- Jul 2024
-
github.com github.com
-
The Computational Democracy Project
We bring data science to deliberative democracy, so that governance may better reflect the multidimensionality of the public's will.
-
- Jun 2024
-
illuminate.withgoogle.com illuminate.withgoogle.com
-
https://illuminate.withgoogle.com/
via
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Interesting experiment from Google that creates an NPR-like discussion about any academic paper.<br><br>It definitely suggests some cool possibilities for science communication. And the voices, pauses, and breaths really scream public radio. Listen to at least the first 30 seconds. pic.twitter.com/r4ScqenF1d
— Ethan Mollick (@emollick) June 1, 2024
-
- Dec 2018
-
wendynorris.com wendynorris.comhci1523.vp13
-
Our under-standing of the gap is driven by technological exploration through artifact cre-ation and deployment, but HCI and CSCW systems need to have at their corea fundamental understanding of how people really work and live in groups, or-ganizations, communities, and other forms of collective life. Otherwise, wewill produce unusable systems, badly mechanizing and distorting collabora-tion and other social activity.
The risk of CSCW not driving toward a more scientific pursuit of social theory, understanding, and ethnomethodology and instead simply building "cool toys"
-
The gap is also CSCW’s unique contribution. CSCW exists intellectually atthe boundary and interaction of technology and social settings. Its unique intel-lectual importance is at the confluence of technology and the social, and its
CSCW's potential to become a science of the artificial resides in the study of interactions between society and technology
-
Nonetheless, several guiding questions are required based on thesocial–technical gap and its role in any CSCW science of the artificial:• When can a computational system successfully ignore the need fornuance and context?• When can a computational system augment human activity withcomputer technologies suitably to make up for the loss in nuance andcontext, as argued in the approximation section earlier?• Can these benefits be systematized so that we know when we are add-ing benefit rather than creating loss?• What types of future research will solve some of the gaps betweentechnical capabilities and what people expect in their full range of so-cial and collaborative activities?
Questions to consider in moving CSCW toward a science of the artificial
-
The final first-order approximation is the creation of technical architecturesthat do not invoke the social–technical gap; these architectures neither requireaction nor delegate it. Instead, these architectures provide supportive oraugmentative facilities, such as advice, to users.
Support infrastructures provide a different type of approximation to augment the user experience.
-
Another approximation incorporates new computational mechanisms tosubstitute adequately for social mechanisms or to provide for new social issues(Hollan & Stornetta, 1992).
Approximate a social need with a technical cue. Example in Google Docs of anonymous user icons on page indicates presence but not identity.
-
First-order approximations, to adopt a metaphor from fluid dynamics, aretractable solutions that partially solve specific problems with knowntrade-offs.
Definition of first-order approximations.
Ackerman argues that CSCW needs a set of approximations that drive the development of initial work-arounds for the socio-technical gaps.
Essentially, how to satisfy some social requirements and then approximate the trade-offs. Doesn't consider the product a solution in full but something to iterate and improve
This may have been new/radical thinking 20 years ago but seems to have been largely adopted by the CSCW community
-
Similarly, an educational perspective would argue that programmers andusers should understand the fundamental nature of the social requirements.
Ackerman argues that CS education should include understanding how to design/build for social needs but also to appreciate the social impacts of technology.
-
CSCW’s science, however, must centralize the necessary gap between whatwe would prefer to construct and what we can construct. To do this as a practi-cal program of action requires several steps—palliatives to ameliorate the cur-rent social conditions, first-order approximations to explore the design space,and fundamental lines of inquiry to create the science. These steps should de-velop into a new science of the artificial. In any case, the steps are necessary tomove forward intellectually within CSCW, given the nature of the social–tech-nical gap.
Ackerman sets up the steps necessary for CSCW to become a science of the artificial and to try to resolve the socio-technical gap:
Palliatives to ameliorate social conditions
Approximations to explore the design space
Lines of scientific inquiry
-
Ideological initiatives include those that prioritize the needs of the peopleusing the systems.
Approaches to address social conditions and "block troublesome impacts":
Stakeholder analysis
Participatory design
Scandinavian approach to info system design requires trade union involvement
-
Simon’s (1969/1981) book does not address the inevitable gaps betweenthe desired outcome and the means of producing that outcome for anylarge-scale design process, but CSCW researchers see these gaps as unavoid-able. The social–technical gap should not have been ignored by Simon.Yet, CSCW is exactly the type of science Simon envisioned, and CSCW couldserve as a reconstruction and renewal of Simon’s viewpoint, suitably revised. Asmuch as was AI, CSCW is inherently a science of the artificial,
How Ackerman sees CSCW as a science of the artificial:
"CSCW is at once an engineering discipline attempting to construct suitable systems for groups, organizations, and other collectivities, and at the same time, CSCW is a social science attempting to understand the basis for that construction in the social world (or everyday experience)."
-
At a simple level,CSCW’s intellectual context is framed by social constructionism andethnomethodology (e.g., Berger & Luckmann, 1966; Garfinkel, 1967), systemstheories (e.g., Hutchins, 1995a), and many large-scale system experiences (e.g.,American urban renewal, nuclear power, and Vietnam). All of these pointed tothe complexities underlying any social activity, even those felt to be straightfor-ward.
Succinct description of CSCW as social constructionism, ethnomethodlogy, system theory and large-scale system implementation.
-
Yet,The Sciences of the Artificialbecame an an-them call for artificial intelligence and computer science. In the book he ar-gued for a path between the idea for a new science (such as economics orartificial intelligence) and the construction of that new science (perhaps withsome backtracking in the creation process). This argument was both charac-teristically logical and psychologically appealing for the time.
Simon defines "Sciences of the Artificial" as new sciences/disciplines that synthesize knowledge that is technically or socially constructed or "created and maintained through human design and agency" as opposed to the natural sciences
-
The HCI and CSCW research communitiesneed to ask what one might do to ameliorate the effects of the gap and to fur-ther understand the gap. I believe an answer—and a future HCI challenge—is toreconceptualize CSCW as a science of the artificial. This echoes Simon (1981)but properly updates his work for CSCW’s time and intellectual task.2
Ackerman describes "CSCW as a science of the artificial" as a potential approach to reduce the socio-technical gap
Tags
Annotators
URL
-