strikingly similar to PD, which strengthens the case for construct and face validation of the G2019S knock-in mouse model. Future investigations of the physiological and behavioural correlates/consequences of these changes will inform ongoing and, as yet untried, therapeutic intervention attempts.
Weaknesses:
At times, the claims are only partially substantiated by how the data are presented (e.g., inappropriate statistics within an age (t-tests, not ANOVA) and a lack of comparison between ages (despite referring to the progress of a phenotype). More appropriate statistical analyses and revisions to the data presentation are required to substantiate basic and more 'progressive' conclusions. Further, distributing the central claim over 10 figures dilutes the impact, many of which could be compressed into a couple of single figures (e.g., cell counts in all regions and ciliation). Also, a summary graphic showing the brain regions affected by ciliation alterations and cell loss at young, middle, and old age in the GS mice would be hugely beneficial. This peer would like to see more discussion of how the observed changes would impact circuit-level function and more speculation of the underlying mechanisms leading to the deficits. Minor changes to the abstract and introduction (to include more detail in the rationale and supporting evidence) are recommended, as summaries of existing literature are vague and could flow better between one statement and the next.
-
Reviewer #2 (Public review):
Summary:
LRRK2 has previously been shown to affect cilia formation and stability both in vitro and in vivo, in striatal cholinergic interneurons, in both transgenic mice and in human post-mortem brain samples from subjects carrying one of the LRRK2 pathogenic mutations: G2019S. In the current study, Brahmia and colleagues have conducted a comprehensive assessment of G2019S knock-in mice to address some gaps in the field, specifically: extending analysis to additional cholinergic neurons across 3 time points and determining the functional consequences of the ciliation deficits. They find that primary cilia are lost in all cholinergic neurons, with basal forebrain cholinergic neurons displaying an early onset (in 4-5-month-old mice) compared with other regions. They also show early dystrophic changes in cholinergic axons derived from basal forebrain and brainstem cholinergic neurons and age-dependent cholinergic cell loss in select forebrain and brainstem nuclei.
Strengths:
This is a comprehensive and careful analysis of ciliary deficits and their downstream consequences, which we assume are deficits in innervation and cell loss.
Weaknesses:
This study is observational and does not address the underlying mechanisms. The data on pRab12, although downstream of LRRK2, does not clearly address this and, instead, raises more questions than answers: e.g., is there really differentiation from Rab10 and its phosphorylation or is it primarily due to the limitations of pRab10 antibodies with regards to the lack of suitability of this antibody in mouse brain sections (could immunoblots on brain punches have been performed to overcome this?). Are Rab10, Rab12, and LRRK2 expressed at different levels in the vulnerable cell types? Plenty of recent high-quality single-cell/single nuclear RNA-seq data could have been used to address such a fundamental question. LRRK2 small molecule inhibitors are available and progressing in the clinic. They could/should have been used to demonstrate the LRRK2 dependence, reversibility, and timing of therapeutic intervention. The authors suggest that the mouse data mirror (and potentially explain) the cholinergic loss in PD patient brains, but this is not measured in the current work (the authors do acknowledge this limitation and suggest that this is an important further study). There are some recent human data (Khan et al 2024 PMID: 38293195, BioRxiv, which the authors cite) showing loss of primary cilia and cholinergic neurons in sporadic PD (no evidence of aberrant LRRK2 activity) and, interestingly, this is not further exacerbated in G2019S carriers, which may suggest a more complex underlying mechanism.
-
Reviewer #3 (Public review):
Summary:
The authors described cilia deficits, phospho-Rab12 accumulation, dystrophic axons in cholinergic neurons, and loss of the cholinergic neurons in the mouse brains of G2019S-LRRK2 knock-in mice, a preclinical animal model for Parkinson's disease. They showed that the above changes associated with cholinergic neurons are age-dependent and region-specific. The observation is interesting considering the neuron-type-specific effect of the LRRK2-G2019S in mice.
Strengths:
The observations are important and show neuron type-specific effects of the PD mutation of LRRK2 relevant to PD pathologies.
Weaknesses:
The authors may over-interpret the data, and the study may lack mechanistic investigation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The manuscript by Griesius et al. addresses the dendritic integration of synaptic input in cortical GABAergic interneurons (INs). Dendritic properties, passive and active, of principal cells have been extensively characterized, but much less is known about the dendrites of INs. The limited information is particularly relevant in view of the high morphological and physiological diversity of IN types. The few studies that investigated IN dendrites focused on parvalbumin-expressing INs. In fact, in a previous study, the authors examined dendritic properties of PV INs, and found supralinear dendritic integration in basal, but not in apical dendrites (Cornford et al., 2019 eLife).
In the present study, complementary to the prior work, the authors investigate whether dendrite-targeting IN types, NDNF-expressing neurogliaform cells, and somatostatin(SOM)-expressing O-LM neurons, display similar active integrative properties by combining clustered glutamate-uncaging and pharmacological manipulations with electrophysiological recording and calcium imaging from genetically identified IN types in mouse acute hippocampal slices.
The main findings are that NDNF IN dendrites show strong supralinear summation of spatially- and temporally-clustered EPSPs, which is changed into sublinear behavior by bath application of NMDA receptor antagonists, but not by Na+-channel blockers. L-type calcium channel blockers abolished the supralinear behavior associated calcium transients but had no or only weak effect on EPSP summation. SOM IN dendrites showed similar, albeit weaker NMDA-dependent supralinear summation, but no supralinear calcium transients were detected in these INs. In summary, the study demonstrates that different IN types are endowed with active dendritic integrative mechanisms, but show qualitative and quantitative divergence in these mechanisms.
While the research is conceptionally not novel, it constitutes an important incremental gain in our understanding of the functional diversity of GABAergic INs. In view of the central roles of IN types in network dynamics and information processing in the cortex, results and conclusions are of interest to the broader neuroscience community.
The experiments are well designed, and closely follow the approach from the previous publication in parts, enabling direct comparison of the results obtained from the different IN types. The data is convincing and the conclusions are well-supported, and the manuscript is very well-written.
I see only a few open questions and some inconsistencies in the presentation of the data in the figures (see details below).
-
Reviewer #2 (Public review):
Summary:
Griesius et al. investigate the dendritic integration properties of two types of inhibitory interneurons in the hippocampus: those that express NDNF+ and those that express somatostatin. They found that both neurons showed supralinear synaptic integration in the dendrites, blocked by NMDA receptor blockers but not by blockers of Na+ channels. These experiments are critically overdue and very important because knowing how inhibitory neurons are engaged by excitatory synaptic input has important implications for all theories involving these inhibitory neurons.
Strengths:
(1) Determined the dendritic integration properties of two fundamental types of inhibitory interneurons.
(2) Convincing demonstration that supra-threshold integration in both cell types depends on NMDA receptors but not on Na+ channels.
Weaknesses:
It is unknown whether highly clustered synaptic input, as used in this study (and several previous studies), occurs physiologically.
-
Reviewer #3 (Public review):
Summary:
The authors study the temporal summation of caged EPSPs in dendrite-targeting hippocampal CA1 interneurons. There are some descriptive data presented, indicating non-linear summation, which seems to be larger in dendrites of NDNF expressing neurogliaform cells versus OLM cells. However, the underlying mechanisms are largely unclear.
Strengths:
Focal 2-photon uncaging of glutamate is a nice and detailed method to study temporal summation of small potentials in dendritic segments.
Weaknesses:
(1) NMDA-receptor signaling in NDNF-IN. The authors nicely show that temporal summation in dendrites of NDNF-INs is to a certain extent non-linear. However, this non-linearity varies massively from cell to cell (or dendrite to dendrite) from 0% up to 400% (Figure S2). The reason for this variability is totally unclear. Pharmacology with AP5 hints towards a contribution of NMDA receptors. However, the authors claim that the non-linearity is not dependent on EPSP amplitude (Figure S2), which should be the case if NMDA-receptors are involved. Unfortunately, there are no voltage-clamp data of NMDA currents similar to the previous study. This would help to see whether NMDA-receptor contribution varies from synapse to synapse to generate the observed variability? Furthermore, the NMDA- and AMPA-currents would help to compare NDNF with the previously characterized PV cells and would help to contribute to our understanding of interneuron function.
(2) Sublinear summation in NDNF-INs. In the presence of AP5, the temporal summation of caged EPSPs is sublinear. That is potentially interesting. The authors claim that this might be dependent on the diameter of dendrites. Many voltage-gated channels can mediate such things as well. To conclude the contribution of dendritic diameter, it would be helpful to at least plot the extent of sublinearity in single NDNF dendrites versus the dendritic diameter. Otherwise, this statement should be deleted.
(3) Nonlinear EPSP summation in OLM-IN. The authors do similar experiments in dendrite-targeting OLM-INs and show that the non-linear summation is smaller than in NDNF cells. The reason for this remains unclear. The authors claim that this is due to the larger dendritic diameter in OLM cells. However, there is no analysis. The minimum would be to correlate non-linearity with dendritic diameter in OLM-cells. Very likely there is an important role of synapse density and glutamate receptor density, which was shown to be very low in proximal dendrites of OLM cells and strongly increase with distance (Guirado et al. 2014, Cerebral Cortex 24:3014-24, Gramuntell et al. 2021, Front Aging Neurosci 13:782737). Therefore, the authors should perform a set of experiments in more distal dendrites of OLM cells with diameters similar to the diameters of the NDNF cells. Even better would be if the authors would quantify synapse density by counting spines and show how this density compares with non-linearity in the analyzed NDNF and OLM dendrites.
(4) NMDA in OLM. Similar to the NDNF cells, the authors claim the involvement of NMDA receptors in OLM cells. Again there seems to be no dependence on EPSP amplitude, which is not understandable at this point (Figure S3). Even more remarkable is the fact that the authors claim that there is no dendritic calcium increase after activation of NMDA receptors. Similar to NDNF-cell analysis there are no NMDA currents in OLMs. Unfortunately, even no calcium imaging experiments were shown. Why? Are there calcium-impermeable NNDA receptors in OLM cells? To understand this phenomenon the minimum is to show some physiological signature of NMDA-receptors, for example, voltage-clamp currents. Furthermore, it would be helpful to systematically vary stimulus intensity to see some calcium signals with larger stimulation. In case there is still no calcium signal, it would be helpful to measure reversal potentials with different ion compositions to characterize the potentially 'Ca2+ impermeable' voltage-dependent NMDA receptors in OLM cells.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This study provides convincing evidence on the infraslow oscillation of DG cells during NREM sleep, and how serotonergic innervation modulates hippocampal activity pattern during sleep and memory.
Strengths and Weaknesses:
The authors used state-of-the-art techniques to carry out these experiments. Given that the functional role of infraslow rhythm still remains to be studied, this study provides convincing evidence of the role of DG cells in regulating infraslow rhythm, sleep microarchitecture, and memory.
I have a few minor comments.
(1) Decreased infraslow rhythm during NREMs in the 5ht1a KO mice is striking. It would be helpful to know whether sleep-wake states, MAs, and transitions to REMs are changed.
(2) It would be interesting to discuss whether the magnitude in changes of infraslow rhythm strength is correlated with memory performance (Figure 6).
(3) The authors should cite the Oikonomou Neuron paper that describes slow oscillatory activity of DRN SERT neurons during NREM sleep.
(4) The authors should clarify how they define the phasic pattern of the photometry signal.
-
Reviewer #2 (Public review):
Summary:
The authors investigated DG neuronal activity at the population and single-cell level across sleep/wake periods. They found an infraslow oscillation (0.01-0.03 Hz) in both granule cells (GC) and mossy cells (MC) during NREM sleep.
The important findings are:
(1) The antiparallel temporal dynamics of DG neuron activities and serotonin neuron activities/extracellular serotonin levels during NREM sleep, and
(2) The GC Htr1a-mediated GC infraslow oscillation.
Strengths:
(1) The combination of polysomnography, Ca-fiber photometry, two-photon microscopy, and gene depletion is technically sound. The coincidence of microarousals and dips in DG population activity is convincing. The dip in activity in upregulated cells is responsible for the dip at the population level.
(2) DG GCs express excitatory Htr4 and Htr7 in addition to inhibitory Htr1a, but deletion of Htr1a is sufficient to disrupt DG GC infraslow oscillation, supporting the importance of Htr1a in DG activity during NREM sleep.
Weaknesses:
(1) The current data set and analysis are insufficient to interpret the observation correctly.
a. In Figure 1A, during NREM, the peaks and troughs of GC population activities seem to gradually decrease over time. Please address this point.
b. In Figure 1F, about 30% of Ca dips coincided with MA (EMG increase) and 60% of Ca dips did not coincide with EMG increase. If this is true, the readers can find 8 Ca dips which are not associated with MAs from Figure 1E. If MAs were clustered, please describe this properly.
c. In Figure 1F, the legend stated the percentage during NREM. If the authors want to include the percentage of wake and REM, please show the traces with Ca dips during wake and REM. This concern applies to all pie charts provided by the authors.
d. In Figure 1C, please provide line plots connecting the same session. This request applies to all related figures.
e. In Figure 2C, the significant increase during REM and the same level during NREM are not convincing. In Figure 2A, the several EMG increasing bouts do not appear to be MA, but rather wakefulness, because the duration of the EMG increase is greater than 15 seconds. Therefore, it is possible that the wake bouts were mixed with NREM bouts, leading to the decrease of Ca activity during NREM. In fact, In Figure 2E, the 4th MA bout seems to be the wake bout because the EMG increase lasts more than 15 seconds.
f. Figure 5D REM data are interesting because the DRN activity is stably silenced during REM. The varied correlation means the varied DG activity during REM. The authors need to address it.
g. In Figure 6, the authors should show the impact of DG Htr1a knockdown on sleep/wake structure including the frequency of MAs. I agree with the impact of Htr1a on DG ISO, but possible changes in sleep bout may induce the DG ISO disturbance.
(2) It is acceptable that DG Htr1a KO induces the reduced freezing in the CFC test (Figure 6E, F), but it is too much of a stretch that the disruption of DG ISO causes impaired fear memory. There should be a correlation.
(3) It is necessary to describe the extent of AAV-Cre infection. The authors injected AAV into the dorsal DG (AP -1.9 mm), but the histology shows the ventral DG (Supplementary Figure 4), which reduces the reliability of this study.
-
Reviewer #3 (Public review):
Summary:
The authors employ a series of well-conceived and well-executed experiments involving photometric imaging of the dentate gyrus and raphe nucleus, as well as cell-type specific genetic manipulations of serotonergic receptors that together serve to directly implicate serotonergic regulation of dentate gyrus (DG) granule (GC) and mossy cell (MC) activity in association with an infra slow oscillation (ISO) of neural activity has been previously linked to general cortical regulation during NREM sleep and microarousals.
Strengths:
There are a number of novel and important results, including the modulation of dentage granule cell activity by the infraslow oscillation during NREM sleep, the selective association of different subpopulations of granule cells to microarousals (MA), the anticorrelation of raphe activity with infraslow dentate activity.
The discussion includes a general survey of ISOs and recent work relating to their expression in other brain areas and other potential neuromodulatory system involvement, as well as possible connections with infraslow oscillations, micro-arousals, and sensory sensitivity.
Weaknesses:
(1) The behavioral results showing contextual memory impairment resulting from 5-HT1a knockdown are fine but are over-interpreted. The term memory consolidation is used several times, as well as references to sleep-dependence. This is not what was tested. The receptor was knocked down, and then 2 weeks later animals were found to have fear conditioning deficits. They can certainly describe this result as indicating a connection between 5-HT1a receptor function and memory performance, but the connection to sleep and consolidation would just be speculation. The fact that 5-HT1a knockdown also impacted DG ISOs does not establish dependency. Some examples of this are:
a. The final conclusion asserts "Together, our study highlights the role of neuromodulation in organizing neuronal activity during sleep and sleep-dependent brain functions, such as memory.". However, the reported memory effects (impairment of fear conditioning) were not shown to be explicitly sleep-dependent.
b. Earlier in the discussion it mentions "Finally, we showed that local genetic ablation of 5-HT1a receptors in GCs impaired the ISO and memory consolidation". The effect shown was on general memory performance - consolidation was not specifically implicated.
(2) The assertion on page 9 that the results demonstrate "that the 5-HT is directly acting in the DG to gate the oscillations" is a bit strong given the magnitude of effect shown in Figure 6D, and the absence of demonstration of negative effect on cortical areas that also show ISO activity and could impact DG activity (see requested cortical sigma power analysis).
(3) Recent work has shown that abnormal DG GC activity can result from the use of the specific Ca indicator being used (GCaMP6s). (Teng, S., Wang, W., Wen, J.J.J. et al. Expression of GCaMP6s in the dentate gyrus induces tonic-clonic seizures. Sci Rep 14, 8104 (2024). https://doi.org/10.1038/s41598-024-58819-9). The authors of that study found that the effect seemed to be specific to GCaMP6s and that GCaMP6f did not lead to abnormal excitability. Note this is of particular concern given similar infraslow variation of cortical excitability in epilepsy (cf Vanhatalo et al. PNAS 2004). While I don't think that the experiments need to be repeated with a different indicator to address this concern, you should be able to use the 2p GCaMP7 experiments that have already been done to provide additional validation by repeating the analyses done for the GCaMP6s photometry experiments. This should be done anyway to allow appropriate comparison of the 2p and photometry results.
(4) While the discussion mentions previous work that has linked ISOs during sleep with regulation of cortical oscillations in the sigma band, oddly no such analysis is performed in the current work even though it is presumably available and would be highly relevant to the interpretation of a number of primary results including the relationship between the ISOs and MAs observed in the DG and similar results reported in other areas, as well as the selective impact of DG 5-HT1a knockdown on DG ISOs. For example, in the initial results describing the cross-correlation of calcium activity and EMG/EEG with MA episodes (paragraph 1, page 4), similar results relating brief arousals to the infraslow fluctuation in sleep spindles (sigma band) have been reported also at .02 Hz associated with variation in sensory arousability (cf. Cardis et al., "Cortico-autonomic local arousals and heightened somatosensory arousability during NREMS of mice in neuropathic pain", eLife 2021). It would be important to know whether the current results show similar cortical sigma band correlations. Also, in the results on ISO attenuation following 5-HT1 knockdown on page 7 (Figure 6), how is cortical EEG affected? Is ISO still seen in EEG but attenuated in DG?
(5) The illustrations of the effect of 5-HT1a knockdown shown in Figure 6 are somewhat misleading. The examples in panels B and C show an effect that is much more dramatic than the overall effect shown in panel D. Panels B and C do not appear to be representative examples. Which of the sample points in panel D are illustrated in panels B and C? It is not appropriate to arbitrarily select two points from different animals for comparison, or worse, to take points from the extremes of the distributions. If the intent is to illustrate what the effect shown in D looks like in the raw data, then you need to select examples that reflect the means shown in panel D. It is also important to show the effect on cortical EEG, particularly in sigma band to see if the effects are restricted to the DG ISOs. It would also be helpful to show that MAs and their correlations as shown in Figure 1 or G as well as broader sleep architecture are not affected.
(6) On page 9 of the results it states that GCs and MCs are upregulated during NREM and their activity is abruptly terminated by MAs through a 5-HT mediated mechanism. I didn't see anything showing the 5-HT dependence of the MA activity correlation. The results indicate a reduction in ISO modulation of GC activity but not the MA-correlated activity. I would like to see the equivalent of Figure 1,2 G panels with the 5-HT1a manipulation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This study is an important follow-up to their prior work - Wong et al. (2019), starting with clear questions and hypotheses, followed by a series of thoughtful and organized experiments. The method and results are convincing. Experiment 1 demonstrated the sensory preconditioned fear with few (8) or many (32) sound-light pairings. Experiments 2A and 2B showed the role of PRh NMDA receptors during conditioning for online integration, revealing that this contribution is present only after a few sound-light pairings, not after many sound-light pairings. Experiments 3A and 3B showed the contribution of PRh-BLA communication to online integration, again only after a few but not after many. Contrary to Experiments 3A and 3B, Experiments 4A and 4B showed the contribution of PRh-BLA communication to integration at test only after many but not few sound-light pairings.
Strengths:
Throughout the manuscript, the methods and results are clearly organized and described, and the use of statistics is solid, all contributing to the overall clarity of the research. The discussion section was also well-written, effectively comparing the current research with the prior work and offering insightful interpretations and potential future directions for this line of research. I have only a limited amount of concerns about some results and some details of experiments/statistics.
Weaknesses:
Could you provide further interpretation regarding line 171: the observation that sensory preconditioned fear increased with the number of sound-light pairings? Was this increase due to better sound-light association learning during Stage 1? Additionally, were there any experimental differences between Experiment 1 and the other experiments that might explain why freezing was higher in the P32 group compared to the P8 group? This pattern seemed to be absent in the other experiments. If we consider the hypothesis that the online integration mechanism is more active with fewer pairings and the chaining mechanism at the test is more prominent with many pairings, we wouldn't expect a difference between the P8 and P32 groups. Given the relatively small sample size in Experiment 1, the authors might consider conducting a cross-experiment analysis or something similar to investigate this further.
-
Reviewer #2 (Public review):
This manuscript builds on the authors' earlier work, most recently Wong et al. 2019, in which they showed the importance of the perirhinal cortex (PRh) during the first-order conditioning stage of sensory preconditioning. Sensory preconditioning requires learning between two neutral stimuli (S2-S1) and subsequent development of a conditioned response to one of the neutral stimuli after pairing of the other stimulus with a motivationally relevant unconditioned stimulus (S1-US). One highly debated question regarding the mechanisms of learning of sensory preconditioning has been whether conditioned responses evoked by the indirectly trained stimulus (S2) occur through a mediated representation at the time of the first-order US training, or whether the conditioned responses develop through a chained evoked representation (S2--> S1 --> US) at the time of test. The authors' prior findings provided strong evidence for PRh being involved in mediated learning during the first-order training. They showed that protein synthesis was required during the first-order S1-US learning to support the conditioned response to the indirectly trained stimulus (S2) at the test.
One question remaining following the previous paper was whether certain conditions may promote a chaining mechanism over mediated learning, as there is some evidence for chained representations at the time of the test. In this paper, the authors directly address this important question and find unambiguous results that the extent of training during the preconditioning stage impacts the involvement of PRh during the first-order conditioning or stage 2. They show that putative blockade of synaptic changes in PRh, using an NMDA antagonist, disrupts responding to the preconditioned cue at test during shorter duration preconditioning training (8 trials), but not during extended training (32 trials). They also show that this is the case for communication between the PRh and BLA during the same stage of training using a contralateral inactivation approach. This confirms their previous findings in 2019 of connectivity between these regions for the short-duration training, while they observe here for the first time that this is not the case for extended training. Finally, they show that with extended training, communication between BLA and the PRh is required at the final test of the preconditioned stimulus, but not for the short duration training.
The results are clear and extremely consistent across experiments within this paper as well as with earlier work. The experiments here are thorough, and well-conceived, and address an important and highly debated question in the field regarding the neural and psychological mechanisms underlying sensory preconditioning. This work is highly impactful for the field as the debate over mediated versus chaining mechanisms has been an important topic for more than 70 years.
-
Reviewer #3 (Public review):
The authors tested whether the number of stimulus-stimulus pairings alters whether preconditioned fear depends on online integration during the formation of the stimulus-outcome memory or during the probe test/mobilization phase, when the original stimulus, which was never paired with aversive events, elicits fear via chaining of stimulus-stimulus and stimulus-outcome memories. They found that sensory preconditioning was successful with either 8 or 32 stimulus-stimulus pairings. Perirhinal cortex NMDA receptor blockade during stimulus-outcome learning impaired preconditioning following 8 but not 32 pairings during preconditioning. Therefore, perirhinal cortex NMDA activity is required for online integration or mediated learning. Perirhinal-basolateral amygdala had nearly identical effects with the same interpretation: these areas communicate during stimulus-outcome learning, and this online communication is required for later expressing preconditioned fear. Disconnection prior to the probe test, when chaining might occur, had different effects: it impaired the expression of preconditioned fear in rats that received 32, but not 8, pairings during preconditioning. The study has several strengths and provides a thoughtful discussion of future experiments. The study is highly impactful and significant; the authors were successful in describing the behavioral and neurobiological mechanisms of mediated learning versus chaining in sensory preconditioning, which is often debated in the learning field. Therefore this study will have a significant impact on the behavioral neurobiology and learning fields.
Strengths:
Careful, rigorous experimental design and statistics.
The discussion leaves open questions that are very much worth exploring. For example - why did perirhinal-amygdala disconnection prior to the probe have no effect in the 8-pairing group, when bilateral perirhinal inactivation did (in Wong et al, 2019)? The authors propose that perirhinal cortex outputs bypass the amygdala during the probe test, which is an excellent hypothesis to test.
The authors provide evidence that both mediated learning and chaining occur.
Weaknesses:
This is inherent to all neural interference and behavioral experiments: biological/psychological functions do not typically operate binarily. There is no single clear number or parameter at which mediated learning or chaining happens, and both probably happen to some extent. Addressing this is even more difficult given behavioral variability across subjects, implant sites, etc. Thus, this is not so much a weakness particular to this study as much as an existential problem, which the authors were able to work around with careful experimental design and appropriate controls.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The behavioral strategies underlying decisions based on perceptual evidence are often studied in the lab with stimuli whose elements provide independent pieces of decision-related evidence that can thus be equally weighted to form a decision. In more natural scenarios, in contrast, the information provided by these pieces is often correlated, which impacts how they should be weighted. Tardiff, Kang & Gold set out to study decisions based on correlated evidence and compare the observed behavior of human decision-makers to normative decision strategies. To do so, they presented participants with visual sequences of pairs of localized cues whose location was either uncorrelated, or positively or negatively correlated, and whose mean location across a sequence determined the correct choice. Importantly, they adjusted this mean location such that, when correctly weighted, each pair of cues was equally informative, irrespective of how correlated it was. Thus, if participants follow the normative decision strategy, their choices and reaction times should not be impacted by these correlations. While Tardiff and colleagues found no impact of correlations on choices, they did find them to impact reaction times, suggesting that participants deviated from the normative decision strategy. To assess the degree of this deviation, Tardiff et al. adjusted drift-diffusion models (DDMs) for decision-making to process correlated decision evidence. Fitting these models to the behavior of individual participants revealed that participants considered correlations when weighing evidence, but did so with a slight underestimation of the magnitude of this correlation. This finding made Tardiff et al. conclude that participants followed a close-to-normative decision strategy that adequately took into account correlated evidence.
Strengths:
The authors adjust a previously used experimental design to include correlated evidence in a simple, yet powerful way. The way it does so is easy to understand and intuitive, such that participants don't need extensive training to perform the task. Limited training makes it more likely that the observed behavior is natural and reflective of everyday decision-making. Furthermore, the design allowed the authors to make the amount of decision-related evidence equal across different correlation magnitudes, which makes it easy to assess whether participants correctly take account of these correlations when weighing evidence: if they do, their behavior should not be impacted by the correlation magnitude.
The relative simplicity with which correlated evidence is introduced also allowed the authors to fall back to the well-established DDM for perceptual decisions, which has few parameters, is known to implement the normative decision strategy in certain circumstances, and enjoys a great deal of empirical support. The authors show how correlations ought to impact these parameters, and which changes in parameters one would expect to see if participants mis-estimate these correlations or ignore them altogether (i.e., estimate correlations to be zero). This allowed them to assess the degree to which participants took into account correlations on the full continuum from perfect evidence weighting to complete ignorance. With this, they could show that participants in fact performed rational evidence weighting if one assumed that they slightly underestimated the correlation magnitude.
Weaknesses:
The experiment varies the correlation magnitude across trials such that participants need to estimate this magnitude within individual trials. This has several consequences:
(1) Given that correlation magnitudes are estimated from limited data, the (subjective) estimates might be biased towards their average. This implies that, while the amount of evidence provided by each 'sample' is objectively independent of the correlation magnitude, it might subjectively depend on the correlation magnitude. As a result, the normative strategy might differ across correlation magnitudes, unlike what is suggested in the paper. In fact, it might be the case that the observed correlation magnitude underestimates corresponds to the normative strategy.
(2) The authors link the normative decision strategy to putting a bound on the log-likelihood ratio (logLR), as implemented by the two decision boundaries in DDMs. However, as the authors also highlight in their discussion, the 'particle location' in DDMs ceases to correspond to the logLR as soon as the strength of evidence varies across trials and isn't known by the decision maker before the start of each trial. In fact, in the used experiment, the strength of evidence is modulated in two ways:<br /> (i) by the (uncorrected) distance of the cue location mean from the decision boundary (what the authors call the evidence strength) and<br /> (ii) by the correlation magnitude. Both vary pseudo-randomly across trials, and are unknown to the decision-maker at the start of each trial. As previous work has shown (e.g. Kiani & Shadlen (2009), Drugowitsch et al. (2012)), the normative strategy then requires averaging over different evidence strength magnitudes while forming one's belief. This averaging causes the 'particle location' to deviate from the logLR. This deviation makes it unclear if the DDM used in the paper indeed implements the normative strategy, or is even a good approximation to it.
Given that participants observe 5 evidence samples per second and on average require multiple seconds to form their decisions, it might be that they are able to form a fairly precise estimate of the correlation magnitude within individual trials. However, whether this is indeed the case is not clear from the paper.
Furthermore, the authors capture any underestimation of the correlation magnitude by an adjustment to the DDM bound parameter. They justify this adjustment by asking how this bound parameter needs to be set to achieve correlation-independent psychometric curves (as observed in their experiments) even if participants use a 'wrong' correlation magnitude to process the provided evidence. Curiously, however, the drift rate, which is the second critical DDM parameter, is not adjusted in the same way. If participants use the 'wrong' correlation magnitude, then wouldn't this lead to a mis-weighting of the evidence that would also impact the drift rate? The current model does not account for this, such that the provided estimates of the mis-estimated correlation magnitudes might be biased.
Lastly, the paper makes it hard to assess how much better the participants' choices would be if they used the correct correlation magnitudes rather than underestimates thereof. This is important to know, as it only makes sense to strictly follow the normative strategy if it comes with a significant performance gain.
-
Reviewer #2 (Public review):
Summary:
This study by Tardiff, Kang & Gold seeks to: i) develop a normative account of how observers should adapt their decision-making across environments with different levels of correlation between successive pairs of observations, and ii) assess whether human decisions in such environments are consistent with this normative model.
The authors first demonstrate that, in the range of environments under consideration here, an observer with full knowledge of the generative statistics should take both the magnitude and sign of the underlying correlation into account when assigning weight in their decisions to new observations: stronger negative correlations should translate into stronger weighting (due to the greater information furnished by an anticorrelated generative source), while stronger positive correlations should translate into weaker weighting (due to the greater redundancy of information provided by a positively correlated generative source). The authors then report an empirical study in which human participants performed a perceptual decision-making task requiring accumulation of information provided by pairs of perceptual samples, under different levels of pairwise correlation. They describe a nuanced pattern of results with effects of correlation being largely restricted to response times and not choice accuracy, which could partly be captured through fits of their normative model (in this implementation, an extension of the well-known drift-diffusion model) to the participants' behaviour while allowing for mis-estimation of the underlying correlations.
Strengths:
As the authors point out in their very well-written paper, appropriate weighting of information gathered in correlated environments has important consequences for real-world decision-making. Yet, while this function has been well studied for 'high-level' (e.g. economic) decisions, how we account for correlations when making simple perceptual decisions on well-controlled behavioural tasks has not been investigated. As such, this study addresses an important and timely question that will be of broad interest to psychologists and neuroscientists. The computational approach to arrive at normative principles for evidence weighting across environments with different levels of correlation is very elegant, makes strong connections with prior work in different decision-making contexts, and should serve as a valuable reference point for future studies in this domain. The empirical study is well designed and executed, and the modelling approach applied to these data showcases a deep understanding of relationships between different parameters of the drift-diffusion model and its application to this setting. Another strength of the study is that it is preregistered.
Weaknesses:
In my view, the major weaknesses of the study center on the narrow focus and subsequent interpretation of the modelling applied to the empirical data. I elaborate on each below:
Modelling interpretation: the authors' preference for fitting and interpreting the observed behavioural effects primarily in terms of raising or lowering the decision bound is not well motivated and will potentially be confusing for readers, for several reasons. First, the entire study is conceived, in the Introduction and first part of the Results at least, as an investigation of appropriate adjustments of evidence weighting in the face of varying correlations. The authors do describe how changes in the scaling of the evidence in the drift-diffusion model are mathematically equivalent to changes in the decision bound - but this comes amidst a lengthy treatment of the interaction between different parameters of the model and aspects of the current task which I must admit to finding challenging to follow, and the motivation behind shifting the focus to bound adjustments remained quite opaque. Second, and more seriously, bound adjustments of the form modelled here do not seem to be a viable candidate for producing behavioural effects of varying correlations on this task. As the authors state toward the end of the Introduction, the decision bound is typically conceived of as being "predefined" - that is, set before a trial begins, at a level that should strike an appropriate balance between producing fast and accurate decisions. There is an abundance of evidence now that bounds can change over the course of a trial - but typically these changes are considered to be consistently applied in response to learned, predictable constraints imposed by a particular task (e.g. response deadlines, varying evidence strengths). In the present case, however, the critical consideration is that the correlation conditions were randomly interleaved across trials and were not signaled to participants in advance of each trial - and as such, what correlation the participant would encounter on an upcoming trial could not be predicted. It is unclear, then, how participants are meant to have implemented the bound adjustments prescribed by the model fits. At best, participants needed to form estimates of the correlation strength/direction (only possible by observing several pairs of samples in sequence) as each trial unfolded, and they might have dynamically adjusted their bounds (e.g. collapsing at a different rate across correlation conditions) in the process. But this is very different from the modelling approach that was taken. In general, then, I view the emphasis on bound adjustment as the candidate mechanism for producing the observed behavioural effects to be unjustified (see also next point).
Modelling focus: Related to the previous point, it is stated that participants' choice and RT patterns across correlation conditions were qualitatively consistent with bound adjustments (p.20), but evidence for this claim is limited. Bound adjustments imply effects on both accuracy and RTs, but the data here show either only effects on RTs, or RT effects mixed with accuracy trends that are in the opposite direction to what would be expected from bound adjustment (i.e. slower RT with a trend toward diminished accuracy in the strong negative correlation condition; Figure 3b). Allowing both drift rate and bound to vary with correlation conditions allowed the model to provide a better account of the data in the strong correlation conditions - but from what I can tell this is not consistent with the authors' preregistered hypotheses, and they rely on a posthoc explanation that is necessarily speculative and cannot presently be tested (that the diminished drift rates for higher negative correlations are due to imperfect mapping between subjective evidence strength and the experimenter-controlled adjustment to objective evidence strengths to account for effects of correlations). In my opinion, there are other candidate explanations for the observed effects that could be tested but lie outside of the relatively narrow focus of the current modelling efforts. Both explanations arise from aspects of the task, which are not mutually exclusive. The first is that an interesting aspect of this task, which contrasts with most common 'univariate' perceptual decision-making tasks, is that participants need to integrate two pieces of information at a time, which may or may not require an additional computational step (e.g. averaging of two spatial locations before adding a single quantum of evidence to the building decision variable). There is abundant evidence that such intermediate computations on the evidence can give rise to certain forms of bias in the way that evidence is accumulated (e.g. 'selective integration' as outlined in Usher et al., 2019, Current Directions in Psychological Science; Luyckx et al., 2020, Cerebral Cortex) which may affect RTs and/or accuracy on the current task. The second candidate explanation is that participants in the current study were only given 200 ms to process and accumulate each pair of evidence samples, which may create a processing bottleneck causing certain pairs or individual samples to be missed (and which, assuming fixed decision bounds, would presumably selectively affect RT and not accuracy). If I were to speculate, I would say that both factors could be exacerbated in the negative correlation conditions, where pairs of samples will on average be more 'conflicting' (i.e. further apart) and, speculatively, more challenging to process in the limited time available here to participants. Such possibilities could be tested through, for example, an interrogation paradigm version of the current task which would allow the impact of individual pairs of evidence samples to be more straightforwardly assessed; and by assessing the impact of varying inter-sample intervals on the behavioural effects reported presently.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The manuscript by Chen et al. investigated the interaction between CHI3L1, a chitinase-like protein in the 18 glycosyl hydrolase family, and gut bacteria in the mucosal layers. The authors provided evidence to document the direct interaction between CHI3L1 and peptidoglycan, a major component of bacterial cell wall. Doing so, Chi3l1 produced by gut epithelial cells regulates the balance of gut microbiome and diminishes DSS-induced colitis, potentially through the colonization of protective gram-positive bacteria such as lactobacillus.
The study is the first to systemically document the interactions between Chi3L1 and microbiome. Convincing data were shown to characterize the imbalance of gram-positive bacteria in the newly generated gut epithelial-specific Chi3L1 deficient mice. Comprehensive FMT experiments were performed to demonstrate the contributions of gut microbiome using the mouse colitis model. The manuscript is strengthened by additional mechanistic studies concerning the binding between Chi3l1 and peptidoglycan, and discussions on existing body of literature demonstrating that detrimental roles of Chi3l1 in mouse IBD model, which conflict with the current study.
