15,493 Matching Annotations
  1. Nov 2024
    1. Reviewer #2 (Public Review):

      Summary:

      This work introduces a new method of depleting the ribosomal reads from the single-cell RNA sequencing library prepared with one of the prokaryotic scRNA-seq techniques, PETRI-seq. The advance is very useful since it allows broader access to the technology by lowering the cost of sequencing. It also allows more transcript recovery with fewer sequencing reads. The authors demonstrate the utility and performance of the method for three different model species and find a subpopulation of cells in the E.coli biofilm that express a protein, PdeI, which causes elevated c-di-GMP levels. These cells were shown to be in a state that promotes persister formation in response to ampicillin treatment.

      Strengths:

      The introduced rRNA depletion method is highly efficient, with the depletion for E.coli resulting in over 90% of reads containing mRNA. The method is ready to use with existing PETRI-seq libraries which is a large advantage, given that no other rRNA depletion methods were published for split-pool bacterial scRNA-seq methods. Therefore, the value of the method for the field is high. There is also evidence that a small number of cells at the bottom of a static biofilm express PdeI which is causing the elevated c-di-GMP levels that are associated with persister formation. Given that PdeI is a phosphodiesterase, which is supposed to promote hydrolysis of c-di-GMP, this finding is unexpected.

      Weaknesses:

      With the descriptions and writing of the manuscript, it is hard to place the findings about the PdeI into existing context (i.e. it is well known that c-di-GMP is involved in biofilm development and is heterogeneously distributed in several species' biofilms; it is also known that E.coli diesterases regulate this second messenger, i.e. https://journals.asm.org/doi/full/10.1128/jb.00604-15).<br /> There is also no explanation for the apparently contradictory upregulation of c-di-GMP in cells expressing higher PdeI levels. Perhaps the examination of the rest of the genes in cluster 2 of the biofilm sample could be useful to explain the observed association.

    2. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Yan and colleagues introduce a modification to the previously published PETRI-seq bacterial single-cell protocol to include a ribosomal depletion step based on a DNA probe set that selectively hybridizes with ribosome-derived (rRNA) cDNA fragments. They show that their modification of the PETRI-seq protocol increases the fraction of informative non-rRNA reads from ~4-10% to 54-92%. The authors apply their protocol to investigating heterogeneity in a biofilm model of E. coli, and convincingly show how their technology can detect minority subpopulations within a complex community.

      Strengths:

      The method the authors propose is a straightforward and inexpensive modification of an established split-pool single-cell RNA-seq protocol that greatly increases its utility, and should be of interest to a wide community working in the field of bacterial single-cell RNA-seq.

      Weaknesses:

      The manuscript is written in a very compressed style and many technical details of the evaluations conducted are unclear and processed data has not been made available for evaluation, limiting the ability of the reader to independently judge the merits of the method.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors address whether the dorsal nucleus of the inferior colliculus (DCIC) in mice encodes sound source location within the front horizontal plane (i.e., azimuth). They do this using volumetric two-photon Ca2+ imaging and high-density silicon probes (Neuropixels) to collect single-unit data. Such recordings are beneficial because they allow large populations of simultaneous neural data to be collected. Their main results and the claims about those results are the following:

      (1) DCIC single-unit responses have high trial-to-trial variability (i.e., neural noise);<br /> (2) approximately 32% to 40% of DCIC single units have responses that are sensitive to sound source azimuth;<br /> (3) single-trial population responses (i.e., the joint response across all sampled single units in an animal) encode sound source azimuth "effectively" (as stated in the title) in that localization decoding error matches average mouse discrimination thresholds;<br /> (4) DCIC can encode sound source azimuth in a similar format to that in the central nucleus of the inferior colliculus (as stated in the Abstract);<br /> (5) evidence of noise correlation between pairs of neurons exists;<br /> and 6) noise correlations between responses of neurons help reduce population decoding error.<br /> While simultaneous recordings are not necessary to demonstrate results #1, #2, and #4, they are necessary to demonstrate results #3, #5, and #6.

      Strengths:

      - Important research question to all researchers interested in sensory coding in the nervous system.<br /> - State-of-the-art data collection: volumetric two-photon Ca2+ imaging and extracellular recording using high-density probes. Large neuronal data sets.<br /> - Confirmation of imaging results (lower temporal resolution) with more traditional microelectrode results (higher temporal resolution).<br /> - Clear and appropriate explanation of surgical and electrophysiological methods. I cannot comment on the appropriateness of the imaging methods.

      Strength of evidence for the claims of the study:

      (1) DCIC single-unit responses have high trial-to-trial variability -<br /> The authors' data clearly shows this.

      (2) Approximately 32% to 40% of DCIC single units have responses that are sensitive to sound source azimuth -<br /> The sensitivity of each neuron's response to sound source azimuth was tested with a Kruskal-Wallis test, which is appropriate since response distributions were not normal. Using this statistical test, only 8% of neurons (median for imaging data) were found to be sensitive to azimuth, and the authors noted this was not significantly different than the false positive rate. The Kruskal-Wallis test was not reported for electrophysiological data. The authors suggested that low numbers of azimuth-sensitive units resulting from the statistical analysis may be due to the combination of high neural noise and a relatively low number of trials, which would reduce the statistical power of the test. This is likely true and highlights a weakness in the experimental design (i.e., a relatively small number of trials). The authors went on to perform a second test of azimuth sensitivity-a chi-squared test-and found 32% (imaging) and 40% (e-phys) of single units to have statistically significant sensitivity. However, the use of a chi-squared test is questionable because it is meant to be used between two categorical variables, and neural response had to be binned before applying the test.

      (3) Single-trial population responses encode sound source azimuth "effectively" in that localization decoding error matches average mouse discrimination thresholds -<br /> If only one neuron in a population had responses that were sensitive to azimuth, we would expect that decoding azimuth from observation of that one neuron's response would perform better than chance. By observing the responses of more than one neuron (if more than one were sensitive to azimuth), we would expect performance to increase. The authors found that decoding from the whole population response was no better than chance. They argue (reasonably) that this is because of overfitting of the decoder model-too few trials were used to fit too many parameters-and provide evidence from decoding combined with principal components analysis which suggests that overfitting is occurring. What is troubling is the performance of the decoder when using only a handful of "top-ranked" neurons (in terms of azimuth sensitivity) (Fig. 4F and G). Decoder performance seems to increase when going from one to two neurons, then decreases when going from two to three neurons, and doesn't get much better for more neurons than for one neuron alone. It seems likely there is more information about azimuth in the population response, but decoder performance is not able to capture it because spike count distributions in the decoder model are not being accurately estimated due to too few stimulus trials (14, on average). In other words, it seems likely that decoder performance is underestimating the ability of the DCIC population to encode sound source azimuth.

      To get a sense of how effective a neural population is at coding a particular stimulus parameter, it is useful to compare population decoder performance to psychophysical performance. Unfortunately, mouse behavioral localization data do not exist. Instead, the authors compare decoder error to mouse left-right discrimination thresholds published previously by a different lab. However, this comparison is inappropriate because the decoder and the mice were performing different perceptual tasks. The decoder is classifying sound sources to 1 of 13 locations from left to right, whereas the mice were discriminating between left or right sources centered around zero degrees. The errors in these two tasks represent different things. The two data sets may potentially be more accurately compared by extracting information from the confusion matrices of population decoder performance. For example, when the stimulus was at -30 deg, how often did the decoder classify the stimulus to a lefthand azimuth? Likewise, when the stimulus was +30 deg, how often did the decoder classify the stimulus to a righthand azimuth?

      (4) DCIC can encode sound source azimuth in a similar format to that in the central nucleus of the inferior colliculus -<br /> It is unclear what exactly the authors mean by this statement in the Abstract. There are major differences in the encoding of azimuth between the two neighboring brain areas: a large majority of neurons in the CNIC are sensitive to azimuth (and strongly so), whereas the present study shows a minority of azimuth-sensitive neurons in the DCIC. Furthermore, CNIC neurons fire reliably to sound stimuli (low neural noise), whereas the present study shows that DCIC neurons fire more erratically (high neural noise).

      (5) Evidence of noise correlation between pairs of neurons exists -<br /> The authors' data and analyses seem appropriate and sufficient to justify this claim.

      (6) Noise correlations between responses of neurons help reduce population decoding error -<br /> The authors show convincing analysis that performance of their decoder increased when simultaneously measured responses were tested (which include noise correlation) than when scrambled-trial responses were tested (eliminating noise correlation). This makes it seem likely that noise correlation in the responses improved decoder performance. The authors mention that the naïve Bayesian classifier was used as their decoder for computational efficiency, presumably because it assumes no noise correlation and, therefore, assumes responses of individual neurons are independent of each other across trials to the same stimulus. The use of a decoder that assumes independence seems key here in testing the hypothesis that noise correlation contains information about sound source azimuth. The logic of using this decoder could be more clearly spelled out to the reader. For example, if the null hypothesis is that noise correlations do not carry azimuth information, then a decoder that assumes independence should perform the same whether population responses are simultaneous or scrambled. The authors' analysis showing a difference in performance between these two cases provides evidence against this null hypothesis.

      Minor weakness:<br /> - Most studies of neural encoding of sound source azimuth are done in a noise-free environment, but the experimental setup in the present study had substantial background noise. This complicates comparison of the azimuth tuning results in this study to those of other studies. One is left wondering if azimuth sensitivity would have been greater in the absence of background noise, particularly for the imaging data where the signal was only about 12 dB above the noise.

    2. Reviewer #2 (Public review):

      In the present study, Boffi et al. investigate the manner in which the dorsal cortex of the of the inferior colliculus (DCIC), an auditory midbrain area, encodes sound location azimuth in awake, passively listening mice. By employing volumetric calcium imaging (scanned temporal focusing or s-TeFo), complemented with high-density electrode electrophysiological recordings (neuropixels probes), they show that sound-evoked responses are exquisitely noisy, with only a small portion of neurons (units) exhibiting spatial sensitivity. Nevertheless, a naïve Bayesian classifier was able to predict the presented azimuth based on the responses from small populations of these spatially sensitive units. A portion of the spatial information was provided by correlated trial-to-trial response variability between individual units (noise correlations). The study presents a novel characterization of spatial auditory coding in a non-canonical structure, representing a noteworthy contribution specifically to the auditory field and generally to systems neuroscience, due to its implementation of state-of-the-art techniques in an experimentally challenging brain region. However, nuances in the calcium imaging dataset and the naïve Bayesian classifier warrant caution when interpreting some of the results.

      Strengths:

      The primary strength of the study lies in its methodological achievements, which allowed the authors to collect a comprehensive and novel dataset. While the DCIC is a dorsal structure, it extends up to a millimetre in depth, making it optically challenging to access in its entirety. It is also more highly myelinated and vascularised compared to e.g., the cerebral cortex, compounding the problem. The authors successfully overcame these challenges and present an impressive volumetric calcium imaging dataset. Furthermore, they corroborated this dataset with electrophysiological recordings, which produced overlapping results. This methodological combination ameliorates the natural concerns that arise from inferring neuronal activity from calcium signals alone, which are in essence an indirect measurement thereof.

      Another strength of the study is its interdisciplinary relevance. For the auditory field, it represents a significant contribution to the question of how auditory space is represented in the mammalian brain. "Space" per se is not mapped onto the basilar membrane of the cochlea and must be computed entirely within the brain. For azimuth, this requires the comparison between miniscule differences between the timing and intensity of sounds arriving at each ear. It is now generally thought that azimuth is initially encoded in two, opposing hemispheric channels, but the extent to which this initial arrangement is maintained throughout the auditory system remains an open question. The authors observe only a slight contralateral bias in their data, suggesting that sound source azimuth in the DCIC is encoded in a more nuanced manner compared to earlier processing stages of the auditory hindbrain. This is interesting because it is also known to be an auditory structure to receive more descending inputs from the cortex.

      Systems neuroscience continues to strive for the perfection of imaging novel, less accessible brain regions. Volumetric calcium imaging is a promising emerging technique, allowing the simultaneous measurement of large populations of neurons in three dimensions. But this necessitates corroboration with other methods, such as electrophysiological recordings, which the authors achieve. The dataset moreover highlights the distinctive characteristics of neuronal auditory representations in the brain. Its signals can be exceptionally sparse and noisy, which provide an additional layer of complexity in the processing and analysis of such datasets. This will undoubtedly be useful for future studies of other less accessible structures with sparse responsiveness.

      Weaknesses:

      Although the primary finding that small populations of neurons carry enough spatial information for a naïve Bayesian classifier to reasonably decode the presented stimulus is not called into question, certain idiosyncrasies, in particular the calcium imaging dataset and model, complicate specific interpretations of the model output, and the readership is urged to interpret these aspects of the study's conclusions with caution.

      I remain in favour of volumetric calcium imaging as a suitable technique for the study, but the presently constrained spatial resolution is insufficient to unequivocally identify regions of interest as cell bodies (and are instead referred to as "units" akin to those of electrophysiological recordings). It remains possible that the imaging set is inadvertently influenced by non-somatic structures (including neuropil), which could report neuronal activity differently than cell bodies. Due to the lack of a comprehensive ground-truth comparison in this regard (which to my knowledge is impossible to achieve with current technology), it is difficult to imagine how many informative such units might have been missed because their signals were influenced by spurious, non-somatic signals, which could have subsequently misled the models. The authors reference the original Nature Methods article (Prevedel et al., 2016) throughout the manuscript, presumably in order to avoid having to repeat previously published experimental metrics. But the DCIC is neither the cortex nor hippocampus (for which the method was originally developed) and may not have the same light scattering properties (not to mention neuronal noise levels). Although the corroborative electrophysiology data largely alleviates these concerns for this particular study, the readership should be cognisant of such caveats, in particular those who are interested in implementing the technique for their own research.

      A related technical limitation of the calcium imaging dataset is the relatively low number of trials (14) given the inherently high level of noise (both neuronal and imaging). Volumetric calcium imaging, while offering a uniquely expansive field of view, requires relatively high average excitation laser power (in this case nearly 200 mW), a level of exposure the authors may have wanted to minimise by maintaining a low number of repetitions, but I yield to them to explain. Calcium imaging is also inherently slow, requiring relatively long inter-stimulus intervals (in this case 5 s). This unfortunately renders any model designed to predict a stimulus (in this case sound azimuth) from particularly noisy population neuronal data like these as highly prone to overfitting, to which the authors correctly admit after a model trained on the entire raw dataset failed to perform significantly above chance level. This prompted them to feed the model only with data from neurons with the highest spatial sensitivity. This ultimately produced reasonable performance (and was implemented throughout the rest of the study), but it remains possible that if the model was fed with more repetitions of imaging data, its performance would have been more stable across the number of units used to train it. (All models trained with imaging data eventually failed to converge.) However, I also see these limitations as an opportunity to improve the technology further, which I reiterate will be generally important for volume imaging of other sparse or noisy calcium signals in the brain.

      Transitioning to the naïve Bayesian classifier itself, I first openly ask the authors to justify their choice of this specific model. There are countless types of classifiers for these data, each with their own pros and cons. Did they actually try other models (such as support vector machines), which ultimately failed? If so, these negative results (even if mentioned en passant) would be extremely valuable to the community, in my view. I ask this specifically because different methods assume correspondingly different statistical properties of the input data, and to my knowledge naïve Bayesian classifiers assume that predictors (neuronal responses) are assumed to be independent within a class (azimuth). As the authors show that noise correlations are informative in predicting azimuth, I wonder why they chose a model that doesn't take advantage of these statistical regularities. It could be because of technical considerations (they mention computing efficiency), but I am left generally uncertain about the specific logic that was used to guide the authors through their analytical journey.

      In a revised version of the manuscript, the authors indeed justify their choice of the naïve Bayesian classifier as a conservative approach (not taking into account noise correlations), which could only improve with other models (that do). They even tested various other commonly used models, such as support vector machines and k-nearest neighbours, to name a few, but do not report these efforts in the main manuscript. Interestingly, these models, which I supposed would perform better in fact did not overall - a finding that I have no way of interpreting but nevertheless find interesting.

      That aside, there remain other peculiarities in model performance that warrant further investigation. For example, what spurious features (or lack of informative features) in these additional units prevented the models of imaging data from converging? In an orthogonal question, did the most spatially sensitive units share any detectable tuning features? A different model trained with electrophysiology data in contrast did not collapse in the range of top-ranked units plotted. Did this model collapse at some point after adding enough units, and how well did that correlate with the model for the imaging data? How well did the form (and diversity) of the spatial tuning functions as recorded with electrophysiology resemble their calcium imaging counterparts? These fundamental questions could be addressed with more basic, but transparent analyses of the data (e.g., the diversity of spatial tuning functions of their recorded units across the population). Even if the model extracts features that are not obvious to the human eye in traditional visualisations, I would still find this interesting.

      Although these questions were not specifically addressed in the revised version of the manuscript, I also admit that I did not indent do assert that these should necessarily fall within the scope of the present study. I rather posed them as hypothetical directions one could pursue in future studies. Finally, further concerns I had with statements regarding the physiological meaning of the findings have been ameliorated by nicely modified statements, thus bringing transparency to the readership, which I appreciate.

      In summary, the present study represents a significant body of work that contributes substantially to the field of spatial auditory coding and systems neuroscience. However, limitations of the imaging dataset and model as applied in the study muddles concrete conclusions about how the DCIC precisely encodes sound source azimuth and even more so to sound localisation in a behaving animal. Nevertheless, it presents a novel and unique dataset, which, regardless of secondary interpretation, corroborates the general notion that auditory space is encoded in an extraordinarily complex manner in the mammalian brain.

    3. Reviewer #3 (Public review):

      Summary:

      Boffi and colleagues sought to quantify the single-trial, azimuthal information in the dorsal cortex of the inferior colliculus (DCIC), a relatively understudied subnucleus of the auditory midbrain. They accomplished this by using two complementary recording methods while mice passively listened to sounds at different locations: calcium imaging that recorded large neuronal populations but with poor temporal precision and multi-contact electrode arrays that recorded smaller neuronal populations with exact temporal precision. DCIC neurons respond variably, with inconsistent activity to sound onset and complex azimuthal tuning. Some of this variably was explained by ongoing head movements. The authors used a naïve Bayes decoder to probe the azimuthal information contained in the response of DCIC neurons on single trials. The decoder failed to classify sound location better than chance when using the raw population responses but performed significantly better than chance when using the top principal components of the population. Units with the most azimuthal tuning were distributed throughout the DCIC, possessed contralateral bias, and positively correlated responses. Interestingly, inter-trial shuffling decreased decoding performance, indicating that noise correlations contributed to decoder performance. Overall, Boffi and colleagues, quantified the azimuthal information available in the DCIC while mice passively listened to sounds, a first step in evaluating if and how the DCIC could contribute to sound localization.

      Strengths:

      The authors should be commended for collection of this dataset. When done in isolation (which is typical), calcium imaging and linear array recordings have intrinsic weaknesses. However, those weaknesses are alleviated when done in conjunction - especially when the data is consistent. This data set is extremely rich and will be of use for those interested in auditory midbrain responses to variable sound locations, correlations with head movements, and neural coding.

      The DCIC neural responses are complex with variable responses to sound onset, complex azimuthal tuning and large inter-sound interval responses. Nonetheless, the authors do a decent job in wrangling these complex responses: finding non-canonical ways of determining dependence on azimuth and using interpretable decoders to extract information from the population.

      Weaknesses:

      The decoding results are a bit strange, likely because the population response is quite noisy on any given trial. Raw population responses failed to provide sufficient information concerning azimuth for significant decoding. Importantly, the decoder performed better than chance when certain principal components or top ranked units contributed but did not saturate with the addition of components or top ranked units. So, although there is azimuthal information in the recorded DCIC populations - azimuthal information appears somewhat difficult to extract.

      Although necessary given the challenges associated with sampling many conditions with technically difficult recording methods, the limited number of stimulus repeats precludes interpretable characterization of the heterogeneity across the population. Nevertheless, the dataset is public so those interested can explore the diversity of the responses.

      The observations from Boffi and colleagues raises the question: what drives neurons in the DCIC to respond? Sound azimuth appears to be a small aspect of the DCIC response. For example, the first 20 principal components which explain roughly 80% of the response variance are insufficient input for the decoder to predict sound azimuth above chance. Furthermore, snout and ear movements correlate with the population response in the DCIC (the ear movements are particularly peculiar given they seem to predict sound presentation). Other movements may be of particular interest to control for (e.g. eye movements are known to interact with IC responses in the primate). These observations, along with reported variance to sound onsets and inter-sound intervals, question the impact of azimuthal information emerging from DCIC responses. This is certainly out of scope for any one singular study to answer, but, hopefully, future work will elucidate the dominant signals in the DCIC population. It may be intuitive that engagement in a sound localization task may push azimuthal signals to the forefront of DCIC response, but azimuthal information could also easily be overtaken by other signals (e.g. movement, learning).

      Boffi and colleagues set out to parse the azimuthal information available in the DCIC on a single trial. They largely accomplish this goal and are able to extract this information when allowing the units that contain more information about sound location to contribute to their decoding (e.g., through PCA or decoding on their activity specifically). Interestingly, they also found that positive noise correlations between units with similar azimuthal preferences facilitate this decoding - which is unusual given that this is typically thought to limit information. The dataset will be of value to those interested in the DCIC and to anyone interested in the role of noise correlations in population coding. Although this work is first step into parsing the information available in the DCIC, it remains difficult to interpret if/how this azimuthal information is used in localization behaviors of engaged mice.

    1. Reviewer #1 (Public review):

      This study by Alejandro Rosell et al. reveals the immunoregulatory role of the RAS-p110α pathway in macrophages, specifically in regulating monocyte extravasation and lysosomal digestion during inflammation. Disrupting this pathway, through genetic tools or pharmacological intervention in mice, impairs the inflammatory response, leading to delayed resolution and more severe acute inflammation. The authors suggest that activating p110α with small molecules could be a potential therapeutic strategy for treating chronic inflammation. These findings provide important insights into the mechanisms by which p110α regulates macrophage function and the overall inflammatory response.

      The updates made by the authors in the revised version have addressed the main points raised in the initial review, further improving the strength of their findings.

    2. Reviewer #2 (Public review):

      Summary:

      Cell intrinsic signaling pathways controlling the function of macrophages in inflammatory processes, including in response to infection, injury or in the resolution of inflammation are incompletely understood. In this study, Rosell et al. investigate the contribution of RAS-p110α signaling to macrophage activity. p110α is a ubiquitously expressed catalytic subunit of PI3K with previously described roles in multiple biological processes including in epithelial cell growth and survival, and carcinogenesis. While previous studies have already suggested a role for RAS-p110α signaling in macrophage function, the cell intrinsic impact of disrupting the interaction between RAS and p110α in this central myeloid cell subset is not known.

      Strengths:

      Exploiting a sound previously described genetically engineered mouse model that allows tamoxifen-inducible disruption of the RAS-p110α pathway and using different readouts of macrophage activity in vitro and in vivo, the authors provide data consistent with their conclusion that alteration in RAS-p110α signaling impairs various but selective aspects of macrophage function in a cell-intrinsic manner.

      Weaknesses:

      My main concern is that for various readouts, the difference between wild-type and mutant macrophages in vitro or between wild-type and Pik3caRBD mice in vivo is modest, even if statistically significant. To further substantiate the extent of macrophage function alteration upon disruption of RAS-p110α signaling and its impact on the initiation and resolution of inflammatory responses, the manuscript would benefit from a more extensive assessment of macrophage activity and inflammatory responses in vivo.

      In the in vivo model, all cells have disrupted RAS-p100α signaling, not only macrophages. Given that other myeloid cells besides macrophages contribute to the orchestration of inflammatory responses, it remains unclear whether the phenotype described in vivo results from impaired RAS-p100α signaling within macrophages or from defects in other haematopoietic cells such as neutrophils, dendritic cells, etc.

      Inclusion of information on the absolute number of macrophages, and total immune cells (e.g. for the spleen analysis) would help determine if the reduced frequency of macrophages represents an actual difference in their total number or rather reflects a relative decrease due to an increase in the number of other/s immune cell/s.

    1. Reviewer #1 (Public review):

      Summary:

      Tian et al. describes how TIPE regulates melanoma progression, stemness, and glycolysis. The authors link high TIPE expression to increased melanoma cell proliferation and tumor growth. TIPE causes dimerization of PKM2, as well as translocation of PKM2 to the nucleus, thereby activating HIF-1alpha. TIPE promotes the phosphorylation of S37 on PKM2 in an ERK-dependent manner. TIPE is shown to increase stem-like phenotype markers. The expression of TIPE is positively correlated with the levels of PKM2 Ser37 phosphorylation in murine and clinical tissue samples. Taken together, the authors demonstrate how TIPE impacts melanoma progression, stemness, and glycolysis through dimeric PKM2 and HIF-1alpha crosstalk.

      The authors manipulated TIPE expression using both shRNA and overexpression approaches throughout the manuscript. Using these models, they provide strong evidence of the involvement of TIPE in mediating PKM2 Ser37 phosphorylation and dimerization. The authors also used mutants of PKM2 at S37A to block its interaction with TIPE and HIF-1alpha. In addition, an ERK inhibitor (U0126) was used to block the phosphorylation of Ser37 on PKM2. The authors show how dimerization of PKM2 by TIPE causes nuclear import of PKM2 and activation of HIF-1alpha and target genes. Pyridoxine was used to induce PKM2 dimer formation, while TEPP-46 was used to suppress PKM2 dimer formation. TIPE maintains stem cell phenotypes by increasing expression of stem-like markers. Furthermore, the relationship between TIPE and Ser37 PKM2 was demonstrated in murine and clinical tissue samples.

      The evaluation of how TIPE causes metabolic reprogramming can be further assessed using isotope tracing experiments.

    2. Reviewer #2 (Public review):

      In this article, Tian et al present a convincing analysis of the molecular mechanisms underpinning TIPE-mediated regulation of glycolysis and tumor growth in melanoma. The authors begin by confirming TIPE expression in melanoma cell lines and identify "high" and "low" expressing models for functional analysis. They show that TIPE depletion slows tumour growth in vivo, and using both knockdown and over expression approaches, show that this is associated with changes in glycolysis in vitro. Compelling data using multiple independent approaches is presented to support an interaction between TIPE and the glycolysis regulator PKM2, and over-expression of TIPE promoted nuclear translocation of PKM2 dimers. Mechanistically, the authors also demonstrate that PKM2 is required for TIPE-mediated activation of HIF1a transcriptional activity, as assessed using an HRE-promoter reporter assay, and that TIPE-mediated PKM2 dimerization is p-ERK dependent. Finally, the dependence of TIPE activity on PKM2 dimerization was demonstrated on tumor growth in vivo and in regulation of glycolysis in vitro, and ectopic expression of HIF1a could rescue inhibition of PKM2 dimerization in TIPE overexpressing cells and reduced induction of general cancer stem cell markers, showing a clear role for HIF1a in this pathway.

