10,000 Matching Annotations
  1. Last 7 days
    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors mapped afferent inputs to distinct cell populations in the ventral tegmental area (VTA) using dimensionality reduction techniques, revealing markedly different connectivity patterns under normal versus drug-treated conditions. They further showed that drug-induced changes in inputs were negatively correlated with the expression of ion channels and proteins involved in synaptic transmission. Functional validation demonstrated that knockdown of a specific voltage-gated calcium channel led to reduced afferent inputs, highlighting a causal link between gene expression and connectivity.

      The authors have clearly addressed the reviewers' previous comments. The study's earlier weaknesses were thoroughly discussed, and additional data were provided to strengthen the findings. Overall, the revised version incorporates more extensive datasets and analyses, resulting in a more robust and compelling study.

    1. Reviewer #1 (Public review):

      Summary:

      The authors show that corticotropin-releasing factor (CRF) neurons in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) monosynaptically target cholinergic interneurons (CINs) in the dorsal striatum of rodents. Functionally, activation of CRFR1 receptors increases CIN firing rate, and this modulation was reduced by pre-exposure to ethanol. This is an interesting finding, with potential significance for alcohol use disorders.

      Strengths:

      Well-conceived circuit mapping experiments identify a novel pathway by which the CeA and BNST can modulate dorsal striatal function by controlling cholinergic tone. Important insight into how CRF, a neuropeptide that is important in mediating aspects of stress, affective/motivational processes and drug-seeking, modulates dorsal striatal function.

      Weaknesses:

      (1) Tracing and expression experiments were performed both in mice and rats (often in non-overlapping ways). While these species are similar in many ways, differences do exist. The authors address this important point in their final text.

      (2) As the authors point out, CRF likely modulates CIN activity in both direct and indirect ways. As justified, exploration of the network-level modulation of CINs by CRF (and how these processes may interact with direct modulation via CRFR1 on CINs) is left for future studies.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents an interesting behavioral paradigm and reveals interactive effects of social hierarchy and threat type on defensive behaviors. However, addressing the aforementioned points regarding methodological detail, rigor in behavioral classification, depth of result interpretation, and focus of the discussion is essential to strengthen the reliability and impact of the conclusions in a revised manuscript.

      Strengths:

      The paper is logically sound, featuring detailed classification and analysis of behaviors, with a focus on behavioral categories and transitions, thereby establishing a relatively robust research framework.

      Weaknesses:

      Several points require clarification or further revision.

      (1) Methods and Terminology Regarding Social Hierarchy:

      The study uses the tube test to determine subordinate status, but the methodological description is quite brief. Please provide a more detailed account of the experimental procedure and the criteria used for determination.

      The dominance hierarchy is established based on pairs of mice. However, the use of terms like "group cohesion" - typically applied to larger groups - to describe dyadic interactions seems overstated. Please revise the terminology to more accurately reflect the pairwise experimental setup.

      (2) Criteria and Validity of Behavioral Classification:

      The criteria for classifying mouse behaviors (e.g., passive defense, active defense) are not sufficiently clear. Please explicitly state the operational definitions and distinguishing features for each behavioral category.

      How was the meaningfulness and distinctness of these behavioral categories ensured to avoid overlap? For instance, based on Figure 3E, is "active defense" synonymous with "investigative defense," involving movement to the near region followed by return to the far region? This requires clearer delineation.

      The current analysis focuses on a few core behaviors, while other recorded behaviors appear less relevant. Please clarify the principles for selecting or categorizing all recorded behaviors.

      (3) Interpretation of Key Findings and Mechanistic Insights:

      Looming exposure increased the proportion of proactive bouts in the dominant zone but decreased it in the subordinate zone (Figure 4G), with a similar trend during rat exposure. Please provide a potential explanation for this consistent pattern. Does this consistency arise from shared neural mechanisms, or do different behavioral strategies converge to produce similar outputs under both threats?

      (4) Support for Claims and Study Limitations:

      The manuscript states that this work addresses a gap by showing defensive responses are jointly shaped by threat type and social rank, emphasizing survival-critical behaviors over fear or stress alone. However, it is possible that the behavioral differences stem from varying degrees of danger perception rather than purely strategic choices. This warrants a clear description and a deeper discussion to address this possibility.

      The Discussion section proposes numerous brain regions potentially involved in fear and social regulation. As this is a behavioral study, the extensive speculation on specific neural circuitry involvement, without supporting neuroscience data, appears insufficiently grounded and somewhat vague. It is recommended to focus the discussion more on the implications of the behavioral findings themselves or to explicitly frame these neural hypotheses as directions for future research.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates the control signals that drive event model updating during continuous experience. The authors apply predictions from previously published computational models to fMRI data acquired while participants watched naturalistic video stimuli. They first examine the time course of BOLD pattern changes around human-annotated event boundaries, revealing pattern changes preceding the boundary in anterior temporal and then parietal regions, followed by pattern stabilization across many regions. The authors then analyze time courses around boundaries generated by a model that updates event models based on prediction error and another that uses prediction uncertainty. These analyses reveal overlapping but partially distinct dynamics for each boundary type, suggesting that both signals may contribute to event segmentation processes in the brain.

      Strengths:

      The question addressed by this paper is of high interest to researchers working on event cognition, perception, and memory. There has been considerable debate about what kinds of signals drive event boundaries, and this paper directly engages with that debate by comparing prediction error and prediction uncertainty as candidate control signals.

      The authors use computational models that explain significant variance in human boundary judgments, and they report the variance explained clearly in the paper.

      The authors' method of using computational models to generate predictions about when event model updating should occur is a valuable mechanistic alternative to methods like HMM or GSBS, which are data-driven.

      The paper utilizes an analysis framework that characterizes how multivariate BOLD pattern dissimilarity evolves before and after boundaries. This approach offers an advance over previous work focused on just the boundary or post-boundary points.

      Weaknesses:

      Boundaries derived from prediction error and uncertainty are correlated for the naturalistic stimuli. This raises some concerns about how well their distinct contributions to brain activity can be separated. While the authors attempt to look at the unique variance, there is a limit to how effectively this can be done without experimentally dissociating prediction error and uncertainty.

      The authors reports an average event length of ~20 seconds, and they also look +20 and -20 seconds around each event boundary. Thus, it's unclear how often pre- and post-boundary timepoints are part of adjacent events. This complicates the interpretations of the reported timecourses.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript offers a careful and technically impressive dissection of how subpopulations within the subthalamic nucleus support reward‑biased decision‑making. The authors recorded from STN neurons in monkeys performing an asymmetric‑reward version of a visual motion discrimination task and combined single‑unit analyses, regression modeling, and drift‑diffusion framework fitting to reveal functionally distinct clusters of neurons. Each subpopulation demonstrated unique relationships to decision variables - such as the evidence‑accumulation rate, decision bound, and non‑decision processes - as well as to post‑decision evaluative signals like choice accuracy and reward expectation. Together, these findings expand our understanding of the computational diversity of STN activity during complex, multi‑attribute choices.

      Strengths:

      (1) The use of an asymmetric‑reward paradigm enables a clean separation between perceptual and reward influences, making it possible to identify how STN neurons blend these different sources of information.

      (2) The dataset is extensive and well‑controlled, with careful alignment between behavioral and neural analyses.

      (3) Relating neuronal cluster activity to drift‑diffusion model parameters provides an interpretable computational link between neural population signals and observed behavior.

      (4) The clustering analyses, validated across multiple parameters and distance metrics, reveal robust functional subgroups within STN. The differentiation of clusters with respect to both evidence and reward coding is an important advance over treating the STN as a unitary structure.

      (5) By linking neural activity to predicted choice accuracy and reward expectation, the study extends the discussion of the STN beyond decision formation to include outcome monitoring and post‑decision evaluation.

      Weaknesses:

      (1) The inferred relationships between neural clusters and specific drift‑diffusion parameters (e.g., bound height, scaling factor, non‑decision time) are intriguing but inherently correlational. The authors should clarify that these associations do not necessarily establish distinct computational mechanisms.

      (2) While the k‑means approach is well described, it remains somewhat heuristic. Including additional cross‑validation (e.g., cluster reproducibility across monkeys or sessions) would strengthen confidence in the four‑cluster interpretation.

      (3) The functional dissociations across clusters are clearly described, but how these subgroups interact within the STN or through downstream basal‑ganglia circuits remains speculative.

      (4) A natural next step would be to construct a generative multi‑cluster model of STN activity, in which each cluster is treated as a computational node (e.g., evidence integrator, bound controller, urgency or evaluative signal).

      (5) Such a low‑dimensional, coupled model could reproduce the observed diversity of firing patterns and predict how interactions among clusters shape decision variables and behavior.

      (6) Population‑level modeling of this kind would move the interpretation beyond correlational mapping and serve as an intermediate framework between single‑unit analysis and in‑vivo perturbation.

      (7) Causal inference gap - Without perturbation data, it is difficult to determine whether the identified neural modulations are necessary or sufficient for the observed behavioral effects. A brief discussion of this limitation - and how future causal manipulations could test these cluster functions - would be valuable.

    1. Reviewer #1 (Public review):

      Summary:

      The study of Drosophila mating behaviors has offered a powerful entry point for understanding how complex innate behaviors are instantiated in the brain. The effectiveness of this behavioral model stems from how readily quantifiable many components of the courtship ritual are, facilitating the fine-scale correlations between the behaviors and the circuits that underpin their implementation. Detailed quantification, however, can be both time-consuming and error-prone, particularly when scored manually. Song et al. have sought to address this challenge by developing DrosoMating, software that facilitates the automated and high-throughput quantification of 6 common metrics of courtship and mating behaviors. Compared to a human observer, DrosoMating matches courtship scoring with high fidelity. Further, the authors demonstrate that the software effectively detects previously described variations in courtship resulting from genetic background or social conditioning. Finally, they validate its utility in assaying the consequences of neural manipulations by silencing Kenyon cells involved in memory formation in the context of courtship conditioning.

      Strengths:

      (1) The authors demonstrate that for three key courtship/mating metrics, DrosoMating performs virtually indistinguishably from a human observer, with differences consistently within 10 seconds and no statistically significant differences detected. This demonstrates the software's usefulness as a tool for reducing bias and scoring time for analyses involving these metrics.

      (2) The authors validate the tool across multiple genetic backgrounds and experimental manipulations to confirm its ability to detect known influences on male mating behavior.

      (3) The authors present a simple, modular chamber design that is integrated with DrosoMating and allows for high-throughput experimentation, capable of simultaneously analyzing up to 144 fly pairs across all chambers.

      Weaknesses:

      (1) DrosoMating appears to be an effective tool for the high-throughput quantification of key courtship and mating metrics, but a number of similar tools for automated analysis already exist. FlyTracker (CalTech), for instance, is a widely used software that offers a similar machine vision approach to quantifying a variety of courtship metrics. It would be valuable to understand how DrosoMating compares to such approaches and what specific advantages it might offer in terms of accuracy, ease of use, and sensitivity to experimental conditions.

      (2) The courtship behaviors of Drosophila males represent a series of complex behaviors that unfold dynamically in response to female signals (Coen et al., 2014; Ning et al., 2022; Roemschied et al., 2023). While metrics like courtship latency, courtship index, and copulation duration are useful summary statistics, they compress the complexity of actions that occur throughout the mating ritual. The manuscript would be strengthened by a discussion of the potential for DrosoMating to capture more of the moment-to-moment behaviors that constitute courtship. Even without modifying the software, it would be useful to see how the data can be used in combination with machine learning classifiers like JAABA to better segment the behavioral composition of courtship and mating across genotypes and experimental manipulations. Such integration could substantially expand the utility of this tool for the broader Drosophila neuroscience community.

      (3) While testing the software's capacity to function across strains is useful, it does not address the "universality" of this method. Cross-species studies of mating behavior diversity are becoming increasingly common, and it would be beneficial to know if this tool can maintain its accuracy in Drosophila species with a greater range of morphological and behavioral variation. Demonstrating the software's performance across species would strengthen claims about its broader applicability.

    1. Reviewer #1 (Public review):

      In this study, the authors took advantage of a powerful method (iEEG) in a large participant cohort (N=42) to demonstrate specific functional connectivity signatures associated with speech. The results highlight the complementary utility of functional connectivity analysis to the more traditional iEEG approaches of characterizing local neural activity.

      Strengths:

      This is an interesting study on the important topic of cortical mechanisms of speech perception and production in humans. The authors provide strong evidence for specific functional connectivity signatures of speech-related cortical activity.

      Weaknesses:

      A potential issue of the work is the interpretation of the five studied experimental conditions as representing distinct cognitive states, where "task conditions" or "behavioral states" would have been more appropriate.

    1. Reviewer #3 (Public review):

      Summary:

      In their study McDermott et al. investigate the neurocomputational mechanism underlying sensory prediction errors. They contrast two accounts: representational sharpening and dampening. Representational sharpening suggests that predictions increase the fidelity of the neural representations of expected inputs, while representational dampening suggests the opposite (decreased fidelity for expected stimuli). The authors performed decoding analyses on EEG data, showing that first expected stimuli could be better decoded (sharpening), followed by a reversal during later response windows where unexpected inputs could be better decoded (dampening). These results are interpreted in the context of opposing process theory (OPT), which suggests that such a reversal would support perception to be both veridical (i.e., initial sharpening to increase the accuracy of perception) and informative (i.e., later dampening to highlight surprising, but informative inputs).

      Strengths:

      The topic of the present study is of significant relevance for the field of predictive processing. The experimental paradigm used by McDermott et al. is well designed, allowing the authors to avoid common confounds in investigating predictions, such as stimulus familiarity and adaptation. The introduction provides a well written summary of the main arguments for the two accounts of interest (sharpening and dampening), as well as OPT. Overall, the manuscript serves as a good overview of the current state of the field.

      Weaknesses:

      In my opinion the study has a few weaknesses. Some method choices appear arbitrary (e.g., binning). Additionally, not all results are necessarily predicted by OPT. Finally, results are challenging to reconcile with previous studies. For example, while I agree with the authors that stimulus familiarity is a clear difference compared to previous designs, without a convincing explanation why this would produce the observed pattern of results, I find the account somewhat unsatisfying.

    1. Reviewer #1 (Public review):

      Summary:

      This study examines how luminescence can be used to measure bacterial population dynamics during antimicrobial treatment by comparing it directly with optical density and colony counts. The authors aim to determine when luminescence reflects changes in population size and when it instead captures metabolic or physiological states induced by drug exposure. By generating parallel datasets under controlled conditions, the work provides a detailed view of how these three common measurements relate to one another across a range of drug treatments.

      Strengths:

      The study is technically strong and thoughtfully designed. Measuring luminescence, optical density, and colony counts from the same cultures allows the authors to make clear and informative comparisons between methods. The data are compelling, and the analyses highlight both agreements and divergences in a way that is easy to interpret. The manuscript also succeeds in showing why these divergences arise. For example, the observation that filamentation and metabolic shifts can sustain luminescence even when colony counts drop provides valuable information on how different readouts capture distinct aspects of bacterial physiology. The writing is clear, the figures are effective, and the work will be useful for researchers who need high-throughput approaches to quantify microbial population dynamics experimentally.

      Weaknesses:

      The study also exposes some inherent limitations of luminescence-based measurements. Because luminescence depends on metabolic activity, it can remain high when cells are damaged or unable to resume growth, and it can fall quickly when drugs disrupt energy production, even if cells remain physically intact. These properties complicate interpretation in conditions that induce strong stress responses or heterogeneous survival states. In addition, the use of drug-free plates for colony counts may overestimate survival when filamented or stressed cells recover once the antibiotic is removed, making differences between luminescence and colony counts harder to attribute to killing alone. Finally, while the authors discuss luminescence in the context of clinically relevant concentration ranges, the current implementation relies on engineered laboratory strains and does not directly demonstrate applicability to clinical isolates. These limitations do not detract from the technical value of the work but should be kept in mind by readers who wish to apply the method more broadly.

    1. Joint Public Review:

      Pippadpally et al. investigate how the conserved E3 ubiquitin ligase Highwire (Hiw/Phr1), a well-established negative regulator of synaptic growth, is functionally and spatially regulated. Using a GFP-tagged Hiw transgene in Drosophila, the authors report that disruption of endocytosis via loss of AP-2, synaptojanin, or Rab11-mediated recycling endosome function leads to accumulation of Hiw in neuronal cell bodies as enlarged foci, altogether accompanied by synaptic overgrowth. Provided that the Hiw foci are sensitive to aliphatic alcohol treatment, the authors propose that impaired endocytosis promotes liquid-liquid phase separation of the E3 ubiquitin ligase, reducing its ability to degrade the MAPKKK Wallenda and thereby activating JNK signalling. Crosstalk with BMP signalling and roles for autophagy are also explored within this framework.

      Strengths

      The work provides a novel tool, the GFP-tagged Hiw transgene, to study the spatio-temporal regulation of the E3 ubiquitin ligase Highwire (Hiw/Phr1) in Drosophila, and its impact on synaptic growth. The results presented point to a potentially thought-provoking connection between endocytic defects, Hiw condensation, Hiw down-regulation and synaptic overgrowth. The specific effects of the endocytic mutants on the redistribution of the Hiw to the neuronal cell body and the genetic interactions between the endocytosis and JNK pathway mutants are convincing.

      Weaknesses

      Several conclusions are insufficiently supported at this point. For example, evidence that the Hiw foci represent bona fide liquid-liquid phase (LLP) separated condensates is limited. Sensitivity to 1,6-hexanediol is not definitive proof of their liquid condensate nature, and their recovery kinetics after 1,6-hexanediol wash-out and their morphology are inconsistent with a pure liquid behaviour. Furthermore, the claim that the Hiw foci are non-vesicular is not strongly supported, as it is only based on the lack of colocalization with a handful of endosomal proteins.

      Importantly, the appearance of the putative condensates is correlative rather than causative for synaptic overgrowth, and in the absence of a mechanistic link between endocytosis and Hiw condensation, the causality is difficult to address. Of note is that the putative condensates are already present (albeit to a lesser extent) in the absence of endocytic defects and that the conclusions rely heavily on overexpressed GFP-Hiw, which may perturb normal protein behaviour and artificially induce condensation or aggregation.

      The use of hypomorphic mutants in genetic experiments also introduces some ambiguity in their interpretation, as the results may reflect dosage effects from multiple pathways rather than pathway order. Finally, the manuscript would benefit from a more comprehensive reference to relevant literature on JNKKKs and BMP signalling, as well as on the recycling endosome function in synaptic growth and the regulation of the aforementioned pathways.

      Overall, while the work presents thought-provoking observations and a potentially interesting regulatory model, additional experimental rigor and broader contextualization are needed to substantiate the proposed mechanism and its biological relevance.

    1. Reviewer #1 (Public review):

      The authors sought to investigate the role of adaptation in supporting object recognition. In particular, the extent to which adaptation to noise improves subsequent recognition of objects embedded in the same or similar noise, and how this interacts with target contrast. The authors approach this question using a combination of psychophysics, electroencephalography, and deep neural networks. They find better behavioural performance and multivariate decoding of stimuli preceded by noise, suggesting a beneficial effect of adaptation to noise. The neural network analysis seeks to provide a deeper explanation of the results by comparing how well different adaptation mechanisms capture the empirical behavioural results. The results show that models incorporating intrinsic adaptation mechanisms, such as additive suppression and divisive normalisation, capture the behavioural results better than those that incorporate recurrent interactions. The study has the potential to provide interesting insights into adaptation, but there are alternative (arguably more parsimonious) explanations for the results that have not been refuted (or even recognised) in the manuscript. If these confounds can be compellingly addressed, then I expect the results would be of interest to a broad range of readers.

      The study uses a multi-modal approach, which provides a rich characterisation of the phenomenon. The methods are described clearly, and the accompanying code and data are made publicly available. The comparison between univariate and multivariate analyses is interesting, and the application of neural networks to distinguish between different models of adaptation seems quite promising.

      There are several concerning confounding factors that need to be addressed before the results can be meaningfully interpreted. In particular, differences in behavioural accuracy may be explained by a simple change detection mechanism in the "same noise" condition, and temporal cuing by the "adaptor" stimulus may explain differences in reaction time. Similarly, interference between event-related potentials may explain the univariate EEG results, and biased decoder training may explain the multivariate results. Thus, it is currently unclear if any of the results reflect adaptation.

      My main concerns relate to how adaptation is induced and how differences between conditions are interpreted. The adaptation period is only 1.5 s. Although brief adaptors (~1 s) can produce stimulus history effects, it is unclear whether these reflect the same mechanisms as those observed with standard, longer adaptation durations (e.g., 10-30 s). Prior EEG work on visual adaptation using longer adaptors has shown that feature-specific effects emerge very early (<100 ms) after test onset in both univariate and multivariate responses (Rideaux et al., 2023, PNAS). In contrast, the present study finds no difference between same and different adaptor conditions until much later (>300 ms). These later effects likely reflect cognitive processes such as template matching or decision-making, rather than sensory adaptation. Although early differences appear between blank and adaptor conditions, these could be explained by interactions between ERPs elicited by adaptor onset/offset and those elicited by the test stimulus; therefore, they cannot be attributed to adaptation. This contradicts the statement in the Discussion that "Our EEG measurements show clear evidence of repetition suppression, in the form of reduced responses to the repeated noise pattern early in time."

      A second concern is the brief inter-stimulus interval. The adaptor is shown for 1.5 s, followed by only a 134 ms blank before the target. When the "adaptor" and test noise are identical, improved performance could simply arise from detecting the pixels that change, namely, those forming the target number. Such change detection does not require adaptation; even simple motion detector units would suffice. If the blank period were longer-beyond the temporal window of motion detectors-then improved performance would more convincingly reflect adaptation. Given the very short blank, however, a more parsimonious explanation for the behavioural effect in the same-noise condition is that change detection mechanisms isolate the target.

      Differences between the blank and adaptor conditions may also be explained by temporal cueing. In the noise conditions, the noise reliably signals the upcoming target time, whereas the blank condition provides no such cue. Given the variable inter-trial interval and the brief target presentation, this temporal cue would strongly facilitate target perception. This account is consistent with the reaction time results: both adaptor conditions produce faster reaction times than the blank condition, but do not differ from each other.

      The decoding analyses are also difficult to interpret, given the training-testing protocol. All trials from the three main conditions (blank, same, different) were used to train the classifier, and then held-out trials - all from one condition-were decoded. Because ERPs in the adaptor conditions differ substantially from those in the blank condition, and because there are twice as many adaptor trials, the classifier is biased toward patterns from the adaptor conditions and will naturally perform worse on blank trials. To compare decoding accuracy meaningfully across conditions, the classifier should be trained on a separate unbiased dataset (e.g., the "clean" data), or each condition should be trained and tested separately using cross-fold validation.

    1. Reviewer #1 (Public review):

      Summary:

      Extracellular electrophysiology datasets are growing in both number and size, and recordings with thousands of sites per animal are now commonplace. Analyzing these datasets to extract the activity of single neurons (spike sorting) is challenging: signal-to-noise is low, the analysis is computationally expensive, and small changes in analysis parameters and code can alter the output. The authors address the problem of volume by packaging the well-characterized SpikeInterface pipeline in a framework that can distribute individual sorting jobs across many workers in a compute cluster or cloud environment. Reproducibility is ensured by running containerized versions of the processing components.

      The authors apply the pipeline in two important examples. The first is a thorough study comparing the performance of two widely used spike-sorting algorithms (Kilosort 2.5 and Kilosort 4). They use hybrid datasets created by injecting measured spike waveforms (templates) into existing recordings, adjusting those waveforms according to the measured drift in the recording. These hybrid ground truth datasets preserve the complex noise and background of the original recording. Similar to the original Kilosort 4 paper, which uses a different method for creating ground truth datasets that include drift, the authors find Kilosort 4 significantly outperforms Kilosort 2.5. The second example measures the impact of compression of raw data on spike sorting with Kilosort 4, showing that accuracy, precision, and recall of the ground truth units are not significantly impacted even by lossy compression. As important as the individual results, these studies provide good models for measuring the impact of particular processing steps on the output of spike sorting.

      Strengths:

      The pipeline uses the Nextflow framework, which makes it adaptable to different job schedulers and environments. The high-level documentation is useful, and the GitHub code is well organized. The two example studies are thorough and well-designed, and address important questions in the analysis of extracellular electrophysiology data.

      Weaknesses:

      The pipeline is very complete, but also complex. Workflows - the optimal artifact removal, best curation for data from a particular brain area or species - will vary according to experiment. Therefore, a discussion of the adaptability of the pipeline in the "Limitations" section would be helpful for readers.

    1. Reviewer #1 (Public review):

      In this work, the authors provide a comprehensive investigation of antagonistic dynamics across large-scale brain networks. They characterize this phenomenon at the global (regional dynamics) and local (multivariate patterns of voxels within regions) levels.

      Furthermore, as opposed to studying these dynamics under resting-state or explicit task conditions, the authors make use of naturalistic narratives, both auditory and visual.

      Perhaps most importantly, this work provides evidence that event boundaries in narratives drive sensory responses, which, in turn, predict anticorrelated activity in task-positive networks and the default mode network. These findings open up new questions regarding the interaction across perceptual systems and these higher-order dynamics in association networks.

      This work is methodologically solid and presents compelling findings that will surely invite new approaches and questions in this area.

      Importantly, these data do not speak to the order or causal structure of these interactions. Time-resolved methods and direct causal interventions will be needed to understand how these interactions drive one another more precisely.

    1. Reviewer #1 (Public review):

      Summary:

      Renard, Ukrow et al. applied their recently published computational pipeline (CHROMAS) to the skin of Euprymna berryi and Sepia officinalis to track the dynamics of cephalopod chromatophore expansion. By segmenting each chromatophore into radial slices and analyzing the co-expansion of slices across regions of the skin, they inferred the motor control underlying chromatophore groups.

      Strengths:

      The authors demonstrate that most motor units of cephalopod skin include a subregion of multiple chromatophores, creating "virtual chromatophores" in between the fixed chromatophores. This is an interesting concept that challenges prevailing models of chromatophore organization, and raises interesting possibilities for how chromatophore arrays may be patterned during development.

      This study introduces new analyses of cephalopod skin that will be valuable for the quantitative study of cephalopod behavior.

      Weaknesses:

      The authors chose to image spontaneous skin changes in sedated animals, rather than visually-evoked skin changes in awake, freely-moving animals. Spontaneous chromatophore changes tend to be small shimmers of expansion and contraction, rather than obvious, sizable expansions. This may make it more challenging to distinguish truly co-occurring expansions from background activity. The authors don't provide any raw data (videos) of the skin, so it is difficult to independently assess the robustness of the inferred chromatophore groupings.

      The patch-clamp experiments in E. berryi are used to test the validity of their approach for inferring motor units. The stimulations evoke expansions of sub-regions of each chromatophore, creating "virtual chromatophores" as predicted from the behavioral analysis. However, the authors were not able to predict these specific motor units from behavioral analysis before confirming them with patch-clamp, limiting the strength of the validation. It would be informative to quantify the results of the patch-clamp experiments - are the inferred motor units of similar sizes to those predicted from behavior?

      The authors report testing multiple experimental conditions (e.g., age, size, behavioral stimuli, sedation, head-fixation, and lighting), but only a small subset of these data are presented. It is difficult to determine which conditions were used for which experiments, and the manuscript would benefit from pooling data from multiple experiments to draw general conclusions about the motor control of cephalopod skin.

      The authors use a different clustering algorithm for E. berryi and S. officinalis, but do not discuss why different clustering approaches were required for the two species.

      Impact:

      The authors use their computational pipeline to generate a number of interesting predictions about chromatophore control, including motor unit size, their spatial distribution within the skin, and the independent control of subregions within individual chromatophores by putatively distinct motor neurons. While these observations are interesting, the current data do not yet fully support them.

      The CHROMAS tool is likely to be valuable to the field, given the need for quantitative frameworks in cephalopod biology. The predictions outlined here provide a useful foundation for future experimental investigation.

    1. Reviewer #1 (Public review):

      The manuscript by Griciunaite et al. explores jam2b functions in the formation of late vascular precursors in what is termed the secondary heart field. The authors nicely show that expression of jam2b defines these cells in the lateral plate mesoderm and the intestinal vasculature using a target integration of Gal4 into the jam2b locus. This analysis is followed by using a UAS:cre approach to follow the lineage of jam2b expressing cells, demonstrating their contributions to the vasculature during a second round of specification of vascular precursors. This is confirmed with single-cell analysis of jam2b-gal4 expressing cells. The authors then explore the genetic requirements of jam2a and b in zebrafish and also show that hand2 functions in the secondary heart field upstream of jam2b.

      Overall, the experimental evidence and results support the major conclusions. The study elucidates a novel role for jam2 in the specification of vascular precursors at later stages of development.

      This understanding has important implications for treating vascular disease and regenerative therapies. The manuscript is very clearly written, and the major conclusions are likely to have a lasting impact on the field.

    1. Reviewer #1 (Public review):

      Summary:

      Wu and colleagues aimed to explain previous findings that adolescents, compared to adults, show reduced cooperation following cooperative behaviour from a partner in several social scenarios. The authors analysed behavioural data from adolescents and adults performing a zero-sum Prisoner's Dilemma task and compared a range of social and non-social reinforcement learning models to identify potential algorithmic differences. Their findings suggest that adolescents' lower cooperation is best explained by a reduced learning rate for cooperative outcomes, rather than differences in prior expectations about the cooperativeness of a partner. The authors situate their results within the broader literature, proposing that adolescents' behaviour reflects a stronger preference for self-interest rather than a deficit in mentalising.

      Strengths:

      The work as a whole suggests that, in line with past work, adolescents prioritise value accumulation, and this can be, in part, explained by algorithmic differences in weighted value learning. The authors situate their work very clearly in past literature, and make it obvious the gap they are testing and trying to explain. The work also includes social contexts which move the field beyond non-social value accumulation in adolescents. The authors compare a series of formal approaches that might explain the results and establish generative and model-comparison procedures to demonstrate the validity of their winning model and individual parameters. The writing was clear, and the presentation of the results was logical and well-structured.

      Weaknesses:

      I had some concerns about the methods used to fit and approximate parameters of interest. Namely, the use of maximum likelihood versus hierarchical methods to fit models on an individual level, which may reduce some of the outliers noted in the supplement, and also may improve model identifiability.

      There was also little discussion given the structure of the Prisoner's Dilemma, and the strategy of the game (that defection is always dominant), meaning that the preferences of the adolescents cannot necessarily be distinguished from the incentives of the game, i.e. they may seem less cooperative simply because they want to play the dominant strategy, rather than a lower preferences for cooperation if all else was the same.

      The authors have now addressed my comments and concerns in their revised version.

      Appraisal & Discussion:

      Overall, I believe this work has the potential to make a meaningful contribution to the field. Its impact would be strengthened by more rigorous modelling checks and fitting procedures, as well as by framing the findings in terms of the specific game-theoretic context, rather than general cooperation.

      Comments on revisions:

      Thank you to the authors for addressing my comments and concerns.

    1. Reviewer #1 (Public review):

      This work by Reitz, Z. L. et al. developed an automated tool for high-throughput identification of microbial metallophore biosynthetic gene clusters (BGCs) by integrating knowledge of chelating moiety diversity and transporter gene families. The study aimed to create a comprehensive detection system combining chelator-based and transporter-based identification strategies, validate the tool through large-scale genomic mining, and investigate the evolutionary history of metallophore biosynthesis across bacteria.

      Major strengths include providing the first automated, high-throughput tool for metallophore BGC identification, representing a significant advancement over manual curation approaches. The ensemble strategy effectively combines complementary detection methods, and experimental validation using HPLC-HRMS strengthens confidence in computational predictions. The work pioneers global analysis of metallophore diversity across the bacterial kingdom and provides a valuable dataset for future computational modeling.

      Some limitations merit consideration. First, ground truth datasets derived from manual curation may introduce selection bias toward well-characterized systems, potentially affecting performance assessment accuracy. Second, the model's dependence on known chelating moieties and transporter families constrains its ability to detect novel metallophore architectures, limiting discovery potential in metagenomic datasets. Third, while the proposed evolutionary hypothesis is internally consistent, it lacks further validation.

      The authors successfully achieved their stated objectives. The tool demonstrates robust performance metrics and practical utility through large-scale application to representative genomes. Results strongly support their conclusions through rigorous validation, including experimental confirmation of predicted metallophores via HPLC-HRMS analysis.

      The work provides significant and immediate impact by enabling transition from labor-intensive manual approaches to automated screening. The comprehensive phylogenetic framework advances understanding of bacterial metal acquisition evolution, informing future studies on microbial metal homeostasis. Community utility is substantial, since the tool and accompanying dataset create essential resources for comparative genomics, algorithm development, and targeted experimental validation of novel metallophores.

      Comments on revisions:

      I am satisfied with the revisions made by the authors, and they have adequately addressed the concerns raised in the previous version of the manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      Poh and colleagues investigate dopamine signaling in the nucleus accumbens (ventromedial striatum) in rats engaged in several forms of Go/No Go tasks, which differed in reward controllability (self-initiated reward seeking or cue-evoked/quasi-pavlovian), and in the specific timing of the action-reward contingencies. They analyze dopamine recordings made with fast scan cyclic voltammetry, and find that dopamine signals vary most consistently to cues that signal a required action (Go cues) vs cues signaling action withholding (No Go cues). Through various analyses, they report that dopamine signals align most clearly with action initiation and with the approach to the reward-delivery location. Collectively, these data support aspects of a variety of frameworks related to accumbens dopamine signaling in movement, action vigor, approach, etc.

      Strengths:

      These studies use several task variants that consolidate a few different components of dopamine signal functions and allow for a broad comparison of many psychological and behavioral aspects. The behavioral analysis is detailed. These results touch on many previous findings, largely showing consistent results with past studies.

      Weaknesses:

      The paper could heavily benefit from some revision to increase clarity of the figures, the methods, and the analysis. The inclusion of many tasks is a strength, but also somewhat overshadows specific points in the data, which could be improved with some revision/reworking.

      Some conclusions are not fully justified. As shown, support for the conclusion "dopamine reflects action initiation but not controllability or effort" is lacking without more analyses and additional context. Further, the notion that the dopamine signals reported here reflect spatial information could be justified more strongly.

      Additional details on subjects used in each study, analysis details on trialwise vs subjects-wise data, and other context would be helpful for improving the paper.

    1. Reviewer #1 (Public review):

      The manuscript by Zeng et al. describes the discovery of an F-actin-binding Legionella pneumophila effector, which they term Lfat1. Lfat1 contains a putative fatty acyltransferase domain that structurally resembles the Rho-GTPase Inactivation (RID) domain toxin from Vibrio vulnificus, which targets small G-proteins. Additionally, Lfat1 contains a coiled-coil (CC) domain.

      The authors identified Lfat1 as an actin-associated protein by screening more than 300 Legionella effectors, expressed as GFP-fusion proteins, for their co-localization with actin in HeLa cells. Actin binding is mediated by the CC domain, which specifically binds to F-actin in a 1:1 stoichiometry. Using cryo-EM, the authors determined a high-quality structure of F-actin filaments bound to the actin-binding domain (ABD) of Lfat1. The structure reveals that actin binding is mediated through a hydrophobic helical hairpin within the ABD (residues 213-279). A Y240A mutation within this region increases the apparent dissociation constant by two orders of magnitude, indicating a critical role for this residue in actin interaction.

      The ABD alone was also shown to strongly associate with F-actin upon overexpression in cells. The authors used a truncated version of the Lfat1 ABD to engineer an F-actin-binding probe, which can be used in a split form. Finally, they demonstrate that full-length Lfat1, when overexpressed in cells, fatty acylates host small G-proteins, likely on lysine residues.

      Comments on revisions:

      Since LFAT1 cannot be produced in E. coli, it may be worth considering immunoprecipitating the protein from mammalian cells to see if it has activity in vitro. Presumably, actin will co-IP but the actin binding mutant can also be used. These are just suggestions to improve an already solid manuscript. Otherwise, I am happy with the paper.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Yamamoto et al. presents a model by which the four main axes of the limb are required for limb regeneration to occur in the axolotl. A longstanding question in regeneration biology is how existing positional information is used to regenerate the correct missing elements. The limb provides an accessible experimental system by which to study the involvement of the anteroposterior, dorsoventral, and proximodistal axes in the regenerating limb. Extensive experimentation has been performed in this area using grafting experiments. Yamamoto et al. use the accessory limb model and some molecular tools to address this question. There are some interesting observations in the study. In particular, one strength the potent induction of accessory limbs in the dorsal axis with BMP2+Fgf2+Fgf8 is very interesting. Although interesting, the study makes bold claims about determining the molecular basis of DV positional cues, but the experimental evidence is not definitive and does not take into account the previous work on DV patterning in the amniote limb. Also, testing the hypothesis on blastemas after limb amputation would be needed to support the strong claims in the study.

      Strengths:

      The manuscript presents some novel new phenotypes generated in axolotl limbs due to Wnt signaling. This is generally the first example in which Wnt signaling has provided a gain of function in the axolotl limb model. They also present a potent way of inducing limb patterning in the dorsal axis by the addition of just beads loaded with Bmp2+Fgf8+Fgf2.

      Comments on revised version:

      Re-evaluation: The authors have significantly improved the manuscript and their conclusions reflect the current state of knowledge in DV patterning of tetrapod limbs. My only point of consideration is their claim of mesenchymal and epithelial expression of Wnt10b and the finding that Fgf2 and Wnt10b are lowly expressed. It is based upon the failed ISH, but this doesn't mean they aren't expressed. In interpreting the Li et al. scRNAseq dataset, conclusions depend heavily on how one analyzes and interprets it. The 7DPA sample shows a very low representation of epithelial cells compared to other time points, but this is likely a technical issue. Even the epithelial marker, Krt17, and the CT/fibroblast marker show some expression elsewhere. If other time points are included in the analysis, Wnt10b, would be interpreted as relatively highly expressed almost exclusively in the epithelium. By selecting the 7dpa timepoint, which may or may not represent the MB stage as it wasn't shown in the paper, the conclusions may be based upon incomplete data. I don't expect the authors to do more work, but it is worth mentioning this possibility. The authors have considered and made efforts to resolve previous concerns.

    1. Reviewer #1 (Public review):

      Summary:

      This study uses single-molecule FRET to analyze the conformational ensemble of an ABC transporter at different temperatures, with different substrate analogs, and under different membrane curvatures (i.e., two populations of vesicles with different radii). The authors combine this data into a general model that describes the influence of membrane curvature on membrane protein conformation.

      Strengths:

      This interesting and quantitative work uses detailed FRET measurements at two different temperatures and in the presence of substrate and two substrate analogs to tease out the energetic contribution of membrane curvature in the conformational change of an ABC transporter. The mechanistic model distinguishes between equilibrium conditions (non-hydrolyzable ATP analog) and steady-state conditions (ATP analog), and describes the data well. The authors are careful with the experimental measurement of the liposome size distribution and perform appropriate controls to ensure it is maintained throughout the experiment.

      Weaknesses:

      An important aspect of this paper is the difference in mechanism between inhibitors AMP-PNP (a substrate analog) and vanadate (together with ADP, forms a transition state analog inhibitor). The mechanisms and inhibitory constants/binding affinities of these inhibitors are not very well-supported in the current form of the manuscript, either through citations or through experiments. Related to this, the interpretation of the different curvature response of BmrA in the presence of vanadate vs AMPPNP is not very clear.

      Overall, the energetic contribution of the membrane curvature is subtle (less than a kT), so while the principles seem generalizable among membrane proteins, whether these principles impact transport or cell physiology remains to be established.

    1. Reviewer #3 (Public review):

      The new results fill a key gap in the logic by strongly supporting the foundational premise that the very quickly reverting paired pulse depression at layer 2/3 synapses is caused by pool depletion. They are particularly critical because a previous study (Dobrunz, Huang, and Stevens, 1997) showed that a similar phenomenon is caused by a completely different category of mechanisms at Schaffer collateral synapses. This does not seem to be a case where the previous study was incorrect because, unlike here, synaptic strength at Schaffer collateral synapses is highly sensitive to extracellular Ca2+. Overall, such a fundamental difference between layer 2/3 and Schaffer synapses is highly noteworthy, given the similarities at the level of morphology and timing, and should be highlighted in the Discussion as an important result of its own. My only hesitation is that the authors do not seem to have done the control experiments, that I suggested, that would have confirmed that the synaptic strength remains stable when switching back to 1.3 mM Ca2+.

    1. Reviewer #1 (Public review):

      The revised manuscript presents an interesting and technically competent set of experiments exploring the role of the infralimbic cortex (IL) in extinction learning. The inclusion of histological validation in the supplemental material improves the transparency and credibility of the results, and the overall presentation has been clarified. However, several key issues remain that limit the strength of the conclusions.

      The behavioral effects reported are modest, as evident from the trial-by-trial data included in the supplemental figures. Although the authors interpret their findings as evidence that IL stimulation facilitates extinction only after prior inhibitory learning, this conclusion is not directly supported by their data. The experiments do not include a condition in which IL stimulation is delivered during extinction training alone, without prior inhibitory experience. Without this control, the claim that prior inhibitory memory is necessary for facilitation remains speculative.

      The electrophysiological example provided shows that IL stimulation induces a sustained inhibition that outlasts the stimulation period. This prolonged suppression could potentially interfere with consolidation processes following tone presentation rather than facilitating them. The authors should consider and discuss this alternative interpretation in light of their behavioral data.

      It is unfortunate that several animals had to be excluded after histological verification, but the resulting mismatch between groups remains a concern. Without a power analysis indicating the number of subjects required to achieve reliable effects, it is difficult to determine whether the modest behavioral differences reflect genuine biological variability or insufficient statistical power. Additional animals may be needed to properly address this imbalance.

      Overall, while the manuscript is improved in clarity and methodological detail, the behavioral effects remain weak, and the mechanistic interpretation requires stronger experimental support and consideration of alternative explanations.

    1. Reviewer #4 (Public review):

      Summary:

      The authors demonstrate a computational rational design approach for developing RNA aptamers with improved binding to the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein. They demonstrate the ability of their approach to improve binding affinity using a previously identified RNA aptamer, RBD-PB6-Ta, which binds to the RBD. They also computationally estimate the binding energies of various RNA aptamers with the RBD and compare against RBD binding energies for a few neutralizing antibodies from the literature. Finally, experimental binding affinities are estimated by electrophoretic mobility shift assays (EMSA) for various RNA aptamers and a single commercially available neutralizing antibody to support the conclusions from computational studies on binding. The authors conclude that their computational framework, CAAMO, can provide reliable structure predictions and effectively support rational design of improved affinity for RNA aptamers towards target proteins. Additionally, they claim that their approach achieved design of high affinity RNA aptamer variants that bind to the RBD as well or better than a commercially available neutralizing antibody.

      Strengths:

      The thorough computational approaches employed in the study provide solid evidence of the value of their approach for computational design of high affinity RNA aptamers. The theoretical analysis using Free Energy Perturbation (FEP) to estimate relative binding energies supports the claimed improvement of affinity for RNA aptamers and provides valuable insight into the binding model for the tested RNA aptamers in comparison to previously studied neutralizing antibodies. The multimodal structure prediction in the early stages of the presented CAAMO framework, combined with the demonstrated outcome of improved affinity using the structural predictions as a starting point for rational design, provide moderate confidence in the structure predictions.

      Weaknesses:

      The experimental characterization of RBD affinities for the antibody and RNA aptamers in this study present serious concerns regarding the methods used and the data presented in the manuscript, which call into question the major conclusions regarding affinity towards the RBD for their aptamers compared to antibodies. The claim that structural predictions from CAAMO are reasonable is rational, but this claim would be significantly strengthened by experimental validation of the structure (i.e. by chemical footprinting or solving the RBD-aptamer complex structure).

      The conclusions in this work are somewhat supported by the data, but there are significant issues with experimental methods that limit the strength of the study's conclusions.

      (1) The EMSA experiments have a number of flaws that limit their interpretability. The uncropped electrophoresis images, which should include molecular size markers and/or positive and negative controls for bound and unbound complex components to support interpretation of mobility shifts, are not presented. In fact, a spliced image can be seen for Figure 4E, which limits interpretation without the full uncropped image. Additionally, he volumes of EMSA mixtures are not presented when a mass is stated (i.e. for the methods used to create Figure 3D), which leaves the reader without the critical parameter, molar concentration, and therefore leaves in question the claim that the tested antibody is high affinity under the tested conditions. Additionally, protein should be visualized in all gels as a control to ensure that lack of shifts is not due to absence/aggregation/degradation of the RBD protein. In the case of Figure 3E, for example, it can be seen that there are degradation products included in the RBD-only lane, introducing a reasonable doubt that the lack of a shift in RNA tests (i.e. Figure 2F) is conclusively due to a lack of binding. Finally, there is no control for nonspecific binding, such as BSA or another non-target protein, which fails to eliminate the possibility of nonspecific interactions between their designed aptamers and proteins in general. A nonspecific binding control should be included in all EMSA experiments.

      (2) The evidence supporting claims of better binding to RBD by the aptamer compared to the commercial antibody is flawed at best. The commercial antibody product page indicates an affinity in low nanomolar range, whereas the fitted values they found for the aptamers in their study are orders of magnitude higher at tens of micromolar. Moreover, the methods section is lacking in the details required to appropriately interpret the competitive binding experiments. With a relatively short 20-minute equilibration time, the order of when the aptamer is added versus the antibody makes a difference in which is apparently bound. The issue with this becomes apparent with the lack of internal consistency in the presented results, namely in comparing Fig 3E (which shows no interference of Ta binding with 5uM antibody) and Fig 5D (which shows interference of Ta binding with 0.67-1.67uM antibody). The discrepancy between these figures calls into question the methods used, and it necessitates more details regarding experimental methods used in this manuscript.

      (3) The utility of the approach for increasing affinity of RNA aptamers for their targets is well supported through computational and experimental techniques demonstrating relative improvements in binding affinity for their G34C variant compared to the starting Ta aptamer. While the EMSA experiments do have significant flaws, the observations of relative relationships in equilibrium binding affinities among the tested aptamer variants can be interpreted with reasonable confidence, given that they were all performed in a consistent manner.

      (4) The claim that the structure of the RBD-Aptamer complex predicted by the CAAMO pipeline is reliable is tenuous. The success of their rational design approach based on the structure predicted by several ensemble approaches supports the interpretation of the predicted structure as reasonable, however, no experimental validation is undertaken to assess the accuracy of the structure. This is not a main focus of the manuscript, given the applied nature of the study to identify Ta variants with improved binding affinity, however the structural accuracy claim is not strongly supported without experimental validation (i.e. chemical footprinting methods).

      (5) Throughout the manuscript, the phrasing of "all tested antibodies" was used, despite there being only one tested antibody in experimental methods and three distinct antibodies in computational methods. While this concern is focused on specific language, the major conclusion that their designed aptamers are as good or better than neutralizing antibodies in general is weakened by only testing only three antibodies through computational binding measurements and a fourth single antibody for experimental testing. The contact residue mapping furthermore lacks clarity in the number of structures that were used, with a vague description of structures from the PDB including no accession numbers provided nor how many distinct antibodies were included for contact residue mapping.

      Overall, the manuscript by Yang et al presents a valuable tool for rational design of improved RNA aptamer binding affinity toward target proteins, which the authors call CAAMO. Notably, the method is not intended for de novo design, but rather as a tool for improving aptamers that have been selected for binding affinity by other methods such as SELEX. While there are significant issues in the conclusions made from experiments in this manuscript, the relative relationships of observed affinities within this study provide solid evidence that the CAAMO framework provides a valuable tool for researchers seeking to use rational design approaches for RNA aptamer affinity maturation.

    1. Reviewer #1 (Public review):

      Summary:

      The temporal regulation of neuronal specification and its molecular mechanisms are important problems in developmental neurobiology. This study focuses on Kenyon cells (KCs), which form the mushroom body in Drosophila melanogaster, in order to address this issue. Building on previous findings, the authors examine the role of the transcription factor Eip93F in the development of late-born KCs. The authors revealed that Eip93F controls the activity of flies at night through the expression of the calcium channel Ca-α1T. Thus, the study clarifies the molecular machinery that controls temporal neuronal specification and animal behavior.

      Strengths:

      The convincing results are based on state-of-the-art molecular genetics, imaging, and behavioral analysis.

    1. Reviewer #1 (Public review):

      Summary:

      This is a rigorous data-driven modeling study extending the authors' previous model of spinal locomotor central pattern generator (CPG) circuits developed for the mouse spinal cord and adapted here to the rat to explore potential circuit-level changes underlying altered speed-dependent gaits due to asymmetric (lateral) thoracic spinal hemisection and symmetric midline contusion. The model reproduces key features of the rat speed-dependent gait-related experimental data before injury and after recovery from these two different thoracic spinal cord injuries and suggests injury-specific mechanisms of circuit reorganization underlying functional recovery. There is much interest in the mechanisms of locomotor behavior recovery after spinal cord injury, and data-driven behaviorally relevant circuit modeling is an important approach. This study represents an important advance of the authors' previous experimental and modeling work on locomotor circuitry and in the motor control field.

      Strengths:

      (1) The authors use an advanced computational model of spinal locomotor circuitry to investigate potential reorganization of neural connectivity underlying locomotor control following recovery from symmetrical midline thoracic contusion and asymmetrical (lateral) hemisection injuries, based on an extensive dataset for the rat model of spinal cord injury.

      (2) The rat dataset used is from an in vivo experimental paradigm involving challenging animals to perform overground locomotion across the full range of speeds before and after the two distinct spinal cord injury models, enabling the authors to more completely reveal injury-specific deficits in speed-dependent interlimb coordination and locomotor gaits.

      (3) The model reproduces the rat gait-related experimental data before injury and after recovery from these two different thoracic spinal cord injuries, which exhibit roughly comparable functional recovery, and suggests injury-specific, compensatory mechanisms of circuit reorganization underlying recovery.

      (4) The model simulations suggest that recovery after lateral hemisection mechanistically involves partial functional restoration of descending drive and long propriospinal pathways, whereas recovery following midline contusion relies on reorganization of sublesional lumbar circuitry combined with altered descending control of cervical networks.

      (5) These observations suggest that symmetrical (contusion) and asymmetrical (lateral hemisection) injuries induce distinct types of plasticity in different spinal cord regions, suggesting that injury symmetry partly dictates the location and type of neural plasticity supporting recovery.

      (6) The authors suggest therapeutic strategies may be more effective by targeting specific circuits according to injury symmetry.

      Weaknesses:

      (1) The recovery mechanisms implemented in the model involve circuit connectivity/connection weights adjustment based on assumptions about the structures involved and compensatory responses to the injury. As the authors acknowledge, other factors affecting locomotor patterns and compensation, such as somatosensory afferent feedback, neurochemical modulator influences, and limb/body biomechanics, are not considered in the model. The authors have now more adequately discussed the limitations of the modeling and associated implications for functional interpretation.

      Comments on revisions:

      The authors have substantially improved the manuscript by including model parameter sensitivity analyses and by more adequately discussing the limitations of the modeling and associated implications for functional interpretation.

    1. Reviewer #1 (Public review):

      Monziani and Ulitsky present a large and exhaustive study on the lncRNA EPB41L4A-AS1 using a variety of genomic methods. They uncover a rather complex picture of a RNA transcript that appears to act via diverse pathways to regulate large numbers of genes' expression, including many snoRNAs. The activity of EPB41L4A-AS1 seems to be intimately linked with the protein SUB1, via both direct physical interactions and direct/indirect of SUB1 mRNA expression.