-
Reviewer #2 (Public review):
Chen et al. investigated the regulatory mechanism of bacterial colonization in the intestinal mucus layer in mice and its implications to intestinal diseases. They demonstrated that Chi3l1 is a protein produced and secreted by intestinal epithelial cells into the mucus layer upon response to the gut microbiota, which has a turnover effect on facilitating the colonization of gram-positive bacteria in the mucosa. The data also indicate that Chi3l1 interacts with the peptidoglycan of the bacteria cell wall, supporting the colonization of beneficial bacteria strains such as Lactobacillus, and that deficiency in Chi3l1 predisposes mice to colitis. The inclusion of a small but pertinent piece of human data added to solidify their findings in mice.
Overall, the experiments were appropriately designed and executed with precision. The revised manuscript represents a significant improvement over the initial version. The inclusion of new, higher-resolution images provides stronger support for the conclusions drawn. Additionally, statistical analyses of the imaging data, as recommended, have been integrated. The authors have effectively addressed the majority of the reviewers' suggestions and criticisms, making this version well-suited for publication.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript the authors investigate the contributions of the long noncoding RNA snhg3 in liver metabolism and MAFLD. The authors conclude that liver-specific loss or overexpression of Snhg3 impacts hepatic lipid content and obesity through epigenetic mechanisms. More specifically, the authors invoke that nuclear activity of Snhg3 aggravates hepatic steatosis by altering the balance of activating and repressive chromatin marks at the Pparg gene locus. This regulatory circuit is dependent on a transcriptional regulator SNG1.
Strengths:
The authors developed a tissue specific lncRNA knockout and KI models. This effort is certainly appreciated as few lncRNA knockouts have been generated in the context of metabolism. Furthermore, lncRNA effects can be compensated in a whole organism or show subtle effects in acute versus chronic perturbation, rendering the focus on in vivo function important and highly relevant. In addition, Snhg3 was identified through a screening strategy and as a general rule the authors the authors attempt to follow unbiased approaches to decipher the mechanisms of Snhg3.
-
Reviewer #2 (Public Review):
Through RNA analysis, Xie et al found LncRNA Snhg3 was one of the most down-regulated Snhgs by high fat diet (HFD) in mouse liver. Consequently, the authors sought to examine the mechanism through which Snhg3 is involved in the progression of metabolic dysfunction-associated fatty liver diseases (MASLD) in HFD-induced obese (DIO) mice. Interestingly, liver-specific Sngh3 knockout reduced, while Sngh3 over-expression potentiated fatty liver in mice on a HFD. Using the RNA pull-down approach, the authors identified SND1 as a potential Sngh3 interacting protein. SND1 is a component of the RNA-induced silencing complex (RISC). The authors found that Sngh3 increased SND1 ubiquitination to enhance SND1 protein stability, which then reduced the level of repressive chromatin H3K27me3 on PPARg promoter. The upregulation of PPARg, a lipogenic transcription factor, thus contributed to hepatic fat accumulation.
The authors propose a signaling cascade that explains how LncRNA sngh3 may promote hepatic steatosis. Multiple molecular approaches have been employed to identify molecular targets of the proposed mechanism, which is a strength of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This manuscript nicely outlines a conceptual problem with the bFAC model in A-motility, namely, how the energy derived from the inner membrane AglRQS motor transduced through the cell wall into mechanical force on the cell surface to drive motility? To address this, the authors make a significant contribution by identifying and characterizing a lytic transglycosylase (LTG) called AgmT. This work thus provides clues and a future framework work to address mechanical force transmission from the cytoplasm through the cell envelope to the cell surface.
Strengths:
(i) Convincing evidence shows AgmT functions as a LTG and, surprisingly, that mltG from E. coli complements the swarming defect of an agmT mutant.
(ii) Show 13 other LTGs found in M. xanthus are not required for A-motility.
(iii) Authors show agmT mutants develop morphological changes in response to treatment with a beta-lactam antibiotic, mecillinam.
(iv) The use of single molecule tracking to monitor the assembly and dynamics of bFACs in WT and mutant backgrounds.
(v) The authors understand the limitations of their work and do not overinterpret their data.
Weaknesses:
The authors provided more experiments and clearly addressed my prior concerns in their revised manuscript.
-
Reviewer #2 (Public review):
The manuscript by Carbo et al. reports a novel role for the MltG homolog AgmT in gliding motility in M. xanthus. The authors conclusively show that AgmT is a cell wall lytic enzyme (likely a lytic transglycosylase), its lytic activity is required for gliding motility, and that its activity is required for proper binding of a component of the motility apparatus to the cell wall. The data are generally well-controlled. The marked strength of the manuscript includes the detailed characterization of AgmT as a cell wall lytic enzyme, and the careful dissection of its role in motility. Using multiple lines of evidence, the authors conclusively show that AgmT does not directly associate with the motility complexes, but that instead its absence (or the overexpression of its active site mutant) results in failure of focal adhesion complexes to properly interact with the cell wall.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The authors present data on outer membrane vesicle (OMV) production in different mutants, but they state that this is beyond the scope of the current manuscript, which I disagree with. This data could provide valuable physiological context that is otherwise lacking. The preliminary blots suggest that YafK does not alter OMV biogenesis. I recommend repeating these blots with appropriate controls, such as blotting for proteins in the culture media, an IM protein, periplasmic protein and an OM protein to strengthen the reliability of these findings. Including this data in the manuscript, even if it does not directly support the initial hypothesis, would enhance the physiological relevance of the study. Currently, the manuscript relies completely on the experimental setup (labeling-mass spec) previously developed by the authors, which limits the broader scope and interpretability of this study.
Additionally susceptibility of strains to detergents like SDS can be tested to provide a much needed physisological context to the study.
In summary, the authors should consider revising the manuscript to improve clarity, substantiate their claims with more detailed evidence, and include additional experimental results that provide necessary physiological context to their study.
Comments on the revised version:
Regarding my comments from last review on a new figure on OMV analysis, The authors have redirected me to their previous response and have not performed the suggested control blots. I do not get their argument that this is for specialized audience. I do not have any more comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
An investigation of the dynamics of a neural network model characterized by sparsely connected clusters of neuronal ensembles. The authors found that such a network could intrinsically generate sequence preplay and place maps, with properties like those observed in the real-world data.
Strengths:
Computational model and data analysis supporting the hippocampal network mechanisms underlying sequence preplay of future experiences and place maps.<br /> The revised version of the manuscript addressed all my comments and as a result is significantly improved.
Weaknesses:
None noted
-
Reviewer #2 (Public review):
Summary:
The authors show that a spiking network model with clustered connectivity produces intrinsic spike sequences when driven with an ramping input, which are recapitulated in the absence of input. This behavior is only seen for some network parameters (neuron cluster participation and number of clusters in the network), which correspond to those that produce a small world network. By changing the strength of ramping input to each network cluster, the network can show different sequences.
Strengths:
A strength of the paper is the direct comparison between the properties of the model and neural data.
Weaknesses:
My main critique of the paper relates to the form of the input to the network. Specifically, it's unclear how much the results depend on the choice of a one-dimensional environment with ramping input. While this is an elegant idealization that allows the authors to explore the representation and replay properties of their model, it is a strong and highly non-physiological constraint. In order to address this concern, the authors would need to test the spatial tuning of their network in 2-dimensional environments, and with different kinds of input from a population of neurons that have a range of degree of spatial tuning and physiological plausibility. A method for systematically producing input with varying degrees of spatial tuning in both 1D and 2D environments has been previously used in (Fang et al 2023, eLife, see Figures 4 and 5), which could be readily adapted for the current study; and behaviorally plausible trajectories in 2D can be produced using the RatInABox package (George et al 2022, bioRxiv), which can also generate e.g. grid cell-like activity that could be used as physiologically plausible input to the network.
-
Reviewer #3 (Public review):
This work offers a novel perspective to the question of how hippocampal networks can adaptively generate different spatial maps and replays of the corresponding place cells, without any such maps pre-existing in the network architecture or its inputs. And how can these place cells preplay their sequences even before the environment is experienced? Previous models required pre-existing spatial representations to be artificially introduced, limiting their adaptability to new environments. Others depended on synaptic plasticity rules which made remapping slower that what is seen in recordings. In contrast, this modeling study proposes that quickly-adaptive intrinsic spiking sequences (preplays) and spatially tuned spiking (place cells) can be generated in a network through randomly clustered recurrent connectivity. By simulating spatial exploration through border-cell-like synaptic inputs, the model generates place cells for different "environments" without the need to reconfigure its synaptic connectivity or introduce plasticity. By simulating sleep-like random synaptic inputs, the model generates sequential activations of cells, mimicking preplays. These "preplays" require small-world connectivity, so that cell clusters are activated in sequence. Using a set of electrophysiological recordings from CA1, the authors confirm that the modeled place cells and replays share many features with recorded ones.
Many features of the model are thoroughly examined, and conclusions are overall convincing (within the simple architecture of the model). Even though the modeled connectivity applies more closely to CA3, it remains unclear whether CA3 recapitulates the proposed small world architecture.
In any case, the proposal that a small-world-structured, clustered network can generate flexible place cells and replays without the need for pre-configured maps is novel and of potential interest to a wide computational and experimental community.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Here, the authors propose that changes in m6A levels may be predictable via a simple model that is based exclusively on mRNA metabolic events. Under this model, m6A mRNAs are "passive" victims of RNA metabolic events with no "active" regulatory events needed to modulate their levels by m6A writers, readers, or erasers; looking at changes in RNA transcription, RNA export, and RNA degradation dynamics is enough to explain how m6A levels change over time.
The relevance of this study is extremely high at this stage of the epi transcriptome field. This compelling paper is in line with more and more recent studies showing how m6A is a constitutive mark reflecting overall RNA redistribution events. At the same time, it reminds every reader to carefully evaluate changes in m6A levels if observed in their experimental setup. It highlights the importance of performing extensive evaluations on how much RNA metabolic events could explain an observed m6A change.
Weaknesses:
It is essential to notice that m6ADyn does not exactly recapitulate the observed m6A changes. First, this can be due to m6ADyn's limitations. The authors do a great job in the Discussion highlighting these limitations. Indeed, they mention how m6ADyn cannot interpret m6A's implications on nuclear degradation or splicing and cannot model more complex scenario predictions (i.e., a scenario in which m6A both impacts export and degradation) or the contribution of single sites within a gene.
Secondly, since predictions do not exactly recapitulate the observed m6A changes, "active" regulatory events may still play a partial role in regulating m6A changes. The authors themselves highlight situations in which data do not support m6ADyn predictions. Active mechanisms to control m6A degradation levels or mRNA export levels could exist and may still play an essential role.
(1) "We next sought to assess whether alternative models could readily predict the positive correlation between m6A and nuclear localization and the negative correlations between<br /> m6A and mRNA stability. We assessed how nuclear decay might impact these associations by introducing nuclear decay as an additional rate, δ. We found that both associations were robust to this additional rate (Supplementary Figure 2a-c)."<br /> Based on the data, I would say that model 2 (m6A-dep + nuclear degradation) is better than model 1. The discussion of these findings in the Discussion could help clarify how to interpret this prediction. Is nuclear degradation playing a significant role, more than expected by previous studies?
(2) The authors classify m6A levels as "low" or "high," and it is unclear how "low" differs from unmethylated mRNAs.
(3) The authors explore whether m6A changes could be linked with differences in mRNA subcellular localization. They tested this hypothesis by looking at mRNA changes during heat stress, a complex scenario to predict with m6ADyn. According to the collected data, heat shock is not associated with dramatic changes in m6A levels. However, the authors observe a redistribution of m6A mRNAs during the treatment and recovery time, with highly methylated mRNAs getting retained in the nucleus being associated with a shorter half-life, and being transcriptional induced by HSF1. Based on this observation, the authors use m6Adyn to predict the contribution of RNA export, RNA degradation, and RNA transcription to the observed m6A changes. However:
(a) Do the authors have a comparison of m6ADyn predictions based on the assumption that RNA export and RNA transcription may change at the same time?
(b) They arbitrarily set the global reduction of export to 10%, but I'm not sure we can completely rule out whether m6A mRNAs have an export rate during heat shock similar to the non-methylated mRNAs. What happens if the authors simulate that the block in export could be preferential for m6A mRNAs only?
(c) The dramatic increase in the nucleus: cytoplasmic ratio of mRNA upon heat stress may not reflect the overall m6A mRNA distribution upon heat stress. It would be interesting to repeat the same experiment in METTL3 KO cells. Of note, m6A mRNA granules have been observed within 30 minutes of heat shock. Thus, some m6A mRNAs may still be preferentially enriched in these granules for storage rather than being directly degraded. Overall, it would be interesting to understand the authors' position relative to previous studies of m6A during heat stress.
(d) Gene Ontology analysis based on the top 1000 PC1 genes shows an enrichment of GOs involved in post-translational protein modification more than GOs involved in cellular response to stress, which is highlighted by the authors and used as justification to study RNA transcriptional events upon heat shock. How do the authors think that GOs involved in post-translational protein modification may contribute to the observed data?
(e) Additionally, the authors first mention that there is no dramatic change in m6A levels upon heat shock, "subtle quantitative differences were apparent," but then mention a "systematic increase in m6A levels observed in heat stress". It is unclear to which systematic increase they are referring to. Are the authors referring to previous studies? It is confusing in the field what exactly is going on after heat stress. For instance, in some papers, a preferential increase of 5'UTR m6A has been proposed rather than a systematic and general increase.
-
Reviewer #2 (Public review):
Dierks et al. investigate the impact of m6A RNA modifications on the mRNA life cycle, exploring the links between transcription, cytoplasmic RNA degradation, and subcellular RNA localization. Using transcriptome-wide data and mechanistic modelling of RNA metabolism, the authors demonstrate that a simplified model of m6A primarily affecting cytoplasmic RNA stability is sufficient to explain the nuclear-cytoplasmic distribution of methylated RNAs and the dynamic changes in m6A levels upon perturbation. Based on multiple lines of evidence, they propose that passive mechanisms based on the restricted decay of methylated transcripts in the cytoplasm play a primary role in shaping condition-specific m6A patterns and m6A dynamics. The authors support their hypothesis with multiple large-scale datasets and targeted perturbation experiments. Overall, the authors present compelling evidence for their model which has the potential to explain and consolidate previous observations on different m6A functions, including m6A-mediated RNA export.
-
Reviewer #3 (Public review):
Summary:
This manuscript works with a hypothesis where the overall m6A methylation levels in cells are influenced by mRNA metabolism (sub-cellular localization and decay). The basic assumption is that m6A causes mRNA decay and this happens in the cytoplasm. They go on to experimentally test their model to confirm its predictions. This is confirmed by sub-cellular fractionation experiments which show high m6A levels in the nuclear RNA. Nuclear localized RNAs have higher methylation. Using a heat shock model, they demonstrate that RNAs with increased nuclear localization or transcription, are methylated at higher levels. Their overall argument is that changes in m6A levels are rather determined by passive processes that are influenced by RNA processing/metabolism. However, it should be considered that erasers have their roles under specific environments (early embryos or germline) and are not modelled by the cell culture systems used here.
Strengths:
This is a thought-provoking series of experiments that challenge the idea that active mechanisms of recruitment or erasure are major determinants for m6A distribution and levels.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The study shows that Zizyphi spinosi semen (ZSS), particularly its non-extracted simple crush powder, has significant therapeutic effects on neurodegenerative diseases. It removes Aβ, tau, and α-synuclein oligomers, restores synaptophysin levels, enhances BDNF expression and neurogenesis, and improves cognitive and motor functions in mouse AD, FTD, DLB, and PD models. Additionally, ZSS powder reduces DNA oxidation and cellular senescence in normal-aged mice, increases synaptophysin, BDNF, and neurogenesis, and enhances cognition to levels comparable to young mice.
Weaknesses:
(1) While the study demonstrates that ZSS has protective effects across a wide range of animal models, including AD, FTD, DLB, PD, and both young and aged mice, it is broad and lacks a detailed investigation into the underlying mechanisms. This is the most significant concern.
(2) The authors highlight that the non-extracted simple crush powder of ZSS shows more substantial effects than its hot water extract and extraction residue. However, the manuscript provides very limited data comparing the effects of these three extracts.
(3) The authors have not provided a rationale for the dosing concentrations used, nor have they tested the effects of the treatment in normal mice to verify its impact under physiological conditions.
(4) Regarding the assessment of cognitive function in mice, the authors only utilized the Morris Water Maze (MWM) test, which includes a five-day spatial learning training phase followed by a probe trial. The authors focused solely on the learning phase. However, it is relevant to note that data from the learning phase primarily reflects the learning ability of the mice, while the probe trial is more indicative of memory. Therefore, it is essential that probe trial data be included for a more comprehensive analysis. A justification should be included to explain why the latency of 1st is about 50s not 60s.
(5) The BDNF immunohistochemical staining in the manuscript appears to be non-specific.
(6) The central pathological regions in PD are the substantia nigra and striatum. Please replace the staining results from the cortex and hippocampus with those from these regions in the PD model.
-
Reviewer #2 (Public review):
Summary:
The authors studied the effects of hot water extract, extraction residue, and non-extracted simple crush powder of ZSS in diseased or aged mice. It was found that ZSS played an anti-neurodegenerative role by removing toxic proteins, repairing damaged neurons, and inhibiting cell senescence.
Strengths:
The authors studied the effects of ZSS in different transgenic mice and analyzed the different states of ZSS and the effects of different components.
Weaknesses:
The authors' study lacked an in-depth exploration of mechanisms, including changes in intracellular signal transduction, drug targets, and drug toxicity detection.
-
Reviewer #3 (Public review):
ZSS has been widely used in Traditional Chinese Medicine as a sleep-promoting herb. This study tests the effects of ZSS powder and extracts on AD, PD, and aging, and broad protective effects were revealed in mice.
However, this work did not include a mechanistic study or target data on ZSS were included, and PK data were also not involved. Mechanisms or targets and PK study are suggested. A human PK study is preferred over mice or rats. E.g. which main active ingredients and the concentration in plasma, in this context, to study the pharmacological mechanisms of ZSS.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, Yang et al. investigated the locations and hierarchies of NFATc1+ and PDGFRα+ cells in dental and periodontal mesenchyme. By combining intersectional and exclusive reporters, they attempted to distinguish among NFATc1+PDGFRα+, NFATc1+PDGFRα-, and NFATc1- PDGFRα+ cells. Using tissue clearing and serial section-based 3D reconstruction, they mapped the distribution atlas of these cell populations. Through DTA-induced ablation of PDGFRα+ cells, they demonstrated the crucial role of PDGFRα+ cells in the formation of the odontoblast cell layer and periodontal components.
Main issues:
(1) The authors did not quantify the contribution of PDGFRα+ cells or NFATc1+ cells to dental and periodontal lineages in PDGFRαCreER; Nfatc1DreER;LGRT mice. Zsgreen+ cells represented PDGFRα+ cells and their lineages. Tomato+ cells represented NFATc1+ cells and their lineages. Tomato+Zsgreen+ cells represented NFATc1+PDGFRα+ cells and their lineages. Conducting immunostaining experiments with lineage markers is essential to determine the physiological contributions of these cells to dental and periodontal homeostasis.
(2) The authors attempted to use PDGFRαCreER; Nfatc1DreER;IR1 mice to illustrate the hierarchies of NFATc1+ and PDGFRα+ cells. According to the principle of the IR1 reporter, it requires sequential induction of PDGFRα-CreER and Nfatc1-DreER to investigate their genetic relationship. Upon induction by tamoxifen, NFATc1+PDGFRα- cells and NFATc1-PDGFRα+ cells were labeled by Tomato and Zsgreen, respectively. However, the reporter expression of NFATc1+PDGFRα+ cells was uncertain, most likely random. Therefore, the hierarchical relationship of NFATc1+ and PDGFRα+ cells cannot be reliably determined from PDGFRαCreER; Nfatc1DreER; IR1 mice.
-
Reviewer #2 (Public Review):
Summary:
Yang et al. present an article investigating the spatiotemporal atlas of NFATc1+ and PDGFR-α+ cells within the dental and periodontal mesenchyme. The study explores their capacity for progeny cell generation and their relationships - both inclusive and hierarchical - under homeostatic conditions. Utilizing the Cre/loxP-Dre/Rox system to construct tool mice, combined with tissue transparency and continuous tissue slicing for 3D reconstruction, the researchers effectively mapped the distribution of NFATc1+ and PDGFR-α+ cells. Additionally, in conjunction with DTA mice, the study provides preliminary validation of the impact of PDGFR-α+ cells on dental pulp and periodontal tissues. Primarily, this study offers an in-situ distribution atlas for NFATc1+ and PDGFR-α+ cells but provides limited information regarding their origin, fate differentiation, and functionality.
Strengths:
(1) Tissue transparency techniques and continuous tissue slicing for 3D reconstruction, combined with transgenic mice, provide high-quality images and rich, reliable data.<br /> (2) The Cre/loxP and Dre/Rox systems used by the researchers are powerful and innovative.<br /> (3) The IR1 lineage tracing model is significantly important for investigating cellular differentiation pathways.<br /> (4) This study provides effective spatial distribution information of NFATc1+/PDGFR-α+ cell populations in the dental and periodontal tissues of adult mice.
Weaknesses:
(1) In the functional experiment section, the investigation into the role of NFATc1+/PDGFR-α+ cell populations is somewhat lacking.
(2) The author mentions that 3D reconstruction of consecutive tissue slices can provide more detailed information on cell distribution, so what is the significance of using tissue-clearing techniques in this article?
(3) After reading the entire article, it is confusing whether the purpose of the article is to explore the distribution and function of NFATc1+/PDGFR-α+ cells in teeth and periodontal tissues, or to compare the differences between tissue clearing techniques and 3D reconstruction of continuous histological slices using NFATc1+/PDGFR-α+ cells?
(4) The researchers did not provide a clear definition of the cell types of NFATc1+/PDGFR-α+ cells in teeth and periodontal tissues.
(5) In studies related to long bones, the author defines the NFATc1+/PDGFR-α+ cell population as SSCs, which as a stem cell group should play an important role in tooth development or injury repair. However, the distribution patterns and functions of the NFATc1+/PDGFR-α+ cell population in these two conditions have not been discussed in this study.
-
Reviewer #3 (Public Review):
Summary:
This groundbreaking study provided the most advanced transgenic lineage tracing and advanced imaging techniques in deciphering dental/periodontal mesenchyme cells. In this study, authors utilized CRISPR/Cas9-mediated transgenic lineage tracing techniques to concurrently demonstrate the inclusive, exclusive, and hierarchical distributions of NFATc1+ and PDGFR-α+ cells and their lineage commitment in dental and periodontal mesenchyme.
Strengths:
In cooperating with tissue clearing-based advanced imaging and three-dimensional slices reconstruction, the distribution and hierarchical relationship of NFATc1+ and PDGFR-α+ cells and progeny cells plainly emerged, which undoubtedly broadens our understanding of their in vivo fate trajectories in craniomaxillofacial tissue. Also, the experiment design is comprehensive and well-executed, and the results are convincing and compelling.
Weaknesses:
Minor modifications could be made to the paper, including more details on the advantages of the methodology used by the authors in this study, compared to other studies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This paper presents a data processing pipeline to discover causal interactions from time-lapse imaging data, and convicingly illustrates it on a challenging application for the analysis of tumor-on-chip ecosystem data.
The core of the discovery module is the original tMIIC method of the authors, which is shown in supplementary material to compare favourably to two state-of-the-art methods on synthetic temporal data on a 15 nodes network.
Strengths:
This paper tackles the problem of learning causal interactions from temporal data which is an open problem in presence of latent variables.
The core of the method tMIIC of the authors is nicely presented in connection to Granger-Schreiber causality and to the novel graphical conditions used to infer latent variables and based on a theorem about transfer entropy.
tMIIC compares favourably to PC and PCMCI+ methods using different kernels on synthetic datasets generated from a network of 15 nodes.
A full application to tumor-on-chip cellular ecosystems data including cancer cells, immune cells, cancer-associated fibroblasts, endothelial cells and anti cancer drugs, with convincing inference results with respect to both known and novel effects between those components and their contact.
The code and dataset are available online for the reproducibility of the results.
Weaknesses:
The references to "state-of-the-art methods" concerning the inference of causal networks should be more precise by giving citations in the main text, and better discussed in general terms, both in the first section and in the section of presentation of CausalXtract. It is only in the legend of the figures of the supplementary material that we get information.
Of course, comparison on our own synthetic datasets can always be criticized but this is rather due to the absence of common benchmark and I would recommend the authors to explicitly propose their datasets as benchmark to the community.
-
Reviewer #2 (Public review):
Summary:
The authors propose a methodology to perform causal (temporal) discovery. The approach appears to be robust and is tested in the different scenarios: one related with live-cell imaging data, and another one using synthetic (mathematically defined) time series data. They compare the performance of their findings against another well-know method by using metrics like F-score, precision and recall,
Strengths:
Performance, robustness, the text is clear and concise, The authors provide the code to review.
Weaknesses:
One concern could be the applicability of the method in other areas like climate, economy. For those areas, public data are available and might be interesting to test how the method performs with this kind of data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Both flies and mammals have D1-like and D2-like dopamine receptors, yet the role of D2-like receptors in Drosophila learning and memory remains underexplored. The paper by Qi et al. investigates the role of the D2-like dopamine receptor D2R in single pairs of dopaminergic neurons (DANs) during single-odor aversive learning in the Drosophila larva. First, they use confocal imaging to screen driver strains with expression in only single pairs of dopaminergic neurons. Next, they use thermogenetic manipulations of one pair of DANs (DAN-c1) to implicate DAN-c1 activity during larval aversive learning. They then use confocal imaging to demonstrate expression of D2R in the DANs and mushroom body of the larval brain. Finally, they show that optogenetic activation during training phenocopies D2R knockdown in these neurons: aversive learning is impaired when DAN-c1 is targeted, while appetitive and aversive learning are impaired when the mushroom body is manipulated. Qi et al. thus propose a model in which D2R limits excessive dopamine release to facilitate successful olfactory learning.
Strengths:<br /> The paper reproduces prior findings by Qi and Lee (2014), which demonstrated that D2R knockdown in DL1 DANs or the mushroom body impairs aversive olfactory learning in Drosophila larvae. The authors extended this previous work by screening 57 GAL4 drivers to identify tools that drive expression in individual DANs and used one of the tools, the R76F02-AD; R55C10-DBD driver, to manipulate DAN-c1 neurons with greater specificity. They also show that GFP-tagged D2R is expressed in most DANs and the mushroom body. Although the authors only train larvae with a single odor, they demonstrate that driving D2R knockdown in DAN-c1 neurons impairs aversive learning, as do other loss-of-function manipulations of DAN-c1 neurons.
Weaknesses:<br /> The authors claim to have identified drivers that label single DANs in Figure 1, but their confocal images in Figure S1 suggest that many of those drivers label additional neurons in the larval brain. It is also not clear why only some of the 57 drivers are displayed in Figure S1.<br /> Critically, R76F02-AD; R55C10-DBD labels more than one neuron per hemisphere in Figure S1c, and the authors cite Xie et al. (2018) to note that this driver labels two DANs in adult brains. Therefore, the authors cannot argue that the experiments throughout their paper using this driver exclusively target DAN-c1.<br /> Missing from the screen of 57 drivers is the driver MB320C, which typically labels only PPL1-γ1pedc in the adult and should label DAN-c1 in the larva. If MB320C labels DAN-c1 exclusively in the larva, then the authors should repeat their key experiments with MB320C to provide more evidence for DAN-c1 involvement specifically.<br /> The authors claim that the SS02160 driver used by Eschbach et al. (2020) labels other neurons in addition to DAN-c1. Could the authors use confocal imaging to show how many other neurons SS02160 labels? Given that both Eschbach et al. and Weber et al. (2023) found no evidence that DAN-c1 plays a role in larval aversive learning, it would be informative to see how SS02160 expression compares with the driver the authors use to label DAN-c1.<br /> The claim that DAN-c1 is both necessary and sufficient in larval aversive learning should be reworded. Such a claim would logically exclude any other neuron or even the training stimuli from being involved in aversive learning (see Yoshihara and Yoshihara (2018) for a detailed discussion of the logic), which is presumably not what the authors intended because they describe the possible roles of other DANs during aversive learning in the discussion.<br /> Moreover, if DAN-c1 artificial activation conveyed an aversive teaching signal irrespective of the gustatory stimulus, then it should not impair aversive learning after quinine training (Figure 2k). While the authors interpret Figure 2k (and Figure 5) to indicate that artificial activation causes excessive DAN-c1 dopamine release, an alternative explanation is that artificial activation compromises aversive learning by overriding DAN-c1 activity that could be evoked by quinine.<br /> The authors should not necessarily expect that D2R enhancer driver strains would reflect D2R endogenous expression, since it is known that TH-GAL4 does not label p(PAM) dopaminergic neurons. Their observations of GFP-tagged D2R expression could be strengthened with an anti-D2R antibody such as that used by Lam et al., (1999) or Love et al., (2023).<br /> Finally, the authors could consider the possibility other DANs may also mediate aversive learning via D2R. Knockdown of D2R in DAN-g1 appears to cause a defect in aversive quinine learning compared with its genetic control (Figure S4e). It is unclear why the same genetic control has unexpectedly poor aversive quinine learning after training with propionic acid (Figure S5a). The authors could comment on why RNAi knockdown of D2R in DAN-g1 does not similarly impair aversive quinine learning (Figure S5b).
-
Reviewer #2 (Public Review):
Summary:<br /> The study wanted to functionally identify individual DANs that mediate larval olfactory<br /> learning. Then search for DAN-specific driver strains that mark single dopaminergic neurons, which subsequently can be used to target genetic manipulations of those neurons. 56 GAL4 drivers identifying dopaminergic neurons were found (Table 1) and three of them drive the expression of GFP to a single dopaminergic neuron in the third-instar larval brain hemisphere. The DAN driver R76F02-AD;R55C10-DBD appears to drive the expression to a dopaminergic neuron innervating the lower peduncle (LP), which would be DAN-c1.<br /> Split-GFP reconstitution across synaptic partners (GRASP) technique was used to investigate the "direct" synaptic connections from DANs to the mushroom body. Potential synaptic contact between DAN-c1 and MB neurons (at the lower peduncle) were detected.<br /> Then single odor associative learning was performed and thermogenetic tools were used (Shi-ts1 and TrpA1). When trained at 34{degree sign}C, the complete inactivation of dopamine release from DAN-c1 with Shibirets1 impaired aversive learning (Figure 2h), while Shibirets1 did not affect learning when trained at room temperature (22{degree sign}C). When paired with a gustatory stimulus (QUI or SUC), activation of DAN-c1 during training impairs both aversive and appetitive learning (Figure 2k).<br /> They examined the expression pattern of D2R in fly brains and were found in dopaminergic neurons and the mushroom body (Figure 3). To inspect whether the pattern of GFP signals indeed reflected the expression of D2R, three D2R enhancer driver strains (R72C04, R72C08, and R72D03-GAL4) were crossed with the GFP-tagged D2R strain.<br /> D2R knockdown (UAS-RNAi) in dopaminergic neurons driven by TH-GAL4 impaired larval aversive learning. Using a microRNA strain (UAS-D2R-miR), a similar deficit was observed. Crossing the GFP-tagged D2R strain with a DAN-c1-mCherry strain demonstrated the expression of D2R in DAN-c1 (Figure 4a). Knockdown of D2R in DAN-c1 impaired aversive learning with the odorant pentyl acetate, while appetitive learning was unaffected (Figure 4e). Sensory and motor functions appear not affected by D2R suppression.<br /> To exclude possible chronic effects of D2R knockdown during development, optogenetics was applied at distinct stages of the learning protocol. ChR2 was expressed in DAN-c1, and blue light was applied at distinct stages of the learning protocol. Optogenetic activation of DAN-c1 during training impaired aversive learning, not appetitive learning (Figure 5b-d).<br /> Knockdown of D2Rs in MB neurons by D2R-miR impaired both appetitive and aversive learning (Figure 6a). Activation of MBNs during training impairs both larval aversive and appetitive learning.<br /> Finally, based on the data the authors propose a model where the effective learning requires a balanced level of activity between D1R and D2R (Figure 7).
Strengths:<br /> The work is well written, clear, and concise. They use well documented strategies to examine GAL4 drivers with expression in a single DAN, behavioral performance in larvae with distinct genetic tools including those to do thermo and optogenetics in behaving flies. Altogether, the study was able to expand our understanding of the role of D2R in DAN-c1 and MB neurons in the larva brain.
Weaknesses:<br /> Is not completely clear how the system DAN-c1, MB neurons and Behavioral performance work. We can be quite sure that DAN-c1;Shits1 were reducing dopamine release and impairing aversive memory (Figure 2h). Similarly, DAN-c1;ChR2 were increasing dopamine release and also impaired aversive memory (Figure 5b). However, is not clear what is happening with DAN-c1;TrpA1 (Figure 2K). In this case the thermos-induction appears to impair the behavioral performance of all three conditions (QUI, DW and SUC) and the behavior is quite distinct from the increase and decrease of dopamine tone (Figure 2h and 5b).
The study successfully examined the role of D2R in DAN-c1 and MB neurons in olfactory conditioning. The conclusions are well supported by the data, with the exception of the claim that dopamine release from DAN-c1 is sufficient for aversive learning in the absence of unconditional stimulus (Figure 2K). Alternatively, the authors need to provide a better explanation of this point.<br /> The study provides insight into the role of D2R in associative learning expanding our understanding and might be a reference similar to previous key findings (Qi and Lee, 2014, https://doi.org/10.3390/biology3040831).
-
Reviewer #3 (Public Review):
It is a strength of the paper that it analyses the function of dopamine neurons (DANs) at the level of single, identified neurons, and uses tools to address specific dopamine receptors (DopRs), exploiting the unique experimental possibilities available in larval Drosophila as a model system. Indeed, the result of their screening for transgenic drivers covering single or small groups of DANs and their histological characterization provides the community with a very valuable resource. In particular the transgenic driver to cover the DANc1 neuron might turn out useful. However, I wonder in which fraction of the preparations an expression pattern as in Figure 1f/ S1c is observed, and how many preparations the authors have analyzed. Also, given the function of DANs throughout the body, in addition to the expression pattern in the mushroom body region (Figure 1f) and in the central nervous system (Figure S1c) maybe attempts can be made to assess expression from this driver throughout the larval body (same for Dop2R distribution).
A first major weakness is that the main conclusion of the paper, which pertains to associative memory (last sentence of the abstract, and throughout the manuscript), is not justified by their evidence. Why so? Consider the paradigm in Figure 2g, and the data in Figure 2h (22 degrees, the control condition), where the assay and the experimental rationale used throughout the manuscript are introduced. Different groups of larvae are exposed, for 30min, to an odour paired with either i) quinine solution (red bar), ii) distilled water (yellow bar), or iii) sucrose solution (blue bar); in all cases this is followed by a choice test for the odour on one side and a distilled-water blank on the other side of a testing Petri dish. The authors observe that odour preference is low after odour-quinine pairing, intermediate after odour-water pairing and high after odour-sucrose pairing. The differences in odour preference relative to the odour-water case are interpreted as reflecting odour-quinine aversive associations and odour-sucrose appetitive associations, respectively. However, these differences could just as well reflect non-associative effects of the 30-min quinine or sucrose exposure per se (for a classical discussion of such types of issues see Rescorla 1988, Annu Rev Neurosci, or regarding Drosophila Tully 1988, Behav Genetics, or with some reference to the original paper by Honjo & Furukubo-Tokunaga 2005, J Neurosci that the authors reference, also Gerber & Stocker 2007, Chem Sens).<br /> As it stands, therefore, the current 3-group type of comparison does not allow conclusions about associative learning.
A second major weakness is apparent when considering the sketch in Figure 2g and the equation defining the response index (R.I.) (line 480). The point is that the larvae that are located in the middle zone are not included in the denominator. This can inflate scores and is not appropriate. That is, suppose from a group of 30 animals (line 471) only 1 chooses the odour side and 29, bedazzled after 30-min quinine or sucrose exposure or otherwise confused by a given opto- or thermogenetic treatment, stay in the middle zone... a P.I. of 1.0 would result.
Unless experimentally demonstrated, claims that the thermogenetic effector shibire/ts reduces dopamine release from DANs are questionable. This is because firstly, there might be shibire/ts-insensitive ways of dopamine release, and secondly because shibire/ts may affect co-transmitter release from DANs.<br /> To implicate a role of dopamine in DANs, previous work used e.g. RNAi against the dopamine-synthesizing TH enzyme (Rohwedder et al, cited).
It is not clear whether the genetic controls when using the Gal4/ UAS system are the homozygous, parental strains (XY-Gal4/ XY-Gal4 and UAS-effector/ UAS-effector), or as is standard in the field the heterozygous driver (XY-Gal4/ wildtype) and effector controls (UAS-effector/ wildtype) (in some cases effector controls appear to be missing, e.g. Figure 4d, Figure S4e, Figure S5c).
As recently suggested by Yamada et al 2024, bioRxiv, high cAMP can lead to synaptic depression (sic). That would call into question the interpretation of low-Dop2R leading to high-cAMP, leading to high-dopamine release, and thus the authors interpretation of the matching effects of low-Dop2R and driving DANs.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
⍺-synuclein (syn) is a critical protein involved in many aspects of human health and disease. Previous studies have demonstrated that post-translational modifications (PTMs) play an important role in regulating the structural dynamics of syn. However, how post-translational modifications regulate syn function remains unclear. In this manuscript, Wang et al. reported an exciting discovery that N-acetylation of syn enhances the clustering of synaptic vesicles (SVs) through its interaction with lysophosphatidylcholine (LPC). Using an array of biochemical reconstitution, single vesicle imaging, and structural approaches, the authors uncovered that N-acetylation caused distinct oligomerization of syn in the presence of LPC, which is directly related to the level of SV clustering. This work provides novel insights into the regulation of synaptic transmission by syn and might also shed light on new ways to control neurological disorders caused by syn mutations.