      The detailed mechanistic analysis of TIPE mediated regulation of PKM2 to control aerobic glycolysis and tumor growth is a major strength of the study and provides new insights into the molecular mechanisms that underpin the Warburg effect in melanoma cells. The main conclusions of this paper are well supported by data, however further investigation of a potential oncogenic effect of TIPE in melanoma patients is warranted to support the tumor promoting role of TIPE identified in the experimental models. Analysis of patient samples showed a significant increase in TIPE protein levels in primary melanoma compared to benign skin tumours, and a further increase upon metastatic progression. Moreover, TIPE levels correlate with proliferation (Ki67) and hypoxia gene sets in the TCGA melanoma patient dataset. However, intriguingly, high TIPE expression associates with better survival outcomes in the TCGA melanoma patient cohort, therefore further investigation of how TIPE-mediated regulation of glycolysis contributes to melanoma progression is warranted to confirm the authors claims of a potential oncogenic function. Regardless, the new insights into the molecular mechanisms underpinning TIPE-mediated aerobic glycolysis in melanoma are convincing and will likely generate interest in the cancer metabolism field.

    1. Reviewer #1 (Public Review):

      Summary:

      The work by Joseph et al "Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia" seeks to comparatively analyze the effect of a range of covalent and noncovalent clinical BTK inhibitors upon BTK conformation. The novel aspect of this manuscript is that it seeks to evaluate the differential resistance mutations that arise distinctly from each of the inhibitors.

      Strengths:

      This is an exciting study that builds upon the fundamental notion of ensemble behavior in solutions for enzymes such as BTK. The HDX-MS and NMR experiments are adequately and comprehensively presented.

      Comments on the revised version:

      I am satisfied with the revisions and the clear explanations.

    2. Reviewer #2 (Public Review):

      Summary:

      Previous NMR and HDX-MS studies on full-length (FL) BTK showed that the covalent BTKi, ibrutinib, causes long-range effects on the conformation of BTK consistent with disruption of the autoinhibited conformation, based on HDX deuterium uptake patterns and NMR chemical shift perturbations. This study extends the analyses to four new covalent BTKi, acalabrutinib, zanubrutinib, tirabrutinib/ONO4059, and a noncovalent ATP competitive BTKi, pirtobrutinib/LOXO405.

      The results show distinct conformational changes that occur upon binding each BTKi. The findings show consistent NMR and HDX changes with covalent inhibitors, which move helix aC to an 'out' position and disrupt SH3-kinase interactions, in agreement with X-ray structures of the BTKi complexed with the BTK kinase domain. In contrast, the solution measurements show that pirtobrutinib maintains and even stabilizes the helix aC-in and autoinhibited conformation, even though the BTK:pritobrutinib crystallizes with helix aC-out. This and unexpected variations in NMR and HDX behavior between inhibitors highlight the need for solution measurements to understand drug interactions with the full-length BTK. Overall the findings present good evidence for allosteric effects by each BTKi that induce distal conformational changes which are sensitive to differences in inhibitor structure.

      The study goes on to examine BTK mutants T474I and L528W, which are known to confer resistance to pirtobrutinib, zanubritinib, and tirabrutinib. T474I reduces and L528W eliminates BTK autophosphorylation at pY551, while both FL-BTK-WT and FL-BTK-L528W increase HCK autophosphorylation and PLCg phosphorylation. These show that mutants partially or completely inactivate BTK and that inactive FL-BTK can activate HCK, potentially by direct BTK-HCK interactions. But they do not explain drug resistance. However, HDX and NMR show that each mutant alters the effects of BTKi binding compared to WT. In particular, T474I alters the effects of all three inhibitors around W395 and the activation loop, while L528W alters interactions around W395 with tirabrutinib and pirtobrutinib, and does not appear to bind zanubrutinib at all. The study concludes that the mutations might block drug efficacy by reducing affinity or altering binding mode.

      Strengths:

      The work presents convincing evidence that BTK inhibitors alter the conformation of regions distal to their binding sites, including those involved in the SH3-kinase interface, the activation loop, and a substrate binding surface between helix aF and helix aG. The findings add to the growing understanding of allosteric effects of kinase inhibitors, and their potential regulation of interactions between kinase and binding proteins.

      Comments on the revised version:

      The authors have satisfactorily addressed my concerns in their revised manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors want to understand fundamental steps in ligand binding to muscle nicotinic receptors using computational methods. Overall, although the work provides new information and support for existing models of ligand activation of this receptor type, some limitations in the methods and approach mean that the findings are not as conclusive as hoped.

      Strengths:

      The strengths include the number of ligands tried, and the comparison to the existing mature analysis of receptor function from the senior author's lab.

      Weaknesses:

      The weakness are the brevity of the simulations, the concomitant lack of scope of the simulations, the lack of depth in the analysis and the incomplete relation to other relevant work. The free energy methods used seem to lack accuracy - they are only correct for 2 out of 4 ligands.

    2. Reviewer #2 (Public Review):

      Summary:

      The aim of this manuscript is to use molecular dynamics (MD) simulations to describe the conformational changes of the neurotransmitter binding site of a nicotinic receptor. The study uses a simplified model including the alpha-delta subunit interface of the extracellular domain of the channel and describes the binding of four agonists to observe conformational changes during the weak to strong affinity transition.

      Strength:

      The 200 ns-long simulations of this model suggest that the agonist rotates about its centre in a 'flip' motion, while loop C 'flops' to restructure the site. The changes appear to be reproduced across simulations and different ligands and are thus a strong point of the study.

      Weaknesses:

      After carrying out all-atom molecular dynamics, the authors revert to a model of binding using continuum Poisson-Boltzmann, surface area and vibrational entropy. The motivations for and limitations associated with this approximate model for the thermodynamics of binding, rather than using modern atomistic MD free energy methods (that would fully incorporate configurational sampling of the protein, ligand and solvent) could be provided. Despite this, the authors report correlation between their free energy estimates and those inferred from the experiment. This did, however, reveal shortcomings for two of the agonists. The authors mention their trouble getting correlation to experiment for Ebt and Ebx and refer to up to 130% errors in free energy. But this is far worse than a simple proportional error, because -24 Vs -10 kcal/mol is a massive overestimation of free energy, as would be evident if it the authors were to instead to express results in terms of KD values (which would have error exceeding a billion fold). The MD analysis could be improved with better measures of convergence, as well as a more careful discussion of free energy maps as function of identified principal components, as described below. Overall, however, the study has provided useful observations and interpretations of agonist binding that will help understand pentameric ligand-gated ion channel activation.

    3. Reviewer #3 (Public Review):

      Summary:

      The authors use docking and molecular dynamics (MD) simulations to investigate transient conformations that are otherwise difficult to resolve experimentally. The docking and simulations suggest an interesting series of events whereby agonists initially bind to the low affinity site and then flip 180 degrees as the site contracts to its high affinity conformation. This work will be of interest to the ion channel community and to biophysical studies of pentameric ligand-gated channels.

      Strengths:

      I find the premise for the simulations to be good, starting with an antagonist bound structure as an estimate of the low affinity binding site conformation, then docking agonists into the site and using MD to allow the site to relax to a higher affinity conformation that is similar to structures in complex with agonists. The predictions are interesting and provide a view into what a transient conformation that is difficult to observe experimentally might be like.

      Weaknesses:

      A weakness is that the relevance of the initial docked low affinity orientations depend solely on in silco results, for which simulated vs experimental binding energies deviate substantially for two of the four ligands tested. This raises some doubt as to the validity of the simulations. I acknowledge that the calculated binding energies for two of the ligands were closer to experiment, and simulated efficiencies were a good representation of experimental measures, which gives some support to the relevance of the in silico observations. Regardless, some of the reviewers comments regarding the simulation methodology were not seriously addressed.

    4. Reviewer #4 (Public Review):

      Summary:

      In their revised manuscript "Conformational dynamics of a nicotinic receptor neurotransmitter binding site," Singh and colleagues present molecular docking and dynamics simulations to explore the initial conformational changes associated with agonist binding in the muscle nicotinic acetylcholine receptor, in context with the extensive experimental literature on this system. Their central findings are of a consistently preferred pose for agonists upon initial association with a resting channel, followed by a dramatic rotation of the ligand and contraction of a critical loop over the binding site. Principal component analysis also suggests the formation of an intermediate complex, not yet captured in structural studies. Binding free energy estimates are consistent with the evolution of a higher-affinity complex following agonist binding, with a ligand efficiency notably similar to experimental values. Snapshot comparisons provide a structural rationale for these changes on the basis of pocket volume, hydration, and rearrangement of key residues at the subunit interface.

      Strengths:

      Docking results are clearly presented and remarkably consistent. Simulations are produced in triplicate with each of four different agonists, providing an informative basis for internal validation. They identify an intriguing transition in ligand pose, not well documented in experimental structures, and potentially applicable to mechanistic or even pharmacological modeling of this and related receptor systems. The paper seems a notable example of integrating quantitative structure-function analysis with systematic computational modeling and simulations, likely applicable to the wider journal audience.

      Weaknesses:

      The response to the initial review is somewhat disappointing, declining in some places to implement suggested clarifications, and propagating apparent errors in at least one table (Fig 2-source data 1). Some legends (e.g. Fig 2-supplement 4, Fig 3, Fig 4) and figure shadings (e.g. Fig 2-supplement 2, Fig 6-supplement 2) remain unclear. Apparent convergence of agonist-docked simulations towards a desensitized state (l 184) is difficult to interpret in absence of comparative values with other states, systems, etc. In more general concerns, aside from the limited timescales (200 ns) that do not capture global rearrangements, it is not obvious that landscapes constructed on two principal components to identify endpoint and intermediate states (Fig 3) are highly robust or reproducible, nor whether they relate consistently to experimental structures.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang et al. describe a delicate relationship between Tet2 and FBP1 in the regulation of hepatic gluconeogenesis.

      Strengths:

      The studies are very mechanistic, indicating that this interaction occurs via demethylation of HNF4a. Phosphorylation of HNF4a at ser 313 induced by metformin also controls the interaction between Tet2 and FBP1.

      Weaknesses:

      The results are briefly described, and oftentimes, the necessary information is not provided to interpret the data. Similarly, the methods section is not well developed to inform the reader about how these experiments were performed. While the findings are interesting, the results section needs to be better developed to increase confidence in the interpretation of the results.

    2. Reviewer #2 (Public review):

      Summary:

      This study reveals a novel role of TET2 in regulating gluconeogenesis. It shows that fasting and a high-fat diet increase TET2 expression in mice, and TET2 knockout reduces glucose production. The findings highlight that TET2 positively regulates FBP1, a key enzyme in gluconeogenesis, by interacting with HNF4α to demethylate the FBP1 promoter in response to glucagon. Additionally, metformin reduces FBP1 expression by preventing TET2-HNF4α interaction. This identifies an HNF4α-TET2-FBP1 axis as a potential target for T2D treatment.

      Strengths:

      The authors use several methods in vivo (PTT, GTT, and ITT in fasted and HFD mice; and KO mice) and in vitro (in HepG2 and primary hepatocytes) to support the existence of the HNF4alpha-TET-2-FBP-1 axis in the control of gluconeogenesis. These findings uncovered a previously unknown function of TET2 in gluconeogenesis.

      Weaknesses:

      Although the authors provide evidence of an HNF4α-TET2-FBP1 axis in the control of gluconeogenesis, which contributes to the therapeutic effect of metformin on T2D, its role in the pathogenesis of T2D is less clear. The mechanisms by which TET2 is up-regulated by glucagon should be more explored.

    1. Reviewer #1 (Public review):

      The authors presented a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale. With improved resolution and sensitivity, they explored the spatial connectivity of active promoters and identified the potential candidates for establishing/maintaining E-P interactions. Finally, with published CRISPRi screens, they found that most functionally-verified enhancers do physically interact with their cognate promoters, supporting the enhancer-promoter looping model.

      While the study's experimental approach and findings are interesting. However, several issues need to be addressed:

      (1) The authors described that "the lack of interaction between experimentally-validated enhancers and their cognate promoters in some studies employing C-methods has raised doubts regarding the classical promoter-enhancer looping model", so it's intriguing to see whether the MChIP-C could indeed detect the E-P interactions which were not identified by C-methods as they mentioned (Benabdallah et al., 2019; Gupta et al., 2017). I agree that they identified more E-P interactions using MChIP-C, but specifically, they should show at least 2-3 cases. It's important since this is the main conclusion the authors want to draw.

      (2) The authors compared their data to those of Chen et al. (Chen et al., 2022), who used PLAC-seq with anti-H3K4me3 antibodies in K562 cells and standard Micro-C data previously reported for K562, concluding that "MChIP-C achieves superior sensitivity and resolution compared to C-methods based on standard restriction enzymes.". This is not convincing since they only compared their data to one dataset. More datasets from other cell lines should be included.

      (3) The reasons to choose Chen's data (Chen et al., 2022) and CRISPRi screens (Fulco et al., 2019; Gasperini et al., 2019) should be provided since there are so many out there.

      (4) The authors identify EP300 histone acetyltransferase and the SWI/SNF remodeling complex as potential candidates for establishing and/or maintaining enhancer-promoter interactions, but not RNA polymerase II, mediator complex, YY1 and BRD4. More explanation is needed for this point since they're previously suggested to be associated with E-P interactions.

      (5) The limitations of the method should be discussed.

    2. Reviewer #2 (Public review):

      Summary:

      Golov et al has performed the capture MChIP-C using H3K4me3 antibody. The new method significantly increases the resolution of Micro-C and can detect the clear interactions which is not well described in the previous HiChIP/PLAC-seq method. Overall, the paper represented a significant technological advance which can be valuable to the 3D genomic field in the future.

      The authors have addressed all my concerns and comments.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript represents a technology development- specifically an micrococcal nuclease chromatin capture approach, termed MChIP-C to identify promoter centered chromatin interactions at single nucleosome resolution via a specific protein, similar to HiChIP, ChIA-PET, etc.. In general the manuscript is technically well done.

      Strengths:

      Methods appear to hold promise to improve both the sensitivity and resolution of protein-centered chromatin capture approaches.

      Weaknesses:

      Downsampling analysis gives a better idea of the strengths of the approach, especially related to individual loci. While this method does outperform other approaches, it remains technically sophisticated and for some labs may not be worth the additional effort for the increase in information. Also, until tested and proven by other groups, it is difficult to know how impactful this approach will be.

    1. Reviewer #3 (Public review):

      Summary:

      Krwawicz et al., present evidence that expression of DNMTs in E. coli results in (1) introduction of alkylation damage that is repaired by AlkB; (2) confers hypersensitivity to alkylating agents such as MMS (and exacerbated by loss of AlkB); (3) confers hypersensitivity to oxidative stress (H2O2 exposure); (4) results in a modest increase in ROS in the absence of exogenous H2O2 exposure; and (5) results in the production of oxidation products of 5mC, namely 5hmC and 5fC, leading to cellular toxicity. The findings reported here have interesting implications for the concept that such genotoxic and potentially mutagenic consequences of DNMT expression (resulting in 5mC) could be selectively disadvantageous for certain organisms. The other aspect of this work which is important for understanding the biological endpoints of genotoxic stress is the notion that DNA damage per se somehow induces elevated levels of ROS.

      Strengths:

      The manuscript is well-written, and the experiments have been carefully executed providing data that support the authors' proposed model presented in Fig. 7 (Discussion, sources of DNA damage due to DNMT expression).

      Weaknesses:

      (1) The authors have established an informative system relying on expression of DNMTs to gauge the effects of such expression and subsequent induction of 3mC and 5mC on cell survival and sensitivity to an alkylating agent (MMS) and exogenous oxidative stress (H2O2 exposure). The authors state (p4) that Fig. 2 shows that "Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to WT C2523, supporting the conclusion that the expression of DNMTs increased the levels of alkylation damage." This is a confusing statement and requires revision as Fig. 2 does ALL cells shown in Fig. 2 are expressing DNMTs and have been treated with MMS. It is the absence of AlkB and the expression of DNMTs that that causes the MMS sensitivity.

      (2) It would be important to know whether the increased sensitivity (toxicity) to DNMT expression and MMS is also accompanied by substantial increases in mutagenicity. The authors should explain in the text why mutation frequencies were not also measured in these experiments.

      (3) Materials and Methods. ROS production monitoring. The "Total Reactive Oxygen Species (ROS) Assay Kit" has not been adequately described. Who is the Vendor? What is the nature of the ROS probes employed in this assay? Which specific ROS correspond to "total ROS"?

      (4) The demonstration (Fig. 4) that DNMT expression results in elevated ROS and its further synergistic increase when cells are also exposed to H2O2 is the basis for the authors' discussion of DNA damage-induced increases in cellular ROS. S. cerevisiae does not possess DNMTs/5mC, yet exposure to MMS also results in substantial increases in intracellular ROS (Rowe et al, (2008) Free Rad. Biol. Med. 45:1167-1177. PMC2643028). The authors should be aware of previous studies that have linked DNA damage to intracellular increases in ROS in other organisms and should comment on this in the text.

    2. Reviewer #1 (Public review):

      Summary:

      The manuscript proposes that 5mC modifications to DNA, despite being ancient and widespread throughout life, represent a vulnerability, making cells more susceptible to both chemical alkylation and, of more general importance, reactive oxygen species. Sarkies et al take the innovative approach of introducing enzymatic genome-wide cytosine methylation system (DNA methyltransferases, DNMTs) into E. coli, which normally lacks such a system. They provide compelling evidence that the introduction of DNMTs increases the sensitivity of E. coli to chemical alkylation damage. Surprisingly they also show DNMTs increase the sensitivity to reactive oxygen species and propose that the DNMT generated 5mC presents a target for the reactive oxygen species that is especially damaging to cells. Evidence is presented that DNMT activity directly or indirectly produces reactive oxygen species in vivo, which is an important discovery if correct, though the mechanism for this remains obscure.

      Strengths:

      This work is based on an interesting initial premise, it is well-motivated in the introduction and the manuscript is clearly written. The results themselves are compelling.

      Weaknesses:

      I am not currently convinced by the principal interpretations and think that other explanations based on known phenomena could account for key results. Specific points below.

      (1) As noted in the manuscript, AlkB repairs alkylation damage by direct reversal (DNA strands are not cut). In the absence of AlkB, repair of alklylation damage/modification is likely through BER or other processes involving strand excision and resulting in single stranded DNA. It has previously been shown that 3mC modification from MMS exposure is highly specific to single stranded DNA (PMID:20663718) occurring at ~20,000 times the rate as double stranded DNA. Consequently, the introduction of DNMTs is expected to introduce many methylation adducts genome-wide that will generate single stranded DNA tracts when repaired in an AlkB deficient background (but not in an AlkB WT background), which are then hyper-susceptible to attack by MMS. Such ssDNA tracts are also vulnerable to generating double strand breaks, especially when they contain DNA polymerase stalling adducts such as 3mC. The generation of ssDNA during repair is similarly expected follow the H2O2 or TET based conversion of 5mC to 5hmC or 5fC neither of which can be directly repaired and depend on single strand excision for their removal. The potential importance of ssDNA generation in the experiments has not been considered.

      (2) The authors emphasise the non-additivity of the MMS + DNMT + alkB experiment but the interpretation of the result is essentially an additive one: that both MMS and DNMT are introducing similar/same damage and AlkB acts to remove it. The non-additivity noted would seem to be more consistent with the ssDNA model proposed in #1. More generally non-additivity would also be seen if the survival to DNA methylation rate is non-linear over the range of the experiment, for example if there is a threshold effect where some repair process is overwhelmed. The linearity of MMS (and H2O2) exposure to survival could be directly tested with a dilution series of MMS (H2O2).

      (3) The substantial transcriptional changes induced by DNMT expression (Supplemental Figure 4) are a cause for concern and highlight that the ectopic introduction of methylation into a complex system is potentially more confounded than it may at first seem. Though the expression analysis shows bulk transcription properties, my concern is that the disruptive influence of methylation in a system not evolved with it adds not just consistent transcriptional changes but transcriptional heterogeneity between cells which could influence net survival in a stressed environment. In practice I don't think this can be controlled for, possibly quantified by single-cell RNA-seq but that is beyond the reasonable scope of this paper.

      (4) Figure 4 represents a striking result. From its current presentation it could be inferred that DNMTs are actively promoting ROS generation from H2O2 and also to a lesser extent in the absence of exogenous H2O2. That would be very surprising and a major finding with far-reaching implications. It would need to be further validated, for example by in vitro reconstitution of the reaction and monitoring ROS production. Rather, I think the authors are proposing that some currently undefined, indirect consequence of DNMT activity promotes ROS generation, especially when exogenous H2O2 is available. It would help if this were clarified.

    3. Reviewer #2 (Public review):

      5-methylcytosine (5mC) is a key epigenetic mark in DNA and plays a crucial role in regulating gene expression in many eukaryotes including humans. The DNA methyltransferases (DNMTs) that establish and maintain 5mC, are conserved in many species across eukaryotes, including animals, plants, and fungi, mainly in a CpG context. Interestingly, 5mC levels and distributions are quite variable across phylogenies with some species even appearing to have no such DNA methylation.

      This interesting and well-written paper discusses the continuation of some of the authors' work published several years ago. In that previous paper, the laboratory demonstrated that DNA methylation pathways coevolved with DNA repair mechanisms, specifically with the alkylation repair system. Specifically, they discovered that DNMTs can introduce alkylation damage into DNA, specifically in the form of 3-methylcytosine (3mC). (This appears to be an error in the DNMT enzymatic mechanism where the generation 3mC as opposed to its preferred product 5-methylcytosine (5mC), is caused by the flipped target cytosine binding to the active site pocket of the DNMT in an inverted orientation.) The presence of 3mC is potentially toxic and can cause replication stress, which this paper suggests may explain the loss of DNA methylation in different species. They further showed that the ALKB2 enzyme plays a crucial role in repairing this alkylation damage, further emphasizing the link between DNA methylation and DNA repair.

      The co-evolution of DNMTs with DNA repair mechanisms suggests there can be distinct advantages and disadvantages of DNA methylation to different species which might depend on their environmental niche. In environments that expose species to high levels of DNA damage, high levels of 5mC in their genome may be disadvantageous. This present paper sets out to examine the sensitivity of an organism to genotoxic stresses such as alkylation and oxidation agents as the consequence of DNMT activity. Since such a study in eukaryotes would be complicated by DNA methylation controlling gene regulation, these authors cleverly utilize Escherichia coli (E.coli) and incorporate into it the DNMTs from other bacteria that methylate the cytosines of DNA in a CpG context like that observed in eukaryotes; the active sites of these enzymes are very similar to eukaryotic DNMTs and basically utilize the same catalytic mechanism (also this strain of E.coli does not specifically degrade this methylated DNA) .

      The experiments in this paper more than adequately show that E. coli expression of these DNMTs (comparing to the same strain without the DNMTS) do indeed show increased sensitivity to alkylating agents and this sensitivity was even greater than expected when a DNA repair mechanism was inactivated. Moreover, they show that this E. coli expressing this DNMT is more sensitive to oxidizing agents such as H2O2 and has exacerbated sensitivity when a DNA repair glycosylase is inactivated. Both propensities suggest that DNMT activity itself may generate additional genotoxic stress. Intrigued that DNMT expression itself might induce sensitivity to oxidative stress, the experimenters used a fluorescent sensor to show that H2O2 induced reactive oxygen species (ROS) are markedly enhanced with DNMT expression. Importantly, they show that DNMT expression alone gave rise to increased ROS amounts and both H2O2 addition and DNMT expression has greater effect that the linear combination of the two separately. They also carefully checked that the increased sensitivity to H2O2 was not potentially caused by some effect on gene expression of detoxification genes by DNMT expression and activity. Finally, by using mass spectroscopy, they show that DNMT expression led to production of the 5mC oxidation derivatives 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) in DNA. 5fC is a substrate for base excision repair while 5hmC is not; more 5fC was observed. Introduction of non-bacterial enzymes that produce 5hmC and 5fC into the DNMT expressing bacteria again showed a greater sensitivity than expected. Remarkedly, in their assay with addition of H2O2, bacteria showed no growth with this dual expression of DNMT and these enzymes.

      Overall, the authors conduct well thought-out and simple experiments to show that a disadvantageous consequence of DNMT expression leading to 5mC in DNA is increased sensitivity to oxidative stress as well as alkylating agents.

      Again, the paper is well-written and organized. The hypotheses are well-examined by simple experiments. The results are interesting and can impact many scientific areas such as our understanding of evolutionary pressures on an organism by environment to impacting our understanding about how environment of a malignant cell in the human body may lead to cancer.

    1. Reviewer #1 (Public review):

      In the current manuscript, the authors use theoretical and analytical tools to examine the possibility of neural projections to engage ensembles of synaptic clusters in active dendrites. The analysis is divided into multiple models that differ in the connectivity parameters, speed of interactions and identity of the signal (electric vs. second messenger). They first show that random connectivity almost ensures the representation of presynaptic ensembles. As expected, this convergence is much more likely for small group sizes and slow processes, such as calcium dynamics. Conversely, fast signals (spikes and postsynaptic potentials) and large groups are much less likely to recruit spatially clustered inputs. Dendritic nonlinearity in the postsynaptic cells was found to play a highly important role in distinguishing these clustered activation patterns, both when activated simultaneously and in sequence. The authors tackled the difficult issue of noise, showing a beneficiary effect when noise 'happen' to fill in gaps in a sequential pattern but degraded performance at higher background activity levels. Last, the authors simulated selectivity to chemical and electrical signals. While they find that longer sequences are less perturbed by noise, in more realistic activation conditions, the signals are not well resolved in the soma.

      While I think the premise of the manuscript is worth exploring, I have a number of reservations regarding the results.

      (1) In the analysis, the authors made a simplifying assumption that the chemical and electrical processes are independent. However, this is not the case; excitatory inputs to spines often trigger depolarization combined with pronounced calcium influx; this mixed signaling could have dramatic implications on the analysis, particularly if the dendrites are nonlinear (see below)<br /> (2) Sequence detection in active dendrites is often simplified to investigating activation in a part of or the entirety of individual branches. However, the authors did not do that for most of their analysis. Instead, they treat the entire dendritic tree as one long branch and count how many inputs form clusters. I fail to see why the simplification is required and suspect it can lead to wrong results. For example, two inputs that are mapped to different dendrites in the 'original' morphology but then happen to fall next to each other when the branches are staggered to form the long dendrites would be counted as neighbors.<br /> (3) The simulations were poorly executed. Figures 5 and 6 show examples but no summary statistics. The authors emphasize the importance of nonlinear dendritic interactions, but they do not include them in their analysis of the ectopic signals! I find it to be wholly expected that the effects of dendritic ensembles are not pronounced when the dendrites are linear.

      To provide a comprehensive analysis of dendritic integration, the authors could simulate more realistic synaptic conductances and voltage-gated channels. They would find much more complicated interactions between inputs on a single site, a sliding temporal and spatial window of nonlinear integration that depends on dendritic morphology, active and passive parameters and synaptic properties. At different activation levels, the rules of synaptic integration shift to cooperativity between different dendrites and cellular compartments, further complicated by nonlinear interactions between somatic spikes and dendritic events.

