5 Matching Annotations
1. Mar 2016
2. arxiv.org arxiv.org
1. Letβ:V×V→Wbe a symmetric bilinear form whereVand (W,h,i) arereal vector spaces of finite dimensionnandp, respectively, equipped withinner products.Thes-nullityνsofβfor any integer 1≤s≤pis defined byνs= maxUs⊂Wdim{x∈V:βUs(x, y) = 0 for ally∈V}.HereβUs=πUs◦βwhereUsis anys-dimensional subspace ofWandπUs:W→Usdenotes the orthogonal projection.LetR:V×V×V×V→Rbe the multilinear map with the algebraicproperties of the curvature tensor defined byR(x, y, z, w) =hβ(x, w), β(y, z)i − hβ(x, z), β(y, w)i.Lemma 4.Assume that2p < nandνs< n−2sfor all1≤s≤p. LetV=V1⊕V2be an orthogonal splitting such thatR(x, y, z, u) =R(x, y, u, v) =R(x, u, v, w) = 0for anyx, y, z∈V1andu, v, w∈V2. Then,S=span{β(x, y) :x∈V1andy∈V2}= 0.

#### URL

3. ac.els-cdn.com ac.els-cdn.com
1. second fundamental_form h satisfies h(TpL,xTpLj =0 forallp E M

Para o nosso caso, assumir essa hipótese com respeito a decomposição do espaço tangente ao longo do bordo.

#### URL

4. Dec 2015
5. www.mathunion.org www.mathunion.org
1. Let M be an rc-dimensional manifold of class C°° and g any given Riemannian metric on M. We will consider the following classical problem motivated by differential geometry. Does there exist an embedding u = (w1,..., uq) : M -> R9 such that the usual euclidian metric of R9 induces on the submanifold u(M) the given metric gl In other words, w must satisfy E(w) := du-du = g, (1) or in local coordinates 9 du1 du1 _ ,tîâ?â?"Qij' The dot in (1) denotes the usual scalar product of R9. The notion embedding means, that w is locally an immersion and globally a homeomorphism of M onto the subspace u(M) of R*. If an embedding w : M -• R9 satisfies (1) on the whole M, we speak of an isometric embedding. If w is an immersion and a solution of (1) in a (possibly small) neighbourhood of any point of M, we speak of a local isometric embedding.

#### URL

6. Mar 2015
7. arxiv.org arxiv.org
1. θ dμ ≥ p 16 π | Σ |

Qual a relação dessa desigualdade com a dita desigualdade de Penrose Riemanniana provada por Huisken-Ilmanen e Bray?

2. GIBBONS-PENROSE INEQUALITY

Qual a relação dessa desigualdade com a dita desigualdade de Penrose Riemanniana provada por Huisken-Ilmanen e Bray?