-
Reviewer #2 (Public review):
Summary:
In this manuscript, the authors provide evidence that posttranslational modification of synuclein by N-acetylation increases clustering of synaptic vesicles in vitro. When using liposomes the authors found that while clustering is enhanced by the presence of either lysophosphatidylcholine (LPC) or phosphatidylcholine in the membrane, N-acetylation enhanced clustering only in the presence of LPC. Enhancement of binding was also observed when LPC micelles were used, which was corroborated by increased intra/intermolecular cross-linking of N-acetylated synuclein in the presence of LPC.
Strengths:
It is known for many years that synuclein binds to synaptic vesicles but the physiological role of this interaction is still debated. The strength of this manuscript is clearly in the structural characterization of the interaction of synuclein and lipids (involving NMR-spectroscopy) showing that the N-terminal 100 residues of synuclein are involved in LPC-interaction, and the demonstration that N-acetylation enhances the interaction between synuclein and LPC.
Weaknesses:
Lysophosphatides form detergent-like micelles that destabilize membranes, with their steady-state concentrations in native membranes generally being a lot lower than in the experiments reported here. Since no difference in binding between the N-acetylated and unmodified form was observed when the acidic phospholipid phosphatidylserine was included. It remains unclear to which extent binding to LPC is physiologically relevant, particularly in the light of recent reports from other laboratories showing that synuclein may interact with liquid-liquid phases of synapsin I, or associate with the unfolded regions of VAMP that both were reported to cause vesicle clustering.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The manuscript introduces a valuable and innovative non-AI computational method for segmenting noisy grayscale images, with a particular focus on identifying immunostained potassium ion channel clusters.
Strengths:
(1) Applicability and Usability: The method is exceptionally accessible to biologists and researchers without advanced computational expertise. It offers a highly practical alternative to AI-based methods, which often require significant training data and computational resources, making it an excellent choice for a broader range of laboratories.
(2) Proof-of-Concept: The manuscript provides compelling evidence through multiple experiments, showcasing the method's superior performance over traditional threshold-based techniques, particularly in noisy environments. The dual immuno-electron microscopy experiments further reinforce the robustness and effectiveness of this approach.
(3) Clarity and Methodology: The manuscript is exceptionally well-written, with clear and concise descriptions that effectively highlight the method's advantages. The detailed figures and comprehensive references greatly enhance the manuscript's credibility and strongly support the claims made.
Weaknesses:
The manuscript does not include comparisons with more advanced segmentation techniques, particularly those based on artificial intelligence. While the authors have provided a rationale for this decision, including such comparisons could have enriched the discussion and offered additional insights. Additionally, there are some concerns about the computational demands of the method, especially when applied to large-scale or 3D image analysis. Although the authors have shared some computational data, further optimization or practical recommendations would enhance the method's utility. Initially, the manuscript lacked a data and code availability statement, which could have limited the method's accessibility. However, this issue has since been resolved, with the code now being made available to the community. Lastly, while the findings related to Kv4.2 in the thalamus are noteworthy, they might achieve even greater impact if presented in a separate paper. Nevertheless, the authors have chosen to retain these results within the current manuscript to strengthen the overall narrative and relevance.
We appreciate that the authors have provided thorough explanations for their original choices. These justifications offer a clearer understanding of their approach and the reasons behind the presentation of the data.
Conclusion:
The revised manuscript successfully addresses the majority of the reviewers' concerns, presenting a strong case for the proposed segmentation method. The method's ease of use for non-experts in AI, combined with its proven effectiveness in proof-of-concept experiments, positions it as a valuable addition to the field. While the manuscript could benefit from incorporating comparisons with more advanced segmentation methods and offering a more detailed discussion of computational requirements, it remains a robust contribution. The decision to include the Kv4.2 findings within the paper is well-justified by the authors, though these results could potentially have an even greater impact if published separately.
-
Reviewer #2 (Public review):
Summary:
The manuscript by David et al. describes a novel image segmentation method, implementing Local Moran's method, which determines whether the value of a datapoint or a pixel is randomly distributed among all values, in differentiating pixel clusters from the background noise. The study includes several proof-of-concept analyses to validate the power of the new approach, revealing that implementation of Local Moran's method in image segmentation is superior to threshold-based segmentation methods commonly used in analyzing confocal images in neuroanatomical studies.
Strengths:
Several proof-of-concept experiments are performed to confirm the sensitivity and validity of the proposed method. Using composed images with varying levels of background noise and analyzing them in parallel with the Local Moran's or a Threshold-Based Method (TBM), the study is able to compare these approaches directly and reveal their relative power in isolating clustered pixels.
Similarly, dual immuno-electron microscopy was used to test the biological relevance of a colocalization that was revealed by Local Moran's segmentation approach on dual-fluorescent labeled tissue using immuno-markers of the axon terminal and a membrane-protein (Figure 5). The EM revealed that the two markers were present in terminals and their post-synaptic partners, respectively. This is a strong approach to verify the validity of the new approach for determining object-based colocalization in fluorescent microscopy.
The methods section is clear in explaining the rationale and the steps of the new method (however, see the weaknesses section). Figures are appropriate and effective in illustrating the methods and the results of the study. The writing is clear; the references are appropriate and useful.
Weaknesses:
While the steps of the mathematical calculations to implement Local Moran's principles for analyzing high-resolution images are clearly written, the manuscript currently does not provide a computation tool that could facilitate easy implementation of the method by other researchers. Without a user-friendly tool, such as an ImageJ plugin or a code, the use of the method developed by David et al by other investigators may remain limited.
This weakness is eliminated in the revision, which now provides the approach as a Matlab tool.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
In this manuscript, Gonzalez Alam et al. sought to understand how memory interacts with incoming visual information to effectively guide human behavior by using a task that combines spatial contexts (houses) with objects of one or more other semantic categories. Three additional datasets (all from separate participants) were also employed: one that functionally localized regions of interest (ROIs) based on subtractions of different visually presented category types (in this case, scenes, objects, and scrambled objects); another consisting of resting-state functional connectivity scans, and a section of the Human Connectome Project that employed DTI data for structural connectivity analysis. Across multiple analyses, the authors identify dissociations between regions preferentially activated during scene or other object judgments, between the functional connectivity of regions demonstrating such preferences, and in the anatomical connectivity of these same regions. The authors conclude that the processing streams that take in visual information and support semantic or spatial processing are largely parallel and distinct.
Strengths:
(1) Recent work has reconceptualized the classic default mode network as parallel and interdigitated systems (e.g., Braga & Buckner, 2017; DiNicola et al., 2021). The current manuscript is timely in that it attempts to describe how information is differentially processed by two streams that appear to begin in visual cortex and connect to different default subnetworks. Even at a group level where neuroanatomy is necessarily blurred across individuals, these results provide clear evidence of stimulus-based processing dissociation.
(2) The manuscript analyzes data from multiple independent datasets. It is therefore unlikely that a single experimenter choice in any given analysis would spuriously produce the general convergence of the results reported in this manuscript.
Weaknesses:
(1) The manuscript makes strong distinctions between spatial processing and other forms of semantic processing. However, it is not clear if scenes are uniquely different from other stimulus categories, such as faces or tools. As is noted by the authors in their revised discussion section, the design of the experiment does not allow for a category-level generalization beyond scenes. The dichotomization of semantic and spatial information invoked throughout the manuscript should be read with this limitation in mind.
(2) Although the term "objects" is used by the authors to refer to the stimuli placed in scenes, it is a mixture of other stimulus categories, including various types of animals, tools, and other manmade objects. Different regions along the ventral stream are thought to process these different types of stimuli (e.g., Martin, 2007, Ann Rev Psychol), but as they are not being modeled separately, the responses associated with "object" processing in this manuscript are necessarily blurring across known distinctions in functional neuroanatomy.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Here, the authors, Barber AG et al, developed a new mouse model and investigated an importance of Musashi-2 in lung cancer. Specifically, they found that Musashi-2 is important for lung cancer cells as it controls cancer cell growth, and also regulates several genes that also control cancer cell growth. Development of a new Musashi-2 mouse model is a plus, which confirmed Musashi-2 importance for lung cancer survival, and finding several genes that Musashi controls that are important for lung cancer growth. Additionally, they demonstrated that Musashi-2 overexpression which is tracked by GFP is preferred in lung adenocarcinoma cells. The data is rigorous and only minor revisions are requested.
Strengths:
Authors achieved their goals, by developing new Musashi-2 mouse model, confirming Musashi-2 importance for lung cancer survival, and finding several genes that Musashi controls that are important for lung cancer growth.
Weaknesses:
The findings of Musashi-2 mouse and human lung cancer growth control are not that novel as prior publication in 2016 showed that already, again, in both human and mouse models (Kudinov et al PNAS, PMID: 27274057), and also the authors missed the point of that paper which did use both miuse and human models to show impact on inbvasion and metastasis- both in vitro and in vivo. Additionally, another publication is currently under revisions recently also generated new Musashi-2 transgenic mouse model which confirmed Musashi-2 support of lung cancer growth (Bychkov I et al, PMID: 37398283; https://www.biorxiv.org/content/10.1101/2023.06.13.544756v1). Another weakness is that Musashi-2 cannot be effectively targeted and the new genes the authors found that Musashi-2 regulates are likely to be also difficult therapeutic targets. Therefore, impact of this new investigation is relatively modest in the field.
Major suggestions:
(1) Figure 3: it is unclear what is the efficiency of Msi2 deletion shRNA - could you demonstrate it by at least two independent methods? (QPCR, Western, or IHC?) please quantitate the data.
(2) In Figure 4, similarly, it is unclear if Msi2 depletion was effective- and what is shRNA efficiency. Please test this by at least two independent methods (QPCR, Western, or IHC) and also please quantitate the data
(3) the reason for impairment of cell growth demonstrated in Figs 3 and 4 is not clear: is it apoptosis? Necrosis? Cell cycle defects? Autophagy? Senescence? Please probe 2-3 possibilities and provide the data.
(4) Since Musashi-1 is a Musashi-2 paralogue that could compensate for Musashi-2 loss, please test Msi1 expression levels in matching Fig 3 and Fig 4 sections (in cells/ tumors with Msi2 deletion and in KP cells with Msi2 shRNA). One method could suffice here.
(5) It is not exactly clear why RNA-seq (as opposed to proteomics) was done to investigate downstream Msi2 targets (since Msi2 is in first place, translational and not transcriptional regulator)- . RNA effects in Fig 5J are quite modest, 2-fold or so. It would be useful (if antibodies available) to test four targets in Fig 5J by Western blot, to see any impact of musashi-2 depletion on those target protein levels. Indeed, several papers - including Kudinov et al PNAS, PMID: 27274057, Makhov P et al PMID: 33723247 and PMID: 37173995 - used proteomics/ RIP approaches and found direct Musashi-2 targets in lung cancer, including EGFR, and others.
-
Reviewer #2 (Public Review):
Summary:
Alison G. Barber et al. reports the function of Msi2 in mouse models of non-small cell lung cancer. The expression of Msi2 in normal lung was evaluated using a knockin reporter allele. Msi2 expressing cells were found to be around 30-40% in normal lung epithelium without a strong bias in subsets of lung cells. Knocking out Msi2 in a KrasG12D and P53 KO model reduced lung cancer initiation. Knocking down Msi2 in established lung cancer cells reduced in vitro sphere formation and in vivo xenograft. Finally, the authors identified several genes whose expression was downregulated by Msi2 knockdown. Knocking down four of these genes, including Ptgds, Arl2bp, hRnf157, and Syt11, each with a single shRNA, reduced lung sphere formation in vitro, suggesting their involvement in lung cancer.
Strengths:
This manuscript represents an interesting advance on the role of Msi2 in lung cancer. While some of the data (for example the knockdown effect of Msi2 in established lung cancer cells) corroborated previous findings, the study of Msi2 expression in normal lung and the characterization of the KO phenotype in lung cancer initiation are new and interesting.
Weaknesses:
Two areas can be further strengthened. Several conclusions are not fully supported by the existing data. The stable/dynamic nature of Msi2 expressing cells in lung would benefit from more detailed investigations for proper data interpretation.
(1) It will be interesting to determine whether Msi2+ cells are a relatively stable subset or rather the Msi2+ cells in lung is a dynamic concept that is transient or interconvertible. This is relevant to the interpretation of what Msi2 positivity really means.
(2) Does Kras mutation and/or p53 loss upregulate Msi2? This point and the point above are related to whether Msi2+ cells are truly more susceptible to tumorigenesis, as the authors suggested.
(3) The KO of Msi2 reducing tumor number and burden in the lung cancer initiation model is interesting. However, there are two alternative interpretations. First, it is possible that the Msi2 KO mice (without Kras activation and p53 loss) has reduced total lung cell numbers or altered percentage of stem cells. There is currently only one sentence citing data not shown on line 125, commenting that there is no difference in BASC and AT2 cell populations. It will be helpful that such data are shown and the effect of KO on overall lung mass or cellularity is clarified. Second, the phenotype may also be due to a difference in the efficiencies of cre on Kras and p53 in the Msi2 WT and KO mice.
(4) All shRNA experiments (for both Msi2 KD and the KD of candidate genes) utilized a single shRNA. This approach cannot exclude off-target effects of the shRNA.
(5) The technical details of the PDX experiment (Figure 4F) are not fully explained.
-
Reviewer #3 (Public Review):
Summary:
In this manuscript, Barber and colleagues propose a dual role for the RNA-binding protein Mushashi-2 (Msi2) in lung adenocarcinoma initial transformation and subsequent tumor propagation. First, authors show that Msi2 is expressed in a subset of Club/BASC (37%) and AT2 (26%) cells in the normal lung and displayed a distinct transcriptional profile than non-expressing Msi2 cells. Furthermore, Msi2 is broadly expressed/activated in vivo in genetically induced lung adenocarcinoma tumors (Kras/p53 mouse model) and Msi2+ cells displayed a significantly higher ability to form tumor spheres in vitro. Authors demonstrated by in vivo and in vitro assays that Msi2 loss of function significantly impair tumor growth and progression in lung adenocarcinoma. Data showed that Msi2 function is conserved in human adenocarcinoma tumor growth in patient-derived xenograft. Lastly, novel genes regulated by Msi2 and involved in lung adenocarcinoma tumor growth were identified.
Strengths:
The authors provided convincing data for a key role of Msi2 in lung adenocarcinoma tumor progression and growth. Multiple evidences using Msi2 knock-out genetic mouse model and shRNA knock-down in tumor sphere formation assay are clearly demonstrated. The conservation and importance of Msi2 was further shown in human patient-derived xenograft. Although specific cell types (Club/BASC, AT2) were not isolated, authors further delved in the transcriptional difference between Msi2+ and Msi2- cells in the normal lung. Furthermore, novel genes and pathways regulated by Msi2 in lung adenocarcinoma were identified and tested for their ability to inhibit tumor growth in vitro. These 2 RNA-Seq datasets will be useful in the future and provide a basis to explore 1) potential propensity of a given cell to initiate oncogenic transformation, and 2) potential novel regulators of lung adenocarcinoma.
Weaknesses:
Although this work strongly demonstrated the importance of Msi2 in lung adenocarcinoma tumor progression and growth, the following points remain to be clarified or addressed.
- In Figure 1, characterization of Msi2 expression in the normal mouse lung was carried out by using a Msi2-GFP Knock-in reporter and analyzed by flow cytometry followed by cytospins and immunostaining. Additional characterization of Msi2 expression by co-immunostaining with well-known markers of airway and alveolar cell types in intact lung tissue will strengthen the existing data and provide more specific information about Msi2 expression and abundancy in relevant cell types. It will be also interesting to know whether Msi2 is expressed or not in other abundant lung cell types such as ciliated and AT1 cells.
- While this set of experiments provide strong evidence that Msi2 is required for tumor progression and growth in lung adenocarcinoma, it is unclear whether normal Msi2+ lung cells are more responsive to transformation or whether Msi2 is upregulated early during the process of tumorigenesis. Future lineage tracing experiments using Msi2-CreER and mouse models of chemically-induced lung carcinogenesis will provide additional data that will fully support this claim.
- In Figure 4F, Patient-derived xenograft (PDX) assays were conducted in 2 patients only and the percentage of cells infected by shRNA-Msi2 is low in both PDX (30% and 10% for patient 1 and 2 respectively). It is surprising that Msi2 downregulation in a small percentage of tumor cells has such a dramatic effect on tumor growth and expansion. Confirmation of this finding with additional patient samples would suggest an important non-cell autonomous role for Msi2 in lung adenocarcinoma.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
The authors have conducted an exceptionally informative series of studies investigating the neural basis of interoception in transdiagnostic psychiatric symptoms. By comparing differential and overlapping neural activation during 'top-down' and 'bottom-up' interoceptive tasks, they reveal convergent activation largely localised to the ventral dysgranular subregion ('mid-insula'), which differs in extent between patients and controls, replicating and extending previous suggestions of this region as a central locus of disruption in psychiatric disorders. Their work also reveals different extents of divergent activation in the anterior insula during anticipation of interoceptive disruption. This substantially advances our previous knowledge of the anatomy of interoception, and confirms theoretical predictions of the roles of different cytoarchitectural subregions of the insula in interoceptive dysfunction in mental health conditions.
Strengths:
The work is exceptional in terms of breadth and depth, making use of multiple imaging and analysis techniques which are non-standard and go well beyond what is known today. The study is statistically well-powered and the tasks are well-validated in the literature. To my knowledge, these functions of the insula in interoception and mental health have never been compared directly before, so the results are novel and informative for both basic science and psychiatry. The work is strongly theory-driven, building on and directly testing results from influential theories and previous studies. It is likely that the results will strengthen our theoretical models of interoception and advance psychiatric studies of the insula.
Weaknesses:
The study has three limitations. (1) The interpretation of the resting-state isoproterenol data could potentially represent fluctuations over time rather than following interoception specifically; future studies should investigate test-retest reliability of this measure. Note this does not preclude the strong conclusions which can be drawn from the authors' task-based data. (2) The transdiagnostic patient sample was almost entirely female, and many were currently taking psychotropic medications; future studies should replicate these effects in unmedicated, sex-balanced samples (3) As the authors point out, there may have been task-specific preprocessing/analysis differences that influenced results, for example due to physiological correction in one but not both tasks; however, there are also merits to this analysis approach, such as comparability with previous studies.
-
Reviewer #3 (Public Review):
Summary:<br /> Adamic and colleagues present fMRI data from ADE patients and a healthy control group acquired during two interoceptive tasks (attention and perturbation) from the same session. They report convergent activity within the granular and dysgranular insular cortex during both tasks, with a patient group-specific lateralisation effect. Furthermore, insular functional connectivity was found to be linked to disease severity.
Strengths:<br /> The study is well-designed and - despite some limitations noted by the authors - provides much-needed insight into the functional pathways of interoceptive processing in health and disease. The manuscript is clear, concise, and well-written.
Weaknesses:<br /> None remain after the authors' revision.
-
Reviewer #4 (Public Review):
Summary:<br /> In the manuscript titled "Hemispheric Divergence of Interoceptive Processing Across Psychiatric Disorders", the authors analyzed a subset of data collected for a larger project investigating interoception in anorexia nervosa and generalized anxiety disorder (ClinicalTrials.gov Identifier: NCT02615119). This study utilized fMRI and various analyses with a special focus on the insula and its connectivity to map the neural commonalities and differences in both top-down and bottom-up interoceptive processing.
The primary aim was to compare whether these neural activations were quantitatively and qualitatively different in a sample of healthy controls (HC) versus patients diagnosed with anxiety, depression, and/or eating disorders (ADE).
The study initially recruited 70 patients with primary diagnoses of ADE and 57 HC. After applying exclusion criteria, the final sample consisted of 46 ADE patients and 46 matched HC. Participants underwent task-related and resting-state fMRI scan sessions.
Specifically, participants performed 2 tasks in fMRI: i) a bottom-up interoceptive (ISO) task involving intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) administered in a double-blind, placebo-controlled fashion to alter cardiovascular activity where participants were asked about their visceral awareness; and ii) a top-down interoceptive attention (VIA) task where participants were asked to focus on their visceral sensations triggered by words indicating specific body parts (e.g., STOMACH, HEART, LUNGS) or to pay attention to color changes of the word TARGET during an exteroceptive control task.<br /> Main results show overlapping patterns of neural activation within the dysgranular mid-insula during top-down and bottom-up interoceptive processing with hemispheric differences. The patterns of dysgranular activation distinguished individuals with ADE compared to HC. Also differences in the activation of the anterior agranular insula during periods of interoceptive uncertainty differentiate ADE patients from HC.
Strengths:<br /> - This is a very nice study that aligns with modern Clinical Neuroscience approaches, as recommended by NIH policy (i.e. RDoC initiative), which puts emphasis describing clinical conditions via transdiagnostic dimensions measured on psychological processes, behaviors, and neural processes rather than merely identifying a series of symptoms.
I appreciated very much the different analyses that authors performed to characterize differences at the qualitative and quantitative regarding the insular activity and its connectivity during bottom-up and top-down interoceptive processes.
These findings may open avenues for new studies that will explain the mechanisms underlying these phenomena and provide useful insights for developing novel interventions.
Weaknesses:<br /> Weakness/Requests of additional clarifications<br /> (1) The sample<br /> (1.1) The authors describe the patient's group as having a primary diagnosis of anxiety, depression, and/or eating disorders. However, Table 1 shows that the majority had Anxiety disorders, some Major Depression (it is not clear which are the percentages of patients that at the time of the study had a concurred problem of major depression, please clarify), and very few had a diagnosis of Anorexia Nervosa. The leftward activation asymmetry and distinct activation patterns in the left dysgranular mid-insula across both the ISO and VIA tasks found on ADE did not correlate with symptoms measured by the SCOFF questionnaire, but correlated with anxiety and depressive symptoms. It would be nice if the authors can comment on these results in relation to eating disorders.
(1.2) Furthermore, the sample consisted of 5 males and 41 females in the HC group and 1 male and 45 females in the ADE group. In order to generalize these findings, the authors should acknowledge this gender imbalance and discuss whether they expect similar results in a predominantly male sample.
(2) The procedure<br /> While the fixed order of tasks reflects the primary emphasis on acquiring data from the infusion (ISO) task, this could introduce confounding order effects. The authors should acknowledge this as a limitation of this study.
(3) The rationale behind the study<br /> - The authors recognized that there was a broader aim behind this data collection. It would be important to clarify a little bit more how the differences in insular areas mapping both (or specifically) bottom-up and top-down interoceptive processes and insular connectivity, recorded in ADE patients compared to healthy controls (HC), contribute to psychiatric diagnoses (hypothesis 3).<br /> For example, they should explain the psychopathological dimensions common to the three patient groups. Are disturbances in bottom-up and top-down interoceptive processing common traits in these patients, reflected in the asymmetric interhemispheric dysgranular mid-insular activation? The link between these disturbances and anatomical evidence of convergence/divergence of top-down vs. bottom-up interoceptive processes should be clearly stated.
(4) Operationalization of Convergence / Divergence maps underlying top-down and bottom-up interoceptive processes in HC vs ADE patients<br /> It is not clear to me the concept of Convergence / Divergence maps underlying top-down and bottom-up interoceptive processes. The authors want to compare, in HCs and ADE patients, the neural structures that are co-activated (convergence maps) vs those that are uniquely involved (divergence maps) in top-down and bottom-up interoceptive processes in the two groups. Thus, I would expect that these two different analyses would have been performed on similar portions of data, instead different moments of the tasks (= different bottom-up / top-down interoceptive processes) have been analyzed.<br /> Specifically, the convergence maps have been identified by comparing active voxels recorded when participants were focusing on the heart and the lungs (compared to when they were focused on the exteroceptive features of the target) in the VIA task, and during infusions (Peak period) of 2mcg isoproterenol (compared to baseline) in the ISO task. The divergence maps have been identified by comparing voxels uniquely active during the anticipatory phases of both isoproterenol and saline infusions (compared to baseline) and during the peak period of saline dose of the ISO task with respect to when participants focused their attention on the heart and the lungs (compared to when they were focuses on the exteroceptive features) in the VIA task.<br /> I understand the idea of mapping interoceptive uncertainty, however I think that these two analyses do not show commonalities and differences in the neural structures involved in bottom up vs top down processes (in ADE vs HC), but also neural correlates underlying different types of interoceptive processes involving or nor top-down expectations.<br /> According to the authors, which is the most important neural marker that differentiates the ADE group: the difference in hemispheric activations within the left and right dysgranular insula or the less granular anterior insular activation during periods of interoceptive uncertainty? Also, do they reflect different transdiagnostic dimensions?
(5) Collected physiological measures<br /> The authors speak about cardiorespiratory interoceptive processes, but they only included cardiac measures. Including respiratory changes could provide a more comprehensive comparison between bottom-up signals and top-down attentional processes. Also, I guess that the "STOMACH" trials of the VIA task were not analyzed in this study since those are used in the bigger study and since no gastric measures were collected? Please clarify this point.
(6) ISO task instructions<br /> To better understand the task and participants' expectations, could the authors clarify the instructions given to participants regarding the isoproterenol and saline infusions. Did the participants have two types of expectations?
(7) Title of the study<br /> I understand that the term "divergence" in the title refers to the different hemispheric activations characterizing ADE patients compared to HC. However, it also suggests an analysis based on convergence/divergence maps, which might be ambiguous. Could the authors make some small modifications to the title to make it clearer?
(8) Caption of Figure 7<br /> The caption of Fig.7 notes that no difference in HR was found during the Saline infusion between the HC and ADE groups. However, it would be fair to mention the significant difference in dial ratings observed during the Saline infusion. How do the authors explain this difference?
Typos<br /> Figure 3 In Figure 3, "Hemispheric divergence", I think, should be corrected to "Hemispheric convergence."
I believe that by addressing these points, the manuscript will provide a clearer and more comprehensive understanding of the rationale, methods, and findings underlying this study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
A deletion analysis of the MSL1 gene to assess how different parts of the protein product interact with the MSL2 protein and roX RNA to affect the association of the MSL complex with the male X chromosome of Drosophila was performed.
Strengths:
The deletion analysis of the MSL1 protein and the tests of interaction with MSL2 are adequate.
Weaknesses:
This reviewer does not adhere to the basic premise of the authors that the MSL complex is the primary mediator of dosage compensation of the X chromosome of Drosophila. Several lines of evidence from various laboratories indicate that it is involved in sequestering the MOF histone acetyltransferase to the X chromosome but there is a constraint on its action there. When the MSL complex is disrupted, there is no overall loss of compensation but there is an increase in autosomal expression. Sun et al (2013, PNAS 110: E808-817) showed that ectopic expression of MSL2 does not increase expression of the X and indeed inhibits the effect of acetylation of H4Lys16 on gene expression. Aleman et al (2021, Cell Reports 35: 109236) showed that dosage compensation of the X chromosome can be robust in the absence of the MSL complex. Together, these results indicate that the MSL complex is not the primary mediator of X chromosome dosage compensation. The authors state that an inverse dosage effect results from a titration of the histone acetylase MOF between the NSL and MSL complexes. This is a misunderstanding of the inverse effect, which is an imbalance of regulatory molecules as described in the citation below. The inverse effect operates in triple X metafemales to produce dosage compensation of the three X chromosomes and a reduced expression of the autosomes (Sun et al 2913 PNAS 110: 7383-7388). There is no MSL complex in metafemales.
A detailed explanation was provided by Birchler and Veitia (2021, One Hundred Years of Gene Balance: How stoichiometric issues affect gene expression, genome evolution, and quantitative traits. Cytogenetics and Genome Research 161: 529-550). The relevant portions of that article that pertain to Drosophila are quoted below. The cited references can be found in that publication.
"In Drosophila, the sex chromosomes consist of an X and a Y. The Y in this species contains only a few genes required for male fertility (Zhang et al., 2020). The X consists of approximately 20% of the genome. Thus, females have two X chromosomes and males have one. Muller (1932) found that the expression of genes between the two sexes was similar but when individual genes on the X were varied in dosage they exhibited a proportional dosage effect. Each copy in a male was expressed at about twice the level as each copy in a female. Females with three X chromosomes are highly inviable but when they do survive to the adult stage, Stern (1960) found that they too exhibited dosage compensation in that the expression in the triple X genotype was similar to normal females and males. Studies in triploid flies found that dosage compensation also occurred among X; AAA, XX;AAA, and XXX; AAA genotypes via upregulation of the Xs, where X indicates the dosage of the X and A indicates the triploid nature of the autosomes (see Birchler, 2016 for further discussion). Diploid and triploid females have a similar per gene expression but the other five genotypes each must modulate gene expression by different amounts equivalent to an inverse relationship between the X versus autosomal dosage to achieve a balanced expression between the X and the A (Birchler, 1996).
Some years ago, mutations were sought in Drosophila that were lethal to males but viable in females. A number of such mutations were found and termed Male Specific Lethal (MSL) loci (Belote and Lucchesi, 1980). Once the products of these genes were identified, they were found to be at high concentrations on the male X chromosome (Kuroda et al., 1991). One of these genes encodes a histone acetyl transferase that acetylates Lysine16 of Histone H4 (Bone et al., 1994; Hilfiker et al., 1997). The recognition of the MSL complex and its association with the male X was an important set of contributions to an understanding of sex chromosome evolution in Drosophila (Kuroda et al., 2016). Thus, the hypothesis arose that the MSL complex accumulated this chromatin modifier on the male X to activate the expression about two-fold to bring about dosage compensation. Other data that contributed to this hypothesis were that when autoradiography of nascent transcription on salivary gland polytene chromosomes was examined in the MSL maleless mutation, the ratio of the number of grains over the X versus an autosomal region was reduced compared to the normal ratio (Belote and Lucchesi, 1980).
It has been pointed out (Hiebert and Birchler, 1994; Bhadra et al., 1999; Pal Bhadra et al., 2005; Sun et al., 2013a; Birchler, 2016), however, that the grain counts over the X and the autosomes when considered in absolute terms rather than as a ratio show that the X more or less retained dosage compensation and the autosomal numbers are about doubled, i.e. exhibit an inverse dosage effect. The same situation occurs with the msl3 mutation (Okuno et al., 1984), another MSL gene, in that the autoradiographic grain numbers as an absolute measure show retention of X dosage compensation and an autosomal increase. The data treatment to produce an X to A ratio seemed reasonable in the context of the time when all regulation in eukaryotes was considered positive. However, when studies were conducted in such a manner as to assay the absolute effect on gene expression in the maleless mutation, in adults (Hiebert and Birchler, 1994), larvae (Hiebert and Birchler, 1994; Bhadra et al., 1999; 2000; Pal Bhadra et al., 2005), and embryos (Pal Bhadra et al., 2005), the trend was for retention of dosage compensation of X linked genes and an increase in expression of autosomal genes.
In global studies, if the X to autosomal expression does not change between mutant and normal, one can conclude that dosage compensation is operating. However, a lower X to A ratio could be a loss of compensation or an increased transcriptome size from the increase of the autosomes, as suggested by the absolute data of Belote and Lucchesi (1980) and Okuno et al (1984) and that was visualized directly in embryos (Pal Bhadra et al., 2005). The transcriptome size in aneuploids can change, which cannot be detected in RNA-seq analyses alone (Yang et al., 2021), so it is an important consideration for studies of dosage compensation. It was recently acknowledged that in MSL2 knockdowns the relative X expression is decreased and a moderate autosomal increase is found (Valsecchi et al., 2021b). A similar trend is evident in the microarray data on MSL2 knockdown in SL2 tissue culture cells (Hamada et al., 2005) and in the roX RNA (noncoding RNAs essential for MSL localization on the male X) mutants (Deng and Meller, 2006). This trend is in fact consistent with the absolute data that suggest an increase in the transcriptome size (Figure 7). A global change in transcriptome size can cause a generalized dosage compensation of a single chromosome to appear as a proportional dosage effect (loss of compensation) to some degree (Figure 7).<br /> Examination of expression in triple X metafemales, where there is no MSL complex, found that X-linked genes generally show dosage compensation but there is a generalized inverse effect on the autosomes, which could account for the detrimental effects of metafemales (Birchler et al., 1989; Sun et al., 2013b). An examination in metafemales of alleles of the white eye color gene that do or do not exhibit dosage compensation in males, showed the same response, namely, increased expression if there was no dosage compensation in males and no difference from normal females for the male dosage-compensated alleles (Birchler, 1992). This experiment demonstrated a relationship between the mechanism of dosage compensation in males and metafemales and implicated the inverse dosage effect in both. An involvement of the inverse effect in Drosophila dosage compensation provides an explanation for how the five levels of gene expression can be explained (Birchler, 1996), whereas an all-or-none presence of a complex on the X does not. The stoichiometric relationship of regulatory gene products provides a means to read the relative dosage at multiple doses to produce the appropriate inverse level.
What then is the function of the MSL complex? It was discovered that the MSL complex will actually constrain the effect of H4 lysine16 acetylation to prevent it from causing an overexpression of genes (Bhadra et al., 1999; 2000; Pal Bhadra et al., 2005; Sun and Birchler 2009; Sun et al., 2013a). Indeed, in the chromatin remodeling Imitation Switch (ISWI) mutants, the male X chromosome was specifically overexpressed suggesting that its normal function is needed for the constraint to occur (Pal Bhadra et al., 2005). Independently, the Mtor nuclear pore component shows a similar specific male X upregulation when Mtor is knocked down and this effect was shown to operate on the transcriptional level (Aleman et al., 2021). Interestingly, the increased expression of the X in the Mtor knockdown is accompanied by an inverse modulation of a substantial subset of autosomal genes, illustrating why the constraining process evolved to counteract male X overexpression. The constraining effect might involve a number of gene products (Birchler, 2016) and is an interesting direction for further study.
Furthermore, when the H4Lys16 acetylase was individually targeted to reporter genes, there was an increase in expression (Sun et al., 2013a). However, when other members of the MSL complex were present in normal males or ectopically expressed, this increase did not occur (Sun et al., 2013a). It thus appears that the function of the MSL complex is to sequester the acetylase from the autosomes and constrain it on the X (Bhadra et al., 1999; 2000; Pal Bhadra et al., 2005; Sun and Birchler, 2009; Sun et al., 2013a). Indeed, in the Mtor knockdowns, the X linked genes with the greatest upregulation were those with the greatest association with the acetylase and the H4K16ac histone mark (Aleman et al 2021), supporting the idea of a constraining activity that becomes released in the Mtor knockdown. When the MSL complex is disrupted, there is an inverse effect on the autosomes that occurs but in normal circumstances the sequestration mutes this effect. The MSL complex disruption releases the acetylase to be uniformly distributed across all chromosomes as determined cytologically (Bhadra et al., 1999) or via ChIPseq for H4Lys16ac (Valsecchi et al., 2021a). Indeed, the quantity of the H4Lys16ac mark only has a proportional effect on gene expression when the constraining activity is disrupted (Aleman et al., 2021) or when the MSL complex is not present (Sun et al., 2013a). Thus, in normal flies there is a more or less equalized expression of the X and autosomes despite the monosomy for 20% of the genome.
The component of the complex that is expressed in males and thought to organize the complex to the male X, MSL2, was recently found to also be associated with autosomal dosage sensitive regulatory genes (Valsecchi et al., 2018). MSL2 was found to modulate these autosomal dosage sensitive genes in various directions, which illustrates that MSL2 has a role in dosage balance that goes beyond the X chromosome. This finding is consistent with the evolutionary scenario that the initial attraction of the complex to the X chromosome was to upregulate dosage sensitive genes in hemizygous regions as the progenitor Y became deleted for them, with the constraining activity evolving to prevent an overexpression as the amount of acetylase on the male X increased with time (Birchler, 2016).
The MSL hypothesis takes an X-centric view that does not accommodate what is now known about dosage effects across the whole genome. The idea that dissolution of the MSL complex would cause reduction in expression of the male X linked genes without any consequences for the autosomes is not consistent with current knowledge of gene regulatory networks and their dosage sensitivity. Indeed, the finding of dosage compensation in large autosomal aneuploids that operates on the transcriptional level (Devlin et al., 1982; 1984; Birchler et al., 1990; Sun et al., 2013c) as well as a predominant inverse effect by the same (Devlin, et al., 1988; Birchler et al., 1990) argues that one must consider the inverse effect for an understanding of the evolution of dosage compensation in Drosophila (and other species). Further discussion of models of Drosophila compensation has been published (Birchler, 2016).
What is likely to be the most critical issue with sex chromosome evolution is the consequences for dosage sensitive regulatory genes. This fact is nicely illustrated by the retention of these types of genes in different independent vertebrate sex chromosome evolutions (Bellott and Page, 2021). In Drosophila, by contrast, dosage compensation is more of a blanket effect on most but not all X linked genes despite the fact that many genes on the X are unlikely to have dosage detrimental effects, although dosage sensitive genes might have played a role as noted above. The particularly large size of the X in Drosophila compared to the whole genome is potentially a contributing factor because such large genomic imbalance is likely to modulate most genes across the genome. Also, there is no evidence of a WGD in Drosophila as there is in other species for which the inverse effect has been documented (maize, Arabidopsis, yeast, mice, human). These other species have various numbers of retained duplicate dosage sensitive regulatory genes from WGDs. Thus, the relative change of regulatory genes in aneuploids in these species will not be as great compared to some of their interactors in the remainder of the genome, which could result in lesser magnitudes of some trans-acting effects, similarly to how aneuploids in ascending ploidies have fewer effects as described above. The absence of duplicate regulatory genes in Drosophila would predict a stronger inverse effect in general and that could have been capitalized upon to produce dosage compensation of most genes on the X chromosome despite many of them not being dosage critical. While sex chromosome evolution must accommodate dosage sensitive genes for proper development and viability, it could also be capitalized upon to evolve sexual dimorphisms in expression (Sun et al., 2013c)."