      While it is tempting to extend back-of-the-napkin calculations of how many inputs can recruit nonlinear integration in active dendrites, the biological implementation is very different from this hypothetical. It is important to consider these questions, but I am not convinced that this manuscript adequately addressed the questions it set out to probe, nor does it provide information that was unknown beforehand.

      Update after the first revision:

      In this revision, the authors significantly improved the manuscript. They now address some of my concerns. Specifically, they show the contribution of end-effects on spreading the inputs between dendrites. This analysis reveals greater applicability of their findings to cortical cells, with long, unbranching dendrites than other neuronal types, such as Purkinje cells in the cerebellum.

      They now explain better the interactions between calcium and voltage signals, which I believe improve the take-away message of their manuscript. They modified and added new figures that helped to provide more information about their simulations.<br /> However, some of my points remain valid. Figure 6 shows depolarization of ~5mV from -75. This weak depolarization would not effectively recruit nonlinear activation of NMDARs. In their paper, Branco and Hausser (2010) showed depolarizations of ~10-15mV. More importantly, the signature of NMDAR activation is the prolonged plateau potential and activation at more depolarized resting membrane potentials (their Figure 4). Thus, despite including NMDARs in the simulation, the authors do not model functional recruitment of these channels. Their simulation is thus equivalent to AMPA only drive, which can indeed summate somewhat nonlinearly.

    2. Reviewer #2 (Public review):

      Summary:

      If synaptic input is functionally clustered on dendrites, nonlinear integration could increase the computational power of neural networks. But this requires the right synapses to be located in the right places. This paper aims to address the question of whether such synaptic arrangements could arise by chance (i.e. without special rules for axon guidance or structural plasticity), and could therefore be exploited even in randomly connected networks. This is important, particularly for the dendrites and biological computation communities, where there is a pressing need to integrate decades of work at the single-neuron level with contemporary ideas about network function.

      Using an abstract model where ensembles of neurons project randomly to a postsynaptic population, back-of-envelope calculations are presented that predict the probability of finding clustered synapses and spatiotemporal sequences. Using data-constrained parameters, the authors conclude that clustering and sequences are indeed likely to occur by chance (for large enough ensembles), but require strong dendritic nonlinearities and low background noise to be useful.

      Strengths:

      - The back-of-envelope reasoning presented can provide fast and valuable intuition. The authors have also made the effort to connect the model parameters with measured values. Even an approximate understanding of cluster probability can direct theory and experiments towards promising directions, or away from lost causes.

      - I found the general approach to be refreshingly transparent and objective. Assumptions are stated clearly about the model and statistics of different circuits. Along with some positive results, many of the computed cluster probabilities are vanishingly small, and noise is found to be quite detrimental in several cases. This is important to know, and I was happy to see the authors take a balanced look at conditions that help/hinder clustering, rather than just focus on a particular regime that works.

      - This paper is also a timely reminder that synaptic clusters and sequences can exist on multiple spatial and temporal scales. The authors present results pertaining to the standard `electrical' regime (~50-100 µm, <50 ms), as well as two modes of chemical signaling (~10 µm, 100-1000 ms). The senior author is indeed an authority on the latter, and the simulations in Figure 5, extending those from Bhalla (2017), are unique in this area. In my view, the role of chemical signaling in neural computation is understudied theoretically, but research will be increasingly important as experimental technologies continue to develop.

      Weaknesses:

      - The paper is mostly let down by the presentation. In the current form, some patience is needed to grasp the main questions and results, and it is hard to keep track of the many abbreviations and definitions. A paper like this can be impactful, but the writing needs to be crisp, and the logic of the derivation accessible to non-experts. See, for instance, Stepanyants, Hof & Chklovskii (2002) for a relevant example.

      It would be good to see a restructure that communicates the main points clearly and concisely, perhaps leaving other observations to an optional appendix. For the interested but time-pressed reader, I recommend starting with the last paragraph of the introduction, working through the main derivation on page 7, and writing out the full expression with key parameters exposed. Next, look at Table 1 and Figure 2J to see where different circuits and mechanisms fit in this scheme. Beyond this, the sequence derivation on page 17 and biophysical simulations in Figures 5 and 6 are also highlights.

      - The analysis supporting the claim that strong nonlinearities are needed for cluster/sequence detection is unconvincing. In the analysis, different synapse distributions on a single long dendrite are convolved with a sigmoid function and then the sum is taken to reflect the somatic response. In reality, dendritic nonlinearities influence the soma in a complex and dynamic manner. It may be that the abstract approach the authors use captures some of this, but it needs to be validated with simulations to be trusted (in line with previous work, e.g. Poirazi, Brannon & Mel, (2003)).

      - It is unclear whether some of the conclusions would hold in the presence of learning. In the signal-to-noise analysis, all synaptic strengths are assumed equal. But if synapses involved in salient clusters or sequences were potentiated, presumably detection would become easier? Similarly, if presynaptic tuning and/or timing was reorganized through learning, the conditions for synaptic arrangements to be useful could be relaxed. Answering these questions is beyond the scope of the study, but there is a caveat there nonetheless.

    1. Reviewer #1 (Public review):

      Summary:

      The authors introduced neutron crystallography coupled with room temperature X-ray crystallography to exam the redox properties of the BtFt [4Fe-4S] cluster expressed in E. coli. Neutron structure allowed the authors to exam the influence of Asp64 on the redox properties of the [4Fe-4S] cluster. The neutron structure also allowed for the identification of the hydrogen network around the [4Fe-4S] structure. This work was followed by density functional theory calculation to examine different redox states which also pointed to the role of Asp64 in affecting or dictating redox function of the [4Fe-4S] cluster. Based on the DFT work the authors examine the redox properties under oxic and anoxic conditions in wild type enzymes and in a D64N mutant again showing the role of Asp64 on the redox kinetics and redox potential of the [4Fe-4S] cluster. Lastly, the authors examined similar [4Fe-4S] ferredoxins from several organisms and with a Asp64 or Glu64 observed a similar role of Asp64 on the low potential state of the [4Fe-4S] cluster. The major conclusion of the study was to identify the role of specific amino acids, in this case Asp64, in controlling the redox state and kinetics of [4Fe-4S] clusters. The authors also demonstrate the strength of neutron crystallography when combined with classical X-ray crystallography and classical spectral/redox studies.

      Strengths:

      In general, the experimental design is logical and the results are convincing demonstrating the role of Asp64 on the redox properties of [4Fe-4S] clusters in ferredoxins.

      Weaknesses:

      The role(s) of coordinating amino acids on the redox properties of a functional group is not surprising, this reviewer believes this is a novel result in ferredoxins and does make a nice contribution to the field.

    2. Reviewer #2 (Public review):

      In this study, Wada et al. investigate the low potential ferredoxin from Bacillus thermoproteolyticus (BtFd) using a combination of neutron crystallography, x-ray crystallography, DFT and spectroscopy to determine the influence of hydrogen bonding networks on the redox potential of ferredoxin's 4Fe-4S cluster. The use of neutron diffraction allowed the authors to probe the precise location of hydrogens around the 4Fe-4S cluster, which was not possible from prior studies, even with the previously reported high-resolution (0.92 Å) structure of BtFd. This allowed the authors to revise prior models of the proposed H bonding network theorized from earlier x-ray crystallography studies ( for example, showing that there is not in fact a H bond formed between the Thr63-O𝛾1 and the [4Fe-4S]-S4 atoms). With this newly described H-bonding network established, the electronic structure of the 4Fe-4S cluster was then investigated using DFT methodology, revealing a startling role of the deprotonated surface residue Asp64, which bears substantial electronic density in the LUMO which is otherwise localized to the 4Fe-4S cluster. While aspartate is usually deprotonated at physiological pH, the authors provide compelling evidence that this aspartate has a much higher pKa than is usual, and is able to act as a protonation-dependent switch which controls the stability of the reduced state of the 4Fe-4S cluster, and thus the redox potential.

      The findings of this study and the conclusions drawn from them are well supported by the data and computational work. Their findings have implications for similar control mechanisms in other, non-ferredoxin 4Fe-4S bearing electron transport proteins which have yet to be explored, providing great value to the metalloprotein community. One change that the authors may consider to enhance the clarity of the manuscript regards the nomenclature used for the varying models discussed (CM, CMNA, CMH and so forth). It would be beneficial to the reader if the nomenclature included the redox state (ox. vs red.) of the model in the model's name.

    1. Reviewer #1 (Public review):

      Summary:

      A description of small phosphatised fossils from the Kuanchuanpu, formations that are claimed to represent unequivocal early segmented bilaterians with limbs, ie annelids or panarthropods. All material from the Kuanchuanpu is of interest, and the mode of preservation is certainly striking.

      However, few details apart from bilateral symmetry and paired protrusions are present. In addition, fragments of potential progenitors such as anabaritiids cannot be entirely ruled out. In addition, the broader claims about the nature of the Cambrian explosion, the gap between the fossil record and molecular clocks, and what various authors have said about them are either inadequate or incorrect. For example, Budd and Jackson did not at all make the claim that the earliest bilaterians were soft-bodied and tiny. Glaessner (1958) is a very out-of-date reference to use. We know that bilaterians certainly existed by the time of Kuanchuanpo.

      Even so, it is possible that these fragments do represent internal moulds of taxa such as lobopod-like organisms, even if the evidence is not totally persuasive.

    2. Reviewer #2 (Public review):

      This manuscript by Yang et al. describes a variety of bilateral and segmented microfossils from the basal Cambrian (Fortunian Stage) Kuanchuanpu Formation, South China. During the Fortunian Stage, body fossils are scarce, and key evidence for the presence of different clades relies on exceptionally preserved microfossils of embryos and larvae. The authors interpret the described microfossils as segmented bilaterians, with anteroposterior and dorsoventral differentiation and paired appendages. The implication of this interpretation is that the microfossils represent important evidence for early bilaterian evolution.

      The strength of the manuscript is the convincing presentation of the material's bilateral and segmented nature and its taphonomy. The combined use of scanning electron microscopy and X-ray computed tomography to illustrate the material convincingly supports the argument of a bilaterian affinity. Likewise, the visualization of the cemented vesicles composed of phosphate nanocrystals that make up the fossils' internal molds supports the proposed taphonomic pathway.

      The weakness of the manuscript is the further biological interpretations. While the manuscript presents a convincing argument that the molds derive from overall segmented (metameric) body plans, it does not fully explore which cavities/organs are actually molded. Instead, it assumes without discussion that the molds reflect the cuticle with a loss of fine external structures (e.g., setae). While external sclerites and cuticles are convincingly displayed in one case (Figure Supplement 5), more options exist for the rest of the material. Here, molds could perhaps represent other cavities, such as guts (including diverticula) or perivisceral cavities, both consistent with a lack of fine external details as well as an endogenous taphonomic pathway. A proper exploration of what these molds actually represent is, therefore, crucial to interpreting the ecological and evolutionary implications of the fossils.

      Despite its weakness, the manuscript demonstrates convincing evidence of bilaterian microfossils in the Fortunian Stage. This evidence, in itself, contributes valuable information on the Cambrian animal radiation.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Corso-Diaz et al, focus on the NRL transcription factor (TF), which is critical for retinal rod photoreceptor development and function. The authors profile NRL's protein interactome, revealing several RNA-binding proteins (RBPs) among its components. Notably, many of these RBPs are associated with R-loop biology, including DHX9 helicase, which is the primary focus of this study. R-loops are three-stranded nucleic acid structures that frequently form during transcription. The authors demonstrate that R-loop levels increase during photoreceptor maturation and establish an interaction between NRL TF and DHX9 helicase. The association between NRL and RBPs like DHX9 suggests a cooperative regulation of gene expression in a cell-type-specific manner, an intriguing discovery relevant to photoreceptor health. Since DHX9 is a key regulator of R-loop homeostasis, the study proposes a potential mechanism where a cell-type-specific TF controls the expression of certain genes by modulating R-loop homeostasis. This study also presents the first data on R-loop mapping in mammalian retinas and shows the enrichment of R-loops over intergenic regions as well as genes encoding neuronal function factors. While the research topic is very important, there is some concern regarding the data presented: there are substantial data supporting the interaction between NRL and DHX9, including pull-down experiments and proximity labeling assay (PLA), however, the data showing an interaction between NRL and DDX5, another R-loop-associated helicase, are inadequate. Importantly, the data supporting the claim that NRL interacts with R-loops are absolutely insufficient and at best, correlative. The next concerns are regarding the R-loop mapping data analysis and visualization.

      Strengths:

      There is compelling evidence that the NRL transcription factor interacts with several RNA binding proteins, and specifically, sufficient data supporting the interaction of NRL with DHX9 helicase.<br /> A major strength is the use of the single-stranded R-loop mapping method in the mouse retina.

      Weaknesses:

      (1) Figure S1A: There is a strong band in GST-IP (control IP) for either HNRNPUI1 or HNRNPU, although the authors state in their results that there is a strong interaction of these two RBPs with NRL. Both DHX9 and DDX5 samples have a faint band in the GST-IP. There is an extremely faint band for HNRNPA2B1 in the GST-NRL IP lane. Given this is a pull-down with added benzonase treatment to remove all nucleic acids, these data suggest, that previously observed NRL interactions with these particular RBPs are mediated via nucleic acids. Similarly, there is a loss of band signal for HNRNM in this assay, although it was identified as an NRL-interacting protein in three assays, which again suggests that nucleic acids mediate the interaction.

      (2) The data supporting NRL-DDX5 interaction in rod photoreceptor nuclei is very weak. In Figure 2D, the PLA signal for DDX5-NRL is very weak in the adult mouse retina and is absent in the human retina, as shown in Figure 2H. Given that there is no NRL-KO available for the human PLA assay, the control experiments using single-protein antibodies should be included in the assay. Similarly, the single-protein antibody control PLA experiments should be included in the experimental data presented in Figure 2J.

      (3) The EMSA experiment using a probe containing NRL binding motif within the DHX9 promoter should include incubation with retina nuclear extracts depleted for NRL as a control.

      (4) There is a reduced amount of DHX9 pulled down in NRL-IP in HEK293 cells, but there is no statistically significant difference in the reciprocal IP (DHX9-IP and blotting for NRL) (Figure 4C).

      (5) The only data supporting the claim that NRL interacts with R-loops are presented in Figure 5A. This is a co-IP of R-loops and then blotting for NRL, DHX9, and DDX5. Here, there is no signal for DDX5, quantification of DHX9 signal shows no statistically significant difference between RNase H treated and untreated samples, while NRL shows a signal in RNase H treated sample. These data are not sufficient to make the statement regarding the interaction of NRL with R-loops.

      (6) Regarding R-loop mapping, the data analysis is quite confusing. The authors perform two different types of analyses: either overall narrow and broad peak analysis or strand-specific analysis. Given that the authors used ssDRIP-seq, which is a method designed to map R-loops strand specifically, it is confusing to perform different types of analyses. Next, the peak analysis is usually performed based on the RNase H treated R-loop mapping; what does it mean then to have a pool of "Not R-loops", see Figure 6B? In that regard, what does the term "unstranded" R-loops mean? Based on the authors' definition, these are R-loops that do not fall within the group of strand-specific R-loops. The authors should explain the reasons behind these types of analyses and explain, what the biological relevance of these different types of R-loops is.

      (7) It would be more useful to show the percent distribution of R-loops over the different genomic regions, instead of showing p-value enrichment, see Figure 6C.

      (8) Based on the model presented, NRL regulates R-loop biology via interaction with RBPs, such as DHX9, a known R-loop resolution helicase. Given that the gene targets of NRL TF are known, it would be useful to then analyze the R-loop mapping data across this gene set.

    2. Reviewer #2 (Public review):

      Summary:

      The authors utilize biochemical approaches to determine and validate NRL protein-protein interactions to further understand the mechanisms by which the NRL transcription factor controls rod photoreceptor gene regulatory networks. Observations that NRL displays numerous protein-protein interactions with RNA-binding proteins, many of which are involved in R-loop biology, led the authors to investigate the role of RNA and R-loops in mediating protein-protein interactions and profile the co-localization of R-loops with NRL genomic occupancy.

      Strengths:

      Overall, the manuscript is very well written, providing succinct explanations of the observed results and potential implications. Additionally, the authors use multiple orthogonal techniques and tissue samples to reproduce and validate that NRL interacts with DHX9 and DDX5. Experiments also utilize specific assays to understand the influence of RNA and R-loops on protein-protein interactions. The authors also use state-of-the-art techniques to profile R-loop localization within the retina and integrate multiple previously established datasets to correlate R-loop presence with transcription factor binding and chromatin marks in an attempt to understand the significance of R-loops in the retina.

      Weaknesses:

      In general, the authors provide superficial interpretations of the data that fit a narrative but fail to provide alternative explanations or address caveats of the results. Specifically, many bands are present in interaction studies either in control lanes (GST controls) of Westerns or large amounts of background in PLA experiments. Additionally, the lack of experiments testing the functional significance of Nrl interactions or R-loops within the developing retina fails to provide novel biological insights into the regulation of gene regulatory networks other than, 'This could be a potentially important new mechanism'. Additionally, the authors test the necessity of RNA for NRL/DHX9 interactions but don't show RNA binding of NRL or DHX9 or the sufficiency of RNA to interfere/mediate protein-protein interactions. Recent work has highlighted the prevalence of RNA binding by transcription factors through Arginine Rich Motifs that are located near the DNA binding domains of transcription factors.

    1. Reviewer #1 (Public review):

      Summary:

      In this preprint, Madrigal et al present "Tom1p ubiquitin ligase structure, interaction with Spt6p, and function in maintaining normal transcript levels and the stability of chromatin in promoters" which describes the identification of Tom1p, a conserved ubiquitin ligase, as a potential binding partner for the transcription elongation/histone chaperone Spt6p, and reveal the Tom1p structure as determined by CryoEM. Tom1p is a homolog of human HUWE1, which has been implicated in decay for a variety of basic protein substrates such as ribosomal proteins and histones. Structure-function analyses identify regions required for Spt6p interaction, suggesting that the interaction with Spt6p is phosphorylation dependent, and for interactions with histones, the latter of which confers phenotypes in vivo when mutated, suggesting that the Tom1p acidic region is important for its function. What is less clear is the function or interaction with Spt6p. The manuscript speculates that Spt6p-Tom1p interactions may tune Tom1p localization, and it is shown that Tom1p is recruited to transcribed genes by chromatin IP. In addition, the Tom1p structure will be valuable to those trying to understand the mechanisms of this very large ubiquitin ligase. Here, structures of homologs from other organisms have already been described elsewhere, however, the authors here indicate some details potentially not previously visualized in other structures.

      Strengths:

      It has not previously been known that the Spt6p tSH2 had any additional targets. Interaction with a ubiquitin ligase already implicated in histone turnover given Spt6p's role as histone chaperone is interesting. A structure of Tom1p also provides insight into this very large, conserved protein and structure-function analysis in a model system is a good start towards mechanistic dissection.

      Weaknesses:

      Some aspects of the manuscript seem less cohesive in that there are two halves of the manuscript and both don't quite solidify insights into the Spt6p relationship to Tom1p or deepen our understanding of Tom1p mechanism extensively, though results are a great start on both sides of the paper. There are several points that are less clear in that it is not known if Spt6p interacts with Tom1p and in what context. The interaction surface of Spt6p able to interact with Tom1p is the identical tSH2 that would be predicted to be occupied by phosphorylated RNAPII when Spt6p is incorporated into the RNAPII elongation complex. This means how and when Spt6p might be available to interact with Tom1p is not clear. Previous work from the Hill and Formosa groups on the tSH2 domain and its RNAPII linker target have suggested that phenotypes of mutants in the two are similar, suggesting that their main function is to interact with each other. A simple test of examining Tom1p interaction with genes in the tSH2 mutant was not done. Additionally, the Spt6p interacting surface on Tom1p is not narrowed to a specific putatively phosphorylated residue that it might target. It remains possible that mutations in other regions of Tom1p affect potential phosphorylation of this target, and therefore it is possible that some mutations that alter Spt6p interaction could do so indirectly. Finally, the authors might consider additional models for their discussion where Spt6p potentially could function to deliver histones to Tom1p.

    2. Reviewer #2 (Public review):

      Summary:

      Madrigal et al identified Tom1, a E3 ubiquitin ligase previously known to be involved in ribosome biogenesis, as a protein that binds to terminal tandem Src-homology 2 (tSH2) domain of Spt6. They mapped this interaction to the acid region of Tom1, which is also known to interact with histones. Cells with tom1 mutants that cannot bind Spt6 did not show temperature sensitive phenotypes displaced for tom1 null mutant. Using ChIP assays, they showed that Tom1 is enriched at gene bodies of highly transcribed genes, and a loss of tom1 leads to reduced nucleosomal changes at gene promoters. Finally, they also solved the structures of Tom1 lacking the acidic region and found that Tom1p can adopt a compact a-solenoidal "basket" similar to the previously described structure of HUWE1. Overall, this is an interesting study and I have the following suggestions to improve the manuscript.

      Major concerns.

      (1) Promoter regions are in general nucleosome free. How does Tom1 mutant affect nucleosome-sized fragments at the promoter regions?<br /> (2) While Tom1 antibodies may not specific, could the author perform Tom1 ChIP-seq in wild type and tom 1 null cells? This dataset may be more informative than tagged Tom1 that may not be functional.

    3. Reviewer #3 (Public review):

      Summary:

      The authors report a novel, direct interaction of Spt6p tSH2 domain to Tom1p. This extends the function of Spt6p from communication with factors associated with RNAPII transcription to processes of ubiquitination. Tom1p is known to ubiquitinate a large variety of substrates, but it is unknown how substrate recognition is done in a specific manner. The team identified a conserved central acidic region of Tom1p which is essential for in vivo functions and binds to histones and nucleosomes, as well as Spt6p. They further describe the Tom1p occupancy pattern on chromatin, assigning it a stabilizing effect on nucleosomes near promotors and a destabilizing effect on nucleosomes within the gene bodies. The authors were able to resolve two different conformational states of Tom1p which are likely connected to its activity, and possibly substrate selectivity.<br /> Overall, the authors show that an intrinsically disordered region in Tom1p is important for substrate interaction and function of Tom1p. The protein is further involved in chromatin architecture and structural transitions control its activity.

      Strengths:

      By revealing the interaction of Spt6p and Tom1p, the authors discover a novel connection between transcriptional elongation and processes of ubiquitination.<br /> In recent years, disordered regions of MDa protein complexes have become a focus of research projects. The effects of disordered regions on protein localization and specificity of binding interactions have been discussed in great extent, including proteins that are involved in chromatin remodeling and transcription. Adding to these current efforts, the authors assign a function to a highly conserved disordered region of Tom1p in technically clean experiments. Furthermore, with their data, they pin down a specific functional region in Tom1p which is relevant for the previously observed temperature sensitivity caused by Tom1p deletion in yeast.<br /> The team performs a thorough and complete analysis of the cryo-EM structure and they nicely model the hinge motion and details of an open and closed conformation.

      Weaknesses:

      Despite the high number of interesting findings, there is little connection between the individual sections of the manuscript. For example, many experiments are not related to Spt6p binding although this protein is presented as a major actor in this manuscript during the introduction. Furthermore, the structural analysis is well done, but it is also not quite clear how structural rearrangements are connected to Spt6 binding or chromatin remodeling. Some experimental results lack novelty, as similar data has previously been presented for the human homolog.<br /> To confirm the novel, direct binding interaction of Spt6p and Tom1p, no orthogonal binding assays (SPR, MST, ITC) have been performed to confirm the interaction. To me, this is insufficient, especially since the team has purified both proteins to high quality levels, or could use peptides to test the function of the relevant regions.<br /> Additionally, interaction of Tom1p with Spt6p in the context of transcription elongation is proposed. Yet it is not clear on the mechanistic level how this is regulated if Tom1p and Rpb1p bind in a competitive manner. How is Tom1p tethered to the elongation complex if not through Spt6p? In addition to WT vs. knockout, the authors should further perform the genetic analyses with the intΔ11 mutant. This way they might be able pin down which interactions on chromatin are mediated by Spt6 vs. by other factors and could strengthen the overall model involving Spt6P.<br /> Although the authors try to describe a final model in the discussion, this section is not easy to follow and needs more explanation, ideally drawn as a Figure of the proposed mechanism.

    1. Reviewer #1 (Public review):

      Summary:

      This impressive study presents a comprehensive scRNAseq atlas of the cranial region during neural induction, patterning, and morphogenesis. The authors collected a robust scRNAseq dataset covering six distinct developmental stages. The analysis focused on the neural tissue, resulting in a highly detailed temporal map of neural plate development. The findings demonstrate how different cell fates are organized in specific spatial patterns along the anterior-posterior and medial-lateral axes within the developing neural tissue. Additionally, the research utilized high-density single-cell RNA sequencing (scRNAseq) to reveal intricate spatial and temporal patterns independent of traditional spatial techniques.

      The investigation utilized diffusion component analysis to spatially order cells based on their positioning along the anterior-posterior axis, corresponding to the forebrain, midbrain, hindbrain, and medial-lateral axis. By cross-referencing with MGI expression data, the identification of cell types was validated, affirming the expression patterns of numerous known genes and implicating others as differentially expressed along these axes. These findings significantly advance our understanding of the spatially regulated genes in neural tissues during early developmental stages. The emphasis on transcription factors, cell surface, and secreted proteins provides valuable insights into the intricate gene regulatory networks underpinning neural tissue patterning. Analysis of a second scRNAseq dataset where Shh signaling was inhibited by culturing embryos in SAG identified known and previously unknown transcripts regulated by Shh, including the Wnt pathway.

      The data includes the neural plate and captures all major cell types in the head, including the mesoderm, endoderm, non-neural ectoderm, neural crest, notochord, and blood. With further analyses, this high-quality data promises to significantly advance our understanding of how these tissues develop in conjunction with the neural tissue, paving the way for future breakthroughs in developmental biology and genomics.

      Strengths:

      The data is well presented in the figures and thoroughly described in the text. The quality of the scRNAseq data and bioinformatic analysis is exceptional.

      Weaknesses:

      No weaknesses were identified by this reviewer.

    2. Reviewer #2 (Public review):

      Summary:

      Brooks et al. generate a gene expression atlas of the early embryonic cranial neural plate. They generate single-cell transcriptome data from early cranial neural plate cells at 6 consecutive stages between E7.5 to E9. Utilizing computational analysis they infer temporal gene expression dynamics and spatial gene expression patterns along the anterior-posterior and mediolateral axis of the neural plate. Subsequent comparison with known gene expression patterns revealed a good agreement with their inferred patterns, thus validating their approach. They then focus on Sonic Hedgehog (Shh) signalling, a key morphogen signal, whose activities partition the neural plate into distinct gene expression domains along the mediolateral axis. Single-cell transcriptome analysis of embryos in which the Shh pathway was pharmacologically activated throughout the neural plate revealed characteristic changes in gene expression along the mediolateral axis and the induction of distinct Shh-regulated gene expression programs in the developing fore-, mid-, and hindbrain.