      The study is characterised by thoughtful, innovative, integrative genomic analysis. It is shown that EPB41L4A-AS1 interacts with SUB1 protein and that this may lead to extensive changes in SUB1's other RNA partners. Disruption of EPB41L4A-AS1 leads to widespread changes in non-polyA RNA expression, as well as local cis changes. At the clinical level, it is possible that EPB41L4A-AS1 plays disease relevant roles, although these seem to be somewhat contradictory with evidence supporting both oncogenic and tumour suppressive activities.

      A couple of issues could be better addressed here. Firstly, the copy number of EPB41L4A-AS1 is an important missing piece of the puzzle. It is apparently highly expressed from the FISH experiments. To get an understanding of how EPB41L4A-AS1 regulates SUB1, an abundant protein, we need to know the relative stoichiometry of these two factors. Secondly, while many of the experiments use two independent Gapmers for EPB41L4A-AS1 knockdown, the RNA-sequencing experiments apparently use just one, with one negative control (?). Evidence is emerging that Gapmers produce extensive off target gene expression effects in cells, potentially exceeding the amount of on-target changes arising through the intended target gene. Therefore, it is important to estimate this through use of multiple targeting and non-targeting ASOs, if one is to get a true picture of EPB41L4A-AS1 target genes. In this Reviewer's opinion, this casts some doubt over interpretation of RNA-seq experiments until that work is done. Nonetheless, the Authors have designed thorough experiments, including overexpression rescue overexpression constructs, to quite confidently assess the role of EPB41L4A-AS1 in snoRNA expression.

      It is possible that EPB41L4A-AS1 plays roles in cancer, either as oncogene or tumour suppressor. However it will in future be important to extend these observations to a greater variety of cell contexts.

      This work is valuable in providing an extensive and thorough analysis of the global mechanisms of an important regulatory lncRNA, and highlights the complexity of such mechanisms via cis and trans regulation and extensive protein interactions.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Seraj et al. introduces a transformative structural biology methodology termed "in extracto cryo-EM." This approach circumvents the traditional, often destructive, purification processes by performing single-particle cryo-EM directly on crude cellular lysates. By utilizing high-resolution 2D template matching (2DTM), the authors localize ribosomal particles within a complex molecular "crowd," achieving near-atomic resolution (~2.2 Å). The biological centerpiece of the study is the characterization of the mammalian translational apparatus under varying physiological states. The authors identify elongation factor 2 (eEF2) as a nearly universal hibernation factor, remarkably present not only on non-translating 80S ribosomes but also on 60S subunits. The study provides a detailed structural atlas of how eEF2, alongside factors like SERBP1, LARP1, and IFRD2, protects the ribosome's most sensitive functional centers (the PTC, DC, and SRL) during cellular stress.

      Strengths:

      The "in extracto" approach is a significant leap forward. It offers the high resolution typically reserved for purified samples while maintaining the "molecular context" found in in situ studies. This addresses a major bottleneck in structural biology: the loss of transiently bound or labile factors during biochemical purification.

      The finding that eEF2 binds and sequesters 60S subunits is a major biological insight. This suggests a "pre-assembly" hibernation state that allows for rapid mobilization of the translation machinery once stress is relieved, which was previously uncharacterized in mammalian cells.

      The authors successfully captured eIF5A and various hibernation factors in states that are traditionally disrupted. The identification of eIF5A across nearly all translating and non-translating states highlights the power of this method to detect ubiquitous but weakly bound regulators.

      The manuscript beautifully illustrates the "shielding" mechanism of the ribosome. By mapping the binding sites of eEF2 and its co-factors, the authors provide a clear chemical basis for how the cell prevents nucleolytic cleavage of ribosomal RNA during nutrient deprivation.

      Weaknesses:

      While 2DTM is a powerful search tool, it inherently relies on a known structural "template." There is a risk that this methodology may be "blind" to highly divergent or novel macromolecular complexes that do not share sufficient structural similarity with the search model. The authors should discuss the limitations of using a vacant 60S/80S template in identifying highly remodeled stress-induced complexes. For instance, what happens if an empty 40S subunit is used as a template? In the current work, while 60S and 80S particles are picked, none are 40S. The authors should comment on this.

      In the GTPase center, the authors identify density for "DRG-like" proteins. However, due to limited local resolution in that specific region, they are unable to definitively distinguish between DRG1 and DRG2. While the structural similarity is high, the functional implications differ, and the identification remains somewhat speculative. The authors should acknowledge this in the text.

      While "in extracto" is superior to purified SPA, the act of cell lysis (even rapid permeabilization) still involves a change in the chemical environment (pH, ion concentration, and dilution of metabolites). The authors could strengthen the manuscript by discussing how post-lysis changes might affect the occupancy of factors like GTP vs. GDP states.

      The study provides excellent snapshots of stationary states (translating vs. hibernating), but the kinetic transition, specifically how the 60S-eEF2 complex is recruited back into active translation, is not well discussed. On page 13, the authors present eEF2 bound to 60S but do not mention anything regarding which nucleotide is bound to the factor. It only becomes clear that it is GDP after looking at Figure S9. This should be clarified in the text. Similarly, the observations that eEF2 is bound to GDP in the 60S and 80S raise questions as to how the factor dissociates from the ribosome. This could also be discussed.

      Overall Assessment:

      The work reported in this manuscript likely represents the future of structural proteomics. The combination of high-resolution structural biology with minimal sample perturbation provides a new standard for investigating the cellular machines that govern life. After addressing minor points regarding template bias, protein identification, and transition dynamics, this work may become a landmark in the field of translation.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Feng et al. uses mouse models to study the embryonic origins of HSPCs. Using multiple types of genetic lineage tracing, the authors aimed to identify whether BM-resident endothelial cells retain hematopoietic capacity in adult organisms. Through an important mix of various labeling methodologies (and various controls), they reach the conclusion that BM endothelial cells contribute up to 3% of hematopoietic cells in young mice.

      Strengths:

      The major strength of the paper lies in the combination of various labeling strategies, including multiple Cdh5-CreER transgenic lines, different CreER lines (col1a2), and different reporters (ZsGreen, mTmG), including a barcoding-type reporter (PolyLox). This makes it highly unlikely that the results are driven by a rare artifact due to one random Cre line or one leaky reporter. The transplantation control (where the authors show no labeling of transplanted LSKs from the Cdh5 model) is also very supportive of their conclusions.

      Weaknesses:

      We believe that the work of ruling out alternative hypotheses, though initiated, was left incomplete. We specifically think that the authors need to properly consider whether there is specific, sparse labeling of HSPCs (in their native, non-transplant, model, in young animals). Polylox experiments, though an exciting addition, are also incomplete without additional controls. Some additional killer experiments are suggested.

    1. Reviewer #1 (Public review):

      Summary:

      In their previous publication (Dong et al. Cell reports 2024), the authors showed that citalopram treatment resulted in reduced tumor size by binding to the E380 site of GLUT1 and inhibiting the glycolytic metabolism of HCC cells, instead of the classical citalopram receptor. Given that C5aR1 was also identified as the potential receptors of citalopram in the previous report, the authors focused on exploring the potential of immune-dependent anti-tumor effect of citalopram via C5aR1. C5aR1 was found to be expressed on tumor-associated macrophages (TAMs) and citalopram administration showed potential to improve the stability of C5aR1 in vitro. Through macrophage depletion and adoptive transfer approaches in HCC mouse models, the data demonstrated the potential importance of C5aR1-expressing macrophage in the anti-tumor effect of citalopram in vivo. Mechanistically, their data suggested that citalopram may regulate the phagocytosis potential and polarization of macrophages through C5aR1, thereby potentiated CD8+T cell responses in vivo. Finally, as the systemic 5-HT level is down-regulated by citalopram, the authors analyzed the association between a low 5-HT and a superior CD8+T cell function against tumor.

      Strengths:

      The idea of repurposing clinical-in-used drugs showed great potential for immediate clinical translation. The data here suggested that the anti-depression drug, citalopram displayed immune regulatory role on TAM via a new target C5aR1 in HCC.

      Comments on revised version:

      The authors have already addressed the previous comments.

    1. Reviewer #1 (Public review):

      Summary:

      This work presents an interesting circuit dissection of the neural system allowing a ctenophore to keep its balance and orientation in its aquatic environment by using a fascinating structure called the statocyst. By combining serial-section electron microscopy with behavioral recordings, the authors found a population of neurons which exists as a syncytium and could associate these neurons with specific functions related to controlling the beating of cilia located in the statocyst. The type A ANN neurons participate in arresting cilia beating, and the type B ANN neurons participate in resuming cilia beating and increasing their beating frequency.

      Moreover, the authors found that bridge cells are connected with the ANN neurons, giving them the role of rhythmic modulators.

      From these observations, the authors conclude that the control is coordination instead of feedforward sensory-motor function, a hypothesis that had been put forth in the past but could not be validated until now. They also compare it to the circuitry implementing a similar behavior in a species that belongs to a different phylum where the nervous system is thought to have evolved separately.

      Therefore, this work significantly advances our knowledge of the circuitry implementing the control of the cilia that participate in statocyst function which ultimately allow the animal to correct its orientation. It explains how the nervous system allows an animal to solve a specific problem and puts it in an evolutionary perspective showing a convincing case of convergent evolution.

      Strengths:

      The evidence for how the circuitry is connected is convincing. Pictures of synapses showing the direction of connectivity are clear and there are good reasons to believe that the diagram inferred is valid, even though we can always expect that some connections are missing.

      The evidence for how the cilia change their beating frequency is also convincing, and the paradigm and recording methods seem pretty robust.

      The authors achieved their aims and the results support their conclusions. This work impacts its field by presenting a mechanism by which ctenophores correct their balance, which will provide a template for comparison with other sensory systems.

    1. Reviewer #1 (Public review):

      The study by Luden et al. seeks to elucidate the molecular functions of AHL15, a member of the AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) protein family, whose overexpression has been shown to extend plant longevity in Arabidopsis. To address this question, the authors conducted genome-wide ChIP-sequencing analyses to identify AHL15 binding sites. They further integrated these data with RNA-sequencing and ATAC-sequencing analyses to compare directly bound AHL15 targets with genes exhibiting altered expression and chromatin accessibility upon ectopic AHL15 overexpression.

      The analyses indicate that AHL15 preferentially associates with regions near transcription start sites (TSS) and transcription end sites (TES). Notably, no clear consensus DNA-binding motif was identified, suggesting that AHL15 binding may be mediated through interactions with other regulatory factors rather than through direct sequence recognition. The authors further show that AHL15 predominantly represses its direct target genes; however, this repression appears to be largely independent of detectable changes in chromatin accessibility.

      In addition to the AHL protein family, the globular H1 domain-containing high-mobility group A (GH1-HMGA) protein family also harbors AT-hook DNA-binding domains. Recent studies have shown that GH1-HMGA proteins repress FLC, a key regulator of flowering time, by interfering with gene-loop formation. The observed enrichment of AHL15 at both TSS and TES regions, therefore, raises the intriguing possibility that AHL15 may also participate in regulating gene-loop architecture. Consistent with this idea, the authors report that several direct AHL15 target genes are known to form gene loops.

      Overall, the conclusions of this study are well supported by the presented data and provide new mechanistic insights into how AHL family proteins may regulate gene expression.

      However, it is important to note that the genome-wide analyses in this study rely predominantly on ectopic overexpression of AHL15 at developmental stages when the gene is not usually expressed. Moreover, loss-of-function phenotypes for AHL15 have not been reported, leaving unresolved whether AHL15 plays a physiological role in regulating plant longevity under native conditions. It therefore remains possible that longevity control is mediated by other AHL family members rather than by AHL15 itself. In this regard, the manuscript's title would benefit from more accurately reflecting this broader implication.

    1. Reviewer #1 (Public review):

      The authors present exciting new experimental data on the antigenic recognition of 78 H3N2 strains (from the beginning of the 2023 Northern Hemisphere season) against a set of 150 serum samples. The authors compare protection profiles of individual sera and find that the antigenic effect of amino acid substitutions at specific sites depends on the immune class of the sera, differentiating between children and adults. Person-to-person heterogeneity in the measured titers is strong, specifically in the group of children's sera. The authors find that the fraction of sera with low titers correlates with the inferred growth rate using maximum likelihood regression (MLR), a correlation that does not hold for pooled sera. The authors then measure the protection profile of the sera against historical vaccine strains and find that it can be explained by birth cohort for children. Finally, the authors present data comparing pre- and post- vaccination protection profiles for 39 (USA) and 8 (Australia) adults. The data shows a cohort-specific vaccination effect as measured by the average titer increase, and also a virus-specific vaccination effect for the historical vaccine strains. The generated data is shared by the authors and they also note that these methods can be applied to inform the bi-annual vaccine composition meetings, which could be highly valuable.

      Comments on revisions:

      Thanks to the authors for the revised version of the manuscript. This version contains extended explanations clarifying the growth analysis by MLR. The other points of the initial report were addressed as well by language adjustments. As discussed during the revision process, future work might focus on the observed heterogeneity among the serum titers to different strains and its causes, which requires additional in-depth analysis.

    1. Reviewer #1 (Public review):

      This is a well-designed and carefully executed study that delivers clear and actionable guidance on the sample size and representative demographic requirements for robust normative modelling in neuroimaging. The central claims are convincingly supported.

      The study has multiple strengths. First, it offers a comprehensive and methodologically rigorous analysis of sample size and age distribution, supported by multiple complementary fit indices. Second, the learning-curve results are compelling and reproducible and will be of immediate utility to researchers planning normative modelling projects. Third, the study includes both replication in an independent dataset and an adaptive transfer analysis from UK Biobank, highlighting both the robustness of the results and the practical advantages of transfer learning for smaller clinical cohorts. Finally, the clinical validation effectively ties the methodological work back to real-world clinical application.

      One dataset-dependent limitation worth noting concerns age-distribution coverage: the larger negative effects observed under left-skewed sampling reflect a mismatch between younger training samples and older test cohorts. Importantly, the authors explicitly quantify this effect using simulation-based coverage analyses and demonstrate that it accounts for the observed asymmetry in sampling performance. By identifying and empirically characterising this constraint, the study appropriately bounds the generalisability of its conclusions while strengthening their interpretability.

    1. Reviewer #1 (Public review):

      This study investigates how Pten loss influences medulloblastoma development in mouse models of Shh-driven MB. Previous studies have shown that Pten heterozygosity can accelerate tumorigenesis in models where the entire GNP compartment harbours MB-promoting mutations, raising questions about how Pten levels and context interact, especially when MB-initiating mutations occur sporadically in the cerebellum. Here, the authors create an allelic series combining sporadic, cell-autonomous induction of oncogenic SmoM2 with Pten loss in granule neuron progenitors. In contrast to previous studies, Pten heterozygosity does not significantly impact tumour development from sporadic SmoM2 induction, whereas complete Pten loss accelerates tumour onset. Analysis of Pten-deficient tumours reveals accumulation of death-resistant differentiated cells and reduced macrophage infiltration. At early stages, Pten-deficient pre-tumour cells exhibit increased proliferation and EGL hyperplasia, indicating that Pten loss drives proliferation but shifts cells towards differentiation.

      Strengths

      This study raises the bar for modelling and interpreting the effects of secondary mutations on MB development. It is carefully executed, and the models-using sporadic oncogene induction rather than EGL-wide genetic manipulations-represent an advance in experimental design. The deeper phenotyping, including single-cell RNA-seq and target validation, adds rigor. This work extends previous work on ShhMB and Pten by showing that Pten heterozygosity in GNPs is likely not responsible for the accelerated tumour development reported in earlier studies. The evolution of these Pten-deficient tumours from proliferative to post-mitotic and death-resistant is an important observation with potential clinical significance.

      Minor weakness

      The absence of an effect of Pten heterozygosity on tumour development in their model suggests non-cell-autonomous effects, but this is not directly demonstrated. Changes in macrophage recruitment warrant further exploration and represent an interesting avenue for future investigation.

  2. Jan 2026
    1. Slavic pre-Christianreligion is at a disadvantage with respect to other religions of ancient Indo-Europeanpeoples: Slavs did not leave any direct written evidence of their religion. Like the otherIndo- European peoples, their culture was originally non-literate, but in their case theydid not adopt writing until they adopted Christianity.

      Slav

    1. Reviewer #1 (Public review):

      This manuscript investigates how dentate gyrus (DG) granule cell subregions, specifically suprapyramidal (SB) and infrapyramidal (IB) blades, are differentially recruited during a high cognitive demand pattern separation task. The authors combine TRAP2 activity labeling, touchscreen-based TUNL behavior, and chemogenetic inhibition of adult-born dentate granule cells (abDGCs) or mature granule cells (mGCs) to dissect circuit contributions.

      This manuscript presents an interesting and well-designed investigation into DG activity patterns under varying cognitive demands and the role of abDGCs in shaping mGC activity. The integration of TRAP2-based activity labeling, chemogenetic manipulation, and behavioral assays provides valuable insight into DG subregional organization and functional recruitment. However, several methodological and quantitative issues limit the interpretability of the findings. Addressing the concerns below will greatly strengthen the rigor and clarity of the study.

      Major points:

      (1) Quantification methods for TRAP+ cells are not applied consistently across panels in Figure 1, making interpretation difficult. Specifically, Figure 1F reports TRAP+ mGCs as density, whereas Figure 1G reports TRAP+ abDGCs as a percentage, hindering direct comparison. Additionally, Figure 1H presents reactivation analysis only for mGCs; a parallel analysis for abDGCs is needed for comparison across cell types.

      (2) The anatomical distribution of TRAP+ cells is different between low- and high-cognitive demand conditions (Figure 2). Are these sections from dorsal or ventral DG? Is this specific to dorsal DG, as itis preferentially involved in cognitive function? What happens in ventral DG?

      (3) The activity manipulation using chemogenetic inhibition of abDGCs in AsclCreER; hM4 mice was performed; however, because tamoxifen chow was administered for 4 or 7 weeks, the labeled abDGC population was not properly birth-dated. Instead, it consisted of a heterogeneous cohort of cells ranging from 0 to 5-7 weeks old. Thus, caution should be taken when interpreting these results, and the limitations of this approach should be acknowledged.

      (4) There is a major issue related to the quantification of the DREADD experiments in Figure 4, Figure 5, Figure 6, and Figure 7. The hM4 mouse line used in this study should be quantified using HA, rather than mCitrine, to reliably identify cells derived from the Ascl lineage. mCitrine expression in this mouse line is not specific to adult-born neurons (off-targets), and its expression does not accurately reflect hM4 expression.

      (5) Key markers needed to assess the maturation state of abDGCs are missing from the quantification. Incorporating DCX and NeuN into the analysis would provide essential information about the developmental stage of these cells.

      Minor points:

      (1) The labeling (Distance from the hilus) in Figure 2B is misleading. Is that the same location as the subgranular zone (SGZ)? If so, it's better to use the term SGZ to avoid confusion.

      (2) Cell number information is missing from Figures 2B and 2C; please include this data.

      (3) Sample DG images should clearly delineate the borders between the dentate gyrus and the hilus. In several images, this boundary is difficult to discern.

      (4) In Figure 6, it is not clear how tamoxifen was administered to selectively inhibit the more mature 6-7-week-old abDGC population, nor how this paradigm differs from the chow-based approach. Please clarify the tamoxifen administration protocol and the rationale for its specificity.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Dixit and colleagues investigate the role of FRG1 in modulating nonsense-mediated mRNA decay using human cell lines and zebrafish embryos. They present data from experiments that test the effect of normal, reduced or elevated levels of FRG1 on NMD of a luciferase-based NMD reporter and on endogenous mRNA substrates of NMD. They also carry out experiments to investigate FRG1's influence on UPF1 mRNA and protein levels, with a particular focus on the possibility that FRG1 regulates UPF1 protein levels through ubiquitin-mediated proteolysis of UPF1. The experiments described also test whether DUX4's effect on UPF1 protein levels and NMD could be mediated through FRG1. Finally, the authors also present experiments that test for physical interaction between UPF1, the spliceosome and components of the exon junction complex.

      Strengths:

      A key strength of the work is its focus on an intriguing model of NMD regulation by FRG1, which is of particular interest as FRG1 is positively regulated by DUX4, which has been previously implicated in subjecting UPF1 to proteosome-mediated degradation and thereby causing NMD inhibition. The data that shows that DUX4-mediated effect on UPF1 levels is diminished upon FRG1 depletion suggests that DUX4's regulation of NMD could be mediated by FRG1.

      Weaknesses:

      A major weakness and concern is that many of the key conclusions drawn by the authors are not supported by the data, and there are also some significant concerns with experimental design. More specific comments below describe these issues:

      (1) Multiple issues lower the confidence in the experiments testing the effect of FRG1 on NMD.

      (a) All reporter assays presented in the manuscript are based on quantification of luciferase activity, and in most cases, the effect on luciferase activity is quite small. This assay is the key experimental approach throughout the manuscript. However, no evidence is provided that the effect captured by this assay is due to enhanced degradation of the mRNA encoding the luciferase reporter, which is what is implied in the interpretation of these experiments. Crucially, there is also no control for the reporter that can account for the effects of experimental manipulations on transcriptional versus post-transcriptional effects. A control reporter lacking a 3'UTR intron is described in Barid et al, where the authors got their NMD reporter from. Due to small effects observed on luciferase activity upon FRG1 depletion, it is necessary to not only measure NMD reporter mRNA steady state levels, but it will be equally important to ascertain that the effect of FRG1 on NMD is at the level of mRNA decay and not altered transcription of NMD substrates. This can be accomplished by testing decay rates of the beta-globin reporter mRNA.

      (b) It is unusual to use luciferase enzymatic activity as a measurement of RNA decay status. Such an approach can at least be justified if the authors can test how many-fold the luciferase activity changes when NMD is inhibited using a chemical inhibitor (e.g., SMG1 inhibitor) or knockdown of a core NMD factor.

      (c) The concern about the direct effect of FRG1 on NMD is further amplified by the small effects of FRG1 knockout on steady-state levels of endogenous NMD targets (Figure 1A and B: ~20% reduction in reporter mRNA in MCF7 cells; Figure 1M, only 18 endogenous NMD targets shared between FRG1_KO and FRG1_KD).

      (d) The question about transcriptional versus post-transcriptional effects is also important in light of the authors' previous work that FRG1 can act as a transcriptional regulator.

      (2) In the experiments probing the relationship between DUX4 and FRG1 in NMD regulation, there are some inconsistencies that need to be resolved.

      (a) Figure 3 shows that the inhibition of NMD reporter activity caused by DUX4 induction is reversed by FRG1 knockdown. Although levels of FRG1 and UPF1 in DUX4 uninduced and DUX4 induced + FRG1 knockdown conditions are similar (Figure 5A), why is the reporter activity in DUX4 induced + FRG1 knockdown cells much lower than DUX4 uninduced cells in Figure 3?

      (b) In Figure 3, it is important to know the effect of FRG1 knockdown in DUX4 uninduced conditions.

      (c) On line 401, the authors claim that MG132 treatment leads to "time-dependent increase in UPF1 protein levels" in Figure 5C. However, upon proteasome inhibition, UPF1 levels significantly increase only at 8h time point, while the change at 12 and 24 hours is not significantly different from the control.

      (3) There are multiple issues with experiments investigating ubiquitination of UPF1:

      (a) Ubiquitin blots in Figure 6 are very difficult to interpret. There is no information provided either in the text or figure legends as to which bands in the blots are being compared, or about what the sizes of these bands are, as compared to UPF1. Also, the signal for Ub in most IP samples looks very similar to or even lower than the input.

      (b) Western blot images in Figure 6D appear to be adjusted for brightness/contrast to reduce background, but are done in such a way that pixel intensities are not linearly altered. This image appears to be the most affected, although some others have also similar patterns (e.g., Figure 5C).

      (4) The experiments probing physical interactions of FRG1 with UPF1, spliceosome and EJC proteins need to consider the following points:

      (a) There is no information provided in the results or methods section on whether immunoprecipitations were carried out in the absence or presence of RNases. Each RNA can be bound by a plethora of proteins that may not be functionally engaged with each other. Without RNase treatment, even such interactions will lead to co-immunoprecipitation. Thus, experiments in Figure 6 and Figure 7A-D should be repeated with and without RNase treatment.

      (b) Also, the authors claim that FRG1 is a "structural component" of EJC and NMD complexes seems to be an overinterpretation. As noted in the previous comment, these interactions could be mediated by a connecting RNA molecule.

      (c) A negative control (non-precipitating protein) is missing in Figure 7 co-IP experiments.

      (d) Polysome analysis is missing important controls. FRG1 and EIF4A3 co-sedimentation with polysomes could simply be due to their association with another large complex (e.g., spliceosome), which will also co-sediment in these gradients. This possibility can at least be tested by Western blotting for some spliceosome components across the gradient fractions. More importantly, a puromycin treatment control needs to be performed to confirm that FRG1 and EIF4A3 are indeed bound to polysomes, which are separated into ribosome subunits upon puromycin treatment. This leads to a shift of the signal for ribosomal proteins and any polysome-associated proteins to the left.

    1. Reviewer #1 (Public review):

      Summary:

      During the earliest stages of mouse development, the zygote and 2-cell (2C) embryo are totipotent, capable of generating all embryonic and extra-embryonic lineages, and they transiently express a distinctive set of "2C-stage" genes, many driven by MERVL long terminal repeat (LTR) promoters. Although activation of these transcripts is a normal feature of totipotency, they must be rapidly silenced as development proceeds to the 4-cell and 8-cell stages; failure to shut down the 2C program results in developmental arrest. This study examines the role of maternal SETDB1, a histone H3K9 methyltransferase, in suppressing the 2C transcriptional network. Using an oocyte-specific conditional knockout that removes maternal Setdb1 while leaving the paternal allele intact, the authors demonstrate that embryos lacking maternal SETDB1 arrest during cleavage, with very few progressing beyond the 8-cell stage and no morphologically normal blastocysts forming. Transcriptomic analyses reveal persistent expression of MERVL-LTR-driven transcripts and other totipotency markers, indicating a failure to terminate the totipotent state. Together, the data demonstrate that maternally deposited SETDB1 is required to silence the MERVL-driven 2C program and enable the transition from totipotency to pluripotency. More broadly, the work identifies maternal SETDB1 as a key chromatin repressor that deposits repressive H3K9 methylation to shut down the transient 2C gene network and to permit normal preimplantation development.

      Strengths:

      (1) Closes a key knowledge gap.

      The study tackles a central open question - how embryos exit the totipotent 2-cell (2C) state - and provides direct in vivo evidence that epigenetic repression is required to terminate the 2C program for development to proceed. By identifying maternal SETDB1 as the responsible factor, the work substantially advances our understanding of the maternal-to-zygotic transition and early lineage specification.

      (2) Clean genetics paired with rigorous genomics.

      An oocyte-specific Setdb1 knockout cleanly isolates a maternal-effect requirement, ensuring that early phenotypes arise from loss of maternal protein. The resulting cleavage-stage arrest is unambiguous (most embryos stall before or around the 8-cell stage). State-of-the-art single-embryo RNA-seq across stages - well-matched to low-cell-number constraints - captures genome-wide mis-expression, including persistent 2C transcripts in mutants, strongly supporting the conclusions.

      (3) Compelling molecular linkage to phenotype.

      Transcriptome data show that without maternal SETDB1, embryos fail to repress a suite of 1-cell/2C-specific genes by the 8-cell stage. The tight correlation between continued activation of the MERVL-driven totipotency network and developmental arrest provides a specific molecular explanation for the observed failure to progress.

      (4) Mechanistic insight grounded in chromatin biology.

      SETDB1, a H3K9 methyltransferase classically linked to heterochromatin and transposon repression, targets MERVL LTRs and MERVL-driven chimeric transcripts in early embryos. Bioinformatic evidence indicates that these loci normally acquire H3K9me3 during the 2C→4C transition. The data articulate a coherent mechanism: maternal SETDB1 deposits repressive H3K9me3 at 2C gene loci to shut down the totipotency network, extending observations from ESC systems to bona fide embryos.

      (5) Broad implications for development and stem-cell biology.

      By pinpointing a maternal gatekeeper of the totipotent-to-pluripotent transition, the work suggests that some cases of cleavage-stage arrest (e.g., in IVF) may reflect faulty epigenetic silencing of transposon-driven genes. It also informs stem-cell efforts to control totipotent-like states in vitro (e.g., 2C-like cells), linking epigenetic reprogramming, transposable-element regulation, and developmental potency.

      Weaknesses:

      (1) Causality not directly demonstrated.

      The link among loss of SETDB1, persistence of 2C transcripts, and developmental arrest is compelling but remains correlative. No rescue experiments test whether dampening the 2C/MERVL program restores development. Targeted interventions-e.g., knocking down key 2C drivers (such as Dux) or pharmacologically curbing MERVL-linked transcription in maternal Setdb1 mutants-would strengthen the claim that unchecked 2C activity is causal rather than a by-product of other SETDB1 functions.

      (2) Limited mechanistic resolution of SETDB1 targeting.

      The study establishes a requirement for maternal SETDB1 but does not define how it is recruited to MERVL loci. Given SETDB1's canonical cooperation with TRIM28/KAP1 and KRAB-ZNFs, upstream sequence-specific factors and/or pre-existing chromatin features likely guide targeting. Direct occupancy and mark-placement evidence (e.g., SETDB1/TRIM28 CUT&RUN or ChIP, and H3K9me3 profiling at MERVL LTRs during the 2C→4C window) would convert inferred mechanisms into demonstrated ones.

      (3) Narrow scope on MERVL; broader epigenomic consequences underexplored.

      Maternal SETDB1 may restrain additional repeat classes or genes beyond the 2C network. A systematic repeatome analysis (LINEs/SINEs/ERV subfamilies) would clarify specificity versus a general loss of heterochromatin control. Moreover, potential effects on imprinting or DNA methylation balance are not examined; perturbations there could also contribute to arrest. Bisulfite-based DNA methylation maps at imprinted loci and allele-specific expression analyses would help rule in/out these mechanisms.

      (4) Phenotype quantitation and transcriptomic breadth could be clearer.

      The developmental phenotype is described qualitatively ("very few beyond 8-cell") without precise stage-wise arrest rates or representative morphology. Tabulated counts (2C/4C/8C/blastocyst), images, and statistics would increase clarity. On the RNA-seq side, the narrative emphasizes known 2C markers; reporting novel/unannotated misregulated transcripts, as well as downregulated pathways (e.g., failure to activate normal 8-cell programs, metabolism, or early lineage markers), would present a fuller portrait of the mutant state.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use an interesting expression system called a retron to express single-stranded DNA aptamers. Expressing DNA as a single-stranded sequence is very hard - DNA is naturally double stranded. However, the successful demonstration by the authors of expressing Lettuce, which is a fluorogenic DNA aptamer, allowed visual demonstration of both expression and folding, but only after extraction in cells, but not in vivo (possibly because of the low fluorescence of Lettuce, or perhaps more likely, some factor in cells preventing Lettuce fluorescence). This method will likely be the main method for expressing and testing DNA aptamers of all kinds, including fluorogenic aptamers like Lettuce and the future variants / alternatives.

      Strengths:

      This has an overall simplicity which will lead to ready adoption. I am very excited about this work. People will be able to express other fluorogenic aptamers or DNA aptamers tagged with Lettuce with this system.

      Weaknesses:

      Some things could be addressed/shown in more detail, e.g. half-lives of different types of DNA aptamers and ways to extend this to mammalian cells.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang and colleagues examine neural representations underlying abstract navigation in entorhinal cortex (EC) and hippocampus (HC) using fMRI. This paper replicates a previously identified hexagonal modulation of abstract navigation vectors in abstract space in EC in a novel task involving navigating in a conceptual Greeble space. In HC, the authors identify a three-fold signal of the navigation angle. They also use a novel analysis technique (spectral analysis) to look at spatial patterns in these two areas and identify phase coupling between HC and EC. Interestingly, the three-fold pattern identified in the hippocampus explains quirks in participants' behavior where navigation performance follows a three-fold periodicity. Finally, the authors propose a EC-HPC PhaseSync Model to understand how the EC and HC construct cognitive maps. The wide array and creativity of the techniques used is impressive but because of their unique nature, the paper would benefit from more details on how some of these techniques were implemented.

    1. Reviewer #1 (Public review):

      Summary:

      The authors develop a multivariate extension of SEM models incorporating transmitted and non-transmitted polygenic scores to disentangle genetic and environmental intergenerational effects across multiple traits. Their goal is to enable unbiased estimation of cross-trait vertical transmission, genetic nurture, gene-environment covariance, and assortative mating within a single coherent framework. By formally deriving multivariate path-tracing rules and validating the model through simulation, they show that ignoring cross-trait structure can severely bias both cross- and within-trait estimates. The proposed method provides a principled tool for studying complex gene-environment interplay in family genomic data.

      Strengths:

      It has become apparent in recent years that multivariate processes play an important role in genetic effects that are studied (e.g., Border et al., 2022), and these processes can affect the interpretation of these studies. This paper develops a comprehensive framework for polygenic score studies using trio data. Their model allows for assortative mating, vertical transmission, gene-environment correlation, and genetic nurture. Their study makes it clear that within-trait and cross-trait influences are important considerations. While their exposition and simulation focus on a bivariate model, the authors point out that their approach can be easily extended to higher-dimensional applications.

      Weaknesses:

      (1) My primary concern is that the paper is very difficult to follow. Perhaps this is inevitable for a model as complicated as this one. Admittedly, I have limited experience working with SEMs, so that might be partly why I really struggled with this paper, but I ultimately still have many questions about how to interpret many aspects of the path diagram, even after spending a considerable amount of time with it. Below, I will try to point out the areas where I got confused (and some where I still am confused). If the authors choose to revise the paper, clarifying some of these points would substantially broaden the paper's accessibility and impact.

      (1a) Figure 1 contains a large number of paths and variable names, and it is not always apparent which variables correspond to which paths. For example, at a first glance, the "k + g_c" term next to the "T_m" box could arguably correspond to any of the four paths near it. Disentangling this requires finding other, more reasonable variables for the other lines and sifting through the 3 pages of tables describing the elements of the figure.

      (1b) More hand-holding, describing the different parameters in the model, would help readers who don't have experience with SEMs. For example, many parameters show up several times (e.g., delta, a, g_c, i_c, w) and describing what these parameters are and why they show up several times would help. Some of this information is found in the tables (e.g., "Note: [N]T denotes either NT or T, as both share the same matrix content"), though I don't believe it is explained what it means to "share the same matrix content."

      (1c) Relatedly, descriptions of the path tracing were very confusing to me. I was relieved to see the example on the bottom of page 10 and top of page 11, but then as I tried to follow the example, I was again confused. Because multiple paths have the same labels, I was not able to follow along which exact path from Figure 1 corresponded to the elements of the sum that made up Theta_{Tm}. Also, based on my understanding of the path-tracing rules described, some paths seemed to be missing. After a while, I think I decided that these paths were captured by the (1/2)*w term since that term didn't seem to be represented by any particular path in the figure, but I'm still not confident I'm right. In this example, rather than referring to things like "four paths through the increased genetic covariance from AM", it might be useful to identify the exact paths represented by indicating the nodes those paths go through. If there aren't space constraints, the authors might even consider adding a figure which just contains the relevant paths for the example

      (1d) The paper has many acronyms and variable names that are defined early in the paper and used throughout. Generally, I would limit acronyms wherever possible in a setting like this, where readers are not necessarily specialists. For the variables, while the definitions are technically found in the paper, it would be useful to readers if they were reminded what the variables stood for when they are referred to later, especially if that particular variable hasn't been mentioned for a while. As I read, I found myself constantly having to scroll back up to the several pages of figures and tables to remind myself of what certain variables meant. Then I would have to find where I was again. It really made a dense paper even harder to follow.

      (1e) Relatedly, on page 13, the authors make reference to a parameter eta, and I don't see it in Figure 1 or any of the tables. What is that parameter?

      (2) This point may be related to me misunderstanding the model, but if LT_p represent the actual genetic factors for the two traits for variants that are transmitted to the child, and T_p represents the PGS of for transmitted variants, shouldn't their be a unidirectional arrow from LT_p to T_p (since the genetic factor affects the PGS and not the other way around) and shouldn't there be no arrow from T_p to Y_0 (since the entire effect of the transmitted SNPs is represented by the arrow from LT_p to Y_0)? If I'm mistaken here, it would be useful to explain why these arrows are necessary.

      (3) Some explanation of how the interpretation of the coefficients differs in a univariate model versus a bivariate model would be useful. For example, in a univariate model, the delta parameter represents the "direct effect" of the PGI on the offspring's outcome (roughly corresponding to a regression of the offspring's outcome onto the offspring's PGI and each parent's PGI). Does it have the same interpretation in the bivariate case, or is it more closely related to a regression of one of the outcomes onto the PGIs for both traits?

      (4) It appears from the model that the authors are assuming away population stratification since the path coefficient between T_m and T_m is delta (the same as the path coefficient between T_m and Y_0). Similarly, I believe the effect of NT_m on Y_0 only has a genetic nurture interpretation if there is no population stratification. Some discussion of this would be valuable.

      References:

      Border, R., Athanasiadis, G., Buil, A., Schork, AJ, Cai, N., Young, AI, ... & Zaitlen, N.A. (2022). Cross-trait assortative mating is widespread and inflates genetic correlation estimates. Science , 378 (6621), 754-761.

    1. Reviewer #1 (Public review):

      This work convincingly shows that, rather than gradually "evolving" throughout interphase, global chromatin architecture undergoes unexpectedly sharp remodeling at G1-S (and to a lesser extent, S-G2) transitions. By applying "standard" Hi-C analyses on carefully sorted cells, the authors provide an excellent temporal view of how global chromatin architecture is changed throughout the cell cycle. They show a surprisingly abrupt increase in compartmentation strength (particularly interactions between the "active" A compartments) at G1-S transition, which is slightly weakened at S-G2 transition. Follow-up experiments show convincingly that the compartment "maturation" does not require the DNA synthesis accompanying S phase per se, but the authors have not identified the responsible factors (work for future publications). The possible biological ramifications of these architectural changes (setting up potential replication "factories", and/or facilitating transcription-replication conflict resolution, both more pertinent for the active A compartments, which are most affected) have been well discussed in the article, but still remain speculative at this stage.

      My major criticism of this article is aimed more at the state of the field in general, rather than this specific article, but it should be discussed to give a more balanced view: what actually is a chromatin compartment? Chromosomal tracing and live tracking experiments have shown that the majority of "structures" identified from Hi-C experiments are statistical phenomena, with even "strong" interactions only being infrequent and transient. A-B compartments are "built up" from multiple very low-frequency "interactions", so ascribing causal effects for genome functions is even tougher. As a result, I have very little confidence in the results of the authors' polymer simulations and their inferred "peninsula" A compartment structures without any other supporting experimental data.

      Specific minor points:

      (1) A better explanation for how Figure 1E was generated is required, because this figure could be very misleading. Figure 1F and all other cis-decay plots (and the Hi-C maps themselves) show that the strongest interactions are always at smaller genomic separations, so why should there be more "heat" at the megabase ranges in Figure 1E?

      (2) An ultra-high-resolution Hi-C study (Harris et al., Nat Commun, 2023) identified very small A and B compartments, including distinctions between gene promoters and gene bodies, raising further questions as to what the nature of a compartment really is beyond a statistical phenomenon. It is unreasonable to expect the authors to generate maps as deep as this prior study, but how much do their conclusions change according to the resolution of their compartment calling? The authors should include a balanced discussion on the "meaning" of A/B compartments.

    1. Reviewer #1 (Public review):

      Giordano et al. demonstrate that yeast cells expressing separated N- and C-terminal regions of Tfb3 are viable and grow well. Using this creative and powerful tool, the authors effectively uncouple CTD Ser5 phosphorylation at promoters and assess its impact on transcription. This strategy is complementary to previous approaches, such as Kin28 depletion or the use of CDK7 inhibitors. The results are largely consistent with earlier studies, reinforcing the importance of the Tfb3 linkage in mediating CTD Ser5 phosphorylation at promoters and subsequent transcription.

      Notably, the authors also observe effects attributable to the Tfb3 linker itself, beyond its role as a simple physical connection between the N- and C-terminal domains. These findings provide functional insight into the Tfb3 linker, which had previously been observed in structural studies but lacked clear functional relevance. Overall, I am very positive about this manuscript and offer a few minor comments below that may help to further strengthen the study.

      (1) Page 4

      PIC structures show the linker emerging from the N-terminal domain as a long alpha-helix running along the interface between the two ATPase subunits, followed by a turn and a short stretch of helix just N-terminal to a disordered region that connects to the C-terminal region (see schematic in Figure 1A).

      The linker helix was only observed in the poised PIC (Abril-Garrido et al., 2023), not in other fully-engaged PIC structures.

      (2) Page 8

      Recent structures (reviewed in (Yu et al., 2023)) show that the Kinase Module would block interactions between the Core Module and other NER factors. Therefore, TFIIH either enters into the NER complex as the free Core Module, or the Kinase Module must dissociate soon after.

      To my knowledge, this is still controversial in the NER field. I note the potential function of the kinase module is likely attributed to the N-terminal region of Tfb3 through its binding to Rad3. Because the yeast strains used in Figure 6 retain the N-terminal region of Tfb3, the UV sensitivity assay presented here is unlikely to directly address the contribution of the kinase module to NER.

      (3) Page 11

      Notably, release of the Tfb3 Linker contact also results in the long alpha-helix becoming disordered (Abril-Garrido et al., 2023), which could allow the kinase access to a far larger radius of area. This flexibility could help the kinase reach both proximal and distal repeats within the CTD, which can theoretically extend quite far from the RNApII body.

      Although the kinase module was resolved at low resolution in all PIC-Mediator structures, these structural studies consistently reveal the same overall positioning of the kinase module on Mediator, indicating that its localization is constrained rather than variable. This observation suggests that the linker region may help position the kinase module at this specific site, likely through direct interactions with the PIC or Mediator. This idea is further supported by numerous cross-links between the linker region and Mediator (Robinson et al., 2016).

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript entitled "Ω-Loop mutations control dynamics 2 of the active site by modulating the 3 hydrogen-bonding network in PDC-3 4 β-lactamase", Chen and coworkers provide a computational investigation of the dynamics of the enzyme Pseudomonas-derived chephalosporinase 3 (PDC3) and some mutants associated with increased antibiotic resistance. After an initial analysis of the enzyme dynamics provided by RMSD/RMSF, the author conclude that the mutations alter the local dynamics within the omega loop and the R2 loop. The authors show that the network of hydrogen bonds in disrupted in the mutants. Constant pH calculations showed that the mutations also change the pKa of the catalytic lysine 67 and pocket volume calculations showed that the mutations expand the catalytic pocket. Finally, time-independent componente analysis (tiCA) showed different profiles for the mutant enzyme as compared to the wild type.

      Strengths:

      The scope of the manuscript is definitely relevant. Antibiotic resistance is an important problem and, in particular, Pseudomonas aeruginosa resistance is associated with an increasing number of deaths. The choice of the computational methods is also something to highlight here. Although I am not familiar with Adaptive Bandit Molecular Dynamics (ABMD), the description provided in the manuscript that this simulation strategy is well suited for the problem under evaluation.

      Weaknesses:

      In the revised version, the authors addressed my concerns regarding their use of the MSM, and in my view, their conclusions are now much more robust and well-supported by the data. While it would be very interesting to see a quantitative correlation between the effects of the mutations observed in the MD data and relevant experimental findings, I understand that this may be beyond the scope of the manuscript.

    1. Reviewer #1 (Public review):

      In this manuscript, Tran et al. investigate the interaction between BICC1 and ADPKD genes in renal cystogenesis. Using biochemical approaches, they reveal a physical association between Bicc1 and PC1 or PC2 and identify the motifs in each protein required for binding. Through genetic analyses, they demonstrate that Bicc1 inactivation synergizes with Pkd1 or Pkd2 inactivation to exacerbate PKD-associated phenotypes in Xenopus embryos and potentially in mouse models. Furthermore, by analyzing a large cohort of PKD patients, the authors identify compound BICC1 variants alongside PKD1 or PKD2 variants in trans, as well as homozygous BICC1 variants in patients with early-onset and severe disease presentation. They also show that these BICC1 variants repress PC2 expression in cultured cells.

      Overall, the concept that BICC1 variants modify PKD severity is plausible, the data are robust, and the conclusions are largely supported.

      Comments on revision:

      My comments have been mostly addressed.

    1. Reviewer #1 (Public review):

      The authors analysed large-scale brain-state dynamics while humans watched a short video. They sought to identify the role of thalamocortical interactions.

      Major concerns

      (1) Rationale for using the naturalistic stimulus

      In terms of brain state dynamics, previous studies have already reported large-scale neural dynamics by applying some data-driven analyses, like energy landscape analysis and Hidden Markov Model, to human fMRI/EEG data recorded during resting/task states. Considering such prior work, it'd be critical to provide sufficient biological rationales to perform a conceptually similar study in a naturalistic condition, i.e., not just "because no previous work has been done". The authors would have to clarify what type of neural mechanisms could be missed in conventional resting-state studies using, say, energy landscape analysis, but could be revealed in the naturalistic condition.

      (2) Effects of the uniqueness of the visual stimulus and reproducibility

      One of the main drawbacks of the naturalistic condition is the unexpected effects of the stimuli. That is, this study looked into the data recorded from participants who were watching Sherlock, but what would happen to the results if we analyzed the brain activity data obtained from individuals who were watching different movies? To ensure the generalizability of the current findings, it would be necessary to demonstrate qualitative reproducibility of the current observations by analysing different datasets that employed different movie stimuli. In fact, it'd be possible to find such open datasets, like www.nature.com/articles/s41597-023-02458-8.

      (3) Spatial accuracy of the "Thalamic circuit" definition

      One of the main claims of this study heavily relies on the accuracy of the localization of two different thalamic architectures: matrix and core. Given the conventional or relatively low spatial resolution of the fMRI data acquisition (3x3x3 mm^3), it appears to be critically essential to demonstrate that the current analysis accurately distinguished fMRI signals between the matrix and core parts of the thalamus for each individual.

      (4) More detailed analysis of the thalamic circuits

      In addition, if such thalamic localisation is accurate enough, it would be greatly appreciated if the authors perform similar comparisons not only between the matrix and core architectures but also between different nuclei. For example, anterior, medial, and lateral groups (e.g., pulvinar group). Such an investigation would meet the expectations of readers who presume some microscopic circuit-level findings.

      (5) Rationale for different time window lengths

      The authors adopted two different time window lengths to examine the neural dynamics. First, they used a 21-TR window for signal normalisation. Then, they narrowed down the window length to 13-TR periods for the following statistical evaluation. Such a seemingly arbitrary choice of the shorter time window might be misunderstood as a measure to relax the threshold for the correction of multiple comparisons. Therefore, it'd be appreciated if the authors stuck to the original 21-TR time window and performed statistical evaluations based on the setting.

      (6) Temporal resolution

      After identifying brain states with energy landscape analysis, this study investigated the brain state transitions by directly looking into the fMRI signal changes. This manner seems to implicitly assume that no significant state changes happen in one TR (=1.5sec), which needs sufficient validation. Otherwise, like previous studies, it'd be highly recommended to conduct different analyses (e.g., random-walk simulation) to address and circumvent this problem.

    1. Reviewer #1 (Public review):

      In this study, Acosta-Bayona et al. investigate whether heavy metal (HM) stress can induce phenotypic and molecular responses in teosinte parviglumis that resemble traits associated with domestication, and whether genes within a domestication-linked region show patterns consistent with reduced genetic diversity and signatures of selection. The authors exposed both maize and teosinte parviglumis to a fixed dose of copper and cadmium, representing an essential and a non-essential element, respectively. They assessed shoot and root phenotypic traits at a defined developmental stage in plants exposed to HM stress versus control. They then integrated these phenotypic results with expanded analyses of genetic diversity across a broader chromosome 5 interval, which was previously associated with domestication-related traits. Overall, the revisions improve the clarity and the robustness of the analyses, as well as make the conclusions better aligned with the evidence.

      The revised manuscript is strengthened by several additions.

      (1) The authors broaden the genetic analysis beyond a small set of loci and evaluate nucleotide variability across several genes within the linked chromosome 5 interval, which improves the interpretation of diversity patterns and reduces concerns about a too narrow locus selection or regional linkage effects driving the conclusions.

      (2) The expression analyses are now presented with clearer methodological separation and stronger quantitative support. Now, tissue/developmental RT-PCR profiles are distinguished from real-time qPCR assays used to test HM-induced expression changes, with appropriate replication and statistical reporting.

      (3) The authors include a transcriptome-scale element by analyzing multiple published and publicly available HM-stress transcriptome datasets and reporting shared differentially expressed genes across studies, which supports the interpretation that the observed expression changes align with broader HM-responsive transcriptional programs.

      However, it remains challenging to distinguish which aspects of the HM responses observed here represent novel insight versus patterns already reported in maize HM-stress studies. In addition, the link between HM exposure and domestication history remains indirect: reduced diversity patterns and stress-responsive expression do not, on their own, demonstrate human-driven selection or a specific paleoenvironmental scenario, and alternative explanations related to general stress responses or regional evolutionary processes cannot be fully excluded.

    1. Reviewer #1 (Public review):

      Summary:

      The study presents a computational pipeline for Imaging Mass Cytometry (IMC) analysis in triple-negative breast cancer (TNBC). Analyzing over 4 million cells from 63 patients, it uncovers a distinct spatial organization of cell types between chemotherapy responders and non-responders. Using graph neural networks, the framework predicts treatment response from pre-treatment samples and identifies key predictive protein markers and cell types associated with therapeutic outcomes.

      Strengths:

      (1) The study presents a novel framework leveraging Imaging Mass Cytometry (IMC) to investigate spatial patterns and differences among patient groups, which has been rarely explored.

      (2) It uncovers several compelling biological insights, providing a deeper understanding of the complex interactions within the tumor microenvironment.

      (3) The analysis pipeline is comprehensive, incorporating batch correction, cell type clustering, and a graph neural network based on cell-cell interactions to predict chemotherapy response, demonstrating methodological innovation and thoughtful design.

      Weaknesses:

      (1) Some figure references are inconsistent. For example, Figure 4C is cited on Page 11, but it does not appear in the manuscript.

      (2) Several explanations and methodological details related to the figures remain unclear. For instance, it is not explained how the overall abundance of cell types in Figures 3D and 3E was calculated, how relative abundance was derived, or how these calculations were adjusted when split by proliferation status. In Table 2, it seems that model performance is reported using different node features (protein abundance or cell type), but the text in the second paragraph suggests that both were used simultaneously. This inconsistency is confusing. Additionally, the process for constructing the cell-cell contact graph, including how edges are defined, should be described more clearly.

      (3) The GNN performance appears modest. An AUROC of 0.71 can indicate meaningful predictive power for chemotherapy response, but it remains moderate. Including a baseline comparison would help contextualize the model's effectiveness. Furthermore, the reported value of 0.58 in Table 2 is relatively low, and its meaning or implication is not clearly explained.

      (4) Some methodological choices are not well justified. For example, the rationale for selecting the Self-Organizing Map (SOM) for clustering over other clustering methods is not discussed.