Comments on revised submission:
The authors did make an effort to address the issue previously raised.
The authors state that an inverse dosage effect results from a titration of the histone acetylase MOF between the NSL and MSL complexes (lines 87-89). This is a misunderstanding of the inverse effect, which is an imbalance of regulatory molecules. Single regulatory gene dosage series can produce this effect. The inverse effect operates in triple X metafemales to produce dosage compensation of the three X chromosomes and a reduced expression of the autosomes (Sun et al 2913 PNAS 110: 7383-7388). There is no MSL complex in metafemales.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The present paper by Redman et al. investigated the variability of grid cell properties in the MEC by analyzing publicly available large-scale neural recording data. Although previous studies have proposed that grid spacing and orientation are homogeneous within the same grid module, the authors found a small but robust variability in grid spacing and orientation across grid cells in the same module. The authors also showed, through model simulations, that such variability is useful for decoding spatial position.
Strengths:
The results of this study provide novel and intriguing insights into how grid cells compose the cognitive map in the axis of the entorhinal cortex and hippocampus. This study analyzes large data sets in an appropriate manner and the results are solid.
Weaknesses:
A weakness of this paper is that the scope of the study may be somewhat narrow, as this study focused only on the variability of spacing and orientation across grid cells. I would suggest some additional analysis or discussion that might increase the value of the paper.
(1) Is the variability in grid spacing and orientation that the authors found intrinsically organized or is it shaped by experience? Previous research has shown that grid representations can be modified through experience (e.g., Boccara et al., Science 2019). To understand the dynamics of the network, it would be important to investigate whether robust variability exists from the beginning of the task period (recording period) or whether variability emerges in an experience-dependent manner within a session.
(2) It is important to consider the optimal variability size. The larger the variability, the better it is for decoding. On the other hand, as the authors state in the Discussion, it is assumed that variability does not exist in the continuous attractor model. Although this study describes that it does not address how such variability fits the attractor theory, it would be better if more detailed ideas and suggestions were provided as to what direction the study could take to clarify the optimal size of variability.
-
Reviewer #2 (Public review):
Summary:
This paper presents an interesting and useful analysis of grid cell heterogeneity, showing that the experimentally observed heterogeneity of spacing and orientation within a grid cell module can allow more accurate decoding of location from a single module.
Strengths:
I found the statistical analysis of the grid cell variability to be very systematic and convincing. I also found the evidence for enhanced decoding of location based on between-cell variability within a module to be convincing and important, supporting their conclusions.
Weaknesses:
(1) Even though theoreticians might have gotten the mistaken impression that grid cells are highly regular, this might be due to an overemphasis on regularity in a subset of papers. Most experimentalists working with grid cells know that many if not most grid cells show high variability of firing fields within a single neuron, though this analysis focuses on between neurons. In response to this comment, the reviewers should tone down and modify their statements about what are the current assumptions of the field (and if possible provide a short supplemental section with direct quotes from various papers that have made these assumptions).
(2) The authors state that "no characterization of the degree and robustness of variability in grid properties within individual modules has been performed." It is always dangerous to speak in absolute terms about what has been done in scientific studies. It is true that few studies have had the number of grid cells necessary to make comparisons within and between modules, but many studies have clearly shown the distribution of spacing in neuronal data (e.g. Hafting et al., 2005; Barry et al., 2007; Stensola et al., 2012; Hardcastle et al., 2015) so the variability has been visible in the data presentations. Also, most researchers in the field are well aware that highly consistent grid cells are much rarer than messy grid cells that have unevenly spaced firing fields. This doesn't hurt the importance of the paper, but they need to tone down their statements about the lack of previous awareness of variability (specific locations are noted in the specific comments).
(3) The methods section needs to have a separate subheading entitled: How grid cells were assigned to modules" that clearly describes how the grid cells were assigned to a module (i.e. was this done by Gardner et al., or done as part of this paper's post-processing?
-
Reviewer #3 (Public review):
Summary:
Redman and colleagues analyze grid cell data obtained from public databases. They show that there is significant variability in spacing and orientation within a module. They show that the difference in spacing and orientation for a pair of cells is larger than the one obtained for two independent maps of the same cell. They speculate that this variability could be useful to disambiguate the rat position if only information from a single module is used by a decoder.
Strengths:
The strengths of this work lie in its conciseness, clarity, and the potential significance of its findings for the grid cell community, which has largely overlooked this issue for the past two decades. Their hypothesis is well stated and the analyses are solid.
Weaknesses:
On the side of weaknesses, we identified two aspects of concern. First, alternative explanations for the main result exist that should be explored and ruled out. Second, the authors' speculation about the benefits of variability in angle and spacing for spatial coding is not particularly convincing, although this issue does not diminish the importance or impact of the results.
Major comments:
(1) One possible explanation of the dispersion in lambda (not in theta) could be variability in the typical width of the field. For a fixed spacing, wider fields might push the six fields around the center of the autocorrelogram toward the outside, depending on the details of how exactly the position of these fields is calculated. We recommend authors show that lambda does not correlate with field width, or at least that the variability explained by field width is smaller than the overall lambda variability.
(2) An alternative explanation could be related to what happens at the borders. The authors tackle this issue in Figure S2 but introduce a different way of measuring lambda based on three fields, which in our view is not optimal. We recommend showing that the dispersions in lambda and theta remain invariant as one removes the border-most part of the maps but estimating lambda through the autocorrelogram of the remaining part of the map. Of course, there is a limit to how much can be removed before measures of lambda and theta become very noisy.
(3) A third possibility is slightly more tricky. Some works (for example Kropff et al, 2015) have shown that fields anticipate the rat position, so every time the rat traverses them they appear slightly displaced opposite to the direction of movement. The amount of displacement depends on the velocity. Maps that we construct out of a whole session should be deformed in a perfectly symmetric way if rats traverse fields in all directions and speeds. However, if the cell is conjunctive, we would expect a deformation mainly along the cell's preferred head direction. Since conjunctive cells have all possible preferred directions, and many grid cells are not conjunctive at all, this phenomenon could create variability in theta and lambda that is not a legitimate one but rather associated with the way we pool data to construct maps. To rule away this possibility, we recommend the authors study the variability in theta and lambda of conjunctive vs non-conjunctive grid cells. If the authors suspect that this phenomenon could explain part of their results, they should also take into account the findings of Gerlei and colleagues (2020) from the Nolan lab, that add complexity to this issue.
(4) The results in Figure 6 are correct, but we are not convinced by the argument. The fact that grid cells fire in the same way in different parts of the environment and in different environments is what gives them their appeal as a platform for path integration since displacement can be calculated independently of the location of the animal. Losing this universal platform is, in our view, too much of a price to pay when the only gain is the possibility of decoding position from a single module (or non-adjacent modules) which, as the authors discuss, is probably never the case. Besides, similar disambiguation of positions within the environment would come for free by adding to the decoding algorithm spatial cells (non-hexagonal but spatially stable), which are ubiquitous across the entorhinal cortex. Thus, it seems to us that - at least along this line of argumentation - with variability the network is losing a lot but not gaining much.
(5) In Figure 4 one axis has markedly lower variability. Is this always the same axis? Can the authors comment more on this finding?
(6) The paper would gain in depth if maps coming out of different computational models could be analyzed in the same way.
(7) Similarly, it would be very interesting to expand the study with some other data to understand if between-cell delta_theta and delta_lambda are invariant across environments. In a related matter, is there a correlation between delta_theta (delta_lambda) for the first vs for the second half of the session? We expect there should be a significant correlation, it would be nice to show it.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This very interesting manuscript proposes a general mechanism for how activating signaling proteins respond to species-specific signals arising from a variety of stresses. In brief, the authors propose that the activating signal alters the structure by a universal allosteric mechanism.
Strengths:
The unitary mechanism proposed is appealing and testable. They propose that the allosteric module consists of crossed alpha-helical linkers with similar architecture and that their attached regulatory domains connect to phosphatases or other molecules through coiled-coli domains, such that the signal is transduced via rigidifying the alpha helices, permitting downstream enzymatic activity. The authors present genetic and structural prediction data in favor of the model for the system they are studying, and stronger structural data in other systems.
Weaknesses:
The evidence is indirect - targeted mutations, structural predictions, and biochemical data. Therefore, these important generalizable conclusions are not buttressed by impeccable data, which would require doing actual structures in B. subtilis, confirming experiments in other organisms, and possibly co-evolutionary coupling. In the absence of such data, it is not possible to rule out variant models.
-
Reviewer #2 (Public review):
Summary:
While bacteria have the ability to induce genes in response to specific stresses, they also use the General Stress Response (GSR) to deal with growth conditions that presumably include a larger range of stresses (for instance, stationary phase growth). The activation of GSR-specific sigma factors is frequently at the heart of the induction of a GSR. Given the range of stresses that can lead to GSR induction, the regulatory inputs are frequently complex. In B. subtilis, the stressosome, a multi-protein complex, contains a set of proteins that, upon appropriate stresses, initiate partner switching cascades that free the sigma B sigma factor from an anti-sigma. The focus here is on the mode of activation of RsbU, a serine/threonine phosphatase of the PPM family, leading to sigB activation. RbsT, a component of the degradosome interacts with RsbU upon stress, activating the phosphatase activity. Once active, RsbU dephosphorylates its target (RsbV, an anti-antisigma), which in turn binds the anti-sigma. The conclusion is that flexible linker domains upstream of the phosphatase domain are the target for activation, via binding of proteins to the N-terminal domain, resulting in a crossed-linker dimeric structure. The authors then use the information on RsbU to suggest that parallel approaches are used to activate PPM phosphatases for the GSR response in other bacteria. (Biology vs. Mechanism, evolution?)
Strengths and Weaknesses:
Many of these have to do with clarifying what was done and why. This includes the presentation and content of the figures.
One issue relates to the background and context. A bit more information on the stresses that release RsbT would be useful here. The authors might also consider a figure showing the major conclusions and parallels for SpoIIE activation and possibly other partner switches that are discussed, introducing the switch change more clearly to set the stage for the work here (and the generalization). There are a lot of players to keep track of.
-
Reviewer #3 (Public review):
Summary:
The authors present a study building on their previous work on activation of the general stress response phosphatase, RsbU, from Bacillus subtilis. Using computed structural models of the RsbU dimer the authors map previously identified activating mutations onto the structure and suggest further protein variants to test the role of the predicted linker helix and the interaction with RsbT on the activation of the phosphatase activity.
Using in vivo and in vitro activity assays, the authors demonstrate that linker variants can constitutively activate RsbU and increase the affinity of the protein for RsbT, thus showing a link between the structure of the linker region and RsbT binding.
Small angle X-ray scattering experiments on RsbU variants alone, and in complex with RsbT show structural changes consistent with a decreased flexibility of the RsbU protein, which is hypothesised to indicate a disorder-order transition in the linker when RsbT binds. This interpretation of the data is consistent with the biochemical data presented by the authors.
Further computed structure models are presented for other protein phosphates from different bacterial species and the authors propose a model for phosphatase activation by partner binding. They compare this to the activation mechanisms proposed for histidine kinase two-component systems and GGDEF proteins and suggest the individual domains could be swapped to give a toolkit of modular parts for bacterial signalling.
Strengths:
The key mutagenesis data is presented with two lines of evidence to demonstrate RsbU activation - in vivo sigma-b activation assays utilising a beta-galactosidase reporter and in vitro activity assays against the RsbV protein, which is the downstream target of RsbU. These data support the hypothesis for RsbT binding to the RsbU linker region as well as the dimerisation domain to activate the RsbU activity.
Weaknesses:
Small angle scattering curves are difficult to unambiguously interpret, but the authors present reasonable interpretations that fit with the biochemical data presented. These interpretations should be considered as good models for future testing with other methods - hydrogen/deuterium exchange mass spectrometry, would be a good additional method to use, as exchange rates in the linker region would be affected significantly by the disorder/order transition on RsbT binding.
The interpretation of the computed structure models should be toned down with the addition of a few caveats related to the bias in the models returned by AlphaFold2. For the full-length models of RsbU and other phosphatase proteins, the relationship of the domains to each other is likely to be the least reliable part of the models - this is apparent from the PAE plots shown in Supplementary Figure 8. Furthermore, the authors should show models coloured by pLDDT scores in an additional supplementary figure to help the reader interpret the confidence level of the predicted structures.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
SUFU modulates Sonic hedgehog (SHH) signaling and is frequently mutated in the B-subtype of SHH-driven medulloblastoma. The B-subtype occurs mostly in infants, is often metastatic, and lacks specific treatment. Yabut et al. found that Fgf5 was highly expressed in the B-subtype of SHH-driven medulloblastoma by examining a published microarray expression dataset. They then investigated how Fgf5 functions in the cerebellum of mice that have embryonic Sufu loss of function. This loss was induced using the hGFAP-cre transgene, which is expressed in multiple cell types in the developing cerebellum, including granule neuron precursors (GNPs) derived from the rhombic lip. By measuring the area of Pax6+ cells in the external granule cell layer (EGL) of Sufu-cKO mice at postnatal day 0, they find Pax6+ cells occupy a larger area in the posterior lobe adjacent to the secondary fissure, which is poorly defined. They show that Fgf5 RNA and phosphoErk1/2 immunostaining are also higher in the same disrupted region. Some of the phosphoErk1/2+ cells are proliferative in the Sufu-cKO. Western blot analysis of Gli proteins that modulate SHH signaling found reduced expression and absence of Gli1 activity in the region of cerebellar dysgenesis in Sufu-cKO mice. This suggests the GNP expansion in this region is independent of SHH signaling. Amazingly, intraventricular injection of the FGFR1-2 antagonist AZD4547 from P0-4 and examined histologically at P7 found the treatment restored cytoarchitecture in the cerebella of Sufu-cKO mice. This is further supported by NeuN immunostaining in the internal granule cell layer, which labels mature, non-diving neurons, and KI67 immunostaining, indicating dividing cells, and primarily found in the EGL. The mice were treated beginning at a timepoint when cerebellar cytoarchitecture was shown to be disrupted and it is indistinguishable from control following treatment. Figure 3 presents the most convincing and exciting data in this manuscript.
Sufu-cKO do not readily develop cerebellar tumors. The authors detected phosphorylated H2AX immunostaining, which labels double-strand breaks, in some cells in the EGL in regions of cerebellar dysgenesis in the Sufu-cKO, as was cleaved Caspase 3, a marker of apoptosis. P53, downstream of the double-strand break pathway, the protein was reduced in Sufu-cKO cerebellum. Genetically removing p53 from the Sufu-cKO cerebellum resulted in cerebellar tumors in 2-month old mice. The Sufu;p53-dKO cerebella at P0 lacked clear foliation, and the secondary fissure, even more so than the Sufu-cKO. Fgf5 RNA and signaling (pERK1/2) were also expressed ectopically.
The conclusions of the paper are largely supported by the data, but some data analysis need to be clarified and extended.
(1) The rationale for examining Fgf5 in medulloblastoma is not sufficiently convincing. The authors previously reported that Fgf15 was upregulated in neocortical progenitors of mice with conditional loss of Sufu (PMID: 32737167). In Figure 1, the authors report FGF5 expression is higher in SHH-type medulloblastoma, especially the beta and gamma subtypes mostly found in infants. These data were derived from a genome-wide dataset and are shown without correction for multiple testing, including other Fgfs. Showing the expression of other Fgfs with FDR correction would better substantiate their choice or moving this figure to later in the manuscript as support for their mouse investigations would be more convincing.
(2) The Sufu-cKO cerebellum lacks a clear anchor point at the secondary fissure and foliation is disrupted in the central and posterior lobes. It would be helpful for the authors to review Sudarov & Joyner (PMID: 18053187) for nomenclature specific to the developing cerebellum.
(3) The metrics used to quantify cerebellar perimeter and immunostaining are not sufficiently described. It is unclear whether the individual points in the bar graph represent a single section from independent mice, or multiple sections from the same mice. For example, in Figures 2B-D. This also applies to Figure 3C-D.
(4) The data on Fgf5 RNA expression presented in Figure 2E are not sufficiently convincing. The perimeter and cytoarchitecture of the cerebellum are difficult to see and the higher magnification shown in 2F should be indicated in 2E.
(5) The data presented in Figure 3 are not sufficiently convincing. The number of cells double positive for pErk and KI67 (Figure 3B) are difficult to see and appear to be few, suggesting the quantification may be unreliable.
(6) The data presented in Figure 4F-J would be more convincing with quantification. The Sufu;p53-dKO appears to have a thickened EGL across the entire vermis perimeter, and very little foliation, relative to control and single cKO cerebella. This is a more widespread effect than the more localized foliation disruption in the Sufu-cKO.
(7) Figure 5 does not convincingly summarize the results. Blue and purple cells in sagittal cartoon are not defined. Which cells express Fgf5 (or other Fgfs) has not been determined. The yellow cells are not defined in relation to the initial cartoon on the left.
-
Reviewer #2 (Public Review):
Summary:
Mutations in SUFU are implicated in SHH medulloblastoma (MB). SUFU modulates Shh signaling in a context-dependent manner, making its role in MB pathology complex and not fully understood. This study reports that elevated FGF5 levels are associated with a specific subtype of SHH MB, particularly in pediatric cases. The authors demonstrate that Sufu deletion in a mouse model leads to abnormal proliferation of granule cell precursors (GCPs) at the secondary fissure (region B), correlating with increased Fgf5 expression. Notably, pharmacological inhibition of FGFR restores normal cerebellar development in Sufu mutant mice.
Strengths:
The identification of increased FGF5 in subsets of MB is novel and a key strength of the paper.
Weaknesses:
The study appears incomplete despite the potential significance of these findings. The current paper does not fully establish the causal relationship between Fgf5 and abnormal cerebellar development, nor does it clarify its connection to SUFU-related MB. Some conclusions seem overstated, and the central question of whether FGFR inhibition can prevent tumor formation remains untested.
-
Reviewer #3 (Public Review):
Summary:
The interaction between FGF signaling and SHH-mediated GNP expansion in MB, particularly in the context of Sufu LoF, has just begun to be understood. The manuscript by Yabut et al. establishes a connection between ectopic FGF5 expression and GNP over-expansion in a late-stage embryonic Sufu LoF model. The data provided links region-specific interaction between aberrant FGF5 signaling with the SHH subtype of medulloblastoma. New data from Yabut et al. suggest that ectopic FGF5 expression correlates with GNP expansion near the secondary fissure in Sufu LoF cerebella. Furthermore, pharmacological blockade of FGF signaling inhibits GNP proliferation. Interestingly, the data indicate that the timing of conditional Sufu deletion (E13.5 using the hGFAP-Cre line) results in different outcomes compared to later deletion (using Math1-cre line, Jiwani et al., 2020). This study provides significant insights into the molecular mechanisms driving GNP expansion in SHH subgroup MB, particularly in the context of Sufu LoF. It highlights the potential of targeting FGF5 signaling as a therapeutic strategy. Additionally, the research offers a model for better understanding MB subtypes and developing targeted treatments.
Strengths:
One notable strength of this study is the extraction and analysis of ectopic FGF5 expression from a subset of MB patient tumor samples. This translational aspect of the study enhances its relevance to human disease. By correlating findings from mouse models with patient data, the authors strengthen the validity of their conclusions and highlight the potential clinical implications of targeting FGF5 in MB therapy.
The data convincingly show that FGFR signaling activation drives GNP proliferation in Sufu, conditional knockout models. This finding is supported by robust experimental evidence, including pharmacological blockade of FGF signaling, which effectively inhibits GNP proliferation. The clear demonstration of a functional link between FGFR signaling and GNP expansion underscores the potential of FGFR as a therapeutic target in SHH subgroup medulloblastoma.
Previous studies have demonstrated the inhibitory effect of FGF2 on tumor cell proliferation in certain MB types, such as the ptc mutant (Fogarty et al., 2006)(Yaguchi et al., 2009). Findings in this manuscript provide additional support suggesting multiple roles for FGF signaling in cerebellar patterning and development.
Weaknesses:
In the GEO dataset analysis, where FGF5 expression is extracted, the reporting of the P-value lacks detail on the statistical methods used, such as whether an ANOVA or t-test was employed. Providing comprehensive statistical methodologies is crucial for assessing the rigor and reproducibility of the results. The absence of this information raises concerns about the robustness of the statistical analysis.
Another concern is related to the controls used in the study. Cre recombinase induces double-strand DNA breaks within the loxP sites, and the control mice did not carry the Cre transgene (as stated in the Method section), while Sufu-cKO mice did. This discrepancy necessitates an additional control group to evaluate the effects of Cre-induced double-strand breaks on phosphorylated H2AX-DSB signaling. Including this control would strengthen the validity of the findings by ensuring that observed effects are not artifacts of Cre recombinase activity.
Although the use of the hGFAP-Cre line allows genetic access to the late embryonic stage, this also targets multiple celltypes, including both GNPs and cerebellar glial cells. However, the authors focus primarily on GNPs without fully addressing the potential contributions of neuron-glial interaction. This oversight could limit the understanding of the broader cellular context in which FGF signaling influences tumor development.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Crosslinking mass spectrometry has become an important tool in structural biology, providing information about protein complex architecture, binding sites and interfaces, and conformational changes. One key challenge of this approach represents the quantitation of crosslinking data to interrogate differential binding states and distributions of conformational states.
Here, Luo and Ranish present a novel class of isobaric crosslinkers ("Qlinkers"), conduct proof-of-concept benchmarking experiments on known protein complexes, and show example applications on selected target proteins. The data are solid and this could well be an exciting, convincing new approach in the field if the quantitation strategy is made more comprehensive and the quantitative power of isobaric labeling is fully leveraged as outlined below. It's a promising proof-of-concept, and potentially of broad interest for structural biologists.
Strengths:
The authors demonstrate the synthesis, application, and quantitation of their "Q2linkers", enabling relative quantitation of two conditions against each other. In benchmarking experiments, the Q2linkers provide accurate quantitation in mixing experiments. Then the authors show applications of Q2linkers on MBP, Calmodulin, selected transcription factors, and polymerase II, investigating protein binding, complex assembly, and conformational dynamics of the respective target proteins. For known interactions, their findings are in line with previous studies, and they show some interesting data for TFIIA/TBP/TFIIB complex formation and conformational changes in pol II upon Rbp4/7 binding.
Weaknesses:
This is an elegant approach but the power of isobaric mass tags is not fully leveraged in the current manuscript.
First, "only" Q2linkers are used. This means only two conditions can be compared. Theoretically, higher-plexed Qlinkers should be accessible and would also be needed to make this a competitive method against other crosslinking quantitation strategies. As it is, two conditions can still be compared relatively easily using LFQ - or stable-isotope-labeling based approaches. A "Q5linker" would be a really useful crosslinker, which would open up comprehensive quantitative XLMS studies.
Second, the true power of isobaric labeling, accurate quantitation across multiple samples in a single run, is not fully exploited here. The authors only show differential trends for their interaction partners or different conformational states and do not make full quantitative use of their data or conduct statistical analyses. This should be investigated in more detail, e.g. examine Qlinker quantitation of MBP incubated with different concentrations of maltose or Calmodulin incubated with different concentrations of CBPs. Does Qlinker quantitation match ratios predicted using known binding constants or conformational state populations? Is it possible to extract ratios of protein populations in different conformations, assembly, or ligand-bound states?
With these two points addressed this approach could be an important and convincing tool for structural biologists.
-
Reviewer #2 (Public review):
The regulation of protein function heavily relies on the dynamic changes in the shape and structure of proteins and their complexes. These changes are widespread and crucial. However, examining such alterations presents significant challenges, particularly when dealing with large protein complexes in conditions that mimic the natural cellular environment. Therefore, much emphasis has been put on developing novel methods to study protein structure, interactions, and dynamics. Crosslinking mass spectrometry (CSMS) has established itself as such a prominent tool in recent years. However, doing this in a quantitative manner to compare structural changes between conditions has proven to be challenging due to several technical difficulties during sample preparation. Luo and Ranish introduce a novel set of isobaric labeling reagents, called Qlinkers, to allow for a more straightforward and reliable way to detect structural changes between conditions by quantitative CSMS (qCSMS).
The authors do an excellent job describing the design choices of the isobaric crosslinkers and how they have been optimized to allow for efficient intra- and inter-protein crosslinking to provide relevant structural information. Next, they do a series of experiments to provide compelling evidence that the Qlinker strategy is well suited to detect structural changes between conditions by qCSMS. First, they confirm the quantitative power of the novel-developed isobaric crosslinkers by a controlled mixing experiment. Then they show that they can indeed recover known structural changes in a set of purified proteins (complexes) - starting with single subunit proteins up to a very large 0.5 MDa multi-subunit protein complex - the polII complex.
The authors give a very measured and fair assessment of this novel isobaric crosslinker and its potential power to contribute to the study of protein structure changes. They show that indeed their novel strategy picks up expected structural changes, changes in surface exposure of certain protein domains, changes within a single protein subunit but also changes in protein-protein interactions. However, they also point out that not all expected dynamic changes are captured and that there is still considerable room for improvement (many not limited to this crosslinker specifically but many crosslinkers used for CSMS).
Taken together the study presents a novel set of isobaric crosslinkers that indeed open up the opportunity to provide better qCSMS data, which will enable researchers to study dynamic changes in the shape and structure of proteins and their complexes. However, in its current form, the study some aspects of the study should be expanded upon in order for the research community to assess the true power of these isobaric crosslinkers. Specifically:
Although the authors do mention some of the current weaknesses of their isobaric crosslinkers and qCSMS in general, more detail would be extremely helpful. Throughout the article a few key numbers (or even discussions) that would allow one to better evaluate the sensitivity (and the applicability) of the method are missing. This includes:
(1) Throughout all the performed experiments it would be helpful to provide information on how many peptides are identified per experiment and how many have actually a crosslinker attached to it.
(2) Of all the potential lysines that can be modified - how many are actually modified? Do the authors have an estimate for that? It would be interesting to evaluate in a denatured sample the modification efficiency of the isobaric crosslinker (as an upper limit as here all lysines should be accessible) and then also in a native sample. For example, in the MBP experiment, the authors report the change of one mono-linked peptide in samples containing maltose relative to the one not containing maltose. The authors then give a great description of why this fits to known structural changes. What is missing here is a bit of what changes were expected overall and which ones the authors would have expected to pick up with their method and why have they not been picked up. For example, were they picked up as modified by the crosslinker but not differential? I think this is important to discuss appropriately throughout the manuscript to help the reader evaluate/estimate the potential sensitivity of the method. There are passages where the authors do an excellent job doing that - for example when they mention the missed site that they expected to see in the initial the polII experiments (lines 191 to 207). This kind of "power analysis" should be heavily discussed throughout the manuscript so that the reader is better informed of what sensitivity can be expected from applying this method.
(3) It would be very helpful to provide information on how much better (or not) the Qlinker approach works relative to label-free qCLMS. One is missing the reference to a potential qCLMS gold standard (data set) or if such a dataset is not readily available, maybe one of the experiments could be performed by label-free qCLMS. For example, one of the differential biosensor experiments would have been well suited.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this manuscript, authors have investigated the effects of JNK inhibition on sucrose-induced metabolic dysfunction in rats. They used multi-tissue network analysis to study the effects of the JNK inhibitor JNK-IN-5A on metabolic dysfunction associated with excessive sucrose consumption. Their results show that JNK inhibition reduces triglyceride accumulation and inflammation in the liver and adipose tissues while promoting metabolic adaptations in skeletal muscle. The study provides new insights into how JNK inhibition can potentially treat metabolic dysfunction-associated fatty liver disease (MAFLD) by modulating inter-tissue communication and metabolic processes.
Strengths:
The study has several notable strengths:
Comprehensive Multi-Tissue Analysis: The research provides a thorough multi-tissue evaluation, examining the effects of JNK inhibition across key metabolically active tissues, including the liver, visceral white adipose tissue, skeletal muscle, and brain. This comprehensive approach offers valuable insights into the systemic effects of JNK inhibition and its potential in treating MAFLD.
Robust Use of Systems Biology: The study employs advanced systems biology techniques, including transcriptomic analysis and genome-scale metabolic modeling, to uncover the molecular mechanisms underlying JNK inhibition. This integrative approach strengthens the evidence supporting the role of JNK inhibitors in modulating metabolic pathways linked to MAFLD.
Potential Therapeutic Insights: By demonstrating the effects of JNK inhibition on both hepatic and extrahepatic tissues, the study offers promising therapeutic insights into how JNK inhibitors could be used to mitigate metabolic dysfunction associated with excessive sucrose consumption, a key contributor to MAFLD.
Behavioral and Metabolic Correlation: The inclusion of behavioral tests alongside metabolic assessments provides a more holistic view of the treatment's effects, allowing for a better understanding of the broader physiological implications of JNK inhibition.
Weaknesses:
While the study provides a comprehensive evaluation of JNK inhibitors in mitigating MAFLD conditions, addressing the following points will enhance the manuscript's quality:
The authors should explicitly mention and provide a detailed list of metabolites affected by sucrose and JNK inhibition treatment that have been previously associated with MAFLD conditions. This will better contextualize the findings within the broader field of metabolic disease research.
The limitations of the study should be clearly stated, particularly the lack of evidence on the effects of chronic JNK inhibitor treatment and potential off-target effects. Addressing these concerns will offer a more balanced perspective on the therapeutic potential of JNK inhibition.
The potential risks of using JNK inhibitors in non-MAFLD conditions should be highlighted, with a clear distinction made between the preventive and curative effects of these therapies in mitigating MAFLD conditions. This will ensure the therapeutic implications are properly framed.
The statistical analysis section could be strengthened by providing a justification for the chosen statistical tests and discussing the study's power. Additionally, a more detailed breakdown of the behavioral test results and their implications would be beneficial for the overall conclusions of the study.
-
Reviewer #2 (Public review):
Summary:
Excessive sucrose is a possible initial factor for the development of metabolic dysfunction-associated fatty liver disease (MAFLD). To investigate the possibility that intervention with JNK inhibitor could lead to the treatment of metabolic dysfunction caused by excessive sucrose intake, the authors performed multi-organ transcriptomics analysis (liver, visceral fat (vWAT), skeletal muscle, and brain) in a rat model of MAFLD induced by sucrose overtake (+ a selective JNK2 and JNK3 inhibitor (JNK-IN-5A) treatment). Their data suggested that changes in gene expression in the vWAT as well as in the liver contribute to the pathogenesis of their MAFLD model and revealed that the JNK inhibitor has a cross-organ therapeutic effect on it.
Strengths:
(1) It has been previously reported that inhibition of JNK signalling can contribute to the prevention of hepatic steatosis (HS) and related metabolic syndrome in other models, but the role of JNK signalling in the metabolic disruption caused by excessive intake of sucrose, a possible initial factor for the development of MAFLD, has not been well understood, and the authors have addressed this point.
(2) This study is also important because pharmacological therapy for MAFLD has not yet been established.
(3) By obtaining transcriptomic data in multiple organs and comprehensively analyzing the data using gene co-expression network (GCN) analysis and genome-scale metabolic models (GEM), the authors showed the multi-organ interaction in not only in the pathology of MAFLD caused by excessive sucrose intake but also in the treatment effects by JNK-IN-5A.
(4) Since JNK signalling has diverse physiological functions in many organs, the authors effectively assessed possible side effects with a view to the clinical application of JNK-IN-5A.
Weaknesses:
(1) The metabolic process activities were evaluated using RNA-seq results in Figure 7, but direct data such as metabolite measurements are lacking.
(2) There is a lack of consistency in the data between JNK-IN-5A_D1 and _D2, and there is no sufficient data-based explanation for why the effects observed in D1 were inconsistent in the D2 samples.
(3) Although it is valuable that the authors were able to suggest the possibility of JNK inhibitor as a therapeutic strategy for MAFLD, the evaluation of the therapeutic effect was limited to the evaluation of plasma TG, LDH, and gene expression changes. As there was no evaluation of liver tissue images, it is unclear what changes were brought about in the liver by the excessive sucrose intake and the treatment with JNK-IN-5A.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:<br /> The authors create an elegant sensor for TDP -43 loss of function based on cryptic splicing of CFTR and UNC13A. The usefulness of this sensor primarily lies in its use in eventual high throughput screening and eventual in vivo models. The TDP-43 loss of function sensor was also used to express TDP-43 upon reduction of its levels.
Strengths:<br /> The validation is convincing, the sensor was tested in models of TDP-43 loss of function, knockdown and models of TDP-43 mislocalization and aggregation. The sensor is susceptible to a minimal decrease of TDP-43 and can be used at the protein level unlike most of the tests currently employed,
Weaknesses:<br /> Although the LOF sensor described in this study may be a primary readout for high-throughput screens, ALS/TDP-43 models typically employ primary readouts such as protein aggregation or mislocalization. The information in the two following points would assist users in making informed choices. 1. Testing the sensor in other cell lines 2. Establishing a correlation between the sensor's readout and the loss of function (LOF) in the physiological genes would be useful given that the LOF sensor is a hybrid structure and doesn't represent any physiological gene. It would be beneficial to determine if a minor decrease (e.g., 2%) in TDP-43 levels is physiologically significant for a subset of exons whose splicing is controlled by TDP-43.
Considering that most TDP-LOF pathologically occurs due to aggregation and or mislocalization, and in most cases the endogenous TDP-43 gene is functional but the protein becomes non-functional, the use of the loss of function sensor as a switch to produce TDP-43 and its eventual use as gene therapy would have to contend with the fact that the protein produced may also become nonfunctional. This would eventually be easy to test in one of the aggregation modes that were used to test the sensor.. However, as the authors suggest, this is a very interesting system to deliver other genetic modifiers of TDP-43 proteinopathy in a regulated fashion and timely fashion.
-
Reviewer #2 (Public review):
Summary:<br /> The authors goal is to develop a more accurate system that reports TDP-43 activity as a splicing regulator. Prior to this, most methods employed western blotting or QPCR-based assays to determine whether targets of TDP-43 were up or down-regulated. The problem with that is the sensitivity. This approach uses an ectopic delivered construct containing splicing elements from CFTR and UNC13A (two known splicing targets) fused to a GFP reporter. Not only does it report TDP-43 function well, but it operates at extremely sensitive TDP-43 levels, requiring only picomolar TDP-43 knockdown for detection. This reporter should supersede the use of current TDP-43 activity assays, it's cost-effective, rapid and reliable.
Strengths:<br /> In general, the experiments are convincing and well designed. The rigor, number of samples and statistics, and gradient of TDP-43 knockdown were all viewed as strengths. In addition, the use of multiple assays to confirm the splicing changes were viewed as complimentary (ie PCR and GFP-fluorescence) adding additional rigor. The final major strength I'll add is the very clever approach to tether TDP-43 to the loss of function cassette such that when TDP-43 is inactive it would autoregulate and induce wild-type TDP-43. This has many implications for the use of other genes, not just TDP-43, but also other protective factors that may need to be re-established upon TDP-43 loss of function.
Weaknesses:<br /> Admittedly, one needs to initially characterize the sensor and the use of cell lines is an obvious advantage, but it begs the question of whether this will work in neurons. Additional future experiments in primary neurons will be needed. The bulk analysis of GFP-positive cells is a bit crude. As mentioned in the manuscript, flow sorting would be an easy and obvious approach to get more accurate homogenous data. This is especially relevant since the GFP signal is quite heterogeneous in the image panels, for example, Figure 1C, meaning the siRNA is not fully penetrant. Therefore, stating that 1% TDP-43 knockdown achieves the desired sensor regulation might be misleading. Flow sorting would provide a much more accurate quantification of how subtle changes in TDP-43 protein levels track with GFP fluorescence.
Some panels in the manuscript would benefit from additional clarity to make the data easier to visualize. For example, Figure 2D and 2G could be presented in a more clear manner, possibly split into additional graphs since there are too many outputs. Sup Figure 2A image panels would benefit from being labeled, its difficult to tell what antibodies or fluorophores were used. Same with Figure 4B.
Figure 3 is an important addition to this manuscript and in general is convincing showing that TDP-43 loss of function mutants can alter the sensor. However, there is still wild-type endogenous TDP-43 in these cells, and it's unclear whether the 5FL mutant is acting as a dominant negative to deplete the total TDP-43 pool, which is what the data would suggest. This could have been clarified. Additional treatment with stressors that inactivate TDP-43 could be tested in future studies.
Overall, the authors definitely achieved their goals by developing a very sensitive readout for TDP-43 function. The results are convincing, rigorous, and support their main conclusions. There are some minor weaknesses listed above, chief of which is the use of flow sorting to improve the data analysis. But regardless, this study will have an immediate impact for those who need a rapid, reliable, and sensitive assessment of TDP-43 activity, and it will be particularly impactful once this reporter can be used in isolated primary cells (ie neurons) and in vivo in animal models. Since TDP-43 loss of function is thought to be a dominant pathological mechanism in ALS/FTD and likely many other disorders, having these types of sensors is a major boost to the field and will change our ability to see sub-threshold changes in TDP-43 function that might otherwise not be possible with current approaches.