      Strengths:

      This manuscript provides a comprehensive transcriptomic characterisation of the developing cranial neural plate, a part of the embryo that to my knowledge has not been extensively analysed by single-cell transcriptomic approaches. The single-cell sequencing data appears to be of high quality and will be a great resource for the wider scientific community. Moreover, the computational analysis is well executed and the validation of the sequencing data using published gene expression patterns is convincing. Taken together, this is a well-executed study that describes a relevant scientific resource for the wider scientific community.

      Weaknesses:

      Conceptually, the findings that gene expression patterns differ along the rostrocaudal, mediolateral, and temporal axes of the neural plate and that Shh signalling induces distinct target genes along the anterior-posterior axis of the nervous system are more expected than surprising. However, the strength of this manuscript is again the comprehensive characterization of the spatiotemporal gene expression patterns and how they change upon ectopic activation of the Shh pathway.

    3. Reviewer #3 (Public review):

      Summary:

      The authors performed a detailed single-cell analysis of the early embryonic cranial neural plate with unprecedented temporal resolution between embryonic days 7.5 and 8.75. They employed diffusion analysis to identify genes that correspond to different temporal and spatial locations within the embryo. Finally, they also examined the global response of cranial tissue to a Smoothened agonist.

      Strengths:

      Overall, this is an impressive resource, well-validated against sets of genes with known temporal and spatial patterns of expression. It will be of great value to investigators examining the early stages of neural plate patterning, neural progenitor diversity, and the roles of signaling molecules and gene regulatory networks controlling the regionalization and diversification of the neural plate.

      Weaknesses:

      The manuscript should be considered a resource. Experimental manipulation is limited to the analysis of neural plate cells that were cultured in vitro for 12 hours with SAG. Besides the identification of a significant set of previously unreported genes that are differentially expressed in the cranial neural plate, there is little new biological insight emerging from this study. Some additional analyses might help to highlight novel hypotheses arising from this remarkable resource.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Javid and colleagues worked to understand the molecular mechanisms involved in mistranslation in mycobacteria. They had previously discovered that mistranslation is an important mechanism underlying antibiotic tolerance in mycobacteria. Using a clever genetic screen they identify that deletion of gidB, a 16S ribosomal RNA methyltransferase, leads to lowered mistranslation (i.e. higher translational fidelity), but only in genetic backgrounds or environmental conditions that increase mistranslation rates.

      Strengths:

      The strengths of this manuscript are the clever genetic screen, the powerful mistranslation assays, and the clear writing and figures explaining a complex biological problem. Their identification of gidB as a factor important for mistranslation deepens our knowledge about this interesting phenomenon.

      Weaknesses:

      The structural work at the end feels like both an afterthought in terms of the science and the writing. I would suggest re-writing that section to be clearer about what the figure says and does not say. For example, the caption of Figure 6 appears to be more informative than the text and refers to concepts not present in the main text. In general, I found this section to be the most difficult to understand.

    2. Reviewer #2 (Public review):

      Summary:

      Protein synthesis - translation - involves repeated recognition and incorporation of amino-acyl-tRNAs by the ribosome. This process is a trade-off between the rate and accuracy of selection (for review see (Johansson et al, 2008; Wohlgemuth et al, 2011)). The ribosome does not just maximise the rate or the accuracy, it balances the two. Therefore, it is possible to select mutants that translate faster than the wt (but are sloppy) or that are very accurate (more than the wt) but translate slower. Slow translation is detrimental as it limits the rate of protein synthesis (and, therefore, growth) and hyper-accurate mutants accumulate mis-translated proteins, which is detrimental for the cell.

      Bi and colleagues employ genetics, MIC measurements, reporter assays, and structural biology to characterise the role of GidB rRNA methylase in translational accuracy in Mycobacterium smegmatis.

      Strengths:

      The genetics and phenotypic assays are convincing and establish the biological role of the methylase. The authors use a powerful set of complementary assays that convincingly demonstrate that the loss of GidB results in mistranslation.

      Weaknesses:

      (1) It would be essential to provide information regarding the growth rate and, ideally, translation rates in the gidB KO and the isogenic WT. As translation balances accuracy and speed, only characterising the speed is not sufficient to understand the phenomenon.

      (2) Cryo-EM analysis of vacant 70S ribosomes is not sufficient for understanding the mechanisms underlying the accuracy defects in the gidB KO. One should assemble and solve structurally near-cognate and non-cognate complexes. I believe the authors are over-interpreting the scant structural data they have. Furthermore, current representation makes it impossible to assess the resolution of the structure, especially in the areas of interest.

      References:

      Johansson M, Lovmar M, Ehrenberg M (2008) Rate and accuracy of bacterial protein synthesis revisited. Curr Opin Microbiol 11: 141-147<br /> Wohlgemuth I, Pohl C, Mittelstaet J, Konevega AL, Rodnina MV (2011) Evolutionary optimization of speed and accuracy of decoding on the ribosome. Philos Trans R Soc Lond B Biol Sci 366: 2979-2986.

    1. Reviewer #1 (Public review):

      This paper focuses on secondary structure and homodimers in the HIV genome. The authors introduce a new method called HiCapR which reveals secondary structure, homodimer, and long-range interactions in the HIV genome. The experimental design and data analysis are well-documented and statistically sound. However, the manuscript could be further improved in the following aspects.

      Major comments:

      (1) Please give the full name of an abbreviation the first time it appears in the paper, for example, in L37, "5' UTR" "RRE".

      (2) The introduction could be strengthened by discussing the limitations of existing methods for studying HIV RNA structures and interactions and highlighting the specific advantages of the HiCapR method.

      (3) Please reorganize Results Part 1.

      (4) Is there any reason that the authors mention "genome structure of SARS-CoV-2" in L95?

      (5) L102: Please clarify the purpose of comparing "NL4-3" and "GX2005002." Additionally, could you explain what NL4-3 and GX2005002 are? The connection between NL4-3, GX2005002, and HIV appears to be missing.

      (6) Figure 1A is not able to clearly present the innovation point of HiCapR.

      (7) Please compare the contact metrics detected by HiCapR and current techniques like SHAPE on the local interactions to assess the accuracy of HiCapR in capturing local RNA interactions relative to established methods.

      (8) The paper needs further language editing.

    2. Reviewer #2 (Public review):

      Summary:

      In the manuscript "Mapping HIV-1 RNA Structure, Homodimers, Long-Range Interactions and 1 persistent domains by HiCapR" Zhang et al report results from an omics-type approach to mapping RNA crosslinks within the HIV RNA genome under different conditions i.e. in infected cells and in virions. Reportedly, they used a previously published method which, in the present case, was improved for application to RNAs of low abundance.

      Their claims include the detection of numerous long-range interactions, some of which differ between cellular and virion RNA. Further claims concern the detection and analysis of homodimers.

      Strengths:

      (1) The method developed here works with extremely little viral RNA input and allows for the comparison of RNA from infected cells versus virions.

      (2) The findings, if validated properly, are certainly interesting to the community.

      Weaknesses:

      (1) On the communication level, the present version of the manuscript suffers from a number of shortcomings. I may be insufficiently familiar with habits in this community, but for RNA afficionados just a little bit outside of the viral-RNA-X-link community, the original method (reference 22) and the presumed improvement here are far too little explained, namely in something like three lines (98-100). This is not at all conducive to further reading.

      (2) Experimentally, the manuscript seems to be based on a single biological replicate, so there is strong concern about reproducibility.

      (3) The authors perform an extensive computational analysis from a limited number of datasets, which are in thorough need of experimental validation.

    1. Reviewer #1 (Public review):

      Summary:

      This study seeks to identify a molecular mechanism whereby the small molecule RY785 selectively inhibits Kv2.1 channels. Specifically, it sought to explain some of the functional differences that RY785 exhibits in experimental electrophysiology experiments as compared to other Kv inhibitors, namely the charged and non-specific inhibitor tetraethylammonium (TEA). This study used a recently published cryo-EM Kv2.1 channel structure in the open activated state and performed a series of multi-microsecond-long all-atom molecular dynamics simulations to study Kv2.1 channel conduction under the applied membrane voltage with and without RY785 or TEA present. While TEA directly blocks K+ permeation by occluding ion permeation pathway, RY785 binds to multiple non-polar residues near the hydrophobic gate of the channel driving it to a semi-closed non-conductive state. This mechanism was confirmed using an additional set of simulations and used to explain experimental electrophysiology data,

      Strengths:

      The total length of simulation time is impressive, totaling many tens of microseconds. The study develops forcefield parameters for the RY785 molecule based on extensive QM-based parameterization. The computed permeation rate of K+ ions through the channel observed under applied voltage conditions is in reasonable agreement with experimental estimates of the single-channel conductance. The study performed extensive simulations with the apo channel as well as both TEA and RY785. The simulations with TEA reasonably demonstrate that TEA directly blocks K+ permeation by binding in the center of the Kv2.1 channel cavity, preventing K+ ions from reaching the SCav site. The conclusion is that RY785 likely stabilizes a partially closed conformation of the Kv2.1 channel and thereby inhibits the K+ current. This conclusion is plausible given that RY785 makes stable contact with multiple hydrophobic residues in the S6 helix. This further provides a possible mechanism for the experimental observations that RY785 speeds up the deactivation kinetics of Kv2 channels from a previous experimental electrophysiology study.

      Weaknesses:

      The study, however, did not produce this semi-closed channel conformation and acknowledges that more direct simulation evidence would require extensive enhanced-sampling simulations. The study has not estimated the effect of RY785 binding on the protein-based hydrophobic pore constriction, which may further substantiate their proposed mechanism. And while the study quantified K+ permeation, it does not make any estimates of the ligand binding affinities or rates, which could have been potentially compared to the experiment and used to validate the models.

    2. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Zhang et al. investigate the conductivity and inhibition mechanisms of the Kv2.1 channel, focusing on the distinct effects of TEA and RY785 on Kv2 potassium channels. The study employs microsecond-scale molecular dynamics simulations to characterize K+ ion permeation and compound binding inhibition in the central pore.

      Strengths:

      The findings reveal a unique inhibition mechanism for RY785, which binds to the channel walls in the open structure while allowing reduced K+ flow. The study also proposes a long-range allosteric coupling between RY785 binding in the central pore and its effects on voltage-sensing domain dynamics. Overall, this well-organized paper presents a high-quality study with robust simulation and analysis methods, offering novel insights into voltage-gated ion channel inhibition that could prove valuable for future drug design efforts.

      Weaknesses:

      (1) The study neglects to consider the possibility of multiple binding sites for RY785, particularly given its impact on voltage sensors and gating currents. Specifically, there is potential for allosteric binding sites in the voltage-sensing domain (VSD), as some allosteric modulators with thiazole moieties are known to bind VSD domains in multiple voltage-gated sodium channels (Ahuja et al., 2015; Li et al., 2022; McCormack et al., 2013; Mulcahy et al., 2019).

      (2) The study describes RY785 as a selective inhibitor of Kv2 channels and characterizes its binding residues through MD simulations. However, it is not clear whether the identified RY785-binding residues are indeed unique to Kv2 channels.

      (3) The study does not clarify the details, rationale, and ramifications of a biasing potential to dihedral angles.

      (4) The observation that the Kv2.1 central pore remains partially permeable to K+ ions when RY785 is bound is intriguing, yet it was not revealed whether polar groups of RY785 always interact with K+ ions.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors have leveraged Single-cell RNA sequencing of the various stages of the evolution of lung adenocarcinoma to identify the population of macrophages that contribute to tumor progression. They show that S100a4+ alveolar macrophages, active in fatty acid metabolic activity, such as palmitic acid metabolism, seem to drive the atypical adenomatous hyperplasia (AAH) stage. These macrophages also seem to induce angiogenesis promoting tumor growth. Similar types of macrophage infiltration were demonstrated in the progression of the human lung adenocarcinomas.

      Strengths:

      Identification of the metabolic pathways that promote angiogenesis-dependent progression of lung adenocarcinomas from early atypical changes to aggressive invasive phenotype could lead to the development of strategies to abort tumor progression.

      Weaknesses:

      (1) Can the authors demonstrate what are the functional specialization of the S100a4+ alveolar macrophages that promote the progression of the AAH to the more aggressive phenotype? What are the factors produced by these unique macrophages that induce tumor progression and invasiveness?

      (2) Angiogenic factors are not only produced by the S100a4+ cells but also by pericytes and potentially by the tumor cells themselves. Then, how do these factors aberrantly trigger tumor angiogenesis that drives tumor growth?

      (3) It is not clear how abnormal fatty acid uptake by the macrophages drives the progression of tumors.

      (4) Does infusion or introduction of S100a4+ polarized macrophages promote the progression of AAH to a more aggressive phenotype?

      (5) How does Anxa and Ramp1 induction in inflammatory cells induce angiogenesis and tumor progression?

      (6) For the in vitro studies the authors might consider using primary tumor cells and not cell lines.

    2. Reviewer #2 (Public review):

      Summary:

      The work aims to further understand the role of macrophages in lung precancer/lung cancer evolution

      Strengths:

      (1) The use of single-cell RNA seq to provide comprehensive characterisation.

      (2) Characterisation of cross-talk between macrophages and the lung precancerous cells.

      (3) Functional validation of the effects of S100a4+ cells on lung precancerous cells using in vitro assays.

      (4) Validation in human tissue samples of lung precancer / invasive lesions.

      Weaknesses:

      (1) The authors need to provide clarification of several points in the text.

      (2) The authors need to carefully assess their assumptions regarding the role of macrophages in angiogenesis in precancerous lesions.

      (3) The authors should discuss more broadly the current state of anti-macrophage therapies in the clinic.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors consider the effects of eugenol (EUG), a plant-produced substance known to reduce oxidative stress in various cellular contexts via Nrf2, in alleviating the effects of streptozotocin (STZ), a known rodent beta cell toxin. They claim that EUG treatment would be useful for T1D therapy.

      Strengths:

      The experiments shown are sufficiently clear and rather convincing in documenting that eugenol can revert the effects of streptozotocin on animal physiology as well as beta cell oxidative stress and cell death via activation of Nrf2.

      In the revised manuscript the authors corrected/explained most of the specific inconsistencies/mistakes pointed out.

      However, they did not address the opening paragraph that points out major concerns. I summarize them below, together with some that were dealt with in their response but still remain unaddressed or not commented upon.

      - STZ treatment cannot be used as a T1D model for the reasons I outlined in my previous letter. I would have been happy to see a response on that but they did not provide any. The manuscript is misleading in this important respect.

      - Mechanistically, the manuscript remains at a rather superficial level. I highlighted some possibilities to enrich the manuscript but none was addressed even in the discussion.<br /> (a) How is eugenol penetrating the cell, is there a receptor that could be potentially targeted?<br /> (b) Are there intermediary proteins that convey the effect to the Nrf2/Keap1 complex or is eugenol directly disrupting their interaction?<br /> (c) What are direct downstream Nrf2 effectors?<br /> (d) Besides, streptozotocin is also a powerful DNA alkylating agent, are such effects relieved by eugenol?

      - It is puzzling that all molecular analyses show a gradual reversion effect with increasing doses of eugenol but this gradual effect is apparently missing in many of the physiological parameters assessed in Figure 1, including the all-important OGTT assays. Can the authors interpret this? In the high eugenol group in the OGTT assays there is a group of mice that are clearly outliers. Most likely the STZ treatment for these mice was not efficient and their inclusion skews the results. Besides, it is important to assess differences among eugenol groups (one way ANOVA). The statistical tests provided are incomplete and sometimes not done correctly.

      - Given that medical research is still heavily biased in favor of analyses in males and given that the authors have analyzed in Figure 1 a very large number of animals what are the results stratified by sex?

    2. Reviewer #3 (Public review):

      Summary:

      This study by Jiang et al. aims to establish the streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) mouse model in vivo and the STZ-induced pancreatic β cell MIN6 cell model in vitro to explore the protective effects of Eugenol (EUG) on T1DM. The authors tried to elucidate the potential mechanism by which EUG inhibits the NRF2-mediated anti-oxidative stress pathway. Overall, this study is well executed with solid data, offering an intriguing report from animal studies for a potential new treatment strategy for T1DM.

      Strengths:

      In vivo efficacy study is comprehensive and solid. Given STZ-induced T1DM is a devastating and harsh model, the in vivo efficacy from this compound is really impressive.

    1. Reviewer #1 (Public review):

      Summary:

      It is evident that studying leukocyte extravasation in vitro is a challenge. One needs to include physiological flow, culture cells and isolate primary immune cells. Timing is of utmost importance and a reproducible setup essential. Extra challenges are met when extravasation kinetics in different vascular beds is required, e.g., across the blood-brain barrier. In this study, the authors describe a reliable and reproducible method to analyze leukocyte TEM under physiological flow conditions, including this analysis. That the software can also detect reverse TEM is a plus.

      Strengths:

      It is quite a challenge to get this assay reproducible and stable, in particular as there is flow included. Also for the analysis, there is currently no clear software analysis program, and many labs have their own methods. This paper gives the opportunity to unify the data and results obtained with this assay under label-free conditions. This should eventually lead to more solid and reproducible results.

      Also, the comparison between manual and software analysis is appreciated.

      Weaknesses:

      The authors stress that it can be done in BBB models, but I would argue that it is much more broadly applicable. This is not necessarily a weakness of the study but more an opportunity to strengthen the method. So I would encourage the authors to rewrite some parts and make it more broadly applicable.

    2. Reviewer #2 (Public review):

      Summary:

      This paper develops an under-flow migration tracker to evaluate all the steps of the extravasation cascade of immune cells across the BBB. The algorithm is useful and has important applications.

      Strengths:

      The algorithm is almost as accurate as manual tracking and importantly saves time for researchers. The authors have discussed how their tool compares to other tracking methods.

      Weaknesses:

      Applicability can be questioned because the device used is 2D and physiological biology is in 3D. However, the authors have addressed this point in their revised manuscript.

    1. Reviewer #1 (Public Review):

      In this manuscript, the authors employed direct RNA sequencing with nanopores, enhanced by 5' end adaptor ligation, to comprehensively interrogate the human transcriptome at single-molecule and nucleotide resolution. They conclude that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Contrary to the literature, they found that, unlike typical RNA decay models in normal conditions, stress-induced RNA decay is dependent on XRN1 but does not depend on the removal of the poly(A) tail. The findings presented are interesting and the authors fully established these paradigm-shifting findings using cutting-edge technologies.

    2. Reviewer #2 (Public Review):

      In the manuscript "Full-length direct RNA sequencing uncovers stress-granule dependent RNA decay upon cellular stress", Dar, Malla, and colleagues use direct RNA sequencing on nanopores to characterize the transcriptome after arsenite and oxidative stress. They observe a population of transcripts that are shortened during stress. The authors hypothesize that this shortening is mediated by the 5'-3' exonuclease XRN1, as XRN1 knockdown results in longer transcripts. Interestingly, the authors do not observe a polyA-tail shortening, which is typically thought to precede decapping and XRN1-mediated transcript decay. Finally, the authors use G3BP1 knockout cells to demonstrate that stress granule formation is required for the observed transcript shortening. The manuscript contains intriguing findings of interest to the mRNA decay community.

    3. Reviewer #3 (Public Review):

      The work by Dar et al. examines RNA metabolism under cellular stress, focusing on stress-granule-dependent RNA decay. It employs direct RNA sequencing with a Nanopore-based method, revealing that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy but is independent of the shortening of the poly(A) tail. This decay, however, is dependent on XRN1 and enriched in the stress granule transcriptome. Notably, inhibiting stress granule formation in G3BP1/2-null cells restores the RNA length to the same level as wild-type. It suppresses stress-induced decay, identifying RNA decay as a critical determinant of RNA metabolism during cellular stress and highlighting its dependence on stress-granule formation. This is an exciting and novel discovery utilizing innovative sequencing methods to studying mRNA decay.

    1. Reviewer #1 (Public review):

      Summary:

      The authors report an fMRI investigation of the neural mechanisms by which selective attention allows capacity-limited perceptual systems to preferentially represent task-relevant visual stimuli. Specifically, they examine competitive interactions between two simultaneously-presented items from different categories, to reveal how task-directed attention to one of them modulates the activity of brain regions that respond to both. The specific hypothesis is that attention will bias responses to be more like those elicited by the relevant object presented on its own, and further that this modulation will be stronger for more dissimilar stimulus pairs. This pattern was confirmed in univariate analyses that measured the mass response of a priori regions of interest, as well as multivariate analyses that considered the patterns of evoked activity within the same regions. The authors follow these neuroimaging results with a simulation study that favours a "tuning" mechanism of attention (enhanced responses to highly effective stimuli, and suppression for ineffective stimuli) to explain this pattern.

      Strengths:

      The manuscript clearly articulates a core issue in the cognitive neuroscience of attention, namely the need to understand how limited perceptual systems cope with complex environments in the service of the observer's goals. The use of a priori regions of interest (and a control region), and the inclusion of both univariate and multivariate analyses as well as a simple model, are further strengths. The authors carefully derive clear indices of attentional effects (for both univariate and multivariate analyses) which makes explication of their findings easy to follow.

      Weaknesses:

      Direct estimation of baseline responses may have improved the validity of the modelling. The presentation of transparently overlapping items has some methodological advantages, but somewhat limits the ecological validity of connections to real-world visual "clutter".

    1. Reviewer #1 (Public review):

      Summary:

      This article investigated the relationship between different intensities of exercise training and intestinal barrier dysfunction, and further explores the possible mechanisms, including the contribution of stress response, inflammatory response, gut microbiota alterations, and derived metabolites.

      Strengths:

      This article mainly focused on different aspects of the phenotypes and the morphology of intestinal barrier dysfunction induced by exercise training.

      Weaknesses:

      This article lacks the verification of the association of causality among various phenotypes and lacks a comprehensive understanding of the underlying mechanisms of how exercise contributes to intestinal barrier dysfunction.

      (1) For example, the author claimed that heat shock and ischemia are the causes of intestinal epithelial damage caused by exercise, and it is not only evidenced by detecting the expression of a few regulators, such as HSF and HSP70 after exercise; and by Immunohistochemical analysis of intestinal morphology and inflammation.

      (2) Many kinds of intestinal bacteria could produce short-chain fatty acids, such as Faecalibacterium Prausnitzii, did the authors check their abundance in the intestine after exercise training?

      (3) How to define exercise intensity? Was VO2 Max testing used in this study?

      (4) As the strict control, it is recommended to set 4 groups of exercise training groups: daily vigorous exercise training, daily moderate exercise training, daily vigorous exercise training with intermittent rest days, and daily moderate exercise training with intermittent rest days.

      (5) Are there any differences in diet and metabolism between different groups of mice, which may affect the phenotypes, especially the composition and the the diverstiy of gut microbiota?

    2. Reviewer #2 (Public review):

      Lian et al. provide novel and exciting findings related to exercise-induced intestinal injury that have many implications for those engaging in any kind of training protocol. The authors continue to provide data demonstrating that different forms of exercise training impart a unique signature to the gut microbiota. The paper is well-written, easy to follow, and contains ample information in all sections. The figures are displayed in a clear and comprehensible format, with elegant images. I do have a few concerns regarding some aspects of the paper listed below, but otherwise, I feel that the authors clearly state their objectives, implement valid methods, and summarize their findings with the appropriate conclusions given their experimental constraints.

      (1) The authors performed extensive experiments demonstrating the immediate effects of a bout of exercise on intestinal integrity throughout a 6-week training program. Additionally, the authors go as far as to show that successive exercise sessions appear to augment the observed damage. This is very important and noteworthy data. But I wonder, had the endpoint collections been taken 24 hours+ after the last exercise bout, would the findings be different? My concern is that the 1-hour time point is biased towards seeing more damage. I understand the acute effects of exercise occur and are important to report, but they can be transient, and adaptations ensue. My main concern is that the data shows the onset of the initial damage, but nothing addresses an adaptive or recovery response that could counter the observed exercise-induced intestinal injury. Even metrics such as stool consistency/ pellets per hour/ abnormal defecation measurements could indicate the function of the GI system after exercise and may offer more information related to damage vs recovery.

      (2) An additional concern arises with the model of forced treadmill running. It was previously shown that forced treadmill running resulted in more gut damage compared to voluntary wheel running, with or without dextran sodium sulfate-induced colitis (PMID: 23707215). This type of training appears to be very important in initiating damage to the GI. Understanding how much of this is related to the chosen exercise protocol, forced treadmill running, will be very important for future experiments. Exercise intensity has been suggested to be a major factor in exercise-induced intestinal damage. Therefore, the group designated as MOD-EX in this paper may be over the intensity threshold that limits GI damage. The protocols used in this manuscript may be inherently biased towards enhancing exercise-induced GI damage, which is not necessarily negative, especially when a damaging protocol is needed. However, how much this relates to and can be translated to humans is not clear and needs further experimentation.

      (3) I think the comparison between groups at the specified time point is important, but I believe additional comparisons should be included that show within-group differences across each time point. For example, in the Mod group, does FITC- dextran change between 4 and 6 weeks? Are there morphological change differences between 2, 4, and 6 weeks within each group? Essentially addressing a progression in damage as a function of the duration of exercise training. The authors clearly show exercise-induced damage to the GI, but we do not know how this damage is handled or if the continuation of exercise continues to reinforce the disruption in the epithelial cells.

      (4) The authors describe the purpose of this study as being to identify key regulators of the destruction and reconstruction process of the GI after exercise (introduction lines 128-129). While the authors did sufficient work to describe certain contributing factors, I do not believe they have provided compelling data on the key regulators of exercise-induced intestinal injury, at least experimentally they did not perform exhaustive experiments to identify such. Nor did the authors include data showing any kind of reconstruction that occurs in the GI after exercise. I believe the authors need to revise this statement to reflect that they investigated certain or specific regulators of the damage response in the intestines after exercise training.

      (5) Was water intake monitored and recorded per group? If so I think it would be important to include in the supplemental data. Fluid intake/proper hydration can also contribute to changes in the microbiome and if the data is available, it would complement the food intake. If for any reason the exercise groups were taking in less fluid it may be a confounding factor that should be considered.

      (6) Methods section - Treadmill running exercise protocol, line 143, I think there is a typo with "exercise straining". Did the authors mean to write "exercise training"? If it is indeed a typo, the same appears in the supplemental material under the same section.