      (5) The manuscript would benefit from a more explicit discussion of how studies using IMC-based spatial analysis relate to or differ from those employing spatial transcriptomics, particularly in terms of their interpretability.

    1. Reviewer #1 (Public review):

      Summary:

      Lai and Doe address the integration of spatial information with temporal patterning and genes that specify cell fate. They identify the Forkhead transcription factor Fd4 as a lineage-restricted cell fate regulator that bridges transient spatial transcription factors to terminal selector genes in the developing Drosophila ventral nerve cord. The experimental evidence convincingly demonstrates that Fd4 is both necessary for late-born NB7-1 neurons, but also sufficient to transform other neural stem cell lineages toward the NB7-1 identity. This work addresses an important question that will be of interest to developmental neurobiologists: How cell identities defined by initial transient developmental cues can be maintained in the progeny cells, even if the molecular mechanism remains to be investigated. In addition, the study proposes a broader concept of lineage identity genes that could be utilized in other lineages and regions in the Drosophila nervous system and in other species.

      Strengths:

      While the spatial factors patterning the neuroepithelium to define the neuroblast lineages in the Drosophila ventral nerve cord are known, these factors are sometimes absent or not required during neurogenesis. In the current work, Lai and Doe identified Fd4 in the NB7-1 lineage that bridges this gap and explains how NB7-1 neurons are specified after Engrailed (En) and Vnd cease their expression. They show that Fd4 is transiently co-expressed with En and Vnd and are present in all nascent NB7-1 progenies. They further demonstrate that Fd4 is required for later-born NB7-1 progenies and sufficient for the induction of NB7-1 markers (Eve and Dbx) while repressing markers of other lineages when force-expressed in neural progenitors, e.g. in the NB5-6 lineage and in the NB7-3 lineage. They also demonstrate that, when Fd4 is ectopically expressed in NB7-3 and NB5-6 lineages, this leads to the ectopic generation of dorsal muscle-innervating neurons. The inclusion of functional validation using axon projections demonstrates that the transformed neurons acquire appropriate NB7-1 characteristics beyond just molecular markers. Quantitative analyses are thorough and well-presented for most experiments.

      Original weaknesses and potential extensions:

      (1) While Fd4 is required and sufficient for several later-born NB7-1 progeny features, a comparison between early-born (Hb/Eve) and later-born (Run/Eve) appears missing for pan-progenitor gain of Fd4 (with sca-Gal4; Figure 4) and for the NB7-3 lineage (Figure 6). Having a quantification for both could make it clearer whether Fd4 preferentially induces later-born neurons or is sufficient for NB7-1 features without temporal restriction.

      (2) Fd4 and Fd5 are shown to be partially redundant, as Fd4 loss of function alone does not alter the number of Eve+ and Dbx+ neurons. This information is critical and should be included in Figure 3.

      (3) Several observations suggest that lineage identity maintenance involves both Fd4-dependent and Fd4-independent mechanisms. In particular, the fact that fd4-Gal4 reporter remains active in fd4/fd5 mutants even after Vnd and En disappear indicates that Fd4's own expression, a key feature of NB7-1 identity, is maintained independently of Fd4 protein. This raises questions about what proportion of lineage identity features require Fd4 versus other maintenance mechanisms, which deserves discussion.

      (4) Similarly, while gain of Fd4 induces NB7-1 lineage markers and dorsal muscle innervation in NB5-6 and NB7-3 lineages, drivers for the two lineages remain active despite the loss of molecular markers, indicating some regulatory elements retain activity consistent with their original lineage identity. It is therefore important to understand the degree of functional conversion in the gain-of-function experiments. Sparse labeling of Fd4 overexpressing NB5-6 and NB7-3 progenies, as what was done in Seroka and Doe (2019) would be an option.

      (5) The less-penetrant induction of Dbx+ neurons in NB5-6 with Fd4-overexpression is interesting. It might be worth discussing whether it is a Fd4 feature or a NB5-6 feature by examining Dbx+ neuron number in NB7-3 with Fd4-overexpression.

      (6) It is logical to hypothesize that spatial factors specify early-born neurons directly so only late-born neurons require Fd4, but it was not tested. The model would be strengthened by examining whether Fd4-Gal4-driven Vnd rescues the generation of later-born neurons in fd4/fd5 mutants.

      (7) It is mentioned that Fd5 is not sufficient for the NB7-1 lineage identity. The observation is intriguing in how similar regulators serve distinct roles, but the data are not shown. The analysis in Figure 4 should be performed for Fd5 as supplemental information.

      Comments on latest version:

      We appreciate the thorough revision and the detailed point-by-point responses. Overall, the updated manuscript has addressed the main issues we raised previously, especially around the potential potency differences of Fd4 along the birth order axis and possible redundancy with Vnd in early-born neurons. The additional data are convincing and presented clearly, with figures and supplements that are informative and appropriately labeled.

      We noticed one remaining point that could be considered, the necessary-and-sufficient phrasing for Fd4 regulating NB7-1 fates. Given the possible redundancy among Fd4/5 and Vnd and the fact that early-born outputs (U1-3, Figure 3F) are not dependent on Fd4/5, we suggest revising this claim and either (a) limit the claim to necessary and sufficient for late-born NB7-1 progeny identity, or (b) frame Fd4 as sufficient for NB7-1 program induction while being required but redundant (e.g., with Vnd) for early-born features, rather than universally necessary/sufficient across the entire lineage output.

      Regarding the lack of phenotype of single Fd4/5 mutants and Fd5 gain of function, we still encourage the authors to include the fd4 and fd5 single-mutant negative results as a brief supplemental item (e.g., a representative panel plus a simple quantification on Eve and Dbx would be sufficient). This would strengthen transparency, remove "data not shown" statements that are not necessary when these data can be presented as supplementary data with no space limitation, and make it easier for readers to evaluate redundancy claims.

      Overall, we view the work as substantially complete and appreciate its contribution and conceptual framing. We have updated our public review to reflect the current version and the authors' efforts to address the major points raised in the prior round.

    1. Reviewer #1 (Public review):

      Summary:

      This study aims to address an important and timely question: how does the mesoscale architecture of cortical and subcortical circuits reorganize during sensorimotor learning? By using high-density, chronically implanted ultra-flexible electrode arrays, the authors track spiking activity across ten brain regions as mice learn a visual Go/No-Go task. The results indicate that learning leads to more sequential and temporally compressed patterns of activity during correct rejection trials, alongside changes in functional connectivity ranks that reflect shifts in the relative influence of visual, frontal, and motor areas throughout learning. The emergence of a more task-focused subnetwork is accompanied by broader and faster propagation of stimulus information across recorded regions.

      Strengths:

      A clear strength of this work is its recording approach. The combination of stable, high-throughput multi-region recordings over extended periods represents a significant advance for capturing learning-related network dynamics at the mesoscale. The conceptual framework is well motivated, building on prior evidence that decision-relevant signals are widely distributed across the brain. The analysis approach, combining functional connectivity rankings with information encoding metrics is well motivated but needs refinement. These results provide some valuable evidence of how learning can refine both the temporal precision and the structure of interregional communication, offering new insights into circuit reconfiguration during learning.

      Weaknesses:

      Several important aspects of the evidence remain incomplete. In particular, it is unclear whether the reported changes in connectivity truly capture causal influences, as the rank metrics remain correlational and show discrepancies with the manipulation results. The absolute response onset latencies also appear slow for sensory-guided behavior in mice, and it is not clear whether this reflects the method used to define onset timing or factors such as task structure or internal state. Furthermore, the small number of animals, combined with extensive repeated measures, raises questions about statistical independence and how multiple comparisons were controlled. The optogenetic experiments, while intended to test the functional relevance of rank-increasing regions, leave it unclear how effectively the targeted circuits were silenced. Without direct evidence of reliable local inhibition, the behavioral effects or lack thereof are difficult to interpret.

    1. Reviewer #1 (Public review):

      Summary:

      The author's goal was to arrest PsV capsids on the extracellular matrix using cytochalasin D. The cohort was then released and interaction with the cell surface, specifically with CD151 was assessed.

      The model that fragmented HS associated with released virions mediates the dominant mechanism of infectious entry has only been suggested by research from a single laboratory and has not been verified in the 10+ years since publication. The authors are basing this study on the assumption that this model is correct, and these data are referred to repeatedly as the accepted model despite much evidence to the contrary. The discussion in lines 65-71 concerning virion and HSPG affinity changes is greatly simplified. The structural changes in the capsid induced by HS interaction and the role of this priming for KLK8 and furin cleavage has been well researched. Multiple laboratories have independently documented this. If this study aims to verify the shedding model, additional data needs to be provided.

      Note on revisions:

      The authors did an excellent job in their revision to include data from the effect of proteolytic priming on their observed virion transfer to the cell body. All other minor issues were addressed adequately.

      The work could be especially critical to understanding the process of in vivo infection.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to examine how the covariation between cognition (represented by a g-factor based on 12 features of 11 cognitive tasks) and mental health (represented by 133 diverse features) is reflected in MR-based neural markers of cognition, as measured through multimodal neuroimaging (structural, rsfMRI and diffusion MR). To integrate multiple neuroimaging phenotypes across MRI modalities the authors used a so-called a stacking approach, which employs two levels of machine learning. First, they build a predictive model from each neuroimaging phenotype to predict a target variable. Next, in the stacking level, they use predicted values (i.e., cognition predicted from each neuroimaging phenotype) from the first level as features to predict the target variable. To quantify the contribution of the neural indicators of cognition explaining the relationship between cognition and mental health, they conducted commonality analyses. Results showed that when they stacked neuroimaging phenotypes within dwMRI, rsMRI, and sMRI, they captured 25.5%, 29.8%, and 31.6% of the predictive relationship between cognition and mental health, respectively. By stacking all 72 neuroimaging phenotypes across three MRI modalities, they enhanced the explanation to 48%. Age and sex shared substantial overlapping variance with both mental health and neuroimaging in explaining cognition, accounting for 43% of the variance in the cognition-mental health relationship.

      Strengths:

      (1) Big study population (UK Biobank with 14000 subjects)

      (2) Description of methods (including Figure 1) is helpful in understanding the approach

      (3) Final manuscript improved after revision

      Weaknesses:

      (1) The relevance of the question is now better described, but the impact of the work is more of conceptual value than of direct clinical value.

      (2) The discussion on the interpretation of the positive and negative PLRS loadings is now further explained, but remains a bit counterintuitive.

      Note: the computational aspects of the methods fall beyond my expertise.

    1. Joint Public Review:

      In this study, the authors introduce CellCover, a gene panel selection algorithm that leverages a minimal covering approach to identify compact sets of genes with high combinatorial specificity for defining cell identities and states. This framework addresses a key limitation in existing marker selection strategies, which often emphasize individually strong markers while neglecting the informative power of gene combinations. The authors demonstrate the utility of CellCover through benchmarking analyses and biological applications, particularly in uncovering previously unresolved cell states and lineage transitions during neocorticogenesis.

      The major strengths of the work include the conceptual shift toward combinatorial marker selection, a clear mathematical formulation of the minimal covering strategy, and biologically relevant applications that underscore the method's power to resolve subtle cell-type differences. The authors' analysis of the Telley et al. dataset highlights intriguing cases of ribosomal, mitochondrial, and tRNA gene usage in specific cortical cell types, suggesting previously underappreciated molecular signatures in neurodevelopment. Additionally, the observation that outer radial glia markers emerge prior to gliogenic progenitors in primates offers novel insights into the temporal dynamics of cortical lineage specification.

      However, several aspects of the study would benefit from further elaboration. First, the interpretability of gene panels containing individually lowly expressed genes but high combinatorial specificity could be improved by providing clearer guidelines or illustrative examples. Second, the utility of CellCover in identifying rare or transient cell states should be more thoroughly quantified, especially under noisy conditions typical of single-cell datasets. Third, while the findings on unexpected gene categories are provocative, they require further validation - either through independent transcriptomic datasets or orthogonal methods such as immunostaining or single-molecule FISH-to confirm their cell-type-specific expression patterns.

      Specifically, the manuscript would benefit from further clarification and additional validation in the following areas:

      • A more in-depth explanation of marker panel applications is needed. Specifically, how should users interpret gene panels where individual genes show only moderate or low expression levels, but the combination provides high specificity? Providing a concrete example, along with guidelines for interpreting such combinatorial signatures, would enhance the practical utility of the method.

      • Further quantification of CellCover's sensitivity in detecting rare cell subtypes or states would strengthen the evaluation of its performance. Additionally, it would be helpful to assess how CellCover performs under noisy conditions, such as low cell numbers or read depths, which are common challenges in scRNA-seq datasets.

      • It is intriguing and novel that CellCover analysis of the dataset from Telley et al. suggests cell-type-specific expression of ribosomal, mitochondrial, or tRNA genes. These findings would be significantly strengthened by additional validation. For example, the reported radial glia-specific expression of Rps18-ps3 and Rps10-ps1, as well as the postmitotic neuron-specific expression of mt-Tv and mt-Nd4l, should be corroborated using independent scRNA-seq or spatial transcriptomic datasets of the developing neocortex. Alternatively, these expression patterns could be directly examined through immunostaining or single-molecule FISH analysis.

      • The observation that outer radial glia (oRG) markers are expressed in neural progenitors before the emergence of gliogenic progenitors in primates and humans is compelling. This could be further supported by examining the temporal and spatial expression patterns of early oRG-specific markers versus gliogenic progenitor markers in recent human spatial transcriptomic datasets - such as the one published by Xuyu et al. (PMID: 40369074) or Wang et al. (PMID: 39779846).

      Summary:

      Overall, this work provides a conceptually innovative and practically useful method for cell type classification that will be valuable to the single-cell and developmental biology communities. Its impact will likely grow as more researchers seek scalable, interpretable, and biologically informed gene panels for multimodal assays, diagnostics, and perturbation studies.

    1. Reviewer #1 (Public review):

      MPRAs are a high-throughput and powerful tool for assaying the regulatory potential of genomic sequences. However, linking MPRA-nominated regulatory sequences to their endogenous target genes, and identifying the more specific functional regions within these sequences can be challenging. MPRAs that tile a genomic region, and saturation mutagenesis-based MRPAs can help to address these challenges. In this work, Tulloch et al. describe a streamlined MPRA system for the identification and investigation of the regulatory elements surrounding a gene of interest with high resolution. The use of BACs covering a locus of interest to generate MPRA libraries allows for an unbiased, and high-coverage assessment of a particular region. Follow up degenerate MPRAs, where each nucleotide in the nominated sequences are systematically mutated, then can point to key motifs driving their regulatory activity. The authors present this MPRA platform as straightforward, easily customizable, and less time- and resource-intensive than traditional MPRA designs. They demonstrate the utility of their design in the context of the developing mouse retina, where they first use the LS-MPRA to identify active regulatory elements for select retinal genes, followed by d-MPRA which allowed them to dissect the functional regions within those elements and nominate important regulatory motifs. These assays were able to recapitulate some previously known cis-regulatory modules (CRMs), as well as identify some new potential regulatory regions. Follow up experiments assessing co-localization of the gene of interest with the CRM-linked GFP reporter in the target cells, and CUT&RUN assays to confirm transcription factor binding to nominated motifs provided support linking these CRMs to the genes of interest. Overall, this method appears flexible and could be an easy to implement tool for other investigators aiming to study their locus of interest with high resolution.

      Strengths:

      (1) The method of fragmenting BACs allows for high, overlapping coverage of the region of interest.

      (2) The d-MPRA method was an efficient way to identify key functional transcription factor motifs, and nominate specific transcription factor-driven regulatory pathways that could be studied further.

      (3) Additional assays like co-expression analyses using the endogenous gene promoter, and use of the Notch inhibitor in the case of Olig2, helped correlate the activity of the CRMs to the expression of the gene of interest, and distinguish false positives from the initial MPRA.

      (4) The use of these assays across different time points, tissues, and even species demonstrated that they can be used across many contexts to identify both common and divergent regulatory mechanisms for the same gene.

      Weaknesses:

      (1) The LS-MPRA assay most strongly identified promoters, which are not usually novel regulatory elements you would try to discover, and the signal to noise ratio for more TSS-distal, non-promoter regulatory elements was usually high, making it difficult to discriminate lower activity CRMs, like enhancers, from the background. For example, NR2 and NR3 in Figure 3 have very minimal activity peaks (NR3 seems non-existent). The ex vivo data in Figure 2 is similarly noisy. Is there a particular metric or calculation that was or could be used to quantitatively or statistically call a peak above the background? The authors mention in the discussion some adjustments that could reduce the noise, such as increased sequencing depth, which I think is needed to make these initial LS-MPRA results and the benchmarking of this assay more convincing and impactful.

    1. Reviewer #1 (Public review):

      Summary:

      The authors considered the mechanism underlying previous observations that H2A.Z is preferentially excluded from methylated DNA regions. They considered two non-mutually exclusive mechanisms. First, they tested the hypothesis that nucleosomes containing both methylated DNA and H2A.Z might be intrinsically unstable due to their structural features. Second, they explored the possibility that DNA methylation might impede SRCAP-C from efficiently depositing H2A.Z onto these DNA methylated regions.

      Their structural analyses revealed subtle differences between H2A.Z-containing nucleosomes assembled on methylated versus unmethylated DNA. To test the second hypothesis, the authors allowed H2A.Z assembly on sperm chromatin in Xenopus egg extracts and mapped both H2A.Z localization and DNA methylation in this transcriptionally inactive system. They compared these data with corresponding maps from a transcriptionally active Xenopus fibroblast cell line. This comparison confirmed the preferential deposition or enrichment of H2A.Z on unmethylated DNA regions, an effect that was much more pronounced in the fibroblast genome than in sperm chromatin. Furthermore, nucleosome assembly on methylated versus unmethylated DNA, along with SRCAP-C depletion from Xenopus egg extracts, provided a means to test whether SRCAP-C contributes to the preferential loading of H2A.Z onto unmethylated DNA.

      Strengths:

      The strength and originality of this work lie in its focused attempt to dissect the unexplained observation that H2A.Z is excluded from methylated genomic regions.

      Weaknesses:

      The study has two weaknesses. First, although the authors identify specific structural effects of DNA methylation on H2A.Z-containing nucleosomes, they do not provide evidence demonstrating that these structural differences lead to altered histone dynamics or nucleosome instability. Second, building on the elegant work of Berta and colleagues (cited in the manuscript), the authors implicate SRCAP-C in the selective deposition of H2A.Z at unmethylated regions. Yet the role of SRCAP-C appears only partial, and the study does not address how the structural or molecular consequences of DNA methylation prevent efficient H2A.Z deposition. Finally, additional plausible mechanisms beyond the two scenarios the authors considered are not investigated or discussed in the manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates whether prediction error extends beyond lower-order sensory-motor processes to include higher-order cognitive functions. Evidence is drawn from both task-based and resting-state fMRI, with addition of resting-state EEG-fMRI to examine power spectral correlates. The results partially support the existence of dissociable connectivity patterns: stronger ventral-dorsal connectivity is associated with high prediction error, while posterior-anterior connectivity is linked to low prediction error. Furthermore, spontaneous switching between these connectivity patterns was observed at rest and correlated with subtle intersubject behavioral variability.

      Strengths:

      Studying prediction error from the lens of network connectivity provides new insights into predictive coding frameworks. The combination of various independent datasets to tackle the question adds strength, including two well-powered fMRI task datasets, resting-state fMRI interpreted in relation to behavioral measures, as well as EEG-fMRI.

      Minor Weakness:

      The lack of spatial specificity of sensor-level EEG somewhat limits the inferences that can be obtained in terms of how the fMRI network processes and the EEG power fluctuations relate to each other.<br /> While the language no longer suggests a strong overlap of the source of the two signals, several scenarios remain open (e.g., the higher-order fMRI networks being the source of the EEG oscillations, or the networks controlling the EEG oscillations expressed in lower-order cortices, or a third process driving both the observations in fMRI networks and EEG oscillations...) and somewhat weaken interpretability of this section.

      Comments on revisions:

      My prior recommendations have been mostly addressed.

      Questions remaining about the NBS results:

      The authors write about the NBS cluster: "Visual examination of the cluster roughly points to the same four posterior-anterior and ventral-dorsal modules identified formally in main-text ". I think it might be good to add quantification, not just visual inspection. The size of the significant NBS cluster should be reported. What proportion of the edges that passed uncorrected threshold and entered NBS were part of the NBS cluster? Put simply, I don't think any edges beyond those passing NBS-based correction should be interpreted or used downstream in the manuscript.

      Also, NBS is not typically used by collapsing over effects in two effect directions, but the authors use NBS on the absolute value of Z. I understand the logic of the general manuscript focusing on strength rather than direction, but here I am wondering about the methodological validity. I believe that the editor who is an expert on the methodology may be able to comment on the validity of this approach (as opposed to running two separate NBS analyses for the two directions of effect).

    1. Reviewer #2 (Public review):

      This study identifies Visham, an asymmetric structure in developing mouse cysts resembling the Drosophila fusome, an organelle crucial for oocyte determination. Using immunofluorescence, electron microscopy, 3D reconstruction, and lineage labeling, the authors show that primordial germ cells (PGCs) and cysts, but not somatic cells, contain an EMA-rich, branching structure that they named Visham, which remains unbranched in male cysts. Visham accumulates in regions enriched in intercellular bridges, forming clusters reminiscent of fusome "rosettes." It is enriched in Golgi and endosomal vesicles and partially overlaps with the ER. During cell division, Visham localizes near centrosomes in interphase and early metaphase, disperses during metaphase, and reassembles at spindle poles during telophase before becoming asymmetric. Microtubule depolymerization disrupts its formation.

      Cyst fragmentation is shown to be non-random, correlating with microtubule gaps. The authors propose that 8-cell (or larger) cysts fragment into 6-cell and 2-cell cysts. Analysis of Pard3 (the mouse ortholog of Par3/Baz) reveals its colocalization with Visham during cyst asymmetry, suggesting that mammalian oocyte polarization depends on a conserved system involving Par genes, cyst formation, and a fusome-like structure.

      Transcriptomic profiling identifies genes linked to pluripotency and the unfolded protein response (UPR) during cyst formation and meiosis, supported by protein-level reporters monitoring Xbp1 splicing and 20S proteasome activity. Visham persists in meiotic germ cells at stage E17.5 and is later transferred to the oocyte at E18.5 along with mitochondria and Golgi vesicles, implicating it in organelle rejuvenation. In Dazl mutants, cysts form, but Visham dynamics, polarity, rejuvenation, and oocyte production are disrupted, highlighting its potential role in germ cell development.

      Overall, this is an interesting and comprehensive study of a conserved structure in the germline cells of both invertebrate and vertebrate species. Investigating these early stages of germ cell development in mice is particularly challenging. Although primarily descriptive, the study represents a remarkable technical achievement. The images are generally convincing, with only a few exceptions.

      Major comments:

      (1) Some titles contain strong terms that do not fully match the conclusions of the corresponding sections.

      (1a) Article title "Mouse germline cysts contain a fusome-like structure that mediates oocyte development":

      The term "mediates" could be misleading, as the functional data on Visham (based on comparing its absence to wild-type) actually reflects either a microtubule defect or a Dazl mutant context. There is no specific loss-of-function of visham only.

      (1b) Result title, "Visham overlaps centrosomes and moves on microtubules":

      The term "moves" implies dynamic behavior, which would require live imaging data that are not described in the article.

      (1c) Result title, "Visham associates with Golgi genes involved in UPR beginning at the onset of cyst formation":

      The presented data show that the presence of Visham in the cyst coincides temporally with the expression and activity of the UPR response; the term "associates" is unclear in this context.

      (1d) Result title, "Visham participates in organelle rejuvenation during meiosis":

      The term "participates" suggests that Visham is required for this process, whereas the conclusion is actually drawn from the Dazl mutant context, not a specific loss-of-function of visham only.

      (2) The authors aim to demonstrate that Visham is a fusome-like structure. I would suggest simply referring to it as a "fusome-like structure" rather than introducing a new term, which may confuse readers and does not necessarily help the authors' goal of showing the conservation of this structure in Drosophila and Xenopus germ cells. Interestingly, in a preprint from the same laboratory describing a similar structure in Xenopus germ cells, the authors refer to it as a "fusome-like structure (FLS)" (Davidian and Spradling, BioRxiv, 2025).

      Comments on revisions:

      The revised manuscript has been clearly improved, and the authors have addressed all of our comments. I would like to point out two minor issues:

      (1) As suggested by the reviewers, the authors now use the term fusome instead of visham. However, they also acknowledge that this structure lacks many components of the Drosophila fusome. It may therefore be more appropriate to refer to it as a "mouse fusome" or as a "fusome-like structure (FLS)," as used in Xenopus.

      (2) I agree with Reviewer 3 that co-localization between EMA and acTubulin on still images does not convincingly demonstrate that fusome vesicles move along microtubules (Figure S2E).

    1. Reviewer #1 (Public review):

      Summary:

      The issue of how the brain can maintain serial order of presented items in working memory is a major unsolved question in cognitive neuroscience. It has been proposed that this serial order maintenance could be achieved thanks to periodic reactivations of different presented items at different phases of an oscillation, but the mechanisms by which this could be achieved by brain networks, as well as the mechanisms of read-out, are still unclear. In an influential 2008 paper, the authors have proposed a mechanism by which a recurrent network of neurons could maintain multiple items in working memory, thanks to `population spikes' of populations of neurons encoding for the different items, occurring at alternating times. These population spikes occur in a specific regime of the network and are a result of synaptic facilitation, an experimentally observed type of synaptic short-term dynamics with time scales of order hundreds of ms.

      In the present manuscript, the authors extend their model to include another type of experimentally observed short-term synaptic plasticity termed synaptic augmentation, that operates on longer time scales on the order of 10s. They show that while a network without augmentation loses information about serial order, augmentation provides a mechanism by which this order can be maintained in memory thanks to a temporal gradient of synaptic efficacies. The order can then be read out using a read-out network whose synapses are also endowed with synaptic augmentation. Interestingly, the read-out speed can be regulated using background inputs.

      Strengths:

      This is an elegant solution to the problem of serial order maintenance, that only relies on experimentally observed features of synapses. The model is consistent with a number of experimental observations in humans and monkeys. The paper will be of interest to the broad readership of eLife and I believe it will have a strong impact on the field.

      Comments on revisions:

      I am happy with how the authors have addressed my comments, and believe the paper can be published in its present form.

    1. Reviewer #1 (Public review):

      The authors relate a language model developed to predict whether a given sentence correctly followed another given sentence to EEG recordings in a novel way, showing receptive fields related to widely used TRFs. In these responses (or "regression results"), differences between representational levels are found, as well as differences between attended and unattended speech stimuli, and whether there is hearing loss. These differences are found per EEG channel.

      In addition to these novel regression results, which are apparently captured from the EEG specifically around the sentence stimulus offsets, the authors also perform a more standard mTRF analysis using a software package (Eelbrain) and TRF regressors that will be more familiar to researchers adjacent to these topics, which was highly appreciated for its comparative value. Comparing these TRFs with the authors' original regression results, several similarities can be seen. Specifically, response contrasts for attended versus unattended speaker during mixed speech, for the phoneme, syllable, and sentence regressors, are greater for normal-hearing participants than hearing-impaired participants for both analyses, and the temporal and spatial extents of the significant differences are roughly comparable (left-front and 0 - 200 ms for phoneme and syllable, and left and 200 - 300 ms for sentence).

      The inclusion of the mTRF analysis is helpful also because some aspects of the authors' original regression results, between the EEG data and the HM-LSTM linguistic model, are less than clear. The authors state specifically that their regression analysis is only calculated in the -100 - 300 ms window around stimulus/sentence offsets. They clarify that this means that most of the EEG data acquired while the participants are listening to the sentences is not analyzed, because their HM-LSTM model implementation represents all acoustic and linguistic features in a condensed way, around the end of the sentence. Thus the regression between data and model only occurs where the model predictions exist, which is the end of the sentences. This is in contrast to the mTRF analysis, which seems to have been done in a typical way, regressing over the entire stimulus time, because those regressors (phoneme onset, word onset, etc.) exist over the entire sentence time. If my reading of their description of the HM-LSTM regression is correct, it is surprising that the regression weights are similar between the HM-LSTM model and the mTRF model.

      However, the code that the authors uploaded to OSF seems to clarify this issue. In the file ridge_lstm.py, the authors construct the main regressor matrices called X1 and X2 which are passed to sklearn to do the ridge regression. This ridge regression step is calculated on the continuous 10-minute bouts of EEG and stimuli, and it is calculated in a loop over lag times, from -100 ms to 300 ms lag. These regressor matrices are initialized as zeros, and are then filled in two steps: the HM_LSTM model unit weights are read from numpy files and written to the matrices at one timepoint per sentence (as the authors describe in the text), and the traditional phoneme, syllable, etc. annotations are ALSO read in (from csv files) and written to the matrices, putting 1s at every timepoint of those corresponding onsets/offsets. Thus the actual model regressor matrix for the authors' main EEG results includes BOTH the HM_LSTM model weights for each sentence AND the feature/annotation times, for whichever of the 5 features is being analyzed (phonemes, syllables, words, phrases, or sentences).

      So for instance, for the syllable HM_LSTM regression results, the regressor matrix contains: 1) the HM_LSTM model weights corresponding to syllables (a static representation, placed once per sentence offset time), AND 2) the syllable onsets themselves, placed as a row of 1s at every syllable onset time. And as another example, for the word HM_LSTM regression results, the regressor matrix contains: 1) the HM_LSTM model weights corresponding to words (a static representation, placed once per sentence offset time), AND 2) the word onsets themselves, placed as a row of 1s at every word onset time.

      If my reading of the code is correct, there are two main points of clarification for interpreting these methods:

      First, the authors' window of analysis of the EEG is not "limited" to 400 ms as they say; rather the time dimension of both their ridge regression results and their traditional mTRF analysis is simply lags (400 ms-worth), and the responses/receptive fields are calculated over the entire 10-minute trials. This is the normal way of calculating receptive fields in a continuous paradigm. The authors seem to be focusing on the peri-sentence offset time points because that is where the HM_LSTM model weights are placed in the regressor matrix. Also because of this issue, it is not really correct when the authors say that some significant effect occurred at some latency "after sentence offset". The lag times of the regression results should have the traditional interpretation of lag/latency in receptive field analyses.

      Second, as both the traditional linguistic feature annotations and the HM_LSTM model weights are part of the regression for the main ridge regression results here, it is not known what the contribution specifically of the HM_LSTM portion of the regression was. Because the more traditional mTRF analysis showed many similar results to the main ridge regression results here, it seems probable that the simple feature annotations themselves, rather than the HM_LSTM model weights, are responsible for the main EEG results. A further analysis separating these two sets of regressors would shed light on this question.

    1. Reviewer #1 (Public review):

      The authors attempted to compare calcium calcium-binding properties of wildtype calreticulin with calreticulin deletion mutant (CRTDel52) associated with myeloproliferative neoplasms.

      The researchers conducted their study using advanced techniques. They found almost no difference in calcium binding between the two proteins and observed no impact on calcium signaling, specifically store-operated calcium entry (SOCE). The study also noted an increase in ER luminal calcium-binding chaperone proteins. Surprisingly, the authors selected flow cytometry as a technique for measurements of ER luminal calcium. Considering the limitations of this approach, it would be better to use alternative approaches. This is particularly important as previous reports, using cells from MPN patients, indicate reduced ER luminal calcium and effects on SOCE (Blood, 2020). This issue matters because earlier research with MPN patient cells reported reduced ER luminal calcium levels and altered SOCE (Blood, 2020). How do the authors explain the difference between their results and previous findings about lower ER luminal calcium and changed SOCE in MPN patient cells expressing CRTDel52? Other studies have found that unfolded protein responses are activated in MPN cells with CRTDel52 calreticulin (see Blood, 2021), and increased UPR could account for higher levels of some ER-resident calcium-binding proteins observed here. Overall, it remains unclear how this work improves our understanding of MPN or clarifies calreticulin's role in MPN pathophysiology.

    1. Reviewer #1 (Public review):

      Summary:

      The authors proposed a new method to infer connectivity from spike trains whose main novelty relies on their approach to mitigate the problem of model mismatch. The latter arises when the inference algorithm is trained or based on a model that does not accurately describe the data. They propose combining domain adaptation with a deep neural architecture and in an architecture called DeepDAM. They apply DeepDAM to an in vivo ground-truth dataset previously recorded in mouse CA1, show that it performs better than methods without domain adaptation, and evaluate its robustness. Finally, they show that their approach can also be applied to a different problem i.e., inferring biophysical properties of individual neurons.

      Strengths:

      (1) The problem of inferring connectivity from extracellular recording is a very timely one: as the yield of silicon probes steadily increases, the number of simultaneously recorded pairs does so quadratically, drastically increasing the possibility of detecting connected pairs.

      (2) Using domain adaptation to address model mismatch is a clever idea, and the way the authors introduced it into the larger architecture seems sensible.

      (3) The authors clearly put a great effort into trying to communicate the intuitions to the reader.

      Weaknesses:

      (1) The validation of the approach is incomplete: due to its very limited size, the single ground-truth dataset considered does not provide a sufficient basis to draw a strong conclusion. While the authors correctly note that this is the only dataset of its kind, the value of this validation is limited compared to what could be done by carefully designing in silico experiments.

      (2) Surprisingly, the authors fail to compare their method to the approach originally proposed for the data they validate on (English et al., 2017).

      (3) The authors make a commendable effort to study the method's robustness by pushing the limits of the dataset. However, the logic of the robustness analysis is often unclear, and once again, the limited size of the dataset poses major limitations to the authors.

      (4) The lack of details concerning both the approach and the validation makes it challenging for the reader to establish the technical soundness of the study.

      Although in the current form this study does not provide enough basis to judge the impact of DeepDAM in the broader neuroscience community, it nevertheless puts forward a valuable and novel idea: using domain adaptation to mitigate the problem of model mismatch. This approach might be leveraged in future studies and methods to infer connectivity.

    1. Reviewer #1 (Public review):

      Summary:

      Sullivan and colleagues examined the modulation of reflexive visuomotor responses during collaboration between pairs of participants performing a joint reaching movement to a target. In their experiments, the players jointly controlled a cursor that they had to move towards narrow or wide targets. In each experimental block, each participant had a different type of target they had to move the joint cursor to. During the experiment, the authors used lateral perturbation of the cursor to test participants' fast feedback responses to the different target types. The authors suggest participants integrate the target type and related cost of their partner into their own movements, which suggests that visuomotor gains are affected by the partner's task.

      Strengths:

      The topic of the manuscript is very interesting, and the authors are using well-established methodology to test their hypothesis. They combine experimental studies with optimal control models to further support their work. Overall, the manuscript is very timely and shows important findings - that the feedback responses reflect both our and our partner's tasks.

      Weaknesses:

      However, in the current version of the manuscript, I believe the results could also be interpreted differently, which suggests that the authors should provide further support for their hypothesis and conclusions.

      Major Comments:

      (1) Results of the relevant conditions:

      In addition to the authors' explanation regarding the results, it is also possible that the results represent a simple modulation of the reflexive response to a scaled version of cursor movement. That is, when the cursor is partially controlled by a partner, which also contributes to reducing movement error, it can also be interpreted by the sensorimotor system as a scaling of hand-to-cursor movement. In this case, the reflexes are modulated according to a scaling factor (how much do I need to move to bring the cursor to the target). I believe that a single-agent simulation of an OFC model with a scaling factor in the lateral direction can generate the same predictions as those presented by the authors in this study. In other words, maybe the controller has learned about the nature of the perturbation in each specific context, that in some conditions I need to control strongly, whereas in others I do not (without having any model of the partner). I suggest that the authors demonstrate how they can distinguish their interpretation of the results from other explanations.

      (2) The effect of the partner target:

      The authors presented both self and partner targets together. While the effect of each target type, presented separately, is known, it is unclear how presenting both simultaneously affects individual response. That is, does a small target with a background of the wide target affect the reflexive response in the case of a single participant moving? The results of Experiment 2, comparing the case of partner- and self-relevant targets versus partner-irrelevant and self-relevant targets, may suggest that the system acted based on the relevant target, regardless of the presence and instructions regarding the self-target.

      (3) Experiment instructions:

      It is unclear what the general instructions were for the participants and whether the instructions provided set the proposed weighted cost, which could be altered with different instructions.

      (4) Some work has shown that the gain of visuomotor feedback responses reflects the time to target and that this is updated online after a perturbation (Cesonis & Franklin, 2020, eNeuro; Cesonis and Franklin, 2021, NBDT; also related to Crevecoeur et al., 2013, J Neurophysiol). These models would predict different feedback gains depending on the distance remaining to the target for the participant and the time to correct for the jump, which is directly affected by the small or large targets. Could this time be used to target instead of explaining the results? I don't believe that this is the case, but the authors should try to rule out other interpretations. This is maybe a minor point, but perhaps more important is the location (& time remaining) for each participant at the time of the jump. It appears from the figures that this might be affected by the condition (given the change in movement lengths - see Figure 3 B & C). If this is the case, then could some of the feedback gain be related to these parameters and not the model of the partner, as suggested? Some evidence to rule this out would be a good addition to the paper - perhaps the distance of each partner at the time of the perturbation, for example. In addition, please analyze the synchrony of the two partners' movements.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript aims to test the idea that visual recognition (of faces) is hierarchically organized in the human ventral occipital-temporal cortex (VOTC). The paper proposes that if VOTC has a hierarchical organization, this should be seen in two independent features of the VOTC signal. First, hierarchy assumes that signals along the hierarchy increase in representational complexity. Second, hierarchy assumes a progressive increase in the onset time of the earliest neural response at each level of the hierarchy. To test these predictions, the authors extract high-frequency broadband signals from iEEG electrodes in a very large sample of patients (N=140). They find that face selectivity in these signals is distributed across the VOTC with increasing posterior-anterior face selectivity, hence providing evidence for the first prediction. However, they also find broadband activity to occur concurrently, therefore challenging the view of a serial hierarchy.

      Strengths:

      (1) The hypothesis (that VOTC is hierarchically organized) and predictions (that hierarchy predicts increases in representational complexity and increases in onset time) were clearly described.

      (2) The number of subjects sampled (140) is extremely large for iEEG studies that typically involve <10 subjects. Also, 444 face selective recording contacts provide a very nice sampling of the areas of interest.

      Weaknesses:

      (1) A control analysis where areas have known differences in response onset should be performed to increase confidence that the proposed analyses would reveal expected results when a difference in response onset was present across areas. From Figure 3, it can be seen that many electrodes are placed in earlier visual areas (V1-V3) that have previously been shown to have earlier broadband responses to visual images compared to VOTC (e.g. Martin et al., 2019, JNeurosci https://doi.org/10.1523/JNEUROSCI.1889-18.2018). The same analyses as in Figures 4 and 5 should be used comparing VOTC to early visual areas to confirm that the analyses would detect that V1-V3 have earlier onsets compared to VOTC.

      (2) It is unclear why correlating mean timeseries helps understand how much variance is shared between regions (Figure 4). Any variance between images is lost when averaging time series across all images, and this metric thus overestimates the variance shared between areas. Moreover, the finding that correlating time domain signals across VOTC areas does not differ from correlating signals within an area could be driven by this averaging. For example, if the same analysis was done on electrodes in left and right V1 when half of the images had contrast in the left hemifield and the other half had contrast in the right hemifield, the average signals may correlate extremely well, while this correlation falls apart on a trial-by-trial basis. These analyses therefore need to be evaluated on a trial-by-trial basis.

      (3) Previous studies on visual processing in VOTC have shown that evoked potentials are more predictive of the onset of visual stimuli than broadband activity (e.g. Miller et al., 2016, PLOS CB, https://doi.org/10.1371/journal.pcbi.1004660). Testing the prediction from a hierarchical representation that signals along the VOTC increase in onset time should therefore include an evaluation of evoked potential onsets in addition to broadband signals.

      (4) Testing the second prediction, that the onset time of processing increases along the VOTC posterior to anterior path, is difficult using the iEEG broadband signal, because from a signal processing perspective, broadband signals are inherently temporally inaccurate, given that they are filtered. Any filtering in the signal introduces a certain level of temporal smoothing. The manuscript should clearly describe the level of temporal smoothing for the filter settings used.

      (5) The onsets of neural activity in VOTC are surprisingly early: around 80-100 ms. This is earlier than what has previously been reported. For example, the cited Quian Quiroga et al. (2023) found single neuron responses to have the earlier onset around 125 ms (their Figure 3). Similarly, the cited Jacques et al., 2016b and Kadipasaoglu et al., 2017 papers also observe broadband onsets in VOTC after 100 ms. Understanding the temporal smoothing in the broadband signal, as well as showing that typical evoked potentials have latencies compared to other work, would increase confidence that latencies are not underestimated due to factors in the analysis pipeline.

      (6) Understanding the extent to which neural processing in the VOTC is hierarchical is essential for building models of vision that capture processing in the human brain, and the data provides novel insight into these processes.

      For additional context, a schematic figure of the hierarchical view and a more parallel system described in the paragraph on models of visual recognition (lines 553) would help the reader interpret and understand the implications of the paper.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors elegantly combined latent variable models (i.e., HMM, GPFA and dynamical system models) with a calcium imaging observation model (i.e., latent Poisson spiking and autoregressive calcium dynamics (AR)).

      Strengths:

      Integrating a calcium observation model into existing latent variable models improves significantly the inference of latent neural states compared to existing approaches such as spike deconvolution or Gaussian assumptions.<br /> The authors also provide an open-source access to their method for direct application to calcium imaging data analysis.

      Weaknesses:

      As acknowledged by the authors, their method is dependent on the quality of calcium trace extraction from fluorescence videos. It should be noted that this limitation applies to alternative strategies.

      While the contribution of this study should prove useful for researchers using calcium imaging, the novelty is limited, as it consists of an integration of the calcium imaging model from Ganmor et al. 2016 with existing LVM frameworks.

    1. Reviewer #1 (Public review):

      I read this paper with great interest based on my experience in insect sciences. I have some minor comments (and recommendations) that I believe the authors should address.

      (1) The paper has an original biological question that is overly broad and mechanistically ambitious. The central biological question, namely how CLas infection enhances fecundity of Diaphorina citri via dopamine signaling, is clearly stated and well motivated by previous literature. However, my advice to the authors is that, while the general question is clear, the manuscript attempts to answer multiple mechanistic layers simultaneously. As a result, I feel that the biological narrative becomes diffuse, especially in later sections where DA, miRNA regulation, AKH signaling, and JH signaling are all proposed as parts of a single linear cascade. In summary, my key concern is that the paper often moves from correlation to causal hierarchy without fully disentangling whether these pathways act sequentially, in parallel, or redundantly. A more explicitly framed primary hypothesis (e.g., "DA-DcDop2 is necessary and sufficient for CLas-induced fecundity") may improve conceptual clarity.

      (2) On the novelty of the data, I feel they are moderately novel, with substantial confirmatory components. If I am correct, the novel contributions include the identification of DcDop2 as the DA receptor responsive to CLas infection in D. citri, the discovery that miR-31a directly targets DcDop2, which is supported by luciferase assays and RIP, and thirdly, the integration of dopamine signaling into the already-described CLas-AKH-JH-fecundity framework. My advice to the authors is to focus more on the manuscript's novelty, which lies more in pathway integration than in discovering fundamentally new biological phenomena. This is appropriate for a mechanistic paper, but should be framed as an extension of existing models rather than a paradigm shift.

      (3) On the conclusions, I recommend that the authors modify their statements a little. I feel that there are some overstated or insufficiently supported claims. For instance, the assertion that CLas "hijacks" the DA-DcDop2-miR-31a-AKH-JH cascade implies direct pathogen manipulation, but no CLas-derived effector or mechanism is identified. Also that the model suggests a linear signaling hierarchy, but the data largely show correlation and partial dependency rather than strict epistasis. In third, the term "mutualistic interaction" may be too strong, as host fitness costs outside fecundity (e.g., longevity, immunity) are not evaluated. In conclusion, I confirm that the data support a functional association, but mechanistic causality and evolutionary interpretation are somewhat overstated.

    1. Reviewer #1 (Public review):

      Summary:

      Large language models (LLMs) have been developed rapidly in recent years and are already contributing to progress across scientific fields. The manuscript tries to address a specific question: whether LLMs can accurately infer signaling networks from gene lists. However, the evaluation is inadequate due to four major weaknesses described below. Despite these limitations, the authors conclude that current general-purpose LLMs lack adequate accuracy, which is already widely recognized. Its key contribution should instead be to provide concrete recommendations for the development of specialized LLMs for this task, which is completely absent. Developing such specific LLMs would be highly valuable, as they could substantially reduce the time required by researchers to analyze signaling networks.

      Strengths:

      The manuscript raises a good question: whether current LLMs can accurately generate signaling networks from gene lists.

      Weaknesses:

      (1) The authors evaluate LLM performance using only three signaling networks: "hypertrophy", "fibroblast", and "mechanosignaling". Given the large number of well-established signaling pathways available, this is not a comprehensive assessment. Moreover, the analysis need not be restricted to signaling networks. Other network types, including metabolic and transcriptional regulatory networks, are already accessible in well-known databases such as KEGG, Reactome, BioCyc, WikiPathways, and Pathway Commons. Including these additional networks would substantially strengthen the evaluation.

      (2) In LLM evaluation, the authors use the gene lists that exactly match those in their "ground truth" networks, thereby fixing the set of nodes and evaluating only the predicted edges. However, in practical research, the relevant genes or nodes are not fully known. A more realistic assessment would therefore include gene lists with both genes present in the ground-truth network and additional genes absent from it, to evaluate the ability of the LLM to exclude irrelevant genes.

      (3) The authors report only the recall/sensitivity of the LLM, without assessing specificity. In practical applications, if an LLM generates a large number of incorrect interactions that greatly exceed the correct ones, researchers may be misled or may lose confidence in the LLM output. Therefore, a comprehensive evaluation must include both sensitivity and specificity. Furthermore, it would be informative to check whether some of the "false positives" might in fact represent biologically plausible interactions that are absent from the manually curated "ground truth". Manually generated "ground truth" can overlook genuine interactions, and the ability of LLMs to recover such missing edges could be particularly valuable. This may even represent one of the most important potential contributions of LLMs.

      (4) It is widely known that applying differential equation models to highly complex biological networks, such as the three networks in the manuscript, is meaningless, because these systems involve a large number of parameters whose values can drastically alter the results. As Richard Feynman once said: "with four parameters I can fit an elephant, and with five I can make him wiggle his trunk." Thus, the evaluation of LLMs on "logic-based differential equation models" does not make much sense.

    1. Antiinflammatory effects (systemic effects)High levels of cortisol used in drug therapy suppress inflammatory response and inhibit proinflammatory activity of many growth factors and cytokines; however, over time some individuals may develop tolerance to glucocorticoids, causing an increased susceptibility to both inflammatory and autoimmune diseases

      A recent patient I have is a middle-aged female with respiratory failure, chronic COPD, pre-diabetes that is diet-controlled, and a slow-healing wound on her forearm. Her normal random blood glucose before lunch is around 100-120 mg/dL; it is now 190-210 mg/dL. She recently had bronchitis and needs corticosteroid therapy. This patient demonstrates how chronic physiological stress, combined with necessary medical intervention, can interact and alter clinical outcomes. Her chronic illness and acute bronchitis treatment with corticosteroids stimulates the sympathetic nervous system to increase the cortisol effects. The cortisol effects promote glucogenesis and insulin resistance. This elevated glycemic state impairs wound healing by reducing leukocyte function and collagen synthesis, contributing to the staling of her arm wound. The increased blood glucose also triggers overstimulation of mitochondrial respiration, leading to increased metabolic output. I noticed an increase in her respiratory rate from 16 to 19-20 and in oxygen usage from 2L to 3L to offset the metabolic output. The patient stated she hasn’t been sleeping well due to increased oxygen requirements and a higher respiratory rate. The combination of chronic illness, acute bronchitis, and medical intervention creates a domino effect that delays the patient from healing and maintaining homeostasis.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use methylphenidate (MPH) administration after learning a Pavlovian-to-instrumental transfer (PIT) task to parse decision making from instrumental influences. While the main pharmacological effects were null, individual differences in working memory ability moderated the tendency of MPH to boost cognitive control in order to override PIT-biased instrumental learning. Importantly, this working memory moderator had symmetrical effects in appetite and aversive conditions, and these patterns replicated within each valence condition across different values of gain/loss (Fig S1c), suggesting a reliable effect that is generalized across instances of Pavlovian influence.

      Strengths:

      The idea of using pharmacological challenge after learning but prior to transfer is a novel technique that highlights the influence of catecholamines on the expression of learning under Pavlovian bias, and importantly it dissociates this decision feature from the learning of stimulus-outcome or action-outcome pairings.

      Comments on revisions:

      I have no further recommendations or concerns.

    1. Reviewer #1 (Public review):

      This manuscript discusses from a theory point of view he mechanisms underlying the formation of specialized or mixed factories. To investigate this, a chromatin polymer model was developed to mimic the chromatin binding-unbinding dynamics of various complexes of transcription factors (TFs).

      The model revealed that both specialized (i.e., demixed) and mixed clusters can emerge spontaneously, with the type of cluster formed primarily determined by cluster size. Non-specific interactions between chromatin and proteins were identified as the main factor promoting mixing, with these interactions becoming increasingly significant as clusters grow larger.

      These findings, observed in both simple polymer models and more realistic representations of human chromosomes, reconcile previously conflicting experimental results. Additionally, the introduction of different types of TFs was shown to strongly influence the emergence of transcriptional networks, offering a framework to study transcriptional changes resulting from gene editing or naturally occurring mutations.

      Overall I think this is an interesting paper discussing a valuable model of how chromosome 3D organisation is linked to transcription.

      Comments on revisions: It's a good paper.

    1. Reviewer #1 (Public review):

      In this manuscript, Aghabi et al. present a comprehensive characterization of ZFT, a metal transporter located at the plasma membrane of the eukaryotic parasite Toxoplasma gondii. The authors provide convincing evidence that ZFT plays a crucial role in parasite fitness, as demonstrated by the generation of a conditional knock-down mutant cell line, which exhibits a marked impact on mitochondrial respiration, a process dependent on several iron-containing proteins. Consistent with previous reports, the authors also show that disruption of mitochondrial metabolism leads to conversion into the persistent bradyzoite stage.

      The study then employed advanced techniques, such as inductively coupled plasma-mass spectrometry (ICP-MS) and X-ray fluorescence microscopy (XFM), to demonstrate that ZFT depletion results in reduced parasite-associated metals, particularly iron and zinc. Additionally, the authors show that ZFT expression is modulated by the availability of these metals, although defects in the transporter could not be compensated by exogenous addition of iron or zinc. Finally, the authors used heterologous expression of ZFT in Xenopus oocytes and yeast mutants, highlighting the dual substrate specificity of the transporter. The ability of ZFT to transport both iron and zinc is thus supported by two experimental approaches in heterologous systems. First by demonstrating ZFT ability to transport zinc, as the expression of Toxoplasma ZFT can compensate for a lack of zinc transport in yeast. Then, by showing the ability of ZFT to transport iron, as assessed in the Xenopus oocytes model. Furthermore, phenotypic analyses suggest defects in iron availability upon ZFT depletion, particularly with regard to Fe-S mitochondrial proteins and mitochondrial function.