-
Reviewer #3 (Public review):
The DNA and RNA binding protein TDP-43 has been pathologically implicated in a number of neurodegenerative diseases including ALS, FTD, and AD. Normally residing in the nucleus, in TDP-43 proteinopathies, TDP-43 mislocalizes to the cytoplasm where it is found in cytoplasmic aggregates. It is thought that both loss of nuclear function and cytoplasmic gain of toxic function are contributors to disease pathogenesis in TDP-43 proteinopathies. Recent studies have demonstrated that depletion of nuclear TDP-43 leads to loss of its nuclear function characterized by changes in gene expression and splicing of target mRNAs. However, to date, most readouts of TDP-43 loss of function events are dependent upon PCR-based assays for single mRNA targets. Thus, reliable and robust assays for detection of global changes in TDP-43 splicing events are lacking. In this manuscript, Xie, Merjane, Bergmann and colleagues describe a biosensor that reports on TDP-43 splicing function in real time. Overall, this is a well described unique resource that would be of high interest and utility to a number of researchers. Nonetheless, a couple of points should be addressed by the authors to enhance the overall utility and applicability of this biosensor.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Hebin et al reported a fascinating story about antibiotic persistence in the biofilms. First, they set up a model to identify the increased persisters in the biofilm status. They found that the adhesion of bacteria to the surface leads to increased c-di-GMP levels, which might lead to the formation of persisters. To figure out the molecular mechanism, they screened the E.coli Keio Knockout Collection and identified the HipH. Finally, the authors used a lot of data to prove that c-di-GMP not only controls HipH over-expression but also inhibits HipH activity, though the inhibition might be weak.
Strengths:
They used a lot of state-of-the-art technologies, such as single-cell technologies as well as classical genetic and biochemistry approaches to prove the concept, which makes the conclusions very solid. Overall, it is a very interesting and solid story that might attract diverse readers working with c-di-GMP, persisters, and biofilm.
Comments on the revised version:
All my concerns have been addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:<br /> The authors describe five year outcomes of an internship program for graduate students and postdoctoral fellows at their institution spurred by pilot funding from an NIH BEST grant. They hypothesized that such a program would be beneficial to interns, internship hosts, and research advisors. The mixed methods study used surveys and focus groups to gather qualitative and quantitative data from the stakeholder groups, and the authors acknowledge that limitation that the study subjects were self-selected and also had research advisors who agreed to allow them to participate. Thus the generally favorable outcomes may not be applicable to students such as those who are struggling in the lab and/or lack career focus or supportive research advisors. Nonetheless, the overall finding support the hypothesis and also suggest additional benefits, including in some cases positive impact for the lab, improved communication between the intern and their research advisor, and an advantage for recruitment of students to the institution. The data refute one of the principle concerns of research advisors: that by taking students out of the lab, internships reduce individual and overall lab productivity. Students who did internships were significantly less likely to pursue postdoctoral fellowships before entering the biomedical workforce and were more likely to have science-related careers versus research careers than control students who did not do internships, although the study design cannot determine whether this is a causal relationship.
Strengths:<br /> (1) Sample size is good (123 internships).
(2) Response rate is high, minimizing potential bias.
(3) The internship program is well described. Outcomes are clearly defined.
(4) Methods and statistical analyses appear to be appropriate (although I am not expert in mixed methods).
(5) "Take-home" lessons for institutions considering implementing internship programs are clearly stated.
Appraisal:<br /> Overall the authors achieve their aims of describing outcomes of an internship program for graduate career development and offering lessons learned for other institutions seeking to create their own internship programs.
Impact:<br /> The paper will be very useful for other institutions to dispel some of the concerns of research advisers about internships for PhD students (although not necessarily for postdoctoral fellows). In the long run, wider adoption of internships as part of PhD training will depend not only on faculty buy-in but also on availability of resources and changes to the graduate school funding model so that such programs are not viewed as another "unfunded mandate" in graduate education. Perhaps industry will be motivated to support internships by the positive outcomes for hosts reported in this paper. Additionally, NIH could allow a certain amount of F, T, or even RPG funds to be used to support internships for purposes of career development.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
This manuscript by Martinez-Ara et al investigates how combinations of cis-regulatory elements combine to influence gene expression. Using a clever iteration on massively parallel reporter assays (MPRAs), the authors measure the combinatorial effects of pairs of enhancers on specific promoters. Specifically, they assayed the activity of 59x59 different enhancer-enhancer (E-E) combinations on 8 different promoters in mouse embryonic stem cells. The main claims of the paper are that E-E pairs combine nearly additively, and that supra-additive E-E pairs are rare and often promoter-dependent. The data in this study do generally support these claims.
This paper makes a good contribution to the ongoing discussions about the selectivity of gene regulatory elements. Recent works, such as those by Martinez-Ara et al. and Burgman et al., have indicated limited selectivity between E-P pairs on plasmid-based assays; this paper adds another layer to that by suggesting a similar lack of selectivity between E-E pairs.
An interesting result in this manuscript is the observation that weak promoters allow more supra-additive E-E interactions than strong promoters (Figure 4b). This nonlinear promoter response to enhancers aligns with the model previously proposed in Hong et al. (from my own group), which posited that core promoter activities are nonlinearly scaled by the genomic environment, and that (similar to the trend observed in Figure 5b) the steepness of the scaling is negatively correlated with promoter strength.
My only suggestion for the authors is that they include more plots showing how much the intrinsic strengths of the promoters and enhancers they are working with explain the trends in their data.
Specific Suggestions<br /> Supplementary Figure 4 is presented as evidence for selectivity between single enhancers and promoters. Could the authors inspect the relationship between enhancer/promoter strength and this selectivity? Generating plots similar to Figure 4B and Figure 5B, but for single enhancers, should show if the ability of an enhancer to boost a promoter is inversely correlated to that promoter's intrinsic strength. Also, in Supplementary Figure 4, coloring each point by promoter type would clarify if certain promoters (the weak ones) consistently show higher boost indices across all enhancers. If they do not, the authors may want to speculate how single enhancers can show selectivity for promoters while the effect of adding a second enhancer to an existing E-P has little selectivity. An alternate explanation, based solely on the strength of the elements, would be that when the expression of a gene is low the addition of enhancer(s) have large effects, but when the expression of a gene is high (closer to saturation) the addition of enhancer(s) have small effects.
Can anything more be said about the enhancers in E-E-P combinations that exhibit supra-additivity? Specifically, it would be interesting to know if certain enhancers, e.g. strong enhancers or enhancers with certain motifs, are more likely to show supra-additivity with a given promoter.
Comments on revised version:
The revised manuscript satisfactorily addresses the points I raised in the review. With the addition of the new graphs there is enough data for readers to decide whether the supra-additivity depends only on the strength of the promoter or on some other (undefined) feature of E-P pairs. This manuscript is a solid contribution to the ongoing debate about enhancer-promoter selectivity.
-
Reviewer #2 (Public review):
Summary
This work investigates how multiple DNA elements combine to regulate gene expression. The authors use an episomal reporter assay which measures the transcriptional output of the reporter under the regulation of an enhancer-enhancer-promoter triple. The authors test all combinations of 8 promoters and 59 enhancers in this assay. There are two main findings: (1) enhancer pairs generally combine additively on reporter output (2) the extent to which enhancers increase reporter output over the promoter (individually and as enhancer-enhancer pairs) is inversely related to the intrinsic strength of the promoter. Both of these findings are interesting and are well supported by the data.
This study extends previous results on enhancer-promoter combinations to enhancer-enhancer-promoter triples. For example the near equivalence of Fig. 5b and Fig. S7b is intriguing. This experimental design also provides the ability to investigate the notion of selectivity (also commonly referred to as compatibility) between enhancer-enhancer pairs and promoters.
The authors note many limitations, including the selection of the elements and the size and spacing of the tested elements. Some of the enhancer-enhancer-promoter triples they test were also investigated by a different experimental design in Brosh et al 2023. Brosh et al observed non-additivity between these elements while this study did not. Ultimately we do not know which mechanisms produce the non-additivity that has been observed in native loci and which experimental designs would preserve such mechanisms.
Overall this is a nice experimental design and a great dataset for probing how enhancers and promoters combine to regulate gene expression. I have no major concerns, but I will try to clarify some methodological points I found confusing.
Methodology<br /> The following two comments are meant to help the reader understand the methodology/terminology used in this paper and how it relates to other similar studies.
The interpretation that "promoters scale enhancer signals in a non-linear manner" is potentially confusing. I believe that the authors use "non-linear" to refer to the slopes (represented by the letter 'b' in Fig. 5b) being not equal to 1. Given how the boost index is defined, this implies the relationship
Activity of EEP = (Activity of CCP) * (Average Linear Boost)^b
One potential source of confusion is that the Average Linear Boost term itself depends on the set of promoters that are assayed. Averaging across (many) promoters may alleviate this concern, in which case Average Linear Boost may be considered some form of intrinsic enhancer strength. If so, there is a correspondence between this terminology and the terminology presented in Bergman et al 2022. If b not equal to 1 refers to a non-linear scaling, then the reader may think that b=1 refers to a linear scaling. But if b=1, and the Average Linear Boost term is interpreted as intrinsic enhancer strength, then the equation above implies that the activity of EEP is equal to an intrinsic promoter strength times an intrinsic enhancer strength. This is essentially the relationship that is considered in Bergman et al 2022 and which is referred to in that paper as 'multiplicative'. The purpose of this comment is not to argue for what is the relationship that best explains the data, it is just to clarify the terminology.
Enhancer-promoter selectivity: As a follow-up to a previous study (Martinez-Ara et al, Molecular Cell 2022) the authors mention that the data in this study also shows that enhancers show selectivity for certain promoters. I found the methodology hard to follow, so this section of the review is meant to guide the reader in understanding how the authors define 'selectivity'. The authors consider an enhancer to be not selective if its 'boost index' is the same across a set of promoters. 'Boost index' is defined to be the ratio of the reporter output with the enhancer and promoter divided by the reporter output with just the promoter. Conceptually, I think that considering the boost index is a reasonable way to quantify selectivity. The authors use a frequentist approach to classify each enhancer as selective or not selective. The null hypothesis is that the boost index of the enhancer is equal across a set of promoters. This can be visualized in Fig. 2C where the null hypothesis is that the mean of each vertical distribution is equal. Note that in Figure S4b of this paper (and in Figure 4B of their 2022 paper) the within-group variance is not plotted. Statistical significance is assessed using a Welch F-test.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Rubio et al. study the behavior of the transcription factor Hsf1 under ethanol stress, examining its distribution within the nucleus and the coalescence of heat shock response genes in budding yeast. In comparison to the heat shock response, the response to ethanol stress shows similar gene coalescence and Hsf1 binding. However, there is a notable delay in the transcriptional response to ethanol, and a disconnect between it and the appearance of irreversible Hsf1 condensates/puncta, highlighting important differences in how Hsf1 responds to these two related but distinct environmental stresses.
The authors have addressed the majority of my previous comments effectively. The Sis1 experiment provides a clear illustration of a distinctive response to ethanol and heat. This work offers a comprehensive perspective on Hsf1 in stress response from multiple angles.
-
Reviewer #3 (Public Review):
This is an interesting manuscript that builds off of this group's previous work focused on the interface between Hsf1, heat shock protein (HSP) mRNA production, and 3D genome topology. Here the group subjects the yeast Saccharomyces cerevisiae to either heat stress (HS) or ethanol stress (ES) and examines Hsf1 and Pol II chromatin binding, Histone occupancy, Hsf1 condensates, HSP gene coalescence (by 3C and live cell imaging), and HSP mRNA expression (by RT-qPCR and live cell imaging). The manuscript is well written, and the experiments seem well done, and generally rigorous, with orthogonal approaches performed to support conclusions. The main findings are that both HS and ES result in Hsf1/Pol II-dependent intergenic interactions, along with formation of Hsf1 condensates. Yet, while HS results in rapid and strong induction of HSP gene expression and Hsf1 condensate resolution, ES result in slow and weak induction of HSP gene expression without Hsf1 condensate resolution. Thus, the conclusion is somewhat phenomenological - that the same transcription factor can drive distinct transcription, topologic, and phase-separation behavior in response to different types of stress.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors demonstrated that carbon depletion triggers the autophagy-dependent formation of Rubisco Containing Bodies, which contain chloroplast stroma material, but exclude thylakoids. The authors show that RCBs bud directly from the main body of chloroplasts rather than from stromules and that their formation is not dependent on the chloroplast fission factor DRP5. The authors also observed a transient engulfment of the RBCs by the tonoplast during delivery to the vacuolar lumen.
Strengths:
The authors demonstrate that autophagy-related protein 8 (ATG8) co-localizes to the chloroplast demarking the place for RCB budding. The authors provide good-quality time-lapse images and co-localization of the markers corroborating previous observations that RCBs contain only stroma material and do not include thylakoid. The text is very well written and easy to follow.
Weaknesses:
The study adds more valuable descriptive information about the previously published phenomenon of RCB formation under carbon starvation but does not reveal the putative mechanisms governing formation of RCBs and their release to the vacuole.
Comments on revised version:
The authors have done an impressive job revising the manuscript and addressed my comments. The authors clarified previous ambiguities and the new version of the manuscript greatly benefits from the provided quantifications and adjusted discussion.
-
Reviewer #2 (Public review):
This manuscript proposed a new link between the formation of chloroplast budding vesicles (Rubisco-containing bodies [RCBs]) and the development of chloroplast-associated autophagosomes. The authors' previous work demonstrated two types of autophagy pathways involved in chloroplast degradation, including piecemeal degradation of partial chloroplast and whole chloroplast degradation. However, the mechanisms underlying piecemeal degradation are largely unknown, particularly regarding the initiation and release of the budding structures. Here, the authors investigated the progression of piecemeal-type chloroplast trafficking by visualizing it with a high-resolution time-lapse microscope. They provide evidence that autophagosome formation is required for the initiation of chloroplast budding, and that stromule formation is not correlated with this process. In addition, the authors also demonstrated that the release of chloroplast-associated autophagosome is independent of a chloroplast division factor, DRP5b.
Overall, the findings are interesting, and in general, the experiments are very well executed.
Comments on revised version:
The authors have generally addressed all of my concerns (and the other reviewer's) and adapted the manuscript where necessary. The revised version has significantly improved the manuscript. From my perspective there are no further concerns.
-
Reviewer #3 (Public review):
Summary:
Regulated chloroplast breakdown allows plants to modulate these energy-producing organelles, for example during leaf aging, or during changing light conditions. This manuscript investigates how chloroplasts are broken down during light-limiting conditions.
The authors present very nice time lapse imaging of multiple proteins as buds form on the surface of chloroplasts and pinch away, then associate with the vacuole. They use mutant analysis and autophagy markers to demonstrate that this process requires the ATG machinery, but not dynamin-related proteins that are required for chloroplast division. The manuscript concludes with discussion of an internally-consistent model that summarizes the results.
Strengths:
The main strength of the manuscript is the high-quality microscopy data. The authors use multiple markers and high-resolution timelapse imaging to track chloroplast dynamics under light limiting conditions.
Weaknesses:
The main weakness of the manuscript is the limited quantitative data. While it can be challenging to quantify dynamic intracellular events, quantification of these processes is important to appreciate the significance of these findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This manuscript employs yolk sac visceral endoderm cells as a novel model for studying endosomal fusion, observing two distinct fusion behaviors: quick homotypic fusion between late endosomes, and slower heterotypic fusion between late endosomes and lysosomes. The mathematical modeling suggests that vesicle size critically influences the mode of fusion. Further investigations reveal that actin filaments are dynamically associated with late endosomal membranes, and are oriented in the x-y plane and along the apical-basal axis. Actin and Arf2/3 were shown to appear at the rear end of the endosomes along the moving direction suggesting polymerization of actin may provide force for the movement of endosomes. Additionally, the authors found that actin dynamics regulate homotypic and heterotypic fusion events in a different manner. The authors also provide evidence suggesting that Cofilin-dependent actin dynamics are involved in late endosome fusion.
Strengths:
The unique feature of this study is that the authors use yolk sac visceral endoderm cells to study endosomal fusion. Yolk sac visceral endoderm cells have huge endocytic vesicles, endosomes and lysosomes, offering an excellent system to explore endosomal fusion dynamics and the assembly of cellular factors on membranes. The manuscript provides a valuable and convincing observation of the modes of endosomal fusion and roles of actin dynamics in this process, and the conclusions of the study is justified by the data.
Weaknesses:
While the study offers compelling observations, it falls short in delivering clear mechanistic insights. Key questions remain unaddressed, such as the functional significance of actin filaments that extend apically in positioning late endosomes, the ways in which actin dynamics influence fusion events, and the functional implications of the slower bridge fusion process.
-
Reviewer #3 (Public review):
Summary:
The authors found two endosomal fusion modes by live cell imaging of endosomes in yolk sac lateral endoderm cells of 8.5-day-old embryonic mice and described the fusion modes by mathematical models and simulations. They also showed that actin polymerization is involved in the regulation of one of the fusion modes.
Strengths:
The strength of this study is that the authors' claims are well supported by beautiful live cell images and theoretical models. By using specialized cells, yolk sac visceral endoderm cells, the live images of endosomal fusion, localization of actin-related molecules, and validation data from multiple inhibitor experiments are clear.
Weaknesses:
Although it would be out of scope of this study, there is no experimental verification of whether the mechanism of endosome fusion claimed by the authors occurs in general cells, so the article is limited to showing a phenomenon specific to yolk sac lateral endoderm cells. The methods used were very basic and solid. Most of the image analysis was performed manually, but the results were statistically tested.
Summary:
Seiichi Koike et al. studied two fusion models, explosive fusion, and bridge fusion, utilizing yolk sac visceral endoderm cells. They elucidated these two fusion models in vivo by employing mathematical modeling and incorporating fluctuations derived from actin dynamics as a key regulator for rapid homotypic fusion between late endosomes.
Strengths:
This study uncovered the role of actin dynamics in regulating the transition of fusion models in homotypic fusion between late endosomes and introduced a method for observing the fusion of single vesicles with two different targets.
Weaknesses:
The physiological significance of different fusion models is lacking.
-
-
osf.io osf.io
-
Reviewer #1 (Public review):
Summary:
The authors use methylphenidate (MPH) administration after learning a Pavlovian to instrumental transfer (PIT) task to parse decision-making from instrumental influences. While the main effects were null, individual differences in working memory ability moderated the tendency of MPH to boost cognitive control in order to override PIT-biased instrumental learning. Importantly, this working memory moderator had symmetrical effects in appetite and aversive conditions, and these patterns replicated within each valence condition across different values of gain/loss (Fig S1c), suggesting a reliable effect that is generalized across instances of Pavlovian influence.
Strengths:
The idea of using pharmacological challenge after learning but prior to transfer is a novel technique that highlights the influence of catecholamines on the expression of learning under Pavlovian bias, and importantly it dissociated this decision feature from the learning of stimulus-outcome or action-outcome pairings.
Weaknesses:
While the report is largely straightforward and clearly written, some aspects may be edited to improve the clarity for other readers.
1) Theoretical clarity. The authors seem to hedge their bets when it comes to placing these findings within a broader theoretical framework.
2) Analytic clarity: what's c^2?
-
Reviewer #2 (Public review):
Summary:
In this study, Geurts et al. investigated the effects of the catecholamine reuptake inhibitor methylphenidate (MPH) on value-based decision-making using a combination of aversive and appetitive Pavlovian to Instrumental Transfer (PIT) in a human cohort. Using an elegant behavioural design they showed a valence- and action-specific effects of Pavlovian cues on instrumental responses. Initial analyses show no effect of MPH on these processes. However the authors performed a more in-depth analysis and demonstrated that MPH actually modulates PIT in action-specific manner depending of individual working memory capacities. The authors interpret that as an effect on cognitive control of Pavlovian biasing of actions and decision-making more than an invigoration of motivational biases.
Strengths:
A major strength of this study is its experimental design. The elegant combination of appetitive and aversive Pavlovian learning with approach/avoidance instrumental actions allows to precisely investigate the different modulation of value-based decision making depending on the context and environmental stimuli. Important MPH is only administered after Pavlovian and instrumental learning, restricting the effect on PIT performance only. Finally, the use of a placebo-controlled crossover design allows within-comparisons between PIT effect under placebo and MPH and the investigation of the relationships between working memory abilities, PIT and MPH effects.
Weaknesses:
As authors stated in their discussion, this study is purely correlational and their conclusions could be strengthened by the addition of interesting (but time- and resource-consuming) neuroimaging work.<br /> The originality of this work compared to their previous published work using the same cohort could also be clarified at different stages of the article, as I initially wondered what was really novel. This point is much clearer in the discussion section.<br /> A point which, in my opinion, really requires clarification is when the working memory performance presented in Figure 2B has been determined. Was it under placebo (as I would guess) or under MPH? If it is the former, it would be also interesting to look at how MPH modulates working memory based on initial abilities.<br /> A final point is that it could be interesting to also discuss these results, not only regarding dopamine signalling, but also including potential effect of MPH on noradrenaline in frontal regions, considering the known role of this system in modulating behavioural flexibility.
-
Reviewer #3 (Public review):
The manuscript by Geurts and colleagues studies the effects of methylphenidate on Pavlovian to instrumental transfer in humans and demonstrates that the effects of the drug depend on the baseline working memory capacity of the participants. The experiment used a well established cognitive task that allows to measure the effects of Pavlovian cues predicting monetary wins and losses on instrumental responding in two different contexts, namely approach and withdraw. By administering the drug after participants went through the instrumental and Pavlovian learning phases of the experiment, the authors limited the effects of the drug to the transfer phase in extinction. This allowed the authors to make inference about the invigorating effects of the cues independently from any learning bias. Moreover, the authors employed a within subject design to study the effect of the drug on 100 participants, which also allows to detect continuous between-subject relationships with covariates such as working memory capacity.
The study replicates previous findings using this task, namely that appetitive cues promote active responding, and aversive cues promote passive responding in an approach instrumental context, whereas the effect of the cues reverses in a withdraw instrumental context. The results of the methylphenidate manipulation show that the drug decreases the effects of the Pavlovian cues on instrumental responding in participants with low working memory capacity but increases the Pavlovian effects in participants with high working memory capacity. Importantly, in the latter group, methylphenidate increases the invigorating effect of appetitive Pavlovian cues on active approach and aversive Pavlovian cues on active withdrawal as well as the inhibitory effects of aversive Pavlovian cues on active approach and appetitive Pavlovian cues on active withdrawal. These results cannot be explained if catecholamines are just involved in Pavlovian biases by modulating behavioral invigoration driven by the anticipation of reward and punishment in the striatum, as this account can't account for the reversal of the effects of a valence cue on vigor depending on the instrumental context.
In general, I find the methods of this study very robust and the results very convincing and important. However, I have some concerns:
I am not convinced that the inclusion of impulsivity scores in the logistic mixed model to analyze the effects of methylphenidate on PIT is warranted. The authors do not show whether inclusion of this covariate is justified in terms of BIC. Moreover, they include this covariate but do not report the effects. Finally, it is possible that impulsivity is correlated with working memory capacity. In that case, multicollinearity may impact the estimation of the coefficient estimates and may inflate the p-values for the correlated covariates. Are the reported results robust when this factor is not included?
The authors state that working memory capacity is an established proxy for dopamine synthesis capacity and cite some studies supporting this view. However, the authors omit a recent reference by van den Bosch et al that provides evidence for the absence of links between striatal dopamine synthesis capacity and working memory capacity. The lack of a robust link between working memory capacity and dopamine synthesis capacity in the striatum strengthens the alternative explanations of the results suggested in the discussion.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
One enduring mystery involving the evolution of genomes is the remarkable variation they exhibit with respect to size. Much of that variation is due to differences in the number of transposable elements, which often (but not always) correlates with the overall quantity of DNA. Amplification of TEs is nearly always either selectively neutral or negative with respect to host fitness. Given that larger effective population sizes are more efficient at removing these mutations, it has been hypothesized that TE content, and thus overall genome size, may be a function of effective population size. The authors of this manuscript test this hypothesis by using a uniform approach to analysis of several hundred animal genomes, using the ratio of synonymous to nonsynonymous mutations in coding sequence as a measure of the overall strength of purifying selection, which serves as a proxy for effective population size over time. The data convincingly demonstrates that it is unlikely that effective population size has a strong effect on TE content and, by extension, overall genome size (except for birds).
Strengths:
Although this ground has been covered before in many other papers, the strength of this analysis is that it is comprehensive and treats all the genomes with the same pipeline, making comparisons more convincing. Although this is a negative result, it is important because it is relatively comprehensive and indicates that there will be no simple, global hypothesis that can explain the observed variation.
Weaknesses:
In several places, I think the authors slip between assertions of correlation and assertions of cause-effect relationships not established in the results. In other places, the arguments end up feeling circular, based, I think, on those inferred causal relationships. It was also puzzling why plants (which show vast differences in DNA content) were ignored altogether.
-
Reviewer #2 (Public Review):
Summary:
The Mutational Hazard Hypothesis (MHH) is a very influential hypothesis in explaining the origins of genomic and other complexity that seem to entail the fixation of costly elements. Despite its influence, very few tests of the hypothesis have been offered, and most of these come with important caveats. This lack of empirical tests largely reflects the challenges of estimating crucial parameters.
The authors test the central contention of the MHH, namely that genome size follows effective population size (Ne). They martial a lot of genomic and comparative data, test the viability of their surrogates for Ne and genome size, and use correct methods (phylogenetically corrected correlation) to test the hypothesis. Strikingly, they not only find that Ne is not THE major determinant of genome size, as is argued by MHH, but that there is not even a marginally significant effect. This is remarkable, making this an important paper.
Strengths:
The hypothesis tested is of great importance.
The negative finding is of great importance for reevaluating the predictive power of the tested hypothesis.
The test is straightforward and clear.
The analysis is a technical tour-de-force, convincingly circumventing a number of challenges of mounting a true test of the hypothesis.
Weaknesses:
I note no particular strengths, but I believe the paper could be further strengthened in three major ways.
(1) The authors should note that the hypothesis that they are testing is larger than the MHH. The MHH hypothesis says that<br /> (i) low-Ne species have more junk in their genomes and<br /> (ii) this is because junk tends to be costly because of increased mutation rate to nulls, relative to competing non/less-junky alleles.
The current results reject not just the compound (i+ii) MHH hypothesis, but in fact any hypothesis that relies on i. This is notably a (much) more important rejection. Indeed, whereas MHH relies on particular constructions of increased mutation rates of varying plausibility, the more general hypothesis i includes any imaginable or proposed cost to the extra sequence (replication costs, background transcription, costs of transposition, ectopic expression of neighboring genes, recombination between homologous elements, misaligning during meiosis, reduced organismal function from nuclear expansion, the list goes on and on). For those who find the MHH dubious on its merits, focusing this paper on the MHH reduces its impact - the larger hypothesis that the small costs of extra sequence dictate the fates of different organisms' genomes is, in my opinion, a much more important and plausible hypothesis, and thus the current rejection is more important than the authors let on.
(2) In addition to the authors' careful logical and mathematical description of their work, they should take more time to show the intuition that arises from their data. In particular, just by looking at Figure 1b one can see what is wrong with the non-phylogenetically-corrected correlations that MHH's supporters use. That figure shows that mammals, many of which have small Ne, have large genomes regardless of their Ne, which suggests that the coincidence of large genomes and frequently small Ne in this lineage is just that, a coincidence, not a causal relationship. Similarly, insects by and large have large Ne, regardless of their genome size. Insects, many of which have large genomes, have large Ne regardless of their genome size, again suggesting that the coincidence of this lineage of generally large Ne and smaller genomes is not causal. Given that these two lineages are abundant on earth in addition to being overrepresented among available genomes (and were even more overrepresented when the foundational MHH papers collected available genomes), it begins to emerge how one can easily end up with a spurious non-phylogenetically corrected correlation: grab a few insects, grab a few mammals, and you get a correlation. Notably, the same holds for lineages not included here but that are highly represented in our databases (and all the more so 20 years ago): yeasts related to S. cerevisiae (generally small genomes and large median Ne despite variation) and angiosperms (generally large genomes (compared to most eukaryotes) and small median Ne despite variation). Pointing these clear points out will help non-specialists to understand why the current analysis is not merely a they-said-them-said case, but offers an explanation for why the current authors' conclusions differ from the MHH's supporters and moreover explain what is wrong with the MHH's supporters' arguments.
(3) A third way in which the paper is more important than the authors let on is in the striking degree of the failure of MHH here. MHH does not merely claim that Ne is one contributor to genome size among many; it claims that Ne is THE major contributor, which is a much, much stronger claim. That no evidence exists in the current data for even the small claim is a remarkable failure of the actual MHH hypothesis: the possibility is quite remote that Ne is THE major contributor but that one cannot even find a marginally significant correlation in a huge correlation analysis deriving from a lot of challenging bioinformatic work. Thus this is an extremely strong rejection of the MHH. The MHH is extremely influential and yet very challenging to test clearly. Frankly, the authors would be doing the field a disservice if they did not more strongly state the degree of importance of this finding.
-
Reviewer #3 (Public Review):
The Mutational Hazard Hypothesis (MHH) suggests that lineages with smaller effective population sizes should accumulate slightly deleterious transposable elements leading to larger genome sizes. Marino and colleagues tested the MHH using a set of 807 vertebrate, mollusc, and insect species. The authors mined repeats de novo and estimated dN/dS for each genome. Then, they used dN/dS and life history traits as reliable proxies for effective population size and tested for correlations between these proxies and repeat content while accounting for phylogenetic nonindependence. The results suggest that overall, lineages with lower effective population sizes do not exhibit increases in repeat content or genome size. This contrasts with expectations from the MHH. The authors speculate that changes in genome size may be driven by lineage-specific host-TE conflicts rather than effective population size.
The general conclusions of this paper are supported by a powerful dataset of phylogenetically diverse species. The use of C-values rather than assembly size for many species (when available) helps mitigate the challenges associated with the underrepresentation of repetitive regions in short-read-based genome assemblies. As expected, genome size and repeat content are highly correlated across species. Nonetheless, the authors report divergent relationships between genome size and dN/dS and TE content and dN/dS in multiple clades: Insecta, Actinopteri, Aves, and Mammalia. These discrepancies are interesting but could reflect biases associated with the authors' methodology for repeat detection and quantification rather than the true biology.
The authors used dnaPipeTE for repeat quantification. Although dnaPipeTE is a useful tool for estimating TE content when genome assemblies are not available, it exhibits several biases. One of these is that dnaPipeTE seems to consistently underestimate satellite content (compared to repeat masker on assembled genomes; see Goubert et al. 2015). Satellites comprise a significant portion of many animal genomes and are likely significant contributors to differences in genome size. This should have a stronger effect on results in species where satellites comprise a larger proportion of the genome relative to other repeats (e.g. Drosophila virilis, >40% of the genome (Flynn et al. 2020); Triatoma infestans, 25% of the genome (Pita et al. 2017) and many others). For example, the authors report that only 0.46% of the Triatoma infestans genome is "other repeats" (which include simple repeats and satellites). This contrasts with previous reports of {greater than or equal to}25% satellite content in Triatoma infestans (Pita et al. 2017). Similarly, this study's results for "other" repeat content appear to be consistently lower for Drosophila species relative to previous reports (e.g. de Lima & Ruiz-Ruano 2022). The most extreme case of this is for Drosophila albomicans where the authors report 0.06% "other" repeat content when previous reports have suggested that 18%->38% of the genome is composed of satellites (de Lima & Ruiz-Ruano 2022). It is conceivable that occasional drastic underestimates or overestimates for repeat content in some species could have a large effect on coevol results, but a minimal effect on more general trends (e.g. the overall relationship between repeat content and genome size).
Another bias of dnaPipeTE is that it does not detect ancient TEs as well as more recently active TEs (Goubert et al. 2015). Thus, the repeat content used for PIC and coevolve analyses here is inherently biased toward more recently inserted TEs. This bias could significantly impact the inference of long-term evolutionary trends.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this study, the authors utilized human placental samples together with multiple mouse models to explore the mechanisms whereby inflammatory macrophages and T cells are linked to preeclampsia (PE). The authors first undertook CyTOF of placental samples from women with normal pregnancies, PE, gestational diabetes mellitus (GDM), and GDM with superimposed PE (GDM+PE). The authors report an increase of memory-like Th17 cells, memory-like CD8+ T cells, and pro-inflammatory macrophages in PE cases, but not GDM or GDM+PE, together with diminished γδT cells, anti-inflammatory macrophages, and granulocyte myeloid-derived suppressor cells (gMDSC). The authors then undertook several experiments using scRNA-seq, bulk RNA-seq, and flow cytometry in a RUPP model to first show that the transfer of pro-inflammatory macrophages from RUPP mice into normal pregnant mice with depleted macrophages resulted in increased embryo resorption and diminished fetal weight and size. Moreover, pro-inflammatory macrophages induced memory-like Th17 cells in mice. Similarly, injection of T-cells from RUPP mice resulted in increased embryo resorption and diminished fetal weight and size. Such mice that received RUPP-derived T cells displayed similarly worsened outcomes in their second pregnancy in the absence of any additional T cell transfer. The authors identified the IGF1-IGF1R ligand-receptor pair as a factor involved in the macrophage-mediated induction of memory-like Th17 cells, as confirmed by experiments using an IGF1R inhibitor. Finally, the authors transferred IGF1R inhibitor-treated T cells to a pregnant mouse that was administered LPS and depleted of T cells and observed improved outcomes compared to mice that received non-treated T cells. The authors conclude that their study identifies a PE-specific immune cell network regulated by pro-inflammatory macrophages and T cells.
Strengths:
Utilization of both human placental samples and multiple mouse models to explore the mechanisms linking inflammatory macrophages and T cells to preeclampsia (PE).<br /> Incorporation of advanced techniques such as CyTOF, scRNA-seq, bulk RNA-seq, and flow cytometry.
Identification of specific immune cell populations and their roles in PE, including the IGF1-IGF1R ligand-receptor pair in macrophage-mediated Th17 cell differentiation.<br /> Demonstration of the adverse effects of pro-inflammatory macrophages and T cells on pregnancy outcomes through transfer experiments.
Weaknesses:
Inconsistent use of uterine and placental cells, which are distinct tissues with different macrophage populations, potentially confounding results.
Missing observational data for the initial experiment transferring RUPP-derived macrophages to normal pregnant mice.
Unclear mechanisms of anti-macrophage compounds and their effects on placental/fetal macrophages.
Difficulty in distinguishing donor cells from recipient cells in murine single-cell data complicates interpretation.
Limitation of using the LPS model in the final experiments, as it more closely resembles systemic inflammation seen in endotoxemia rather than the specific pathology of PE.
-
Reviewer #2 (Public review):
Summary:
Fei, Lu, Shi, et al. present a thorough evaluation of the immune cell landscape in pre-eclamptic human placentas by single-cell multi-omics methodologies compared to normal control placentas. Based on their findings of elevated frequencies of inflammatory macrophages and memory-like Th17 cells, they employ adoptive cell transfer mouse models to interrogate the coordination and function of these cell types in pre-eclampsia immunopathology. They demonstrate the putative role of the IGF1-IGF1R axis as the key pathway by which inflammatory macrophages in the placenta skew CD4+ T cells towards an inflammatory IL-17A-secreting phenotype that may drive tissue damage, vascular dysfunction, and elevated blood pressure in pre-eclampsia, leaving researchers with potential translational opportunities to pursue this pathway in this indication.
They present a major advance to the field in their profiling of human placental immune cells from pre-eclampsia patients where most extant single-cell atlases focus on term versus preterm placenta, or largely examine trophoblast biology with a much rarer subset of immune cells. While the authors present vast amounts of data at both the protein and RNA transcript level, we, the reviewers, feel this manuscript is still in need of much more clarity in its main messaging, and more discretion in including only key data that supports this main message most effectively.
Strengths:
(1) This study combines human and mouse analyses and allows for some amount of mechanistic insight into the role of pro-inflammatory and anti-inflammatory macrophages in the pathogenesis of pre-eclampsia (PE), and their interaction with Th17 cells.
(2) Importantly, they do this using matched cohorts across normal pregnancy and common PE comorbidities like gestation diabetes (GDM).
(3) The authors have developed clear translational opportunities from these "big data" studies by moving to pursue potential IGF1-based interventions.
Weaknesses:
(1) Clearly the authors generated vast amounts of multi-omic data using CyTOF and single-cell RNA-seq (scRNA-seq), but their central message becomes muddled very quickly. The reader has to do a lot of work to follow the authors' multiple lines of inquiry rather than smoothly following along with their unified rationale. The title description tells fairly little about the substance of the study. The manuscript is very challenging to follow. The paper would benefit from substantial reorganizations and editing for grammatical and spelling errors. For example, RUPP is introduced in Figure 4 but in the text not defined or even talked about what it is until Figure 6. (The figure comparing pro- and anti-inflammatory macrophages does not add much to the manuscript as this is an expected finding).
(2) The methods lack critical detail about how human placenta samples were processed. The maternal-fetal interface is a highly heterogeneous tissue environment and care must be taken to ensure proper focus on maternal or fetal cells of origin. Lacking this detail in the present manuscript, there are many unanswered questions about the nature of the immune cells analyzed. It is impossible to figure out which part of the placental unit is analyzed for the human or mouse data. Is this the decidua, the placental villi, or the fetal membranes? This is of key importance to the central findings of the manuscript as the immune makeup of these compartments is very different. Or is this analyzed as the entirety of the placenta, which would be a mix of these compartments and significantly less exciting?