      (7) The microbiome analysis is sufficient, and the authors speculate on the possible consequences of the observed changes to the microbiota. However, I believe Figures 5E-G are misleading. The positive correlation is present because of the increase in gut leakiness and the observed exercise-induced increase in microbes. However the same correlation could be made with any positive adaptation to exercise and the observed gut leakiness. I believe those correlations, as described now, postulate these microbes (members of the family Lachnospiraceae) are associated with increased gut leakiness. However, this correlation is not compelling as it is, and additional experiments are warranted to justify this. It cannot be ruled out that the microbes are increasing due to exercise itself. Additionally, reports have suggested species within the Lachnospiraceae family do increase in response to exercise in mice and are associated with positive adaptations to exercise (PMID: 28862530, PMID: 37940330, PMID: 36517598). With this, it should be noted that Lachnospiraceae was also found to be negatively associated with endurance performance (PMID: 35002754). Therefore, specific species or stains of Lachnospiraceae may be highly responsive to exercise while others are not. Without deeper sequencing it is impossible to tease this out and therefore, the authors should be careful with any interpretation beyond discussing what is observed. Additionally, these correlations between Lachnospiraceae and gut leakiness should be interpreted cautiously or more experiments should be included which demonstrate these microbes are connected to gut leakiness. Much more research is needed to determine exactly what strains are positively and negatively associated with exercise adaptations and performance.

    1. Reviewer #1 (Public review):

      In this study, Sarver and colleagues carried out an exhaustive analysis of the functioning of various components (Complex I/II/IV) of the mitochondrial electron transport chain (ETC) using a real-time cell metabolic analysis technique (commonly referred as Seahorse oxygen consumption rate (OCR) assay). The authors aimed to generate an atlas of ETC function in about 3 dozen tissue types isolated from all major mammalian organ systems. They used a recently published improvised method by which ETC function can be quantified in freshly frozen tissues. This method enabled them to collect data from almost all organ systems from the same mouse and use many biological replicates (10 mice/experiment) required for an unbiased and statistically robust analysis. Moreover, they studied the influence of sex (male and female) and aging (young adult and old age) on ETC function in these organ systems. The main findings of this study are (1) cells in the heart and kidneys have very active ETC complexes compared to other organ systems, (2) the sex of the mice has little influence on the ETC function, and (3) aging undermined the mitochondrial function in most tissue, but surprisingly in some tissue aging promoted the activity of ETC complexes (e.g., Quadriceps, plantaris muscle, and Diaphragm).

      Comments on the second revision:

      My previous concern remains unaddressed in the new revision. As I mentioned earlier, it is crucial for the authors to include a detailed discussion on the limitations of their method, specifically how maximal respiration does not accurately reflect the actual ATP production rate. Additionally, the authors should highlight the fact that data provided in the manuscript should be interpreted with caution.

    2. Reviewer #2 (Public review):

      Summary:

      The authors utilize a new technique to measure mitochondrial respiration from frozen tissue extracts, which goes around the historical problem of purifying mitochondria prior to analysis, a process that requires a fair amount of time and cannot be easily scaled up.

      Strengths:

      A comprehensive analysis of mitochondrial respiration across tissues, sexes, and two different ages provides foundational knowledge needed in the field.

      Weaknesses:

      While many of the findings are mostly descriptive, this paper provides a large amount of data for the community and can be used as a reference for further studies. As the authors suggest, this is a new atlas of mitochondrial function in mouse. The inclusion of a middle aged time point and a slightly older young point (3-6 months) would be beneficial to the study.

    3. Reviewer #3 (Public review):

      The aim of the study was to map, a) whether different tissues exhibit different metabolic profiles (this is known already), what differences are found between female and male mice and how the profiles changes with age. In particular, the study recorded the activity of respirasomes, i.e. the concerted activity of mitochondrial respiratory complex chains consisting of CI+CIII2+CIV, CII+CIII2+CIV or CIV alone.

      The strength is certainly the atlas of oxidative metabolism in the whole mouse body, the inclusion of the two different sexes and the comparison between young and old mice. The measurement was performed on frozen tissue, which is possible as already shown (Acin-Perez et al, EMBO J, 2020).

      Weakness: The assay reveals the maximum capacity of enzyme activity, which is an artificial situation and may differ from in vivo respiration, as the authors themselves discuss. The material used was a very crude preparation of cells containing mitochondria and other cytosolic compounds and organelles. Thus, the conditions are not well defined and the respiratory chain activity was certainly uncoupled from ATP synthesis. Preparation of more pure mitochondria and testing for coupling would allow evaluation of additional parameters: P/O ratios, feedback mechanism, basal respiration, and ATP-coupled respiration, which reflect in vivo conditions much better. The discussion is rather descriptive and cautious and could lead to some speculations about what could cause the differences in respiration and also what consequences these could have, or what certain changes imply.<br /> Nevertheless, this study is an important step towards this kind of analysis.

      Comments on the second revision:

      I believe this is an important and interesting area of study, although I recognise that the assay which measures maximal enzyme activity under unphysiological conditions has its limitations. Nevertheless, it does seem possible to get a first glance of the respiratory situation in the respective tissue. There is a typo in the source data (Fig. xC) for skeletal muscle.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors used both the commonly used neonatal hyperoxia model as well as cell-type-specific genetic inactivation of Tgfbr2 models to study the basis of BPD. The bulk of the analyses focus on the mesenchymal cells. Results indicate impaired myofibroblast proliferation, resulting in decreased cell number. Inactivation of Etc2 in Pdgfra-lineaged cells, preventing cytokinesis of myofibroblasts, led to alveolar simplification. Together, the findings demonstrate that disrupted myofibroblast proliferation is a key contributor to BPD pathogenesis.

      Strengths:

      Overall, this comprehensive study of BPD models advances our understanding of the disease. The data are of high quality.

      Comments on latest version:

      In the revision, the authors addressed all critiques.

    2. Reviewer #2 (Public review):

      Summary:

      In this study the authors systematically explore mechanism(s) of impaired postnatal lung development with relevance to BPD (bronchopulmonary dysplasia) in two murine models of 'alveolar simplification', namely hyperoxia and epithelial loss of TGFb signaling. The work presented here is of great importance, given the limited treatment options for a clinical entity frequently encountered in newborns with high morbidity and mortality that is still poorly understood, and the unclear role of TGFb signaling, its signaling levels, and its cellular effects during secondary alveolar septum formation, a lung structure generating event heavily impacted by BPD. The authors show that hyperoxia and epithelial TGFb signaling loss have similar detrimental effects on lung structure and mechanical properties (emphysema-like phenotype) and are associated with significantly decreases numbers of PDGFRa-expressing cells, the major cell pool responsible for generation of postnatal myofibroblasts. They then use a single-cell transcriptomic approach combined with pathway enrichment analysis for both models to elucidate common factors that affect alveologenesis. Using cell communication analysis (NicheNet) between epithelial and myofibroblasts they confirm increased projected TGFb-TGFbR interactions and decreased projected interactions for PDGFA-PDGFRA, and other key pathways, such as SHH and WNT. Based on these results they go on to uncover in a sequela of experiments that surprisingly, increased TGFb appears reactive to postnatal lung injury and rather protective/homeostatic in nature, and the authors establish the requirement for alpha V integrins, but not the subtype alphaVbeta6, a known activator of TGFb signaling and implied in adult lung fibrosis. The authors then go beyond the TGFb axis evaluation to show that mere inhibition of proliferation by conditional KO of Ect2 in Pdgfra lineage results in alveolar simplification, pointing out the pivotal role of PDGFRa-expressing myofibroblasts for normal postnatal lung development.

      Strengths:

      (1) The approach including both pharmacologic and mechanistically-relevant transgenic interventions both of which produced consistent results provides robustness of the results presented here.

      (2) Further adding to this robustness is the use of moderate levels of hyperoxia at 75% FiO2, which is less extreme than 100% FiO2 frequently used by others in the field, and therefore favors the null hypothesis.

      (3) The prudent use of advancement single cell analysis tools, such as NicheNet to establish cell interactions through the pathways they tested and the validation of their scRNA-seq results by analysis of two external datasets. Delineation of the complexity of signals between different cell types during normal and perturbed lung development, such as attempted successfully in this study, will yield further insights into the underlying mechanism(s).

      (4) The combined readout of lung morphometric (MLI) and lung physiologic parameters generates a clinically meaningful readout of lung structure and function.

      (5) The systematic evaluation of TGFb signaling better determines the role in normal and postnatally-injured lung.

      Weaknesses:

      (1) While the study convincingly establishes the effect of lung injury on the proliferation of PDGFRa-expressing cells, differentiation is equally important. Characterization of PDGFRa expressing cells and tracking the changes in the injury models in the scRNA analysis, a key feature of this study, would benefit from expansion in this regard. PDGFRa lineage gives rise to several key fibroblast populations, including myofibroblasts, lipofibroblasts, and matrix-type fibroblasts (Collagen13a1, Collagen14a1). Lipofibroblasts constitute a significant fraction of PDGFRa+ cells, and expand in response to hyperoxic injury, as shown by others. Collagen13a1-expressing fibroblasts expand significantly under both conditions (Fig.3), and appear to contain a significant number of PDGFRa-expressing cells (Suppl Fig.1). Effects of the applied injuries on known differentiation markers for these populations should be documented. Another important aspect would be to evaluate whether the protective/homeostatic effect of TGFb signaling is by supporting differentiation of myofibroblasts. Postnatal Gli1 lineage gains expression of PDGFRa and differentiation markers, such as Acta2 (SMA) and Eln (Tropoelastin). Loss of PDGFRa expression was shown to alter Elastin and TGFb pathway related genes. TGFb signaling is tightly linked to the ECM via LTBPs, Fibrillins and Fibulins. An additional analysis in the aforementioned regards has great potential to more specifically identify the cell type(s) affected by the loss of TGFb signaling and allow analysis of their specific transcriptomic changes in response and underlying mechanism(s) to postnatal injury.

      [The authors have added in detailed transcriptomic description of the fibroblast populations.]

      (2) Of the three major lung abnormalities encountered in BPD, the authors focus on alveolarization impairment in great detail, to very limited extend on inflammation, and not on vascularization impairment. However, this would be important not only to better capture the established pathohistologic abnormalities of BPD, but also is needed since the authors alter TGFb signaling, and inflammatory and vascular phenotypes with developmental loss of TGFb signaling and its activators have been described. Since the authors make the point about absence of inflammation in their BPD model, it will be important to show the evidence.

      [While this an important question, assessment of these components goes beyond the scope of this paper.]

      (3) Conceptually it would be important that in the discussion the authors reconcile their findings in the experimental BPD models in light of human BPD and potential implications it might have on new ways to target key pathways and cell types for treatment. This allows the scientific community to formulate the next set of questions in a disease relevant manner.

      [The authors have amended the discussion in this regard.]

      Comments on latest version:

      This reviewer would like to thank the authors for their efforts to address the concerns, in particular the better transcriptomic description of the fibroblast populations. The reviewer is well aware of the issues with PDGFRa antibodies that work on mouse tissue and also the problem with available reporters and lineage tracers in terms of haploinsufficiency.

      There are no further concerns from this reviewer's side.

    3. Reviewer #3 (Public review):

      This paper seeks to understand the role of alveolar myofibroblasts in the abnormal lung development after saccular stage injury.

      Strengths:

      (1) Multiple models of neonatal injury are used, hyperoxia and transgenic models that target alveolar myofibroblasts.

      (2) The authors integrate their data with prior published single-cell data from neonatal hyperoxia injury models and demonstrate concordant findings.

      Weaknesses:

      (1) As the authors acknowledge in the discussion, there are no spatial and temporal validation data of the single-cell findings. As the ductal myofibroblasts has many overlapping genes, localizing and quantifying the loss of these cells in injury as a plausible mechanistic driver would greatly strengthen the conclusion.

      (2) As they note in their response, this proved to be technically difficult and current Pdgfra-lineage trace tools are not without their own limitations.

      Summary:

      Taken together, this manuscript provides a rich data set from a model of irreversible neonatal lung injury. The single-cell analysis methods are well-articulated and the limitations are acknowledged, allowing this paper to provide a foundation for future work to spatially and temporally validate these claims.

    1. Reviewer #1 (Public review):

      Malaria parasites detoxify free heme molecules released from digested host hemoglobins by biomineralizing them into inert hemozoin. Thus, why malaria parasites retain PfHO, a dead enzyme that loses the capacity of catabolizing heme, is an outstanding question that has puzzled researchers for more than a decade. In the current manuscript, the authors addressed this question by first solving the crystal structure of PfHO and aligning it with structures of other heme oxygenase (HO) proteins. They found that the N-terminal 95 residues of PfHO, which failed to crystalize due to its disordered nature, may serve as signal and transit peptides for PfHO subcellular localization. This was confirmed by subsequent microscopic analysis with episomally expressed PfHO-GFP and a GFP reporter fused to the first 83 residues of PfHO (PfHO N-term-GFP). To investigate the functional importance of PfHO, the authors generated an anhydrotetracycline (aTC) controlled PfHO knockdown strain. Strikingly, the parasites lacking PfHO failed to grow and lost their apicoplast. Finally, by chromatin immunoprecipitation (ChIP), quantitative PCR/RT-PCR and growth assays, the authors showed that both the cognate N-terminus and HO-like domain were required for PfHO function as an apicoplast DNA interacting protein.

      The authors systemically performed multidisciplinary approaches to address this difficult question: what is the function of this enzymatically dead PfHO? I enjoyed reading this manuscript and its thoughtful discussion. This study is not only of clinical importance for antimalarial treatments but also deepens our understanding of protein function evolution.

      The authors proposed that PfHO interacts with apicoplast genome DNA via the electropositive N-terminus. Interestingly, these positively charged residues are not conserved between Plasmodium, Theileria and Babesia. I will be curious to follow the authors' future work to investigate the function of this electropositive N-terminus, possibly by comparative and mutagenesis analysis?

    2. Reviewer #2 (Public review):

      Summary:

      Blackwell et al. investigated the structure, localization and physiological function of Plasmodium falciparum (Pf) heme oxygenase (HO). Pf and other malaria parasites scavenge and digest large amounts of hemoglobin from red cells for sustenance. To counter the potentially cytotoxic effects of heme, it is biomineralized into hemozoin and stored in the food vacuole. Another mechanism to counteract heme toxicity is through its enzymatic degradation via heme oxygenases. However, it was previously found by the authors that PfHO lacks the ability to catalyze heme degradation, raising the intriguing question of what the physiological function of PfHO is. In the current contribution, the authors determine that PfHO localizes to the apicoplast, determine its targeting sequence, establish the essentiality of PfHO for parasite viability, and determine that PfHO is required for proper maintenance of apicoplasts and apicoplast gene expression. In sum, the authors establish an essential physiological function for PfHO, thereby providing new insights into the role of PfHO in plasmodium metabolism.

      Strengths:

      The studies are rigorously conducted and the results of the experiments unambiguously support a role for PfHO as being an apicoplast targeted protein required for parasite viability and maintenance of apicoplasts.

      Weaknesses:

      While the studies conducted are rigorous and support the primary conclusions, the lack of experiments probing the molecular function of PfHO somewhat limits the impact of the work. Nevertheless, knowledge that PfHO is required for parasite viability and plays a role in the maintenance of apicoplasts is still an important advance.

      Comments on revisions:

      The authors thoughtfully addressed all the reviewer comments.

    1. Reviewer #1 (Public review):

      Mohseni and Elhaik have critically examined the widespread use of principal component analysis (PCA) in phylogenetic inferences within the discipline of physical anthropology. The authors present compelling evidence that PCA underperforms compared to machine learning (ML) classifiers. This excellent work not only challenges the reliability of PCA-based taxonomic inferences, but also adds to a growing body of literature questioning the application of PCA in physical anthropology, thereby initiating a fruitful discussion in our field. Moreover, it underscores the crucial need of external validation methods in such studies.

      The authors have addressed nearly all of my comments, and my questions have been fully answered. The revised manuscript represents a significant improvement.

      The new title more effectively conveys the central message emerging from this research; The revised introduction more precisely addresses the methodological challenges currently facing the discipline.<br /> I am equally amazed by the profound susceptibility of the PCA results, as demonstrated by the alterations introduced by the authors, and by the contrasting robustness of the ML classifiers. I trust that this contrast will spark a fruitful discussion about the application of both methods in our field. It should also inspire further research conducted by physical anthropologists to study the role of ML in this discipline.<br /> Lastly, and importantly, I believe the authors should be commended for addressing the broader implications of their work, particularly in relation to public perceptions of science (pp. 20-21).

    2. Reviewer #3 (Public review):

      Mohseni and Elhaik challenge the widespread use of PCA as an analytical and interpretive tool in the study of geometric morphometrics. The standard approach in geometric morphometrics analysis involves Generalised Procrustes Analysis (GPA) followed by Principal Component Analysis (PCA). Recent research challenges PCA outcomes' accuracy, robustness, and reproducibility in morphometrics analysis. In this paper, the authors demonstrate that PCA is unreliable for such studies. Additionally, they test and compare several Machine-Learning methods and present MORPHIX, a Python package of their making that incorporates the tools necessary to perform morphometrics analysis using ML methods.

      Mohseni and Elhaik conducted a set of thorough investigations to test PCA's accuracy, robustness, and reproducibility following renewed recent criticism and publications where this method was abused. Using a set of 2 and 3D morphometric benchmark data, the authors performed a traditional analysis using GPA and PCA, followed by a reanalysis of the data using alternative classifiers and rigorous testing of the different outcomes.

      In the current paper, the authors evaluated eight ML methods and compared their classification accuracy to traditional PCA. Additionally, common occurrences in the attempted morphological classification of specimens, such as non-representative partial sampling, missing specimens, and missing landmarks, were simulated, and the performance of PCA vs ML methods was evaluated.

      Comments on revisions:

      I have gone over the revised manuscript and the detailed responses to the previous round of review. While there are places where I personally would have used slightly toned-down phrasing, the authors' get to set the tone of their manuscript, and I will not argue with that any further.

      In general, the restructuring, addition of new paragraphs, minor revisions and new title make for a much better manuscript, which as stated in the previous review, will be a valuable resource for workers in the field.

    1. Reviewer #1 (Public review):

      Summary:

      The authors examine CD8 T cell selective pressure in early HCV infection using. They propose that after initial CD8-T mediated loss of virus fitness, in some participants around 3 months after infection, HCV acquires compensatory mutations and improved fitness leading to virus progression.

      Strengths:

      Throughout the paper, the authors apply well-established approaches in studies of acute to chronic HIV infection for studies of HCV infection. This lends rigor the to the authors' work.

      Weaknesses:

      (1) The Discussion could be strengthened by a direct discussion of the parallels/differences in results between HIV and HCV infections in terms of T cell selection, entropy, and fitness.

      (2) In the Results, please describe the Barton model functionality and why the fitness landscape model was most applicable for studies of HCV viral diversity.

      (3) Recognize the caveats of the HCV mapping data presented.

      (4) The authors should provide more data or cite publications to support the authors' statement that HCV-specific CD8 T cell responses decline following infection.

      (5) Similarly, as the authors' measurements of HCV T and humoral responses were not exhaustive, the text describing the decline of T cells with the onset of humoral immunity needs caveats or more rigorous discussion with citations (Discussion lines 319-321).

      (6) What role does antigen drive play in these data -for both T can and antibody induction?

      (7) Figure 3 - are the X and Y axes wrongly labelled? The Divergent ranges of population fitness do not make sense.

      (8) Figure S3 - is the green line, average virus fitness?

      (9) Use the term antibody epitopes, not B cell epitopes.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, Walker and collaborators study the evolution of hepatitis C virus (HCV) in a cohort of 14 subjects with recent HCV infections. They focus in particular on the interplay between HCV and the immune system, including the accumulation of mutations in CD8+ T cell epitopes to evade immunity. Using a computational method to estimate the fitness effects of HCV mutations, they find that viral fitness declines as the virus mutates to escape T-cell responses. In long-term infections, they found that viral fitness can rebound later in infection as HCV accumulates additional mutations.

      Strengths:

      This work is especially interesting for several reasons. Individuals who developed chronic infections were followed over fairly long times and, in most cases, samples of the viral population were obtained frequently. At the same time, the authors also measured CD8+ T cell and antibody responses to infection. The analysis of HCV evolution focused not only on variation within particular CD8+ T cell epitopes but also on the surrounding proteins. Overall, this work is notable for integrating information about HCV sequence evolution, host immune responses, and computational metrics of fitness and sequence variation. The evidence presented by the authors supports the main conclusions of the paper described above.

      Weaknesses:

      One notable weakness of the present version of the manuscript is a lack of clarity in the description of the method of fitness estimation. In the previous studies of HIV and HCV cited by the authors, fitness models were derived by fitting the model (equation between lines 435 and 436) to viral sequence data collected from many different individuals. In the section "Estimating survival fitness of viral variants," it is not entirely clear if Walker and collaborators have used the same approach (i.e., fitting the model to viral sequences from many individuals), or whether they have used the sequence data from each individual to produce models that are specific to each subject. If it is the former, then the authors should describe where these sequences were obtained and the statistics of the data.

      If the fitness models were inferred based on the data from each subject, then more explanation is needed. In prior work, the use of these models to estimate fitness was justified by arguing that sequence variants common to many individuals are likely to be well-tolerated by the virus, while ones that are rare are likely to have high fitness costs. This justification is less clear for sequence variation within a single individual, where the viral population has had much less time to "explore" the sequence landscape. Nonetheless, there is precedent for this kind of analysis (see, e.g., Asti et al., PLoS Comput Biol 2016). If the authors took this approach, then this point should be discussed clearly and contrasted with the prior HIV and HCV studies.

      Another important point for clarification is the definition of fitness. In the abstract, the authors note that multiple studies have shown that viral escape variants can have reduced fitness, "diminishing the survival of the viral strain within the host, and the capacity of the variant to survive future transmission events." It would be helpful to distinguish between this notion of fitness, which has sometimes been referred to as "intrinsic fitness," and a definition of fitness that describes the success of different viral strains within a particular individual, including the potential benefits of immune escape. In many cases, escape variants displace variants without escape mutations, showing that their ability to survive and replicate within a specific host is actually improved relative to variants without escape mutations. However, escape mutations may harm the virus's ability to replicate in other contexts. Given the major role that fitness plays in this paper, it would be helpful for readers to clearly discuss how fitness is defined and to distinguish between fitness within and between hosts (potentially also mentioning relevant concepts such as "transmission fitness," i.e., the relative ability of a particular variant to establish new infections).

      One concern about the analysis is in the test of Shannon entropy as a way to quantify the rate of escape. The authors describe computing the entropy at multiple time points preceding the time when escape mutations were observed to fix in a particular epitope. Which entropy values were used to compare with the escape rate? If just the time point directly preceding the fixation of escape mutations, could escape mutations have already been present in the population at that time, increasing the entropy and thus drawing an association with the rate of escape? It would also be helpful for readers to include a definition of entropy in the methods, in addition to a reference to prior work. For example, it is not clear what is being averaged when "average SE" is described.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, De La Forest Divonne et al. build a repertory of hemocytes from adult Pacific oysters combining scRNAseq data with cytologic and biochemical analyses. Three categories of hemocytes were described previously in this species (i.e. blast, hyalinocyte, and granulocytes). Based on scRNAseq data, the authors identified 7 hemocyte clusters presenting distinct transcriptional signatures. Using Kegg pathway enrichment and RBGOA, the authors determined the main molecular features of the clusters. In parallel, using cytologic markers, the authors classified 7 populations of hemocytes (i.e. ML, H, BBL, ABL, SGC, BGC, and VC) presenting distinct sizes, nucleus sizes, acidophilic/basophilic, presence of pseudopods, cytoplasm/nucleus ratio and presence of granules. Then, the authors compared the phenotypic features with potential transcriptional signatures seen in the scRNAseq. The hemocytes were separated in a density gradient to enrich for specific subpopulations. The cell composition of each cell fraction was determined using cytologic markers and the cell fractions were analysed by quantitative PCR targeting major cluster markers (two per cluster). With this approach, the authors could assign cluster 7 to VC, cluster 2 to H, and cluster 3 to SGC. The other clusters did not show a clear association with this experimental approach. Using phagocytic assays, ROS, and copper monitoring, the authors showed that ML and SGC are phagocytic, ML produces ROS, and SGC and BGC accumulate copper. Then with the density gradient/qPCR approach, the authors identified the populations expressing anti-microbial peptides (ABL, BBL, and H). At last, the authors used Monocle to predict differentiation trajectories for each subgroup of hemocytes using cluster 4 as the progenitor subpopulation.

      The manuscript provides a comprehensive characterisation of the diversity of circulating immune cells found in Pacific oysters.

      Strengths:

      The combination of the two approaches offers a more integrative view.

      Hemocytes represent a very plastic cell population that has key roles in homeostatic and challenged conditions. Grasping the molecular features of these cells at the single-cell level will help understand their biology.

      This type of study may help elucidate the diversification of immune cells in comparative studies and evolutionary immunology.

      Weaknesses:

      The study should be more cautious about the conclusions, include further analyses, and inscribe the work in a more general framework.

    2. Reviewer #2 (Public review):

      Summary:

      This work provides a comprehensive understanding of cellular immunity in bivalves. To precisely describe the hemocytes of the oyster C. gigas, the authors morphologically characterized seven distinct cell groups, which they then correlated with single-cell RNA sequencing analysis, also resulting in seven transcriptional profiles. They employed multiple strategies to establish relationships between each morphotype and the scRNAseq profile. The authors correlated the presence of marker genes from each cluster identified in scRNAseq with hemolymph fractions enriched for different hemocyte morphotypes. This approach allowed them to correlate three of the seven cell types, namely hyalinocytes (H), small granule cells (SGC), and vesicular cells (VC). A macrophage-like (ML) cell type was correlated through the expression of macrophage-specific genes and its capacity to produce reactive oxygen species. Three other cell types correspond to blast-like cells, including an immature blast cell type from which distinct hematopoietic lineages originate to give rise to H, SGC, VC, and ML cells. Additionally, ML cells and SGCs demonstrated phagocytic properties, with SGCs also involved in metal homeostasis. On the other hand, H cells, non-granular cells, and blast cells expressed antimicrobial peptides. This study thus provides a complete landscape of oyster hemocytes with functional validation linked to immune activities. This resource will be valuable for studying the impact of bacterial or viral infections in oysters.

      Strengths:

      The main strength of this study lies in its comprehensive and integrative approach, combining single-cell RNA sequencing, cytological analysis, cell fractionation, and functional assays to provide a robust characterization of hemocyte populations in Crassostrea gigas.

      (1) The innovative use of marker genes, quantifying their expression within specific cell fractions, allows for precise annotation of different cellular clusters, bridging the gap between morphological observations and transcriptional profiles.

      (2) The study provides detailed insights into the immune functions of different hemocyte types, including the identification of professional phagocytes, ROS-producing cells, and cells expressing antimicrobial peptides.

      (3) The identification and analysis of transcription factors specific to different hemocyte types and lineages offer crucial insights into cell fate determination and differentiation processes in oyster immune cells.

      (4) The authors significantly advance the understanding of oyster immune cell diversity by identifying and characterizing seven distinct hemocyte transcriptomic clusters and morphotypes.

      These strengths collectively make this study a significant contribution to the field of invertebrate immunology, providing a comprehensive framework for understanding oyster hemocyte diversity and function.