      Overall, the manuscript provides a solid, well-rounded argument for ZFT's role in metal transport, using a combination of complementary approaches. The converging evidence, including changes in metal concentrations upon ZFT depletion, data on metal transport obtained in heterologous systems, and phenotypic changes linked to iron deficiency, presents a convincing case. Given that metal acquisition remains largely uncharacterized in Toxoplasma, this manuscript provides an important first step in identifying a metal transporter in these parasites, and the data presented are generally convincing and insightful.

      Comments on revisions:

      The revised manuscript has successfully addressed all of the key points raised in the initial review. Notably, the metal transport experiments in Xenopus oocytes now provide compelling evidence supporting the role of ZFT function. I congratulate the authors on their efforts and have no further concerns to raise.

    1. Reviewer #1 (Public review):

      Summary and Strengths:

      This manuscript presents a thoughtful and well-executed analysis of how S. aureus adapts to disulfide stress using a redox-sensitive regulator, Spx, as a lynchpin to coordinate nutrient uptake, redox balance, and growth. The work is strengthened by a systematic and complementary experimental approach that combines genetic, biochemical, and physiological measurements. The authors carefully test alternative explanations and build a coherent model linking stress sensing to downstream metabolic consequences. Several results, particularly those connecting cysteine uptake to growth defects, provide convincing support for the proposed trade-off. Overall, the authors largely achieve their aims, and the evidence generally supports the central conclusions. The conceptual framework and experimental approaches should be of broad interest to researchers studying S. aureus physiology and pathogenesis and to those studying bacterial stress responses and metabolic trade-offs.

      Weaknesses:

      Clarifying several interpretive points would further strengthen confidence in the proposed model. Some conclusions rely on data presentations or experimental designs that are not immediately clear to the reader. In particular, aspects of the protein stability analysis, global regulatory comparisons, and assays linking cysteine uptake to iron limitation would benefit from clearer justification and more precise interpretation. In addition, certain conclusions could be more carefully framed to reflect partial rather than complete rescue effects.

    1. Reviewer #1 (Public review):

      Summary:

      This study uses a novel DNA origami nanospring to measure the stall force and other mechanical parameters of the kinesin-3 family member, KIF1A, using light microscopy. The key is to use SNAP tags to tether a defined nanospring between a motor-dead mutant of KIF5B and the KIF1A to be integrated. The mutant KIF5B binds tightly to a subunit of the microtubule without stepping, thus creating resistance to the processive advancement of the active KIF1A. The nanospring is conjugated with 124 Cy3 dyes, which allows it to be imaged by fluorescence microscopy. Acoustic force spectroscopy was used to measure the relationship between the extension of the NS and force as a calibration. Two different fitting methods are described to measure the length of the extension of the NS from its initial diffraction-limited spot. By measuring the extension of the NS during an experiment, the authors can determine the stall force. The attachment duration of the active motor is measured from the suppression of lateral movement that occurs when the KIF1A is attached and moving. There are numerous advantages of this technology for the study of single molecules of kinesin over previous studies using optical tweezers. First, it can be done using simple fluorescence microscopy and does not require the level of sophistication and expense needed to construct an optical tweezer apparatus. Second, the force that is experienced by the moving KIF1A is parallel to the plane of the microtubule. This regime can be achieved using a dual beam optical tweezer set-up, but in the more commonly used single-beam set-up, much of the force experienced by the kinesin is perpendicular to the microtubule. Recent studies have shown markedly different mechanical behaviors of kinesin when interrogated by the two different optical tweezer configurations. The data in the current manuscript are consistent with those obtained using the dual-beam optical tweezer set-up. In addition, the authors study the mechanical behavior of several mutants of KIF1A that are associated with KIF1A-associated neurological disorder (KAND).

      Strengths:

      The technique should be cheaper and less technically challenging than optical tweezer microscopy to measure the mechanical parameters of molecular motors. The method is described in sufficient detail to allow its use in other labs. It should have a higher throughput than other methods.

      Weaknesses:

      The experimenter does not get a "real-time" view of the data as it is collected, which you get from the screen of an optical tweezer set-up. Rather, you have to put the data through the fitting routines to determine the length of the nanospring in order to generate the graphs of extension (force) vs time. No attempts were made to analyze the periods where the motor is actually moving to determine step-size or force-velocity relationships.

      Comments on revisions:

      I am satisfied with the revision made by the authors in response to my first round of criticisms.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Blanco-Ameijeiras et al. present an organoid-based model of the caudal neural tube that builds upon established principles from embryonic development and prior organoid work. By systematically testing and refining signaling conditions, the authors generate caudal progenitor populations that self-organize into neuroepithelia with molecular features consistent with secondary neurulation. Bulk-RNA sequencing supports the emergence of caudal neural identities, and the authors further examine cellular features such as apico-basal polarity and interkinetic nuclear migration. Finally, they provide evidence for a conserved, YAP-dependent mechanism of tube formation specific to secondary neurulation. The manuscript provides valuable methodological resources, including troubleshooting guidance that will be especially useful for the field. While this work represents a significant advance toward modeling human spinal cord development - particularly the process of secondary neurulation - the claims of complete caudalization and full AP-axis representation require additional experimental support and clarification.

      Strengths:

      (1) Methodological clarity and transparency: The first figure and accompanying text provide an exemplary explanation of protocol optimization and troubleshooting. This transparency - showing approaches that failed as well as those that succeeded - sets a high standard for reproducibility and will be highly beneficial to laboratories aiming to adopt or build upon this model.

      (2) Testing across multiple cell lines: Multiple hPSC and hiPSC lines were evaluated, strengthening the robustness and generalizability of the reported protocol.

      (3) Biological relevance: The focus on secondary neurulation fills a notable gap in current human organoid models of spinal cord development. The identification of YAP-dependent mechanisms in tube formation is a valuable insight with potential translational relevance.

      (4) Resource creation: The detailed parameters and signaling regimes will serve as a resource for the spinal cord and organoid communities.

      Weaknesses:

      (1) The manuscript over-interprets bulk RNA-seq data to make strong claims on the organoid AP patterning and caudalization. Bulk sequencing provides population-level averages and cannot confirm that individual organoids represent discrete AP levels. To support claims of generating every AP identity, the authors must perform staining or in situ hybridization for HOX genes on individual organoids. Further, the current interpretation of CDX2 as marking "very distal" identity is inaccurate in vitro; CDX2 marks caudal progenitors across the spinal cord axis. The language should be revised accordingly.

      (2) The claim of being the first organoid system to model secondary neurulation overlooks prior work showing HOXC9 in human organoids (Xue et al., Nature 2024; Libby et al., Development 2021), which would reflect the beginning of secondary neurulation. While this system may indeed be the first isolated secondary neurulation organoid model that expresses HOXD9/10 - a meaningful advance - bulk RNA-seq alone is insufficient to support the exclusivity of this claim. Additional single-organoid-level spatial analyses (via immunofluorescence of in situ hybridisation) and frequency quantification of regional identities are required to fully characterize the system.

      (3) Similarly, as written, there are overstatements taken from the bulk RNA sequencing to determine dorsal-ventral identity. Although dorsal markers are present, the dataset also contains ventral-associated genes (PAX6, SP8, NKX6-1, NKX6-2, PRDM12). To claim a "dorsal-only" identity, the authors should perform PAX7 immunostaining to demonstrate dorsalization of the entire organoid tissue.

      (4) The studies identifying YAP as a key driver of lumen fusion in Figure 6 are important and should be extended to the apical organoid system to demonstrate that this is truly a feature of secondary neurulation.

    1. Reviewer #1 (Public review):

      Summary

      In this study, the authors have performed tissue-specific ribosome pulldown to identify gene expression (translatome) differences in the anterior vs posterior cells of the C. elegans intestine. They have performed this analysis in fed and fasted states of the animal. The data generated will be very useful to the C. elegans community, and the role of pyruvate shown in this study will result in interesting follow-up investigations.

      However, several strong claims made in the study are solely based on in silico predictions and are not supported by experimental evidence.

      Strengths:

      Several studies in the past have predicted different functions of the anterior (INT1) vs posterior (INT2-9) epithelial cells of the C. elegans intestine based on their anatomy and ultrastructure, but detailed characterization of differences in gene expression between these cell types (and whether indeed these are different 'cell types') was lacking prior to this study. The genes and drivers identified to be exclusively expressed in the anterior vs posterior segments of the intestine will be very helpful to selectively modulate different parts of the C. elegans intestine in future studies.

      Another strength of this study is the careful experimental design to test how the anterior vs posterior cell types of the intestine respond differently to food deprivation and recovery after return to food. These comparisons between 'states' of a cell in different physiological conditions are difficult to pick up in single-cell analyses due to low sequencing depth, which can fail to identify subtle modulation of gene expression.

      The TRAP-associated bulk RNA-seq approach used in this study is more suitable for such comparisons and provides additional information on post-transcriptional regulation during metabolic stress.

      A key finding of this study is that pyruvate levels modulate the translation state of anterior intestinal cells during fasting. Characterization of pyruvate metabolism genes, especially of the enzymes involved in its mitochondrial breakdown, provides novel insights into how gut epithelial cells respond to the acute absence of food.

      Weaknesses:

      Unlike previous TRAP-seq studies (PMID: 30580965, 36044259, 36977417) that reported sequencing data for both input and IP samples, this study only reports the sequencing data for IP samples. Since biochemical pulldowns are variable across replicates, it is difficult to know if the observed differences between different conditions are due to biological factors or differences in IP efficiency. More importantly, since two different TRAP lines were utilized in this study and a large proportion of the results focus on the differences between the translational profiles of INT1 vs INT2-9 cells, it is essential to know if the IP worked with similar efficiency for both TRAP strains that likely have different expression levels of the HA-tagged ribosomal protein. One way to estimate this would be to perform qRT-PCR of genes that are known to be enriched in all intestinal cells and determine whether their fold-enrichment over housekeeping genes (normalized to input) is similar in INT1 vs INT2-9 TRAP strains and across the fed vs fasted conditions. The authors, in fact, mention variability across biological replicates, due to which certain replicates were excluded from their WGCNA analysis.

      It appears that GFP expression is also detectable in INT2 (in addition to strong expression in INT1 in Fig.1A). Compared to INT3-9, which looks red, INT2 cells appear yellow, suggesting that the expression patterns of the two TRAP drivers are not mutually exclusive, which changes the interpretation of many of the results described in the study.

      Some parts of the study overemphasize the differences between the INT1 vs INT2-9 cell types, which is a biased representation of the results. For example, the authors specifically point out that 270 genes are differentially expressed in opposite directions in INT1 vs INT2-9 cell types during acute (30 min) fasting without mentioning the 1,268 genes that are differentially expressed in the same direction. They also do not mention here that 96% of the genes are differentially expressed in the same direction in INT1 and INT2-9 cell types after prolonged (180 min) fasting, suggesting that the divergent translational responses of these cell types are only observed in the first 30 minutes of food deprivation. Similar results have also been reported for the effect of fasting on locomotory and feeding behaviors, where 30 min of fasting produces more variable effects, which become more consistent after longer periods of fasting (PMID: 36083280). Hence, the effects of brief food deprivation should be interpreted with caution.

      Many of the interpretations of this study primarily rely on pathway enrichment analyses, which are based on the known function of genes. The function of uncharacterized genes that were found to be differentially expressed in INT1 vs INT2-9 cell types, e.g., the ShKT proteins, was not explored in this study. In addition, overreliance on pathway enrichment tools (instead of functional validation) has resulted in several conflicting findings. For example, one of the main messages of this study is that INT1 cells specialize in immune and stress response in response to fasting, which relies on pathway analysis in Figs 5E and 5F. However, pathway analysis at a different time point (shown in Figure S5A) indicates that INT2-9 cells show a much stronger increase in translation of stress and pathogen-responsive genes compared to INT1 cells. Hence, some of the results should be interpreted as different translational effects in INT1 vs INT2-9 cells after different lengths of food deprivation, without making broad claims about selective pathways being affected only in specific cell types.

      The authors have compared their TRAP-seq results with genes enriched in the anterior and posterior intestine clusters from a previously published whole-animal adult scRNA dataset (PMID: 37352352). They claim that their TRAP-seq results are in agreement with the findings of the scRNA study. However, among the 10 genes from the 'posterior intestine' scRNA cluster in Fig.S1E, six are downregulated in the INT1 vs INT2-9 comparison, while four are upregulated. Hence, there is no clear agreement between the two studies in terms of the top enriched genes in the anterior vs posterior intestine, which should be considered for cross-study comparisons in the future.

      The authors describe in the manuscript that they have performed INT1-specific RNAi for two C-type lectin genes that are upregulated during fasting. Due to a recent expansion of C-type lectin genes in C. elegans, there is a high chance of off-target effects of RNAi that is designed for members of this gene family. More trustworthy results could have been obtained using CRISPR-based loss-of-function alleles for these genes, one of which is publicly available. Also, the authors do not provide any explanation for why knockdown of these stress-response genes, which are activated in INT1 cells in response to food deprivation, results in improved resistance to pathogens. This, in fact, suggests a role of INT1 cells in increasing pathogen susceptibility, and not pathogen resistance, during food deprivation.

      Many of the studies in this field (e.g., references 2-4 in this article) have investigated the effects of food deprivation ranging from 4 hr to 24 hr, which results in activation of starvation responses in C. elegans. In contrast, the authors have used shorter time periods of fasting (30 min and 180 min), and most of their follow-up experiments have used 30 min of food deprivation. Previous work has shown that the effects of food deprivation can either accumulate over time (i.e., the effect gets stronger with longer food deprivation) or can be transient (i.e., only observed briefly after removal of food and not observed during long-term food deprivation). Starvation-induced transcription factors such as DAF-16/FoxO and HLH-30 show strong translocation to the nucleus only after 30 min of fasting. Though gene expression changes in all stages of food deprivation are of biological relevance, the authors have missed the opportunity to explore whether increased INS-7 secretion from the anterior intestine is dependent on these starvation-induced transcription factors (which can be easily tested using loss-of-function alleles) or is due to other fast-acting regulatory mechanisms induced due to the absence of food contents in the gut lumen. A previous study (PMID: 40991693) has shown that DAF-16 activation during prolonged starvation shuts down insulin peptide secretion from the intestinal epithelial cells. Hence, it is not clear if increased INS-7 secretion is only a feature of short-term food deprivation or is also a signature of long-term starvation (e.g., at 8 hr or 16 hr timepoints). Since most of the INS-7 secretion data in this study are for 30 min of fasting, it remains unknown whether the discovered regulators of INS-7 secretion can be generalized for extended food deprivation that triggers major metabolic changes, such as fat loss (e.g., conditions shown in Figure 1D).

      Two previous studies (PMID: 18025456, 40991693) have shown a strong reduction in the expression of ins-7 in the anterior intestine using GFP-based reporters (both promoter fusions and endogenous CRISPR-generated) and in whole-animal RNA-seq data from starved animals. These results are in contrast to the increased INS-7 secretion from INT1 cells during fasting that is reported in this study. The authors here have reported that INS-7 translation is higher in INT1 compared to INT2-9 during fed, acute fasted, and chronic fasted conditions, but they have not shown whether INS-7 translation is upregulated during acute and chronic fasting in INT1 cells in their TRAP-seq analysis. Knowing whether increased INS-7 secretion during acute fasting is due to increased transcription, translation, or secretion of INS-7 is crucial to resolve the discrepancy between these studies.

    1. Reviewer #1 (Public review):

      Summary:

      The authors Hall et al. establish a purification method for snake venom metalloproteinases (SVMPs). By generating a generic approach to purify this divergent class of recombinant proteins, they enhance the field's accessibility to larger quantities of SVMPs with confirmed activity and, for some, characterized kinetics. In some cases, the recombinant protein displayed comparable substrate specificity and substrate recognition compared to the native enzyme, providing convincing evidence of the authors' successful recombinant expression strategy. Beyond describing their route towards protein purification, they further provide evidence for self-activation upon Zn2+ incubation. They further provide insights on how to design high-throughput screening (HTS) methods for drug discovery and outline future perspectives for the in-depth characterization of these enzyme classes to enable the development of novel biomedical applications.

      Strengths:

      The study is well-presented and structured in a compelling way. The purification strategy results in highly pure protein products, well characterized by size exclusion chromatography, SDS page as well as confirmed by mass spectrometry analysis. Further, a significant portion of the manuscript focuses on enzyme activity, thereby validating function. Particularly convincing is the comparability between recombinant vs. native enzymes; this is successfully exemplified by insulin B digestion. By testing the fluorogenic substrate, the authors provide evidence that their production method of recombinant protein can open up possibilities in HTS. Since their purification method can be applied to three structurally variable SVMP classes, this demonstrates the robust nature of the approach.

      Weaknesses:

      The universal applicability of the approach could be emphasized more clearly. The potential for this generic protocol for recombinant SVMP zymogen production to be adapted to other SVMPs is somewhat obscured by the detailed optimization steps. A general schematic overview would strengthen the manuscript, presented as a final model, to illustrate how this strategy can be extended to other targets with similar features. Such a schematic might, for example, outline the propeptide fusion design, including its tags, relevant optimizations during expression, lysis, purification (e.g., strategies for metal ion removal and maintenance of protease inactivity), as well as the controllable auto-activation.

      The product obtained from the purification protocol appears to be a heterogeneous mixture of self-activated and intact protein species. The protocol would benefit from improved control over the self-activation process. The Methods section does not indicate whether residual metal ions were attempted to be removed during the purification, which could influence premature activation. Additionally, it has not been discussed whether the shift to pH 8 in the purification process is necessary from the initial steps onwards, given that a lower pH would be expected to maintain enzyme latency.

      The characterization of PIII activity using the fluorogenic peptide effectively links the project to its broader implications for drug design. However, the absence of comparable solutions for PI and PII classes limits the overall scope and impact of the finding.

      Overall, the authors successfully purified active SVMP proteins of all three structurally diverse classes in high quality and provided convincing evidence throughout the manuscript to support their claims. The described method will be of use for a broader community working with self-activating and cytotoxic proteases.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Ampartzidis et al. report the establishment of an iPSC-derived neuroepithelial model to examine how mutations from spina bifida patients disrupt fundamental cellular properties that underlie neural tube closure. The authors utilize an adherent neural induction protocol that relies on dual SMAD inhibition to differentiate three previously established iPSC lines with different origins and reprogramming methods. The analysis is comprehensive and outstanding, demonstrating reproducible differentiation, apical-basal elongation, and apical constriction over an 8-day period among the 3 lines. In inhibitor studies, it is shown that apical constriction is dependent on ROCK and generates tension, which can be measured using an annular laser ablation assay. Since this pathway is dependent on PCP signaling, which is also implicated in neural tube defects, the authors investigated whether VANGL2 is required by generating 2 lines with a pathogenic patient-derived sequence variant. Both lines showed reduced apical constriction and reduced tension in the laser ablation assays. The authors then established lines obtained from amniocentesis, including 2 control and 2 spina bifida patient-derived lines. These remarkably exhibited different defects. One line showed defects in apical-basal elongation, while the other showed defects in neural differentiation. Both lines were sequenced to identify candidate variants in genes implicated in NTDs. While no smoking gun was found in the line that disrupts neural differentiation (as is often the case with NTDs), compound heterozygous MED24 variants were found in the patient whose cells were defective in apical-basal elongation. Since MED24 has been linked to this phenotype, this finding is especially significant.

      Some details are missing regarding the method to evaluate the rigor and reproducibility of the study.

      Major Comments:

      It is mentioned throughout the manuscript that 3 plates were evaluated per line. I believe these are independently differentiated plates. This detail is critical concerning rigor and reproducibility. This should be clearly stated in the Methods section and in the first description of the experimental system in the Results section for Figure 1.

      For the patient-specific lines - how many lines were derived per patient?

      Was the Vangl2 variant introduced by prime editing? Base editing? The details of the methods are sparse.

      Significance:

      This paper is significant not only for verifying the cell behaviors necessary for neural tube closure in a human iPSC model, but also for establishing a robust assay for the functional testing of NTD-associated sequence variants. This will not only demonstrate that sequence variants result in loss of function but also determine which cellular behaviors are disrupted.

    1. Reviewer #1 (Public review):

      Summary:

      This work addresses a key question in cell signalling, how does the membrane composition affect the behaviour of a membrane signalling protein? Understanding this is important, not just to understand basic biological function but because membrane composition is highly altered in diseases such as cancer and neurodegenerative disease. Although parts of this question have been addressed on fragments of the target membrane protein, EGFR, used here, Srinivasan et al. harness a unique tool, membrane nanodisks, which allow them to probe full length EGFR in vitro in great detail with cutting-edge fluorescent tools. They find interested impacts on EGFR conformation in differently charged and fluid membranes, explaining previously identified signalling phenotypes.

      Strengths:

      The nanodisk system enables full length EGFR to be studied in vitro and in a membrane with varying lipid and cholesterol concentrations. The authors combine this with single-molecule FRET utilising multiple pairs of fluorophores at different places on the protein to probe different conformational changes in response to EGF binding under different anionic lipid and cholesterol concentrations. They further support their findings using molecular dynamics simulations which help uncover the full atomistic detail of the conformations they observe.

      Weaknesses:

      Much of the interpretation of the results comes down to a bimodal model of an 'open' and 'closed' state between the intracellular tail of the protein and the membrane. Some of the data looks like a bimodal model is appropriate but not all. The authors have just this bimodal model statistically and although adding a third component is a better fit, I agree with the authors that it cannot be justified statistically, given the data. Further work beyond the scope of this study would be needed to try to define further states.

    1. Reviewer #1 (Public review):

      Summary:

      This study identifies a mechanism responsible for the accumulation of the MET receptor in invadopodia, following stimulation of Triple-negative breast cancer (TNBC) cells with HGF. HGF-driven accumulation and activation of MET in invadopodia causes the degradation of the extracellular matrix, promoting cancer cell invasion, a process here investigated using gelatin-degradation and spheroid invasion assays.

      Mechanistically, HGF stimulates the recycling of MET from RAB14-positive endodomes to invadopodia, increasing their formation. At invadopodia, MET induces matrix degradation via direct binding with the metalloprotease MT1-MMP. The delivery of MET from the recycling compartment to invadopodia is mediated by RCP, which facilitates the colocalization of MET to RAB14 endosomes. In this compartment, HGF induces the recruitment of the motor protein KIF16B, promoting the tubulation of the RAB14-MET recycling endosomes to the cell surface. This pathway is critical for the HGF-driven invasive properties of TNBC cells, as it is impaired upon silencing of RAB14.

      Strengths:

      The study is well-organized and executed using state-of-the-art technology. The effects of MET recycling in the formation of functional invadopodia are carefully studied, taking advantage of mutant forms of the receptor that are degradation-resistant or endocytosis-defective.

      Data analyses are rigorous, and appropriate controls are used in most of the assays to assess the specificity of the scored effects. Overall, the quality of the research is high.

      The conclusions are well-supported by the results, and the data and methodology are of interest for a wide audience of cell biologists.

      Weaknesses:

      The role of the MET receptor in invadopodia formation and cancer cell dissemination has been intensively studied in many settings, including triple-negative breast cancer cells. The novelty of the present study mostly consists of the detailed molecular description of the underlying mechanism based on HGF-driven MET recycling. The question of whether the identified pathway is specific for TNBC cells or represents a general mechanism of HGF-mediated invasion detectable in other cancer cells is not addressed or at least discussed.

    1. Reviewer #1 (Public review):

      Summary:

      The authors report the structure of the human CTF18-RFC complex bound to PCNA. Similar structures (and more) have been reported by the O'Donnell and Li labs. This study should add to our understanding of CTF18-RFC in DNA replication and clamp loaders in general. However, there are numerous major issues that I recommend the authors fix.

      Strengths:

      The structures reported are strong and useful for comparison with other clamp loader structures that have been reported lately.

    1. Reviewer #1 (Public review):

      Summary:

      GPCRs affect the EV-miRNA cargoes

      Strengths:

      Novel idea of GPCRs-mediated control of EV loading of miRNAs

      Weaknesses:

      Incomplete findings failed to connect and show evidence of any physiological parameters that are directly related to the observed changes. The mechanical detail is completely lacking.

      Comments on revisions:

      The revised version of the manuscript falls short of the required standard by lacking additional experiments. Some of the conditions for acceptability could have been met only through clarifying uncertainties via further experiments, which, unfortunately, have not been conducted.

    1. Reviewer #1 (Public review):

      Significance:

      While most MAVEs measure overall function (which is a complex integration of biochemical properties, including stability), VAMP-seq-type measurements more strongly isolate stability effects in a cellular context. This work seeks to create a simple model for predicting the response for a mutation on the "abundance" measurement of VAMP-seq.

      Public Review:

      Of course, there is always another layer of the onion, VAMP-seq measures contributions from isolated thermodynamic stability, stability conferred by binding partners (small molecule and protein), synthesis/degradation balance (especially important in "degron" motifs), etc. Here the authors' goal is to create simple models that can act as a baseline for two main reasons:

      (1) how to tell when adding more information would be helpful for a global model;

      (2) how to detect when a residue/mutation has an unusual profile indicative of an unbalanced contribution from one of the factors listed above.

      As such, the authors state that this manuscript is not intended to be a state-of-the-art method in variant effect prediction, but rather a direction towards considering static structural information for the VAMP-seq effects. At its core, the method is a fairly traditional asymmetric substitution matrix (I was surprised not to see a comparison to BLOSUM in the manuscript) - and shows that a subdivision by burial makes the model much more predictive. Despite only having 6 datasets, they show predictive power even when the matrices are based on a smaller number. Another success is rationalizing the VAMPseq results on relevant oligomeric states.

      Comments on revision:

      We have no further comments on this manscript.

    1. Reviewer #1 (Public review):

      Summary:

      The authors clearly demonstrate that overexpressed Dcp-1, but not Drice, is activated without canonical apoptosome components. Using TurboID-based proximity labeling, they revealed distinct proximal proteomes, among which Sirtuin 1, an Atg8a deacetylase, which promotes autophagy, was specifically required for Dcp-1 activation. Additionally, the show that autophagy-related genes, including Bcl-2 family members Debcl and Buffy, are required for Dcp-1 activation.

      Using structure-based prediction using AlphaFold3, they identified that Bruce, an autophagy-regulated inhibitor of apoptosis, acts as a Dcp-1-specific regulator acting outside the apoptosome-mediated pathway. Finally, they show that Bruce suppresses wing tissue growth. These findings indicate that non-lethal Dcp-1 activity is governed by the autophagy-Bruce axis, enabling distinct non-lethal functions independent of cell death.

      Strengths:

      This is an excellent paper with very good structure, excellent quality data and analysis.

      Weaknesses:

      This reviewer did not identify any weaknesses or recommendations for revision.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to overcome a major technical limitation in pancreatic slice research - the inefficient viral transduction of dense, enzyme-active human pancreas tissue - while maintaining tissue integrity and physiological responsiveness. They developed a modified culture and infection protocol that incorporates gentle orbital agitation, removal of protease inhibitors, and physiological temperature during adenoviral transduction. This method increased transduction efficiency by approximately threefold without impairing insulin secretion or calcium signaling responses.

      Strengths:

      The study's major strengths are its clear methodological innovation, experiment optimization, and multiparametric validation. The authors provide compelling evidence that their approach enhances the expression of genetically encoded calcium indicators (GCaMP6m) and integrators (CaMPARI2), preserving both endocrine and exocrine cell functionality. The demonstration of targeted biosensor expression in β-cells and multiplexed imaging of redox and calcium dynamics highlights the versatility of the system. The CaMPARI2-based approach is particularly impactful, as it decouples maximum calcium response assessment from real-time imaging, thereby increasing throughput and reducing bias. The authors successfully apply the technique to samples from non-diabetic, T1D, and T2D donors, revealing disease-relevant alterations in β-cell calcium responses consistent with known physiological dysfunctions. The analysis of islet size versus calcium response further underscores the utility of this platform for probing structure-function relationships in situ.

      Weaknesses:

      The primary limitations are a lack of live/dead assessment to differentiate viability-related effects from methodological improvements, a lack of quantification of the transduction efficiency (while relative efficiency is clearly increased, it is not shown what is absolute efficiency is), lack of IF confirmation of the cell-specific transduction efficiency. These limitations, however, do not detract from the overall strength of the technical advance.

      Overall, this work offers a convincing and practical advance for the diabetes and islet biology community. It substantially improves the toolkit available for live human pancreas studies and will likely catalyze further mechanistic investigations of islet heterogeneity, disease progression, and therapeutic response.

    1. Reviewer #1 (Public review):

      Liu, Li, Ge, and colleagues use whole genome sequence data to estimate the recombination landscape of domesticated chickens and their wild ancestor, Red Junglefowl. They compare landscapes estimated using the deep learning method RelERNN (Adrion et al. 2020) to understand the consequences of domestication for the evolution of recombination. The authors build on previous work in tomato, maize, and other domesticated species to examine how recombination rate and patterning evolve under the demography and selection pressures of domestication. They do so by comparing estimates of local recombination rates across chromosomes and populations, asking if/how well certain sequence and chromatin-based predictors predict recombination rate, and testing for an association between recombination rate and the proportion of introgressed ancestry from Red Junglefowl.

      This study provides evidence for the hypothesis that recombination evolves rapidly in domesticated lineages -- so much so that we see little hotspot sharing between breeds in the present-day! Strengths of the paper include the collection/analysis of data from several domesticated sub-populations and efforts to control for demography and structure in the inference of recombination landscapes (given the challenges of some methods under non-equilibrium demography: https://academic.oup.com/mbe/article/35/2/335/4555533). It is also reassuring to see patterns that have been thoroughly established (e.g., the negative relationship between recombination rate and chromosome size) validated.

      However, I have concerns about the data and methodology.

      (1) My main concern is that the demographic and recombination rate estimates inferred using ~20 whole genomes are likely quite variable and, without quantification of the uncertainty or systematic assessment of the possible biases in the methodology, it is difficult to have confidence in analyses which make use of the RelERNN landscapes.

      (a) Similar studies in rye (https://academic.oup.com/mbe/article/39/6/msac131/6605708) and tomato (https://academic.oup.com/mbe/article/39/1/msab287/6379725) used data from far more individuals (916 individuals split up into populations of size 50 for rye, >75 samples for tomato) to infer recombination maps and conduct downstream analyses. Studies in human genetics make use of an even greater number! The evidence (Lines 189-196 of the main text) that the sample size is sufficient to capture fine-scale variation in recombination is weak. In particular, correlations between the true and estimated recombination rate are based on *equilibrium* demography at sample sizes of 5, 10, and 20, yet used draw the inference "20 samples per population are sufficient to reconstruct their recombination landscapes" under the *non-equilibrium* demography (inferred using SMC+).

      (b) RelERNN learns the recombination landscape by using several signatures (the decay of linkage disequilibrium and, as described in https://academic.oup.com/genetics/advance-article-abstract/doi/10.1093/genetics/iyaf108/8157390, choppiness of the allele frequency spectrum) left in present-day genomes. Both signatures depend strongly on local SNP density. It does not seem the effect of SNP density on the inferred recombination rate is examined, despite the potential for correlated noise in inferred recombination rate (in SNP-sparse regions of the genome) to confound downstream inference.

      (c) It is unclear if the demographic histories for chickens (Figure S6) broadly match what have been previously estimated from whole-genome data, or if a large class of demographic models are compatible with the data (i.e., confidence intervals for the demographic histories are quite large). In Figure S6, its bottlenecks are somewhat weak and affect only a couple of the groups, despite the history of domestication and the expectation that effective sizes vary more widely. The groups affected (LX and WL) are those that have the weakest correlations between recombination rate under the equilibrium and non-equilibrium demographic models.

      (2) The authors test for the effects of chromatin modifications, GC content, etc using correlations between local recombination rate and the features individually. However, joint inference of the effects under a GLM (the distribution of recombination rates is probably better described by, e.g., a Gamma distribution) would permit more straightforward causal inference, given, e.g., the potential effects of chromatin marks on deleterious mutation accumulation. I recognize this likely would not change the direction or significance of the effects in question, but it is worth noting given readers who may want to learn something from the effect sizes and the nature of causes and effects is difficult to disentangle without a multivariate approach.

      Overall:

      Previous work on recombination landscape evolution in birds (namely, the zebra finch and long-tailed finch; Singhal & Leffler 2015) has shown that many hotspots, i.e., small stretches of the genome that experience rates of crossing over that are much higher than the genome-wide average, are conserved over tens of millions of years of evolution. Work in tomato, maize, rye, and other flowering plants with histories of domestication have shown that hotspots can be dynamic. The results of Liu, Li, Ge, and colleagues complement those analyses and will, therefore, be of interest to those working on the evolution of recombination. Additionally, the finding that minor parent ancestry is negatively associated with recombination is interesting to an otherwise general rule in evolutionary biology. Finally, it is quite exciting to see recombination maps inferred using RelERNN, and in a demography-aware fashion!

      That all said, it is difficult to have certainty in the results due to the relatively limited sample size for each of the populations, the lack of control for SNP density, the uncertainty in both recombination maps and demographic histories, and the lack of a joint modelling framework to carefully tease apart effects that are reported in isolation.

    1. Reviewer #1 (Public review):

      Summary:

      These authors have developed a method to induce MI or MII arrest. While this was previously possible in MI, the advantage of the method presented here is it works for MII, and chemically inducible because it is based on a system that is sensitive to the addition of ABA. Depending on when the ABA is added, they achieve a MI or MII delay. The ABA promotes dimerizing fragments of Mps1 and Spc105 that can't bind their chromosomal sites. The evidence that the MI arrest is weaker than the MII arrest is convincing and consistent with published data and indicating the SAC in MI is less robust than MII or mitosis. The authors use this system to find evidence that the weak MI arrest is associated with PP1 binding to Spc105. This is a nice use of the system.

      The remainder of the paper uses the SynSAC system to isolate populations enriched for MI or MII stages and conduct proteomics. This shows a powerful use of the system, but more work is needed to validate these results, particularly in normal cells.

      Overall, the most significant aspect of this paper is the technical achievement, which is validated by the other experiments. They have developed a system and generated some proteomics data that maybe useful to others when analyzing kinetochore composition at each division.

    1. Reviewer #1 (Public review):

      Summary:

      The authors performed an elegant investigation to clarify the roles of CHD4 in chromatin accessibility and transcription regulation. In addition to the common mechanisms of action through nucleosome repositioning and opening of transcriptionally active regions, the authors considered here a new angle of CHD4 action through modulating the off rate of transcription factor binding. Their suggested scenario is that the action of CHD4 is context-dependent and is different for highly-active regions vs low-accessibility regions.

      Strengths:

      This is a very well-written paper that will be of interest to researchers working in this field. The authors performed large work with different types of NGS experiments and the corresponding computational analyses. The combination of biophysical measurements of the off-rate of protein-DNA binding with NGS experiments is particularly commendable.

      Comments on revised version:

      The authors have addressed all my points

    1. Reviewer #1 (Public review):

      Summary:

      The article presents the details of the high-resolution light-sheet microscopy system developed by the group. In addition to presenting the technical details of the system, its resolution has been characterized and its functionality demonstrated by visualizing subcellular structures in a biological sample.

      Strengths:

      The article includes extensive supplementary material that complements the information in the main article.

      Live imaging has been incorporated, as requested, increasing the value of the paper.

      Weaknesses:

      None

    1. Reviewer #1 (Public review):

      Summary:

      ZMAT3 is a p53 target gene that the Lal group and others have shown is important for p53-mediated tumor suppression, and which plays a role in the control of RNA splicing. In this manuscript Lal and colleagues perform quantitative proteomics of cells with ZMAT3 knockout and show that the enzyme hexokinase HKDC1 is the most upregulated protein. Mechanistically, the authors show that ZMAT3 does not appear to directly regulate the expression of HKDC1; rather, they show that the transcription factor c-JUN was strongly enriched in ZMAT3 pull-downs in IP-mass spec experiments, and they perform IP-western to demonstrate an interaction between c-JUN and ZMAT3. Importantly, the authors demonstrate, using ChIP-qPCR, that JUN is present at the HKDC1 gene (intron 1) in ZMAT3 WT cells, and showed markedly enhanced binding in ZMAT3 KO cells. The data best fit a model whereby p53 transactivates ZMAT3, leading to decreased JUN binding to the HKDC1 promoter, and altered mitochondrial respiration. The data are novel, compelling and very interesting.

      Comments on revisions:

      The authors have done a thorough job addressing my comments. This manuscript is quite strong and will be highly cited for its novelty and rigor.

    1. Reviewer #2 (Public review):

      In the original review of this manuscript, I noted that this study provides the first evidence that alteration of the Hox code in neck lateral plate mesoderm is sufficient for ectopic forelimb budding. Their finding that ectopic expression of Hoxa6 or Hoxa7 induces wing budding at neck level, a demonstration of sufficiency, is of major significance. The experiments used to test the necessity of specific Hox genes for limb budding involved overexpression of dominant negative constructs, and there were questions about whether the controls were well designed. The reviewers made several suggestions for additional experiments that would address their concerns. In their responses to those comments, the authors indicated that they would conduct those experiments, and they acknowledged the requests for further discussion of a few points.

      In the revised version of the manuscript, the authors have provided additional RNA-seq data in Table 3, which lists 221 genes that are shared between the Hoxa6-induced limb bud and normal wing bud but not the neck. This shows that the ectopic limb bud has a limb-like character. The authors also expanded the discussion of their results in the context of previous work on the mouse. These changes have improved the paper.

      The authors elected not to conduct the co-transfection experiments that were suggested to test the ability of Hoxa4/a5 to block the limb-inducing ability of Hoxa6/a7. They also chose not to conduct the additional control experiments that were suggested for the dominant negative studies. The authors' justification for not conducting these experiments is provided in the responses to reviewers.

      The paper is improved over the previous version, but the conclusions, particularly regarding the dominant negative experiments, would have been strengthened by the additional experiments that were recommended by the reviewers. Under the current publishing model for eLife, it is the authors' prerogative to decide whether to revise in accordance with the reviewers' suggestions. Therefore, it seems to me that this version of the manuscript is the definitive version that the authors want to publish, and that eLife should publish it together with the reviewers' comments and the authors' responses.

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript submission by Zhao et al. entitled, "Cardiac neurons expressing a glucagon-like receptor mediate cardiac arrhythmia induced by high-fat diet in Drosophila" the authors assert that cardiac arrhythmias in Drosophila on a high fat diet is due in part to adipokinetic hormone (Akh) signaling activation. High fat diet induces Akh secretion from activated endocrine neurons, which activate AkhR in posterior cardiac neurons. Silencing or deletion of Akh or AkhR blocks arrhythmia in Drosophila on high fat diet. Elimination of one of two AkhR expressing cardiac neurons results in arrhythmia similar to high fat diet.

      Strengths:

      The authors propose a novel mechanism for high fat diet induced arrhythmia utilizing the Akh signaling pathway that signals to cardiac neurons.

    1. Reviewer #1 (Public review):

      Summary:

      This work revisits a substantial part of the published literature in the field of Drosophila innate immunity from 1959 to 2011. The strategy has been to restrain the analysis to some 400 articles and then to extract a main claim, two to four major claims and up to four minor claims totaling some 2000 claims overall. The consistency of these claims with the current state-of-the-art has been evaluated and reported on a dedicated Web site known as ReproSci and also in the text as well as in the 28 Supplements that report experimental verification, direct or indirect, e.g., using novel null mutants unavailable at the time, of a selected set of claims made in several articles. Of note, this review is mostly limited to the manuscript and its associated supplements and does not integrally cover the ReproSci website.

      Strengths:

      One major strength of this article is that it tackles the issue of reproducibility/consistency on a large scale. Indeed, while many investigators have some serious doubts about some results found in the literature, few have the courage, or the means and time, to seriously challenge studies, especially if published by leaders in the field. The Discussion adequately states the major limitations of the ReproSci approach, which should be kept in mind by the reader to form their own opinion.

      This study also allows investigators not familiar with the field to have a clearer understanding of the questions at stake and to derive a more coherent global picture that allows them to better frame their own scientific questions. Besides a thorough and up-to-date knowledge of the literature used to assess the consistency of the claims with our current knowledge, a merit of this study is the undertaking of independent experiments to address some puzzling findings and the evidence presented is often convincing, albeit one should keep in mind the inherent limitations as several parameters are difficult to control, especially in the field of infections, as underlined by the authors themselves. Importantly, some work of the lead author has also been re-evaluated (Supplements S2-S4). Thus, while utmost caution should be exerted, and often is, in challenging claims, even if the challenge eventually proves to be not grounded, it is valuable to point out potential controversial issues to the scientific community.

      While this is not a point of this review, it should be acknowledged that the possibility to post comments on the ReproSci website will allow further readjustments by the community in the appreciation of the literature and also of the ReproSci assessments themselves and of its complementary additional experiments.

      Weaknesses:

      Challenging the results from articles is, by its very nature, a highly sensitive issue, and utmost care should be taken when challenging claims. While the authors generally acknowledge the limitations of their approach in the main text and Supplements, there are a few instances where their challenges remain questionable and should be reassessed. This is certainly the case for Supplement S18, for which the ReproSci authors make a claim for a point that was not made in the publication under scrutiny. The authors of that study (Ramet et al., Immunity, 2001) never claimed that scavenger receptor SR-CI is a phagocytosis receptor, but that it is required for optimal binding of S2 cells to bacteria. Westlake et al. here have tested for a role of this scavenger receptor in phagocytosis, which had not been tested by Ramet et al. Thus, even though the ReproSci study brings additional knowledge to our understanding of the function of SR-CI by directly testing its involvement in phagocytosis by larval hemocytes, it did not address the major point of the Ramet et al. study, SR-CI binding to bacteria, and thus inappropriately concludes in Supplement S18 that "Contrary to (Ramet et al., 2001, Saleh et al., 2006), we find that SR-CI is unlikely to be a major Drosophila phagocytic receptor for bacteria in vivo." It follows that the results of Ramet et al. cannot be challenged by ReproSci as it did not address this program. Of note, Saleh et al. (2006) also mistakenly stated that SR-CI impaired phagocytosis in S2 cells and could be used as a positive control to monitor phagocytosis in S2 cells. Their assay appears to have actually not monitored phagocytosis but the association of FITC-labeled bacteria to S2 cells by FACS, as they did not mention quenching the fluorescence of bacteria associated with the surface with Trypan blue.

      The inference method to assess the consistency of results with current knowledge also has limitations that should be better acknowledged. At times, the argument is made that the gene under scrutiny may not be expressed at the right time according to large-scale data or that the gene product was not detected in the hemolymph by a mass-spectrometry approach. While being in theory strong arguments, some genes, for instance, those encoding proteases at the apex of proteolytic activation cascades, need not necessarily be strongly expressed and might be released by a few cells. In addition, we are often lacking relevant information on the expression of genes of interest upon specific immune challenges such as infections with such and such pathogens.

      As regards mass spectrometry, there is always the issue of sensitivity that limits the force of the argument. Our understanding of melanization remains currently limited, and methods are lacking to accurately measure the killing activity associated with the triggering of the proPO activation cascade. In this study, the authors monitor only the blackening reaction of the wound site based on a semi-quantitative measurement. They are not attempting to use other assays, such as monitoring the cleavage of proPOs into active POs or measuring PO enzymatic activity. These techniques are sometimes difficult to implement, and they suffer at times from variability. Thus, caution should be exerted when drawing conclusions from just monitoring the melanization of wounds.

      Likewise, the study of phagocytosis is limited by several factors. As most studies in the field focus on adults, the potential role of phagocytosis in controlling Gram-negative bacterial infections is often masked by the efficiency of the strong IMD-mediated systemic immune response mediated by AMPs (Hanson et al, eLife, 2019). This problem can be bypassed in rare instances of intestinal infections by Gram-negative bacteria such as Serratia marcescens (Nehme et al., PLoS Pathogens, 2007) or Pseudomonas aeruginosa (Limmer et al. PNAS, 2011), which escape from the digestive tract into the hemocoel without triggering, at least initially, the systemic immune response. It is technically feasible to monitor bacterial uptake in adults by injecting fluorescently labeled bacteria and subsequently quenching the signal from non-ingested bacteria. Nonetheless, many investigators prefer to resort to ex vivo assays starting from hemocytes collected from third-instar wandering larvae as they are easier to collect and then to analyze, e.g., by FACS. However, it should be pointed out that these hemocytes have been strongly exposed to a peak of ecdysone, which may alter their properties. Like for S2 cells, it is thus not clear whether third-instar larval hemocytes faithfully reproduce the situation in adults. The phagocytic assays are often performed with killed bacteria. Evidence with live microorganisms is better, especially with pathogens. Assays with live bacteria require however, an antibody used in a differential permeabilization protocol. Furthermore, the killing method alters the surface of the microorganisms, a key property for phagocytic uptake. Bacterial surface changes are minimal when microorganisms are killed by X-ray or UV light. These limitations should be kept in mind when proceeding to inference analysis of the consistency of claims. Eater illustrates this point well. Westlake et al. state that:" [...] subsequent studies showed that a null mutation of eater does not impact phagocytosis". The authors refer here to Bretscher et al., Biology Open, 2015, in which binding to heat-killed E. coli was assessed in an ex vivo assay in third instar larvae. In contrast, Chung and Kocks (JBC, 2011) tested whether the recombinant extracellular N-terminal ligand-binding domain was able to bind to bacteria. They found that this domain binds to live Gram-positive bacteria but not to live Gram-negative bacteria. For the latter, killing bacteria with ethanol or heating, but not by formaldehyde treatment, allowed binding. More importantly, Chung and Kocks documented a complex picture in which AMPs may be needed to permeabilize the Gram-negative bacterial cell wall that would then allow access of at least the recombinant secreted Eater extracellular domain to peptidoglycan or peptidoglycan-associated molecules. Thus, the systemic Imd-dependent immune response would be required in vivo to allow Eater-dependent uptake of Gram-negative bacteria by adult hemocytes. In ex vivo assays, any AMPs may be diluted too much to effectively attack the bacterial membrane. A prediction is then that there should be an altered phagocytosis of Gram-negative bacteria in IMD-pathway mutants, e.g., an imd null mutant but not the hypomorphic imd[1] allele. This could easily be tested by ReproSci using the adult phagocytosis assay used by Kocks et al, Cell, 2005. At the very least, the part on the role of Eater in phagocytosis should take the Chung &Kocks study into account, and the conclusions modulated.

      Another point is that some mutant phenotypes may be highly sensitive to the genetic background, for instance, even after isogenization in two different backgrounds. In the framework of a Reproducibility project, there might be no other option for such cases than direct reproduction of the experiment as relying solely on inference may not be reliable enough.

      With respect to the experimental part, some minor weaknesses have been noted. The authors rely on survival to infection experiments, but often do not show any control experiments with mock-challenged or noninfected mutant fly lines. In some cases, monitoring the microbial burden would have strengthened the evidence. For long survival experiments, a check on the health status of the lines (viral microbiota, Wolbachia) would have been welcome. Also, the experimental validation of reagents, RNAi lines, or KO lines is not documented in all cases.

    1. Reviewer #1 (Public review):

      Summary:

      This paper describes an application of the high-resolution cryo-EM 2D template matching technique to sub-50kDa complexes. The paper describes how density for ligands can be reconstructed without having to process cryo-EM data through the conventional single particle analysis pipelines.

      Strengths:

      This paper contributes additional data (alongside other papers by the same authors) to convey the message that high-resolution 2D template matching is a powerful alternative for cryo-EM structure determination. The described application to ligand density reconstruction, without the need for extensive refinements, will be of interest to the pharmaceutical industry, where often multiple structures of the same protein in complex with different ligands are solved as part of their drug development pipelines. Improved insights into which particles contribute to the best ligand density are also highly valuable and transferable to other applications of the same technique.

      Weaknesses:

      Although the convenient visualisation of small molecules bound to protein targets of a known structure would be relevant for the pharmaceutical industry, the evidence described for the claim that this technique "significantly" improves alignment of reconstruction of small complexes is incomplete. The authors are encouraged to better evaluate the effects of model bias on the reconstructed densities in a revised paper.

    1. The moral lessons also of this lady's novels , though clearly and impressively conveyed , are not offensively put forward , but spring incidentally from the circumstances of the story ; they are not forced upon the reader , but he is left to collect them ( though without any difficulty ) for himself

      It is fascinating that Whatley is commending Jane Austin for covert didactic narratives. To have the moral lessons being in arm's grasp, if only, the individual seeks it out. Though, if I was to critique this rationale, to suggest that this methodology is "conformed more closely to real life" not evidently true. Often times, the big moral lessons in real life become loud and clear with great consequences. Beyond the critique, it is fascinating that Jane Austen wrote works with social realism predating the Realism literary period. Revolutionary and "novel" in application.

      SIDE NOTE: I hope Whatley lived long enough to see the emergence of the Realism literary period. Given this was written in 1818, I hope he lived 22 years to at least see prevalence of Realism as that seems to be his fascination.

    1. Reviewer #1 (Public review):

      Summary:

      Fungal survival and pathogenicity rely on the ability to undergo reversible morphological transitions, which is often linked to nutrient availability. In this study, the authors uncover a conserved connection between glycolytic activity and sulfur amino acid biosynthesis that drives morphogenesis in two fungal model systems. By disentangling this process from canonical cAMP signaling, the authors identify a new metabolic axis that integrates central carbon metabolism with developmental plasticity and virulence.

      Strengths:

      The study integrates different experimental approaches, including genetic, biochemical, transcriptomic and morphological analyses and convincingly demonstrates that perturbations in glycolysis alters sulfur metabolic pathways and thus impacts pseudohyphal and hyphal differentiation. Overall, this work offers new and important insights into how metabolic fluxes are intertwined with fungal developmental programs and therefore opens new perspectives to investigate morphological transitioning in fungi.

      Importantly, in the revised version the authors now substantiate the transcriptomic findings by RT-qPCR analyses in the pfk1ΔΔ and adh1ΔΔ strains, demonstrating that genetic disruption of glycolytic flux generally mirrors the effects of 2-deoxyglucose treatment. The manuscript's discussion has also been strengthened by explicitly addressing why cysteine and methionine differ in their ability to rescue filamentation in S. cerevisiae versus C. albicans, highlighting species-specific differences in sulfur uptake and transsulfuration pathways.

      Overall, this revised manuscript provides compelling evidence for a previously unrecognized coupling between glycolysis and sulfur metabolism that shapes fungal morphogenesis and virulence. It opens new perspectives on metabolic control of fungal development and raises interesting mechanistic questions for future work.

      Comments on revisions:

      The authors have incorporated all of my suggested changes and addressed all raised concerns.

    1. Joint Public Review:

      In this work, the authors present DeepTX, a computational tool for studying transcriptional bursting using single-cell RNA sequencing (scRNA-seq) data and deep learning. The method aims to infer transcriptional burst dynamics-including key model parameters and the associated steady-state distributions-directly from noisy single-cell data. The authors apply DeepTX to datasets from DNA damage experiments, revealing distinct regulatory patterns: IdU treatment in mouse stem cells increases burst size, promoting differentiation, while 5FU alters burst frequency in human cancer cells, driving apoptosis or survival depending on dose. These findings underscore the role of burst regulation in mediating cell fate responses to DNA damage.

      The main strength of this study lies in its methodological contribution. DeepTX integrates a non-Markovian mechanistic model with deep learning to approximate steady-state mRNA distributions as mixtures of negative binomial distributions, enabling genome-scale parameter inference with reduced computational cost. The authors provide a clear discussion of the framework's assumptions, including reliance on steady-state data and the inherent unidentifiability of parameter sets, and they outline how the model could be extended to other regulatory processes.