(3) Similarly, methods lack any detail about the analysis of the CyTOF and scRNAseq data, much more detail needs to be added here. How were these clustered, what was the QC for scRNAseq data, etc? The two small paragraphs lack any detail.
(4) There is also insufficient detail presented about the quantities or proportions of various cell populations. For example, gdT cells represent very small proportions of the CyTOF plots shown in Figures 1B, 1C, & 1E, yet in Figures 2I, 2K, & 2K there are many gdT cells shown in subcluster analysis without a description of how many cells are actually represented, and where they came from. How were biological replicates normalized for fair statistical comparison between groups?
(5) The figures themselves are very tricky to follow. The clusters are numbered rather than identified by what the authors think they are, the numbers are so small, that they are challenging to read. The paper would be significantly improved if the clusters were clearly labeled and identified. All the heatmaps and the abundance of clusters should be in separate supplementary figures.
(6) The authors should take additional care when constructing figures that their biological replicates (and all replicates) are accurately represented. Figure 2H-2K shows N=10 data points for the normal pregnant (NP) samples when clearly their Table 1 and test denote they only studied N=9 normal subjects.
(7) There is little to no evaluation of regulatory T cells (Tregs) which are well known to undergird maternal tolerance of the fetus, and which are well known to have overlapping developmental trajectory with RORgt+ Th17 cells. We recommend the authors evaluate whether the loss of Treg function, quantity, or quality leaves CD4+ effector T cells more unrestrained in their effect on PE phenotypes. References should include, accordingly: PMCID: PMC6448013 / DOI: 10.3389/fimmu.2019.00478; PMC4700932 / DOI: 10.1126/science.aaa9420.
(8) In discussing gMDSCs in Figure 3, the authors have missed key opportunities to evaluate bona fide Neutrophils. We recommend they conduct FACS or CyTOF staining including CD66b if they have additional tissues or cells available. Please refer to this helpful review article that highlights key points of distinguishing human MDSC from neutrophils: https://doi.org/10.1038/s41577-024-01062-0. This will both help the evaluation of potentially regulatory myeloid cells that may suppress effector T cells as well as aid in understanding at the end of the study if IL-17 produced by CD4+ Th17 cells might recruit neutrophils to the placenta and cause ROS immunopathology and fetal resorption.
(9) Depletion of macrophages using several different methodologies (PLX3397, or clodronate liposomes) should be accompanied by supplementary data showing the efficiency of depletion, especially within tissue compartments of interest (uterine horns, placenta). The clodronate piece is not at all discussed in the main text. Both should be addressed in much more detail.
(10) There are many heatmaps and tSNE / UMAP plots with unhelpful labels and no statistical tests applied. Many of these plots (e.g. Figure 7) could be moved to supplemental figures or pared down and combined with existing main figures to help the authors streamline and unify their message.
(11) There are claims that this study fills a gap that "only one report has provided an overall analysis of immune cells in the human placental villi in the presence and absence of spontaneous labor at term by scRNA-seq (Miller 2022)" (lines 362-364), yet this study itself does not exhaustively study all immune cell subsets...that's a monumental task, even with the two multi-omic methods used in this paper. There are several other datasets that have performed similar analyses and should be referenced.
(12) Inappropriate statistical tests are used in many of the analyses. Figures 1-2 use the Shapiro-Wilk test, which is a test of "goodness of fit", to compare unpaired groups. A Kruskal-Wallis or other nonparametric t-test is much more appropriate. In other instances, there is no mention of statistical tests (Figures 6-7) at all. Appropriate tests should be added throughout.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:<br /> Chen et al. identified the role of endocardial id2b expression in cardiac contraction and valve formation through pharmaceutical, genetic, electrophysiology, calcium imaging, and echocardiography analyses. CRISPR/Cas9 generated id2b mutants demonstrated defective AV valve formation, excitation-contraction coupling, reduced endocardial cell proliferation in AV valve, retrograde blood flow, and lethal effects.
Strengths:<br /> Their methods, data and analyses broadly support their claims.
Weaknesses:<br /> The molecular mechanism is somewhat preliminary.
-
Reviewer #2 (Public review):
Summary:<br /> Biomechanical forces, such as blood flow, are crucial for organ formation, including heart development. This study by Shuo Chen et al. aims to understand how cardiac cells respond to these forces. They used zebrafish as a model organism due to its unique strengths, such as the ability to survive without heartbeats, and conducted transcriptomic analysis on hearts with impaired contractility. They thereby identified id2b as a gene regulated by blood flow and is crucial for proper heart development, in particular, for the regulation of myocardial contractility and valve formation. Using both in situ hybridization and transgenic fish they showed that id2b is specifically expressed in the endocardium, and its expression is affected by both pharmacological and genetic perturbations of contraction. They further generated a null mutant of id2b to show that loss of id2b results in heart malformation and early lethality in zebrafish. Atrioventricular (AV) and excitation-contraction coupling were also impaired in id2b mutants. Mechanistically, they demonstrate that Id2b interacts with the transcription factor Tcf3b to restrict its activity. When id2b is deleted, the repressor activity of Tcf3b is enhanced, leading to suppression of the expression of nrg1 (neuregulin 1), a key factor for heart development. Importantly, injecting tcf3b morpholino into id2b-/- embryos partially restores the reduced heart rate. Moreover, treatment of zebrafish embryos with the Erbb2 inhibitor AG1478 results in decreased heart rate, in line with a model in which Id2b modulates heart development via the Nrg1/Erbb2 axis. The research identifies id2b as a biomechanical signaling-sensitive gene in endocardial cells that mediates communication between the endocardium and myocardium, which is essential for heart morphogenesis and function.
Strengths:<br /> The study provides novel insights into the molecular mechanisms by which biomechanical forces influence heart development and highlights the importance of id2b in this process.
Weaknesses:<br /> The claims are in general well supported by experimental evidence, but the following aspects may benefit from further investigation:
(1) In Figure 1C, the heatmap demonstrates the up-regulated and down-regulated genes upon tricane-induced cardiac arrest. Aside from the down-regulation of id2b expression, it was also evident that id2a expression was up-regulated. As a predicted paralog of id2b, it would be interesting to see whether the up-regulation of id2a in response to tricane treatment was a compensatory response to the down-regulation of id2b expression.
(2) The study mentioned that id2b is tightly regulated by the flow-sensitive primary cilia-klf2 signaling axis; however aside from showing the reduced expression of id2b in klf2a and klf2b mutants, there was no further evidence to solidify the functional link between id2b and klf2. It would therefore be ideal, in the present study, to demonstrate how Klf2, which is a transcriptional regulator, transduces biomechanical stimuli to Id2b.
(3) The authors showed the physical interaction between ectopically expressed FLAG-Id2b and HA-Tcf3b in HEK293T cells. Although the constructs being expressed are of zebrafish origin, it would be nice to show in vivo that the two proteins interact.
-
Reviewer #3 (Public review):
Summary:<br /> How mechanical forces transmitted by blood flow contribute to normal cardiac development remains incompletely understood. Using the unique advantages of the zebrafish model system, Chen et al make the fundamental discovery that endocardial expression of id2b is induced by blood flow and required for normal atrioventricular canal (AVC) valve development and myocardial contractility by regulating calcium dynamics. Mechanistically, the authors suggest that Id2b binds to Tcf3b in endocardial cells, which relieves Tcf3b-mediated transcriptional repression of Neuregulin 1 (NRG1). Nrg1 then induces expression of the L-type calcium channel component LRRC1. This study significantly advances our understanding of flow-mediated valve formation and myocardial function.
Strengths:<br /> Strengths of the study are the significance of the question being addressed, use of the zebrafish model, and data quality (mostly very nice imaging). The text is also well-written and easy to understand.
Weaknesses:<br /> Weaknesses include a lack of rigor for key experimental approaches, which led to skepticism surrounding the main findings. Specific issues were the use of morpholinos instead of genetic mutants for the bmp ligands, cilia gene ift88, and tcf3b, lack of an explicit model surrounding BMP versus blood flow induced endocardial id2b expression, use of bar graphs without dots, the artificial nature of assessing the physical interaction of Tcf3b and Id2b in transfected HEK293 cells, and artificial nature of examining the function of the tcf3b binding sites upstream of nrg1.
-
-
www-cambridge-org.libproxy.temple.edu www-cambridge-org.libproxy.temple.edu
-
Foucault attempts to engage with politics and ethics and to create a framework by which we might conceive of forms of power that do not operate through domination and normalization.
Did he successfully created that framework ? if yes does the power in society functions according to his framework ?<br /> In my opinion power is an authority to control you that you give to others and believing that the other person won't use it.
-
If power is “ever-present,” then, it is only because each individual carries the effects of discipline within themselves, even before the possibility of consent exists.
Disciplinary power in an organization is with consent and still an individual doesn't like it. That's why there's an concept of oppressor and oppressed and only the society can decides who is who.
-
Those who comply with the norm are rewarded and given a higher status within the hierarchy, whereas those who do not receive further training and discipline.
It is true for any military service of the world, many of the given thoughts of the Foucault's seems very similar with the Sun Tzu's Art of War. which is practiced by many of the worlds great military powers of today
-
Foucault focuses on the way these persons are managed and on the mechanisms society uses to make madness intelligible within a framework of reason.
how society tries to punish and regulate those who are considered to be ‘mad’ ? It prefigures his later preoccupations with discipline and normalization set out in Discipline and Punish. Nowadays, institutions regulate people not through violence but through classification and direction of people into their ‘rightful’ place within a rational and efficient social order.
-
Sovereign power is both visible and external, and the monarch invokes public spectacle to demonstrate his absolute domination
This shows the difference between sovereign and disciplinary power in Foucault’s work and focuses on the transition from visible, violent displays of authority to the more hidden, internalized forms of control seen in disciplinary power. Disciplinary powers seems very ethical in modern era whereas as the sovereign powers seems tyrannical.
-
Disciplinary power employs the norm to correct behavior and transform individuals into docile bodies who are measured and ranked by their relationship to the norm
Today people in school or work, behind bars or at home, are measured against a standard of behavior, of productivity, of how one is to behave and what is considered normal or appropriate . Disciplinary power does not just punish but re-educates, reform and train, a docile bodies as called in the paragraph .The norm works as a holding method that enhances productivity as well as conformity given that they force people to accept specific standards of conduct or you can say modern slavery or as in some place like corporate slavery or slave of globalization.
-
Foucault talks about the importance of confinement or enclosure in discipline. Does this mean that physical confinement, like being in a classroom or prison, is necessary for discipline to function? Or can forms of surveillance and control happen without physical spaces, especially today with online monitoring?
-
-
www.net.in.tum.de www.net.in.tum.de
-
Abstract
A wonderfully summarizing abstract.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In this manuscript, Ning et al. reported that Bcas2 played an indispensable role in zebrafish primitive hematopoiesis via sequestering β-catenin in the nucleus. The authors showed that loss of Bcas2 caused primitive hematopoietic defects in zebrafish. They unraveled that Bcas2 deficiency promoted β-catenin nuclear export via a CRM1-dependent manner in vivo and in vitro. They further validated that BCAS2 directly interacted with β-catenin in the nucleus and enhanced β-catenin accumulation through its CC domains. They unveil a novel insight into Bcas2, which is critical for zebrafish primitive hematopoiesis via regulating nuclear β-catenin stabilization rather than its canonical pre-mRNA splicing functions. Overall, the study is impressive and well-performed, although there are also some issues to address.
Strengths:
The study unveils a novel function of Bcas2, which is critical for zebrafish primitive hematopoiesis by sequestering β-catenin. The authors validated the results in vivo and in vitro. Most of the figures are clear and convincing. This study nicely complements the function of Bcas2 in primitive hematopoiesis.
Weaknesses:
A portion of the figures were over-exposed.
-
Reviewer #2 (Public Review):
Summary:
Ning and colleagues present studies supporting a role for breast carcinoma amplified sequence 2 (Bcas2) in positively regulating primitive wave hematopoiesis through amplification of beta-catenin-dependent (canonical) Wnt signaling. The authors present compelling evidence that zebrafish bcas2 is expressed at the right time and place to be involved in primitive hematopoiesis, that there are primitive hematopoietic defects in hetero- and homozygous mutant and knockdown embryos, that Bcas2 mechanistically positively regulates canonical Wnt signaling, and that Bcas2 is required for nuclear retention of B-cat through physical interaction involving armadillo repeats 9-12 of B-cat and the coiled-coil domains of Bcas2. Overall, the data and writing are clean, clear, and compelling. This study is a first-rate analysis of a strong phenotype with highly supportive mechanistic data. The findings shed light on the controversial question of whether, when, and how canonical Wnt signaling may be involved in hematopoietic development. We detail some minor concerns and questions below, which if answered, we believe would strengthen the overall story and resolve some puzzling features of the phenotype. Notwithstanding these minor concerns, we believe this is an exceptionally well-executed and interesting manuscript.
Strengths:
(1) The study features clear and compelling phenotypes and results.
(2) The manuscript narrative exposition and writing are clear and compelling.
(3) The authors have attended to important technical nuances sometimes overlooked, for example, focusing on different pools of cytosolic or nuclear b-catenin.
(4) The study sheds light on a controversial subject: regulation of hematopoietic development by canonical Wnt signaling and presents clear evidence of a role.
(5) The authors present evidence of phylogenetic conservation of the pathway.
Weaknesses:
(1) The authors present compelling data that Bcas2 regulates nuclear retention of B-cat through physical association involving binding between the Bcas2 CC domains and B-cat arm repeats 9-12. Transcriptional activation of Wnt target genes by B-cat requires physical association between B-cat and Tcf/Lef family DNA binding factors involving key interactions in Arm repeats 2-9 (Graham et al., Cell 2000). Mutually exclusive binding by B-cat regulatory factors, such as ICAT that prevent Tcf-binding is a documented mechanism (e.g. Graham et al., Mol Cell 2002). It would appear - based on the arm repeat usage by Bcas2 (repeats 9-12)-that Bcas2 and Tcf binding might not be mutually exclusive, which would support their model that Bcas2 physical association with B-cat to retain it in the nucleus would be compatible with co-activation of genes by allowing association with Tcf. It might be nice to attempt a three-way co-IP of these factors showing that B-cat can still bind Tcf in the presence of Bcas2, or at least speculate on the plausibility of the three-way interaction.
(2) A major way that canonical Wnt signaling regulates hematopoietic development is through regulation of the LPM hematopoietic competence territories by activating expression of cdx1a, cdx4, and their downstream targets hoxb5a and hoxa9a (Davidson et al., Nature 2003; Davidson et al., Dev Biol 2006; Pilon et al., Dev Biol 2006; Wang et al., PNAS 2008). Could the authors assess (in situ) the expression of cdx1a, cdx4, hoxb5a, and hoxa9a in the bcas2 mutants?
(3) The authors show compellingly that even heterozygous loss of bcas2 has strong Wnt-inhibitory effects. If Bcas2 is required for canonical Wnt signaling and bcas2 is expressed ubiquitously from the 1-cell stage through at least the beginning of gastrulation, why do bcas2 KO embryos not have morphological axis specification defects consistent with loss of early Wnt signaling, like loss of head (early), or brain anteriorization (later)? Could the authors provide some comments on this puzzle? Or if they do see any canonical Wnt signaling patterning defects in het- or homozygous embryos, could they describe and/or present them?
-
Reviewer #3 (Public Review):
Summary:
This manuscript utilized zebrafish bcas2 mutants to study the role of bcas2 in primitive hematopoiesis and further confirms that it has a similar function in mice. Moreover, they showed that bcas2 regulates the transition of hematopoietic differentiation from angioblasts via activating Wnt signaling. By performing a series of biochemical experiments, they also showed that bcas2 accomplishes this by sequestering b-catenin within the nucleus, rather than through its known function in pre-mRNA splicing.
Strengths:
The work is well-performed, and the manuscript is well-written.
Weaknesses:
Several issues need to be clarified.
(1) Is wnt signaling also required during hematopoietic differentiation from angioblasts? Can the authors test angioblast and endothelial markers in embryos with wnt inhibition? Also, can the authors add export inhibitor LMB to the mouse mutants to test if sequestering of b-catenin by bcas2 is conserved during primitive hematopoiesis in mice?
(2) Bcas2 is required for primitive myelopoiesis in ALM. Does bcas2 play a similar function in primitive myelopoiesis, or is bcas2/b-catenin interaction more important for hematopoietic differentiation in PLM?
(3) Is it possible that CC1-2 fragment sequester b-catenin? The different phenotypes between this manuscript and the previous article (Yu, 2019) may be due to different mutations in bcas2. Is it possible that the bcas2 mutation in Yu's article produces a complete CC1-2 fragment, which might sequester b-catenin?
(4) Can the author clarify what embryos the arrows point to in SI Figure 2D? In SI Figure 6B and B', can the author clarify how the nucleus and cytoplasm are bleached? In B, the nucleus also appears to be bleached.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Du et al. report 16 new well-preserved specimens of atiopodan arthropods from the Chengjiang biota, which demonstrate both dosal and vental anatomies of a potential new taxon of atiopodans that are closely related to trolobites. Authors assigned their specimens to Acanthomeridion serratum, and proposed A. anacanthus as a junior subjective synonym of Acanthomeridion serratum. Critically, the presence of ventral plates (interpreted as cephalic liberigenae), together with phylogenic results, lead authors to conclude that the cephalic sutures originated multiple times within the Artiopoda.
Strengths:
New specimens are highly qualified and informative. The morphology of dorsal exoskeleton, except for the supposed free cheek, were well illustrated and described in detail, which provides a wealth of information for taxonomic and phylogenic analyses.
-
Reviewer #3 (Public Review):
Summary:
Well-illustrated new material is documented for Acanthomeridion, a formerly incompletely known Cambrian arthropod. The formerly known facial sutures are proposed be associated with ventral plates that the authors homologise with the free cheeks of trilobites (although also testing alternative homologies). An update of a published phylogenetic dataset permits reconsideration of whether dorsal ecdysial sutures have a single or multiple origins in trilobites and their relatives.
Strengths:
Documentation of an ontogenetic series makes a sound case that the proposed diagnostic characters of a second species of Acanthomeridion are variation within a single species. New microtomographic data shed light on appendage morphology that was not formerly known. The new data on ventral plates and their association with the ecdysial sutures are valuable in underpinning homologies with trilobites.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Working memory is imperfect - memories accrue error over time and are biased towards certain identities. For example, previous work has shown memory for orientation is more accurate near the cardinal directions (i.e., variance in responses is smaller for horizontal and vertical stimuli) while being biased towards diagonal orientations (i.e., there is a repulsive bias away from horizontal and vertical stimuli). The magnitude of errors and biases increase the longer an item is held in working memory and when more items are held in working memory (i.e., working memory load is higher). Previous work has argued that biases and errors could be explained by increased perceptual acuity at cardinal directions. However, these models are constrained to sensory perception and do not explain how biases and errors increase over time in memory. The current manuscript builds on this work to show how a two-layer neural network could integrate errors and biases over a memory delay. In brief, the model includes a 'sensory' layer with heterogenous connections that lead to the repulsive bias and decreased error at the cardinal directions. This layer is then reciprocally connected with a classic ring attractor layer. Through their reciprocal interactions, the biases in the sensory layer are constantly integrated into the representation in memory. In this way, the model captures the distribution of biases and errors for different orientations that has been seen in behavior and their increasing magnitude with time. The authors compare the two-layer network to a simpler one-network model, showing that the one model network is harder to tune and shows an attractive bias for memories that have lower error (which is incompatible with empirical results).
Strengths:
The manuscript provides a nice review of the dynamics of items in working memory, showing how errors and biases differ across stimulus space. The two-layer neural network model is able to capture the behavioral effects as well as relate to neurophysiological observations that memory representations are distributed across sensory cortex and prefrontal cortex.
The authors use multiple approaches to understand how the network produces the observed results. For example, analyzing the dynamics of memories in the low-dimensional representational space of the networks provides the reader with an intuition for the observed effects.
As a point of comparison with the two-layer network, the authors construct a heterogenous one-layer network (analogous to a single memory network with embedded biases). They argue that such a network is incapable of capturing the observed behavioral effects but could potentially explain biases and noise levels in other sensory domains where attractive biases have lower errors (e.g., color).
The authors show how changes in the strength of Hebbian learning of excitatory and inhibitory synapses can change network behavior. This argues for relatively stronger learning in inhibitory synapses, an interesting prediction.
The manuscript is well-written. In particular, the figures are well done and nicely schematize the model and the results.
Weaknesses:
Despite its strengths, the manuscript does have some weaknesses. These weaknesses are adequately discussed in the manuscript and motivate future research.
One weakness is that the model is not directly fit to behavioral data, but rather compared to a schematic of behavioral data. As noted above, the model provides insight into the general phenomenon of biases in working memory. However, because the models are not fit directly to data, they may miss some aspects of the data.
In addition, directly fitting the models to behavioral data could allow for a broader exploration of parameter space for both the one-layer and two-layer models (and their alternatives). Such an approach would provide stronger support for the papers claims (such as "....these evolving errors...require network interaction between two distinct modules."). That being said, the manuscript does explore several alternative models and also acknowledges the limitation of not directly fitting behavior, due to difficulties in fitting complex neural network models to data.
One important behavioral observation is that both diffusive noise and biases increase with the number of items in working memory. The current model does not capture these effects and it isn't clear how the model architecture could be extended to capture these effects. That being said, the authors note this limitation in the Discussion and present it as a future direction.
Overall:
Overall, the manuscript was successful in building a model that captured the biases and noise observed in working memory. This work complements previous studies that have viewed these effects through the lens of optimal coding, extending these models to explain the effects of time in memory. In addition, the two-layer network architecture extends previous work with similar architectures, adding further support to the distributed nature of working memory representations.
-
Reviewer #2 (Public Review):
In this manuscript, Yang et al. present a modeling framework to understand the pattern of response biases and variance observed in delayed-response orientation estimation tasks. They combine a series of modeling approaches to show that coupled sensory-memory networks are in a better position than single-area models to support experimentally observed delay-dependent response bias and variance in cardinal compared to oblique orientations. These errors can emerge from a population-code approach that implements efficient coding and Bayesian inference principles and is coupled to a memory module that introduces random maintenance errors. A biological implementation of such operation is found when coupling two neural network modules, a sensory module with connectivity inhomogeneities that reflect environment priors, and a memory module with strong homogeneous connectivity that sustains continuous ring attractor function. Comparison with single-network solutions that combine both connectivity inhomogeneities and memory attractors shows that two-area models can more easily reproduce the patterns of errors observed experimentally.
Strengths:
The model provides an integration of two modeling approaches to the computational bases of behavioral biases: one based on Bayesian and efficient coding principles, and one based on attractor dynamics. These two perspectives are not usually integrated consistently in existing studies, which this manuscript beautifully achieves. This is a conceptual advancement, especially because it brings together the perceptual and memory components of common laboratory tasks.
The proposed two-area model provides a biologically plausible implementation of efficient coding and Bayesian inference principles, which interact seamlessly with a memory buffer to produce a complex pattern of delay-dependent response errors. No previous model had achieved this.
Weaknesses:
The correspondence between the various computational models is not clearly shown. It is not easy to see clearly this correspondence because network function is illustrated with different representations for different models. In particular, the Bayesian model of Figure 2 is illustrated with population responses for different stimuli and delays, while the attractor models of Figure 3 and 4 are illustrated with neuronal tuning curves but not population activity.
The proposed model has stronger feedback than feedforward connections between the sensory and memory modules (J_f = 0.1 and J_b = 0.25). This is not the common assumption when thinking about hierarchical processing in the brain. The manuscript argues that error patterns remain similar as long as the product of J_f and J_b is constant, so it is unclear why the authors preferred this network example as opposed to one with J_b = 0.1 and J_f = 0.25.
-
Reviewer #3 (Public Review):
Summary:
The present study proposes a neural circuit model consisting of coupled sensory and memory networks to explain the circuit mechanism of the cardinal effect in orientation perception which is characterized by the bias towards the oblique orientation and the largest variance at the oblique orientation.
Strengths:
The authors have done numerical simulations and preliminary analysis of the neural circuit model to show the model successfully reproduces the cardinal effect. And the paper is well-written overall. As far as I know, most of the studies on the cardinal effect are at the level of statistical models, and the current study provides one possibility of how neural circuit models reproduce such an effect.
Weaknesses:
There are no major weaknesses and flaws in the present study, although I suggest the author conduct further analysis to deepen our understanding of the circuit mechanism of the cardinal effects.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
This paper introduces a novel approach for improving personalized cancer immunotherapy by integrating TCR profiling with traditional pHLA binding predictions, addressing the need for more precise neoantigen CRC patients. By analyzing TCR repertoires from tumor-infiltrating lymphocytes and applying machine learning algorithms, the authors developed a predictive model that outperforms conventional methods in specificity and sensitivity. The validation of the model through ELISpot assays confirmed its potential in identifying more effective neoantigens, highlighting the significance of combining TCR and pHLA data for advancing personalized immunotherapy strategies.
Strengths:
(1) Comprehensive Patient Data Collection: The study meticulously collected and analyzed clinical data from 27 CRC patients, ensuring a robust foundation for research findings. The detailed documentation of patient demographics, cancer stages, and pathology information enhances the study's credibility and potential applicability to broader patient populations.<br /> (2) The use of machine learning classifiers (RF, LR, XGB) and the combination of pHLA and pHLA-TCR binding predictions significantly enhance the model's accuracy in identifying immunogenic neoantigens, as evidenced by the high AUC values and improved sensitivity, NPV, and PPV.<br /> (3) The use of experimental validation through ELISpot assays adds a practical dimension to the study, confirming the computational predictions with actual immune responses. The calculation of ranking coverage scores and the comparative analysis between the combined model and the conventional NetMHCpan method demonstrate the superior performance of the combined approach in accurately ranking immunogenic neoantigens.<br /> (4) The use of experimental validation through ELISpot assays adds a practical dimension to the study, confirming the computational predictions with actual immune responses.
Weakness:
The authors have made comprehensive revisions to the original version of the article, and this version has now addressed my concerns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
UGGTs are involved in the prevention of premature degradation for misfolded glycoproteins, by utilizing UGGT1-KO cells and a number of different ERAD substrates. They proposed a concept by which the fate of glycoproteins can be determined by a tug-of-war between UGGTs and EDEMs.
Strengths:
The authors provided a wealth of data to indicate that UGGT1 competes with EDEMs, which promotes the glycoprotein degradation.
Weaknesses:
NA
-
Reviewer #2 (Public review):
In this study, Ninagawa et al., sheds light on UGGT's role in ER quality control of glycoproteins. By utilizing UGGT1/UGGT2 DKO , they demonstrate that several model misfolded glycoproteins undergo early degradation. One such substrate is ATF6alpha where its premature degradation hampers the cell's ability to mount an ER stress response.
This study convincingly demonstrates that many unstable misfolded glycoproteins undergo accelerated degradation without UGGTs. Also, this study provides evidence of a "tug of war" model involving UGGTs (pulling glycoproteins to being refolded) and EDEMs (pulling glycoproteins to ERAD).
The study explores the physiological role of UGGT, particularly examining the impact of ATF6α in UGGT knockout cells' stress response. The authors further investigate the physiological consequences of accelerated ATF6α degradation, convincingly demonstrating that cells are sensitive to ER stress in the absence of UGGTs and unable to mount an adequate ER stress response.
These findings offer significant new insights into the ERAD field, highlighting UGGT1 as a crucial component in maintaining ER protein homeostasis. This represents a major advancement in our understanding of the field.
-
Reviewer #3 (Public review):
This valuable manuscript demonstrates the long-held prediction that the glycosyltransferase UGGT slows degradation of endoplasmic reticulum (ER)-associated degradation substrates through a mechanism involving re-glucosylation of asparagine-linked glycans following release from the calnexin/calreticulin lectins. The evidence supporting this conclusion is solid using genetically-deficient cell models and well established biochemical methods to monitor the degradation of trafficking-incompetent ER-associated degradation substrates, although this could be improved by better defining of the importance of UGGT in the secretion of trafficking competent substrates. This work will be of specific interest to those interested in mechanistic aspects of ER protein quality control and protein secretion.
The authors have attempted to address my comments from the previous round of review, although some issues still remain. For example, the authors indicate that it is difficult to assess how UGGT1 influences degradation of secretion competent proteins, but this is not the case. This can be easily followed using metabolic labeling experiments, where you would get both the population of protein secreted and degraded under different conditions. Thus, I still feel that addressing the impact of UGGT1 depletion on the ER quality control for secretion competent protein remains an important point that could be better addressed in this work.
Further, in the previous submission, the authors showed that UGGT2 depletion demonstrates a similar reduction of ATF6 activation to that observed for UGGT1 depletion, although UGGT2 depletion does not reduce ATF6 protein levels like what is observed upon UGGT1 depletion. In the revised manuscript, they largely remove the UGGT2 data and only highlight the UGGT1 depletion data. While they are somewhat careful in their discussion, the implication is that UGGT1 regulates ATF6 activity by controlling its stability. The fact that UGGT2 has a similar effect on activity, but not stability, indicates that these enzymes may have other roles not directly linked to ATF6 stability. It is important to include the UGGT2 data and explicitly highlight this point in the discussion. Its fine to state that figuring out this other function is outside the scope of this work but removing it does not seem appropriate.
As I mentioned in my previous review, I think that this work is interesting and addresses an important gap in experimental evidence supporting a previously asserted dogma in the field. I do think that the authors would be better suited for highlighting the limitations of the study, as discussed above. Ultimately, though, this is an important addition to the literature.
-
-
-
Reviewer #1 (Public review):
Summary:
Wang and colleagues conducted a study to determine the neurotransmitter identity of all neurons in C. elegans hermaphrodites and males. They used CRISPR technology to introduce fluorescent gene expression reporters into the genomic loci of NT pathway genes. This approach is expected to better reflect in vivo gene expression compared to other methods like promoter- or fosmid-based transgenes, or available scRNA datasets. The study presents several noteworthy findings, including sexual dimorphisms, patterns of NT co-transmission, neuronal classes that likely use NTs without direct synthesis, and potential identification of unconventional NTs (e.g. betaine releasing neurons). The data is well-described and critically discussed, including a comparison with alternative methods. Although many of the observations and proposals have been previously discussed by the Hobert lab, the current study is particularly valuable due to its comprehensiveness. This NT atlas is the most complete and comprehensive of any nervous system that I am aware of, making it an extremely important tool for the community.
Strengths:
Very compelling study presenting the most comprehensive neurotransmitter (NT) map of any model so far, using state-of-the art tools and validations. The work is very important not only as a resource but also for our understanding that (NT) function of neurons is best understood taking into consideration the full set of genes implicated in NT metabolism and transport.
Weaknesses:
None, all have been addressed.
-
Reviewer #2 (Public review):
Summary:
Together with the known anatomical connectivity, molecular atlasses paves the way toward functional maps of the nervous system of C. elegans. Along with the analysis of previous scRNA sequencing and reporter strains, new expression patterns are generated for hermaphrodite and males based on CRISPR-knocked-in GFP reporter strains and the use of the color-coded Neuropal strain to accurately identify neurons. Beyond a map of the known neurotransmitters (GABA, Acetylcholine, Glutamate, dopamine, serotonin, tyramine, octopamine), the atlas also identifies neurons likely using betaine and suggests sets of neurons employing new unknown monoaminergic transmission, or using exclusively peptidergic neurotransmission.
Strengths:
The use of CRISPR reporter alleles and of the Neuropal strain to assign neurotransmitter usage to each neuron is much more rigourous than previous analysis and reveal intriguing differences between scRNA seq, fosmid reporter and CRISPR knock-in approaches. The differences between approaches are discussed.
Weaknesses:
All have been addressed.
-
Reviewer #3 (Public review):
Summary:
In this paper, Wang et al. provides the most comprehensive description and comparison of the expression of the different genes required to synthesize, transport and recycle the most common neurotransmitters (Glutamate, Acetylcholine, GABA, Serotonin, Dopamine, Octopamine and Tyramine) used by hermaphrodite and male C. elegans. This paper will be a seminal reference in the field. Building and contrasting observations from previous studies using fosmid, multicopy reporters and single cell sequencing, they now describe CRISPR/Cas-9-engineered reporter strains that, in combination with the multicolor pan-neuronal labeling of all C. elegans neurons (NeuroPAL), allows rigorous elucidation of neurotransmitter expression patterns. These novel reporters also illuminate previously unappreciated aspects of neurotransmitter biology in C. elegans, including sexual dimorphism of expression patterns, co-transmission and the elucidation of cell-specific pathways that might represent new forms of neurotransmission.
Strengths:
The authors set to establish neurotransmitter identities in C. elegans males and hermaphrodites via varying techniques, including integration of previous studies, examination of expression patterns and generation of endogenous CRISPR-labeled alleles. Their study is comprehensive, detailed and rigorous, and achieve the aims. It is an excellent reference for the field, particularly those interested in biosynthetic pathways of neurotransmission and their distribution in vivo, in neuronal and non-neuronal cells.
Weaknesses:
No weaknesses noted. The authors do a great job linking their characterizations with other studies and techniques, leading credence to their findings. As the authors note, there are sexually dimorphic differences across animals, and varying expression patterns of enzymes. While it is unlikely there will be huge differences in the reported patterns across individual animals, it is possible that these expression patterns could vary developmentally, or based on physiological or environmental conditions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
The authors investigate the role of the melanocortin system in puberty onset. They conclude that proopiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus provide important but differing input to kisspeptin neurons in the arcuate or rostral hypothalamus.
Strengths:
- innovative and novel
- technically sound
- well-designed
- thorough
Weaknesses:
There were no major weaknesses identified.
-
Reviewer #2 (Public Review):
Summary:
This interesting manuscript describes a study investigating the role of MC4R (melanocortin 4 receptor) signalling on kisspeptin (Kiss1) neurons. The initial question is a good one. Infertility in human MC4R mutations has typically been ascribed to the consequent obesity and impaired metabolic regulation. Whether MC4R directly regulates the hypothalamic-pituitary-gonadal (HPG) axis has not been thoroughly examined. Here, the researchers assembled an elegant combination of loss and gain of function in vivo experiments, specifically targeting MC4R expression in Kiss1 neurons. This is an excellent experimental design and one that should provide compelling evidence for whether there is a direct role for melanocortin signalling in arcuate Kiss1 neurons to support normal reproductive function. There were definite effects on reproductive function (irregular estrous cycle, reduced magnitude of LH surge induced by exogenous estradiol). Still, the magnitude of these responses and the overall effect on fertility were relatively minor, as mice lacking MC4R in Kiss1 neurons remained fertile despite these irregularities. The second part of the manuscript describes a series of electrophysiological studies evaluating the pharmacological effects of melanocortin signalling in Kiss1 neurons in ex-vivo brain slides. These studies characterised interesting differential actions of melanocortins in two different Kiss1 neuronal populations. The study provides some novel insights into how direct actions of melanocortin signalling via the MC4R in Kiss1 neurons contribute to the metabolic regulation of the reproductive system. Importantly, however, it is clear that other mechanisms are also at play.
Strengths:
The loss and gain of function experiments provide a conceptually simple but hugely informative experimental design, which is the key strength of the current paper - especially the knock-in study that showed improved reproductive function even in the presence of ongoing obesity. This is a very convincing result that documents that reproductive deficits in MC4R knockout animals (and humans with deleterious MC4R gene variants) can be ascribed to impaired signalling in the hypothalamic Kiss1 neurons and not necessarily simply caused as a consequence of obesity. Validation experiments for these studies are needed, given their great prominence in the manuscript, because these are critical to interpretation.
Weaknesses:
(1) Given the fact that mice lacking MC4R in Kiss1 neurons remained fertile despite some reproductive irregularities, the overall tone and some of the conclusions of the manuscript (e.g., from the abstract: "... Mc4r expressed in Kiss1 neurons is required for fertility in females") were overstated. Perhaps this can be described as a contributing pathway, but other mechanisms must also be involved in conveying metabolic information to the reproductive system.
(2) The mechanistic studies evaluating melanocortin signalling in Kiss1 neurons were all completed in ovariectomised animals (with and without exogenous hormones) that do not experience cyclical hormone changes. Such cyclical changes are fundamental to how these neurons function in vivo and may dynamically alter the way they respond to neuropeptides. Therefore, eliminating this variable makes interpretation difficult.
(3) Use of the POMC-Cre to target ontogenetic inputs to Kiss1 neurons might have targeted a wider population of cells than intended.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
This paper applies methods for segmentation, annotation, and visualization of acoustic analysis to zebra finch song. The paper shows that these methods can be used to predict the stage of song development and to quantify acoustic similarity. The methods are solid and are likely to provide a useful tool for scientists aiming to label large datasets of zebra finch vocalizations. The paper has two main parts: 1) establishing a pipeline/ package for analyzing zebra finch birdsong and 2) a method for measuring song imitation.
Strengths:
It is useful to see existing methods for syllable segmentation compared to new datasets.
It is useful, but not surprising, that these methods can be used to predict developmental stage, which is strongly associated with syllable temporal structure.
It is useful to confirm that these methods can identify abnormalities in deafened and isolated songs.