      Weaknesses:

      (1) The authors performed scRNAseq/lineage analysis and cytological analysis on oysters from two different sources. The methodology of the study raises concerns about the consistency of the sample and the variability of the results. The specific post-processing of hemocytes for scRNAseq, such as cell filtering, might also affect cell populations or gene expression profiles. It's unclear if the seven hemocyte types and their proportions were consistent across both samples. This inconsistency may affect the correlation between morphological and transcriptomic data.

      (2) The authors claim to use pathogen-free adult oysters (lines 95 and 119), but no supporting data is provided. It's unclear if the oysters were tested for bacterial and viral contaminations, particularly Vibrio and OsHV-1 μVar herpesvirus.

      (3) The KEGG and Gene Ontology analyses, while informative, are very descriptive and lack interpretation. The use of heatmaps with dendrograms for grouping cell clusters and GO terms is not discussed in the results, missing an opportunity to explore cell-type relationships. The changing order of cell clusters across panels B, C, and D in Figure 2 makes it challenging to correlate with panel A and to compare across different GO term categories. The dendrograms suggest proximity between certain clusters (e.g., 4 and 1) across different GO term types, implying similarity in cell processes, but this is not discussed. Grouping GO terms as in Figure 2A, rather than by dendrogram, might provide a clearer visualization of main pathways. Lastly, a more integrated discussion linking GO term and KEGG pathway analyses could offer a more comprehensive view of cell type characteristics. The presentation of scRNAseq results lacks depth in interpretation, particularly regarding the potential roles of different cell types based on their transcriptional profiles and marker genes. Additionally, some figures (2B, C, D, and 7C to H) suffer from information overload and small size, further hampering readability and interpretation.

      (4) The pseudotime analysis presented in the study provides modest additional information to what is already manifest from the clustering and UMAP visualization. The central and intermediate transcriptomic profile of cluster 4 relative to other clusters is apparent from the UMAP and the expression of shared marker genes across clusters (as shown in Figure 1D). The statement by the authors that 'the two types of professional phagocytes belong to the same granular cell lineage' (lines 594-596) should be formulated with more caution. While the pseudotime trajectory links macrophage-like (ML) and small granule-like (SGC) cells, this doesn't definitively establish a direct lineage relationship. Such trajectories can result from similarities in gene expression induced by factors other than lineage relationships, such as responses to environmental stimuli or cell cycle states. To conclusively establish this lineage relationship, additional experiments like cell lineage tracing would be necessary, if such tools are available for C. gigas.

      (6) Given the mention of herpesvirus as a major oyster pathogen, the lack of discussion on genes associated with antiviral immunity is a notable omission. While KEGG pathway analysis associated herpesvirus with cluster 1, the specific genes involved are not elaborated upon.

      (7) The discussion misses an opportunity for comparative analysis with related species. Specifically, a comparison of gene markers and cell populations with Crassostrea hongkongensis, could highlight similarities and differences across systems.

      Conclusion:

      The authors largely achieved their primary objective of providing a comprehensive characterization of oyster immune cells. They successfully integrated multiple approaches to identify and describe distinct hemocyte types. The correlation of these cell types with specific immune functions represents a significant advancement in understanding oyster immunity. However, certain aspects of their objectives have not been fully achieved. The lineage relationships proposed on the basis of pseudotime analysis, while interesting, require further experimental validation. The potential of antiviral defense mechanisms, an important aspect of oyster immunity, has not been discussed in depth.

      This study is likely to have a significant impact on the field of invertebrate immunology, particularly in bivalve research. It provides a new standard for comprehensive immune cell characterization in invertebrates. The identification of specific markers for different hemocyte types will facilitate future research on oyster immunity. The proposed model of hemocyte lineages, while requiring further validation, offers a framework for studying hematopoiesis in bivalves.

    3. Reviewer #3 (Public review):

      The paper addresses pivotal questions concerning the multifaceted functions of oyster hemocytes by integrating single-cell RNA sequencing (scRNA-seq) data with analyses of cell morphology, transcriptional profiles, and immune functions. In addition to investigating granulocyte cells, the study delves into the potential roles of blast and hyalinocyte cells. A key discovery highlighted in this research is the identification of cell types engaged in antimicrobial activities, encompassing processes such as phagocytosis, intracellular copper accumulation, oxidative bursts, and antimicrobial peptide synthesis.

      A particularly intriguing aspect of the study lies in the exploration of hemocyte lineages, warranting further investigation, such as employing scRNA-seq on embryos at various developmental stages.

      In the opinion of this reviewer, the discussion should compare and contrast the transcriptome characteristics of hemocytes, particularly granule cells, across the three species of bivalves, aligning with the published scRNA-seq studies in this field to elucidate the uniformities and variances in bivalve hemocytes.

    1. Reviewer #1 (Public review):

      Summary:

      Chemotherapy-induced chronic kidney injury is a significant and growing concern, as it can lead to long-term renal damage and compromised kidney function. The authors have highlighted an important aspect of this issue by evaluating the potential protective effects of OPCs against cisplatin-induced kidney injury. They propose that OPCs may mitigate renal damage by reducing NET formation, which could improve kidney function.

      Strengths:

      The study addressed a significant issue in the field of chemotherapy-induced kidney injury. The use of multiple markers and experimental methods provided a comprehensive exploration of the impact of OPCs on kidney damage. This approach allowed for a nuanced understanding of how OPCs might mitigate renal injury by reducing NET formation and improving kidney function.

      Weaknesses:

      The hypothesis is intriguing and relevant. However, the study encounters challenges, such as incomplete evidence and discrepancies between the text and data. Addressing these issues is crucial to improving the overall study's conclusions. The paper can potentially advance the understanding of therapeutic strategies for chemotherapy-induced kidney injury. Nonetheless, a clearer presentation of the data is necessary for it to have a substantial impact.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to understand the mechanisms underlying chronic kidney disease (CKD) induced by cisplatin treatment. Acute or chronic kidney diseases are major adverse effects of cisplatin chemotherapy for cancer, which limits the treatment's efficacy. Understanding the disease's genesis is fundamental to identifying targets for preventing or treating these conditions.

      Strengths:

      The authors employed an in vivo model of cisplatin-induced chronic kidney disease (CKD) in mice, which displayed similar adverse effects of the therapy as seen in humans. The model called repeated low-dose cisplatin (RLCD), caused similar tissue and functional damage in the kidneys, led to harmful effects on the intestines by altering the microbiota and epithelial cell barrier, and impaired systemic vascular blood flow.

      The authors demonstrated that the detrimental effects on the intestinal barrier led to the release of bacterial compounds into the circulation, which, in association with reactive oxygen species formed by the inflammatory and oxidative action of cisplatin, activated blood, and kidney neutrophils to release neutrophil extracellular traps (NETs). In turn, they suggested circulating NETs migrated into kidney tissue, causing damage. Moreover, they showed NETs are capable of trapping coagulation factors responsible for impaired systemic blood flow.

      These conclusions were primarily based on reduced CKD symptoms and vascular damage in genetically modified animals that do not form NETs, as well as the observation that a bacterial compound (lipopolysaccharide) associated with cisplatin induces NET formation in isolated neutrophils. Moreover, treating animals with an anti-inflammatory and antioxidant natural compound simultaneously with cisplatin administration abolished the harmful effects on the kidneys and intestines.

      The authors conclude that the intestinal damage and inflammatory properties of cisplatin lead to NET release, which, in turn, is responsible for the kidney and vascular damage evoked by cisplatin treatment.

      Hence, the manuscript employs a well-designed experimental model and covers several important manifestations of cisplatin toxicity. It also uses genetically deficient mice to demonstrate the involvement of NETs in the development of chronic kidney disease (CKD)

      Weaknesses:

      Overall, the work was well executed. However, a few aspects require additional experiments to confirm the conclusions. The involvement of NETs in the genesis of CKD is unquestionable; nonetheless, the roles of locally induced versus circulating NETs, as well as the translation of in vitro NET release to in vivo CKD genesis, need further evaluation. Additionally, the primary mechanism of the natural anti-inflammatory compound used appears to be antioxidative, which does not promote the formation of reactive oxygen species necessary for NET formation. It is not clear in the title.

    1. Reviewer #1 (Public Review):

      Kainov et al investigated the prevalence of mutations in 3'UTR that affect gene expression in cancer to identify noncoding cancer drivers.

      The authors used data from normal controls (1000 genome data) and compared it to cancer data (PCAWG). They found that in cancer 3'UTR mutations had a stronger effect on cleavage than the normal population. These mutations are negatively selected in the normal population and positively selected in cancers. The authors used PCAWG data set to identify such mutations and found that the mutations that lead to a reduction of gene expression are enriched in tumor suppressor genes and those that are increased in gene expression are enriched for oncogenes. 3'UTR mutations that reduce gene expression or occur in TSGs co-occur with non-synonymous mutations. The authors then validate the effect of 3'UTR mutations experimentally using a luciferase reporter assay. These data identify a novel class of noncoding driver genes with mutations in 3'UTR that impact polyadenylation and thus gene expression.

      This is an elegant study with fundamental insight into identifying cancer driver genes. The conclusions of this paper are mostly well supported by data, but some aspects of data analysis need to be extended.

      Comments on revisions:

      The authors addressed most of my comments.

    1. Reviewer #1 (Public review):

      Summary:

      It is well known that autophagosomes/autolysosomes move along microtubules. However, because previous studies did not distinguish between autophagosomes and autolysosomes, it remains unknown whether autophagosomes begin to move after fusion with lysosomes or even before fusion. In this manuscript, the authors show, using fusion-deficient cells, that both pre-fusion autophagosomes and lysosomes can move along the MT toward the minus end. By screening motor proteins and Rabs, the authors found that autophagosomal traffic is primarily regulated by the dynein-dynactin system and can be counter-regulated by kinesins. They also show that Rab7-Epg5 and Rab39-ema interactions are important for autophagosome trafficking.

      Strengths:

      This study uses reliable Drosophila genetics and high-quality fluorescence microscopy. The data are properly quantified and statistically analyzed. It is a reasonable hypothesis that gathering pre-fusion autophagosomes and lysosomes in close proximity improves fusion efficiency.

      Weaknesses:

      (1) To distinguish autophagosomes from autolysosomes, the authors used vps16 RNAi cells, which are supposed to be fusion deficient. However, the extent to which fusion is actually inhibited by knockdown of Vps16A is not shown. The co-localization rate of Atg8 and Lamp1 should be shown (as in Figure 8). Then, after identifying pre-fusion autophagosomes and lysosomes, the localization of each should be analyzed. It is also possible that autophagosomes and lysosomes are tethered by factors other than HOPS (even if they are not fused). If this is the case, autophagosomal trafficking would be affected by the movement of lysosomes.

      (2) The authors analyze autolysosomes in Figures 6 and 7. This is based on the assumption that autophagosome-lysosome fusion takes place in cells without vps16A RANi. However, even in the presence of Vps16A, both pre-fusion autophagosomes and autolysosomes should exist. This is also true in Figure 8H, where the fusion of autophagosomes and lysosomes is partially suppressed in knockdown cells of dynein, dynactin, Rab7, and Epg5. If the effect of fusion is to be examined, it is reasonable to distinguish between autophagosomes and autolysosomes and analyze only autolysosomes.

      (3) In this study, only vps16a RNAi cells were used to inhibit autophagosome-lysosome fusion. However, since HOPS has many roles besides autophagosome-lysosome fusion, it would be better to confirm the conclusion by knockdown of other factors (e.g., Stx17 RNAi).

      (4) Figure 8: Rab7 and Epg5 are also known to be directly involved in autophagosome-lysosome tethering/fusion. Even if the fusion rate is reduced in the absence of Rab7 and Epg5, it may not be the result of defective autophagosome movement, but may simply indicate that these molecules are required for fusion itself. How do the authors distinguish between the two possibilities?

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript by Boda et al. describes the results of a targeted RNAi screen in the background of Vps16A-depleted Drosophila larval fat body cells. In this background, lysosomal fusion is inhibited, allowing the authors to analyze the motility and localization specifically of autophagosomes, prior to their fusion with lysosomes to become autolysosomes. In this Vps16A-deleted background, mCherry-Atg8a-labeled autophagosomes accumulate in the perinuclear area, through an unknown mechanism.

      The authors found that the depletion of multiple subunits of the dynein/dynactin complex caused an alternation of this mCherry-Atg8a localization, moving from the perinuclear region to the cell periphery. Interactions with kinesin overexpression suggest these motor proteins may compete for autophagosome binding and transport. The authors extended these findings by examining potential upstream regulators including Rab proteins and selected effectors, and they also examined effects on lysosomal movement and autolysosome size. Altogether, the results are consistent with a model in which specific Rab/effector complexes direct the movement of lysosomes and autophagosomes toward the MTOC, promoting their fusion and subsequent dispersal throughout the cell.

      Strengths:

      Although previous studies of the movement of autophagic vesicles have identified roles for microtubule-based transport, this study moves the field forward by distinguishing between effects on pre- and post-fusion autophagosomes, and by its characterization of the roles of specific Dynein, Dynactin, and Rab complexes in regulating movement of distinct vesicle types. Overall, the experiments are well-controlled, appropriately analyzed, and largely support the authors' conclusions.

      Weaknesses:

      One limitation of the study is the genetic background that serves as the basis for the screening. In addition to preventing autophagosome-lysosome fusion, disruption of Vps16A has been shown to inhibit endosomal maturation and block the trafficking of components to the lysosome from both the endosome and Golgi apparatus. Additional effects previously reported by the authors include increased autophagosome production and reduced mTOR signaling. Thus Vps16A-depleted cells have a number of endosome, lysosome, and autophagosome-related defects, with unknown downstream consequences. Additionally, the cause and significance of the perinuclear localization of autophagosomes in this background is unclear. Thus, interpretations of the observed reversal of this phenotype are difficult, and have the caveat that they may apply only to this condition, rather than to normal autophagosomes. Additional experiments to observe autophagosome movement or positioning in a more normal environment would improve the manuscript.

      Specific comments

      (1) Several genes have been described that when depleted lead to perinuclear accumulation of Atg8-labeled vesicles. There seems to be a correlation of this phenotype with genes required for autophagosome-lysosome fusion; however, some genes required for lysosomal fusion such as Rab2 and Arl8 apparently did not affect autophagosome positioning as reported here. Thus, it is unclear whether the perinuclear positioning of autophagosomes is truly a general response to disruption of autophagosome-lysosome fusion, or may reflect additional aspects of Vps16A/HOPS function. A few things here would help. One would be an analysis of Atg8a vesicle localization in response to the depletion of a larger set of fusion-related genes. Another would be to repeat some of the key findings of this study (effects of specific dynein, dynactin, rabs, effectors) on Atg8a localization when Syx17 is depleted, rather than Vps16A. This should generate a more autophagosome-specific fusion defect. Third, it would greatly strengthen the findings to monitor pre-fusion autophagosome localization without disrupting fusion. Such vesicles could be identified as Atg8a-positive Lamp-negative structures. The effects of dynein and rab depletion on the tracking of these structures in a post-induction time course would serve as an important validation of the authors' findings.

      (2) The authors nicely show that depletion of Shot leads to relocalization of Atg8a to ectopic foci in Vps16A-depleted cells; they should confirm that this is a mislocalized ncMTOC by co-labeling Atg8a with an MTOC component such as MSP300. The effect of Shot depletion on Atg8a localization should also be analyzed in the absence of Vps16A depletion.

      (3) The authors report that depletion of Dynein subunits, either alone (Figure 6) or co-depleted with Vps16A (Figure 2), leads to redistribution of mCherry-Atg8a punctae to the "cell periphery". However, only cell clones that contact an edge of the fat body tissue are shown in these figures. Furthermore, in these cells, mCherry-Atg8a punctae appear to localize only to contact-free regions of these cells, and not to internal regions of clones that share a border with adjacent cells. Thus, these vesicles would seem to be redistributed to the periphery of the fat body itself, not to the periphery of individual cells. Microtubules emanating from the perinuclear ncMTOC have been described as having a radial organization, and thus it is unclear that this redistribution of mCherry-Atg8a punctae to the fat body edge would reflect a kinesin-dependent process as suggested by the authors.

      (4) To validate whether the mCherry-Atg8a structures in Vps16A-depleted cells were of autophagic origin, the authors depleted Atg8a and observed a loss of mCherry- Atg8a signal from the mosaic cells (Figure S1D, J). A more rigorous experiment would be to deplete other Atg genes (not Atg8a) and examine whether these structures persist.

      (5) The authors found that only a subset of dynein, dynactin, rab, and rab effector depletions affected mCherry- Atg8a localization, leading to their suggestion that the most important factors involved in autophagosome motility have been identified here. However, this conclusion has the caveat that depletion efficiency was not examined in this study, and thus any conclusions about negative results should be more conservative.

    3. Reviewer #3 (Public review):

      Summary:

      In multicellular organisms, autophagosomes are formed throughout the cytosol, while late endosomes/lysosomes are relatively confined in the perinuclear region. It is known that autophagosomes gain access to the lysosome-enriched region by microtubule-based trafficking. The mechanism by which autophagosomes move along microtubules remains incompletely understood. In this manuscript, Péter Lőrincz and colleagues investigated the mechanism driving the movement of nascent autophagosomes along the microtubule towards the non-centrosomal microtubule organizing center (ncMTOC) using the fly fat body as a model system. The authors took an approach whereby they examined autophagosome positioning in cells where autophagosome-lysosome fusion was inhibited by knocking down the HOPS subunit Vps16A. Despite being generated at random positions in the cytosol, autophagosomes accumulate around the nucleus when Vps16A is depleted. They then performed an RNA interference screen to identify the factors involved in autophagosome positioning. They found that the dynein-dynactin complex is required for the trafficking of autophagosomes toward ncMTOC. Dynein loss leads to the peripheral relocation of autophagosomes. They further revealed that a pair of small GTPases and their effectors, Rab7-Epg5 and Rab39-ema, are required for bidirectional autophagosome transport. Knockdown of these factors in Vps16a RNAi cells causes the scattering of autophagosomes throughout the cytosol.

      Strengths:

      The data presented in this study help us to understand the mechanism underlying the trafficking and positioning of autophagosomes.

      Weaknesses:

      Major concerns:

      (1) The localization of EPG5 should be determined. The authors showed that EPG5 colocalizes with endogenous Rab7. Rab7 labels late endosomes and lysosomes. Previous studies in mammalian cells have shown that EPG5 is targeted to late endosomes/lysosomes by interacting with Rab7. EPG5 promotes the fusion of autophagosomes with late endosomes/lysosomes by directly recognizing LC3 on autophagosomes and also by facilitating the assembly of the SNARE complex for fusion. In Figure 5I, the EPG5/Rab7-colocalized vesicles are large and they are likely to be lysosomes/autolysosomes.

      (2) The experiments were performed in Vps16A RNAi KD cells. Vps16A knockdown blocks fusion of vesicles derived from the endolysosomal compartments such as fusion between lysosomes. The pleiotropic effect of Vps16A RNAi may complicate the interpretation. The authors need to verify their findings in Stx17 KO cells, as it has a relatively specific effect on the fusion of autophagosomes with late endosomes/lysosomes.

      (3) Quantification should be performed in many places such as in Figure S4D for the number of FYVE-GFP labeled endosomes and in Figures S4H and S4I for the number and size of lysosomes.

      (4) In this study, the transport of autophagosomes is investigated in fly fat cells. In fat cells, a large number of large lipid droplets accumulate and the endomembrane systems are distinct from that in other cell types. The knowledge gained from this study may not apply to other cell types. This needs to be discussed.

      Minor concerns:

      (5) Data in some panels are of low quality. For example, the mCherry-Atg8a signal in Figure 5C is hard to see; the input bands of Dhc64c in Figure 5L are smeared.

      (6) In this study, both 3xmCherry-Atg8a and mCherry-Atg8a were used. Different reporters make it difficult to compare the results presented in different figures.

      (7) The small autophagosomes presented in Figures such as in Figure 1D and 1E are not clear. Enlarged images should be presented.

      (8) The authors showed that Epg5-9xHA coprecipitates with the endogenous dynein motor Dhc64C. Is Rab7 required for the interaction?

      (9) The perinuclear lysosome localization in Epg5 KD cells has no indication that Epg5 is an autophagosome-specific adaptor.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigated how partial loss of SynGap1 affects inhibitory neurons derived from the MGE in the auditory cortex, focusing on their synaptic inputs and excitability. While haplo-insufficiently of SynGap1 is known to lead to intellectual disabilities, the underlying mechanisms remain unclear.

      Strengths:

      The questions are novel

      Weaknesses:

      Despite the interesting and novel questions, there are significant issues regarding the experimental design and potential misinterpretations of key findings. Consequently, the manuscript contributes little to our understanding of SynGap1 loss mechanisms.

      Major issues in the second version of the manuscript:<br /> In the review of the first version there were major issues and contradictions with the sEPSC and mEPSC data, and were not resolved after the revision, and the new control experiments rather confirmed the contradiction.<br /> In the original review I stated: "One major concern is the inconsistency and confusion in the intermediate conclusions drawn from the results. For instance, while the sEPSC data indicates decreased amplitude in PV+ and SOM+ cells in cHet animals, the frequency of events remains unchanged. In contrast, the mEPSC data shows no change in amplitudes in PV+ cells, but a significant decrease in event frequency. The authors conclude that the former observation implies decreased excitability. However, traditionally, such observations on mEPSC parameters are considered indicative of presynaptic mechanisms rather than changes of network activity.‎ The subsequent synapse counting experiments align more closely with the traditional conclusions. This issue can be resolved by rephrasing the text. However, it would remain unexplained why the sEPSC frequency shows no significant difference. If the majority of sEPSC events were indeed mediated by spiking (which is blocked by TTX), the average amplitudes and frequency of mEPSCs should be substantially lower than those of sEPSCs. Yet, they fall within a very similar range, suggesting that most sEPSCs may actually be independent of action potentials. But if that was indeed the case, the changes of purported sEPSC and mEPSC results should have been similar."<br /> Contradictions remained after the revision of the manuscript. On one hand, the authors claimed in the revised version that "We found no difference in mEPSC amplitude between the two genotypes (Fig. 1g), indicating that the observed difference in sEPSC amplitude (Figure 1b) could arise from decreased network excitability". On the other hand, later they show "no significative difference in either amplitude or inter-event intervals between sEPSC and mEPSC, suggesting that in acute slices from adult A1, most sEPSCs may actually be AP independent." The latter means that sEPSCs and mEPSCs are the same type of events, which should have the same sensitivity to manipulations.

      Concerns about the quality of the synapse counting experiments were addressed by showing additional images in a different and explaining quantification. However, the admitted restriction of the analysis of excitatory synapses to the somatic region represent a limitation, as they include only a small fraction of the total excitation - even if, the slightly larger amplitudes of their EPSPs are considered.

      New experiments using pari-pulse stimulation provided an answer to issues 3 and 4. Note that the numbering of the Figures in the responses and manuscript are not consistent.

      I agree that low sampling rate of the APs does not change the observed large differences in AP threshold, however, the phase plots are still inconsistent in a sense that there appears to be an offset, as all values are shifted to more depolarized membrane potentials, including threshold, AP peak, AHP peak. This consistent shift may be due to a non-biological differences in the two sets of recordings, and, importantly, it may negate the interpretation of the I/f curves results (Fig. 5e).

      Additional issues:<br /> The first paragraph of the Results mentioned that the recorded cells were identified by immunolabelling and axonal localization. However, neither the Results nor the Methods mention the criteria and levels of measurements of axonal arborization.

      The other issues of the first review were adequately addressed by the Authors and the manuscript improved by these changes.

    2. Reviewer #3 (Public review):

      This paper compares the synaptic and membrane properties of two main subtypes of interneurons (PV+, SST+) in the auditory cortex of control mice vs mutants with Syngap1 haploinsufficiency. The authors find differences between control and mutants in both interneuron populations, although they claim a predominance in PV+ cells. These results suggest that altered PV-interneuron functions in the auditory cortex may contribute to the network dysfunctions observed in Syngap1 haploinsufficiency-related intellectual disability.

      The subject of the work is interesting, and most of the approach is rather direct and straightforward, which are strengths. There are also some methodological weaknesses and interpretative issues that reduce the impact of the paper.

      (1) Supplementary Figure 3: recording and data analysis. The data of Supplementary Figure 3 show no differences either in the frequency or amplitude of synaptic events recorded from the same cell in control (sEPSCs) vs TTX (mEPSCs). This suggests that, under the experimental conditions of the paper, sEPSCs are AP-independent quantal events.<br /> However, I am concerned by the high variability of the individual results included in the Figure. Indeed, several datapoints show dramatically different frequencies in control vs TTX, which may be explained by unstable recording conditions. It would be important to present these data as time course plots, so that stability can be evaluated. Also, the claim of lack of effect of TTX should be corroborated by positive control experiments verifying that TTX is working (block of action potentials, for example). Lastly, it is not clear whether the application of TTX was consistent in time and duration in all the experiments and the paper does not clarify what time window was used for quantification.

      (2) Figure 1 and Supplementary Figure 3: apparent inconsistency. If, as the authors claim, TTX does not affect sEPSCs (either in the control or mutant genotype, Supplementary Figure 3 and point 1 above), then comparing sEPSC and mEPSC in control vs mutants should yield identical results. In contrast, Figure 1 reports a _selective_ reduction of sEPSCs amplitude (not in mEPSCs) in mutants, which is difficult to understand. The proposed explanation relying on different pools of synaptic vesicles mediating sEPSCs and mEPSCs does not clarify things. If this was the case, wouldn't it also imply a decrease of event frequency following TTX addition? However, this is not observed in Supplementary Figure 3. My understanding is that, according to this explanation, recordings in control solution would reflect the impact of two separate pools of vesicles, whereas, in the presence of TTX, only one pool would be available for release. Therefore, TTX should cause a decrease in the frequency of the recorded events, which is not what is observed in Supplementary Figure 3.

      (3) Figure 1: statistical analysis. Although I do appreciate the efforts of the authors to illustrate both cumulative distributions and plunger plots with individual data, I am confused by how the cumulative distributions of Figure 1b (sEPSC amplitude) may support statistically significant differences between genotypes, but this is not the case for the cumulative distributions of Figure 1g (inter mEPSC interval), where the curves appear even more separated. A difference in mEPSC frequency would also be consistent with the data of Supplementary Fig 2b, which otherwise are difficult to reconciliate. I would encourage the authors to use the Kolmogorov-Smirnov rather than a t-test for the comparison of cumulative distributions.

      (4) Methods. I still maintain that a threshold at around -20/-15 mV for the first action potential of a train seems too depolarized (see some datapoints of Fig 5c and Fig7c) for a healthy spike. This suggest that some cells were either in precarious conditions or that the capacitance of the electrode was not compensated properly.

      (5) The authors claim that "cHet SST+ cells showed no significant changes in active and passive membrane properties (Figure 8d,e); however, their evoked firing properties were affected with fewer AP generated in response to the same depolarizing current injection".<br /> This sentence is intrinsically contradictory. Action potentials triggered by current injections are dependent on the integration of passive and active properties. If the curves of Figure 8f are different between genotypes, then some passive and/or active property MUST have changed. It is an unescapable conclusion. The general _blanket_ statement of the authors that there are no significant changes in active and passive properties is in direct contradiction with the current/#AP plot.