      The revised manuscript addresses the original concerns raised by the reviewers, particularly those related to sample size requirements, distributional assumptions, and the biological interpretation of the inferred parameters. The authors have also included an extensive discussion of the limitations of the methodological framework, including the constraints associated with relying on snapshot data, as well as a broader contextualisation of DeepTX within the landscape of existing tools that link mechanistic modelling and single-cell transcriptomics.

      Overall, this work represents a valuable contribution to the integration of mechanistic models with high-dimensional single-cell data. It will be of interest to researchers in systems biology, bioinformatics, and computational modelling.

      Comments on revisions:

      We thank the authors for their thorough revision and for carefully addressing the points raised in the previous review. At this stage, the reviewers have no further concerns.

    1. Reviewer #1 (Public review):

      Summary:

      The paper by Graff et al. investigates the function of foxf2 in zebrafish to understand the progression of cerebral small vessel disease. The authors use a partial loss of foxf2 (zebrafish possess two foxf2 genes, foxf2a and foxf2b, and the authors mainly analyze homozygous mutants in foxf2a) to investigate the role of foxf2 signaling in regulating pericyte biology. The find that the number of pericytes is reduced in foxf2a mutants and that the remaining pericytes display alterations in their morphologies. The authors further find that mutant animals can develop to adulthood but that in adult animals, both endothelial and pericyte morphologies are affected. They also show that mutant pericytes can partially repopulate the brain after genetic ablation.

      Strengths:

      The paper is well written and easy to follow. The authors now include pericyte marker gene analysis and solid quantifications of the observed phenotypes.

      Weaknesses:

      None left.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript presents a robust set of experiments that provide new insights into the role of STN neurons during active and passive avoidance tasks. These forms of avoidance have received comparatively less attention in the literature than the more extensively studied escape or freezing responses, despite being extremely relevant to human behaviour and more strongly influenced by cognitive control.

      Strengths:

      Understanding the neural infrastructure supporting avoidance behaviour would be a fundamental milestone in neuroscience. The authors employ sophisticated methods to delineate the role of STN neurons during avoidance behaviours. The work is thorough and the evidence presented is compelling. Experiments are carefully constructed, well-controlled, and the statistical analyses are appropriate.

    1. Reviewer #1 (Public review):

      This manuscript used deep learning to highlight the role of inhibition in shaping selectivity in primary and higher visual cortex. The findings hint at hitherto unknown axes of structured inhibition operating in cortical networks with a potentially key role in object recognition.

      The multi-species approach of testing the model in macaque and mouse is excellent, as it improves the chances that the observed findings are a general property of mammalian visual cortex. However, it would be useful to delineate any notable differences between these species, which are to be expected given their lifestyle.

      The overall performance of the model appears to be excellent in V1, with over 80% performance, but it falls substantially in V4. It would be important to consider the implications of this finding; for example, in the context of studying temporal lobe structures that are central to recognizing objects. Would one expect that model performance decreases further here, and what measures could be taken to avoid this? Or is this type of model better restricted to V1 or even LGN?

      While the manuscript delineates novel axes of inhibitory interactions, it remains unclear what exactly these axes are and how they arise. What are the steps that need to be taken to make progress along these lines?

    1. Reviewer #1 (Public review):

      Wang, Zhou et al. investigated coordination between the prefrontal cortex (PFC) and the hippocampus (Hp), during reward delivery, by analyzing beta oscillations. Beta oscillations are associated with various cognitive functions, but their role in coordinating brain networks during learning is still not thoroughly understood. The authors focused on the changes in power, peak frequencies, and coherence of beta oscillations in two regions when rats learn a spatial task over days. Inconsistent with the authors' hypothesis, beta oscillations in those two regions during reward delivery were not coupled in spectral or temporal aspects. They were, however, able to show reverse changes in beta oscillations in PFC and Hp as the animal's performance got better. The authors were also able to show a small subset of cell populations in PFC that are modulated by both beta oscillations in PFC and sharp wave ripples in Hp. A similarly modulated cell population was not observed in Hp. These results are valuable in pointing out distinct periods during a spatial task when two regions modulate their activity independently from each other.

      The authors included a detailed analysis of the data to support their conclusions. However, some clarifications would help their presentation, as well as help readers to have a clear understanding.

      (1) The crucial time point of the analysis is the goal entry. However, it needs a better explanation in the methods or in figures of what a goal entry in their behavioral task means.

      (2) Regarding Figure 2, the authors have mentioned in the methods that PFC tetrodes have targeted both hemispheres. It might be trivial, but a supplementary graph or a paragraph about differences or similarities between contralateral and ipsilateral tetrodes to Hp might help readers.

      (3) The authors have looked at changes in burst properties over days of training. For the coincidence of beta bursts between PFC and Hp, is there a change in the coincidence of bursts depending on the day or performance of the animal?

      (4) Regarding the changes in performance through days as well as variance of the beta burst frequency variance (Figures 3C and 4C); was there a change in the number of the beta bursts as animals learn the task, which might affect variance indirectly?

      (5) In the behavioral task, within a session, animals needed to alternate between two wells, but the central arm (1) was in the same location. Did the authors alternate the location of well number 1 between days to different arms? It is possible that having well number 1 in the same location through days might have an effect on beta bursts, as they would get more rewards in well number 1?

      (6) The animals did not increase their performance in the F maze as much as they increased it in the Y maze. It would be more helpful to see a comparison between mazes in Figure 5 in terms of beta burst timing. It seems like in Y maze, unrewarded trials have earlier beta bursts in Y maze compared to F maze. Also, is there a difference in beta burst frequencies of rewarded and unrewarded trials?

      (7) For individual cell analysis, the authors recorded from Hp and the behavioral task involved spatial learning. It would be helpful to readers if authors mention about place field properties of the cells they have recorded from. It is known that reward cells firing near reward locations have a higher rate to participate in a sharp wave ripple. Factoring in the place field properties of the cells into the analysis might give a clearer picture of the lack of modulation of HP cells by beta and sharp wave ripples.

    1. Reviewer #1 (Public review):

      Summary:

      The authors set out to understand how animals respond to visible light in an animal without eyes. To do so they used the C. elegans model, which lacks eyes, but nonetheless exhibits robust responses to visible light at several wavelengths. Here, the authors report a promoter that is activated by visible light and independent of known pathways of light resposnes.

      Strengths:

      The authors convincingly demonstrate that visible light activates the expression of the cyp-14A5 promoter driven gene expression in a variety of contexts and report the finding that this pathway is activated via the ZIP-2 transcriptionally regulated signaling pathway.

      Weaknesses:

      Because the ZIP-2 pathway has been reported to activated predominantly by changes in the bacterial food source of C. elegans -- or exposure of animals to pathogens -- it remains unclear if visible light activates a pathway in C. elegans (animals) or if visible light potentially is sensed by the bacteria on the plate which also lack eyes. Specifically, it is possible that the the plates are seeded with excess E. coli, that E. coli is altered by light in some way and in this context alters its behavior in such a way that activates a known bacterially responsive pathway in the animals. Consistent with this possibility the authors found that heat-killed bacteria prevented the reporter activation in animals. This weakness would not affect the ability to use this novel discovery as a tool, which would still be useful to the field.

    1. Reviewer #1 (Public review):

      Aw et al. have proposed that utilizing stability analysis can be useful for fine-mapping of cross populations. In addition, the authors have performed extensive analyses to understand the cases where the top eQTL and stable eQTL are the same or different via functional data.

      Comments on revisions:

      The authors have answered all my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      This is a careful and comprehensive study demonstrating that effector-dependent conformational switching of the MT lattice from compacted to expanded deploys the alpha tubulin C-terminal tails so as to enhance their ability to bind interactors.

      Strengths:

      The authors use 3 different sensors for the exposure of the alpha CTTs. They show that all 3 sensors report exposure of the alpha CTTs when the lattice is expanded by GMPCPP, or KIF1C, or a hydrolysis-deficient tubulin. They demonstrate that expansion-dependent exposure of the alpha CTTs works in tissue culture cells as well as in vitro.

      Appraisal:

      The authors have gone to considerable lengths to test their hypothesis that microtubule expansion favours deployment of the alpha tubulin C-terminal tail, allowing its interactors, including detyrosinase enzymes, to bind. There is a real prospect that this will change thinking in the field. One very interesting possibility, touched on by the authors, is that the requirement for MAP7 to engage kinesin with the MT might include a direct effect of MAP7 on lattice expansion.

      Impact:

      The possibility that the interactions of MAPS and motors with a particular MT or region feed forward to determine its future interaction patterns is made much more real. Genuinely exciting.

    1. Reviewer #1 (Public review):

      While the structure of the melibiose permease in both outward and inward-facing forms has been solved previously, there remains unanswered questions regarding its mechanism. Hariharan et al set out to address this with further crystallographic studies complemented with ITC and hydrogen deuterium exchange (HDX) mass spectrometry. They first report 4 different crystal structures of galactose derivatives to explore molecular recognition showing that the galactose moiety itself is the main source of specificity. Interestingly, they observe a water-mediated hydrogen bonding interaction with the protein and suggest that this water molecule may be important in binding.

      The results from the crystallography appear sensible, though the resolution of the data is low with only the structure with NPG better than 3Å. Support for the conclusion of the water molecule in the binding site, as interpreted from the density, is given by MD studies.

      The HDX also appears to be well done and is explained reasonably well in the revision.

    1. Reviewer #1 (Public review):

      Summary:

      The authors analyze transcription in single cells before and after 4000 rads of ionizing radiation. They use Seuratv5 for their analyses, which allows them to show that most of the genes cluster along the proximal-distal axis. Due to the high heterogeneity in the transcripts, they use the Herfindahl-Hirschman index (HHI) from Economics, which measures market concentration. Using the HHI, they find that genes involved in several processes (like cell death, response to ROS, DNA damage response (DDR)) are relatively similar across clusters. However, ligands activating the JAK/STAT, Pvr, and JNK pathways and transcription factors Ets21C and dysf are upregulated regionally. The JAK/STAT ligands Upd1,2,3 require p53 for their upregulation after irradiation, but the normal expression of Upd1 in unirradiated discs is p53-independent. This analysis also identified a cluster of cells that expressed tribbles, encoding a factor that downregulates mitosis-promoting String and Twine, that appears to be G2/M arrested and expressed numerous genes involved in apoptosis, DDR, the aforementioned ligands and TFs. As such, the tribbles-high cluster contains much of the heterogeneity.

      Strengths:

      (1) The authors have used robust methods for rearing Drosophila larvae, irradiating wing discs and analyzing the data with Seurat v5 and HHI.<br /> (2) These data will be informative for the field.<br /> (3) Most of the data is well-presented.<br /> (4) The literature is appropriately cited.

      Weaknesses

      The authors have addressed my concerns in the revised article.

    1. Reviewer #1 (Public review):

      Summary:

      Negreira, G. et al clearly presented the challenges of conducting genomic studies in unicellular pathogens and of addressing questions related to the balance between genome integrity and instability, pivotal for survival under the stressful conditions these organisms face and for their evolutionary success. This underlies the need for powerful approaches to perform single-cell DNA analyses suited to the small and plastic Leishmania genome. Accordingly, their goal was to develop such a novel method and demonstrate its robustness.

      In this study, the authors combined semi-permeable capsules (SPCs) with primary template-directed amplification (PTA) and adapted the system to the Leishmania genome, which is about 100 times smaller than the human genome and exhibits remarkable plasticity and mosaic aneuploidy. Given the size and organization of the Leishmania genome, the challenges were substantial; nevertheless, the authors successfully demonstrated that PTA not only works for Leishmania but also represents a significantly improved whole-genome amplification (WGA) method compared with standard approaches. They showed that SPCs provide a superior alternative for cell encapsulation, increasing throughput. The methodology enabled high-resolution karyotyping and the detection of fine-scale copy number variations (CNVs) at the single-cell level. Furthermore, it allowed discrimination between genotypically distinct cells within mixed populations.

      Strengths:

      This is a high-impact study that will likely contribute to our understanding of DNA replication and the genetic plasticity of Leishmania, including its well-documented aneuploidy, somy variations, CNVs, and SNPs - all key elements for elucidating various aspects of the parasite's biology, such as genome evolution, genetic exchange, and mechanisms of drug resistance.

      Overall, the authors clearly achieved their objectives, providing a solid rationale for the study and demonstrating how this approach can advance the investigation of Leishmania's small, plastic genome and its frequent natural strain mixtures within hosts. This methodology may also prove valuable for genomic studies of other single-celled organisms.

      Weaknesses:

      The discussion section could be enriched to help readers understand the significance of the work, for instance, by more clearly pointing out the obstacles to a better understanding of DNA replication in Leishmania. Or else, when they discuss the results obtained at the level of nucleotide information and the relevance of being able to compare, in their case, the two strains, they could refer to the implications of this level of precision to those studying clonal strains or field isolates, drug resistance or virulence in a more detailed way.

  3. Local file Local file
    2
    1
    1. 1. Основные сведения о системеЭлектрическая централизация с индустриальной системой монтажа(ЭЦ-И)предназначена для управления станционными стрелками и сигналами, установки по-ездных и маневровых маршрутов с пульта ДСП или с пульта ДНЦ по кодовой линиис целью организации движения поездов и маневровых работ при обеспечениибезопасности движения поездов и предоставления информации оперативномуперсоналу и системам более высокого уровня.1.1. Особенности системыОсновными особенностями ЭЦ-И являются:- высокий уровень и полнота схемных решений, реализующих необходимыеэксплуатационные требования;- возможность накопления маршрутов, враждебных заданному;- возможность установки маршрута без открытия светофора с движением позамкнутым стрелкам по приказу при ложной занятости рельсовой цепи или негаба-ритного участка по маршруту, или при отсутствии контроля положения охраннойстрелки;- блочное местное управление стрелками и сигналами;- индустриализация монтажа постовых устройств путем соединениаппаратуры ЭЦ-И кабельными30-жильными соединителями со штепсельнымиразъемами на концах;- повышение надежности действия устройств за счет ликвидаэлектрических конденсаторов;- сокращение органов управления (объединение сигнальных поездной и манев-ровой кнопки в одну, исключение индивидуальных кнопоквспомогательного перевода стрелок и др.);- обеспечение технологией монтажа постовых устройств снижетрудоемкости и сроков проектирования, строительства, наладки и пуска устройств;- возможность более быстрого перемонтажа устройств при изменении путевогоразвития станции

      1 вопрос

    Tags

    Annotators

    1. Reviewer #1 (Public review):

      Summary:

      This study is an evaluation of patient variants in the kidney isoform of AE1 linked to distal renal tubular acidosis. Drawing on observations in the mouse kidney, this study extends findings to autophagy pathways in a kidney epithelial cell line.

      Strengths:

      Experimental data are convincing and nicely done.

      The revised manuscript incorporates most of the reviewer recommendations and presents a more cohesive story that is easier to read and assess. The data are convincing, of suitable quality and nicely presented. Statistical evaluation is rigorous. The link between kAE1 mutants and cell metabolism and autophagy is novel and provides insights on pathological observations in dRTA.

    1. Reviewer #1 (Public review):

      Lahtinen et al. evaluated the association between polygenic scores and mortality. This question has been intensely studied (Sakaue 2020 Nature Medicine, Jukarainen 2022 Nature Medicine, Argentieri 2025 Nature Medicine), where most studies use PRS as an instrument to attribute death to different causes. The presented study focuses on polygenic scores of non-fatal outcomes and separates the cause of death into "external" and "internal". The majority of the results are descriptive, and the data doesn't have the power to distinguish effect sizes of the interesting comparisons: (1) differences between external vs. internal (2) differences between PGI effect and measured phenotype.

      Comments on revised version:

      The authors answered my concerns well. I don't have any further comments.

    1. Reviewer #1 (Public review):

      Summary:

      Carloni et al. comprehensively analyze which proteins bind repetitive genomic elements in Trypanosoma brucei. For this, they perform mass spectrometry on custom-designed, tagged programmable DNA-binding proteins. After extensively verifying their programmable DNA-binding proteins (using bioinformatic analysis to infer target sites, microscopy to measure localization, ChIP-seq to identify binding sites), they present, among others, two major findings: 1) 14 of the 25 known T. brucei kinetochore proteins are enriched at 177bp repeats. As T. brucei's 177bp repeat-containing intermediate-sized and mini-chromosomes lack centromere repeats but are stable over mitosis, Carloni et al. use their data to hypothesize that a 'rudimentary' kinetochore assembles at the 177bp repeats of these chromosomes to segregate them. 2) 70bp repeats are enriched with the Replication Protein A complex, which, notably, is required for homologous recombination. Homologous recombination is the pathway used for recombination-based antigenic variation of the 70bp-repeat-adjacent variant surface glycoproteins.

      Strengths and Weaknesses:

      The manuscript was previously reviewed through Review Commons. As noted there, the experiments are well controlled, the claims are well supported, and the methods are clearly described. The conclusions are convincing. All concerns I raised have been addressed except one (minor point #8):

      "The way the authors mapped the ChIP-seq data is potentially problematic when analyzing the same repeat type in different genomic regions. Reads with multiple equally good mapping positions were assigned randomly. This is fine when analyzing repeats by type, independent of genomic position, which is what the authors do to reach their main conclusions. However, several figures (Fig. 3B, Fig. 4B, Fig. 5B, Fig. 7) show the same repeat type at specific genomic locations." Due to the random assignment, all of these regions merely show the average signal for the given repeat. I find it misleading that this average is plotted out at "specific" genomic regions.<br /> Initially, I suggested a workaround, but the authors clarified why the workaround was not feasible, and their explanation is reasonable to me. That said, the figures still show a signal at positions where they can't be sure it actually exists. If this cannot be corrected analytically, it should at least be noted in the figure legends, Results, or Discussion.

      Importantly, the authors' conclusions do not hinge on this point; they are appropriately cautious, and their interpretations remain valid regardless.

      Significance:

      This work is of high significance for chromosome/centromere biology, parasitology, and the study of antigenic variation. For chromosome/centromere biology, the conceptual advancement of different types of kinetochores for different chromosomes is a novelty, as far as I know. It would certainly be interesting to apply this study as a technical blueprint for other organisms with mini-chromosomes or chromosomes without known centromeric repeats. I can imagine a broad range of labs studying other organisms with comparable chromosomes to take note of and build on this study. For parasitology and the study of antigenic variation, it is crucial to know how intermediate- and mini-chromosomes are stable through cell division, as these chromosomes harbor a large portion of the antigenic repertoire. Moreover, this study also found a novel link between the homologous repair pathway and variant surface glycoproteins, via the 70bp repeats. How and at which stages during the process, 70bp repeats are involved in antigenic variation is an unresolved, and very actively studied, question in the field. Of course, apart from the basic biological research audience, insights into antigenic variation always have the potential for clinical implications, as T. brucei causes sleeping sickness in humans and nagana in cattle. Due to antigenic variation, T. brucei infections can be chronic.

      Comments on revised version:

      All my recommendations have been addressed.

    1. Reviewer #1 (Public review):

      Summary:

      The authors assess the role of map3k1 in adult Planaria through whole body RNAi for various periods of time. The authors' prior work has shown that neoblasts (stem cells that can regenerate the entire body) for various tissues are intermingled in the body. Neoblasts divide to produce progenitors that migrate within a "target zone" to the "differentiated target tissues" where they differentiate into a specific cell type. Here the authors show that map3k1-i animals have ectopic eyes that form along the "normal" migration path of eye progenitors, ectopic neurons and glands along the AP axis and pharynx in ectopic anterior positions. The rest of the study shows that positional information is largely unaffected by loss of map3k1. However, loss of map3k1 leads to premature differentiated of progenitors along their normal migratory route. They also show that "long-term" whole body depletion of map3k1 results in mis-specified organs and teratomas. In short, this study convincingly demonstrates that in planaria, map3k1 maintains progenitor cells in an undifferentiated state, preventing premature fate commitment until they encounter the appropriate signals, either positional cues within a designated region or contact-dependent inputs from surrounding tissues.

      Strengths:

      (1) The study has appropriate controls, sample sizes and statistics.

      (2) The work is high-quality.

      (3) The conclusions are supported by the data.

      (4) Planaria is a good system to analyze the function of map3k1, which exists in mammals but not other invertebrates.

      Weaknesses:

      None noted.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Joshi and colleagues demonstrates that the precise theta-phase timing of spikes is causal for CA1 hippocampal theta sequences during locomotion on a linear track and is necessary for learning the cognitively demanding outbound component of a hippocampus-dependent alternation task (W-maze), independently of replay during immobility. To reach these conclusions, the authors developed a theta-phase-specific, closed-loop manipulation that used optogenetic activation of medial septal parvalbumin (PV) interneurons at the ascending phase of theta during locomotion. This protocol preserved immobility periods, allowing a clean and elegant dissociation from SWR-associated replay.

      The manuscript is well written and was a pleasure to read. The work described is of high quality and introduces several notable advances to the field:

      (a) It extends prior studies that manipulated theta oscillations by examining precise temporal structure (specifically theta sequences) rather than only LFP features.

      (b) The closed-loop manipulation enabled dissociation between deficits in theta sequences during a behavioural task and SWR-associated replay activity.

      (c) As controls, the authors included rats with suboptimal viral transduction or optic-fibre placement, and, within subjects, both stimulation-on (stim-on) and stimulation-off (stim-off) trials. Notably, sequence disruption persisted into stim-off periods within the same session.

      Overall, this is a strong manuscript that will provide valuable insights to the field. I have only minor comments:

      (1) As the authors note, it is striking that both behavioural performance and spike patterns are altered during stim-off trials. They propose that "disruption of theta sequences during the initial experience in an environment is sufficient to have lasting effects," implying that rapid, experience-dependent plasticity is driven by sequential firing. Does this imply that if rats were previously trained on the task, subsequent stim-on and stim-off trials would yield different outcomes, with stim-off trials showing improved performance and intact theta sequences? For example, if the sequence of one-third stim-on, one-third stim-off, one-third stim-on were inverted to off-on-off, would theta sequences be expected to emerge, disappear, and potentially re-emerge? While I am not asking for additional experiments, I think the discussion could be extended in this aspect.

      Alternatively, could the number of stim-off trials (one third of the total) be insufficient to support learning/induce plasticity? In the controls, ~50-100 trials appear necessary to achieve high performance.

      (2) In line with the point above, the authors characterise the behavioural changes induced by MS optogenetic stimulation specifically as a "learning deficit," as rats failed to improve across 300 trials in an initially novel environment (W-maze). While they present this as complementary to prior demonstrations of impaired performance on previously learned tasks (Zutshi et al., 2018; Quirk et al., 2021; Etter et al., 2023; Petersen et al., 2020), an alternative interpretation is a working-memory deficit. This would produce the same behavioural pattern, with reference memory (the less cognitively demanding trials) remaining intact despite stimulation and concomitant changes in theta sequences. This interpretation would also be consistent with work in certain disease models, where reduced synaptic plasticity and working-memory deficits co-occur with preserved place coding despite impaired theta sequences (e.g., Viana da Silva et al., 2024; Donahue et al., 2025).

      (3) It was not immediately clear whether SWR-associated activity was derived from the interleaved ~15-min rest sessions in a rest box, or from periods of immobility or reward consumption in the maze (aSWR, as in Jadhav et al 2012). Regardless, it would be informative to compare aSWR events within the maze to rest-box SWRs that may occur during more prolonged slow-wave episodes (even if not full sleep). This contrasts with Liu et al. (2024), who analysed replay during ~1.5-h sleep sessions.

    1. Reviewer #1 (Public review):

      Summary:

      This study examines the role of the long non-coding RNA Dreg1 in regulating Gata3 expression and ILC2 development. Using Dreg1-deficient mice, the authors show a selective loss of ILC2s but not T or NK cells, suggesting a lineage-specific requirement for Dreg1. By integrating public chromatin and TF-binding datasets, they propose a Tcf1-Dreg1-Gata3 regulatory axis. The topic is relevant for understanding epigenetic regulation of ILC differentiation.

      Strengths:

      (1) Clear in vivo evidence for a lineage-specific role of Dreg1.

      (2) Comprehensive integration of genomic datasets.

      (3) Cross-species comparison linking mouse and human regulatory regions.

      Weaknesses:

      (1) Mechanistic conclusions remain correlative, relying on public data.

      (2) Lack of direct chromatin or transcriptional validation of Tcf1-mediated regulation.

      (3) Human enhancer function is not experimentally confirmed.

      (4) Insufficient methodological detail and limited mechanistic discussion.

    1. Reviewer #1 (Public review):

      Summary:

      The authors provide a resource to the systems neuroscience community by offering their Python-based CLoPy platform for closed-loop feedback training. In addition to using neural feedback, as is common in these experiments, they include a capability to use real-time movement extracted from DeepLabCut as the control signal. The methods and repository are detailed for those who wish to use this resource. Furthermore, they demonstrate the efficacy of their system through a series of mesoscale calcium imaging experiments. These experiments use a large number of cortical regions for the control signal in the neural feedback setup, while the movement feedback experiments are analyzed more extensively. The revised preprint has improved substantially upon the previous submission.

      Strengths:

      The primary strength of the paper is the availability of their CLoPy platform. Currently, most closed-loop operant conditioning experiments are custom built by each lab, and carry a relatively large startup cost to get running. This platform lowers the barrier to entry for closed-loop operant conditioning experiments, in addition to making the experiments more accessible to those with less technical expertise.

      Another strength of the paper is the use of many different cortical regions as control signals for the neurofeedback experiments. Rodent operant conditioning experiments typically record from the motor cortex, and maybe one other region. Here, the authors demonstrate that mice can volitionally control many different cortical regions not limited to those previously studied, recording across many regions in the same experiment. This demonstrates the relative flexibility of modulating neural dynamics, including in non-motor regions.

      Finally, adapting the closed-loop platform to use real-time movement as a control signal is a nice addition. Incorporating movement kinematics into operant conditioning experiments has been a challenge due to the increased technical difficulties of extracting real-time kinematic data from video data at a latency where it can be used as a control signal for operant conditioning. In this paper, they demonstrate that the mice can learn the task using their forelimb position, at a rate that is quicker than the neurofeedback experiments.

      Weaknesses:

      Many of the original weaknesses have been addressed in the revised preprint.

      While the dataset contains an impressive amount of animals and cortical regions for the neurofeedback experiment, my excitement for these experiments is tempered by the relative incompleteness of the dataset.

      Additionally, adoption of the platform may be hindered by the absence of a tutorial on how to run a session.

    1. Reviewer #1 (Public review):

      Summary:

      Here Bansal et al., present a study on the fundamental blood and nectar feeding behaviors of the critical disease vector, Anopheles stephensi. The study encompasses not just the fundamental changes in blood feeding behaviors of the crucially understudied vector, but then use a transcriptomic approach to identify candidate neuromodulation path ways which influence blood feeding behavior in this mosquito species. The authors then provide evidence through RNAi knockdown of candidate pathways that the neuromodulators sNPF and Rya modulate feeding either via their physiological activity in the brain alone or through joint physiological activity along the brain-gut axis (but critically not the gut alone). Overall, I found this study to be built on tractable, well-designed behavioral experiments.

      Their study begins with a well-structured experiment to assess how the feeding behaviors of A. stephensi changes over the course of its life history and in response to its age, mating and oviposition status. The authors are careful and validate their experimental paradigm in the more well-studied Ae. aegypti, and are able to recapitulate the results of prior studies which show that mating is pre-requisite for blood feeding behaviors in Ae. aegypt. Here they find A. stephensi like another Anopheline mosquitoes has a more nuanced regulation of its blood and nectar feeding behaviors.

      The authors then go on to show in a Y- maze olfactometer that to some degree, changes in blood feeding status depend on behavioral modulation to host-cues, and this is not likely to be a simple change to the biting behaviors alone. I was especially struck by the swap in valence of the host-cues for the blood-fed and mated individuals which had not yet oviposited. This indicates that there is a change in behavior that is not simply desensitization to host-cues while navigating in flight, but something much more exciting happening.

      The authors then use a transcriptomic approach to identify candidate genes in the blood feeding stages of the mosquito's life cycle to identify a list of 9 candidates which have a role in regulating the host-seeking status of A. stephensi. Then through investigations of gene knockdown of candidates they identify the dual action of RYa and sNPF and candidate neuromodulators of host-seeking in this species. Overrall, I found the experiments to be well-designed. I found the molecular approach to be sound. While I do not think the molecular approach is necessarily an all-encompassing mechanism identification (owing mostly to the fact that genetic resources are not yet available in A. stephensi as they are in other dipteran models), I think it sets up a rich lines of research questions for the neurobiology of mosquito behavioral plasticity and comparative evolution of neuromodulator action.

      Strengths:

      I am especially impressed by the authors' attention to small details in the course of this article. As I read and evaluated this article I continued to think how many crucial details I may have missed if I were the scientist conducting these experiments. That attention to detail paid off in spades and allowed the authors to carefully tease apart molecular candidates of blood-seeking stages. The authors top down approach to identifying RYamide and sNPF starting from first principles behavioral experiments is especially comprehensive. The results from both the behavioral and molecular target studies will have broad implications for the vectorial capacity of this species and comparative evolution of neural circuit modulation.

      I believe the authors have adequately addressed all of my concerns; however, I think an accompanying figure to match the explained methods of the tissue-specific knockdown would help readers. The methods are now explicitly written for the timing and concentrations required to achieve tissue-specific knockdown, but seeing the data as a supplement would be especially reassuring given the critical nature of tissue-specific knockdown to the final interpretations of this paper.

    1. Reviewer #1 (Public review):

      Bredenberg et al. aim to model some of the visual and neural effects of psychedelics via the Wake-Sleep algorithm. This is an interesting study with findings that challenge certain mainstream ideas in psychedelic neuroscience.

      While some of my concerns have been addressed in revision, I am still not convinced that this model applies to 5-HT2A hallucinogens, as opposed to a pharmacologically distinct hallucinogen. I think it is important to justify which class of hallucinogens this model applies to and distinguish it from other hallucinogens. While some researchers tend to group several hallucinogens together (e.g., 5-HT2A agonists, NMDA antagonists, kappa-opioids agonists), I'm not convinced this is warranted, when they have distinct subjective and cognitive effects (including quite different visual distortions, and again I point out that the kappa-opioid agonist salvinorin A, which is referred to as an "oneirogen," has been described as particularly dream-like, perhaps more so than 5-HT2A hallucinogens), as well as some differences in therapeutic outcomes (ketamine seems to not have as persisting of therapeutic effects, and kappa-opioid agonist have yet to be shown to be therapeutic). Their use patterns highlight this (e.g., 5-HT2A drugs are used less in non-festival/rave social settings compared to NMDA drugs like ketamine, which can be used frequently enough to the point of abuse; kappa-opioid agonists have quite mixed effects in terms of pleasurable outcomes, thereby rarely being used/abused and almost never to my knowledge being used recreationally).

      In sum, more is needed to justify the claim that this work applies to 5-HT2A drugs in particular.

    1. Reviewer #1 (Public review):

      Summary:

      By using an established NAFLD model, choline-deficient high-fat diet, Barros et al show that LPS challenge causes excessive IFN-γ production by hepatic NK cells which further induces recruitment and polarization of a PD-L1 positive neutrophil subset leading to massive TNFα production and increased host mortality. Genetic inhibition of IFN-γ or pharmacological blockade of PD-L1 decreases recruitment of these neutrophils and TNFα release, consequently preventing liver damage and decreasing host death.

      Since NAFLD is often accompanied by chronic, low-grade inflammation, it can lead to an overactive but dysfunctional immune response and increase the body's overall susceptibility to infections, therefore this is very important research question.

      Strengths:

      The biggest strength of the manuscript is vast number of mouse strains used.

      Weaknesses:

      After the review, there are still some open questions from my side:

      (1) I would like the authors to defend their choice of diet type since this has not been done in the review/response to authors. In case they cannot, we need additional proof (HFD or WD model).

      (2) Since the authors used same control groups (chow and HFCD), as required by the animal ethics committee, they must have power analysis test to show that the number of controls (but also in other groups) they used is enough to see the effect. Please provide it.

    1. Reviewer #1 (Public review):

      Summary:

      The image analysis pipeline is tested in analysing microscopy imaging data of gastruloids of varying sizes, for which an optimised protocol for in toto image acquisition is established based on whole mount sample preparation using an optimal refractive index matched mounting media, opposing dual side imaging with two-photon microscopy for enhaced laser penetration, dual view registration and weighted fusion for improved in toto sample data representation. For enhanced imaging speed in a two-photon microscope, parallel imaging was used and the authors performed spectral unmixing analysis to avoid issues of signal cross-talk.

      In the image analysis pipeline image, different pre-treatments are done dependent on the analysis to be performed (for nuclear segmentation - contrast enhancement and normalisation; for quantitative analysis of gene expression - corrections for optical artifacts inducing signal intensity variations). Stardist3D was used for the nuclear segmentation. The study analyses in toto properties of gastruloid nuclear density, patterns of cell division, morphology, deformation and gene expression.

      Strengths:

      The methods developed are sound, well described and well validated, using a sample challenging for microscopy, gastruloids. Many of the established methods are very useful (e.g. registration, corrections, signal normalisation, lazy loading bioimage visualisation, spectral decomposition analysis), facilitate the development of quantitative research and would be of interest to the wide scientific community.

      Comments on revisions:

      I am happy with the job the authors have done with the revision. No further comments.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates the potential link between amygdala volume and social tolerance in multiple macaque species. Through a comparative lens, the authors considered tolerance grade, species, age, sex, and other factors that may contribute to differing brain volumes. They found that amygdala, but not hippocampal, volume differed across tolerance grades such that high-tolerance species showed larger amygdala than low-tolerance species of macaques. They also found that less tolerant species exhibited increases in amygdala volume with age, while more tolerant species showed the opposite. Given their wide range of species with varied biological and ecological factors, the authors' findings provide new, important evidence for changes in amygdala volume in relation to social tolerance grades. Contributions from these findings will greatly benefit future efforts in the field to characterize brain regions critical for social and emotional processing across species.

      (1) This study demonstrates a concerted and impressive effort to comparatively examine neuroanatomical contributions to sociality in monkeys. The authors impressively collected samples from 12 macaque species with multiple datapoints across species age, sex, and ecological factors. Species from all four social tolerance grades were present. Further, the age range of the animals is noteworthy, particularly the inclusion of individuals over 20 years old.

      (2) This work is the first to report neuroanatomical correlates of social tolerance grade in macaques in one coherent study. Given the prevalence of macaques as a model of social neuroscience, considerations of how socio-cognitive demands are impacted by the amygdala are highly important. The authors' findings will certainly inform future studies on this topic.

      (3) The methodology and supplemental figures for acquiring brain MRI images are nicely detailed. Clear information on these parameters is crucial for future comparative interpretations of sociality and brain volume, and the authors do an excellent job of describing this process in full.

      (4) The following comments were brought up during the review. In their revision, the authors have sufficiently addressed all of these comments by providing detailed responses and updating their manuscript. First, the revision clarified how much one could draw conclusions about "nature vs. nurture" from this study. Second, the revision also clarified the contributions of very young and very old animals in their correlations. Third, in their revision, the authors expanded on how their results could be interpreted in the context of multiple behavioral traits by Thierry (2021) by providing more detailed descriptions. Finally, during the revision, the authors clarified that both intolerant and tolerant species experience complex socio-cognitive demands and highlighted that socio-cognitive challenges arise across the tolerance spectrum under different behavioral demands.

    1. How much do you play a role in your own developmental path? Are you at the whim of your genetic inheritance or the environment that surrounds you? Some theorists see humans as playing a much more active role in their own development. Piaget, for instance, believed that children actively explore their world and construct new ways of thinking to explain the things they experience. In contrast, many behaviorists view humans as being more passive in the developmental process.11

      as children grow are they not in a stage of metamorphosis with changing the way they think and interact in daily life growing and shedding the adolescent Self?

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Hensley and Yildez studies the mechanical behavior of kinesin under conditions where the z-component of the applied force is minimized. This is accomplished by tethering the kinesin to the trapped bead with a long double stranded DNA segment as opposed to directly binding the kinesin to the large bead. It complements several recent studies that have used different approaches to looking at the mechanical properties of kinesin under low z-force loads. The study shows that much of the mechanical information gleaned from the traditional "one bead" with attached kinesin approach was probably profoundly influenced by the direction of the applied force. The authors speculate that when moving small vesicle cargos (particularly membrane bound ones) the direction of resisting force on the motor has much less of a z-component than might be experience if the motor were moving large organelles like mitochondria.

      Strengths:

      The approach is sound and provides an alternative method to examine the mechanics of kinesin under conditions where the z-component of the force is lessened. The data show that kinesin has very different mechanical properties compared to those extensively reported with using the "single-bead" assay where the molecule is directly coupled to a large bead which is then trapped.

      Weaknesses:

      The sub stoichiometry binding of kinesins to the multivalent DNA complicates the interpretation of the data.

      Comments on revisions:

      The authors have addressed my concerns.

    1. Reviewer #1 (Public review):

      The authors have conducted substantial additional analyses to address the reviewers' comments. However, several key points still require attention. I was unable to see the correspondence between the model predictions and the data in the added quantitative analysis. In the rebuttal letter, the delta peak speed time displays values in the range of [20, 30] ms, whereas the data were negative for the 45{degree sign} direction. Should the reader directly compare panel B of Figure 6 with Figure 1E? The correspondence between the model and the data should be made more apparent in Figure 6. Furthermore, the rebuttal states that a quantitative prediction was not expected, yet it subsequently argues that there was a quantitative match. Overall, this response remains unclear.

      A follow-up question concerns the argument about strategic slowing. The authors argue that this explanation can be rejected because the timing of peak speed should be delayed, contrary to the data. However, there appears to be a sign difference between the model and the data for the 45{degree sign} direction, which means that it was delayed in this case. Did I understand correctly? In that regard, I believe that the hypothesis of strategic slowing cannot yet be firmly rejected and the discussion should more clearly indicate that this argument is based on some, but not all, directions. I agree with the authors on the importance of the mass underestimation hypothesis, and I am not particularly committed to the strategic slowing explanation, but I do not see a strong argument against it. If the conclusion relies on the sign of the delta peak speed, then the authors' claims are not valid across all directions, and greater caution in the interpretation and discussion is warranted. Regarding the peak acceleration time, I would be hesitant to draw firm conclusions based on differences smaller than 10 ms (Figures R3 and 6D).

      The authors state in the rebuttal that the two hypotheses are competing. This is not accurate, as they are not mutually exclusive and could even vary as a function of movement direction. The abstract also claims that the data "refutes" strategic slowing, which I believe is too strong. The main issue is that, based on the authors' revised manuscript, the lack of quantitative agreement between the model and the data for the mass underestimation hypothesis is considered acceptable because a precise quantitative match is not expected, and the predictions overall agree for some (though not all) directions and phases (excluding post-in). That is reasonable, but by the same logic, the small differences between the model prediction and the strategic slowing hypothesis should not be taken as firm evidence against it, as the authors seem to suggest. In practice, I recommend a more transparent and cautious interpretation to avoid giving readers the false impression that the evidence is decisive. The mass underestimation hypothesis is clearly supported, but the remaining aspects are less clear, and several features of the data remain unexplained.

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript "Conformational Variability of HIV-1 Env Trimer and Viral Vulnerability", the authors study the fully glycosylated HIV-1 Env protein using an all-atom forcefield. It combines long all-atom simulations of Env in a realistic asymmetric bilayer with careful data analysis. This work clarifies how the CT domain modulates the overall conformation of the Env ectodomain and characterizes different MPER-TMD conformations. The authors also carefully analyze the accessibility of different antibodies to the Env protein.

      Strengths:

      This paper is state-of-the-art, given the scale of the system and the sophistication of the methods. The biological question is important, the methodology is rigorous, and the results will interest a broad audience.

      Weaknesses:

      The manuscript lacks a discussion of previous studies. The authors should consider addressing or comparing their work with the following points:

      (1) Tilting of the Env ectodomain has also been reported in previous experimental and theoretical work:

      https://doi.org/10.1101/2025.03.26.645577

      (2) A previous all-atom simulation study has characterized the conformational heterogeneity of the MPER-TMD domain:

      https://doi.org/10.1021/jacs.5c15421

      (3) Experimental studies have shown that MPER-directed antibodies recognize the prehairpin intermediate rather than the prefusion state:

      https://doi.org/10.1073/pnas.1807259115

      (4) How does the CT domain modulate the accessibility of these antibodies studied? The authors are in a strong position to compare their results with the following experimental study:

      https://doi.org/10.1126/science.aaa9804

    1. Reviewer #1 (Public review):

      Summary:

      The authors present a novel usage of fluorescence life-time imaging microscopy (FLIM) to measure NAD(P)H autofluorescence in the Drosophila brain, as a proxy for cellular metabolic/redox states. This new method relies on the fact that both NADH and NADPH are autofluorescent, with a different excitation lifetime depending on whether they are free (indicating glycolysis) or protein-bound (indicating oxidative phosphorylation). The authors successfully use this method in Drosophila to measure changes in metabolic activity across different areas of the fly brain, with a particular focus on the main center for associative memory: the mushroom body.

      Strengths:

      The authors have made a commendable effort to explain the technical aspects of the method in accessible language. This clarity will benefit both non-experts seeking to understand the methodology and researchers interested in applying FLIM to Drosophila in other contexts.

      Weaknesses:

      Despite being statistically significant, the learning-induced change in f-free in α/β Kenyon cells is minimal (a decrease from 0.76 to 0.73, with a high variability). It is unclear whether this small effect represents a meaningful shift in neuronal metabolic state.

      Whether this method can be valuable to examine the effects of long-term memory (after spaced or massed conditioning) remains to be established.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates how individuals with chronic temporomandibular disorder (TMD) learn from uncertain rewards, using a probabilistic three-armed bandit task and computational modelling. The authors aim to identify whether people living with chronic pain show altered learning under uncertainty and how such differences might relate to psychological symptoms.

      Strengths:

      The work addresses an important question about how chronic pain may influence cognition and motivation. The task design is appropriate for probing adaptive learning, and the modelling approach is novel. The findings of altered uncertainty updating in the TMD group are interesting.

      Weaknesses:

      Several aspects of the paper limit the strength of the conclusions. The group differences appear only in model-derived parameters, with no corresponding behavioural differences in task performance. Model parameters do not correlate with pain severity, making the proposed mechanistic link between pain and learning speculative. Some of the interpretations extend beyond what the data can directly support.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Wang et al. reports the potential involvement of an asymmetric neurocircuit in the sympathetic control of liver glucose metabolism.

      Strengths:

      The concept that the contralateral brain-liver neurocircuit preferentially regulates each liver lobe may be interesting.

      Weaknesses:

      However, the experimental evidence presented did not support the study's central conclusion.

      (1) Pseudorabies virus (PRV) tracing experiment:<br /> The liver not only possesses sympathetic innervations but also vagal sensory innervations. The experimental setup failed to distinguish whether the PRV-labeling of LPGi (Lateral Paragigantocellular Nucleus) is derived from sympathetic or vagal sensory inputs to the liver.

      (2) Impact on pancreas:<br /> The celiac ganglia not only provide sympathetic innervations to the liver but also to the pancreas, the central endocrine organ for glucose metabolism. The chemogenetic manipulation of LPGi failed to consider a direct impact on the secretion of insulin and glucagon from the pancreas.

      (3) Neuroanatomy of the brain-liver neurocircuit:<br /> The current study and its conclusion are based on a speculative brain-liver sympathetic circuit without the necessary anatomical information downstream of LPGi.

      (4) Local manipulation of the celiac ganglia:<br /> The left and right ganglia of mice are not separate from each other but rather anatomically connected. The claim that the local injection of AAV in the left or right ganglion without affecting the other side is against this basic anatomical feature.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors investigate the effects of Miro1 on VSMC biology after injury. Using conditional knockout animals, they provide the important observation that Miro1 is required for neointima formation. They also confirm that Miro1 is expressed in human coronary arteries. Specifically, in conditions of coronary diseases, it is localized in both media and neointima and, in atherosclerotic plaque, Miro1 is expressed in proliferating cells.

      However, the role of Miro1 in VSMC in CV diseases is poorly studied and the data available are limited; therefore, the authors decided to deepen this aspect. The evidence that Miro-/- VSMCs show impaired proliferation and an arrest in S phase is solid and further sustained by restoring Miro1 to control levels, normalizing proliferation. Miro1 also affects mitochondrial distribution, which is strikingly changed after Miro1 deletion. Both effects are associated with impaired energy metabolism due to the ability of Miro1 to participate in MICOS/MIB complex assembly, influencing mitochondrial cristae folding. Interestingly, the authors also show the interaction of Miro1 with NDUFA9, globally affecting super complex 2 assembly and complex I activity.<br /> Finally, these important findings also apply to human cells and can be partially replicated using a pharmacological approach, proposing Miro1 as a target for vasoproliferative diseases.

      Strengths:

      The discovery of Miro1 relevance in neointima information is compelling, as well as the evidence in VSMC that MIRO1 loss impairs mitochondrial cristae formation, expanding observations previously obtained in embryonic fibroblasts.<br /> The identification of MIRO1 interaction with NDUFA9 is novel and adds value to this paper. Similarly, the findings that VSMC proliferation requires mitochondrial ATP support the new idea that these cells do not rely mostly on glycolysis.

      The revised manuscript includes additional data supporting mitochondrial bioenergetic impairment in MIRO1 knockout VSMCs. Measurements of oxygen consumption rate (OCR), along with Complex I (ETC-CI) and Complex V activity, have been added and analyzed across multiple experimental conditions. Collectively, these findings provide a more comprehensive characterization of the mitochondrial functional state. Following revision, the association between MIRO1 deficiency and impaired Complex I activity is more robust.

      Although the precise molecular mechanism of action remains to be fully elucidated, in this updated version, experiments using a MIRO1 reducing agent are presented with improved clarity

      Although some limitations remain, the authors have addressed nearly all the concerns raised, and the manuscript has substantially improved

      Weaknesses:

      Figure 6: The authors do not address the concern regarding the cristae shape; however, characterization of the cristae phenotype with MIRO1 ΔTM would have strengthened the mechanistic link between MIRO1 and the MIB/MICOS complex

      Although the authors clarified their reasoning, they did not explore in vivo validation of key biochemical findings, which represents a limitation of the current study. While their justification is acknowledged, at least a preliminary exploratory effort could have been evaluated to reinforce the translational relevance of the study.

      Finally, in line with the explanations outlined in the rebuttal, the Discussion section should mention the limits of MIRO1 reducer treatment.

    1. Joint Public Review:

      Quite obviously, the brain encodes "time", as we are able to tell if something happened before or after something else. How this is done, however, remains essentially not understood. In the context of Working Memory tasks, many experiments have shown that the neural activity during the retention period "encodes" time, besides the stimulus to be remembered; that is, the time elapsed from stimulus presentation can be reliably inferred from the recordings, even if time per se is not important for the task. This implies 'mixed selectivity', in the weak sense of neural activity varying with both stimulus identity and time elapsed (since presentation).

      In this paper, the authors investigate the implications of a specific form of such mixed selectivity, that is, conjunctive coding of what (stimulus) and when (time) at the single-neuron level, on the resulting dynamics of the population activity when 'viewed' through linear dimensionality-reduction techniques, essentially Principal Component Analysis (PCA). The theoretical/modeling results presented provide a useful guide to the interpretation of the experimental results; in particular, with respect to what can, or cannot, be rightfully inferred from those experimental results (using PCA-like techniques). The results are essentially theoretical in nature; there are, however, some conclusions that require a more precise justification, in my opinion. More generally, as the authors themselves discuss in the paper, it is not clear how to generalize this coding scheme to more complicated, but behaviorally and cognitively relevant, situations, such as multi-item WM or WM for sequences.

      (1) It is unclear to me how the conjunctive code that the authors use (i.e., Equation (3)) is constrained by the theoretical desiderata (i.e., compositionality) they list, or whether it is simply an ansatz, partly motivated by theoretical considerations and experimental observations.

      The "what" part: What the authors mean by "relationships" between stimuli is never clearly defined. From their argument (and from Figure 1b), it would seem that what they mean is "angles" between population vectors for all pairs of stimuli. If this is so, then the effect of the passing time can only amount to a uniform rescaling of the components of the population vector (i.e., it must be a similarity transformation; rotations are excluded, if the linear-decoder vectors are to be time-independent); the scaling factor, then, must be a strictly monotonous function of time (increasing or decreasing), if one is to decode time. In other words, the "when" receptive fields must be the same for all neurons.

      The "when" part: The condition, \tau_3=\tau_1+\tau_2, does not appear to be used at all. In fact, it is unclear (to me at least) whether the model, as it is formulated, is able to represent time intervals between stimuli.

      (2) For the specific case considered, i.e., conjunctive coding, it would seem that one should be able to analytically work out the demixed PCA (see Kobak et al., 2016). More generally, it seems interesting to compare the results of the PCA and the demixed PCA in this specific case, even just using synthetic data.

      (3) In the Section "Dimensionality of neural trajectories...", there is some claim about how the dimensionality of the population activity goes up with the observation window T, backed up by numerical results that somehow mimic the results of Cueva et al. (2020) on experimental data. Is this a result that can be formally derived? Related to this point, it would be useful to provide a little more justification for Equation (17). Naively, one would think that the correlation matrix of the temporal component is always full-rank nominally, but that one can get excellent low-rank approximations (depending on T, following your argument).

    1. Reviewer #1 (Public review):

      Summary

      In this review paper, the authors describe the concept of neural correlates of consciousness (NCC) and explain how noninvasive neuroimaging methods fall short of being able to properly characterise an unconfounded NCC. They argue that intracranial research is a means to address this gap and provide a review of many intracranial neuroimaging studies that have sought to answer questions regarding the neural basis of perceptual consciousness.

      Strengths

      The authors have provided an in-depth, timely, and scholarly contribution to the study of NCCs. First and foremost, the review surveys a vast array of literature. The authors synthesise findings such that a coherent narrative of what invasive electrophysiology studies have revealed about the neural basis of consciousness can be easily grasped by the reader. The review is also, to the best of my knowledge, the first review to specifically target intracranial approaches to consciousness and to describe their results in a single article. This is a credit to the authors, as it becomes ever harder to apply strict tests to theories of consciousness using methods such as fMRI and M/EEG it is important to have informative resources describing the results of human intracranial research so that theorists will have to constrain their theories further in accordance with such data. As far as the authors were aiming to provide a complete and coherent overview of intracranial approaches to the study of NCCs, I believe they have achieved their aim.

      Weaknesses

      Overall, I feel positive about this paper. However, there are a couple of aspects to the manuscript that I think could be improved.

      (1) Distinguishing NCCs from their prerequisites or consequences

      This section in the introduction was particularly confusing to me. Namely, in this section, the authors' aim is to explain how intracranial recordings can help distinguish 'pure' NCCs from their antecedents and consequences. However, the authors almost exclusively describe different tasks (e.g., no-report tasks) that have been used to help solve this problem, rather than elaborating on how intracranial recordings may resolve this issue. The authors claim that no-report designs rely on null findings, and invasive recordings can be more sensitive to smaller effects, which can help in such cases. However, this motivation pertains to the previous sub-section (limits of noninvasive methods), since it is primarily concerned with the lack of temporal and spatial resolution of fMRI and M/EEG. It is not, in and of itself, a means to distinguish NCCs from their confounds.