Weaknesses:
For the first part, the implementation seems to be a wrapper on existing techniques. For instance, the first section talks about syllable segmentation; they made a comparison between whisperseg (Gu et al, 2024), tweetynet (Cohen et al, 2022), and amplitude thresholding. They found that whisperseg performed the best, and they included it in the pipeline. They then used whisperseg to analyze syllable duration distributions and rhythm of birds of different ages and confirmed past findings on this developmental process (e.g. Aronov et al, 2011). Next, based on the segmentation, they assign labels by performing UMAP and HDBScan on the spectrogram (nothing new; that's what people have been doing). Then, based on the labels, they claimed they developed a 'new' visualization - syntax raster ( line 180 ). That was done by Sainburg et. al. 2020 in Figure 12E and also in Cohen et al, 2020 - so the claim to have developed 'a new song syntax visualization' is confusing. The rest of the paper is about analyzing the finch data based on AVN features (which are essentially acoustic features already in the classic literature).
The second part may be something new, but there are opportunities to improve the benchmarking. It is about the pupil-tutor imitation analysis. They introduce a convolutional neural network that takes triplets as an input (each tripled is essentially 3 images stacked together such that you have (anchor, positive, negative), Anchor is a reference spectrogram from, say finch A; positive means a different spectrogram with the same label as anchor from finch A, and negative means a spectrogram not related to A or different syllable label from A. The network is then trained to produce a low-dimensional embedding by ensuring the embedding distance between anchor and positive is less than anchor and negative by a certain margin. Based on the embedding, they then made use of earth mover distance to quantify the similarity in the syllable distribution among finches. They then compared their approach performance with that of sound analysis pro (SAP) and a variant of SAP. A more natural comparison, which they didn't include, is with the VAE approach by Goffinet et al. In this paper (https://doi.org/10.7554/eLife.67855, Fig 7), they also attempted to perform an analysis on the tutor pupil song.
-
Reviewer #2 (Public Review):
Summary:
In this work, the authors present a new Python software package, Avian Vocalization Network (AVN) aimed at facilitating the analysis of birdsong, especially the song of the zebra finch, the most common songbird model in neuroscience. The package handles some of the most common (and some more advanced) song analyses, including segmentation, syllable classification, featurization of song, calculation of tutor-pupil similarity, and age prediction, with a view toward making the entire process friendlier to experimentalists working in the field.
For many years, Sound Analysis Pro has served as a standard in the songbird field, the first package to extensively automate songbird analysis and facilitate the computation of acoustic features that have helped define the field. More recently, the increasing popularity of Python as a language, along with the emergence of new machine learning methods, has resulted in a number of new software tools, including the vocalpy ecosystem for audio processing, TweetyNet (for segmentation), t-SNE and UMAP (for visualization), and autoencoder-based approaches for embedding.
Strengths:
The AVN package overlaps several of these earlier efforts, albeit with a focus on more traditional featurization that many experimentalists may find more interpretable than deep learning-based approaches. Among the strengths of the paper are its clarity in explaining the several analyses it facilitates, along with high-quality experiments across multiple public datasets collected from different research groups. As a software package, it is open source, installable via the pip Python package manager, and features high-quality documentation, as well as tutorials. For experimentalists who wish to replicate any of the analyses from the paper, the package is likely to be a useful time saver.
Weaknesses:
I think the potential limitations of the work are predominantly on the software end, with one or two quibbles about the methods.
First, the software: it's important to note that the package is trying to do many things, of which it is likely to do several well and few comprehensively. Rather than a package that presents a number of new analyses or a new analysis framework, it is more a codification of recipes, some of which are reimplementations of existing work (SAP features), some of which are essentially wrappers around other work (interfacing with WhisperSeg segmentations), and some of which are new (similarity scoring). All of this has value, but in my estimation, it has less value as part of a standalone package and potentially much more as part of an ecosystem like vocalpy that is undergoing continuous development and has long-term support. While the code is well-documented, including web-based documentation for both the core package and the GUI, the latter is available only on Windows, which might limit the scope of adoption.
That is to say, whether AVN is adopted by the field in the medium term will have much more to do with the quality of its maintenance and responsiveness to users than any particular feature, but I believe that many of the analysis recipes that the authors have carefully worked out may find their way into other code and workflows.
Second, two notes about new analysis approaches:
(1) The authors propose a new means of measuring tutor-pupil similarity based on first learning a latent space of syllables via a self-supervised learning (SSL) scheme and then using the earth mover's distance (EMD) to calculate transport costs between the distributions of tutors' and pupils' syllables. While to my knowledge this exact method has not previously been proposed in birdsong, I suspect it is unlikely to differ substantially from the approach of autoencoding followed by MMD used in the Goffinet et al. paper. That is, SSL, like the autoencoder, is a latent space learning approach, and EMD, like MMD, is an integral probability metric that measures discrepancies between two distributions. (Indeed, the two are very closely related: https://stats.stackexchange.com/questions/400180/earth-movers-distance-and-maximum-mean-discrepency.) Without further experiments, it is hard to tell whether these two approaches differ meaningfully. Likewise, while the authors have trained on a large corpus of syllables to define their latent space in a way that generalizes to new birds, it is unclear why such an approach would not work with other latent space learning methods.
(2) The authors propose a new method for maturity scoring by training a model (a generalized additive model) to predict the age of the bird based on a selected subset of acoustic features. This is distinct from the "predicted age" approach of Brudner, Pearson, and Mooney, which predicts based on a latent representation rather than specific features, and the GAM nicely segregates the contribution of each. As such, this approach may be preferred by many users who appreciate its interpretability.
In summary, my view is that this is a nice paper detailing a well-executed piece of software whose future impact will be determined by the degree of support and maintenance it receives from others over the near and medium term.
-
Reviewer #3 (Public Review):
Summary:
The authors invent song and syllable discrimination tasks they use to train deep networks. These networks they then use as a basis for routine song analysis and song evaluation tasks. For the analysis, they consider both data from their own colony and from another colony the network has not seen during training. They validate the analysis scores of the network against expert human annotators, achieving a correlation of 80-90%.
Strengths:
(1) Robust Validation and Generalizability: The authors demonstrate a good performance of the AVN across various datasets, including individuals exhibiting deviant behavior. This extensive validation underscores the system's usefulness and broad applicability to zebra finch song analysis, establishing it as a potentially valuable tool for researchers in the field.
(2) Comprehensive and Standardized Feature Analysis: AVN integrates a comprehensive set of interpretable features commonly used in the study of bird songs. By standardizing the feature extraction method, the AVN facilitates comparative research, allowing for consistent interpretation and comparison of vocal behavior across studies.
(3) Automation and Ease of Use. By being fully automated, the method is straightforward to apply and should introduce barely an adoption threshold to other labs.
(4) Human experts were recruited to perform extensive annotations (of vocal segments and of song similarity scores). These annotations released as public datasets are potentially very valuable.
Weaknesses:
(1) Poorly motivated tasks. The approach is poorly motivated and many assumptions come across as arbitrary. For example, the authors implicitly assume that the task of birdsong comparison is best achieved by a system that optimally discriminates between typical, deaf, and isolated songs. Similarly, the authors assume that song development is best tracked using a system that optimally estimates the age of a bird given its song. My issue is that these are fake tasks since clearly, researchers will know whether a bird is an isolated or a deaf bird, and they will also know the age of a bird, so no machine learning is needed to solve these tasks. Yet, the authors imagine that solving these placeholder tasks will somehow help with measuring important aspects of vocal behavior. Along similar lines, authors assume that a good measure of similarity is one that optimally performs repeated syllable detection (i.e. to discriminate same syllable pairs from different pairs). The authors need to explain why they think these placeholder tasks are good and why no better task can be defined that more closely captures what researchers want to measure. Note: the standard tasks for self-supervised learning are next word or masked word prediction, why are these not used here?
(2) The machine learning methodology lacks rigor. The aims of the machine learning pipeline are extremely vague and keep changing like a moving target. Mainly, the deep networks are trained on some tasks but then authors evaluate their performance on different, disconnected tasks. For example, they train both the birdsong comparison method (L263+) and the song similarity method (L318+) on classification tasks. However, they evaluate the former method (LDA) on classification accuracy, but the latter (8-dim embeddings) using a contrast index. In machine learning, usually, a useful task is first defined, then the system is trained on it and then tested on a held-out dataset. If the sensitivity index is important, why does it not serve as a cost function for training? Also, usually, in solid machine learning work, diverse methods are compared against each other to identify their relative strengths. The paper contains almost none of this, e.g. authors examined only one clustering method (HDBSCAN).
(3) Performance issues. The authors want to 'simplify large-scale behavioral analysis' but it seems they want to do that at a high cost. (Gu et al 2023) achieved syllable scores above 0.99 for adults, which is much larger than the average score of 0.88 achieved here (L121). Similarly, the syllable scores in (Cohen et al 2022) are above 94% (their error rates are below 6%, albeit in Bengalese finches, not zebra finches), which is also better than here. Why is the performance of AVN so low? The low scores of AVN argue in favor of some human labeling and training on each bird.
(4) Texas bias. It is true that comparability across datasets is enhanced when everyone uses the same code. However, the authors' proposal essentially is to replace the bias between labs with a bias towards birds in Texas. The comparison with Rockefeller birds is nice, but it amounts to merely N=1. If birds in Japanese or European labs have evolved different song repertoires, the AVN might not capture the associated song features in these labs well.
(5) The paper lacks an analysis of the balance between labor requirement, generalizability, and optimal performance. For tasks such as segmentation and labeling, fine-tuning for each new dataset could potentially enhance the model's accuracy and performance without compromising comparability. E.g. How many hours does it take to annotate hundred song motifs? How much would the performance of AVN increase if the network were to be retrained on these? The paper should be written in more neutral terms, letting researchers reach their own conclusions about how much manual labor they want to put into their data.
(6) Full automation may not be everyone's wish. For example, given the highly stereotyped zebra finch songs, it is conceivable that some syllables are consistently mis-segmented or misclassified. Researchers may want to be able to correct such errors, which essentially amounts to fine-tuning AVN. Conceivably, researchers may want to retrain a network like the AVN on their own birds, to obtain a more fine-grained discriminative method.
(7) The analysis is restricted to song syllables and fails to include calls. No rationale is given for the omission of calls. Also, it is not clear how the analysis deals with repeated syllables in a motif, whether they are treated as two-syllable types or one.
(8) It seems not all human annotations have been released and the instruction sets given to experts (how to segment syllables and score songs) are not disclosed. It may well be that the differences in performance between (Gu et al 2023) and (Cohen et al 2022) are due to differences in segmentation tasks, which is why these tasks given to experts need to be clearly spelled out. Also, the downloadable files contain merely labels but no identifier of the expert. The data should be released in such a way that lets other labs adopt their labeling method and cross-check their own labeling accuracy.
(9) The failure modes are not described. What segmentation errors did they encounter, and what syllable classification errors? It is important to describe the errors to be expected when using the method.
(10) Usage of Different Dimensionality Reduction Methods: The pipeline uses two different dimensionality reduction techniques for labeling and similarity comparison - both based on the understanding of the distribution of data in lower-dimensional spaces. However, the reasons for choosing different methods for different tasks are not articulated, nor is there a comparison of their efficacy.
(11) Reproducibility: are the measurements reproducible? Systems like UMAP always find a new embedding given some fixed input, so the output tends to fluctuate.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Zhou and colleagues developed a computational model of replay that heavily builds on cognitive models of memory in context (e.g., the context-maintenance and retrieval model), which have been successfully used to explain memory phenomena in the past. Their model produces results that mirror previous empirical findings in rodents and offers a new computational framework for thinking about replay.
Strengths:
The model is compelling and seems to explain a number of findings from the rodent literature. It is commendable that the authors implement commonly used algorithms from wakefulness to model sleep/rest, thereby linking wake and sleep phenomena in a parsimonious way. Additionally, the manuscript's comprehensive perspective on replay, bridging humans and non-human animals, enhanced its theoretical contribution.
Weaknesses:
This reviewer is not a computational neuroscientist by training, so some comments may stem from misunderstandings. I hope the authors would see those instances as opportunities to clarify their findings for broader audiences.
(1) The model predicts that temporally close items will be co-reactivated, yet evidence from humans suggests that temporal context doesn't guide sleep benefits (instead, semantic connections seem to be of more importance; Liu and Ranganath 2021, Schechtman et al 2023). Could these findings be reconciled with the model or is this a limitation of the current framework?
(2) During replay, the model is set so that the next reactivated item is sampled without replacement (i.e., the model cannot get "stuck" on a single item). I'm not sure what the biological backing behind this is and why the brain can't reactivate the same item consistently. Furthermore, I'm afraid that such a rule may artificially generate sequential reactivation of items regardless of wake training. Could the authors explain this better or show that this isn't the case?
(3) If I understand correctly, there are two ways in which novelty (i.e., less exposure) is accounted for in the model. The first and more talked about is the suppression mechanism (lines 639-646). The second is a change in learning rates (lines 593-595). It's unclear to me why both procedures are needed, how they differ, and whether these are two different mechanisms that the model implements. Also, since the authors controlled the extent to which each item was experienced during wakefulness, it's not entirely clear to me which of the simulations manipulated novelty on an individual item level, as described in lines 593-595 (if any).
As to the first mechanism - experience-based suppression - I find it challenging to think of a biological mechanism that would achieve this and is selectively activated immediately before sleep (somehow anticipating its onset). In fact, the prominent synaptic homeostasis hypothesis suggests that such suppression, at least on a synaptic level, is exactly what sleep itself does (i.e., prune or weaken synapses that were enhanced due to learning during the day). This begs the question of whether certain sleep stages (or ultradian cycles) may be involved in pruning, whereas others leverage its results for reactivation (e.g., a sequential hypothesis; Rasch & Born, 2013). That could be a compelling synthesis of this literature. Regardless of whether the authors agree, I believe that this point is a major caveat to the current model. It is addressed in the discussion, but perhaps it would be beneficial to explicitly state to what extent the results rely on the assumption of a pre-sleep suppression mechanism.
(4) As the manuscript mentions, the only difference between sleep and wake in the model is the initial conditions (a0). This is an obvious simplification, especially given the last author's recent models discussing the very different roles of REM vs NREM. Could the authors suggest how different sleep stages may relate to the model or how it could be developed to interact with other successful models such as the ones the last author has developed (e.g., C-HORSE)? Finally, I wonder how the model would explain findings (including the authors') showing a preference for reactivation of weaker memories. The literature seems to suggest that it isn't just a matter of novelty or exposure, but encoding strength. Can the model explain this? Or would it require additional assumptions or some mechanism for selective endogenous reactivation during sleep and rest?
(5) Lines 186-200 - Perhaps I'm misunderstanding, but wouldn't it be trivial that an external cue at the end-item of Figure 7a would result in backward replay, simply because there is no potential for forward replay for sequences starting at the last item (there simply aren't any subsequent items)? The opposite is true, of course, for the first-item replay, which can't go backward. More generally, my understanding of the literature on forward vs backward replay is that neither is linked to the rodent's location. Both commonly happen at a resting station that is further away from the track. It seems as though the model's result may not hold if replay occurs away from the track (i.e. if a0 would be equal for both pre- and post-run).
(6) The manuscript describes a study by Bendor & Wilson (2012) and tightly mimics their results. However, notably, that study did not find triggered replay immediately following sound presentation, but rather a general bias toward reactivation of the cued sequence over longer stretches of time. In other words, it seems that the model's results don't fully mirror the empirical results. One idea that came to mind is that perhaps it is the R/L context - not the first R/L item - that is cued in this study. This is in line with other TMR studies showing what may be seen as contextual reactivation. If the authors think that such a simulation may better mirror the empirical results, I encourage them to try. If not, however, this limitation should be discussed.
(7) There is some discussion about replay's benefit to memory. One point of interest could be whether this benefit changes between wake and sleep. Relatedly, it would be interesting to see whether the proportion of forward replay, backward replay, or both correlated with memory benefits. I encourage the authors to extend the section on the function of replay and explore these questions.
(8) Replay has been mostly studied in rodents, with few exceptions, whereas CMR and similar models have mostly been used in humans. Although replay is considered a good model of episodic memory, it is still limited due to limited findings of sequential replay in humans and its reliance on very structured and inherently autocorrelated items (i.e., place fields). I'm wondering if the authors could speak to the implications of those limitations on the generalizability of their model. Relatedly, I wonder if the model could or does lead to generalization to some extent in a way that would align with the complementary learning systems framework.
-
Reviewer #2 (Public Review):
This manuscript proposes a model of replay that focuses on the relation between an item and its context, without considering the value of the item. The model simulates awake learning, awake replay, and sleep replay, and demonstrates parallels between memory phenomenon driven by encoding strength, replay of sequence learning, and activation of nearest neighbor to infer causality. There is some discussion of the importance of suppression/inhibition to reduce activation of only dominant memories to be replayed, potentially boosting memories that are weakly encoded. Very nice replications of several key replay findings including the effect of reward and remote replay, demonstrating the equally salient cue of context for offline memory consolidation.
I have no suggestions for the main body of the study, including methods and simulations, as the work is comprehensive, transparent, and well-described. However, I would like to understand how the CMRreplay model fits with the current understanding of the importance of excitation vs inhibition, remembering vs forgetting, activation vs deactivation, strengthening vs elimination of synapses, and even NREM vs REM as Schapiro has modeled. There seems to be a strong association with the efforts of the model to instantiate a memory as well as how that reinstantiation changes across time. But that is not all this is to consolidation. The specific roles of different brain states and how they might change replay is also an important consideration.
Do the authors suggest that these replay systems are more universal to offline processes beyond episodic memory? What about procedural memories and working memory?
Though this is not a biophysical model per se, can the authors speak to the neuromodulatory milieus that give rise to the different types of replay?
-
Reviewer #3 (Public Review):
In this manuscript, Zhou et al. present a computational model of memory replay. Their model (CMR-replay) draws from temporal context models of human memory (e.g., TCM, CMR) and claims replay may be another instance of a context-guided memory process. During awake learning, CMR replay (like its predecessors) encodes items alongside a drifting mental context that maintains a recency-weighted history of recently encoded contexts/items. In this way, the presently encoded item becomes associated with other recently learned items via their shared context representation - giving rise to typical effects in recall such as primacy, recency, and contiguity. Unlike its predecessors, CMR-replay has built-in replay periods. These replay periods are designed to approximate sleep or wakeful quiescence, in which an item is spontaneously reactivated, causing a subsequent cascade of item-context reactivations that further update the model's item-context associations.
Using this model of replay, Zhou et al. were able to reproduce a variety of empirical findings in the replay literature: e.g., greater forward replay at the beginning of a track and more backward replay at the end; more replay for rewarded events; the occurrence of remote replay; reduced replay for repeated items, etc. Furthermore, the model diverges considerably (in implementation and predictions) from other prominent models of replay that, instead, emphasize replay as a way of predicting value from a reinforcement learning framing (i.e., EVB, expected value backup).
Overall, I found the manuscript clear and easy to follow, despite not being a computational modeller myself. (Which is pretty commendable, I'd say). The model also was effective at capturing several important empirical results from the replay literature while relying on a concise set of mechanisms - which will have implications for subsequent theory-building in the field.
With respect to weaknesses, additional details for some of the methods and results would help the readers better evaluate the data presented here (e.g., explicitly defining how the various 'proportion of replay' DVs were calculated).
For example, for many of the simulations, the y-axis scale differs from the empirical data despite using comparable units, like the proportion of replay events (e.g., Figures 1B and C). Presumably, this was done to emphasize the similarity between the empirical and model data. But, as a reader, I often found myself doing the mental manipulation myself anyway to better evaluate how the model compared to the empirical data. Please consider using comparable y-axis ranges across empirical and simulated data wherever possible.
In a similar vein to the above point, while the DVs in the simulations/empirical data made intuitive sense, I wasn't always sure precisely how they were calculated. Consider the "proportion of replay" in Figure 1A. In the Methods (perhaps under Task Simulations), it should specify exactly how this proportion was calculated (e.g., proportions of all replay events, both forwards and backwards, combining across all simulations from Pre- and Post-run rest periods). In many of the examples, the proportions seem to possibly sum to 1 (e.g., Figure 1A), but in other cases, this doesn't seem to be true (e.g., Figure 3A). More clarity here is critical to help readers evaluate these data. Furthermore, sometimes the labels themselves are not the most informative. For example, in Figure 1A, the y-axis is "Proportion of replay" and in 1C it is the "Proportion of events". I presumed those were the same thing - the proportion of replay events - but it would be best if the axis labels were consistent across figures in this manuscript when they reflect the same DV.
-
Reviewer #4 (Public Review):
Summary:
With their 'CMR-replay' model, Zhou et al. demonstrate that the use of spontaneous neural cascades in a context-maintenance and retrieval (CMR) model significantly expands the range of captured memory phenomena.
Strengths:
The proposed model compellingly outperforms its CMR predecessor and, thus, makes important strides towards understanding the empirical memory literature, as well as highlighting a cognitive function of replay.
Weaknesses:
Competing accounts of replay are acknowledged but there are no formal comparisons and only CMR-replay predictions are visualized. Indeed, other than the CMR model, only one alternative account is given serious consideration: A variant of the 'Dyna-replay' architecture, originally developed in the machine learning literature (Sutton, 1990; Moore & Atkeson, 1993) and modified by Mattar et al (2018) such that previously experienced event-sequences get replayed based on their relevance to future gain. Mattar et al acknowledged that a realistic Dyna-replay mechanism would require a learned representation of transitions between perceptual and motor events, i.e., a 'cognitive map'. While Zhou et al. note that the CMR-replay model might provide such a complementary mechanism, they emphasize that their account captures replay characteristics that Dyna-replay does not (though it is unclear to what extent the reverse is also true).
Another important consideration, however, is how CMR replay compares to alternative mechanistic accounts of cognitive maps. For example, Recurrent Neural Networks are adept at detecting spatial and temporal dependencies in sequential input; these networks are being increasingly used to capture psychological and neuroscientific data (e.g., Zhang et al, 2020; Spoerer et al, 2020), including hippocampal replay specifically (Haga & Fukai, 2018). Another relevant framework is provided by Associative Learning Theory, in which bidirectional associations between static and transient stimulus elements are commonly used to explain contextual and cue-based phenomena, including associative retrieval of absent events (McLaren et al, 1989; Harris, 2006; Kokkola et al, 2019). Without proper integration with these modeling approaches, it is difficult to gauge the innovation and significance of CMR-replay, particularly since the model is applied post hoc to the relatively narrow domain of rodent maze navigation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
In this manuscript, the authors address an important issue in Babesia research by repurposing Cipargamin (CIP) as a potential therapeutic against selective Babesia spp. In this study, CIP demonstrated potent in vitro inhibition of B. bovis and B. gibsoni with IC50 values of 20.2 {plus minus} 1.4 nM and 69.4 {plus minus} 2.2 nM, respectively, and the in vivo efficacy against Babesia spp using mouse model. The authors identified two key resistance mutations in the BgATP4 gene (BgATP4L921I and BgATP4L921V) and explored their implications through phenotypic characterization of the parasite using cell biological experiments, complemented by in silico analysis. Overall, the findings are promising and could significantly advance Babesia treatment strategies.
Strengths:
In this manuscript, the authors effectively repurpose Cipargamin (CIP) as a potential treatment for Babesia spp. They provide compelling in vitro and in vivo data showing strong efficacy. Key resistance mutations in the BgATP4 gene are identified and analyzed through both phenotypic and in silico methods, offering valuable insights for advancing treatment strategies.
Weaknesses:
The manuscript explores important aspects of drug repurposing and rational drug design using Cipargamin (CIP) against Babesia. However, several weaknesses should be addressed. The study lacks novelty as similar research on Cipargamin has been conducted, and the experimental design could be improved. The rationale for choosing CIP over other ATP4-targeting compounds is not well-explained. Validation of mutations relies heavily on in silico predictions without sufficient experimental support. The Ion Transport Assay has limitations and would benefit from additional assays like Radiolabeled Ion Flux and Electrophysiological Assays. Also, the study lacks appropriate control drugs and detailed functional characterization. Further clarity on mutation percentages, additional safety testing, and exploration of cross-resistance would strengthen the findings.
(1) It is commendable to explore drug repurposing, drug deprescribing, drug repositioning, and rational drug design, especially using established ATP4 inhibitors that are well-studied in Plasmodium and other protozoan parasites. While the study provides some interesting findings, it appears to lack novelty, as similar investigations of Cipargamin on other protozoan parasites have been conducted. The study does not introduce new concepts, and the experimental design could benefit from refinement to strengthen the results. Additionally, the rationale for choosing CIP over other MMV compounds targeting ATP4 is not clearly articulated. Clarifying the specific advantages CIP may offer against Babesia would be beneficial. Finally, the validation of the identified mutations might be strengthened by additional experimental support, as reliance on in silico predictions alone may not fully address the functional impact, particularly given the potential ambiguity of the mutations (BgATP4 L to V and I).
(2) Conducting an Ion Transport Assay is useful but has limitations. Non-specific binding or transport by other cellular components can lead to inaccurate results, causing false positives or negatives and making data interpretation difficult. Indirect measurements, like changes in fluorescence or electrical potential, can introduce artifacts. To improve accuracy, consider additional assays such as<br /> a. Radiolabeled Ion Flux Assay: tracks the movement of Na^+ using radiolabeled ions, providing direct evidence of ion transport.<br /> b. Electrophysiological Assay: measures ionic currents in real-time with patch-clamp techniques, offering detailed information about ATP4 activity.
(3) In-silico predictions can provide plausible outcomes, but it is essential to evaluate how the recombinant purified protein and ligand interact and function at physiological levels. This aspect is currently missing and should be included. For example, incorporating immunoprecipitation and ATPase activity assays with both wild-type and mutant proteins, as well as detailed kinetic studies with Cipargamin, would be recommended to validate the findings of the study.
(4) The study lacks specific suitable control drugs tested both in vitro and in vivo. For accurate drug assessment, especially when evaluating drugs based on a specific phenotype, such as enlarged parasites, it is important to use ATP4 gene-specific inhibitors. Including similar classes of drugs, such as Aminopyrazoles, Dihydroisoquinolines, Pyrazoleamides, Pantothenamides, Imidazolopiperazines (e.g., GNF179), and Bicyclic Azetidine Compounds, would provide more comprehensive validation.
(5) Functional characterization of CIP through microscopic examination and quantification for assessing parasite size enlargement is not entirely reliable. A Flow Cytometry-Based Assay is recommended instead 9 along with suitable control antiparasitic drugs). To effectively monitor Cipargamin's action, conducting time-course experiments with 6-hour intervals is advisable rather than relying solely on endpoint measurements. Additionally, for accurate assessment of parasite morphology, obtaining representative qualitative images using Scanning Electron Microscopy (SEM) or Transmission Electron Microscopy (TEM) for treated versus untreated samples is recommended for precise measurements.
(6) A notable contradiction observed is that mutant cells displayed reduced efficacy and affinity but more pronounced phenotypic effects. The BgATP4L921I mutation shows a 2x lower susceptibility (IC50 of 887.9 {plus minus} 61.97 nM) and a predicted binding affinity of -6.26 kcal/mol with CIP. However, the phenotype exhibits significantly lower Na+ concentration in BgATP4L921I (P = 0.0087) (Figure 3E).
(7) The manuscript does not clarify the percentage of mutations, and the number of sequence iterations performed on the ATP4 gene. It is also unclear whether clonal selection was carried out on the resistant population. If mutations are not present in 100% of the resistant parasites, please indicate the ratio of wild-type to mutant parasites and represent this information in the figure, along with the chromatograms.
(8) While the compound's toxicity data is well-established, it is advisable to include additional testing in epithelial cells and liver-specific cell lines (e.g., HeLa, HCT, HepG2) if feasible for the authors. This would provide a more comprehensive assessment of the compound's safety profile.
(9) In the in vivo efficacy study, recrudescent parasites emerged after 8 days of treatment. Did these parasites harbor the same mutation in the ATP4 gene? The authors did not investigate this aspect, which is crucial for understanding the basis of recrudescence.
(10) The authors should explain their choice of Balb/c mice for evaluating CIP efficacy, as these mice clear the infection and may not fully represent the compound's effectiveness. Investigating CIP efficacy in SCID mice would be valuable, as they provide a more reliable model and eliminate the influence of the immune system. The rationale for not using SCID mice should be clarified.
(11) Do the in vitro-resistant parasites show any potential for cross-resistance with commonly used antiparasitic drugs? Have the authors considered this possibility, and what are their expectations regarding cross-resistance?
-
Reviewer #2 (Public review):
Summary:
In this manuscript, the authors have tried to repurpose cipargamin (CIP), a known drug against plasmodium and toxoplasma against babesia. They proved the efficacy of CIP on babesia in the nanomolar range. In silico analyses revealed the drug resistance mechanism through a single amino acid mutation at amino acid position 921 on the ATP4 gene of babesia. Overall, the conclusions drawn by the authors are well justified by their data. I believe this study opens up a novel therapeutic strategy against babesiosis.
Strengths:
The authors have carried out a comprehensive study. All the experiments performed were carried out methodically and logically.
Weaknesses:
The introduction section needs to be more informative. The authors are investigating the binding of CIP to the ATP4 gene, but they did not give any information about the gene or how the ATP4 inhibitors work in general.
The resolution of the figures is not good and the font size is too small to read properly.
I also have several minor concerns which have been addressed in the "Recommendations for the authors" section.
-
Reviewer #3 (Public review):
Summary:
The authors aim to establish that cipargamin can be used for the treatment of infection caused by Babesia organisms.
Strengths:
The study provides strong evidence that cipargamin is effective against various Babesia species. In vitro, growth assays were used to establish that cipargamin is effective against Babesia bovis and Babesia gibsoni. Infection of mice with Babesia microti demonstrated that cipargamin is as effective as the combination of atovaquone plus azithromycin. Cipargamin protected mice from lethal infection with Babesia rodhaini. Mutations that confer resistance to cipargamin were identified in the gene encoding ATP4, a P-type Na ATPase that was found in other apicomplexan parasites, thereby validating ATP4 as the target of cipargamin.
Weaknesses:
Cipargamin was tested in vivo at a single dose administered daily for 7 days. Despite the prospect of using cipargamin for the treatment of human babesiosis, there was no attempt to identify the lowest dose of cipagarmin that protects mice from Babesia microti infection. Exposure to cipargamin can induce resistance, indicating that cipargamin should not be used alone but in combination with other drugs. There was no attempt at testing cipargamin in combination with other drugs, particularly atovaquone, in the mouse model of Babesia microti infection. Given the difficulty in treating immunocompromised patients infected with Babesia microti, it would have been informative to test cipargamin in a mouse model of severe immunosuppression (SCID or rag-deficient mice).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The authors used fluorescence microscopy, image analysis, and mathematical modeling to study the effects of membrane affinity and diffusion rates of MinD monomer and dimer states on MinD gradient formation in B. subtilis. To test these effects, the authors experimentally examined MinD mutants that lock the protein in specific states, including Apo monomer (K16A), ATP-bound monomer (G12V), and ATP-bound dimer (D40A, hydrolysis defective), and compared to wild-type MinD. Overall, the experimental results support the conclusion that reversible membrane binding of MinD is critical for the formation of the MinD gradient, but that the binding affinities between monomers and dimers are similar.
The modeling part is a new attempt to use the Monte Carlo method to test the conditions for the formation of the MinD gradient in B. subtilis. The modeling results provide good support for the observations and find that the MinD gradient is sensitive to different diffusion rates between monomers and dimers. This simulation is based on several assumptions and predictions, which raises new questions that need to be addressed experimentally in the future. However, the current story is sufficient without testing these assumptions or predictions.
-
Reviewer #2 (Public review):
Summary:
Bohorquez et al. investigate the molecular determinants of intracellular gradient formation in the B. subtilis Min system. To this end, they generate B. subtilis strains that express MinD mutants that are locked in the monomeric or dimeric states, and also MinD mutants with amphipathic helices of varying membrane affinity. They then assess the mutants' ability to bind to the membrane and form gradients using fluorescence microscopy in different genetic backgrounds. They find that, unlike in the E. coli Min system, the monomeric form of MinD is already capable of membrane binding. They also show that MinJ is not required for MinD membrane binding and only interacts with the dimeric form of MinD. Using kinetic Monte Carlo simulations, the authors then test different models for gradient formation, and find that a MinD gradient along the cell axis is only formed when the polarly localized protein MinJ stimulates dimerization of MinD, and when the diffusion rate of monomeric and dimeric MinD differs. They also show that differences in the membrane affinity of MinD monomers and dimers are not required for gradient formation.
Strengths:
The paper offers a comprehensive collection of the subcellular localization and gradient formation of various MinD mutants in different genetic backgrounds. In particular, the comparison of the localization of these mutants in a delta MinC and MinJ background offers valuable additional insights. For example, they find that only dimeric MinD can interact with MinJ. They also provide evidence that MinD locked in a dimer state may co-polymerize with MinC, resulting in a speckled appearance.
The authors introduce and verify a useful measure of membrane affinity in vivo.
The modulation of the membrane affinity by using distinct amphipathic helices highlights the robustness of the B. subtilis MinD system, which can form gradients even when the membrane affinity of MinD is increased or decreased.
Weaknesses:
The main claim of the paper, that differences in the membrane affinity between MinD monomers and dimers are not required for gradient formation, does not seem to be supported by the data. The only measure of membrane affinity presented is extracted from the transverse fluorescence intensity profile of cells expressing the mGFP-tagged MinD mutants. The authors measure the valley-to-peak ratio of the profile, which is lower than 1 for proteins binding to the membrane and higher than 1 for cytosolic proteins. To verify this measure of membrane affinity, they use a membrane dye and a soluble GFP, which results in values of ~0.75 and ~1.25, respectively. They then show that all MinD mutants have a value - roughly in the range of 0.8-0.9 - and they use this to claim that there are no differences in membrane affinity between monomeric and dimeric versions.
While this way to measure membrane affinity is useful to distinguish between binders and non-binders, it is unclear how sensitive this assay is, and whether it can resolve more subtle differences in membrane affinity, beyond the classification into binders and non-binders. A dimer with two amphipathic helices should have a higher membrane affinity than a monomer with only one such copy. Thus, the data does not seem to support the claim that "the different monomeric mutants have the same membrane affinity as the wildtype MinD". The data only supports the claim that B. subtilis MinD monomers already have a measurable membrane affinity, which is indeed a difference from the E. coli Min system.
While their data does show that a stark difference between monomer and dimer membrane affinity may not be required for gradient formation in the B. subtilis case, it is also not prevented if the monomer is unable to bind to the membrane. They show this by replacing the native MinD amphipathic helix with the weak amphipathic helix NS4AB-AH. According to their membrane affinity assay, NS4AB-AH does not bind to the membrane as a monomer (Figure 4D), but when this helix is fused to MinD, MinD is still capable of forming a gradient (albeit a weaker one). Since the authors make a direct comparison to the E. coli MinDE systems, they could have used the E. coli MinD MTS instead or in addition to the NS4AB-AH amphipathic helix. The reviewer suspects that a fusion of the E. coli MinD MTS to B. subtilis MinD may also support gradient formation.
The paper contains insufficient data to support the many claims about cell filamentation and minicell formation. In many cases, statements like "did not result in cell filamentation" or "restored cell division" are only supported by a single fluorescence image instead of a quantitative analysis of cell length distribution and minicell frequency, as the one reported for a subset of the data in Figure 5.
The paper would also benefit from a quantitative measure of gradient formation of the distinct MinD mutants, instead of relying on individual fluorescent intensity profiles.
The authors compare their experimental results with the oscillating E. coli MinDE system and use it to define some of the rules of their Monte Carlo simulation. However, the description of the E. coli Min system is sometimes misleading or based on outdated findings.
The Monte Carlo simulation of the gradient formation in B. subtilis could benefit from a more comprehensive approach:
(1) While most of the initial rules underlying the simulation are well justified, the authors do not implement or test two key conditions:<br /> (a) Cooperative membrane binding, which is a key component of mathematical models for the oscillating E. coli Min system. This cooperative membrane binding has recently been attributed to MinD or MinCD oligomerization on the membrane and has been experimentally observed in various instances; in fact, the authors themselves show data supporting the formation of MinCD copolymers.
(2) Local stimulation of the ATPase activity of MinD which triggers the dimer-to-monomer transition; E. coli MinD ATP hydrolysis is stimulated by the membrane and by MinE, so B. subtilis MinD may also be stimulated by the membrane and/or other components like MinJ. Instead, the authors claim that (a) would only increase differences in diffusion between the monomer and different oligomeric species, and that a 2-fold increase in dimerization on the membrane could not induce gradient formation in their simulation, in the absence of MinJ stimulating gradient formation. However, a 2-fold increase in dimerization is likely way too low to explain any cooperative membrane binding observed for the E. coli Min system. Regarding (b), they also claim that implementing stimulation of ATP hydrolysis on the membrane (dimer-to-monomer transition) would not change the outcome, but no simulation result for this condition is actually shown.
(3) To generate any gradient formation, the authors claim that they would need to implement stimulation of dimer formation by MinJ, but they themselves acknowledge the lack of any experimental evidence for this assertion. They then test all other conditions (e.g., differences in membrane affinity, diffusion, etc.) in addition to the requirement that MinJ stimulates dimer formation. It is unclear whether the authors tested all other conditions independently of the "MinJ induces dimerization" condition, and whether either of those alone or in combination could also lead to gradient formation. This would be an important test to establish the validity of their claims.