      (6) The phase plots of Figs 5c, 7c, and 7h suggest that the frequency of acquisition/filtering of current-clamp signals was not appropriate for fast waveforms such as spikes. The first two papers indicated by the authors in their rebuttal (Golomb et al., 2007; Stevens et al., 2021) did not perform a phase plot analysis (like those included in the manuscript). The last work quoted in the rebuttal (Zhang et al., 2023) did perform phase plot analysis, but data were digitized at a frequency of 20KHz (not 10KHz as incorrectly indicated by the authors) and filtered at 10 kHz (not 2-3 kHz as by the authors in the manuscript). To me, this remains a concern.

      (7) The general logical flow of the manuscript could be improved. For example, Fig 4 seems to indicate no morphological differences in the dendritic trees of control vs mutant PV cells, but this conclusion is then rejected by Fig 6. Maybe Fig 4 is not necessary. Regarding Fig 6, did the authors check the integrity of the entire dendritic structure of the cells analyzed (i.e. no dendrites were cut in the slice)? This is critical as the dendritic geometry may affect the firing properties of neurons (Mainen and Sejnowski, Nature, 1996).

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Ma et al. describes a multi-model (pig, mouse, organoid) investigation into how fecal transplants protect against E. coli infection. The authors identify A. muciniphila and B. fragilis as two important strains and characterize how these organisms impact the epithelium by modulating host signaling pathways, namely the Wnt pathway in lgr5 intestinal stem cells.

      Strengths:

      The strengths of this manuscript include the use of multiple model systems and follow up mechanistic investigations to understand how A. muciniphila and B. fragilis interacted with the host to impact epithelial physiology.

      Weaknesses:

      As in previous revisions, there remains concerning ambiguity in the methodology used for microbiota sequence analysis and it would be difficult to replicate the analysis in any meaningful way. In this revision, concerns about the rigor and reproducibility of this component of the manuscript have been increased. Readers should be cautious with interpretation of this data.

      (1) In previous versions of the manuscript it would appear the correct bioproject accession was listed but, the actual link went to an unrelated project. The updated accession link appears to contain raw data; however, the authors state they used an Illumina HiSeq 2500. This would be an unusual choice for V3-V4 as it would not have read lengths long enough to overlap. Inspection of the first sample (SRR19164796) demonstrates that this is absolutely not the raw data, as there is a ~400 nt forward read, and a 0 length reverse read. All quality scores are set to 30. There is no logical way to go from HiSeq 2500 raw data and read lengths to what was uploaded to the SRA and it was certainly not described in the manuscript.

      (2) No multiple testing correction was applied to the microbiome data.

    1. Reviewer #1 (Public Review):

      The authors analyse droplet size distributions of multiple protein condensates and fit to a scaling ansatz to highlight that they exhibit features of first-order and second-order phase transitions. While the experimental evidence is solid, the text lacks connection and contextualization to the well-understood expectations from the coupling of percolation and phase separation in protein condensates - a phenomenon that is increasingly gaining consensus amongst the community. The evidence supports the percolatoin+phase separation model rather than being close to a true critical point in the liquid-gas phase space. Overall, the work is useful to the community.

      Strengths:<br /> The experimental analysis of distinct protein condensates is very well done and the reported exponents/scaling framework provides a clear framework to help the community help deconvolve signatures of percolation in condensates.

      Weaknesses:

      The principal concern this reviewer has is that the reviewers adopt a framing in this paper to present a discovery of second-order features and connections to criticality - however they ignore/miss the connections to percolation (a well-understood second-order transition that is expected to play a major role in protein condensates). I believe this needs to be addressed and the paper suitably revised to help connect with these expectations.

      - Protein condensates have been increasingly understood to be described as fluids whose assembly is driven by a connection of density (phase separation, first-order) and connectivity (percolation, second-order) transitions. This has been long known in the polymer community (Flory, Stockmayer, Tanaka, Rubinstein, Semenov and others) and recently repopularized in the condensate community (by Pappu and Mittag, in particular, amongst others). The authors make no connections to any of this frameworks - which actually seem to be the essence of what they are describing.

      - Percolation theory, which has been around for more than half-a-century, has clear-cut scaling laws that have essentially similar forms to the ansatz adopted by the authors and the commonalities/differences are not discussed by the authors - this is essential since this provides a physical basis for their ansatz rather than an arbitrary mathematical formulation. In particular, percolation models connect size distribution exponents to factors like dimensionality, valence, etc. and if these connections can be made with this data, that would be very powerful.

      - The connections between spinodal decomposition and second-order phase transitions are very confusing. Spindal decomposition happens when the barriers for first-order phase transitions are zero and systems can phase separate without crossing nucleation barriers. Further, the "criticality" discussed in the paper is confusing since it more likely refers to a percolation threshold and much less likely to a "critical temperature" (Tc -where spinodal and binodals become identical). I would recommend reframing this argument.

      It's unlikely, in this reviewer's opinion, that the authors are actually discussing a "first-order" liquid-gas critical point - because saturation concentrations of these proteins can be much higher with temperature and the critical point would thus likely be at much higher concentrations (and ofc temperature). Further the scaling exponents don't fall in that class naturally. However, if the authors disagree, I would appreciate clear quantitative reasons (including through the scaling exponents in that universality class) and be happy to be convinced to change my mind. As provided, the data does not support this model.

    2. Reviewer #2 (Public Review):

      In response to the two referee reports, the authors have made substantial improvements. Regarding my previous concerns, the new data provided in Fig.6 for demonstrating that the droplet size distribution is stable over time is particularly valuable.

      As to several of my other previous concerns regarding possible change in droplet size distribution over time, etc., the authors responded by stating that their system was below the critical concentration and therefore the possible scenarios pointed out in my previous report were not expected. While there may be a certain degree of validity to their argument, it would be much more helpful to the readers if the authors would bring up my previous concerns briefly (as readers of the journal will likely have similar concerns) and then address them succinctly within the manuscript.

      Apparently, as a key element in the authors' response to the referees, the term "transition concentration" in the originally submitted manuscript is now changed to "critical concentration" (including in the title and abstract). But the two terms do not have identical meaning. A transition concentration is usually recognized as the saturation concentration at which phase separation or some other transition process commences at a given temperature. The transition concentration can be lower than the critical concentration, whereas the critical concentration is associated with the critical temperature, above (or below, depending on the temperature dependence of phase separation) which phase separation is not possible. It will be best if the authors can clarify their usage of transition concentration vs. critical concentration in the version of record of their manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      Bennion and colleagues present a careful examination of how an earlier set of memories can either interfere with or facilitate memories formed later. This impressive work is a companion piece to an earlier paper by Antony and colleagues (2022) in which a similar experimental design was used to examine how a later set of memories can either interfere with or facilitate memories formed earlier. This study makes contact with an experimental literature spanning 100 years, which is concerned with the nature of forgetting, and the ways in which memories for particular experiences can interact with other memories. These ideas are fundamental to modern theories of human memory, for example, paired-associates studies like this one are central to the theoretical idea that interference between memories is a much bigger contributor to forgetting than any sort of passive decay.

      Strengths:

      At the heart of the current investigation is a proposal made by Osgood in the 1940s regarding how paired associates are learned and remembered. In these experiments one learns a pair of items, A-B (cue-target), and then later learns another pair that is related in some way, either A'-B (changing the cue, delta-cue), or A-B' (changing the target, delta-target), or A'-B' (changing both, delta-both), where the prime indicates that item has been modified, and may be semantically related to the original item. The authors refer to the critical to-be-remembered pairs as base pairs. Osgood proposed that when the changed item is very different from the original item there will be interference, and when the changed item is similar to the original item there will be facilitation. Osgood proposed a graphical depiction of his theory in which performance was summarized as a surface, with one axis indicating changes to the cue item of a pair and the other indicating changes to the target item, and the surface itself necessary to visualize the consequences of changing both.

      In the decades since Osgood's proposal, there have been many studies examining slivers of the proposal, e.g., just changing targets in one experiment, just changing cues in another experiment. Because any pair of experiments use different methods, this has made it difficult to draw clear conclusions about the effects of particular manipulations.

      The current paper is a potential landmark, in that they manipulate multiple fundamental experimental characteristics using the same general experimental design. Importantly, they manipulate the semantic relatedness of the changed item to the original item, the delay between the study experience and the test, and which aspect of the pair is changed. Furthermore, they include both a positive control condition (where the exact same pair is studied twice), and a negative control condition (where a pair is only studied once, in the same phase as the critical base pairs). This allows them to determine when the prior learning exhibits an interfering effect relative to the negative control condition, and also allows them to determine how close any facilitative effects come to matching the positive control.

      The results are interpreted in terms of a set of existing theories, most prominently the memory-for-change framework, which proposes a mechanism (recursive reminding) potentially responsible for the facilitative effects examined here. One of the central results is the finding that a stronger semantic relationship between a base pair and an earlier pair has a facilitative effect on both the rate of learning of the base pair and the durability of the memory for the base pair. This is consistent with the memory-for-change framework, which proposes that this semantic relationship prompts retrieval of the earlier pair, and the two pairs are integrated into a common memory structure that contains information about which pair was studied in which phase of the experiment. When semantic relatedness is lower, they more often show interference effects, with the idea being that competition between the stored memories makes it more difficult to remember the base pair.

      This work represents a major methodological and empirical advance for our understanding of paired-associates learning, and it sets a laudably high bar for future work seeking to extend this knowledge further. By manipulating so many factors within one set of experiments, it fills a gap in the prior literature regarding the cognitive validity of an 80-year-old proposal by Osgood. The reader can see where the observed results match Osgood's theory and where they are inconclusive. This gives us insight, for example, into the necessity of including a long delay in one's experiment, to observe potential facilitative effects. This point is theoretically interesting, but it is also a boon for future methodological development, in that it establishes the experimental conditions necessary for examining one or another of these facilitation or interference effects more closely.

      The authors were exceptionally responsive to the suggestions of the reviewers, and the revisions have improved the theoretical clarity of the paper. I think the value of this work will grow with time, as memory researchers and theorists use it as a benchmark for new theory development. For example, the data from these experiments will undoubtedly be used to develop and constrain a new generation of computational models of paired-associates learning.

      Weaknesses:

      One minor weakness of the work is that the overarching theoretical framing does not necessarily specify the expected result for each and every one of the many effects examined. For example, with a narrower set of semantic associations being considered (all of which are relatively high associations) and a long delay, varying the semantic relatedness of the target item did not reliably affect the memorability of that pair. However, the same analysis showed a significant effect when the wider set of semantic associations was used. The positive result is consistent with the memory-for-change framework, but the null result isn't clearly informative to the theory. However, research is never done; comparing the results with the two sets of semantic associations is informative from a methodological perspective, in that it establishes the degree to which semantic relatedness must be altered to affect behavioral performance in a paired-associates task.

    2. Reviewer #2 (Public review):

      Summary:

      The study focuses on how relatedness with existing memories affects the formation and retention of new memories. Of core interest were the conditions that determine when prior memories facilitate new learning or interfere with it. Across a set of experiments that varied the degree of relatedness across memories as well as retention interval, the study compellingly shows that relatedness typically leads to proactive facilitation of new learning, with interference only observed under specific conditions and immediate test and being thus an exception rather than a rule.

      Strengths:

      The study uses a well-established word-pair learning paradigm to study interference and facilitation of overlapping memories. It however goes more in depth than a typical interference study in the systematic variation of several factors: (1) which elements of an association are overlapping and which are altered (change target, change cue, change both, change neither); (2) how much the changed element differs from the original (word relatedness, with two ranges of relatedness considered); (3) retention period (immediate test, 2-day delay). Furthermore, each experiment has a large N sample size, so both significant effects as well as null effects are robust and informative.

      The results show the benefits of relatedness, but also replicate interference effects in the "change target" condition when the new target is not related to the old target and when test is immediate. This provides reconciliation of some existing seemingly contradictory results on the effect of overlap on memory. Here, the whole range of conditions is mapped to convincingly show how the direction of the effect can flip across the surface of relatedness values.

      Additional strength comes from supporting analyses, such as analyses of learning data, demonstrating that relatedness leads to both better final memory and also faster initial learning.

      More broadly, the study informs our understanding of memory integration, demonstrating how interdependence of memory for related information increases with relatedness. Together with a prior study or retroactive interference and facilitation, the results provide new insights into the role of reminding in memory formation.

      In summary, this is a highly rigorous body of work that sets a great model for future studies and improves our understanding of memory organization.

      Weaknesses:

      The evidence for the proactive facilitation driven by relatedness is very convincing. However, in the finer scale results, the continuous relationship between the degree of relatedness and the degree of proactive facilitation/interference is less clear. The relationship was only found in the wider stimulus set, where some pairs were unrelated and other pairs related, and only when GloVe metric for measuring relatedness was used. The absence of a relationship between relatedness and memory in the narrow stimulus set (where all pairs were related to some degree) suggests this could be potentially an all-or-none effect (facilitation for related) rather than a matter of degree. Furthermore, a different metric of relatedness, associative strength AS, did not show the same relationship. The discrepancy between the metrics is not fully resolved. This is less of a problem with interdependence analyses where the results are more converging across narrow and wider range as well as the two metrics.

      A smaller weakness, acknowledged by the authors, is generalizability beyond the word set used here. Using a carefully crafted stimulus set and repeating the same word pairings across participants and conditions was important for memorability calculations and some of the other analyses. However, highlighting the inherently noisy item-by-item results, especially in the Osgood-style surface figures, makes it challenging to imagine how the results would generalize to new stimuli, even within the same relatedness ranges as the current stimulus sets.

    3. Reviewer #3 (Public review):

      Summary:

      Bennion et al. investigate how semantic relatedness proactively benefits the learning of new word pairs. The authors draw predictions from Osgood (1949), which posits that the degree of proactive interference (PI) and proactive facilitation (PF) of previously learned items on to-be-learned items depends on the semantic relationships between the old and new information. In the current study, participants subjects learn a set of word pairs ( "supplemental pairs"), followed by a second set of pairs ("base pairs"), in which the cue, target or both words are changed, or the pair was identical. Pairs were drawn from either a narrower or wider stimulus set and were tested after either a 5 minute or 48 hour delay. The results show that semantic relatedness overwhelmingly produces PF and greater memory interdependence between base and supplemental pairs, except in the case of unrelated pairs in a wider stimulus set after a short delay, which produced PI. In their final analyses, the authors compare their current results to previous work from their group studying the analogous retroactive effects of semantic relatedness on memory. These comparisons show generally similar, if slightly weaker, patterns of results. The authors interpret their results in the framework of recursive reminders (Hintzman, 2011), which posits that the semantic relationships between new and old word pairs promotes reminders of the old information during the learning of the new to-be-learned information. These reminders help to integrate the old and new information and result in additional retrieval practice opportunities that in turn improve later recall.

      Strengths:

      Overall, I thought that the analyses were thorough and well-thought-out and the results were incredibly well-situated in the literature, especially with the additional clarification and framing that the authors have made in response to reviewer comments. In particular, I found that the large sample size, inclusion of a wide range of semantic relatedness across the two stimulus sets, variable delays and the ability to directly compare the current results to their prior results on the retroactive effects of semantic relatedness were particular strengths of the authors' approach and make this an impressive contribution to the existing literature. I thought that their interpretations and conclusions were mostly reasonable and included appropriate caveats (where applicable).

      Weaknesses:

      The changes and additional analyses that the authors have made have addressed my concerns about their analyses. Including the additional Fig 1- Supp 1, panel C greatly helps with the interpretability across stimulus sets, and the additional analyses the authors have performed teasing apart whether cue and target similarity separately influence memorability and interdependence seem to support the rest of their conclusions.

    1. Reviewer #1 (Public review):

      Somasundaram and colleagues explore the role of transcription factors in retinal ganglion cell (RGC) death and axonal regeneration after a disease relevant insult (mechanical axonal injury). The work significantly extends our knowledge of the role of MAPK and integrated stress response (ISR) in controlling RGC fate after injury. Specifically, the manuscript shows that after axonal injury PERK-activated ISR acts through Atf4 to drive a prodeath transcriptional response in RGCs, in part by crosstalk with the prodeath JUN transcriptional program. Also, and perhaps most interesting, the work shows that PERK-ATF4 pathway activation is pro-regenerative for RGC axons. A major plus of the manuscript is that many new RNA-seq datasets are generated that describe the major prodegenerative and proregenerative gene networks altered after axonal injury. A limitation of the study is that it does not directly compare the effect of inhibiting the PERK-ATF4 pathway with inhibiting JUN and/or JUN-CHOP double deficient animals. It would also be useful, for the cell survival experiments shown in Figure 1, to examine a longer time point than 14 days to understand the long-term consequence of manipulating the PERK-ATF4 pathway.

    2. Reviewer #2 (Public review):

      This manuscript investigates the role of Perk (Protein kinase RNA-like endoplasmic reticulum kinase) and Atf4 (Activating Transcription Factor-4) in neurodegenerative and regenerative responses following optic nerve injury. The authors employed conditional knockout mice to examine the impact of the Perk/Atf4 pathway on transcriptional responses, with a particular focus on canonical Atf4 target genes and the involvement of C/ebp homologous protein (Chop).

      The study demonstrates that Perk primarily operates through Atf4 to stimulate both pro-apoptotic and pro-regenerative responses after optic nerve injury. This Perk/Atf4-dependent response encompasses canonical Atf4 target genes and limited contributions from Chop, exhibiting overlap with c-Jun-dependent transcription. Consequently, the Perk/Atf4 pathway appears crucial for coordinating neurodegenerative and regenerative responses to central nervous system (CNS) axon injury. Additionally, the authors observed that neuronal knockout of Atf4 mimics the neuroprotection resulting from Perk deficiency. Moreover, Perk or Atf4 knockout hinders optic axon regeneration facilitated by the deletion of the tumor suppressor Pten.

      These findings contrast with the transcriptional and functional outcomes reported for CRISPR targeting of Atf4 or Chop, revealing a vital role for the Perk/Atf4 pathway in orchestrating neurodegenerative and regenerative responses to CNS axon injury.

      However, the main concern is the overall data quality, which appears to be suboptimal. The transfection efficiency of AAV2-hSyn1-mTagBFP2-ires-Cre used in this study does not seem highly effective, as evidenced by the data presented in Supplementary Figure 1. The manuscript also contains several inconsistencies and a mix of methods in data collection, analysis, and interpretation, such as the labeling and quantification of RGCs and the combination of bulk and single-cell sequencing results.

      Despite these limitations, the study offers valuable insights into the role of the Perk/Atf4 pathway in determining neuronal fate after axon injury, emphasizing the significance of understanding the molecular mechanisms that govern neuronal survival and regeneration. This knowledge could potentially inform the development of targeted therapies to promote neuroprotection and CNS repair following injury.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors are interested in the developmental origin of the neurons of the cerebellar nuclei. They identify a population of neurons with a specific complement of markers originating in a distinct location from where cerebellar nuclear precursor cells have been thought to originate that show distinct developmental properties. The cerebellar nuclei have been well studied in recent years to understand their development through an evolutionary lens, which supports the importance of this study. The discovery of a new germinal zone giving rise to a new population of CN neurons is an exciting finding, and it enriches our understanding of cerebellar development, which has previously been quite straightforward, where cerebellar inhibitory cells arise from the ventricular zone and the excitatory cells arise from the rhombic lip.

      Strengths:

      One of the strengths of the manuscript is that the authors use a wide range of technical approaches, including transgenic mice that allow them to disentangle the influence of distinct developmental organizers such at ATOH.<br /> Their finding of a novel germinal zone and a novel population of CN neurons is important for developmental neuroscientists, cerebellar neuroscientists.

      Weaknesses:

      One important question raised by this work is what do these newly identified cells eventually become in the adult cerebellum. Are they excitatory or inhibitory? Do they correspond to a novel cell type or perhaps one of the cell classes that have been recently identified in the cerebellum (e.g. Fujita et al., eLife, 2020)? Understanding this would significantly bolster the impact of this manuscript.

      The major weakness of the manuscript is that it is written for a very specialized reader who has a strong background in cerebellar development, making it hard to read for eLife's general audience. It's challenging to follow the logic of some of the experiments as well as to contextualize these findings in the field of cerebellar development.

    2. Reviewer #2 (Public Review):

      Summary:

      Canonically cerebellar neurons are derived from 2 primary germinal zones within the anterior hindbrain (dorsal rhombomere 1). This manuscript identifies an important, previously underappreciated origin for a subset of early cerebellar nuclei neurons - likely the mesencephalon. This is an exciting finding.

      Strengths:

      The authors have identified a novel early population of cerebellar neurons with likely novel origin in the midbrain. They have used multiple assays to support their conclusions, including immunohistochemistry and in situ analyses of a number of markers of this population which appear to stream from the midbrain into the dorsal anterior cerebellar anlage.

      The inclusion of Otx2-GFP short term lineage analyses and analysis of Atoh1 -/- animals also provide considerable support for the midbrain origin of these neurons as streams of cells seem to emanate from the midbrain. However, without live imaging there remains the possibility that these streams of cells are not actually migrating and rather, gene expression is changing in static cells. Hence the authors have conducted midbrain diI labelling experiments of short term and long term cultured embryos showing di-labelled cells in the developing cerebellum. These studies confirm migration of cells from the midbrain into the early cerebellum.

      The authors have appropriately responded to review issues, replacing panels in figures and updating legends and text. They have also appropriately noted the limitations of their work.

    1. Reviewer #1 (Public review):

      Summary:

      Fats and lipids serve many important roles in cancers, including serving as important fuels for energy metabolism in cancer cells by being oxidized in the mitochondria. The process of fatty acid oxidation is initiated by the enzyme carnitine palmitoyltransferase 1A (CPT1A), and the function and targetability of CPT1A in cancer metabolism and biology has been heavily investigated. This includes studies that have found important roles for CPT1A in colorectal cancer growth and metastasis.

      In this study, Chen and colleagues use analysis of patient samples and functional interrogation in animal models to examine the role CPT1A plays in colorectal cancer (CRC). The authors find that CPT1A expression is decreased in CRC compared to paired healthy tissue and that lower expression correlates with decreased patient survival over time, suggesting that CPT1A may suppress tumor progression. To functionally interrogate this hypothesis, the authors both use CRISPR to knockout CPT1A in a CRC cell line that expresses CPT1A, and overexpress CPT1A in a CRC cell line with low expression. In both systems, increased CPT1A expression decreased cell survival and DNA repair in response to radiation in culture. Further, in xenograft models CPT1A decreased tumor growth basally and radiotherapy could further decrease tumor growth in CPT1A expressing tumors. As CRC is often treated with radiotherapy, the authors argue this radiosensitization driven by CPT1A could explain why CPT1A expression correlates with increased patient survival.

      Lastly, Chen and colleagues sought to understand why CPT1A suppresses CRC tumor growth and sensitizes the tumors to radiotherapy in culture. Antioxidant capacity of cells can increase cell survival, so the authors examine antioxidant gene expression and levels in CPT1A expressing and non-expressing cells. CPT1A expression suppresses expression of antioxidant metabolism genes and lowers levels of antioxidants. Antioxidant metabolism genes can be regulated by the FOXM1 transcription factor, and the authors find that CPT1A expression regulates FOXM1 levels and that antioxidant gene expression can be partially rescued in CPT1A expressing CRC cells. This leads the authors to propose the following model: CPT1A expression downregulates FOXM1 (via some yet undescribed mechanism) which then leads to decreased antioxidant capacity in CRC cells and thus suppressing tumor progression and increasing radiosensitivity. This is an interesting model that could explain suppression of CPT1A expression in CRC, but key tenets of the model are untested and speculative.

      Strengths:

      • Analysis of CPT1A in paired CRC tumors and non-tumor tissue using multiple modalities combined with analysis of independent datasets rigorously show that CPT1A is downregulated in CRC tumors at the RNA and protein level.<br /> • The authors use paired cell line model systems where CPT1A is both knocked out and overexpressed in cells lines that endogenously express or repress CPT1A respectively. These complementary model systems increase the rigor of the study.<br /> • The finding that a metabolic enzyme generally thought to support tumor energetics actually is a tumor suppressor in some settings is theoretically quite interesting.

      Weaknesses:

      • The authors propose that CPT1A expression modulates antioxidant capacity in cells by suppressing FOXM1 and that this pathway alters CRC growth and radiotherapy response. However, key aspects of this model are not tested. The authors do not show that FOXM1 contributes to regulation of antioxidant levels in CRC cells and tumors or if FOXM1 suppression is key to inhibition of CRC tumor growth and radiosensitization by CPT1A. Thus, the model the authors propose is speculative and not supported by the existing data.<br /> • The authors propose two mechanisms by which CPT1A expression triggers radiosensitization: decreasing DNA repair capacity (Fig. 3) and decreasing antioxidant capacity (Fig. 5). However, while CPT1A expression does alter these capacities in CRC cells, neither is functionally tested to determine if altered DNA repair or antioxidant capacity (or both) are the reason why CRC cells are more sensitive to radiotherapy or are delayed in causing tumors in vivo. Thus, this aspect of the proposed model is also speculative.<br /> • The authors find that CPT1A affects radiosensitization in cell culture and assess this in vivo. In vivo, CPT1A expression slows tumor growth even in the absence of radiotherapy, and radiotherapy only proportionally decreases tumor growth to the same extent as it does in CPT1A non-expressing CRC tumors. The authors propose from this data that CPT1A expression also sensitizes tumors to radiotherapy in vivo. However, it is unclear that CPT1A expression causes radiosensitization in vivo or if CPT1A expression acts as independent tumor suppressor to which radiotherapy has an additive effect. Additional experiments would be necessary to differentiate between these possibilities.<br /> • The authors propose in Figure 3 that DNA repair capacity is inhibited in CRC cells by CPT1A expression. However, the gH2AX immunoblots performed in Figure 3H-I that measure DNA repair kinetics are not convincing that CPT1A expression impairs DNA repair kinetics. Separate blots are shown for CPT1A expressing and non-expressing cell lines, not allowing for rigorous comparison of gH2AX levels and resolution as CPT1A expression is modulated.

    2. Reviewer #2 (Public review):

      The manuscript by Chen et al. describes how low levels of CPT1A in colorectal cancer (CRC) confer radioresistance by expediting radiation-induced ROS clearance. The authors propose that this mechanism of ROS homeostasis is regulated through FOXM1. CPT1A is known for its role in fatty acid metabolism via beta-oxidation of long-chain fatty acids, making it important in many metabolic disorders and cancers.

      Previous studies have suggested that upregulation of CPT1A is essential for the tumor-promoting effect in colorectal cancers (CRC) (PMID: 32913185). For example, CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis (PMID: 29995871), and repression of CPT1A activity renders cancer cells more susceptible to killing by cytotoxic T lymphocytes (PMID: 37722058). Additionally, CPT1A-mediated fatty acid oxidation (FAO) sensitizes nasopharyngeal carcinomas to radiation therapy (PMID: 29721083). While this suggests a tumor-promoting effect for CPT1A, the work by Chen et al. suggests instead a tumor-suppressive function for CPT1A in CRC, specifically that loss or low expression of CPT1A confers radioresistance in CRC. This makes the findings important given that they oppose the previously proposed tumorigenic function of CPT1A.