      As such, in its current formulation, I do not find the argument that intracranial recordings are better suited to identifying pure NCCs (i.e. separating them from pre- or post-processing) convincing. To me, this is a problem solved through novel paradigms and better-developed theories. As it stands, the paper justifies my position by highlighting task developments that help to distinguish NCCs from prerequisites and consequences, rather than giving a novel argument as to why intracranial recordings outperform noninvasive methods beyond the reasons they explained in the previous section. Again, this position is justified when, from lines 505-506, the authors describe how none of the reported single-cell studies were able to dissociate NCCs from post-perceptual processing. As such, it seems as if, even with intracranial recording, NCCs and their confounds cannot be disentangled without appropriate tasks.

      The section 'Towards Better Behavioural Paradigms' is a clear attempt to address these issues and, as such, I am sure the authors share the same concerns as I am raising. Still, I remain unconvinced that the distinguishing of NCCs from pre-/post- processing is a fair motivation for using intracranial over noninvasive measures.

      (2) Drawing misleading conclusions from certain studies

      There are passages of the manuscript where the authors draw conclusions from studies that are not necessarily warranted by the studies they cite. For instance:

      Lines 265 - 271: "The results of these two studies revealed a complex pattern: on the one hand, HGA in the lateral occipitotemporal cortex and the ventral visual cortex correlated with stimulus strength. On the other hand, it also correlated with another factor that does not appear to play a role in visibility (repetition suppression), and did not correlate with a non-sensory factor that affects visibility reports (prior exposure). These results suggest that activity in occipitotemporal cortex regions reflecting higher-order visual processing may be a precursor to the NCC but not an NCC proper."

      It's possible to imagine a theory that would predict HGA could correlate with stimulus strength and repetition suppression, or that it would not correlate with prior exposure (e.g. prior exposure could impact response bias without affecting subjective visibility itself). The authors describe this exact ambiguity in interpretation later in the article (line 664), but in its current form, at least in line 270 (when the study is most extensively discussed), the manuscript heavily implies that HGA is not an NCC proper. This generates a false impression that intracranial recordings have conclusively determined that occipitotemporal HGA is not a pure NCC, which is certainly a premature conclusion.

      Line 243: "Altogether, these early human intracranial studies indicate that early-latency visual processing steps, reflected in broadband and low gamma activity, occur irrespective of whether a stimulus is consciously perceived or not. They also identified a candidate NCC: later (>200 ms) activity in the occipitotemporal region responsible for higher-order visual processing."

      The authors claim in this section that later (>200ms) activity in occipitotemporal regions may be a candidate for an NCC. However, the Fisch et al. (2009) study they describe in support of this conclusion found that early (~150ms) activity could dissociate conscious and unconscious processing. This would suggest that it is early processing that lays claim to perceptual consciousness. The authors explicitly describe the Fisch et al results as showing evidence for early markers of consciousness (line 240: '...exhibited an early...response following recognized vs unrecognised stimuli.) Yet only a few lines later they use this to support the conclusion that a candidate NCC is 'later (>200ms) activity in the occipitotemporal region' (line 245). As such, I am not sure what conclusion the authors want me to make from these studies.

      This problem is repeated in lines 386-387: "Altogether, studies that investigated the cortical correlates of visual consciousness point to a role of neural responses starting ~250 ms after stimulus onset in the non-primary visual cortex and prefrontal cortex."

      This seems to be directly in conflict with the Fisch et al results, which show that correlates of consciousness can begin ~100ms earlier than the authors state in this passage.

      (3) Justifying single-neuron cortical correlates of consciousness

      The purpose of the present manuscript is to highlight why and how intracortical measures of neural activity can help reveal the neural correlates of perceptual consciousness. As such, in the section 'Single-neuron cortical correlates of perceptual consciousness', I think the paper is lacking an argument as to why single-neuron research is useful when searching for the NCC. Most theories of consciousness are based around circuit or system-level analyses (e.g., global ignition, recurrent feedback, prefrontal indexing, etc.) and usually do not make predictions about single cells. Without any elaboration or argument as to why single-cell research is necessary for a science of consciousness, the research described in this section, although excellent and valuable in its own right, seems out of place in the broader discussion of NCCs. A particularly strong interpretation here could be that intracranial recordings mislead researchers into studying single cells simply because it is the finest level of analysis, rather than because it offers helpful insight into the NCCs.

      (4) No mention of combined fMRI-EEG research

      A minor point, but I was surprised that the authors did not mention any combined fMRI-EEG research when they were discussing the limits of noninvasive recordings. Intracortical recordings are one way to surpass the spatial and temporal resolution limits of M/EEG and fMRI respectively, but studies that combine fMRI and EEG are also an alternative means to solve this problem: by combining the spatial resolution of fMRI with the temporal resolution of EEG, researchers can - in theory - compare when and where certain activity patterns (be they univariate ERPs or multivariate patterns) arise. The authors do cite one paper (Dellert et al., 2021 JNeuro) that used this kind of setup, but they discuss it only with respect to the task and ignore the recording method. The argument for using intracranial recordings is weaker for not mentioning a viable, noninvasive alternative that resolves the same issues.

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript "Pathogen-Phage Geomapping to Overcome Resistance," Do et al. present an impressive demonstration of using geographical sampling and metagenomics to guide sample choice for enrichment in human-associated microbes and the pathogen of interest to increase the chances of success for isolating phages active against highly resistant bacterial strains. The authors document many notable successes (17!) with highly resistant bacterial isolates and share a thoughtfully structured phage discovery effort, potentially opening the door to similar geomapping efforts across the field. While the work is methodologically strong and valuable for the community, there are a few areas where additional clarification and analysis could better align the claims with the data presented.

      Strengths:

      (1) The manuscript describes a well-executed and transparent example of overcoming a major obstacle in therapeutic virus identification, providing a practical success story that will resonate with researchers in microbiology and medicine.

      (2) Many phage researchers have anecdotally experienced a similar phenomenon, that a particular wastewater treatment plant always seems to have the pathogens you need. Quantifying this with metagenomics modernizes and adds evidence to this phenomenon in a way that could help researchers reproduce this success in a methodical way.

      (3) The methodology of combining environmental sampling, viral screening, and host-range analysis is clearly articulated and reproducible, offering a valuable blueprint for others in the field.

      (4) The data are presented with appropriate analytical rigor, and the results include robust sequencing and metagenomic profiling that deepen understanding of local viral communities.

      (5) The 17 successes yielding 35 phages have a lot of phylogenetic novelty beyond what the Tailor labs have typically found with previous methods.

      (6) The work highlights a practical and innovative solution to an increasingly important clinical problem, supporting the development of personalized antiviral strategies.

      Weaknesses:

      (1) The central concept of geomapping as a broadly applicable strategy is wonderfully supported by the 17 successes documented in the paper. While this is actually, of course, a strength, the study does not include a comparative analysis across multiple sites with varying sampling outcomes for different bacterial types, which would be necessary to validate this claim more generally.

      (2) Some elements, such as beta diversity comparisons and the metagenomics analysis of viral dark matter, would benefit from additional statistical analysis and clearer context.

      (3) Claims about therapeutic cocktails would be better framed as speculative and/or moved to the discussion section.

      (4) The manuscript could be strengthened by elaborating on the scope and composition of the phage and bacterial isolate collections, which are important for interpreting the broader significance of the findings.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors trained rats on a "figure 8" go/no-go odor discrimination task. Six odor cues (3 rewarded and 3 non-rewarded) were presented in a fixed temporal order and arranged into two alternating sequences that partially overlap (Sequence #1: 5⁺-0⁻-1⁻-2⁺; Sequence #2: 3⁺-0⁻-1⁻-4⁺) --forming an abstract figure-8 structure of looping odor cues.

      This task is particularly well-suited for probing representations of hidden states, defined here as the animal's position within the task structure beyond superficial sensory features. Although the task can be solved without explicit sequence tracking, it affords the opportunity to generalize across functionally equivalent trials (or "positions") in different sequences, allowing the authors to examine how OFC representations collapse across latent task structure.

      Rats were first trained to criterion on the task and then underwent 15 days of self-administration of either intravenous cocaine (3 h/day) or sucrose. Following self-administration, electrodes were implanted in lateral OFC, and single-unit activity was recorded while rats performed the figure-8 task.

      Across a series of complementary analyses, the authors report several notable findings. In control animals, lOFC neurons exhibit representational compression across corresponding positions in the two sequences. This compression is observed not only in trial/positions involving overlapping odor (e.g., Position 3 = odor 1 in sequence 1 vs sequence 2), but also in trials/positions involving distinct, sequence-specific odors (e.g., Position 4: odor 2 vs odor 4) --indicating generalization across functionally equivalent task states. Ensemble decoding confirms that sequence identity is weakly decodable at these positions, consistent with the idea that OFC representations collapse incidental differences in sensory information into a common latent or hidden state representation. In contrast, cocaine-experienced rats show persistently stronger differentiation between sequences, including at overlapping odor positions.

      Strengths:

      Elegant behavioral design that affords the detection of hidden-state representations.

      Sophisticated and complementary analytical approaches (single-unit activity, population decoding, and tensor component analysis).

      Weaknesses:

      The number of subjects is small --can't fully rule out idiosyncratic, animal-specific effects.

      Comments

      (1) Emergence of sequence-dependent OFC representations across learning.

      A conceptual point that would benefit from further discussion concerns the emergence of sequence-dependent OFC activity at overlapping positions (e.g., position P3, odor 1). This implies knowledge of the broader task structure. Such representations are presumably absent early in learning, before rats have learned the sequence structure. While recordings were conducted only after rats were well trained, it would be informative if the authors could comment on how they envision these representations developing over learning. For example, does sequence differentiation initially emerge as animals learn the overall task structure, followed by progressive compression once animals learn that certain states are functionally equivalent? Clarifying this learning-stage interpretation would strengthen the theoretical framing of the results.

      (2) Reference to the 24-odor position task

      The reference to the previously published 24-odor position task is not well integrated into the current manuscript. Given that this task has already been published and is not central to the main analyses presented here, the authors may wish to a) better motivate its relevance to the current study or b) consider removing this supplemental figure entirely to maintain focus.

      (3) Missing behavioral comparison

      Line 117: the authors state that absolute differences between sequences differ between cocaine and sucrose groups across all three behavioral measures. However, Figure 1 includes only two corresponding comparisons (Fig. 1I-J). Please add the third measure (% correct) to Figure 1, and arrange these panels in an order consistent with Figure 1F-H (% correct, reaction time, poke latency).

      (4) Description of the TCA component

      Line 220: authors wrote that the first TCA component exhibits low amplitude at positions P1 and P4 and high amplitude at positions P2 and P3. However, Figure 3 appears to show the opposite pattern (higher magnitude at P1 and P4 and lower magnitude at P2 and P3). Please check and clarify this apparent discrepancy. Alternatively, a clearer explanation of how to interpret the temporal dynamics and scaling of this component in the figure would help readers correctly understand the result.

      (5) Sucrose control<br /> Sucrose self-administration is a reasonable control for instrumental experience and reward exposure, but it means that this group also acquired an additional task involving the same reinforcer. This experience may itself influence OFC representations and could contribute to the generalization observed in control animals. A brief discussion of this possibility would help contextualize the interpretation of cocaine-related effects.

      (6) Acknowledge low N

      The number of rats per group is relatively low. Although the effects appear consistent across animals within each group, this sample size does not fully rule out idiosyncratic, animal-specific effects. This limitation should be explicitly acknowledged in the manuscript.

      (7) Figure 3E-F: The task positions here are ordered differently (P1, P4, P2, P3) than elsewhere in the paper. Please reorder them to match the rest of the paper.

    1. Reviewer #1 (Public review):

      Summary:

      This study makes a significant and timely contribution to the field of attention research. By providing the first direct neuroimaging evidence for the integration-segregation theory of exogenous attention, it fills a critical gap in our understanding of the neural mechanisms underlying inhibition of return (IOR). The authors employ a carefully optimized cue-target paradigm combined with fMRI to elegantly dissociate the neural substrates of cue-target integration from those of segregation, thereby offering compelling support for the integration-segregation account. Beyond validating a key theoretical hypothesis, the study also uncovers an interaction between spatial orienting and cognitive conflict processing, suggesting that exogenous attention modulates conflict processing at both semantic and response levels. This finding shed new light on the neural mechanisms that connect exogenous attentional orienting with cognitive control.

      Strengths:

      The experimental design is rigorous, the analyses are thorough, and the interpretation is well grounded in the literature. The manuscript is clearly written, logically structured, and addresses a theoretically important question. Overall, this is an excellent, high-impact study that advances both theoretical and neural models of attention.

      Weaknesses:

      While this study addresses an important theoretical question and presents compelling neuroimaging findings, a few additional details would help improve clarity and interpretation. Specifically, more information could be provided regarding the experimental conditions (SI and RI), the justification for the criteria used for excluding behavioral trials, and how the null condition was incorporated into the analyses. In addition, given the non-significant interaction effect in the behavioral results, the claim that the behavioral data "clearly isolated" distinct semantic and response conflict effects should be phrased more cautiously.

    1. Reviewer #1 (Public review):

      Summary:

      Fahdan et al. present a study investigating the molecular programs underlying axon initial growth and regrowth in Drosophila mushroom body (MB) neurons. The authors leverage the fact that different Kenyon cell (KC) subtypes undergo distinct axonal events on the same developmental timeline: γ KCs prune and then regrow their axons during early pupation, whereas α/β KCs extend their axons for the first time during the same pupal period. Using bulk Smart-seq2 RNA sequencing across six developmental time points, the authors identify genes enriched during γ KC regrowth and α/β KC initial outgrowth, and subsequently perform an RNAi screen to determine which candidates are functionally required for these processes.

      Among these, they focus on Pmvk, a key enzyme in the mevalonate pathway. Both RNAi knockdown and a CRISPR-generated mutant produce strong γ KC regrowth defects. Knockdown of other mevalonate pathway components (Hmgcr, Mvk) partially recapitulates this phenotype. The authors propose that Pmvk promotes axonal regrowth through effects on the TOR pathway.

      Overall, this work identifies new molecular players in developmental axon remodeling and provides intriguing evidence connecting Pmvk to γ KC regrowth.

      While the Pmvk knockdown and loss-of-function data are compelling, the evidence that the mevalonate pathway broadly regulates γ KC axon regrowth is less clear. RNAi knockdown of enzymes upstream of Pmvk (Hmgcr, Mvk) produces only mild phenotypes, and knockdown of several downstream enzymes produces no phenotype. The authors attribute this discrepancy to the possibility of weak RNAi constructs, which is plausible but not fully demonstrated. It would be helpful for the authors to discuss alternative explanations, including non-canonical roles for Pmvk that may not require the full pathway, and clarify the extent to which the current data support the conclusion that the mevalonate pathway, rather than Pmvk specifically, is a core regulator of regrowth.

      It is not clear from the Methods whether γ KCs and α/β KCs were sorted from the same brains using orthogonal binary expression systems (e.g., Gal4 > reporter 1 and LexA > reporter 2), or isolated separately from different fly lines. If the latter, differences in genetic background, staging, or batch effects could influence transcriptional comparisons. This should be explicitly clarified in the Methods, and any associated limitations discussed in the manuscript.

      The authors have made important findings that contribute to our understanding of axon growth and regrowth. As written, some major claims are only partially supported, but these issues can be addressed through reframing and clarification. In particular, the manuscript would benefit from (1) a more cautious interpretation of the mevalonate pathway's role, potentially considering Pmvk non-canonical functions, and (2) addressing methodological ambiguities in the transcriptomic analysis.

    1. Reviewer #1 (Public review):

      Summary:

      Here, the authors have addressed the recruitment and firing patterns of motor units (MUs) from the long and lateral heads of triceps in the mouse. They used their newly developed Myomatrix arrays to record from these muscles during treadmill locomotion at different speeds, and they used template-based spike sorting (Kilosort) to extract units. Between MUs from the two heads, the authors observe differences in their firing rates, recruitment probability, phase of activation within the locomotor cycle and interspike interval patterning. Examining different walking speeds, the authors find increases in both recruitment probability and firing rates as speed increases. The authors also observed differences in the relation between recruitment and the angle of elbow extension between motor units from each head. These differences indicate meaningful variation between motor units within and across motor pools, and may reflect the somewhat distinct joint actions of the two heads of triceps.

      Strengths:

      The extraction of MU spike timing for many individual units is an exciting new method that has great promise for exposing the fine detail in muscle activation and its control by the motor system. In particular, the methods developed by the authors for this purpose seem to be the only way to reliably resolve single MUs in the mouse, as the methods used previously in humans and in monkeys (e.g. Marshall et al. Nature Neuroscience, 2022) do not seem readily adaptable for use in rodents.

      The paper provides a number of interesting observations. There are signs of interesting differences in MU activation profiles for individual muscles here, consistent with those shown by Marshall et al. It is also nice to see fine scale differences in the activation of different muscle heads, which could relate to their partially distinct functions. The mouse offers greater opportunities for understanding the control of these distinct functions, compared to the other organisms in which functional differences between heads have previously been described.

      The Discussion is very thorough, providing a very nice recounting of a great deal of relevant previous results.

      Weaknesses:

      The findings are limited to one pair of muscle heads. While the findings are important in their own right, the lack of confirmation from analysis of other muscles acting at other joints leaves the generalization of these findings unclear.

      While differences between muscle heads with somewhat distinct functions are interesting and relevant to joint control, differences between MUs for individual muscles, like those in Marshall et al., are more striking because they cannot be attributed potentially to differences in each head's function. The present manuscript does show some signs of differences for MUs within individual heads (e.g. Figure 2C), but the manuscript falls short of providing a statistical basis for the existence of distinct subpopulations.

    1. Reviewer #1 (Public review):

      Summary:

      Mazer & Yovel 2025 dissect the inverse problem of how echolocators in groups manage to navigate their surroundings despite intense jamming using computational simulations.

      The authors show that despite the 'noisy' sensory environments that echolocating groups present, agents can still access some amount of echo-related information and use it to navigate their local environment. It is known that echolocating bats have strong small and large-scale spatial memory that plays an important role for individuals. The results from this paper also point to the potential importance of an even lower-level, short-term role of memory in the form of echo 'integration' across multiple calls, despite the unpredictability of echo detection in groups. The paper generates a useful basis to think about the mechanisms in echolocating groups for experimental investigations too.

      Strengths:

      The paper builds on biologically well-motivated and parametrised 2D acoustics and sensory simulation setup to investigate the various key parameters of interest

      The 'null-model' of echolocators not being able to tell apart objects & conspecifics while echolocating still shows agents successfully emerge from groups - even though the probability of emergence drops severely in comparison to cognitively more 'capable' agents. This is nonetheless an important result showing the direction-of-arrival of a sound itself is the 'minimum' set of ingredients needed for echolocators navigating their environment.

      The results generate an important basis in unraveling how agents may navigate in sensorially noisy environments with a lot of irrelevant and very few relevant cues.

      The 2D simulation framework is simple and computationally tractable enough to perform multiple runs to investigate many variables - while also remaining true to the aim of the investigation.

    1. Reviewer #1 (Public review):

      The key discovery of the manuscript is that the authors found that genetically wild type females descended from Khdc3 mutants shows abnormal gene expression relating to hepatic metabolism, which persist over multiple generations and pass through both female and male lineages. They also find dysregulation of hepatically-metabolized molecules in the blood of these wild type mice with Khdc3 mutant ancestry. These data provide solid evidence further support that phenotype can be transmitted to multiple generations without altering DNA sequence, supporting the involvement of epigenetic mechanisms. The authors further performed exploratory studies on the small RNA profiles in the oocytes of Khdc3-null females, and their wild type descendants, suggesting that altered small RNA expression could be a contributor of the observed phenotype transmission, although this has not been functionally validated.

      Comments on revisions:

      My previous comments are addressed.

    1. Reviewer #1 (Public review):

      Summary:

      This paper describes a number of alterations in pulmonary surfactant recovered from bottlenosed dolphins. Although the sample consists of only seven diseased and two control animals, due to the difficulty in obtaining these animals, this is considered adequate. However, conclusions must be considered in view of this small sample size. The authors employ a number of sophisticated techniques to show differences in the composition and in the structure of bilayers formed by these two surfactant samples

      Strengths:

      The availability of these samples makes this study quite original. The authors apply mass spectroscopy to observe an increase of an acidic phospholipid and in the level of plasmalogens in the diseased (i.e. pneumonia) aquatic animals. They suggest these increases contribute to hampered function in vivo. They show alterations in lipid bilayers formed from lipid extracts of these surfactants by electron microscopy, by Atomic Force Microscopy and by small and wide-angle X-ray scattering -SAXS/WAXS. They have previously shown that adding small amounts of cardiolin to the clinical surfactant BLES results in altered bilayer structure, consistent with the current study.

      Weaknesses:

      It seems surprising to me that the small changes in cardiolipin can alter surfactant function i.e., reducing surface tension to near zero. As it happens, no surfactant function tests monitoring the reduction in surface tension were conducted. This would add a great deal to the paper. Further, the paper would benefit greatly from the inclusion of a table listing the lipid composition of surfactant recovered from diseased and normal animals and comparing this to the composition of BLES, a clinical surfactant. Finally, there is a possibility that the minor lipid identified by mass spec is the lysosomal marker, bis-(monoacylglcerol)phosphate rather than the metachronal marker, cardiolipin.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript presents an ambitious attempt to examine whether episodic memory traces ("engrams") of forgotten associations persist in the human brain and whether these traces continue to influence behavior implicitly. Using 7T fMRI, the authors track 96 one-shot face-object associations across learning, 30-minute retrieval, and 24-hour retrieval, complemented by a recognition test. Participants classify each memory as sure, unsure, or guess, enabling an operational dissociation between consciously accessible and inaccessible memories.

      Strengths:

      The study addresses a timely and theoretically important question arising from rodent engram research, i.e., whether forgotten human memories leave detectable neural signatures. The use of high-resolution 7T fMRI, representational similarity analysis (RSA), and gPPI connectivity analyses aims at a detailed systems-level perspective. The results suggest that correct guess responses (i.e., when participants believe they are guessing) are accompanied by hippocampal activity and connectivity patterns that correlate with behavioral performance, potentially pointing to residual memory traces. The study also presents evidence for divergent consolidation trajectories: consciously accessible memories become more neocortically distributed after sleep, whereas inaccessible memories exhibit strengthened hippocampal signatures.

      Weaknesses:

      Despite the methodological rigor, some interpretational issues merit caution. First, the reliance on participants' subjective "guess" reports to categorize trials as forgotten is problematic. Guess responses at the 30-minute retrieval were at chance level, whereas guess responses during recognition were above chance; interpreting both as "implicit episodic memory" may conflate different mechanisms (episodic retrieval, familiarity, associative priming).

      Second, several analyses raise concerns about circularity or insufficient independence, for example, when contrasting correct vs. incorrect guess trials to locate "engram" activity and then correlating that activity with guessing accuracy. Similarly, the behavioral analyses are fragmented (multiple t-tests across conditions) rather than using a factorial model that accounts for dependencies among confidence levels and timepoints.

      Third, the choice to include only "sure" and "guess" responses discards a substantial portion of trials ("unsure"), reducing power and complicating interpretation, especially given that unsure responses show above-chance performance.

      Finally, the study's two-scanner-sequence design (small-FOV vs. whole-brain) is challenging as it complicates comparisons across analyses, especially when some critical results (e.g., hippocampal reinstatement patterns) do not consistently replicate across sequences.

      Conclusion:

      Overall, the manuscript provides preliminary evidence that neural traces of forgotten episodic memories might persist in humans and could guide behavior in the absence of conscious awareness. While interpretational caution is warranted, especially regarding the nature of "guess"-based retrieval and the independence of neural contrasts, the study makes a valuable contribution to debates on engram persistence, systems consolidation, and the role of consciousness in episodic memory.

    1. Reviewer #1 (Public review):

      Summary:

      This study extends the short-term synaptic plasticity (STP)-based theory of activity-silent working memory (WM) by introducing a physiological mechanism for chunking that relies on synaptic augmentation (SA) and specialized chunking clusters. The model consists of a recurrent neural network comprising excitatory clusters representing individual items and a global inhibitory pool. The self-connections within each cluster dynamically evolve through the combined effects of STP and SA. When a chunking cue, such as a brief pause in a stimulus sequence, is presented, the chunking cluster transiently suppresses the activity of the item clusters, enabling the grouped items to be maintained as a coherent unit and subsequently reactivated in sequence. This mechanism allows the network to enhance its effective memory capacity without exceeding the number of simultaneously active clusters, which defines the basic capacity. They further derive a new upper limit of WM capacity, the new magic number. When the basic capacity is four, the upper bound for complete recall becomes eight, and the optimal hierarchical structure corresponds to a binary tree of two-item pairs forming four chunks that combine into two meta-chunks. Reanalysis of linguistic data and single-neuron recordings from human epilepsy patients (identifying boundary neurons) provides qualitative support for the model's predictions.

      Strengths:

      This study makes an important contribution to theoretical and computational neuroscience by proposing a physiologically grounded mechanism for chunking based on STP and SA. By embedding these processes in a recurrent neural network, the authors provide a unified account of how chunks can be formed, maintained, and sequentially retrieved through local circuit dynamics, rather than through top-down cognitive strategies. The work is conceptually original, analytically rigorous, and clearly presented, deriving a simple yet powerful capacity law that extends the classical magic number framework from four to eight items under hierarchical chunking. The modeling results are further supported by preliminary empirical evidence from linguistic data and single-neuron recordings in the human medial temporal lobe, lending credibility to the proposed mechanism. Overall, this is a well-designed and well-written study that offers novel insights into the neural basis of working-memory capacity and establishes a solid bridge between theoretical modeling and experimental findings.

      Weaknesses:

      This study is conceptually strong and provides an elegant theoretical framework, but several aspects limit its biological and empirical grounding.

      First, the control mechanism that triggers and suppresses chunking clusters remains only schematically defined. The model assumes that chunking events are initiated by pauses, prosodic cues, or internal control signals, but does not specify the underlying neural circuits (e.g., prefrontal-basal ganglia loops) that could mediate this gating in the brain. Clarifying where, when, and how the chunking clusters are turned on and off will be critical for establishing biological plausibility.

      Second, the network representation is simplified: item clusters are treated as non-overlapping and homogeneous, whereas real cortical circuits exhibit overlapping representations, distinct excitatory/inhibitory populations, and multiscale local and long-range connectivity. It remains unclear how robust the proposed dynamics and derived capacity limit would be under such biologically realistic conditions.

      Third, the model heavily relies on SA operating over a timescale of several seconds, yet in vivo, the time constants and prevalence of SA can vary widely across cortical regions and neuromodulatory states. The stability of the predicted "new magic number" under realistic noise levels and modulatory influences, therefore, needs to be systematically evaluated.

    1. Reviewer #1 (Public review):

      Summary:

      This study addresses the encoding of forelimb movement parameters using a reach-to-grasp task in mice. The authors use a modified version of the water-reaching paradigm developed by Galinanes and Huber. Two-photon calcium imaging was then performed with GCaMP6f to measure activity across both the contralateral caudal forelimb area (CFA) and the forelimb portion of primary somatosensory cortex (fS1) as mice perform the reaching behavior. Established methods were used to extract the activity of imaged neurons in layer 2/3, including methods for deconvolving the calcium indicator's response function from fluorescence time series. Video-based limb tracking was performed to track the positions of several sites on the forelimb during reaching and extract numerous low-level (joint angle) and high-level (reach direction) parameters. The authors find substantial encoding of parameters for both the proximal and distal parts of the limb across both CFA and fS1, with individual neurons showing heterogeneous parameter encoding. Limb movement can be decoded similarly well from both CFA and fS1, though CFA activity enables decoding of reach direction earlier and for a more extended duration than fS1 activity. Collectively, these results indicate involvement of a broadly distributed sensorimotor region in mouse cortex in determining low-level features of limb movement during reach-to-grasp.

      Strengths:

      The technical approach is of very high quality. In particular, the decoding methods are well designed and rigorous. The use of partial correlations to distinguish correlation between cortical activity and either proximal or distal limb parameters or either low- or high-level movement parameters was very nice. The limb tracking was also of extremely high quality, and critical here to revealing the richness of distal limb movement during task performance.

      The task itself also reflects an important extension of the original work by Galinanes and Huber. The demonstration of a clear, trackable grasp component in a paradigm where mice will perform hundreds of trials per day expands the experimental opportunities for the field. This is an exciting development.

      The findings here are important and the support for them is solid. The work represents an important step forward toward understanding the cortical origins of limb control signals. One can imagine numerous extensions of this work to address basic questions that have not been reachable in other model systems.

      Collectively, these strengths made this manuscript a pleasure to read and review.

    1. Reviewer #1 (Public review):

      Wang et al. studied an old, still unresolved problem: Why are reaching movements often biased? Using data from a set of new experiments and from earlier studies, they identified how the bias in reach direction varies with movement direction and movement extent, and how this depends on factors such as the hand used, the presence of visual feedback, the size and location of the workspace, the visibility of the start position and implicit sensorimotor adaptation. They then examined whether a target bias, a proprioceptive bias, a bias in the transformation from visual to proprioceptive coordinates and/or biomechanical factors could explain the observed patterns of biases. The authors conclude that biases are best explained by a combination of transformation and target biases.

      A strength of this study is that it used a wide range of experimental conditions with also a high resolution of movement directions and large numbers of participants, which produced a much more complete picture of the factors determining movement biases than previous studies did. The study used an original, powerful and elegant method to distinguish between the various possible origins of motor bias, based on the number of peaks in the motor bias plotted as a function of movement direction. The biomechanical explanation of motor biases could not be tested in this way, but this explanation was excluded in a different way using data on implicit sensorimotor adaptation. This was also an elegant method as it allowed the authors to test biomechanical explanations without the need to commit to a certain biomechanical cost function.

      Overall, the authors have done a good job mapping out reaching biases in a wide range of conditions, revealing new patterns in one of the most basic tasks, and the evidence for the proposed origins is convincing. The study will likely have substantial impact on the field, as the approach taken is easily applicable to other experimental conditions. As such, the study can spark future research on the origin of reaching biases.

      Comments on revisions:

      The authors have addressed my concerns convincingly. The inclusion of the data on movement extent, and the comparison with the data and explanation of Gordon et al. (1994), has strengthened the paper, as it shows that the proposed model can also explain biases in movement extent. I also appreciate the addition of the mathematical analysis, although I suspect that this analysis can be developed further to yield more detailed insights into the conditions under which the 1-, 2- and 4-peaked patterns arise, but that is a more suitable question for follow-up work.

    1. Reviewer #1 (Public review):

      In this study, the authors explore the implications of two types of rhythmic inhibition - "gamma" (30-80 Hz) and "beta"(13-30Hz) - for synaptic integration. They study this in a multi-compartmental model L5 pyramidal neuron with Poisson excitation and rhythmic inhibition (16 Hz and 64 Hz), applied either to the perisomatic or apical tuft regions in the neuron. They find that 64 Hz inhibition applied to the cell body is effective in phasic modulation of AP generation, while 16 Hz inhibition applied to the apical tufts is effective in phasic modulation of dendritic spikes (in addition to APs). Switching the location of the two kinds of rhythmic inhibition reduces the overall excitability, but is not effective in phasic modulation of either dendritic spikes and weakly so for somatic APs.

      Strengths:

      The effect of the timescale of rhythmic inhibition on synaptic integration is an interesting question, since a) rhythmic spiking is most strongly evident in inhibitory population, b) rhythmic spiking is modulated by behavioral states and the sensory environment. The methods are clear and data are well-presented. The study systematically explores the effect of two frequencies of rhythmic inhibition in a biophysically detailed model. The study considers not only idealized rhythmic inhibition but also the bursty kind that is observed in in-vivo conditions. Both distributed and clustered excitatory synaptic organization are simulated, which covers the two extremes of the spatial organization of excitatory inputs in-vivo.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate the determinants of population-level cell size variability, quantified via the coefficient of variation, in budding yeast populations. Using a combination of computational modeling and experimental readouts, they conclude that mother-daughter division asymmetry is the dominant factor shaping the coefficient of variation of cell size. In particular, through parameter sensitivity analysis of the Chandler-Brown model and empirical perturbations, the authors show that size-control mutations have limited effects on CV, whereas modulating mother-daughter asymmetry, by changing the growth environment, produces substantially larger shifts.

      Strengths:

      (1) The study addresses a fundamental question in biophysics, i.e., what are the mechanisms that produce and maintain population size heterogeneity?

      (2) It provides a conceptual reconciliation for previous observations that size-control mutants often alter mean size but not CV.

      (3) The modeling framework is clearly explained and compared to the data.

      (4) The parameter sensitivity analysis is thoughtfully performed and provides transparent intuition about which parameters influence variability.

      (5) The writing is clear, and the figures are well-organized.

      Weaknesses:

      (1) The work focuses on the Chandler-Brown model, so it is not clear to what extent the conclusions depend on it. A sensitivity or robustness check using an alternative model would strengthen generality.

      (2) CV is the sole descriptor used to quantify heterogeneity; while this is an efficient descriptor, it must be handled with care when used on experimental data, as it may vary due to differences in the chosen observables (e.g., if size is identified via cell volume, length, area, number of proteins, etc.) instead of real differences in the distribution.

      (3) The experimental validation using varied nutrient conditions is interesting; however, the statistical significance of the found correlations should be provided/discussed.

    1. Reviewer #1 (Public review):

      Summary:

      The Drosophila wing disc is an epithelial tissue which study has provided many insights into the genetic regulation of organ patterning and growth. One fundamental aspect of wing development is the positioning of the wing primordia, which occurs at the confluence of two developmental boundaries, the anterior-posterior and the dorsal-ventral. The dorsal-ventral boundary is determined by the domain of expression of the gene apterous, which is set early in the development of the wing disc. For this reason, the regulation of apterous expression is a fundamental aspect of wing formation.

      In this manuscript the authors used state of the art genomic engineering and a bottom-up approach to analyze the contribution of a 463 base pair fragment of apterous regulatory DNA. They find compelling evidence about the inner structure of this regulatory DNA and the upstream transcription factors that likely bind to this DNA to regulate apterous early expression in the Drosophila wing disc.

      Strengths:

      This manuscript has several strengths concerning both the experimental techniques used to address a problem of gene regulation and the relevance of the subject. To identify the mode of operation of the 463 bp enhancer, the authors use a balanced combination of different experimental approaches. First, they use bioinformatic analysis (sequence conservation and identification of transcription factors binding sites) to identify individual modules within the 463 bp enhancer. Second, they identify the functional modules through genetic analysis by generating Drosophila strains with individual deletions. Each deletion is characterized by looking at the resulting adult phenotype and also by monitoring apterous expression in the mutant wing discs. They then use a clever method to interfere in a more dynamic manner with the function of the enhancer, by directing the expression of catalytically inactive Cas9 to specific regions of this DNA. Finally, they recur to a more classical genetic approach to uncover the relevance of candidate transcription factors, some of them previously know and other suggested by the bioinformatic analysis of the 463 bp sequence. This workflow is clearly reflected in the manuscript, and constitute a great example of how to proceed experimentally in the analysis of regulatory DNA.

      Weaknesses:

      The previously pointed weakness (vg expression, P compartment specific effects, early vs late analysis of ap expression in mutants) have been throughly and satisfactorily addressed by the authors.

    1. Reviewer #1 (Public review):

      Summary:

      I read the paper by Parrotta et al with great interest. The authors are asking an interesting and important question regarding pain perception, which is derived from predictive processing accounts of brain function. They ask: If the brain indeed integrates information coming from within the body (interoceptive information) to comprise predictions about the expected incoming input and how to respond to it, could we provide false interoceptive information to modulate its predictions, and subsequently alter the perception of such input? To test this question, they use pain as the input and the sounds of heartbeats (falsified or accurate) as the interoceptive signal.

      Strengths:

      I found the question well-established, interesting and important, with important implications and contributions for several fields, including neuroscience of prediction-perception and pain research. The study is clearly written, the methods are generally adequate, and the results indeed support the claim that false cardiac feedback modulates both pain perception and anticipatory cardiac frequency. Importantly, the authors include a control experiment using exteroceptive auditory feedback to test whether effects are specific to heartbeat-like cues. This addition substantially strengthens interpretability.

      Weaknesses:

      In my view, the authors' central interpretation, namely that the effects arise because the manipulation targets interoceptive rather than exteroceptive or high-level threat-related cues, cannot be fully supported by the current design. The evidence does not rule out the possibility that participants interpret increased heartbeat sounds as a generic danger/threat cue rather than as (manipulated) interoceptive input. I also disagree with several other claims, though they are less critical, for example, that the use of specific comparisons without pre-registering them, the use of sensitivity analysis to justify sample size, and the intentional use of only 6 trials per participant.

      Conclusion:

      To conclude, the authors have shown in their findings that predictions about an upcoming aversive (pain) stimulus - and its subsequent subjective perception - can be altered not only by external expectations, or manipulating the pain cue, as was done in studies so far, but also by manipulating a cue that has fundamental importance to human physiological status, namely heartbeats. Whether this is a manipulation of actual interoception as sensed by the brain is, in my view, left to be proven.

      Even if the authors drop this claim, the paper has important implications in several fields of science, ranging from neuroscience prediction-perception research, to pain research, and may have implications for clinical disorders, as the authors propose. Furthermore, it may lead - either the authors or someone else - to further test this interesting question of manipulation of interoception in a different or more controlled manner.

      I salute the authors for coming up with this interesting question and encourage them to continue and explore ways to study it and related follow-up questions.

    1. Reviewer #1 (Public review):

      Summary:

      This study was designed to manipulate and analyze the effects of chemosensory cues on visuomotor control. They approach this by analyzing how eye-body coordination and brain-wide activity are altered with specific chemosensation in larval zebrafish. After analyzing the dynamics of coupled saccade-tail coordination sequences - directionally linked and typically coupled to body turns - the authors investigated the effects of sensory cues shown to be either aversive or appetitive on freely swimming zebrafish on the eye-body coordination. Aversive chemicals lead to an increase in saccade-tail sequences in both number and dynamics, seemingly facilitating behaviors like escape. Brain-wide imaging led the authors to neurons in the telencephalic pallium as a target to study eye-body coordination. Pallium neuron activity correlated with both aversive chemicals and coupled saccade-tail movements.

      Recommendations for improvement are minimal. So much of the data is ultimately tabular, and the figures are an impenetrable wall of datapoints. 1c is an excellent example: three concentrations are presented, but it's rare for the three averages to trend appropriately. The key point, which is that aversive odors are repulsive and attractive odors (sometimes) attractive just gets lost in showing the three concentrations individually; it also makes direct comparisons impossible. There are similar challenges abound in the violin plots in 4e-4h, the error bars on the "fits" in 4i-4m, and so on. We recommend selecting an illustrative subset of data to present to permit interpretation and putting the rest in a supplemental table. (Presenting) less is more (effective).

    1. Reviewer #1 (Public review):

      Summary:

      Witte et al. examined whether canonical behavioral functions attributed to the cerebellum decline with age. To test this, they recruited younger, old, and older-old adults in a comprehensive battery of tasks previously identified as cerebellar-dependent in the literature. Remarkably, they found that cerebellar function is largely preserved across the lifespan-and in some cases even enhanced. Structural imaging confirmed that their older adult cohort was representative in terms of both cerebellar gray- and white-matter volume. Overall, this is an important study with strong theoretical implications and convincing evidence supporting the motor reserve hypothesis, demonstrating that cerebellar-dependent measures remain largely intact with aging.

      Strengths:

      (1) Relatively large sample size.

      (2) Most comprehensive behavioral battery to date assessing cerebellar-dependent behavior.

      (3) Structural MRI confirmation of age-related decline in cerebellar gray and white matter, ensuring representativeness of the sample.

      Weaknesses:

      (1) Although the authors note this was outside the study's scope, the absence of a voxel-based morphometry (VBM) analysis limits anatomical and functional specificity. Such an analysis would clarify which functions are cerebellar-dependent rather than solely inferring this from prior neuropsychological literature.

      (2) As acknowledged in the Discussion, task classification (cerebellar-dependent vs. general measures) remains somewhat ambiguous. Some "general" measures may still rely on cerebellar processes based on the paper's own criteria - for example, tasks in which individuals with cerebellar degeneration show impairments.

      (3) Cerebellar-dependent and general measures may inherently differ in measurement noise, potentially biasing results toward detecting effects in general measures but not in cerebellar-dependent ones.

    1. Reviewer #1 (Public review):

      Summary

      Wang et al. address the challenge of tracking goal-relevant visual signals amidst distractions, a fundamental aspect of adaptive visual information processing. By employing functional magnetic resonance spectroscopy (fMRS) during a visual tracking task, they quantify changes in both inhibitory (GABA) and excitatory (glutamate) neurotransmitter concentrations in the parietal and visual cortices. The results reveal that increases in GABA and glutamate in the parietal cortex are closely tied to the number of targets, and individual differences in GABAergic and glutamatergic responses within the parietal cortex predict tracking performance and distractor suppression. These findings underscore a neural mechanism in which GABAergic inhibition in the parietal cortex actively suppresses goal-irrelevant distractors, thereby facilitating goal-directed visual tracking and highlighting the dynamic role of these key metabolites in cognitive control during visual processing. I found the study to be well-written and thoughtful from an experimental standpoint, although it would benefit from some targeted revisions.

      Strengths

      (1) The study employs robust and validated fMRS methodology, allowing for real-time monitoring of metabolite changes during goal-directed tasks.

      (2) Simultaneous measurement of both GABA and Glx in parietal and visual cortices yields nuanced insights into the neurochemical correlates of visual attention.

      (3) The link between neurochemical changes and behavioral performance is clearly established, providing strong evidence for GABAergic involvement in distractor suppression.

      (4) Experimental protocols align with current standards for MEGA-PRESS, bolstering the technical reliability of the findings.

      Weaknesses

      (1) Certain aspects of terminology, methodological reporting, and confound management are inconsistently described throughout the manuscript.

      (2) Important confounding factors are not systematically reported or controlled.

      (3) Opportunities for additional analysis (e.g., behavioral dynamics, use of alternate fitting methods, more comprehensive quality metrics) have not been fully explored.

      (4) Open access data and/or codes for the analysis are not shared in the main manuscript

    1. Reviewer #1 (Public review):

      This is a highly original and impactful study that significantly advances our understanding of transcriptional regulation, in particular RNAPII pausing, during early heart development. The Chen lab has a long history of producing influential studies in cardiac morphogenesis, and this manuscript represents another thorough and mechanistically insightful contribution. The authors have thoroughly addressed this Reviewer's concerns and incorporated all of my suggestions in the revised manuscript. In addition, their responses to the other reviewer's comments are also very clear. As it is, this work is of great interest to the readership of Elife, as well as to the general scientific community.

      The authors reveal a fundamentally new role for Rtf1-a component of the PAF1 complex-in governing promoter-proximal RNAPII pausing in the context of myocardial lineage specification. While transcriptional pausing has been implicated in stress responses and inducible gene programs, its developmental relevance has remained poorly defined. This study fills that gap with rigorous in vivo evidence demonstrating that Rtf1-dependent pausing is indispensable for activating the cardiac gene program from the lateral plate mesoderm.

      Importantly, the study also provides compelling therapeutic implications. Showing that CDK9 inhibition-using either flavopiridol or targeted knockdown-can restore promoter-proximal pausing and rescue cardiomyocyte formation in Rtf1-deficient embryos suggests that modulation of pause-release kinetics may represent a new avenue for correcting transcriptionally driven congenital heart defects. Given that many CDK inhibitors are clinically approved or in active development, this connection significantly elevates the translational impact of the findings.

      In sum, this study is rigorous, innovative, and transformative in its implications for developmental biology and cardiac medicine. I strongly support its publication.

    1. Reviewer #1 (Public review):

      Summary:

      Here, the authors are proposing a role for miR-196, a microRNA that has been shown to bind and enhance degradation of mRNA targets in the regulation of cell processes, has a novel role in allowing the emergence of CD19+ cells in cells in which Ebf1, a critical B-cell transcription factor, has been genetically removed.

      Strengths:

      That over-expression of mR-195 can allow the emergence of CD19+ cells missing Ebf1 is somewhat novel.

      Their data does perhaps support to a degree the emergence of a transcriptional network that may bypass the absence of Ebf1, including the FOXO1 transcription factor, but this data is not strong or definitive.

      Weaknesses:

      It is unclear whether this observation is in fact physiological. When the authors analyse a knockout model of miR-195, there is not much of a change in the B-cell phenotype. Their findings may therefore be an artefact of an overexpression system.

      The authors have provided insufficient data to allow a thorough appraisal of the step-wise molecular changes that could account for their observed phenotype.

      On review of the resubmitted manuscript, while I note the authors have attempted to address several of my comments, unfortunately, their resubmission is not sufficient to address several of the comments I had previously made.

      In particular, in the resubmitted data that includes western blots for PAX5 and ERG in their EBF1-/- model, Supp Fig S3, the bands they show infer that that PAX5 and ERG expression can still be significantly detected in their EBF1-/- early B-cell model. This should not be the case, as no expression of PAX5 or ERG should be seen, as has been shown in prior literature.

    1. Reviewer #1 (Public review):

      Summary:

      Rahmani et al. utilize the TurboID method to characterize global proteome changes in the worm's nervous system induced by a salt-based associative learning paradigm. Altogether, they uncover 706 proteins tagged by the TurboID method in worms that underwent the memory-inducing protocol. Next, the authors conduct a gene enrichment analysis that implicates specific molecular pathways in salt-associative learning, such as MAP kinase and cAMP-mediated pathways, as well as specific neuronal classes including pharyngeal neurons, and specific sensory neurons, interneurons, and motor neurons. The authors then screen a representative group of hits from the proteome analysis. They find that mutants of candidate genes from the MAP kinase pathway, namely dlk-1 and uev-3, do not affect performance in the learning paradigm. Instead, multiple acetylcholine signaling mutants, as well as a protein-kinase-A mutant, significantly affected performance in the associative memory assay (e.g., acc-1, acc-3, lgc-46, and kin-2). Finally, the authors demonstrate that protein-kinase-A mutants, as well as acetylcholine signaling mutants, do not exhibit a phenotype in a related but distinct conditioning paradigm-aversive salt conditioning-suggesting their effect is specific to appetitive salt conditioning.

      Overall, the authors addressed the concerns raised in the previous review round, including the statistics of the chemotaxis experiments and the systems-level analysis of the neuron class expression patterns of their hits. I also appreciate the further attempt to equalize the sample size of the chemotaxis experiments and the transparent reporting of the sample size and statistics in the figure captions and Table S9. The new results from the panneuronal overexpression of the kin-2 gain-of-function allele also contribute to the manuscript. Together, these make the paper more compelling.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Bisht et al. investigate the role of PPE2, a Mycobacterium tuberculosis (Mtb) secreted virulence factor, in adipose tissue physiology during tuberculosis (TB) infection. Previous work by this group established the significance of PPE proteins in Mtb virulence and their role in modulating the innate immune response. Here, the authors present compelling evidence that PPE2 regulates host cell adipogenesis and lipolysis, thereby establishing a link to the development of insulin resistance during TB infection. These fundamental findings demonstrate, for the first time, that a bacterial virulence factor is directly involved in the profound body fat loss, or "wasting," which is a long-established clinical symptom of active TB.

      Key Strengths:

      The confidence in the major findings of this study is significantly strengthened by the authors' comprehensive approach. They judiciously employ multiple experimental systems, including:

      (1) Purified PPE2 protein.

      (2) A non-pathogenic Mycobacterium strain engineered to express PPE2.

      (3) A pathogenic clinical Mtb strain (CDC1551) utilizing a targeted PPE2 deletion mutant.

      (4) While the presence of Mtb in adipose tissues in human and animal models is well-documented, this study is groundbreaking in demonstrating that an Mtb virulence-associated factor actively modulates host fatty acid metabolism within the adipose tissue.

      Key Weakness:

      Although the manuscript provides solid evidence associating the presence of PPE2 with transcriptional changes in host fatty acid machinery within the adipose tissue, the underlying mechanistic details remain elusive. A focused, deep mechanistic follow-up study will be essential to fully appreciate the complex biological implications of the findings reported here.

    1. Reviewer #1 (Public review):

      Summary:

      Syed et al. investigate the circuit underpinnings for leg grooming in the fruit fly. They identify two populations of local interneurons in the right front leg neuromere of ventral nerve cord, i.e. 62 13A neurons and 64 13B neurons. Hierarchical clustering analysis identifies each 10 morphological classes for both populations. Connectome analysis reveals their circuit interactions: these GABAergic interneurons provide synaptic inhibition either between the two subpopulations, i.e. 13B onto 13A, or among each other, i.e. 13As onto other 13As, and/or onto leg motoneurons, i.e. 13As and 13Bs onto leg motoneurons. Interestingly, 13A interneurons fall into two categories with one providing inhibition onto a broad group of motoneurons, being called "generalists", while others project to few motoneurons only, being called "specialists". Optogenetic activation and silencing of both subsets strongly effects leg grooming. As well activating or silencing subpopulations, i.e. 3 to 6 elements of the 13A and 13B groups has marked effects on leg grooming, including frequency and joint positions and even interrupting leg grooming. The authors present a computational model with the four circuit motifs found, i.e. feed-forward inhibition, disinhibition, reciprocal inhibition and redundant inhibition. This model can reproduce relevant aspects of the grooming behavior.

      Strengths:

      The authors succeeded in providing evidence for neural circuits interacting by means of synaptic inhibition to play an important role in the generation of a fast rhythmic insect motor behavior, i.e. grooming of the body using legs. Two populations of local interneurons in the fruit fly VNC comprise four inhibitory circuit motifs of neural action and interaction: feed-forward inhibition, disinhibition, reciprocal inhibition and redundant inhibition. Connectome analysis identifies the similarities and differences between individual members of the two interneuron populations. Modulating the activity of small subsets of these interneuron populations markedly affects generation of grooming behavior thereby exemplifying their relevance. The authors carefully discuss strengths and limitations of their approaches and place their findings into the broader context of motor control.

      Weaknesses:

      Effects of modulating activity in the interneuron populations by means of optogenetics were conducted in the so-called "closed-loop" condition. This does not allow to differentiate between direct and secondary effects of the experimental modification in neural activity, as feedforward and feedback effects cannot be disentangled. To do so open loop experiments, e.g. in deafferented conditions, would be needed. Given that many members of the two populations of interneurons do not show one, but two or more circuit motifs, it remains to be disentangled which role the individual circuit motif plays in the generation of the motor behavior in intact animals.

      Comments on revisions:

      The authors have carefully revised the manuscript. I have no further suggestions or criticisms.

    1. Reviewer #1 (Public review):

      Summary:

      The authors assess the impact of E-cigarette smoke exposure on mouse lungs using single-cell RNA sequencing. Air was used as control and several flavors (fruit, menthol, tobacco) were tested. Differentially expressed genes (DEGs) were identified for each group and compared against the air control. Changes in gene expression in either myeloid or lymphoid cells were identified for each flavor and the results varied by sex. The scRNAseq dataset will be of interest to the lung immunity and e-cig research communities, and some of the observed effects could be important. Unfortunately, the revision did not address the reviewers' main concerns about low replicate numbers and lack of validations. The study remains preliminary and no solid conclusions could be drawn about the effects of E-cig exposure as a whole or any flavor-specific phenotypes.