-
Reviewer #3 (Public review):
This important study by Bohorquez et al examines the determinants necessary for concentrating the spatial modulator of cell division, MinD, at the future site of division and the cell poles. Proper localization of MinD is necessary to bring the division inhibitor, MinC, in proximity to the cell membrane and cell poles where it prevents aberrant assembly of the division machinery. In contrast to E. coli, in which MinD oscillates from pole to pole courtesy of a third protein MinE, how MinD localization is achieved in B. subtilis - which does not encode a MinE analog - has remained largely a mystery. The authors present compelling data indicating that MinD dimerization is dispensable for membrane localization but required for concentration at the cell poles. Dimerization is also important for interactions between MinD and MinC, leading to the formation of large protein complexes. Computational modeling, specifically a Monte Carlo simulation, supports a model in which differences in diffusion rates between MinD monomers and dimers lead to the concentration of MinD at cell poles. Once there, interaction with MinC increases the size of the complex, further reinforcing diffusion differences. Notably, interactions with MinJ-which has previously been implicated in MinCD localization, are dispensable for concentrating MinD at cell poles although MinJ may help stabilize the MinCD complex at those locations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
In previously published work, the authors found that Transforming Growth Factor β Activated Kinase 1 (TAK1) may regulate esophageal squamous cell carcinoma (ESCC) tumor cell proliferation via the RAS/MEK/ERK axis. They explore the mechanisms for TAK1 as a possible tumor suppressor, demonstrating phospholipase C epsilon 1 as an effector of tumor cell migration, invasion and metastatic potential.
They explore the mechanisms for TAK1 as a possible tumor suppressor, demonstrating phospholipase C epsilon 1 as an effector of tumor cell migration, invasion and metastatic potential.
Strengths:
The authors show in vitro that TAK1 overexpression reduces tumor cell migration and invasion while TAK1 knockdown promotes a mesenchymal phenotype (epithelial-mesenchymal transition) and enhances migration and invasion. To explore possible mechanisms of action, the authors focused on phospholipase C epsilon 1 (PLCE1) as a potential effector, having identified this protein in co-immunoprecipitation experiments. Further, they demonstrate that TAK1-mediated phosphorylation of PLCE1 is inhibitory. Each of the observations is supported by different experimental strategies, e.g. use of different approaches for knockdown (pharmacologic, RNA inhibition, CRISPR/Cas). Xenograft experiments showed that suppression/loss of TAK1 is associated with more frequent metastases and conversely that PLCE1 is associated positively with xenograft metastases. A considerable amount of experimental data is presented for review, including supplemental data, that show that TAK1 regulation may be important in ESCC development.
Weaknesses:
As noted by the authors, immunoprecipitation (IP) experiments identified a number (24) of proteins as potential targets for the TAK1 ser/thr kinase. Prior work (cited as Shi et al, 2021) focused on a different phosphorylation target for TAK1, Ras association domain family 9 (RASSF9), but a more comprehensive discussion of the co-IP experiments would help place this work in better context.
-
Reviewer #2 (Public Review):
Summary:
In this study, Ju Q et al performed both in vitro and in vivo experiments to test the effect of TAK1 on cancer metastasis. They demonstrated that TAK1 is capable of directly phosphorylating PLCE1 and this modification represses its enzyme activity, leading to suppression of PIP2 hydrolysis and subsequently signal transduction in the PKC/GSK-3β/β-Catenin axis.
Strengths:
The quality of data is good, and the presentation is well organized in a logical way.
Weaknesses:
The study missed some key link in connecting the effect of TAK1 on cancer metastasis via phosphorylating PLCE1.
-
Reviewer #3 (Public Review):
Summary:
The research by Qianqian Ju et al. found that the knockdown of TAK1 promoted ESCC migration and invasion, whereas overexpression of TAK1 resulted in the opposite outcome. These in vitro findings could be recapitulated in a xenograft metastasis mouse model.<br /> Mechanistically, TAK1 phosphorylates PLCE1 S1060 in the cells, decreasing PLCE1 enzyme activity and repressing PIP2 hydrolysis. As a result, reducing DAG and inositol IP3, thereby suppressing signal transduction of PKC/GSK 3β/β Catenin. Consequently, cancer metastasis-related genes were impeded by TAK1.<br /> Overall, this study offers some intriguing observations. Providing a potential druggable target for developing agents for dealing with ESCC.
The strengths of this research are:<br /> (1) The research uses different experimental approaches to address one question. The experiments are largely convincing and appear to be well executed.<br /> (2) The phenotypes were observed from different angles: at the mouse model, cellular level, and molecular level.<br /> (3) The molecular mechanism was down to a single amino acid modification on PLCE1.
The weaknesses part of this research are:
Most of the experiments were done in protein overexpression conditions, with the protein level increasing hundreds of folds in the cell, producing an artificial environment that would sometimes generate false positive results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Soo-Yeon Hwang et al. synthesized and characterized a new set of Chalcone- and Pyrazoline-derived molecules targeting the interaction between ELF3, a transcription factor, and MED23, a coactivator for HER2 transcription. The authors employed biochemical analysis, cell-based assays, and an in vivo xenograft model to demonstrate that the lead compound, Compound 10, inhibits HER2 transcription and protein expression, subsequently inducing anticancer activity in gastric cancer models, particularly in trastuzumab-resistant cell lines. The obtained data is robust and supports the potential anticancer efficacy of Compound 10 for HER2+ gastric cancer.
Strengths:
The current manuscript proposes an alternative strategy for targeting HER2-overexpressing cancers by reducing HER2 transcription levels. The study presents compelling evidence that the lead compound, Compound 10, disrupts the binding of ELF3 to MED23, thereby inhibiting HER2 transcription. Notably, cell-based assays and xenograft models demonstrated the compound's significant antitumor activity in gastric cancer models.
-
Reviewer #2 (Public review):
Summary:
The findings highlight the importance of targeting the ELF3-MED23 protein-protein interaction (PPI) as a potential therapeutic strategy for HER2-overexpressing cancers, notably gastric cancers, as an alternative to trastuzumab. The evidence, including the strong potency of compound 10 in inhibiting ELF3-MED23 PPI, its capacity to lower HER2 levels, induce apoptosis, and impede proliferation both in laboratory settings and animal models, indicates that compound 10 holds promise as a novel therapeutic option, even for cases resistant to trastuzumab treatment.
Strengths:
The experiments conducted are robust and diverse enough to address the hypothesis posed.
-
Reviewer #3 (Public review):
Summary:
The authors synthesized a compound which can inhibit ELF3 and MED23 interaction which leads to inhibition of HER2 expression in gastric cancer.
Strengths:
Enough evidence shows the potency of compound 10 in inhibiting ELF3 and MED23 interaction.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this study, James Lee, Lu Bai, and colleagues use a multifaceted approach to investigate the relationship between transcription factor condensate formation, transcription, and 3D gene clustering of the MET regulon in the model organism S. cerevisiae. This study represents a second clear example of inducible transcriptional condensates in budding yeast, as most evidence for transcriptional condensates arises from studies of mammalian systems. In addition, this study links the genomic location of transcriptional condensates to the potency of transcription of a reporter gene regulated by the master transcription factor contained in the condensate. The strength of evidence supporting these two conclusions is strong. Less strong is evidence supporting the claim that Met4-containing condensates mediate the clustering of genes in the MET regulon.
Strengths:
The manuscript is for the most part clearly written, with the overriding model and specific hypothesis being tested clearly explained. Figure legends are particularly well written. An additional strength of the manuscript is that most of the main conclusions are supported by the data. This includes the propensity of Met4 and Met32 to form puncta-like structures under inducing conditions, formation of Met32-containing LLPS-like droplets in vitro (within which Met4 can colocalize), colocalization of Met4-GFP with Met4-target genes under inducing conditions, enhanced transcription of a Met3pr-GFP reporter when targeted within 1.5 - 5 kb of select Met4 target genes, and most impressively, evidence that several MET genes appear to reposition under transcriptionally inducing conditions. The latter is based on a recently reported novel in vivo methylation assay, MTAC, developed by the Bai lab.
Comments on Revision:
The authors have adequately addressed most of my concerns. However, the most salient issue - that the work fails to show convincing evidence that nuclear condensates per se drive MET gene clustering - remains. Since the genetic approach led to ambiguous results, another way to link MET gene clustering to TF condensate formation is to perturb the condensates with 1,6-hexanediol. If 1,6-HD treatment dissolves condensates and concomitant MET clustering (while the impact of 2,5-HD is much less) then the conclusion is more solid. Absent such evidence, the authors are left with a correlation, and they should consider toning down the title and abstract (and conclusions stated elsewhere). For example, a more accurate title might be "Transcription Factor Condensates Correlate with MET Gene Clustering and Mediate Enhancement in Gene Expression".
-
Reviewer #2 (Public review):
Summary:
This manuscript combines live yeast cell imaging and other genomic approaches to study how transcription factor (TF) condensates might help organize and enhance the transcription of the target genes in the methionine starvation response pathway. The authors show that the TFs in this response can form phase separated condensates through their intrinsically disordered regions (IDRs), and mediate the spatial clustering of the related endogenous genes as well as reporter inserted near the endogenous target loci.
Strengths:
This work uses rigorous experimental approaches, including imaging of endogenously labeled TFs, determining expression and clustering of endogenous target genes and reporter integrated near the endogenous target loci. The importance of TFs is shown by rapid degradation. Single cell data are combined with genomic sequencing-based assays. Control loci engineered in the same way are usually included. Some of these controls are very helpful in showing the pathway-specific effect of the TF condensates in enhancing transcription.
Weaknesses:
The main weakness of this work is that the role of IDR and phase separation in mediating the target gene clustering is unclear. TF IDRs may have many functions including mediating phase separation and binding to other transcriptional molecules (not limited to proteins). The authors did not get clear results on gene clustering upon IDR deletion. IDR deletion may affect binding of other molecules (not the general transcription machinery) that are specifically important for target gene transcription. If the self-association of the IDR is the main driving force of the clustering and target gene transcription enhancement, replacing this IDR with totally unrelated IDRs that have been shown to mediate phase separation in non-transcription systems would preserve the gene clustering and transcription enhancement effects. However, this type of replacement experiment is challenging for endogenous locus.
-
Reviewer #3 (Public review):
Summary:
In this study, the authors probe the connections between clustering of the Met4/32 transcription factors (TFs), clustering of their regulatory targets, and transcriptional regulation. While there is an increasing number of studies on TF clustering in vitro and in vivo, there is an important need to probe whether clustering plays a functional role in gene expression. Another important question is whether TF clustering leads to the clustering of relevant gene targets in vivo. Here the authors provide several lines of evidence to make a compelling case that Met4/32 and their target genes cluster and that this leads to an increase in transcription of these genes in the induced state. First, they found that, in the induced state, Met4/32 forms co-localized puncta in vivo. This is supported by in vitro studies showing that these TFs can form condensates in vitro with Med32 being the driver of these condensates. They found that two target genes, MET6 and MET13 have a higher probability of being co-localized with Met4 puncta compared with non-target loci. Using a targeted DNA methylation assay, they found that MET13 and MET6 show Met4-dependent long-range interactions with other Met4-regulated loci, consistent with the clustering of at least some target genes under induced conditions. Finally, by inserting a Met4-regulated reporter gene at variable distances from MET6, they provide evidence that insertion near this gene is a modest hotspot for activity.
Comments on revised version:
In this revised manuscript, the authors have achieved a good balance between revising the text/figures, and explaining why some lines of experiments proposed by reviewers are either not practical or beyond the scope of this work. I think that the revised study is an important contribution to understanding the function of transcription factors, TF condensates, and gene localization in a stress-responsive system.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Wang, Y. et al. used a silicone wire embolus to definitively and acutely clot the pterygopalatine ophthalmic artery in addition to carotid artery ligation to completely block blood supply to the mouse inner retina, which mimic clinical acute retinal artery occlusion. A detailed characterization of this mouse model determined the time course of inner retina degeneration and associated functional deficits, which closely mimic human patients. Whole retina transcriptome profiling and comparison revealed distinct features associated with ischemia, reperfusion, and different model mechanisms. Interestingly and importantly, this team found a sequential event including reperfusion-induced leukocyte infiltration from blood vessels, residual microglial activation, and neuroinflammation that may lead to neuronal cell death.
Strengths:
Clear demonstration of the surgery procedure with informative illustrations, images, and superb surgical videos.
Two time points of ischemia and reperfusion were studied with convincing histological and in vivo data to demonstrate the time course of various changes in retinal neuronal cell survivals, ERG functions, and inner/outer retina thickness.
The transcriptome comparison among different retinal artery occlusion models provides informative evidence to differentiate these models.
The potential applications of the in vivo retinal ischemia-reperfusion model and relevant readouts demonstrated by this study will certainly inspire further investigation of the dynamic morphological and functional changes of retinal neurons and glial cell responses during disease progression and before and after treatments.
Weaknesses:
The revised manuscript has been significantly improved in clarity and readability. It has addressed all my questions convincingly.
-
Reviewer #2 (Public Review):
Summary:
The authors of this manuscript aim to develop a novel animal model to accurately simulate the retinal ischemic process in retinal artery occlusion (RAO). A unilateral pterygopalatine ophthalmic artery occlusion (UPOAO) mouse model was established using silicone wire embolization combined with carotid artery ligation. This manuscript provided data to show the changes of major classes of retinal neural cells and visual dysfunction following various durations of ischemia (30 minutes and 60 minutes) and reperfusion (3 days and 7 days) after UPOAO. Additionally, transcriptomics was utilized to investigate the transcriptional changes and elucidate changes in the pathophysiological process in the UPOAO model post-ischemia and reperfusion. Furthermore, the authors compared transcriptomic differences between the UPOAO model and other retinal ischemic-reperfusion models, including HIOP and UCCAO, and revealed unique pathological processes.
Strengths:
The UPOAO model represents a novel approach for studying retinal artery occlusion. The study is very comprehensive.
Weaknesses:
Originally, some statements were incorrect and confusing. However, the authors have made clarifications in the revised manuscript to avoid confusion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Building upon their famous tool for the deconvolution of human transcriptomics data (EPIC), Gabriel et al. implemented a new methodology for the quantification of the cellular composition of samples profiled with Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). To build a signature for ATAC-seq deconvolution, they first created a compendium of ATAC-seq data and derived chromatin accessibility marker peaks and reference profiles for 12 cell types, encompassing immune cells, endothelial cells, and fibroblasts. Then, they coupled this novel signature with the EPIC deconvolution framework based on constrained least-square regression to derive a dedicated tool called EPIC-ATAC. The method was then assessed using real and pseudo-bulk ATAC-seq data from human peripheral blood mononuclear cells (PBMC) and, finally, applied to ATAC-seq data from breast cancer tumors to show it accurately quantifies their immune contexture.
Strengths:
Overall, the work is of very high quality. The proposed tool is timely; its implementation, characterization, and validation are based on rigorous methodologies and results in robust estimates. The newly-generated, validation data and the code are publicly available and well-documented. Therefore, I believe this work and the associated resources will greatly benefit the scientific community.
Weaknesses:
In the benchmarking analysis, EPIC-ATAC was compared also to deconvolution methods that were originally developed for transcriptomics and not for ATAC-seq data. However, the authors described in detail the specific settings used to analyze this different data modality as robustly as possible, and they discussed possible limitations and ideas for future improvement.
-
Reviewer #2 (Public Review):
Summary:
The manuscript expands the current bulk sequencing data deconvolution toolkit to include ATAC-seq. The EPIC-ATAC tool successfully predicts accurate proportions of immune cells in bulk tumour samples and EPIC-ATAC seems to perform well in benchmarking analyses. The authors achieve their aim of developing a new bulk ATAC-seq deconvolution tool.
Strengths:
The manuscript describes simple and understandable experiments to demonstrate the accuracy of EPIC-ATAC. They have also been incredibly thorough with their reference dataset collections and have been robust in their benchmarking endeavours and measured EPIC-ATAC against multiple datasets and tools. This tool will be valuable to the community it serves.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Using multi-region two-photon calcium imaging, the manuscript meticulously explores the structure of noise correlations (NCs) across mouse visual cortex and uses this information to make inferences about the organization of communication channels between primary visual cortex (V1) and higher visual areas (HVAs). Using visual responses to grating stimuli, the manuscript identifies 6 tuning groups of visual cortex neurons, and finds that NCs are highest among neurons belonging to the same tuning group whether or not they are found in the same cortical area. The NCs depend on the similarity of tuning of the neurons (their signal correlations) but are preserved across different stimulus sets - noise correlations recorded using drifting gratings are highly correlated with those measured using naturalistic videos. Based on these findings, the manuscript concludes that populations of neurons with high NCs constitute discrete communication channels that convey visual signals within and across cortical areas.
Strengths:
Experiments and analyses are conducted to a high standard and the robustness of noise correlation measurements is carefully validated. To control for potential influences of behaviour-related top-down modulation of noise correlations, the manuscript uses measurements of pupil dynamics as a proxy for behavioural state and shows that this top-down modulation cannot explain the stability of noise correlations across stimuli.
Weaknesses:
The interpretation of noise correlation measurements as a proxy from network connectivity is fraught with challenges. While the data clearly indicate the existence of distributed functional ensembles, the notion of communication channels implies the existence of direct anatomical connections between them, which noise correlations cannot measure.
The traditional view of noise correlations is that they reflect direct connectivity or shared inputs between neurons. While it is valid in a broad sense, noise correlations may reflect shared top-down input as well as local or feedforward connectivity. This is particularly important since mouse cortical neurons are strongly modulated by spontaneous behavior (e.g. Stringer et al, Science, 2019). Therefore, noise correlation between a pair of neurons may reflect whether they are similarly modulated by behavioral state and overt spontaneous behaviors. Consequently, noise correlation alone cannot determine whether neurons belong to discrete communication channels.
-
Reviewer #2 (Public review):
Summary:
This groundbreaking study characterizes the structure of activity correlations over millimeter scale in the mouse cortex with the goal of identifying visual channels, specialized conduits of visual information that show preferential connectivity. Examining the statistical structure of visual activity of L2/3 neurons, the study finds pairs of neurons located near each other or across distances of hundreds of micrometers with significantly correlated activity in response to visual stimuli. These highly correlated pairs have closely related visual tuning sharing orientation and/or spatial and/or temporal preference as would be expected from dedicated visual channels with specific connectivity.
Strengths:
The study presents best-in-class mesoscopic-scale 2-photon recordings from neuronal populations in pairs of visual areas (V1-LM, V1-PM, V1-AL, V1-LI). The study employs diverse visual stimuli that capture some of the specialization and heterogeneity of neuronal tuning in mouse visual areas. The rigorous data quantification takes into consideration functional cell groups as well as other variables that influence trial-to-trial correlations (similarity of tuning, neuronal distance, receptive field overlap, behavioral state). The paper demonstrates the robustness of the activity clustering analysis and of the activity correlation measurements. The paper shows convincingly that the correlation structure observed with grating stimuli is present in the responses to naturalistic stimuli. A simple simulation is provided that suggest that recurrent connectivity is required for the stimulus invariance of the results. The paper is well written and conceptually clear. The figures are beautiful and clear. The arguments are well laid out and the claims appear in large part supported by the data and analysis results (but see weaknesses).
Weaknesses:
An inherent limitation of the approach is that it cannot reveal which anatomical connectivity patterns are responsible for observed network structure. A methodological issue that does not seem completely addressed is whether the calcium imaging measurements with their limited sensitivity amplify the apparent dependence of noise correlations on the similarity of tuning. Although the paper shows that noise correlation measurements are robust to changes in firing rates / missing spikes, the effects of receptive field tuning dissimilarity are not addressed directly. The calcium responses of mouse visual cortical neurons are sharply tuned. Neurons with dissimilar receptive fields may show too little overlap in their estimated firing rates to infer noise correlations, which could lead to underestimation of correlations across groups of dissimilar neurons.
-
Reviewer #3 (Public review):
Summary:
Yu et al harness the capabilities of mesoscopic 2P imaging to record simultaneously from populations of neurons in several visual cortical areas and measure their correlated variability. They first divide neurons in 65 classes depending on their tuning to moving gratings. They found the pairs of neurons of the same tuning class show higher noise correlations (NCs) both within and across cortical areas. Based on these observations and a model they conclude that visual information is broadcast across areas through multiple, discrete channels with little mixing across them.<br /> NCs can reflect indirect or direct connectivity, or shared afferents between pairs of neurons, potentially providing insight on network organization. While NCs have been comprehensively studied in neurons pairs of the same area, the structure of these correlations across areas is much less known. Thus, the manuscripts present novel insights on the correlation structure of visual responses across multiple areas.
Strengths:
The measurements of shared variability across multiple areas are novel. The results are mostly well presented and many thorough controls for some metrics are included.
Weaknesses:
I have concerns that the observed large intra class/group NCs might not reflect connectivity but shared behaviorally driven multiplicative gain modulations of sensory evoked responses. In this case, the NC structure might not be due to the presence of discrete, multiple channels broadcasting visual information as concluded. I also find that the claim of multiple discrete broadcasting channels needs more support before discarding the alternative hypothesis that a continuum of tuning similarity explains the large NCs observed in groups of neurons.
Specifically:
Major concerns:
(1) Multiplicative gain modulation underlying correlated noise between similarly tuned neurons
(1a) The conclusion that visual information is broadcasted in discrete channels across visual areas relies on interpreting NC as reflecting, direct or indirect connectivity between pairs, or common inputs. However, a large fraction of the activity in the mouse visual system is known to reflect spontaneous and instructed movements, including locomotion and face movements, among others. Running activity and face movements are one of the largest contributors to visual cortex activity and exert a multiplicative gain on sensory evoked responses (Niell et al , Stringer et al, among others). Thus, trial-by-fluctuations of behavioral state would result in gain modulations that, due to their multiplicative nature, would result in more shared variability in cotuned neurons, as multiplication affects neurons that are responding to the stimulus over those that are not responding ( see Lin et al , Neuron 2015 for a similar point).
In the new version of the manuscript, behavioral modulations are explicitly considered in Figure S8. New analyses show that most of the variance of the neuronal responses is driven by the stimulus, rather than by behavioural variable. However, they new analyses still do not address if the shared noise correlation in cotuned neurons is also independent of behavioral modulations .
As behavioral modulations are not considered this confound affects the conclusions and the conclusion that activity in communicated unmixed across areas ( results in Figure 4), as it would result in larger NCs the more similar the tuning of the neurons is, independently of any connectivity feature. It seems that this alternative hypothesis can explain the results without the need of discrete broadcasting channels or any particular network architecture and should be addressed to support the main claims.
(2) Discrete vs continuous communication channels<br /> (2a) One of the author's main claims is that the mouse cortical network consists of discrete communication channels, as stated in teh title of the paper. This discreteness is based on an unbiased clustering approach on the tuning of neurons, followed by a manual grouping into six categories with relation to the stimulus space. I believe there are several problems with this claim. First, this clustering approach is inherently trying to group neurons and discretise neural populations. To make the claim that there are 'discrete communication channels' the null hypothesis should be a continuous model. An explicit test in favor of a discrete model is lacking, i.e. are the results better explained using discrete groups vs. when considering only tuning similarity? Second, the fact that 65 classes are recovered (out of 72 conditions) and that manual clustering is necessary to arrive at the six categories is far from convincing that we need to think about categorically different subsets of neurons. That we should think of discrete communication channels is especially surprising in this context as the relevant stimulus parameter axes seem inherently continuous: spatial and temporal frequency. It is hard to motivate the biological need for a discretely organized cortical network to process these continuous input spaces.
Finally, as stated in point 1, the larger NCs observed within groups than across groups might be due to the multiplicative gain of state modulations, due to the larger tuning similarity of the neurons within a class or group.
-
-
ieeexplore.ieee.org ieeexplore.ieee.org
-
I don't think this paper adds value over existing RFCs like RFC7217 and RFC7721
-
-
osf.io osf.io
-
Reviewer #1 (Public Review):
Summary:
This study uses an online cognitive task to assess how reward and effort are integrated in a motivated decision-making task. In particular the authors were looking to explore how neuropsychiatric symptoms, in particular, apathy and anhedonia, and circadian rhythms affect behavior in this task. Amongst many results, they found that choice bias (the degree to which integrated reward and effort affect decisions) is reduced in individuals with greater neuropsychiatric symptoms, and late chronotypes (being an 'evening person').
Strengths:
The authors recruited participants to perform the cognitive task both in and out of sync with their chronotypes, allowing for the important insight that individuals with late chronotypes show a more reduced choice bias when tested in the morning.<br /> Overall, this is a well-designed and controlled online experimental study. The modelling approach is robust, with care being taken to both perform and explain to the readers the various tests used to ensure the models allow the authors to sufficiently test their hypotheses.
Weaknesses:
This study was not designed to test the interactions of neuropsychiatric symptoms and chronotypes on decision making, and thus can only make preliminary suggestions regarding how symptoms, chronotypes and time-of-assessment interact.
-
Reviewer #2 (Public Review):
Summary:
The study combines computational modeling of choice behavior with an economic, effort-based decision-making task to assess how willingness to exert physical effort for a reward varies as a function of individual differences in apathy and anhedonia, or depression, as well as chronotype. They find an overall reduction in effort selection that scales with apathy, anhedonia and depression. They also find that later chronotypes are less likely to choose effort than earlier chronotypes and, interestingly, an interaction whereby later chronotypes are especially unwilling to exert effort in the morning versus the evening.
Strengths:
This study uses state-of-the-art tools for model fitting and validation and regression methods which rule out multicollinearity among symptom measures and Bayesian methods which estimate effects and uncertainty about those estimates. The replication of results across two different kinds of samples is another strength. Finally, the study provides new information about the effects not only of chronotype but also chronotype by timepoint interactions which are previously unknown in the subfield of effort-based decision-making.
Weaknesses:
The study has few weaknesses. The biggest drawback is that it does not provide evidence for the idea that a match between chronotype and delay matters is especially relevant for people with depression or continuous measures like anhedonia and apathy. It is unclear whether disorders further interact with chronotype and time of day to determine a bias against effort. On the other hand, the study does provide evidence that future studies should consider such interactions when examining questions about effort expenditure in psychiatric disorders.
-
Reviewer #3 (Public Review):
Summary:
In this manuscript, Mehrhof and Nord study a large dataset of participants collected online (n=958 after exclusions) who performed a simple effort-based choice task. They report that the level of effort and reward influence choices in a way that is expected from prior work. They then relate choice preferences to neuropsychiatric syndromes and, in a smaller sample (n<200), to people's circadian preferences, i.e., whether they are a morning-preferring or evening-preferring chronotype. They find relationships between the choice bias (a model parameter capturing the likelihood to accept effort-reward challenges, like an intercept) and anhedonia and apathy, as well as chronotype. People with higher anhedonia and apathy and an evening chronotype are less likely to accept challenges (more negative choice bias). People with an evening chronotype are also more reward sensitive and more likely to accept challenges in the evening, compared to the morning.
Strengths:
This is an interesting and well-written manuscript which replicates some known results and introduces a new consideration related to chronotype relationships which have not been explored before. It uses a large sample size and includes analyses related to transdiagnostic as well as diagnostic criteria.
Weaknesses:
The authors do not explore how chronotype and depression are related (does one mediate the effect of the other etc). Both variables are included in the same model in the revised article now which is a great improvement, but it also means psychopathology and circadian rhythms are treated as distinct phenomena and their relationship in predicting effort-reward preferences is not examined.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This important study investigated the role of oxytocin (OT) neurons in the paraventricular nucleus (PVN) and their projections to the medial prefrontal cortex (mPFC) in regulating pup care and infanticide behaviors in mandarin voles. The researchers used techniques like immunofluorescence, optogenetics, OT sensors, and peripheral OT administration. Activating OT neurons in the PVN reduced the time it took pup-caring male voles to approach and retrieve pups, facilitating pup care behavior. However, this activation had no effect on females. Interestingly, this same PVN OT neuron activation also reduced the time for both male and female infanticidal voles to approach and attack pups, suggesting PVN OT neuron activity can promote pup care while inhibiting infanticide behavior. Inhibition of these neurons promoted infanticide. Stimulating PVN->mPFC OT projections facilitated pup care in males and in infanticide prone voles, activation of these terminals prolonged latency to approach and attack. Inhibition of PVN->mPFC OT projections promoted infanticide. Peripheral OT administration increased pup care in males and reduced infanticide in both sexes. However, some results differed in females, suggesting other mechanisms may regulate female pup care.
Strengths:
This multi-faceted approach provides converging evidence and strengthens the conclusions drawn from the study and make them very convincing. Additionally, the study examines both pup care and infanticide behaviors, offering insights into the mechanisms underlying these contrasting behaviors. The inclusion of both male and female voles allows for the exploration of potential sex differences in the regulation of pup-directed behaviors. The peripheral OT administration experiments also provide valuable information for potential clinical applications and wildlife management strategies.
Weaknesses:
While the study presents exciting findings, there are several weaknesses. The sample sizes used in some experiments, such as the Fos study and optogenetic manipulations, appear to be small, which may limit the statistical power and generalizability of the results.
There is potential effect of manipulating OT neurons on the release of other neurotransmitters (or the influence of other neurochemicals or brain regions) on pup-directed behaviors, especially in females, are not fully explored. Additionally, it is unclear whether back-propagation of action potentials during optogenetic manipulations causes the same behavioral effect as direct stimulation of PVN OT cells. However, the authors now discuss these possibilities. It is also uncertain whether more OT neurons were manipulated in females compared to males. All other comments have been addressed by the authors.
-
Reviewer #2 (Public review):
Summary:
This series of experiments studied the involvement of PVN OT neurons and their projection to the mPFC in pup-care and attack behavior in virgin male and female Mandarin voles. Using Fos visualization, optogenetics, fiber photometry and IP injection of OT the results converge on OT regulating caregiving and attacks on pups. Some sex differences were found in the effects of the manipulations.
Strengths:
Major strengths are the modern multi-method approach and including both sexes of Mandarin vole in every experiment.
Weaknesses:
The few weaknesses include 1) Some experiments' groups have small sample sizes (4-5 animals) which may render some results difficult for others to replicate when different extraneous variables are likely to be present, and 2) the authors discuss PVN OT cell stimulation findings seen in other rodents so the work seems less conceptually novel. Overall, the findings add to the knowledge about OT regulation of pup-directed behavior in male and female rodents, especially the PVN-mPFC OT
-
Reviewer #3 (Public review):
Summary:
Here Li et al. examine pup-directed behavior in virgin Mandarin voles. Some males and females tend towards infanticide, others tend towards pup care. c-Fos staining showed more oxytocin cells activated in the paraventricular nucleus (PVN) of the hypothalamus in animals expressing pup care behaviors than in infanticidal animals. Optogenetic stimulation of PVN oxytocin neurons (with an oxytocin-specific virus to express the opsin transgene) increased pup-care, or in infanticidal voles increased latency towards approach and attack. Suppressing activity of PVN oxytocin neurons promoted infanticide. Use of a recent oxytocin GRAB sensor (OT1.0) showed changes in medial prefrontal cortex (mPFC) signals as measured with photometry in both sexes. Activating mPFC oxytocin projections increased latency to approach and attack in infanticidal females and males (similar to the effects of peripheral oxytocin injections), whereas in pup caring animals only males showed a decrease to approach. Inhibiting these projections increased infanticidal behaviors in both females and males, and no effect on pup caretaking.
Strengths:
Adopting these methods for Mandarin voles is an impressive accomplishment, especially the valuable data provided by the oxytocin GRAB sensor. This is a major achievement and helps promote systems neuroscience in voles.
The authors have done a good job responding to the comments on their preprint. I'd ask them to check their z-scored values, as the mean of a z-scored value should be 0 over time. Also I'm not sure I agree that the fiber photometry system "can automatically exclude effects of motion artifacts"; yes that is a function of imaging at a different wavelength but that process is also prone to error and imperfect.
-
-
-
Reviewer #1 (Public review):
Summary:
The authors of this study investigated the development of interoceptive sensitivity in the context of cardiac and respiratory interoception in 3-, 9-, and 18-month-old infants using a combination of both cross-sectional and longitudinal designs. They utilised the cardiac interoception paradigm developed by Maister et al (2017) and also developed a new paradigm to investigate respiratory interoception in infants. The main findings of this research are that 9-month-old infants displayed a preference for stimuli presented synchronously with their own heartbeat and respiration. The authors found less reliable effects in the 18-month-old group, and this was especially true for the respiratory interoceptive data. The authors replicated a visual preference for synchrony over asynchrony for the cardiac domain in 3-month-old infants, while they found inconclusive evidence regarding the respiratory domain. Considering the developmental nature of the study, the authors also investigated the presence of developmental trajectories and associations between the two interoceptive domains. They found evidence for a relationship between cardiac and respiratory interoceptive sensitivity at 18 months only and preliminary evidence for an increase in respiratory interoception between 9 and 18 months.
Strengths:
The conclusions of this paper are mostly well supported by data, and the data analysis procedures are rigorous and well justified. The main strengths of the paper are:
- A first attempt to explore the association between two different interoceptive domains. How different organ-specific axes of interoception relate to each other is still open and exploring this from a developmental lens can help shed light into possible relationships. The authors have to be commended for developing a novel interoceptive tasks aimed at assessing respiratory interoceptive sensitivity in infants and toddlers, and for trying to assess the relationship between cardiac and respiratory interoception across developmental time.<br /> - A thorough justification of the developmental ages selected for the study. The authors provide a rationale behind their choice to examine interoceptive sensitivity at 3, 9, and 18-months of age. These are well justified based on the literature pertaining to self- and social development. Sometimes, I wondered whether explaining the link between these self and social processes and interoception would have been beneficial as a reader not familiar with the topics may miss the point.<br /> - An explanation of direction of looking behaviour using latent curve analysis. I found this additional analysis extremely helpful in providing a better understanding of the data based on previous research and analytical choices. As the authors explain in the manuscript, it is often difficult to interpret the direction of infant looking behaviour as novelty and familiarity preferences can also be driven by hidden confounders (e.g. task difficulty). The authors provide compelling evidence that analytical choices can explain some of these effects. Beyond the field of interoception, these findings will be relevant to development psychologists and will inform future studies using looking time as a measure of infants' ability to discriminate among stimuli.<br /> - The use of simulation analysis to account for small sample size. The authors acknowledge that some of the effects reported in their study could be explained by a small sample size (i.e. the 3-month-olds and 18-month-olds data). Using a simulation approach, the authors try to overcome some of these limitations and provide convincing evidence of interoceptive abilities in infancy and toddlerhood (but see also my next point).
Weaknesses:
- While the research question is timely and the methodology is detailed, there is a critical flaw in the experimental design: the lack of randomization of stimuli due to an error in the programming script. The authors very honestly report this error and have performed additional analyses to investigate its potential impact on the study's results. Unfortunately, I am not fully convinced these analyses provide enough reassurance and I believe the technical error still undermines the validity of the findings, making it difficult to draw meaningful conclusions.
-
Reviewer #2 (Public review):
Summary:
This study by Tünte et al. investigated the development of interoceptive sensitivity during the first year of life, focusing specifically on cardiac and respiratory sensitivity in infants aged 3, 9, and 18 months. The research employed a previously developed experimental paradigm for the cardiac domain and adapted it for a novel paradigm in the respiratory domain. This approach assessed infants' cardiac and respiratory sensitivity based on their preferential looking behavior toward visuo-auditory stimuli displayed on a monitor, which moved either in sync or out of sync with the infants' own heartbeats or breathing. The results in the cardiac domain showed that infants across all age groups preferred stimuli moving synchronously rather than asynchronously with their heartbeat, suggesting the presence of cardiac sensitivity as early as 3 months of age. However, it is noteworthy that this preference direction contradicts a previous study, which found that 5-month-old infants looked longer at stimuli moving asynchronously with their heartbeat (Maister et al., 2017). In the respiratory domain, only the group of 9-month-old infants showed a preference for stimuli presented synchronously with their breathing. The authors conducted various statistical analyses to thoroughly examine the obtained data, providing deeper insights valuable for future research in this field.
Strengths:
Few studies have explored the early development of interoception, making the replication of the original study by Maister et al. (2017) particularly valuable. Beyond replication, this study expands the investigation into the respiratory domain, significantly enhancing our understanding of interoceptive development. The provision of longitudinal and cross-sectional data from infants at 3, 9, and 18 months of age is instrumental in understanding their developmental trajectory.
Weaknesses:
Due to a technical error, this study failed to counterbalance the conditions of the first trial in both the iBEAT and iBREATH tests. Although the authors addressed this issue as much as possible by employing alternative analyses, it should be noted that this error may have critically influenced the results and, thus, the conclusions.
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Amason et al. investigated the formation of granulomas in response to Chromobacterium violaceum infection, aiming to uncover the cellular mechanisms governing the granuloma response. They identify spatiotemporal gene expression of chemokines and receptors associated with the formation and clearance of granulomas, with a specific focus on those involved in immune trafficking, generating a valuable spatial transcriptomic reference. By analyzing the presence or absence of chemokine/receptor RNA expression, they infer the importance of immune cells in resolving infection. Despite observing increased expression of neutrophil-recruiting chemokines, treatment with reparixin (an inhibitor of CXCR1 and CXCR2) did not inhibit neutrophil recruitment during infection. Focusing on monocyte trafficking, they found that CCR2 knockout mice infected with C. violaceum were unable to form granulomas, ultimately succumbing to infection.
Readers should note that due to the resolution of the spatial data, it is difficult to associate gene expression differences with individual cell types; the authors focus instead on changes in chemokines and chemokine receptors, and perform experiments to evaluate the importance of CCR2.
Comments on the revised version:
The authors have addressed all of my previous comments.
-