5 Matching Annotations
- Oct 2021
-
science.thewire.in science.thewire.in
-
Aeschlimann, J. R. (2021, October 15). Ivermectin Treats Many Infections in Humans – Just Not COVID-19. The Wire Science. https://science.thewire.in/health/ivermectin-treats-many-infections-in-humans-just-not-covid-19/
-
- Mar 2021
-
twitter.com twitter.com
-
Anne Urai. (2020, November 15). All-inclusive authorship on large scientific papers can a be dangerous practice Alert: Potential unpopular opinion Thread 👇1/n [Tweet]. @AnneEUrai. https://twitter.com/AnneEUrai/status/1327934091929464832
-
- Mar 2016
-
www.nature.com www.nature.com
-
The winner-take-all aspect of the priority rule has its drawbacks, however. It can encourage secrecy, sloppy practices, dishonesty and an excessive emphasis on surrogate measures of scientific quality, such as publication in high-impact journals. The editors of the journal Nature have recently exhorted scientists to take greater care in their work, citing poor reproducibility of published findings, errors in figures, improper controls, incomplete descriptions of methods and unsuitable statistical analyses as evidence of increasing sloppiness. (Scientific American is part of Nature Publishing Group.)As competition over reduced funding has increased markedly, these disadvantages of the priority rule may have begun to outweigh its benefits. Success rates for scientists applying for National Institutes of Health funding have recently reached an all-time low. As a result, we have seen a steep rise in unhealthy competition among scientists, accompanied by a dramatic proliferation in the number of scientific publications retracted because of fraud or error. Recent scandals in science are reminiscent of the doping problems in sports, in which disproportionately rich rewards going to winners has fostered cheating.
How the priority rule is killing science.
-
-
mbio.asm.org mbio.asm.org
-
The role of external influences on the scientific enterprise must not be ignored. With funding success rates at historically low levels, scientists are under enormous pressure to produce high-impact publications and obtain research grants. The importance of these influences is reflected in the burgeoning literature on research misconduct, including surveys that suggest that approximately 2% of scientists admit to having fabricated, falsified, or inappropriately modified results at least once (24). A substantial proportion of instances of faculty misconduct involve misrepresentation of data in publications (61%) and grant applications (72%); only 3% of faculty misconduct involved neither publications nor grant applications.
Importance of low funding rates as incitement to fraud
-
The predominant economic system in science is “winner-take-all” (17, 18). Such a reward system has the benefit of promoting competition and the open communication of new discoveries but has many perverse effects on the scientific enterprise (19). The scientific misconduct among both male and female scientists observed in this study may well reflect a darker side of competition in science. That said, the preponderance of males committing research misconduct raises a number of interesting questions. The overrepresentation of males among scientists committing misconduct is evident, even against the backdrop of male overrepresentation among scientists, a disparity more pronounced at the highest academic ranks, a parallel with the so-called “leaky pipeline.” There are multiple factors contributing to the latter, and considerable attention has been paid to factors such as the unique challenges facing young female scientists balancing personal and career interests (20), as well as bias in hiring decisions by senior scientists, who are mostly male (21). It is quite possible that, in at least some cases, misconduct at high levels may contribute to attrition of woman from the senior ranks of academic researchers.
Reason for fraud: winner take all
-