      Strengths:

      The study is the first to use scRNAseq to systematically analyze the impact of e-cigarettes on the lung. The dataset will be of broad interest.

      Weaknesses:

      This study had only N=1 biological replicates for the single-cell sequencing data per sex per group and some sex-dependent effects were observed. This could have been remedied by validating key observations from the study using traditional methods such as flow cytometry and qPCR, but the limited number of validation experiments did not support the conclusions of the scRNAseq analysis. An important control group (PG:VG) had extremely low cell numbers and therefore could not be used to derive meaningful conclusions. Statistical analysis is lacking in almost all figures. Overall, this is a preliminary study with some potentially interesting observations.

      (1) The only new validation experiment for this revision is the immunofluorescent staining of neutrophils in Figure 4. The images are very low resolution and low quality and it is not clear which cells are neutrophils. S100A8 (calprotectin) is highly abundant in neutrophils but not strictly neutrophil-specific. It's hard to distinguish positive cells from autofluorescence in both ly6g and S100a8 channels. No statistical analysis is presented for the quantified data from this experiment.

      (2) The relevance of Fig. 3A and B are unclear since these numbers only reflect the number of cells captured in the scRNAseq experiment and the biological meaning of this data is not explained. Flow cytometry quantification is presented as cell counts but percentage of cells from the CD45+ gate should be shown. No statistical analysis is shown, and flow cytometry results do not support the conclusions of scRNAseq data.

    1. Reviewer #1 (Public review):

      IBEX Knowledge Database

      Here, Yanid Z. and colleagues present the IBEX knowledge base. A community tool developed to centralize knowledge and help its adoption by more users. Authors have done a fantastic job, and there is careful consideration of the many aspects of the data management and FAIR principles. The manuscript needs no further work, as it is very well written and have detailed descriptions for data contribution as well as describing the KB itself. Overall, it is a great initiative, especially the aim to inform about negative data and non-recommended reagents, which will positively affect the user community and scientific reproducibility.

      This initiative will serve as a groundwork to include technical details of other multiple immunofluoresecence methods (such as immunoSABER, 4i, etc). Including other methods would help the knowledge base itself and related methods to evolve and assist their communities in the future.

      Significant care has been taken to allow the report of negative data. While there might be limitations as to how this information is included, transparency and community usage will ensure the knowledge base offers a fair representation.

      There are two ways to contribute to the knowledge base. While authors have contributed significantly to its creation, it will be the role of the maintainers to assist potential users and contributors. It is specially appreciated that a path to contribute is possible with no coding skills. I am keen to see how the KB evolves and it helps disseminate the use of this and other great techniques.

    1. 6:22 "what I think a lot of people don't understand is, when you take all of these different datasets, and you start to overlay them on top of each other, pattern recognition, calculator brain being one of the things that I'm gifted with, is you get to the conclusions that one must draw when you start layering all the different datasets on top of each other like lasagna, is, this place is going to shit, and it's going to shit pretty quickly. There's a lot of information being thrown out as far as 2027 is concerned with the timeline."

      general intelligence versus special intelligence. maximum abstraction. global view. wholistic view. element fire @ alchemy. intuiting @ carl jung. role model @ Martin Gerlach 2018. communist @ hans eysenck.

    1. Reviewer #1 (Public review):

      Summary:

      A central function of glial cells is the ensheathment of axons. Wrapping of larger-diameter axons involves myelin-forming glial classes (such as oligodendrocytes), whereas smaller axons are covered by non-myelin forming glial processes (such as olfactory ensheathing glia). While we have some insights into the underlying molecular mechanisms orchestrating myelination, our understanding of the signaling pathways at work in non-myelinating glia remains limited. As non-myelinating glial ensheathment of axons is highly conserved in both vertebrates and invertebrates, the nervous system of Drosophila melanogaster, and in particular the larval peripheral nerves, have emerged as powerful model to elucidate the regulation of axon ensheathment by a class of glia called wrapping glia. This study seeks to specifically address the question, as to which molecular mechanisms contribute to the regulation of the extent of glial ensheathment focusing on the interaction of wrapping glia with axons.

      Strengths and Weaknesses:

      For this purpose, the study combines state-of-the-art genetic approaches with high-resolution imaging, including classic electron microscopy. The genetic methods involve RNAi mediated knockdown, acute Crispr-Cas9 knock-outs and genetic epistasis approaches to manipulate gene function with the help of cell-type specific drivers. The successful use of acute Crispr-Cas9 mediated knockout tools (which required the generation of new genetic reagents for this study) will be of general interest to the Drosophila community.

      The authors set out to identify new molecular determinants mediating the extent of axon wrapping in the peripheral nerves of third instar wandering Drosophila larvae. They could show that over-expressing a constitutive-active version of the Fibroblast growth factor receptor Heartless (Htl) causes an increase of wrapping glial branching, leading to the formation of swellings in nerves close to the cell body (named bulges). To identify new determinants involved in axon wrapping acting downstream of Htl, the authors next conducted an impressive large-scale genetic interaction screen (which has become rare, but remains a very powerful approach), and identified Uninflatable (Uif) in this way. Uif is a large single-pass transmembrane protein which contains a whole series of extracellular domains, including Epidermal growth factor-like domains. Linking this protein to glial branch formation is novel, as it has so far been mostly studied in the context of tracheal maturation and growth. Intriguingly, a knock-down or knock-out of uif reduces branch complexity and also suppresses htl over-expression defects. Importantly, uif over-expression causes the formation of excessive membrane stacks. Together these observations are in in line with the notion that htl may act upstream of uif.

      Further epistasis experiments using this model implicated also the Notch signaling pathway as a crucial regulator of glial wrapping: reduction in Notch signaling reduces wrapping, whereas over-activation of the pathway increases axonal wrapping (but does not cause the formation of bulges). Importantly, defects caused by over-expression of uif can be suppressed by activated Notch signaling. Knock-down experiments in neurons suggest further that neither Delta nor Serrate act as neuronal ligands to activate Notch signaling in wrapping glia, whereas knock-down of Contactin, a GPI anchored Immunoglobulin domain containing protein led to reduced axon wrapping by glia, and thus could act as an activating ligand in this context.

      Based on these results the authors put forward a model proposing that Uif normally suppresses Notch signaling, and that activation of Notch by Contactin leads to suppression of Htl, to trigger the ensheathment of axons. While these are intriguing propositions, future experiments will need to conclusively address whether and how Uif could "stabilize" a specific membrane domain capable to interact with specific axons.

      Moreover, to obtain evidence for Uif suppression by Notch to inhibit "precocious" axon wrapping and for a "gradual increase" of Notch signaling that silences uif and htl, (1) reporters for N and Htl signaling in larvae, (2) monitoring of different stages at a time point when branch extension begins, and (3) a reagent enabling the visualization of Uif expression could be important next tools/approaches. Considering the qualitatively different phenotypes of reduced branching, compared to excessive membrane stacks close to cell bodies, it would perhaps be worthwhile to explore more deeply how membrane formation in wrapping glia is orchestrated at the subcellular level by Uif.

      However, the points raised above remain at present technically difficult to address because of the lack of appropriate genetic reagents. Also more detailed electron microscopy analyses of early developmental stages and comparisons of effects on cell bodies compared to branches will be very labor-intensive, and indeed may represent a new study.

      In summary, in light of the importance of correct ensheathment of axons by glia for neuronal function, the proposed model for the interactions between Htl, Uif and N to control the correct extent of neuron and glial contacts will be of general interest to the glial biology community.

      Comments on revisions:

      The authors have addressed all my comments. However, the sgRNAs in the Star method table are still all for cleavage just before the transmembrane domain, while the Supplemental figure suggests different locations.

    1. Reviewer #2 (Public review):

      Summary:

      This paper aims to elucidate the gene regulatory network governing the development of cone photoreceptors, the light-sensing neurons responsible for high acuity and color vision in humans. The authors provide a comprehensive analysis through stage-matched comparisons of gene expression and chromatin accessibility using scRNA-seq and scATAC-seq from the cone-dominant 13-lined ground squirrel (13LGS) retina and the rod-dominant mouse retina. The abundance of cones in the 13LGS retina arises from a dominant trajectory from late retinal progenitor cells (RPCs) to photoreceptor precursors and then to cones, whereas only a small proportion of rods are generated from these precursors.

      Strengths:

      The paper presents intriguing insights into the gene regulatory network involved in 13LGS cone development. In particular, the authors highlight the expression of cone-promoting transcription factors such as Onecut2, Pou2f1, and Zic3 in late-stage neurogenic progenitors, which may be driven by 13LGS-specific cis-regulatory elements. The authors also characterize candidate cone-promoting genes Zic3 and Mef2C, which have been previously understudied. Overall, I found that the across-species analysis presented by this study is a useful resource for the field.

      Comments on Revision:

      The authors have addressed my questions, and the revised text now presents their findings more clearly.

    1. Reviewer #2 (Public review):

      Summary:

      Sugimoto et al. explore the relationship between glucose dynamics-specifically value, variability, and autocorrelation-and coronary plaque vulnerability in patients with varying glucose tolerance levels. The study identifies three independent predictive factors for %NC and emphasizes the use of continuous glucose monitoring (CGM)-derived indices for coronary artery disease (CAD) risk assessment. By employing robust statistical methods and validating findings across datasets from Japan, America, and China, the authors highlight the limitations of conventional markers while proposing CGM as a novel approach for risk prediction.The study has the potential to reshape CAD risk assessment by emphasizing CGM-derived indices, aligning well with personalized medicine trends.

      Further, the revised version includes expanded biological interpretation, improved statistical justification, and a new web-based calculator for clinical translation. Together, these updates make the study an important contribution to precision risk assessment in diabetes and cardiovascular research.

      Strengths:

      The introduction of autocorrelation as a predictive factor for plaque vulnerability adds a novel dimension to glucose dynamic analysis.

      Inclusion of datasets from diverse regions enhances generalizability.

      The use of a well-characterized cohort with controlled cholesterol and blood pressure levels strengthens the findings.

      The focus on CGM-derived indices aligns with personalized medicine trends, showcasing potential for CAD risk stratification.

      The benchmarking of CGM-derived measures against established CAD risk models (e.g., Framingham Risk Score) enhances interpretability and significance.

      The addition of a web-based computational tool makes the proposed indices accessible for potential clinical and research use.

      Weaknesses:

      The biological mechanism linking glucose autocorrelation to plaque vulnerability, although plausibly associated with insulin clearance pathways, remains largely theoretical.

      The primary cohort size is still modest, and while supported by power analysis and external datasets, broader prospective validation will be important.

      Strict participant selection criteria as employed by the study may reduce applicability to broader populations.

      CGM-derived indices like AC_Var and ADRR may be too complex for routine clinical use without simplified models or guidelines.

      Comments on revised version:

      The authors have thoroughly addressed previous concerns and produced a much stronger manuscript. The study now provides a coherent, validated, and well-reasoned argument for including autocorrelation as a third major dimension of glucose dynamics. It offers both conceptual novelty and translational potential and will likely stimulate further research on temporal glucose metrics in metabolic and cardiovascular risk assessment.

    1. Reviewer #1 (Public review):

      Summary:

      The paper by ILBAY et al describes a screen in C. elegans for loss-of-function of factors that are presumed to constitutively downregulate heat shock or stress genes regulated by HSF-1. The hypothesis posits an active mechanism of downregulation of these genes under non-stressed conditions. The screen robustly identified ZNF-236, a multi zinc finger containing protein, whose loss upregulates heat-shock and stress-induced prion-like protein genes, but which does not appear to act in cis at the relevant promoters. The authors speculate that ZNF-236 acts indirectly on chromatin or chromatin domains to repress hs genes under non-stressed conditions.

      Strengths:

      The screen is clever, well-controlled and quite straightforward. I am convinced that ZNF-236 has something to do with keeping heat shock and other stress transcripts low. The mapping of potential binding sites of ZNF-236 is negative, despite the development of a new method to monitor binding sites. I am not sure whether this assay has a detection/sensitivity threshold limit, as it is not widely used. Up to this point, the data are solid, and the logic is easy to follow.

      Weaknesses:

      While the primary observations are well-documented, the mode of action of ZNF-236 is inadequately explored. Multi Zn finger proteins often bind RNA (TFIII3A is a classic example), and the following paper addresses multivalent functions of Zn finger proteins in RNA stability and processing: Mol Cell 2024 Oct 3;84(19):3826-3842.e8. doi: 10.1016/j.molcel.2024.08.010.). I see no evidence that would point to a role for ZNF-236 in nuclear organization, yet this is the authors' favorite hypothesis. In my opinion, this proposed mechanism is poorly justified, and certainly should not be posited without first testing whether ZNF-236 acts post-transcriptionally, directly down-regulating the relevant mRNAs in some way. It could regulate RNA stability, splicing, export or translation of the relevant RNAs rather than their transcription rates. This can be tested by monitoring whether ZNF-236 alters run-on transcription rates or not. If nascent RNA synthesis rates are not altered, but rather co- and/or post-transcriptional events, and if ZNF-236 is shown to bind RNA (which is likely), the paper could still postulate that the protein plays a role in downregulating stress and heat shock proteins. However, they could rule out that it acts on the promoter by altering RNA Pol II engagement. Another option that should be tested is that ZNF-236 acts by nucleating an H3K9me domain that might shift the affected genes to the nuclear envelope, sequestering them in a zone of low-level transcription. That is also easily tested by tracking the position of an affected gene in the presence and absence of SNF-236. This latter mechanism is also right in line with known modes of action for Zn finger proteins (in mammals, acting through KAP1 and SETDB1). A role for nucleating H3K9me could be easily tested in worms by screening MET-2 or SET-25 knockouts for heat shock or stress mRNA levels. These data sets are already published.

      Without testing these two obvious pathways of action (through RNA or through H3K9me deposition), this paper is too preliminary.

      Appraisal:

      The authors achieved their initial aim with the screen, and the paper is of interest to the field. However, they do not adequately address the likely modes of action. Indeed, I think their results fail to support the conclusion or speculation that ZNF-236 acts on long-range chromatin organization. No solid evidence is presented to support this claim.

      Impact:

      If the paper were to address and/or rule out likely modes of action, the paper would be of major value to the field of heat shock and stress mRNA control.

    1. Reviewer #1 (Public review):

      Summary:

      Authors explore how sex-peptide (SP) affects post-mating behaviours in adult females, such as receptivity and egg laying. This study identifies different neurons in the adult brain and the VNC that become activated by SP, largely by using an intersectional gene expression approach (split-GAL4) to narrow down the specific neurons involved. They confirm that SP binds to the well-known Sex Peptide Receptor (SPR), initiating a cascade of physiological and behavioural changes related to receptivity and egg laying.

      Comments on revised version:

      The authors have substantially strengthened the manuscript in response to our main concerns.

      In particular, they now explicitly test multiple established PMR nodes (including SAG/SPSN as well as pC1, OviDN/OviEN/OviIN and vpoDN), which helps separate direct SP targets from downstream PMR circuitry and supports their interpretation that some of these known nodes can affect receptivity without necessarily inducing oviposition. They also addressed key technical/clarity points: the requested head/trunk expression controls are provided (Suppl Fig S1), and the VT003280 annotation is corrected (now FD6 rather than "SAG driver"). Overall, these additions make the central conclusion, that distinct CNS neuron subsets ("SPRINz") are sufficient to elicit PMR components, more convincing, and the added comparisons with genital tract expressing lines further argue against a simple "periphery only" explanation.

  4. Dec 2025
    1. Reviewer #1 (Public review):

      The manuscript by Shan et al seeks to define the role of the CHI3L1 protein in macrophages during the progression of MASH. The authors argue that the Chil1 gene is expressed highly in hepatic macrophages. Subsequently, they use Chil1 flx mice crossed to Clec4F-Cre or LysM-Cre to assess the role of this factor in the progression of MASH using a high fat high, fructose diet (HFFC). They found that loss of Chil1 in KCs (Clec4F Cre) leads to enhanced KC death and worsened hepatic steatosis. Using scRNA seq they also provide evidence that loss of this factor promotes gene programs related to cell death. From a mechanistic perspective they provide evidence that CHI3L serves as a glucose sink and thus loss of this molecule enhances macrophage glucose uptake and susceptibility to cell death. Using a bone marrow macrophage system and KCs they demonstrate that cell death induced by palmitic acid is attenuated by the addition of rCHI3L1. While the article is well written and potentially highlights a new mechanism of macrophage dysfunction in MASH and the authors have addressed some of my concerns there are some concerns about the current data that continue to limit my enthusiasm for the study. Please see my specific comments below.

      Major:

      (1) The authors' interpretation of the results from the KC ( Clec4F) and MdM KO (LysM-Cre) experiments is flawed. The authors have added new data that suggests LyM-Cre only leads to a 40% reduction of Chil1 in KCs and that this explains the difference in the phenotype compared to the Clec4F-Cre. However, this claim would be made stronger using flow sorted TIM4hi KCs as the plating method can lead to heterogenous populations and thus an underestimation of knockdown by qPCR. Moreover, in the supplemental data the authors show that Clec4f-Cre x Chil1flx leads to a significant knockdown of this gene in BMDMs. As BMDMs do not express Clec4f this data calls into question the rigor of the data. I am still concerned that the phenotype differences between Clec4f-cre and LyxM-cre is not related to the degree of knockdown in KCs but rather some other aspect of the model (microbiota etc). It woudl be more convincing if the authors could show the CHI3L reduction via IF in the tissue of these mice.

      (2) Figure 4 suggests that KC death is increased with KO of Chil1. The authors have added new data with TIM4 that better characterizes this phenotype. The lack of TIM4 low, F4/80 hi cells further supports that their diet model is not producing any signs of the inflammatory changes that occur with MASLD and MASH. This is also supported by no meaningful changes in the CD11b hi, F4/80 int cells that are predominantly monocytes and early Mdms). It is also concerning that loss of KCs does not lead to an increase in Mo-KCs as has been demonstrated in several studies (PMID37639126, PMID:33997821). This would suggest that the degree of resident KC loss is trivial.

      (3) The authors demonstrated that Clec4f-Cre itself was not responsible for the observed phenotype, which mitigates my concerns about this influencing their model.

      (4) I remain somewhat concerned about the conclusion that Chil1 is highly expressed in liver macrophages. The author agrees that mRNA levels of this gene are hard to see in the datasets; however, they argue that IF demonstrates clear evidence of the protein, CHI3L. The IF in the paper only shows a high power view of one KC. I would like to see what percentage of KCs express CHI3L and how this changes with HFHC diet. In addition, showing the knockout IF would further validate the IF staining patterns.

      Minor:

      (1) The authors have answered my question about liver fibrosis. In line with their macrophage data their diet model does not appear to induce even mild MASH.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors investigate the role of deubiquitinases (DUBs) in modulating the efficacy of PROTAC-mediated degradation of the cell-cycle kinase AURKA. Using a focused siRNA screen of 97 human DUBs, they identify UCHL5 and OTUD6A as negative regulators of AURKA degradation by PROTACs. They further offer a mechanistic explanation of enhanced AURKA degradation in the nucleus via OTUD6A expression being restricted to the cytosol, thereby protecting the cytoplasmic pool of AURKA. These findings provide important insight into how subcellular localization and DUB activity influence the efficiency of targeted protein degradation strategies, which could have implications for therapy.

      Strengths:

      The manuscript is well-structured, with clearly defined objectives and well-supported conclusions.

      The study employs a broad range of well-validated techniques-including live-cell imaging, proximity ligation assays, HiBiT reporter systems, and ubiquitin pulldowns - to dissect the regulation of PROTAC activity.

      The authors use informative experimental controls, including assessment of cell-cycle progression effects, rescue experiments with siRNA-resistant constructs to confirm specificity, and the application of both AURKA-targeting PROTACs with different warheads and orthogonal degrader systems (e.g., dTAG-13 and dTAGv-1) to differentiate between target- and ligase-specific effects.

      The identification of OTUD6A as a cytosol-restricted DUB that protects cytoplasmic but not nuclear AURKA is novel and may have therapeutic relevance for selectively targeting oncogenic nuclear AURKA pools.

      Weaknesses:

      Although UCHL5 and OTUD6A are shown to limit AURKA degradation, direct physical interaction was not assessed.

      While the authors suggest that combining PROTACs with DUB inhibition could enhance degradation, this was not experimentally tested.

      The authors acknowledge the apparent discrepancy between the enhanced degradation observed with CRBN-recruiting PROTACs and the lack of change in ubiquitination following UCHL5 knockdown, yet they do not propose any mechanistic explanation.

    1. Reviewer #1 (Public review):

      Summary:

      Wang, Po-Kai et al., utilized the de novo polarization of MDCK cells cultured in Matrigel to assess the interdependence between polarity protein localization, centrosome positioning and apical membrane formation. They show that the inhibition of Plk4 with Centrinone does not prevent apical membrane formation, but does result in its delay, a phenotype the authors attribute to the loss of centrosomes due to the inhibition of centriole duplication. However, the targeted mutagenesis of specific centrosome proteins implicated in the positioning of centrosomes in other cell types (CEP164, ODF2, PCNT and CEP120), as well as the use of dominant negative constructs to inhibit centrosomal microtubule nucleation did not affect centrosome positioning in 3D cultured MDCK cells. A screen of proteins previously implicated in MDCK polarization revealed that the polarity protein Par-3 was upstream of centrosome positioning, similar to other cell types.

      Strengths:

      The investigation into the temporal requirement and interdependence of previously proposed regulators of cell polarization and lumen formation is valuable. The authors have provided a detailed analysis of many of these components at defined stages of polarity establishment, and well demonstrate that centrosomes are not necessary for apical polarity formation, but are involved in the efficient establishment of the apical membrane.

      Weaknesses:

      Key questions remain regarding the structure of the intracellular cytoskeleton following depletion of centrosomes, centrosome proteins,or abrogation of centrosome microtubule nucleation. The authors strengthen their model that centrosomes are positioned independently of microtubule nucleation using dominant negative Cdk5RAP2 and NEDD-1 constructs, however, the structure of the intracellular microtubule network remains unresolved and will be an important avenue for future investigation.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Chengjian Zhao et al. focused on the interactions between vascular, biliary, and neural networks in the liver microenvironment, addressing the critical bottleneck that the lack of high-resolution 3D visualization has hindered understanding of these interactions in liver disease.

      Strengths:

      This study developed a high-resolution multiplex 3D imaging method that integrates multicolor metallic compound nanoparticle (MCNP) perfusion with optimized CUBIC tissue clearing. This method enables the simultaneous 3D visualization of spatial networks of the portal vein, hepatic artery, bile ducts, and central vein in the mouse liver. The authors reported a perivascular structure termed the Periportal Lamellar Complex (PLC), which is identified along the portal vein axis. This study clarifies that the PLC comprises CD34⁺Sca-1⁺ dual-positive endothelial cells with a distinct gene expression profile, and reveals its colocalization with terminal bile duct branches and sympathetic nerve fibers under physiological conditions.

      Comments on revisions:

      The authors very nicely addressed all concerns from this reviewer. There are no further concerns or comments.

    1. Reviewer #1 (Public review):

      Domínguez-Rodrigo and colleagues make a largely convincing case for habitual elephant butchery by Early Pleistocene hominins at Olduvai Gorge (Tanzania), ca. 1.8-1.7 million years ago. They present this at a site scale (the EAK locality, which they excavated), as well as across the penecontemporaneous landscape, analyzing a series of findspots that contain stone tools and large-mammal bones. The latter are primarily elephants, but giraffids and bovids were also butchered in a few localities.

      The authors claim that this is the earliest well-documented evidence for elephant butchery; doing so requires debunking other purported cases of elephant butchery in the literature, or in one case, reinterpreting elephant bone manipulation as being nutritional (fracturing to obtain marrow) rather than technological (to make bone tools). The authors' critical discussion of these cases may not be consensual, but it surely advances the scientific discourse. The authors conclude by suggesting that an evolutionary threshold was achieved at ca. 1.8 ma, whereby regular elephant consumption rich in fats and perhaps food surplus, more advanced extractive technology (the Acheulian toolkit), and larger human group size had coincided.

      The fieldwork and spatial statistics methods are presented in detail and are solid and helpful, especially the excellent description (all too rare in zooarchaeology papers) of bone conservation and preservation procedures. The results are detailed and clearly presented.

      The authors achieved their aims, showcasing recurring elephant butchery in 1.8-1.7 million-year-old archaeological contexts. The authors cautiously emphasize the temporal and spatial correlation of 1) elephant butchery, 2) Acheulian toolkits, and 3) larger sites, and discuss how these elements may be causally related.

      Overall, this is an interesting manuscript of broad interest that presents original data and interpretations from the Early Pleistocene archaeology of Olduvai Gorge. These observations and the authors' critical review of previously published evidence are an important contribution that will form the basis for building models of Early Pleistocene hominin adaptation.

    1. Reviewer #1 (Public review):

      Summary:

      This paper focuses on understanding how covalent inhibitors of peroxisome proliferator-activated receptor-gamma (PPARg) show improved inverse agonist activities. This work is important because PPARg plays essential roles in metabolic regulation, insulin sensitization, and adipogenesis. Like other nuclear receptors, PPARg, is a ligand-responsive transcriptional regulator. Its important role, coupled with its ligand-sensitive transcriptional activities, makes it an attractive therapeutic target for diabetes, inflammation, fibrosis, and cancer. Traditional non-covalent ligands like thiazolininediones (TZDs) show clinical benefit in metabolic diseases, but utility is limited by off-target effects and transient receptor engagement. In previous studies, the authors characterized and developed covalent PPARg inhibitors with improved inverse agonist activities. They also showed that these molecules engage unique PPARg ligand binding domain (LBD) conformations whereby the c-terminal helix 12 penetrates into the orthosteric binding pocket to stabilize a repressive state. In the nuclear receptor superclass of proteins, helix 12 is an allosteric switch that governs pharmacologic responses, and this new conformation was highly novel. In this study, the authors did a more thorough analysis of how two covalent inhibitors, SR33065 and SR36708 influence the structural dynamics of PPARg LBD.

      Strengths:

      (1) The authors employed a compelling integrated biochemical and biophysical approach.

      (2) The cobinding studies are unique for the field of nuclear receptor structural biology, and I'm not aware of any similar structural mechanism described for this class of proteins.

      (3) Overall, the results support their conclusions.

      (4) The results open up exciting possibilities for the development of new ligands that exploit the potential bidirectional relationship between the covalent versus non-covalent ligands studied here.

      Weaknesses:

      All weaknesses were addressed by the Authors in revision.

    1. Reviewer #1 (Public review):

      Summary:

      This study aims to explore how different forms of "fragile nucleosomes" facilitate RNA Polymerase II (Pol II) transcription along gene bodies in human cells. The authors propose that pan-acetylated, pan-phosphorylated, tailless, and combined acetylated/phosphorylated nucleosomes represent distinct fragile states that enable efficient transcription elongation. Using CUT&Tag-seq, RNA-seq, and DRB inhibition assays in HEK293T cells, they report a genome-wide correlation between histone pan-acetylation/phosphorylation and active Pol II occupancy, concluding that these modifications are essential for Pol II elongation.

      Strengths:

      (1) The manuscript tackles an important and long-standing question about how Pol II overcomes nucleosomal barriers during transcription.

      (2) The use of genome-wide CUT&Tag-seq for multiple histone marks (H3K9ac, H4K12ac, H3S10ph, H4S1ph) alongside active Pol II mapping provides a valuable dataset for the community.

      (3) The integration of inhibition (DRB) and recovery experiments offers insight into the coupling between Pol II activity and chromatin modifications.

      (4) The concept of "fragile nucleosomes" as a unifying framework is potentially appealing and could stimulate further mechanistic studies.

      Weaknesses:

      (1) Misrepresentation of prior literature

      The introduction incorrectly describes findings from Bintu et al., 2012. The cited work demonstrated that pan-acetylated or tailless nucleosomes reduce the nucleosomal barrier for Pol II passage, rather than showing no improvement. This misstatement undermines the rationale for the current study and should be corrected to accurately reflect prior evidence.

      (2) Incorrect statement regarding hexasome fragility

      The authors claim that hexasome nucleosomes "are not fragile," citing older in vitro work. However, recent studies clearly showed that hexasomes exist in cells (e.g., PMID 35597239) and that they markedly reduce the barrier to Pol II (e.g., PMID 40412388). These studies need to be acknowledged and discussed.

      (3) Inaccurate mechanistic interpretation of DRB

      The Results section states that DRB causes a "complete shutdown of transcription initiation (Ser5-CTD phosphorylation)." DRB is primarily a CDK9 inhibitor that blocks Pol II release from promoter-proximal pausing. While recent work (PMID: 40315851) suggests that CDK9 can contribute to CTD Ser5/Ser2 di-phosphorylation, the manuscript's claim of initiation shutdown by DRB should be revised to better align with the literature. The data in Figure 4A indicate that 1 µM DRB fully inhibits Pol II activity, yet much higher concentrations (10-100×) are needed to alter H3K9ac and H4K12ac levels. The authors should address this discrepancy by discussing the differential sensitivities of CTD phosphorylation versus histone modification turnover.

      (4) Insufficient resolution of genome-wide correlations

      Figure 1 presents only low-resolution maps, which are insufficient to determine whether pan-acetylation and pan-phosphorylation correlate with Pol II at promoters or gene bodies. The authors should provide normalized metagene plots (from TSS to TTS) across different subgroups to visualize modification patterns at higher resolution. In addition, the genome-wide distribution of another histone PTM with a different localization pattern should be included as a negative control.

      (5) Conceptual framing

      The manuscript frequently extrapolates correlative genome-wide data to mechanistic conclusions (e.g., that pan-acetylation/phosphorylation "generate" fragile nucleosomes). Without direct biochemical or structural evidence. Such causality statements should be toned down.

    1. Reviewer #1 (Public review):

      This study by Vitar et al. probes the molecular identity and functional specialization of pH-sensing channels in cerebrospinal fluid-contacting neurons (CSFcNs). Combining patch-clamp electrophysiology, laser-based local acidification, immunohistochemistry, and confocal imaging, the authors propose that PKD2L1 channels localized to the apical protrusion (ApPr) function as the predominant dual-mode pH sensor in these cells.

      The work establishes a compelling spatial-physiological link between channel localization and chemosensory behavior. The integration of optical and electrical approaches is technically strong, and the separation of phasic and sustained response modes offers a useful conceptual advance for understanding how CSF composition is monitored.

      Several aspects of data interpretation, however, require clarification or reanalysis-most notably the single-channel analyses (event counts, Po metrics, and mixed parameters), the statistical treatment, and the interpretation of purported "OFF currents." Additional issues include PKD2L1-TRPP3 nomenclature consistency, kinetic comparison with ASICs, and the physiological relevance of the extreme acidification paradigm. Addressing these points will substantially improve reproducibility and mechanistic depth.

      Overall, this is a scientifically important and technically sophisticated study that advances our understanding of CSF sensing, provided that the analytical and interpretative weaknesses are satisfactorily corrected.

      (1) The authors should re-analyze electrophysiological data, focusing on macroscopic currents rather than statistically unreliable Po calculations. Remove or revise the Po analysis, which currently conflates current amplitude and open probability.

      (2) PKD2L1-TRPP3 nomenclature should be clarified and all figure labels, legends, and text should use consistent terminology throughout.

      (3) The authors should reinterpret the so-called OFF currents as pH-dependent recovery or relaxation phenomena, not as distinct current species. Remove the term "OFF response" from the manuscript.

      (4) Evidence for physiological relevance should be provided, including data from milder acidification (pH 6.5-6.8) and, where appropriate, comparisons with ASIC-mediated currents to place PKD2L1 activity in context.

      (5) Terminology and data presentation should be unified, adopting consistent use of "predominant" (instead of "exclusive") and "sustained" (instead of "tonic"), and all statistical formats and units should be standardized.

      (6) The Discussion should be expanded to address potential Ca²⁺-dependent signaling mechanisms downstream of PKD2L1 activation and their possible roles in CSF flow regulation and central chemoreception.

    1. Reviewer #1 (Public review):

      Summary:

      How the regenerative capacity of the heart varies among different species has been a long-standing question. Within teleosts, zebrafish can regenerate their hearts, while medaka and cavefish cannot. The authors examined heart regeneration in two livebearers, platyfish and swordtails. Interestingly, they found that these two fish species lack the compact myocardium layer that contains coronary vessels. Furthermore, these fish form a "pseudoaneurysm" after cryoinjury without initial deposition of fibrotic tissues. However, delayed leukocyte infiltration and prolonged inflammation lead to permanent scar tissue in the injured heart. Although their cardiomyocytes can also proliferate, platyfish and swordtails can only regenerate partially. The authors argue that the restorative mechanism of platyfish and swordtails likely reflects "evolutionary innovations in the ventricle type and the immune system".

      Strengths:

      The authors took advantage of the annotated genome of platyfish to perform transcriptomic analyses. The histological analyses and immunostaining are beautifully done.

      Minor Weaknesses:

      Transcriptomic analysis was only done for one time point. Different time points could be included to validate whether some processes occur at different time points. But this can be done in the future for more detailed studies."

    1. Reviewer #1 (Public review):

      Mitochondrial staining difference is convincing, but the status of the mitos, fused vs fragmented, elongated vs spherical, does not seem convincing. Given the density of mito staining in CySC, it is difficult to tell what is an elongated or fused mito vs the overlap of several smaller mitos.

      I'm afraid the quantification and conclusions about the gstD1 staining in CySC vs. GSCs is just not convincing-I cannot see how they were able to distinguish the relevant signals to quantify once cell type vs the other.

      The overall increase in gstD1 staining with the CySC SOD KD looks nice, but again I can't distinguish different cel types. This experiment would have been more convincing if the SOD KD was mosaic, so that individual samples would show changes in only some of the cells. Still, it seems that KD of SOD in the CySC does have an effect on the germline, which is interesting.

      The effect of SOD KD on the number of less differentiated somatic cells seems clear. However, the effect on the germline is less clear and is somewhat confusing. Normally, a tumor of CySC or less differentiated Cyst cells, such as with activated JAK/STAT, also leads to a large increase in undifferentiated germ cells, not a decrease in germline as they conclude they observe here. The images do not appear to show reduced number of GSCs, but if they counted GSCs at the niche, then that is the correct way to do it, but its odd that they chose images that do not show the phenotype. In addition, lower number of GSCs could also be caused by "too many CySCs" which can kick out GSCs from the niche, rather than any affect on GSC redox state. Further, their conclusion of reduced germline overall, e.g. by vasa staining, does not appear to be true in the images they present and their indication that lower vasa equals fewer GSCs is invalid since all the early germline expresses Vasa.

      The effect of somatic SOD KD is perhaps most striking in the observation of Eya+ cyst cells closer to the niche. The combination of increased Zfh1+ cells with many also being Eya+ demonstrates a strong effect on cyst cell differentiation, but one that is also confusing because they observe increases in both early cyst cells (Zfh1+) as well as late cyst cells (Eya+) or perhaps just an increase in the Zfh1/Eya double-positive state that is not normally common. The effects on the RTK and Hh pathways may also reflect this disturbed state of the Cyst cells.

      However, the effect on germline differentiation is less clear-the images shown do not really demonstrate any change in BAM expression that I can tell, which is even more confusing given the clear effect on cyst cell differentiation.

      For the last figure, any effect of SOD OE in the germline on the germline itself is apparently very subtle and is within the range observed between different "wt" genetic backgrounds.

      Comments on revisions:

      Upon re-re-review, the manuscript is improved but retains many of the flaws outlined in the first reviews.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents a comprehensive single-cell atlas of mouse anterior segment development, focusing on the trabecular meshwork and Schlemm's canal. The authors profiled ~130,000 cells across seven postnatal stages, providing detailed and solid characterization of cell types, developmental trajectories, and molecular programs.

      Strengths:

      The manuscript is well-written, with a clear structure and thorough introduction of previous literature, providing a strong context for the study. The characterization of cell types is detailed and robust, supported by both established and novel marker genes as well as experimental validation. The developmental model proposed is intriguing and well supported by the evidence. The study will serve as a valuable reference for researchers investigating anterior segment developmental mechanisms. Additionally, the discussion effectively situates the findings within the broader field, emphasizing their significance and potential impact for developmental biologists studying the visual system.

      Weaknesses:

      The weaknesses of the study are minor and addressable. As the study focuses on the mouse anterior segment, a brief discussion of potential human relevance would strengthen the work by relating the findings to human anterior segment cell types, developmental mechanisms, and possible implications for human eye disease. Data availability is currently limited, which restricts immediate use by the community. Similarly, the analysis code is not yet accessible, limiting the ability to reproduce and validate the computational analyses presented in the study.

    1. Reviewer #1 (Public review):

      Summary:

      Matsen et al. describe an approach for training an antibody language model that explicitly tries to remove effects of "neutral mutation" from the language model training task, e.g. learning the codon table, which they claim results in biased functional predictions. They do so by modeling empirical sequence-derived likelihoods through a combination of a "mutation" model and a "selection" model; the mutation model is a non-neural Thrifty model previously developed by the authors, and the selection model is a small Transformer that is trained via gradient descent. The sequence likelihoods themselves are obtained from analyzing parent-child relationships in natural SHM datasets. The authors validate their method on several standard benchmark datasets and demonstrate its favorable computational cost. They discuss how deep learning models explicitly designed to capture selection and not mutation, trained on parent-child pairs, could potentially apply to other domains such as viral evolution or protein evolution at large.

      Strengths:

      Overall, we think the idea behind this manuscript is really clever and shows promising empirical results. Two aspects of the study are conceptually interesting: the first is factorizing the training likelihood objective to learn properties that are not explained by simple neutral mutation rules, and the second is training not on self-supervised sequence statistics but on the differences between sequences along an antibody evolutionary trajectory. If this approach generalizes to other domains of life, it could offer a new paradigm for training sequence-to-fitness models that is less biased by phylogeny or other aspects of the underlying mutation process.

      Weaknesses:

      Some claims made in the paper are weakly or indirectly supported by the data. In particular, the claim that learning the codon table contributes to biased functional effect predictions may be true, but requires more justification. Additionally, the paper could benefit from additional benchmarking and comparison to enhanced versions of existing methods, such as AbLang plus a multi-hit correction. Further descriptions of model components and validation metrics could help make the manuscript more readable.

    1. Reviewer #1 (Public review):

      This manuscript proposes that phosphorylation of a conserved Hsp70 residue (human T495 / yeast Ssa1 T492) is a BER-triggered, DDR-dependent phospho-switch that acts as a conserved brake on G1/S cell-cycle progression in response to DNA damage.

      Although the topic is interesting and potentially useful, the strength of evidence of the mechanistic and "conserved checkpoint" claims that this site is directly activated by DNA damage is inadequate and fundamentally incorrect. The work requires extensive additional experimentation and substantial tempering of conclusions.

      Specific comments:

      (1) Activation of T495:

      (a) The author's premise for the site being activated by DNA damage is Albuquerque et al, where PTMs on MMS treated yeast are analyzed. T492 (the yeast equivalent of human T495) is observed as phosphorylated. However, the authors fail to note that there is no untreated sample analysis in this study, and it is likely that T492 phosphorylation is also present in untreated cells. This is also backed up by later evidence from the same lab (Smolka et al), where they do not identify T492 as being dependent on Mec1/Tel/Rad53 kinases.

      (b) The kinase(s) directly responsible for T495 phosphorylation are not identified. Instead, the authors show that knockdown or pharmacological inhibition of DNA-PKcs, ATM, Chk2, and CK1 attenuate pHsp70.

      (c) ATM siRNA knockdown has no effect, while ATM inhibitors do, which the authors acknowledge but do not resolve. This discrepancy raises concerns about off-target drug effects.

      (d) No in vitro kinase assays, motif analysis, or phosphosite mapping confirming these kinases as direct T495 kinases are presented. Thus, the proposed signaling cascade remains speculative.

      (e) Smolka and many other labs characterized DDR sites as SQ/TQ motifs, and T492 doesn't fit that motif.

      (f) No genetic tests in yeast (e.g., BER mutants) are used to connect Ssa1 T492 phosphorylation to BER in that system, despite the strong BER-centric model.

      (g) Overexpression of MPG gives only a modest increase in pHsp70, while APE1 overexpression has no effect, and Polβ overexpression does not decrease pHsp70. These mixed results weaken the central claim that Hsp70 phosphorylation is a tuned sensor of BER burden.

      (h) A major concern is that pHsp70 is only convincingly detected after very high, prolonged MMS (10 mM, 5 h) or 0.5 mM arsenite treatments. Other DNA-damaging agents (bleomycin, camptothecin, hydroxyurea) that robustly activate DDR kinases do not induce pHsp70. This suggests to me that the authors are observing a side effect of proteotoxic stress. This is likely (see Paull et al, PMID: 34116476).

      (i) A recent study in Nature Communications (Omkar et al., 2025) demonstrates rapid phosphorylation of yeast T492 in a pkc1-dependent manner, diminishing the impact of these findings.

      (2) Downstream Effects of T492/T495:

      (a) The manuscript's central conceptual advance is that pHsp70 is a cell-cycle-regulated brake on G1/S. Yet in mammalian cells, the authors show only that pHsp70 appears late, after cells have traversed mitosis, and that blocking CDK1 (G2/M) prevents its accumulation.

      (b) There is no functional test in human cells: no knockdown/rescue experiments with T495A or T495E, no cell-cycle profiling upon altering Hsp70 phosphorylation state, and no demonstration that pHsp70 actually causes any delay in S-phase entry, rather than simply correlating with late damage responses. The strong conclusion that pT495 "stalls cell cycle progression" (e.g., Figure 6 model) is therefore not supported in the human system.

      (c) All functional conclusions rely on T492A/E point mutants at the endogenous SSA1 locus, usually in an ssa2Δ background, in a family of highly redundant Hsp70s. Without showing that this site is actually modified during their MMS treatments, the assignment of phenotypes to loss of a physiological phospho-switch is premature. The authors need to repeat their studies in an Ssa1-4 background, as in https://pubmed.ncbi.nlm.nih.gov/32205407/.

      (d) The authors infer that T495E "locks" Hsc70 in a pseudo-open state based on reduced J-protein-stimulated ATPase activity, unchanged ATP binding, altered trypsin sensitivity, and retained tau binding. However, there is no direct comparison of phosphorylated vs T495E protein (e.g., via in vitro phosphorylation with LegK4 followed by side-by-side biochemical assays, or structural analysis). Thus, it remains unclear to what extent the glutamate substitution mimics a phosphate at this position.

      (e) No client release kinetics, co-chaperone binding assays, or in vivo chaperone function tests are provided, yet the discussion builds a detailed model of a "pseudo-open" state that simultaneously resembles ATP-bound conformation and allows persistent substrate engagement.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aim to demonstrate that PGLYRP1 plays a dual role in host responses to B. pertussis infection. PGLYRP1 signaling is known to activate bactericidal responses due to recognition of peptidoglycan. Through NOD1 activation and TREM-1 engagement, it appears PGLYRP1 also has immunomodulator activities. The authors present mouse knockout studies and gene expression data to illustrate the role of PGLYRP1 in relation to B. pertussis peptidoglycan. Mice lacking PGLYRP1 had slightly lower pathology scores. When TCT peptidoglycan was removed from the bacteria, surprisingly IL23A, IL6, IL1B, and other pro-inflammatory genes encoding cytokines increased. The relationship to TCT and PGLYRP1 suggests the pathogen uses this strategy to decrease immune activation. The authors went on to show the relationship between PGLRP1 and TREM-1 as mediated by PGN using various versions of peptidoglycan. The study presents multiple angles of data to back up its findings and demonstrates an interesting strategy used by B. pertussis to downregulate innate responses to its presence during infection.

      Strengths:

      Use of knockout mice of the key factor being considered, paired with isogenic B. pertussis strains, to reveal the mechanism of immune modulation to benefit the bacteria. The authors used in vivo gene expression paired with in vivo assays to establish each aspect of the mechanism.

      Weaknesses:

      The main focus was on innate responses, and some analysis of antigen-specific antibody responses could improve the impact of the findings.

    1. Reviewer #1 (Public review):

      Summary:

      The aim of this work is to directly image collagen in tissue using a new MRI method with positive contrast. The work presents a new MRI method that allows very short, powerful radio frequency (RF) pulses and very short switching times between transmission and reception of radio frequency signals.

      Strengths:

      The experiments with and without the removal of 1H hydrogen, which is not firmly bound to collagen, on tissue samples from tendons and bones, are very well suited to prove the detection of direct hydrogen signals from collagen. The new method has great potential value in medicine, as it allows for better investigation of ageing processes and many degenerative diseases in which functional tissue is replaced by connective tissue (collagen).

      Weaknesses:

      It is clear that, due to the relatively long time intervals between RF excitation and signal readout, standard hardware in whole-body MRI systems can only be used to examine surrounding water and not hydrogen bound to collagen molecules.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript analyzes a large dataset of [NiFe]-CODHs with a focus on genomic context and operon organization. Beyond earlier phylogenetic and biochemical studies, it addresses CODH-HCP co-occurrence, clade-specific gene neighborhoods, and operon-level variation, offering new perspectives on functional diversification and adaptation.

      Strengths:

      The study has a valuable approach.

      Weaknesses:

      Several points should be addressed.

      (1) The rationale for excluding clades G and H should be clarified. Inoue et al. (Extremophiles 26:9, 2022) defined [NiFe]-CODH phylogenetic clades A-H. In the present manuscript, clades A-H are depicted, yet the analyses and discussion focus only on clades A-F. If clades G and H were deliberately excluded (e.g., due to limited sequence data or lack of biochemical evidence), the rationale should be clearly stated. Providing even a brief explanation of their status or the reason for omission would help readers understand the scope and limitations of the study. In addition, although Figure 1 shows clades A-H and cites Inoue et al. (2022), the manuscript does not explicitly state how these clades are defined. An explicit acknowledgement of the clade framework would improve clarity and ensure that readers fully understand the basis for subsequent analyses.

      (2) The co-occurrence data would benefit from clearer presentation in the supplementary material. At present, the supplementary data largely consist of raw values, making interpretation difficult. For example, in Figure 3b, the co-occurrence frequencies are hard to reconcile with the text: clade A shows no co-occurrence with clade B and even lower tendencies than clades E or F, while clade E appears relatively high. Similarly, the claim that clades C and D "more often co-occur, especially with A, E, and F" does not align with the numerical trends, where D and E show stronger co-occurrence but C does not. A concise, well-organized summary table would greatly improve clarity and prevent such misunderstandings.

      (3) The rationale for analyzing gene neighborhoods at the single-operon level needs clarification. Many microorganisms encode more than one CODH operon, yet the analysis was carried out at the level of individual operons. The authors should clarify the biological rationale for this choice and discuss how focusing on single operons rather than considering the full complement per organism might affect the interpretation of genomic context.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates how the brain processes facial expressions across development by analyzing intracranial EEG (iEEG) data from children (ages 5-10) and post-childhood individuals (ages 13-55). The researchers used a short film containing emotional facial expressions and applied AI-based models to decode brain responses to facial emotions. They found that in children, facial emotion information is represented primarily in the posterior superior temporal cortex (pSTC)-a sensory processing area-but not in the dorsolateral prefrontal cortex (DLPFC), which is involved in higher-level social cognition. In contrast, post-childhood individuals showed emotion encoding in both regions. Importantly, the complexity of emotions encoded in the pSTC increased with age, particularly for socially nuanced emotions like embarrassment, guilt, and pride.The authors claim that these findings suggest that emotion recognition matures through increasing involvement of the prefrontal cortex, supporting a developmental trajectory where top-down modulation enhances understanding of complex emotions as children grow older.

      Strengths:

      (1) The inclusion of pediatric iEEG makes this study uniquely positioned to offer high-resolution temporal and spatial insights into neural development compared to non-invasive approaches, e.g., fMRI, scalp EEG, etc.

      (2) Using a naturalistic film paradigm enhances ecological validity compared to static image tasks often used in emotion studies.

      (3) The idea of using state-of-the-art AI models to extract facial emotion features allows for high-dimensional and dynamic emotion labeling in real time.

      Weaknesses:

      (1) The study has notable limitations that constrain the generalizability and depth of its conclusions. The sample size was very small, with only nine children included and just two having sufficient electrode coverage in the posterior superior temporal cortex (pSTC), which weakens the reliability and statistical power of the findings, especially for analyses involving age. Authors pointed out that a similar sample size has been used in previous iEEG studies, but the cited works focus on adults and do not look at the developmental perspectives. Similar work looking at developmental changes in iEEG signals usually includes many more subjects (e.g., n = 101 children from Cross ZR et al., Nature Human Behavior, 2025) to account for inter-subject variabilities.

      (2) Electrode coverage was also uneven across brain regions, with not all participants having electrodes in both the dorsolateral prefrontal cortex (DLPFC) and pSTC, making the conclusion regarding the different developmental changes between DLPFC and pSTC hard to interpret (related to point 3 below). It is understood that it is rare to have such iEEG data collected in this age group, and the electrode location is only determined by clinical needs. However, the scientific rigor should not be compromised by the limited data access. It's the authors' decision whether such an approach is valid and appropriate to address the scientific questions, here the developmental changes in the brain, given all the advantages and constraints of the data modality.

      (3) The developmental differences observed were based on cross-sectional comparisons rather than longitudinal data, reducing the ability to draw causal conclusions about developmental trajectories. Also, see comments in point 2.

      (4) Moreover, the analysis focused narrowly on DLPFC, neglecting other relevant prefrontal areas such as the orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC), which play key roles in emotion and social processing. Agree that this might be beyond the scope of this paper, but a discussion section might be insightful.

      (5) Although the use of a naturalistic film stimulus enhances ecological validity, it comes at the cost of experimental control, with no behavioral confirmation of the emotions perceived by participants and uncertain model validity for complex emotional expressions in children. A non-facial music block that could have served as a control was available but not analyzed. The validation of AI model's emotional output needs to be tested. It is understood that we cannot collect these behavioral data retrospectively within the recorded subjects. Maybe potential post-hoc experiments and analyses could be done, e.g., collect behavioral, emotional perception data from age-matched healthy subjects.

      (6) Generalizability is further limited by the fact that all participants were neurosurgical patients, potentially with neurological conditions such as epilepsy that may influence brain responses. At least some behavioral measures between the patient population and the healthy groups should be done to ensure the perception of emotions is similar.

      (7) Additionally, the high temporal resolution of intracranial EEG was not fully utilized, as data were downsampled and averaged in 500-ms windows. It seems like the authors are trying to compromise the iEEG data analyses to match up with the AI's output resolution, which is 2Hz. It is not clear then why not directly use fMRI, which is non-invasive and seems to meet the needs here already. The advantages of using iEEG in this study are missing here.

      (8) Finally, the absence of behavioral measures or eye-tracking data makes it difficult to directly link neural activity to emotional understanding or determine which facial features participants attended to. Related to point 5 as well.

      Comments on revisions:

      A behavioral measurement will help address a lot of these questions. If the data continues collecting, additional subjects with iEEG recording and also behavioral measurements would be valuable.

    1. Reviewer #1 (Public review):

      In this well-written and timely manuscript, Rieger et al. introduce Squidly, a new deep learning framework for catalytic residue prediction. The novelty of the work lies in the aspect of integrating per-residue embeddings from large protein language models (ESM2) with a biology-informed contrastive learning scheme that leverages enzyme class information to rationally mine hard positive/negative pairs. Importantly, the method avoids reliance on the use of predicted 3D structures, enabling scalability, speed, and broad applicability. The authors show that Squidly outperforms existing ML-based tools and even BLAST in certain settings, while an ensemble with BLAST achieves state-of-the-art performance across multiple benchmarks. Additionally, the introduction of the CataloDB benchmark, designed to test generalization at low sequence and structural identity, represents another important contribution of this work.

    1. Reviewer #1 (Public review):

      Summary:

      This study used explicit-solvent simulations and coarse-grained models to identify the mechanistic features that allow for unidirectional motion of SMC on DNA. Shorter explicit-solvent models provides a description of relevant hydrogen bond energetics, which was then encoded in a coarse-grained structure-based model. In the structure-based model, the authors mimic chemical reactions as signaling changes in the energy landscape of the assembly. By cycling through the chemical cycle repeatedly, the authors show how these time-dependent energetic shifts naturally lead SMC to undergo translocation steps along DNA that are on a length scale that has been identified.

      Strengths:

      Simulating large-scale conformational changes in complex assemblies is extremely challenging. This study utilizes highly-detailed models to parameterize a coarse-grained model, thereby allowing the simulations to connect the dynamics of precise atomistic-level interactions with a large-scale conformational rearrangement. This study serves as an excellent example for this overall methodology, where future studies may further extend this approach to investigated any number of complex molecular assemblies.

      Comments on revisions:

      No additional recommendations. I removed the weakness description in the summary, since the authors have addressed that concern.

    1. Reviewer #1 (Public review):

      Summary:

      Press et al test, in three experiments, whether responses in a speeded response task reflect people's expectations, and whether these expectations are best explained by the objective statistics of the experimental context (e.g., stimulus probabilities) or by participants' mental representation of these probabilities. The studies use a classical response time and accuracy task, in which people are (1) asked to make a response (with one hand), this response then (2) triggers the presentation of one of several stimuli (with different probabilities depending on the response), and participants (3) then make a speeded response to identify this stimulus (with the other hand). In Experiment 1, participants are asked to rate, after the experiment, the subjective probabilities of the different stimuli. In Experiments 2 and 3, they rated, after each trial, to what extent the stimulus was expected (Experiment 2), or whether they were surprised by the stimulus (Experiment 3). The authors test (using linear models) whether the subjective ratings in each experiment predict stimulus identification times and accuracies better than objective stimulus probabilities (Experiment 1), or than their objective probability derived from a Rescorla-Wagner model of prior stimulus history (Experiment 2 and 3). Across all three experiments, the results are identical. Response times are best described by contributions from both subjective and objective probabilities. Accuracy is best described by subjective probability.

      Strengths:

      This is an exciting series of studies that tests an assumption that is implicit in predictive theories of response preparation (i.e., that response speed/accuracy tracks subjective expectancies), but has not been properly tested so far, to my knowledge. I find the idea of measuring subjective expectancy and surprise in the same trials as the response very clever. The manuscript is extremely well written. The experiments are well thought-out, preregistered, and the results seem highly robust and replicable across studies.

      Weaknesses:

      In my assessment, this is a well-designed, implemented, and analysed series of studies. I have one substantial concern that I would like to see addressed, and two more minor ones.

      (1) The key measure of the relationship between subjective ratings and response times/accuracy is inherently correlational. The causal relationship between both variables is therefore by definition ambiguous. I worry that the results don't reveal an influence of subjective expectancy of response times/accuracies, but the reverse: an influence of response times/accuracies on subjective expectancy ratings.

      This potential issue is most prominent in Experiments 2 and 3, where people rate their expectations in a given trial directly after they made their response. We can assume that participants have at least some insight into whether their response in the current trial was correct/erroneous or fast/slow. I therefore wonder if the pattern of results can simply be explained by participants noticing they made an error (or that they responded very slowly) and subsequently being more inclined to rate that they did not expect this stimulus (in Experiment 2) or that they were surprised by it (in Experiment 3).

      The specific pattern across the two response measures might support this interpretation. Typically, participants are more aware of the errors they make than of their response speed. From the above perspective, it would therefore be not surprising that all experiments show stronger associations between accuracy and subjective ratings than between response times and subjective ratings -- exactly as the three studies found.

      I acknowledge that this problem is less strong in Experiment 1, where participants do not rate expectancy or surprise after each response, but make subjective estimates of stimulus probabilities after the experiment. Still, even here, the flow of information might be opposite to what the authors suggest. Participants might not have made more errors for stimuli that they thought as least likely, but instead might have used the number of their responses to identify a given stimulus as a proxy for rating their likelihood. For example, if they identify a square as a square 25% of the time, even though 5% of these responses were in error, it is perhaps no surprise if their rating of the stimulus likelihood better tracks the times they identified it as a square (25%) than the actual stimulus likelihoods (20%).

      This potential reverse direction of effects would need to be ruled out to fully support the authors' claims.

      (2) My second, more minor concern, is whether the Rescorla-Wagner model is truly the best approximation of objective stimulus statistics. It is traditionally a model of how people learn. Isn't it, therefore, already a model of subjective stimulus statistics, derived from the trial history, instead of objective ones? If this is correct, my interpretation of Experiments 2 and 3 would be (given my point 1 above is resolved) that subjective expectancy ratings predict responses better than this particular model of learning, meaning that it is not a good model of learning in this task. Comparing results against Rescorla-Wagner may even seem like a stronger test than comparing them against objective stimulus statistics - i.e., they show that subjective ratings capture expectancies better even than this model of learning. The authors already touch upon this point in the General Discussion, but I would like to see this expanded, and - ideally - comparisons against objective stimulus statistics (perhaps up to the current trial) to be included, so that the authors can truly support the claim that it is not the objective stimulus statistics that determine response speed and accuracy.

      (3) There is a long history of research trying to link response times to subjective expectancies. For example, Simon and Craft (1989, Memory & Cognition) reported that stimuli of equal probability were identified more rapidly when participants had explicitly indicated they expect this stimulus to occur in the given trial, and there's similar more recent work trying to dissociate stimulus statistics and explicit expectations (e.g., Umbach et al., 2012, Frontiers; for a somewhat recent review, see Gaschler et al., 2014, Neuroscience & Biobehavioral Reviews). It has not become clear to me how the current results relate to this literature base. How do they impact this discussion, and how do they differ from what is already known?

    1. Reviewer #1 (Public review):

      This is an interesting manuscript aimed at improving the transcriptome characterization of 52 C. elegans neuron classes. Previous single-cell RNA seq studies already uncovered transcriptomes for these, but the data are incomplete, with a bias against genes with lower expression levels. Here, the authors use cell-specific reporter combinations to FACS purify neurons and use bulk RNA sequencing to obtain better sequencing depth. This reveals more rare transcripts, as well as non-coding RNAs, pseudo genes, etc. The authors develop computational approaches to combine the bulk and scRNA transcriptome results to obtain more definitive gene lists for the neurons examined.

      To ultimately understand features of any cell, from morphology to function, an understanding of the full complement of the genes it expresses is a pre-requisite. This paper gets us a step closer to this goal, assembling a current "definitive list" of genes for a large proportion of C. elegans neurons. The computational approaches used to generate the list are based on reasonable assumptions, the data appear to have been treated appropriately statistically, and the conclusions are generally warranted. I have a few issues that the authors may chose to address:

      (1) As part of getting rid of cross contamination in the bulk data, the authors model the scRNA data, extrapolate it to the bulk data and subtract out "contaminant" cell types. One wonders, however, given that low expressed genes are not represented in the scRNA data, whether the assignment of a gene to one or another cell type can really be made definitve. Indeed, it's possible that a gene is expressed at low levels in one cell, and in high levels in another, and would therefore be considered a contaminant. The result would be to throw out genes that actually are expressed in a given cell type. The definitive list would therefore be a conservative estimate, and not necessarily the correct estimate.

      (2) It would be quite useful to have tested some genes with lower expression levels using in vivo gene-fusion reporters to assess whether the expression assignments hold up as predicted. i.e. provide another avenue of experimentation, non-computational, to confirm that the decontamination algorithm works.

      (3) In many cases, each cell class would be composed of at least 2 if not more neurons. Is it possible that differences between members of a single class would be missed by applying the cleanup algorithms? Such transcripts would be represented only in a fraction of the cells isolated by scRNAseq, and might then be considered not real?

      (4) I didn't quite catch whether the precise staging of animals was matched between the bulk and scRNAseq datasets. Importantly, there are many genes whose expression is highly stage specific or age specific so that even slight temporal difference might yield different sets of gene expression.

      (5) To what extent does FACS sorting affect gene expression? Can the authors provide some controls?

      Comments on revisions:

      The authors have made reasonable arguments in response to my questions, and have done some additional experiments. I believe that although they did not do so, they could have generated additional reporters for the lower expressed genes, that would have validated their method of data integration. Nonetheless, I think the paper is rigorous and will be of use to the community.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript Lu & Cui et al. observe that adult male zebrafish are more resistant to infection and disease following exposure to Spring Viremia of Carp Virus (SVCV) than female fish. The authors then attempt to identify some of the molecular underpinnings of this apparent sexual dimorphism and focus their investigations on a gene called cytochrome P450, family 17, subfamily A, polypeptide 2 (cyp17a2) because it was among genes that they found to be more highly expressed in kidney tissue from males than in females. Their investigations lead them to propose a direct connection between cyp17a2 and modulation of interferon signaling as the key underlying driver of difference between male and female susceptibility to SVCV.

      Strengths:

      Strengths of this study include the interesting observation of a substantial difference between adult male and female zebrafish in their susceptibility to SVCV, and also the breadth of experiments that were performed linking cyp17a2 to infection phenotypes and molecularly to the stability of host and virus proteins in cell lines. The authors place the infection phenotype in an interesting and complex context of many other sexual dimorphisms in infection phenotypes in vertebrates. This study succeeds in highlighting an unexpected factor involved in antiviral immunity that will be an important subject for future investigations of infection, metabolism, and other contexts.

      Weaknesses:

      Weaknesses of this study include a proposed mechanism underlying the sexual dimorphism phenotype based on experimentation in only males, and widespread reliance on over-expression when investigating protein-protein interaction and localization.

    1. Reviewer #1 (Public review):

      Summary:

      This study employed a saccade-shifting sequential working memory paradigm, manipulating whether a saccade occurred after each memory array to directly compare retinotopic and transsaccadic working memory for both spatial location and color. Across four participant groups (young and older healthy adults, and patients with Parkinson's disease and Alzheimer's disease), the authors found a consistent saccade-related cost specifically for spatial memory - but not for color - regardless of differences in memory precision. Using computational modeling, they demonstrate that data from healthy participants are best explained by a complex saccade-based updating model that incorporates distractor interference. Applying this model to the patient groups further elucidates the sources of spatial memory deficits in PD and AD. The authors then extend the model to explain copying deficits in these patient groups, providing evidence for the ecological validity of the proposed saccade-updating retinotopic mechanism.

      Strengths:

      Overall, the manuscript is well written, and the experimental design is both novel and appropriate for addressing the authors' key research questions. I found the study to be particularly comprehensive: it first characterizes saccade-related costs in healthy young adults, then replicates these findings in healthy older adults, demonstrating how this "remapping" cost in spatial working memory is age-independent. After establishing and validating the best-fitting model using data from both healthy groups, the authors apply this model to clinical populations to identify potential mechanisms underlying their spatial memory impairments. The computational modeling results offer a clearer framework for interpreting ambiguities between allocentric and retinotopic spatial representations, providing valuable insight into how the brain represents and updates visual information across saccades. Moreover, the findings from the older adult and patient groups highlight factors that may contribute to spatial working memory deficits in aging and neurological disease, underscoring the broader translational significance of this work.

      Weaknesses:

      Several concerns should be addressed to enhance the clarity of the manuscript:

      (1) Relevance of the figure-copy results (pp. 13-15).

      Is it necessary to include the figure-copy task results within the main text? The manuscript already presents a clear and coherent narrative without this section. The figure-copy task represents a substantial shift from the LOCUS paradigm to an entirely different task that does not measure the same construct. Moreover, the ROCF findings are not fully consistent with the LOCUS results, which introduces confusion and weakens the manuscript's coherence. While I understand the authors' intention to assess the ecological validity of their model, this section does not effectively strengthen the manuscript and may be better removed or placed in the Supplementary Materials.

      (2) Model fitting across age groups (p. 9).

      It is unclear whether it is appropriate to fit healthy young and healthy elderly participants' data to the same model simultaneously. If the goal of the model fitting is to account for behavioral performance across all conditions, combining these groups may be problematic, as the groups differ significantly in overall performance despite showing similar remapping costs. This suggests that model performance might differ meaningfully between age groups. For example, in Figure 4A, participants 22-42 (presumably the elderly group) show the best fit for the Dual (Saccade) model, implying that the Interference component may contribute less to explaining elderly performance.

      Furthermore, although the most complex model emerges as the best-fitting model, the manuscript should explain how model complexity is penalized or balanced in the model comparison procedure. Additionally, are Fixation Decay and Saccade Update necessarily alternative mechanisms? Could both contribute simultaneously to spatial memory representation? A model that includes both mechanisms-e.g., Dual (Fixation) + Dual (Saccade) + Interference-could be tested to determine whether it outperforms Model 7 to rule out the sole contribution of complexity.

      Minor point: On p. 9, line 336, Figure 4A does not appear to include the red dashed vertical line that is mentioned as separating the age groups.

      (3) Clarification of conceptual terminology.

      Some conceptual distinctions are unclear. For example, the relationship between "retinal memory" and "transsaccadic memory," as well as between "allocentric map" and "retinotopic representation," is not fully explained. Are these constructs related or distinct? Additionally, the manuscript uses terms such as "allocentric map," "retinotopic representation," and "reference frame" interchangeably, which creates ambiguity. It would be helpful for the authors to clarify the relationships among these terms and apply them consistently.

      (4) Rationale for the selective disruption hypothesis (p. 4, lines 153-154).

      The authors hypothesize that "saccades would selectively disrupt location memory while leaving colour memory intact." Providing theoretical or empirical justification for this prediction would strengthen the argument.

      (5) Relationship between saccade cost and individual memory performance (p. 4, last paragraph).

      The authors report that larger saccades were associated with greater spatial memory disruption. It would be informative to examine whether individual differences in the magnitude of saccade cost correlate with participants' overall/baseline memory performance (e.g. their memory precision in the no-saccade condition). Such analyses might offer insights into how memory capacity/ability relates to resilience against saccade-induced updating.

      (6) Model fitting for the healthy elderly group to reveal memory-deficit factors (pp. 11-12).

      The manuscript discusses model-based insights into components that contribute to spatial memory deficits in AD and PD, but does not discuss components that contribute to spatial memory deficits in the healthy elderly group. Given that the EC group also shows impairments in certain parameters, explaining and discussing these outcomes of the EC group could provide additional insights into age-related memory decline, which would strengthen the study's broader conclusions.

      (7) Presentation of saccade conditions in Figure 5 (p. 11).

      In Figure 5, it may be clearer to group the four saccade conditions together within each patient group. Since the main point is that saccadic interference on spatial memory remains robust across patient groups, grouping conditions by patient type rather than intermixing conditions would emphasize this interpretation.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes the use of computational tools to design a mimetic of the interleukin-7 (IL-7) cytokine with superior stability and receptor binding activity compared to the naturally occurring molecule. The authors focused their engineering efforts on the loop regions to preserve receptor interfaces while remediating structural irregularities that destabilize the protein. They demonstrated the enhanced thermostability, production yield, and bioactivity of the resulting molecule through biophysical and functional studies. Overall, the manuscript is well written, novel, and of high interest to the fields of molecular engineering, immunology, biophysics, and protein therapeutic design. The experimental methodologies used are convincing; however, the article would benefit from more quantitative comparisons of bioactivity through titrations.

      Comments on revisions:

      All comments have been sufficiently addressed, with the exception of comment 24 from Reviewer 1. The authors need to modify the manuscript abstract, introduction, and/or discussion to clarify which limitations of IL-7 were addressed by their molecule and to note the limitations of their approach in terms of mitigating toxicity or enhancing half-life.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript reports a prospective longitudinal study examining whether infants with high likelihood (HL) for autism differ from low-likelihood (LL) infants in two levels of word learning: brain-to-speech cortical entrainment and implicit word segmentation. The authors report reduced syllable tracking and post-learning word recognition in the HL group relative to the LL group. Importantly, both the syllable-tracking entrainment measure and the word recognition ERP measure are positively associated with verbal outcomes at 18-20 months, as indexed by the Mullen Verbal Developmental Quotient. Overall, I found this to be a thoughtfully designed and carefully executed study that tackles a difficult and important set of questions. With some clarifications and modest additional analyses or discussion on the points below, the manuscript has strong potential to make a substantial contribution to the literature on early language development and autism.

      Strengths:

      This is an important study that addresses a central question in developmental cognitive neuroscience: what mechanisms underlie variability in language learning, and what are the early neural correlates of these individual differences? While language development has a relatively well-defined sensitive period in typical development, the mechanisms of variability - particularly in the context of neurodevelopmental conditions - remain poorly understood, in part because longitudinal work in very young infants and toddlers is rare. The present study makes a valuable contribution by directly targeting this gap and by grounding the work in a strong theoretical tradition on statistical learning as a foundational mechanism for early language acquisition.

      I especially appreciate the authors' meticulous approach to data quality and their clear, transparent description of the methods. The choice of partial least squares correlation (PLS-c) is well motivated, given the multidimensional nature of the data and collinearity among variables, and the manuscript does a commendable job explaining this technique to readers who may be less familiar with it.

      The results reveal interesting developmental changes in syllable tracking and word segmentation from birth to 2 years in both HL and LL infants. Simply mapping these trajectories in both groups is highly valuable. Moreover, the associations between neural indices of brain-to-speech entrainment and word segmentation with later verbal outcomes in the LL group support a critical role for speech perception and statistical learning in early language development, with clear implications for understanding autism. Overall, this is a rich dataset with substantial potential to inform theory.

      Weaknesses:

      (1) Clarifying longitudinal vs. concurrent associations

      Because the current analytical approach incorporates all time points, including the final visit, it is challenging to determine to what extent the brain-language associations are driven by longitudinal relationships vs. concurrent correlations at the last time point. This does not undermine the main findings, but clarifying this issue could significantly enhance the impact of the individual-differences results. If feasible, the authors might consider (a) showing that a model excluding the final visit still predicts verbal outcomes at the last visit in a similar way, or (b) more explicitly acknowledging in the discussion that the observed associations may be partly or largely driven by concurrent correlations. Either approach would help readers interpret the strength and nature of the longitudinal claims.

      (2) Incorporating sleep status into longitudinal models

      Sleep status changes systematically across developmental stages in this cohort. Given that some of the papers cited to justify the paradigm also note limitations in speech entrainment and word segmentation during sleep or in patients with impaired consciousness, it would be helpful to account for sleep more directly. Including sleep status as a factor or covariate in the longitudinal models, or at least elaborating more fully on its potential role and limitations, would further strengthen the conclusions and reassure readers that these effects are not primarily driven by differences in sleep-wake state.

      (3) Use of PLS-c and potential group × condition interactions

      I am relatively new to PLS-c. One question that arose is whether PLS-c could be extended to handle a two-way interaction between group and condition contrasts (STR vs. RND). If so, some of the more complex supplementary models testing developmental trajectories within each group (Page 8, Lines 258-265) might be more directly captured within a single, unified framework. Even a brief comment in the methods or discussion about the feasibility (or limitations) of modeling such interactions within PLS-c would be informative for readers and could streamline the analytic narrative.

      (4) STR-only analyses and the role of RND

      Page 8, Lines 241-245: This analysis is conducted only within the STR condition. The lack of group difference observed here appears consistent with the lack of group difference in word-level entrainment (Page 9, Lines 292-294), suggesting that HL and LL groups may not differ in statistical learning per se, but rather in syllabic-level entrainment. As a useful sanity check and potential extension, it might be informative to explore whether syllable-level entrainment in the RND condition differs between groups to a similar extent as in Figure 2C-D. In other work (e.g., adults vs. children; Moreau et al., 2022), group differences can be more pronounced for syllable-level than for word-level entrainment. Figure S6 seems to hint that a similar pattern may exist here. If feasible, including or briefly reporting such an analysis could help clarify the asymmetry between the two learning measures and further support the interpretation of syllabic-level differences.

      (5) Multi-speaker input and voice perception (Page 15, Lines 475-483)

      The multi-speaker nature of the speech input is an interesting and ecologically relevant feature of the design, but it does add interpretive complexity. The literature on voice perception in autism is still mixed: for example, Boucher et al. (2000) reported no differences in voice recognition and discrimination between children with autism and language-matched non-autistic peers, whereas behavioral work in autistic adults suggests atypical voice perception (e.g., Schelinski et al., 2016; Lin et al., 2015). I found the current interpretation in this paragraph somewhat difficult to follow, partly because the data do not directly test how HL and LL infants integrate or suppress voice information. I think the authors could strengthen this section by slightly softening and clarifying the claims.

      (6) Asymmetry between EEG learning measures

      Page 16, Lines 502-507 touches on the asymmetry between the two EEG learning measures but leaves some questions for the reader. The presence of word recognition ERPs in the LL group suggests that a failure to suppress voice information during learning did not prevent successful word learning. At the same time, there is an interesting complementary pattern in the HL group, who show LL-like word-level entrainment but does not exhibit robust word recognition. Explicitly discussing this asymmetry - why HL infants might show relatively preserved word-level entrainment yet reduced word recognition ERPs, whereas LL infants show both - would enrich the theoretical contribution of the manuscript.

      References:

      (1) Moreau, C. N., Joanisse, M. F., Mulgrew, J., & Batterink, L. J. (2022). No statistical learning advantage in children over adults: Evidence from behaviour and neural entrainment. Developmental Cognitive Neuroscience, 57, 101154. https://doi.org/10.1016/j.dcn.2022.101154

      (2) Boucher, J., Lewis, V., & Collis, G. M. (2000). Voice processing abilities in children with autism, children with specific language impairments, and young typically developing children. Journal of Child Psychology and Psychiatry, 41(7), 847-857. https://doi.org/10.1111/1469-7610.00672

      (3) Schelinski, S., Borowiak, K., & von Kriegstein, K. (2016). Temporal voice areas exist in autism spectrum disorder but are dysfunctional for voice identity recognition. Social Cognitive and Affective Neuroscience, 11(11), 1812-1822. https://doi.org/10.1093/scan/nsw089

      (4) Lin, I.-F., Yamada, T., Komine, Y., Kato, N., Kato, M., & Kashino, M. (2015). Vocal identity recognition in autism spectrum disorder. PLOS ONE, 10(6), e0129451. https://doi.org/10.1371/journal.pone.0129451

    1. Reviewer #1 (Public review):

      Summary:

      The authors present a novel investigation of the movement vigor of individuals completing a synchronous extension-flexion task. Participants were placed into groups of two (so-called "dyads") and asked to complete shared movements (connected via a virtual loaded spring) to targets placed at varying amplitudes. The authors attempted to quantify what, if any, adjustments in movement vigor individual participants made during the dyadic movements, given the combined or co-dependent nature of the task. This is a novel, timely question of interest within the broader field of human sensorimotor control.

      Participants from each dyad were labeled as "slow" (low vigor) or "fast" (high vigor), and their respective contributions to the combined movement metrics were assessed. The authors presented four candidate models for dyad interactions: (a) independent motor plans (i.e., co-activity hypothesis), (b) individual-led motor plans (i.e., leader-follower hypothesis), (c) generalization to a weighted average motor plan (i.e., weighted adaptation hypothesis), and (d) an uncertainty-based model of dynamic partner-partner interaction (i.e., interactive adaptation hypothesis). The final model allowed for dynamic changes in individual motor plans (and therefore, movement vigor) based on partner-partner interactions and observations. After detailed observations of interaction torque and movement duration (or vigor), the authors concluded that the interactive adaptation model provided the best explanation of human-human interaction during self-paced dyadic movements.

      Strengths:

      The experimental setup (simultaneous wrist extension-flexion movements) has been thoroughly vetted. The task was designed particularly well, with adequate block pseudo-randomization to ensure general validity of the results. The analyses of torque interaction, movement kinematics, and vigor are sound, as are the statistical measures used to assess significance. The authors structured the work via a helpful comparison of several candidate models of human-human interaction dynamics, and how well said models explained variance in the vigor of solo and combined movements. The research question is timely and extends current neuroscientific understanding of sensorimotor control, particularly in social contexts.

      Weaknesses:

      (1) My chief concern about the study as it currently stands is the relatively low number of data points (n=10). The authors recruited 20 participants, but the primary conclusions are based on dyad-specific interactions (i.e., analyses of "fast" vs "slow" participants in each pair). Some of these analyses would benefit greatly, in terms of power, from the addition of more data points.

      1a) The distribution of delta-vigor (Fast group vs Slow group) is highly skewed (see Figures 3D, S6D), with over half of the dyads exhibiting delta-vigor less than 0.2 (i.e., less than 20% of unit vigor). Given the relatively low number of dyads, it would be helpful for the authors to provide explicit listings of VigorFast, VigorSlow, and VigorCombined for each of the 10 separate dyads or pairings.

      1b) The authors concluded that the interactive adaptation hypothesis provided the best summary of the combined movement dynamics in the study. If this is indeed the case, then the relative degree of difference in vigor between the fast and slow participants in a dyad should matter. How well did the interactive adaptation model explain variance in the dyads with relatively low delta-vigor (e.g., less than 0.2) vs relatively high delta-vigor?

      (2) The authors shared the results of one analysis of reaction time, showing that the reaction times of the slow partners and the fast partners did not differ during the initial passive block. Did the authors observe any changes in RT of either the slow or fast partner during the combined (primary task) blocks (KL, KH, etc.)? If the pairs of participants did indeed employ a form of interactive adaptation, then it is certainly plausible that this interaction would manifest in the initial movement planning phase (i.e., RT) in addition to the vigor and smoothness of the movements themselves.

    1. Reviewer #1 (Public review):

      Summary

      The strength of this manuscript lies in the behavior: mice use a continuous auditory background (pink vs brown noise) to set a rule for interpreting an identical single-whisker deflection (lick in W+ and withhold in W− contexts) while always licking to a brief 10 kHz tone. Behaviorally, animals acquire the rule and switch rapidly at block transitions and take a few trials to fully integrate the context cue. What's nice about this behavior is the separate auditory cue, which shows the animals remain engaged in the task, so it's not just that the mice check out (i.e., become disengaged in the W- context). The authors then use optical tools, combining cortex-wide optogenetic inactivation (using localized inhibition in a grid-like fashion) with widefield calcium imaging to map what regions are necessary for the task and what the local and global dynamics are. Classic whisker sensorimotor nodes (wS1/wS2/wM/ALM) behave as expected with silencing reducing whisker-evoked licking. Retrosplenial cortex (RSC) emerges as a somewhat unexpected, context-specific node: silencing RSC (and tjS1) increases licking selectively in W−, arguing that these regions contribute to applying the "don't lick" policy in that context. I say somewhat because work from the Delamater group points to this possibility, albeit in a Pavlovian conditioning task and without neural data. I would still recommend the authors of the current manuscript review that work to see whether there is a relevant framework or concept (Castiello, Zhang, Delamater, 'The retrosplenial cortex as a possible 'sensory integration' area: a neural network modeling approach of the differential outcomes effect of negative patterning', 2021, Neurobiology of Learning and Memory).

      The widefield imaging shows that RSC is the earliest dorsal cortical area to show W+ vs W− divergence after the whisker stimulus, preceding whisker motor cortex, consistent with RSC injecting context into the sensorimotor flow. A "Context Off" control (continuous white noise; same block structure) impairs context discrimination, indicating the continuous background is actually used to set the rule (an important addition!) Pre-stimulus functional-connectivity analyses suggest that there is some activity correlation that maps to the context presumably due to the continuous background auditory context. Simultaneous opto+imaging projects perturbations into a low-dimensional subspace that separates lick vs no-lick trajectories in an interpretable way.

      In my view, this is a clear, rigorous systems-level study that identifies an important role for RSC in context-dependent sensorimotor transformation, thereby expanding RSC's involvement beyond navigation/memory into active sensing and action selection. The behavioral paradigm is thoughtfully designed, the claims related to the imaging are well defended, and the causal mapping is strong. I have a few suggestions for clarity that may require a bit of data analysis. I also outline one key limitation that should be discussed, but is likely beyond the scope of this manuscript.

      Major strengths

      (1) The task is a major strength. It asks the animal to generate differential motor output to the same sensory stimulus, does so in a block-based manner, and the Context-Off condition convincingly shows that the continuous contextual cue is necessary. The auditory tone control ensures this is more than a 'motivational' context but is decision-related. In fact, the slightly higher bias to lick on the catch trials in the W+ context is further evidence for this.

      (2) The dorsal-cortex optogenetic grid avoids a 'look-where-we-expect' approach and lets RSC fall out as a key node. The authors then follow this up with pharmacology and latency analyses to rule out simple motor confounds. Overall, this is rigorous and thoughtfully done.

      (3) While the mesoscale imaging doesn't allow for cellular resolution, it allows for mapping of the flow of information. It places RSC early in the context-specific divergence after whisker onset, a valuable piece that complements prior work.

      (4) The baseline (pre-stim) functional connectivity and the opto-perturbation projections into a task subspace increase the significance of the work by moving beyond local correlates.

      Key limitation

      The current optogenetic window begins ~10 ms before the sensory cue and extends 1s after, which is ideal for perturbing within-trial dynamics but cannot isolate whether RSC is required to maintain the context-specific rule during the baseline. Because context is continuously available, it makes me wonder whether RSC is the locus maintaining or, instead, gating the context signal. The paper's results are fully consistent with that possibility, but causality in the pre-stimulus window remains an open question. (As a pointer for future work, pre-stimulus-only inactivation, silencing around block switches, or context-omission probe trials (e.g., removing the background noise unexpectedly within a W+ or W- context block), could help separate 'holding' from 'gating' of the rule. But I'm not suggesting these are needed for this manuscript, but would be interesting for future studies.)

    1. Reviewer #1 (Public review):

      The authors address a set of important and challenging questions at the interface of (developmental) neuroscience, genetics, and computation. They ask how complex neural circuits could emerge from compact genomic information, and they outline a bold vision in which this process might eventually be harnessed to design synthetic biological intelligence through genetic control of synaptogenesis. These are significant and stimulating ideas that merit rigorous theoretical and experimental exploration.

      However, the present work does not convincingly engage with these questions at a mechanistic level. Most of the circuit formation aspects appear to be adopted from prior models, and it is not clear how the main methodological modifications-introducing synaptic conductance and stochastic formalisms-provide new conceptual insight into genomic specification of neural circuitry. The manuscript does not include significant biological data or validation to support the proposed framework, and the results provided instead use artificial reinforcement learning benchmarks, which do not appear informative with respect to the biological claims.

      Overall, while the manuscript raises intriguing themes and ambitions, the proposed model is conceptually disconnected from the biological problem it purports to address. The strength of evidence does not support the strong interpretative or translational claims, and substantial rethinking of the modeling framework, in particular its validation strategy, would be required for the work to match the claims of our improved understanding of the genomic basis of neural circuit formation and our ability to engineer it.

    1. Reviewer #1 (Public review):

      Summary:

      The study examined the extent to which children's word recognition skill improves across early development, becoming faster, more accurate and less variable, and the extent to which word recognition skill is related to children's concurrent and later vocabulary knowledge.

      Strengths:

      The main strength of the study comes from the dataset, which recycles previously collected data from 24 studies to examine the development of word recognition skill using data from 1963 children. This maximizes the impact of previously collected data while also allowing the study to reliably ask big-picture questions on the development of word recognition skill and its relation to chronological age and vocabulary knowledge. Data analysis is rigorous, thought through and very clearly described. Data and code necessary to reproduce the manuscript are shared on the project's GitHub.

      Weaknesses:

      The limitations of the study are acknowledged to some extent, but need to be improved and ensured that they run throughout the manuscript. Thus, in the discussion, the authors note that the approach is observational and exploratory, and highlight for me a key alternative explanation of the findings, namely that faster children could be faster due to their larger vocabulary, rather than faster children learning more words. Indeed, the latter explanation for the relationship is called into question, given that growth in speed was not related to growth in vocabulary. Here, the authors note that the null result may be related to the fact that they do not sufficiently precise estimates of growth slopes, rather than taking the alternative explanation seriously that there may not be as causal a link between being a faster word learner and a better word learner (learn more words). This is especially since, but correct me if I'm wrong here, the current vocabulary size is not taken into consideration in the model examining vocabulary growth. Given the increasing number of studies showing that current vocabulary knowledge predicts vocabulary growth (Laing, Kalinowski et al, Siew & Vitevitch), one simple alternative explanation is that current vocabulary knowledge predicts both current word recognition skill and later vocabulary knowledge. Is there anything in the data speaking against this hypothesis?

      Equally, while the SEM examines vocabulary growth controlling for age, I wonder about the other way around. What would happen to the effect of age on word recognition skill (in the LME model, S8) if one were to add concurrent vocabulary size? So does chronological age explain word recognition skill or vocabulary knowledge? Right now, the manuscript describes this effect purely related to chronological age, but is it age per se or other cognitive abilities, including a key change across development, namely, vocabulary size? Thus, the presentation of the skill learning hypothesis suggests that age is a proxy for experience, while you actually have here a very nice proxy for experience in terms of children's vocabulary size.

      Critically, while the discussion is more nuanced, the way the abstract is concluded and the way the Introduction is phrased suggest that the study is able to answer a causal question, which, as the authors themselves note, is not possible. The abstract, for instance, states that word recognition becomes faster, more accurate and less variable...consistent with a process of skill learning. And also that this skill plays a role in supporting early language learning, which is very causal language. I don't think you can really claim that you are testing the two hypotheses you suggest here. The work is definitely embedded in the context of these hypotheses, but are you really able to test them? My worry is that while the discussion is more nuanced, the extent to which this study will then be cited down the line as showing that children learn more words down the line because they are faster at recognizing words, and anything that you can do to tamper with such interpretations would be good for the literature. For me, this should not just be relegated to the discussion but should be touched upon in the abstract and Introduction.

      Finally, it would help to talk more about the mechanisms at work in any relationship between word recognition and language learning. It seems to me that this would rely on some predictive processing framework, given the description on page 4, and it would be good to make this clear (faster and more accurately you can recognize a ball, better use this evidence to infer the speaker's intended meaning). Equally, when referring to word recognition, it would be good to clarify what this refers to - how well a child knows what a word refers to (and in the context of LWL, what it does not refer to) or how quickly it directs attention to what is referred to.

      With regards to the data, I wonder if there is a clustering of kids past 24 months that is happening here, looking at Figures 1 and 2, where it seems like there is less change past the 24-month point. Is there any way to look at whether the effect of age or vocabulary on word recognition is not linear but asymptotic?

    1. Reviewer #1 (Public review):

      Summary:

      Wu and colleagues aimed to explain previous findings that adolescents, compared to adults, show reduced cooperation following cooperative behaviour from a partner in several social scenarios. The authors analysed behavioural data from adolescents and adults performing a zero-sum Prisoner's Dilemma task and compared a range of social and non-social reinforcement learning models to identify potential algorithmic differences. Their findings suggest that adolescents' lower cooperation is best explained by a reduced learning rate for cooperative outcomes, rather than differences in prior expectations about the cooperativeness of a partner. The authors situate their results within the broader literature, proposing that adolescents' behaviour reflects a stronger preference for self-interest rather than a deficit in mentalising.

      Strengths:

      The work as a whole suggests that, in line with past work, adolescents prioritise value accumulation, and this can be, in part, explained by algorithmic differences in wegithed value learning. The authors situate their work very clearly in past literature, and make it obvious the gap they are testing and trying to explain. The work also includes social contexts which move the field beyond non-social value accumulation in adolescents. The authors compare a series of formal approaches that might explain the results and establish generative and model-comparison procedures to demonstrate the validity of their winning model and individual parameters. The writing was clear, and the presentation of the results was logical and well-structured.

      Weaknesses:

      I had some concerns about the methods used to fit and approximate parameters of interest. Namely, the use of maximum likelihood versus hierarchical methods to fit models on an individual level, which may reduce some of the outliers noted in the supplement, and also may improve model identifiability.

      There was also little discussion given the structure of the Prisoner's Dilemma, and the strategy of the game (that defection is always dominant), meaning that the preferences of the adolescents cannot necessarily be distinguished from the incentives of the game, i.e. they may seem less cooperative simply because they want to play the dominant strategy, rather than a lower preferences for cooperation if all else was the same.

      The authors have now addressed my comments and concerns in their revised version.

      Appraisal & Discussion:

      Overall, I believe this work has the potential to make a meaningful contribution to the field. Its impact would be strengthened by more rigorous modelling checks and fitting procedures, as well as by framing the findings in terms of the specific game-theoretic context, rather than general cooperation.

      Comments on revisions:

      Thank you to the authors for addressing my comments and concerns.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang and colleagues examine neural representations underlying abstract navigation in entorhinal cortex (EC) and hippocampus (HC) using fMRI. This paper replicates a previously identified hexagonal modulation of abstract navigation vectors in abstract space in EC in a novel task involving navigating in a conceptual Greeble space. In HC, the authors identify a three-fold signal of the navigation angle. They also use a novel analysis technique (spectral analysis) to look at spatial patterns in these two areas and identify phase coupling between HC and EC. Interestingly, the three-fold pattern identified in the hippocampus explains quirks in participants' behavior where navigation performance follows a three-fold periodicity. Finally, the authors propose a EC-HPC PhaseSync Model to understand how the EC and HC construct cognitive maps. The wide array and creativity of the techniques used is impressive but because of their unique nature, the paper would benefit from more details on how some of these techniques were implemented.

      Comments on revisions:

      Most of my concerns were adequately addressed, and I believe the paper is greatly improved. I have two more points. I noticed that the legend for Figure 4 still refers to some components of the previous figure version, this should be updated to reflect the current version of the figure. I also think the paper would benefit from more details regarding some of the analyses. Specifically, the phase-amplitude coupling analysis should have a section in the methods which should be sure to clarify how the BOLD signals were reconstructed.

    1. Reviewer #1 (Public review):

      Summary

      The authors propose a transformer-based model for prediction of condition- or tissue-specific alternative splicing and demonstrate its utility in design of RNAs with desired splicing outcomes, which is a novel application. The model is compared to relevant exising approaches (Pangolin and SpliceAI) and the authors clearly demonstrate its advantage. Overall, a compelling method that is well thought out and evaluated.

      Strengths:

      (1) The model is well thought out: rather than modeling a cassette exon using a single generic deep learning model as has been done e.g. in SpliceAI and related work, the authors propose a modular architecture that focuses on different regions around a potential exon skipping event, which enables the model to learn representations that are specific to those regions. Because each component in the model focuses on a fixed length short sequence segment, the model can learn position-specific features. Furthermore, the architecture of the model is designed to model alternative splicing events, whereas Pangolin and SpliceAI are focused on modeling individual splice junctions, which is an easier problem.

      (2) The model is evaluated in a rigorous way - it is compared to the most relevant state-of-the-art models, uses machine learning best practices, and an ablation study demonstrates the contribution of each component of the architecture.

      (3) Experimental work supports the computational predictions: Regulatory elements predicted by the model were experimentally verified; novel tissue-specific cassette exons were verified by LSV-seq.

      (4) The authors use their model for sequence design to optimize splicing outcome, which is a novel application.

      Weaknesses:

      None noted.

    1. Joint Public Review:

      Summary:

      This is an excellent, timely study investigating and characterizing the underlying neural activity that generates the neuroendocrine GnRH and LH surges that are responsible for triggering ovulation. Abundant evidence accumulated over the past 20 years implicated the population of kisspeptin neurons in the hypothalamic RP3V region (also referred to as the POA or AVPV/PeN kisspeptin neurons) as being involved in driving the GnRH surge in response to elevated estradiol (E2), also known as the "estrogen positive feedback". However, while former studies used Cfos coexpression as a marker of RP3V kisspeptin neuron activation at specific times and found this correlates with the timing of the LH surge, detailed examination of the live in vivo activity of these neurons before, during, and after the LH surge remained elusive due to technical challenges.

      Here, Zhou and colleagues use fiber photometry to measure the long-term synchronous activity of RP3V kisspeptin neurons across different stages of the mouse estrous cycle, including on proestrus when the LH surge occurs, as well as in a well-established OVX+E2 mouse model of the LH surge.

      The authors report that RP3V kisspeptin neuron activity is low on estrous and diestrus, but increases on proestrus several hours before the late afternoon LH surge, mirroring prior reports of rising GnRH neuron activity in proestrus female mice. The measured increase in RP3V kisspeptin activation is long, spanning ~13 hours in proestrus females and extending well beyond the end of the LH secretion, and is shown by the authors to be E2 dependent.

      For this work, Kiss-Cre female mice received a Cre-dependent AAV injection, containing GCaMP6, to measure the neuronal activation of RP3V Kiss1 cells. Females exhibited periods of increased neuronal activation on the day of proestrus, beginning several hours prior to the LH surge and lasting for about 12 hours. Though oscillations in the pattern of GCaMP fluorescence were occasionally observed throughout the ovarian cycle, the frequency, duration, and amplitude of these oscillations were significantly higher on the day of proestrus. This increase in RP3V Kiss1 neuronal activation that precedes the increase in LH supports the hypothesis that these neurons are critical in regulating the LH surge. The authors compare this data to new data showing a similar increased activation pattern in GnRH neurons just prior to the LH surge, further supporting the hypothesis that RP3V Kiss1 cell activation causes the release of kisspeptin to stimulate GnRH neurons and produce the LH surge.

      Strengths:

      This study provides compelling data demonstrating that RP3V kisspeptin neuronal activity changes throughout the ovarian cycle, likely in response to changes in estradiol levels, and that neuronal activation increases on the day of the LH surge.

      The observed increase in RP3V kisspeptin neuronal activation precedes the LH surge, which lends support to the hypothesis that these neurons play a role in regulating the estradiol-induced LH surge. Continuing to examine the complexities of the LH surge and the neuronal populations involved, as done in this study, is critical for developing therapeutic treatments for women's reproductive disorders.

      This innovative study uses a within-subject design to examine neuronal activation in vivo across multiple hormone milieus, providing a thorough examination of the changes in activation of these neurons. The variability in neuronal activity surrounding the LH surge across ovarian cycles in the same animals is interesting and could not be achieved without this within-subjects design. The inclusion and comparison of ovary-intact females and OVX+E2 females is valuable to help test mechanisms under these two valuable LH surge conditions, and allows for further future studies to tease apart minor differences in the LH surge pattern between these 2 conditions.

      This study provides an excellent experimental setup able to monitor the daily activity of preoptic kisspeptin neurons in freely moving female mice. It will be a valuable tool to assess the putative role of these kisspeptin neurons in various aspects of altered female fertility (aging, pathologies...). This approach also offers novel and useful insights into the impact of E2 and circadian cues on the electrical activity of RP3V kisspeptin neurons.

      An intriguing cyclical oscillation in kisspeptin neural activity every 90 minutes exists, which may offer critical insight into how the RP3V kisspeptin system operates. Interestingly, there was also variability in the onset and duration of RP3V Kisspeptin neuron activity between and within mice in naturally cycling females. Preoptic kisspeptin neurons show an increased activity around the light/dark transition only on the day of proestrus, and this is associated with an increase in LH secretion. An original finding is the observation that the peak of kisspeptin neuron activation continues a few hours past the peak of LH, and the authors hypothesize that this prolonged activity could drive female sexual behaviors, which usually appear after the LH surge.

      The authors demonstrated that ovariectomy resulted in very little neuronal activity in RP3V kisspeptin neurons. When these ovarietomized females were treated with estradiol benzoate (EB) and an LH surge was induced, there was an increase in RP3V kisspeptin neuronal activation, as was seen during proestrus. However, the magnitude of the change in activity was greater during proestrus than during the EB-induced LH surge. Interestingly, the authors noted a consistent peak in activity about 90 minutes prior to lights out on each day of the ovarian cycle and during EB treatment, but not in ovariectomized females. The functional purpose of this consistent neuronal activity at this time remains to be determined.

      Though not part of this study, the comparison of neuronal activation of GnRH neurons during the LH surge to the current data was convincing, demonstrating a similar pattern of increased activation that precedes the LH surge.

      In summary, the study is well-designed, uses proper controls and analyses, has robust data, and the paper is nicely organized and written. The data from these experiments is compelling, and the authors' claims and conclusions are nicely supported and justified by the data. The data support the hypothesis in the field that these RP3V neurons regulate the LH surge. Overall, these findings are important and novel, and lend valuable insight into the underlying neural mechanisms for neuroendocrine control of ovulation.

      Weaknesses:

      (1) LH levels were not measured in many mice or in robust temporal detail, such as every 30 or 60 min, to allow a more detailed comparison between the fine-scale timing of RP3V neuron activation with onset and timing of LH surge dynamics.

      (2) The authors report that the peak LH value occurred 3.5 hours after the first RP3V kisspeptin neuron oscillation. However, it is likely, and indeed evident from the 2 example LH patterns shown in Figures 3A-B, that LH values start to increase several hours before the peak LH. This earlier rise in LH levels ("onset" of the surge) occurs much closer in time to the first RP3V kisspeptin neuron oscillatory activation, and as such, the ensuing LH secretion may not be as delayed as the authors suggest.

      (3) The authors nicely show that there is some variation (~2 hours) in the peak of the first oscillation in proestrus females. Was this same variability present in OVX+E2 females, or was the variability smaller or absent in OVX+E2 versus proestrus? It is possible that the variability in proestrus mice is due to variability in the timing and magnitude of rising E2 levels, which would, in theory, be more tightly controlled and similar among mice in the OVX+E2 model. If so, the OVX+E2 mice may have less variability between mice for the onset of RP3V kisspeptin activity.

      (4) One concern regarding this study is the lack of data showing the specificity of the AAV and the GCaMP6s signals. There are no data showing that GCaMP6s is limited to the RP3V and is not expressed in other Kiss1 populations in the brain. Given that 2ul of the AAV was injected, which seems like a lot considering it was close to the ventricle, it is important to show that the signal and measured activity are specific to the RP3V region. Though the authors discuss potential reasons for the low co-expression of GCaMP6 and kisspeptin immunoreactivity, it does raise some concern regarding the interpretation of these results. The low co-expression makes it difficult to confirm the Kiss1 cell-specificity of the Cre-dependent AAV injections. In addition, if GFP (GCaMP6s) and kisspeptin protein co-localization is low, it is possible that the activation of these neurons does not coincide with changes in kisspeptin or that these neurons are even expressing Kiss1 or kisspeptin at the time of activation. It is important to remember that the study measures activation of the kisspeptin neuron, and it does not reveal anything specific about the activity of the kisspeptin protein.

      (5) One additional minor concern is that LH levels were not measured in the ovariectomized females during the expected time of the LH surge. The authors suggest that the lower magnitude of activation during the LH surge in these females, in comparison to proestrus females, may be the result of lower LH levels. It's hard to interpret the difference in magnitude of neuronal activation between EB-treated and proestrus females without knowing LH levels. In addition, it's possible that an LH surge did not occur in all EB-treated females, and thus, having LH levels would confirm the success of the EB treatment.

      (6) This kisspeptin neuron peak activity is abolished in ovariectomized mice, and estradiol replacement restored this activity, but only partially. Circulating levels of estradiol were not measured in these different setups, but the authors hypothesize that the lack of full restoration may be due to the absence of other ovarian signals, possibly progesterone.

      (7) Recordings in several mice show inter- and intra-variability in the time of peak onset. It is not shown whether this variability is associated with a similar variability in the timing of the LH surge onset in the recorded mice. The authors hypothesized that this variability indicates a poor involvement of the circadian input. However, no experiments were done to investigate the role of the (vasopressinergic-driven) circadian input on the kisspeptin neuron activation at the light/dark transition. Thus, we suggest that the authors be more tentative about this hypothesis.

    1. Reviewer #1 (Public review):

      This study aims to identify the proteins that compose the electrical synapse, which are much less understood than those of the chemical synapse. Identifying these proteins is important to understand how synaptogenesis and conductance are regulated in these synapses.

      Using a proteomics approach, the authors identified more than 50 new proteins and used immunoprecipitation and immunostaining to validate their interaction of localization. One new protein, a scaffolding protein (Sipa1l3), shows particularly strong evidence of being an integral component of the electrical synapse. The function of Sipa1l3 remains to be determined.

      Another strength is the use of two different model organisms (zebrafish and mice) to determine which components are conserved across species. This approach also expands the utility of this work to benefit researchers working with both species.

      The methodology is robust and there is compelling evidence supporting the findings.

      Comments on revisions:

      I thank the authors for responding to the comments. No further recommendations.

    1. Reviewer #1 (Public review):

      Summary:

      The authors note that there is a large corpus of research establishing the importance of LC-NE projections to medial prefrontal cortex (mPFC) of rats and mice in attentional set or 'rule' shifting behaviours. However, this is complex behavior and the authors were attempting to gain an understanding of how locus coeruleus modulation of the mPFC contributes to set shifting.

      The authors replicated the ED-shift impairment following NE denervation of mPFC by chemogenetic inhibition of the LC. They further showed that LC inhibition changed the way neurons in mPFC responded to the cues, with a greater proportion of individual neurons responsive to 'switching', but the individual neurons also had broader tuning, responding to other aspects of the task (i.e., response choice and response history). The population dynamics was also changed by LC inhibition, with reduced separation of population vectors between early-post-switch trials, when responding was at chance, and later trials when responding was correct. This was what they set out to demonstrate and so one can conclude they achieved their aims.

      The authors concluded that LC inhibition disrupted mPFC "encoding capacity for switching" and suggest that this "underlie[s] the behavioral deficits."

      Strengths:

      The principal strength is combining inactivation of LC with calcium imaging in mPFC. This enabled detailed consideration of the change in behavior (i.e., defining epochs of learning, with an 'early phase' when responding is at chance being compared to a 'later phase' when the behavioral switch has occurred) and how these are reflected in neuronal activity in the mPFC, with and without LC-NE input.

      Comments on revised version:

      In their response to reviewers, the authors say "We report p values using 2 decimal points and standard language as suggested by this reviewer". However, no changes were made in the manuscript: for example, "P = 4.2e-3" rather than "p = 0.004".

      In their response to the reviewers, they wrote: "Upon closer examination of the behavioral data, we exclude several sessions where more trials were taken in IDS than in EDS." If those sessions in which EDSIDS. Most problematic is the fact that the manuscript now reads "Importantly, control mice (pooled from Fig. 1e, 1h, Supp. Fig. 1a, 1b) took more trials to complete EDS than IDS (Trials to criterion: IDS vs. EDS, 10 {plus minus} 1 trials vs. 16 {plus minus} 1 trials, P < 1e-3, Supp. Fig. 1c), further supporting the validity of attentional switching (as in Fig. 1c)" without mentioning that data has been excluded.

    1. Reviewer #1 (Public review):

      Summary:

      The paper uses rigorous methods to determine phase dynamics from human cortical stereotactic EEGs. It finds that the power of the phase is higher at the lowest spatial phase. The application to data illustrates the solidity of the method and their potential for discovery.

      Comments on revised submission:

      The authors have provided responses to the previous recommendations.