      The study has several strengths. The authors employ both in vitro and in vivo models to demonstrate that low CPT1A levels lead to radioresistance in CRC cells. They use isogenic HCT15 CRC cell lines that are radioresistant and show that overexpression of CPT1A sensitizes these cells to radiotherapy. Interestingly, the radioresistant cells exhibit lower CPT1A levels, suggesting that downregulation of CPT1A may be involved in the acquisition of radioresistance. Throughout the manuscript, the authors acknowledge the limitations of their work and avoid overextending their conclusions.

      However, there are some major limitations to the study:

      (1) Unexplored Contradictions with Previous Studies<br /> While the authors propose a tumor-suppressive function for CPT1A in CRC, they do not sufficiently address the contradiction with prior studies that indicate a tumor-promoting role for CPT1A. The discussion briefly mentions that this discrepancy may stem from heterogeneity or differences in tumor stages, but a more thorough exploration is needed. Delving deeper into the contexts and conditions under which CPT1A exhibits differing roles would be critical for reconciling these findings and guiding future research.

      (2) Limited Patient Data Analysis<br /> The authors demonstrate that CPT1A levels are significantly lower in COAD (colon adenocarcinoma) and READ (rectal adenocarcinoma) compared to normal tissues. However, data from TCGA indicate that CPT1A expression levels are lower in 26 out of 31 tumor types compared to COAD or READ (as noted in the authors' response to the previous review). It is possible that reduced CPT1A expression might be a common feature across various cancers, not just CRC. A more comprehensive analysis comparing matched normal and tumor tissues across different cancer types would clarify whether the observed phenomenon is unique to CRC or part of a broader pattern. This is particularly important since several studies have reported CPT1A overexpression in tumors.

      (3) Limitations in Experimental Scope<br /> The experimental design primarily involves CPT1A knockout in HCT116 cells and CPT1A overexpression in SW480 cells, which may limit the generalizability of the findings. Utilizing additional cell lines would account for genetic heterogeneity and enhance the robustness of the conclusions. Moreover, while the authors suggest an opposing effect of CPT1A in CRC compared to other studies, they have not investigated this through pharmacological means. Previous studies have shown that pharmacological inhibition of CPT1A can limit cancer progression (e.g., PMID: 33528867, PMID: 32198139) and sensitize cells to radiation therapy (PMID: 30175155). Testing whether pharmacological inhibitors like etomoxir or ST1326 replicate the effects observed with genetic knockout would provide valuable insights and have significant implications for therapeutic strategies in CRC patients.

      Conclusion

      This study offers valuable insights into the role of CPT1A in CRC radioresistance, proposing a tumor-suppressive function that challenges previous findings of its tumor-promoting role. While the findings are interesting and could have significant implications for cancer therapy, the limitations in experimental scope and the lack of a thorough discussion reconciling contradictory evidence warrant caution. Expanding the research to include a wider range of CRC cell lines, conducting pharmacological inhibition studies, and performing more detailed analyses would strengthen the conclusions and enhance our understanding of CPT1A's complex role in cancer progression and treatment response.

    1. Reviewer #1 (Public review):

      The paper by Chen et al describes the role of neuronal themo-TRPV3 channels in the firing of cortical neurons at a fever temperature range. The authors began by demonstrating that exposure to infrared light increasing ambient temperature causes body temperature to rise to a fever level above 38{degree sign}C. Subsequently, they showed that at the fever temperature of 39{degree sign}C, the spike threshold (ST) increased in both populations (P12-14 and P7-8) of cortical excitatory pyramidal neurons (PNs). However, the spike number only decreased in P7-8 PNs, while it remained stable in P12-14 PNs at 39 degrees centigrade. In addition, the fever temperature also reduced the late peak postsynaptic potential (PSP) in P12-14 PNs. The authors further characterized the firing properties of cortical P12-14 PNs, identifying two types: STAY PNs that retained spiking at 30{degree sign}C, 36{degree sign}C, and 39{degree sign}C, and STOP PNs that stopped spiking upon temperature change. They further extended their analysis and characterization to striatal medium spiny neurons (MSNs) and found that STAY MSNs and PNs shared the same ST temperature sensitivity. Using small molecule tools, they further identified that themo-TRPV3 currents in cortical PNs increased in response to temperature elevation, but not TRPV4 currents. The authors concluded that during fever, neuronal firing stability is largely maintained by sensory STAY PNs and MSNs that express functional TRPV3 channels. Overall, this study is well designed and executed with substantial controls, some interesting findings, and quality of data. Here are some specific comments:

      (1) Could the authors discuss, or is there any evidence of, changes in TRPV3 expression levels in the brain during the postnatal 1-4 week age range in mice?

      (2) Are there any differential differences in TRPV3 expression patterns that could explain the different firing properties in response to fever temperature between the STAY- and STOP neurons?

      (3) TRPV3 and TRPV4 can co-assemble to form heterotetrameric channels with distinct functional properties. Do STOP neurons exhibit any firing behaviors that could be attributed to the variable TRPV3/4 assembly ratio?

      (4) In Figure 7, have the authors observed an increase of TRPV3 currents in MSNs in response to temperature elevation?

      (5) Is there any evidence of a relationship between TRPV3 expression levels in D2+ MSNs and degeneration of dopamine-producing neurons?

      (6) Does fever range temperature alter the expressions of other neuronal Kv channels known to regulate the firing threshold?

    2. Reviewer #2 (Public review):

      Summary:

      The authors study the excitability of layer 2/3 pyramidal neurons in response to layer four stimulation at temperatures ranging from 30 to 39 Celsius in P7-8, P12-P14, and P22-P24 animals. They also measure brain temperature and spiking in vivo in response to externally applied heat. Some pyramidal neurons continue to fire action potentials in response to stimulation at 39 C and are called stay neurons. Stay neurons have unique properties aided by TRPV3 channel expression.

      Strengths:

      The authors use various techniques and assemble large amounts of data.

      Weaknesses:

      (1) No hyperthermia-induced seizures were recorded in the study.

      (2) Febrile seizures in humans are age-specific, extending from 6 months to 6 years. While translating to rodents is challenging, according to published literature (see Baram), rodents aged P11-16 experience seizures upon exposure to hyperthermia. The rationale for publishing data on P7-8 and P22-24 animals, which are outside this age window, must be clearly explained to address a potential weakness in the study.

      (3) Authors evoked responses from layer 4 and recorded postsynaptic potentials, which then caused action potentials in layer 2/3 neurons in the current clamp. The post-synaptic potentials are exquisitely temperature-sensitive, as the authors demonstrate in Figures 3 B and 7D. Note markedly altered decay of synaptic potentials with rising temperature in these traces. The altered decays will likely change the activation and inactivation of voltage-gated ion channels, adjusting the action potential threshold.

      (4) The data weakly supports the claim that the E-I balance is unchanged at higher temperatures. Synaptic transmission is exquisitely temperature-sensitive due to the many proteins and enzymes involved. A comprehensive analysis of spontaneous synaptic current amplitude, decay, and frequency is crucial to fully understand the effects of temperature on synaptic transmission.

      (5) It is unclear how the temperature sensitivity of medium spiny neurons is relevant to febrile seizures. Furthermore, the most relevant neurons are hippocampal neurons since the best evidence from human and rodent studies is that febrile seizures involve the hippocampus.

      (6) TRP3V3 data would be convincing if the knockout animals did not have febrile seizures.

    3. Reviewer #3 (Public review):

      Summary:

      This important study combines in vitro and in vivo recording to determine how the firing of cortical and striatal neurons changes during a fever range temperature rise (37-40 oC). The authors found that certain neurons will start, stop, or maintain firing during these body temperature changes. The authors further suggested that the TRPV3 channel plays a role in maintaining cortical activity during fever.

      Strengths:

      The topic of how the firing pattern of neurons changes during fever is unique and interesting. The authors carefully used in vitro electrophysiology assays to study this interesting topic.

      Weaknesses:

      (1) In vivo recording is a strength of this study. However, data from in vivo recording is only shown in Figures 5A,B. This reviewer suggests the authors further expand on the analysis of the in vivo Neuropixels recording. For example, to show single spike waveforms and raster plots to provide more information on the recording. The authors can also separate the recording based on brain regions (cortex vs striatum) using the depth of the probe as a landmark to study the specific firing of cortical neurons and striatal neurons. It is also possible to use published parameters to separate the recording based on spike waveform to identify regular principal neurons vs fast-spiking interneurons. Since the authors studied E/I balance in brain slices, it would be very interesting to see whether the "E/I balance" based on the firing of excitatory neurons vs fast-spiking interneurons might be changed or not in the in vivo condition.

      (2) The author should propose a potential mechanism for how TRPV3 helps to maintain cortical activity during fever. Would calcium influx-mediated change of membrane potential be the possible reason? Making a summary figure to put all the findings into perspective and propose a possible mechanism would also be appreciated.

      (3) The author studied P7-8, P12-14, and P20-26 mice. How do these ages correspond to the human ages? it would be nice to provide a comparison to help the reader understand the context better.

    1. Reviewer #1 (Public review):

      In this study, Ma et al. aimed to determine previously uncharacterized contributions of tissue autofluorescence, detector afterpulse, and background noise on fluorescence lifetime measurement interpretations. They introduce a computational framework they named "Fluorescence Lifetime Simulation for Biological Applications (FLiSimBA)" to model experimental limitations in Fluorescence Lifetime Imaging Microscopy (FLIM) and determine parameters for achieving multiplexed imaging of dynamic biosensors using lifetime and intensity. By quantitatively defining sensor photon effects on signal-to-noise in either fitting or averaging methods of determining lifetime, the authors contradict any claims of FLIM sensor expression insensitivity to fluorescence lifetime and highlight how these artifacts occur differently depending on the analysis method. Finally, the authors quantify how statistically meaningful experiments using multiplexed imaging could be achieved.

      A major strength of the study is the effort to present results in a clear and understandable way given that most researchers do not think about these factors on a day-to-day basis. The model code is available and written in Matlab, which should make it readily accessible, although a version in other common languages such as Python might help with dissemination in the community. One potential weakness is that the model uses parameters that are determined in a specific way by the authors, and it is not clear how vastly other biological tissue and microscope setups may differ from the values used by the authors.

      Overall, the authors achieved their aims of demonstrating how common factors (autofluorescence, background, and sensor expression) will affect lifetime measurements and they present a clear strategy for understanding how sensor expression may confound results if not properly considered. This work should bring to awareness an issue that new users of lifetime biosensors may not be aware of and that experts, while aware, have not quantitatively determined the conditions where these issues arise. This work will also point to future directions for improving experiments using fluorescence lifetime biosensors and the development of new sensors with more favorable properties.

    2. Reviewer #2 (Public review):

      Summary:

      By using simulations of common signal artefacts introduced by acquisition hardware and the sample itself, the authors are able to demonstrate methods to estimate their influence on the estimated lifetime, and lifetime proportions, when using signal fitting for fluorescence lifetime imaging.

      Strengths:

      They consider a range of effects such as after-pulsing and background signal, and present a range of situations that are relevant to many experimental situations.

      Weaknesses:

      A weakness is that they do not present enough detail on the fitting method that they used to estimate lifetimes and proportions. The method used will influence the results significantly. They seem to only use the "empirical lifetime" which is not a state of the art algorithm. The method used to deconvolve two multiplexed exponential signals is not given.

    3. Reviewer #3 (Public review):

      Summary:

      This study presents a useful computational tool, termed FLiSimBA. The MATLAB-based FLiSimBA simulations allow users to examine the effects of various noise factors (such as autofluorescence, afterpulse of the photomultiplier tube detector, and other background signals) and varying sensor expression levels. Under the conditions explored, the simulations unveiled how these factors affect the observed lifetime measurements, thereby providing useful guidelines for experimental designs. Further simulations with two distinct fluorophores uncovered conditions in which two different lifetime signals could be distinguished, indicating multiplexed dynamic imaging may be possible.

      Strengths:

      The simulations and their analyses were done systematically and rigorously. FliSimba can be useful for guiding and validating fluorescence lifetime imaging studies. The simulations could define useful parameters such as the minimum number of photons required to detect a specific lifetime, how sensor protein expression level may affect the lifetime data, the conditions under which the lifetime would be insensitive to the sensor expression levels, and whether certain multiplexing could be feasible.

      Weaknesses:

      The analyses have relied on a key premise that the fluorescence lifetime in the system can be described as two-component discrete exponential decay. This means that the experimenter should ensure that this is the right model for their fluorophores a priori and should keep in mind that the fluorescence lifetime of the fluorophores may not be perfectly described by a two-component discrete exponential (for which alternative algorithms have been implemented: e.g., Steinbach, P. J. Anal. Biochem. 427, 102-105, (2012)). In this regard, I also couldn't find how good the fits were for each simulation and experimental data to the given fitting equation (Equation 2, for example, for Figure 2C data).

      Also, in Figure 2C, the 'sensor only' simulation without accounting for autofluorescence (as seen in Sensor + autoF) or afterpulse and background fluorescence (as seen in Final simulated data) seems to recapitulate the experimental data reasonably well. So, at least in this particular case where experimental data is limited by its broad spread with limited data points, being able to incorporate the additional noise factors into the simulation tool didn't seem to matter too much.

    1. Reviewer #1 (Public review):

      Summary:

      Diarrheal diseases represent an important public health issue. Among the many pathogens that contribute to this problem, Salmonella enterica serovar Typhimurium is an important one. Due to the rise in antimicrobial resistance and the problems associated with widespread antibiotic use, the discovery and development of new strategies to combat bacterial infections is urgently needed. The microbiome field is constantly providing us with various health-related properties elicited by the commensals that inhabit their mammalian hosts. Harnessing the potential of these commensals for knowledge about host-microbe interactions as well as useful properties with therapeutic implications will likely remain a fruitful field for decades to come. In this manuscript, Wang et al use various methods, encompassing classic microbiology, genomics, chemical biology, and immunology, to identify a potent probiotic strain that protects nematode and murine hosts from S. enterica infection. Additionally, authors identify gut metabolites that are correlated with protection, and show that a single metabolite can recapitulate the effects of probiotic administration.

      Strengths:

      The utilization of varied methods by the authors, together with the impressive amount of data generated, to support the claims and conclusions made in the manuscript is a major strength of the work. Also, the ability to move beyond simple identification of the active probiotic, also identifying compounds that are at least partially responsible for the protective effects, is commendable.

      Weaknesses:

      Although there is a sizeable amount of data reported in the manuscript, there seems to be a chronic issue of lack of details of how some experiments were performed. This is particularly true in the figure legends, which for the most part lack enough details to allow comprehension without constant return to the text. Additionally, 2 figures are missing. Figure 6 is a repetition of Figure 5, and Figure S4 is an identical replicate of Figure S3.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the investigators isolated one Lacticaseibacillus rhamnosus strain (P118), and determined this strain worked well against Salmonella Typhimurium infection. Then, further studies were performed to identify the mechanism of bacterial resistance, and a list of confirmatory assays was carried out to test the hypothesis.

      Strengths:

      The authors provided details regarding all assays performed in this work, and this reviewer trusted that the conclusion in this manuscript is solid. I appreciate the efforts of the authors to perform different types of in vivo and in vitro studies to confirm the hypothesis.

      Weaknesses:

      I have two main questions about this work.

      (1) The authors provided the below information about the sources from which Lacticaseibacillus rhamnosus was isolated. More details are needed. What are the criteria to choose these samples? Where did these samples originate from? How many strains of bacteria were obtained from which types of samples?

      Lines 486-488: Lactic acid bacteria (LAB) and Enterococcus strains were isolated from the fermented yoghurts collected from families in multiple cities of China and the intestinal contents from healthy piglets without pathogen infection and diarrhoea by our lab.

      Lines 129-133: A total of 290 bacterial strains were isolated and identified from 32 samples of the fermented yoghurt and piglet rectal contents collected across diverse regions within China using MRS and BHI medium, which consist s of 63 Streptococcus strains, 158 Lactobacillus/ Lacticaseibacillus Limosilactobacillus strains, and 69 Enterococcus strains.

      (2) As a probiotic, Lacticaseibacillus rhamnosus has been widely studied. In fact, there are many commercially available products, and Lacticaseibacillus rhamnosus is the main bacteria in these products. There are also ATCC type strains such as 53103.

      I am sure the authors are also interested to know whether P118 is better as a probiotic candidate than other commercially available strains. Also, would the mechanism described for P118 apply to other Lacticaseibacillus rhamnosus strains?

      It would be ideal if the authors could include one or two Lacticaseibacillus rhamnosus which are currently commercially used, or from the ATCC. Then, the authors can compare the efficacy and antibacterial mechanisms of their P118 with other strains. This would open the windows for future work.

    1. Reviewer #1 (Public review):

      In this manuscript, the authors recorded cerebellar unipolar brush cells (UBCs) in acute brain slices. They confirmed that mossy fiber (MF) inputs generate a continuum of UBC responses. Using systematic and physiological trains of MF electrical stimulation, they demonstrated that MF inputs either increased or decreased UBC firing rates (UBC ON vs. OFF) or induced complex, long-lasting modulation of their discharges. The MF influence on UBC firing was directly associated with a specific combination of metabotropic glutamate receptors, mGluR2/3 (inhibitory) and mGluR1 (excitatory). Ultimately, the amount and ratio of these two receptors controlled the time course of the effect, yielding specific temporal transformations such as phase shifts.

      Overall, the topic is compelling, as it broadens our understanding of temporal processing in the cerebellar cortex. The experiments are well-executed and properly analyzed.

      Strengths:

      (1) A wide range of MF stimulation patterns was explored, including burst duration and frequency dependency, which could serve as a valuable foundation for explicit modeling of temporal transformations in the granule cell layer.

      (2) The pharmacological blockade of mGluR2/3, mGluR1, AMPA, and NMDA receptors helped identify the specific roles of these glutamate receptors.

      (3) The experiments convincingly demonstrate the key role of mGluR1 receptors in temporal information processing by UBCs.

      Weaknesses:

      (1) This study is largely descriptive and represents only a modest incremental advance from the previous work (Guo et al., Nat. Commun., 2021).

      (2) The MF activity used to mimic natural stimulation was previously collected in primates, while the recordings were conducted in mice.

      (3) Inhibition was blocked throughout the study, reducing its physiological relevance.

    2. Reviewer #2 (Public review):

      This study addresses the question of how UBCs transform synaptic input patterns into spiking output patterns and how different glutamate receptors contribute to their transformations. The first figure utilizes recorded patterns of mossy fiber firing during eye movements in the flocculus of rhesus monkeys obtained from another laboratory. In the first figure, these patterns are used to stimulate mossy fibers in the mouse cerebellum during extracellular recordings of UBCs in acute mouse brain slices. The remaining experiments stimulate mossy fiber inputs at different rates or burst durations, which is described as 'mossy-fiber like', although they are quite simpler than those recorded in vivo. As expected from previous work, AMPA mediates the fast responses, and mGluR1 and mGluR2/3 mediate the majority of longer-duration and delayed responses. The manuscript is well organized and the discussion contextualizes the results effectively.

      The authors use extracellular recordings because the washout of intracellular molecules necessary for metabotropic signaling may occur during whole-cell recordings. These cell-attached recordings do not allow one to confirm that electrical stimulation produces a postsynaptic current on every stimulus. Moreover, it is not clear that the synaptic input is monosynaptic, as UBCs synapse on one another. This leaves open the possibility that delays in firing could be due to disynaptic stimulation. Additionally, the result that AMPA-mediated responses were surprisingly small in many UBCs, despite apparent mRNA expression, suggests the possibility that spillover from other nearby synapses activated the higher affinity extrasynaptic mGluRs and that that main mossy fiber input to the UBC was not being stimulated. For these reasons, some whole-cell recordings (or perforated patch) would show that when stimulation is confirmed to be monosynaptic and reliable it can produce the same range of spiking responses seen extracellularly and that AMPA receptor-mediated currents are indeed small or absent in some UBCs.

      A discussion of whether the tested glutamate receptors affected the spontaneous firing rates of these cells would be informative as standing currents have been reported in UBCs. It is unclear whether the firing rate was normalized for each stimulation, each drug application, or each cell. It would also be informative to report whether UBCs characterized as responding with Fast, Mid-range, Slow, and OFF responses have different spontaneous firing rates or spontaneous firing patterns (regular vs irregular).

      Figure 1 shows examples of how Fast, Mid-range, Slow, and OFF UBCs respond to in vivo MF firing patterns, but lacks a summary of how the input is transformed across a population of UBCs. In panel d, it looks as if the phase of firing becomes more delayed across the examples from Fast to OFF UBCs. Quantifying this input/output relationship more thoroughly would strengthen these results.

      Inhibition was pharmacologically blocked in these studies. Golgi cells and other inhibitory interneurons likely contribute to how UBCs transform input signals. Speculation of how GABAergic and glycinergic synaptic inhibition may contribute additional context to help readers understand how a circuit with intact inhibition may behave.

    1. Reviewer #1 (Public review):

      Summary:

      The authors examined whether aberrantly projecting retinal ganglion cells in albino mice innervate a separate population of thalamocortical neurons, as would be predicted for Hebbian learning rules. The authors find support for this hypothesis in correlated light and electron microscopy (CLEM) reconstructions of retinal ganglion cell axons and thalamocortical neurons. In a second line of investigation, the authors ask the same question about retinal ganglion cell innervation of local inhibitory interneurons of the mouse LGN. The authors conclude that these connections are less specific.

      Strengths:

      The authors make good use of CLEM to test a circuit-level hypothesis, and they find an interesting difference in RGC synaptic innervation patterns for thalamocortical neurons vs. local interneurons.

      Weaknesses:

      The conclusions about the local interneuron innervation are a little more difficult to interpret. One would expect to only capture a small part of the local interneuron dendritic field, as compared to the smaller thalamocortical neurons, right? Doesn't that imply that finding some evidence of promiscuous connectivity means that other dendrites that were not observed probably connect to many different RGCs?

    2. Reviewer #2 (Public review):

      In this article, the authors examined the organization of misplaced retinal inputs in the visual thalamus of albino mice at electron-microscopic (EM) resolution to determine whether these synaptic inputs are segregated from the rest of the retinogeniculate circuitry.

      The study's major strengths include its high resolution, achieved through serial EM and confocal microscopy, which enabled the identification of all synaptic inputs onto neurons in the dorsolateral geniculate nucleus (dLGN).

      The experiments are very precise and demanding; thus, only the synaptic inputs of a few neurons were fully reconstructed in one animal. A few figures could be improved in their presentation.

      Despite this, the authors clearly demonstrate the synaptic segregation of misrouted retinal axons onto dLGN neurons, separate from the rest of the retinogeniculate circuitry.

      This finding is impactful because retinal inputs typically do not segregate within the mouse dLGN, and it was previously thought that this was due to the nucleus's small size, which might prevent proper segregation. The study shows that in cases where axons are misrouted and exhibit a different activity pattern than surrounding retinal inputs, segregation of inputs can indeed occur. This suggests that the normal system has the capacity to segregate inputs, despite the limited volume of the mouse dLGN.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors use ChEC-seq, an MNase based method to map yeast RNA pol II. Part of the reasoning for this study is that earlier biochemical work suggested pol II initiation and termination should involve slow steps at the UAS/promoter and termination regions that are not well visualized by formaldehyde-based ChIP methods. Here the authors find that pol II ChIP and ChEC give complementary patterns. Pol II ChIP signals are strongest in the coding region (where ChIP signal correlates well with transcription (rho = 0.62)). In contrast, pol II ChEC signals are strongest at promoters (rho = 0.52) and terminator regions. Weaker upstream ChEC signals are also observed at the STM class genes where biochemical studies have suggested a form of Pol (and maybe other general factors) is recruited to UAS sites. ChEC of TFIIA and TFIIE give promoter-specific ChEC signals as expected. Extending this work to elongation factors Ctk1 and Spt5 unexpectedly give strong signals near the PIC location and little signals over the coding region. This, and mapping CTD S2 and S5 phosphorylation by ChEC suggests to me that, for some reason, ChEC isn't optimal for detecting components of the elongation complex over coding regions.

      Examples are also presented where perturbations of transcription can be measured by ChEC. Modeling studies are shown where adjustment of kinetic parameters agree well with ChEC data and that these models can be used to estimate which steps in transcription are affected by various perturbations. However, no tests were performed to see if the predictions could be validated by other means. Finally, the role of nuclear pore binding by Gcn4 is explored, although the effects are small and this proposal should be explored more completely in future studies. Overall, the authors show that pol II ChEC is a valuable and complementary method for investigating transcription mechanisms and slow steps at the initiation and termination regions.

    2. Reviewer #2 (Public review):

      Summary:

      The study by VanBalzen et. al. compares chromatin immunoprecipitation (ChIP-seq) and chromatin endogenous cleavage sequencing (ChEC-seq2) to examine RNA polymerase II (RNAPII) binding patterns in yeast. While ChIP-seq shows RNAPII enrichment mainly over transcribed regions, ChEC-seq2 highlights RNAPII binding at promoters and upstream activating sequences (UASs), suggesting it captures distinct RNAPII populations that the authors speculate are linked more tightly to active transcription. The authors develop a stochastic model for RNAPII kinetics using ChEC-seq2 data, revealing insights into transcription regulation and the role of the nuclear pore complex in stabilizing promoter-associated RNAPII. The study suggests that ChEC-seq2 identifies regulatory events that ChIP-seq may overlook.

      Strengths:

      (1) This is a carefully crafted study that adds significantly to existing literature in this area. Transgenic MNase fusions with endogenous Rpb1 and Rpb3 subunits were carefully performed, and complemented by fusions with several additional proteins that help the authors to dissect the transcription cycle. Both the S. cerevisiae lines and the sequencing data are likely to be of significant use to the community

      (2) The validation of ChEC-seq2 and its comparison with ChIP-seq is highly valuable technical information for the community.

      (3) The kinetic modeling appears to be thoughtfully done.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Yan and colleagues introduce a modification to the previously published PETRI-seq bacterial single cell protocol to include a ribosomal depletion step based on a DNA probe set that selectively hybridizes with ribosome-derived (rRNA) cDNA fragments. They show that their modification of the PETRI-seq protocol increases the fraction of informative non-rRNA reads from ~4-10% to 54-92%. The authors apply their protocol to investigating heterogeneity in a biofilm model of E. coli, and convincingly show how their technology can detect minority subpopulations within a complex community.

      Strengths:

      The method the authors propose is a straightforward and inexpensive modification of an established split-pool single cell RNA-seq protocol that greatly increases its utility, and should be of interest to a wide community working in the field of bacterial single cell RNA-seq.

    2. Reviewer #2 (Public review):

      Summary:

      This work introduces a new method of depleting the ribosomal reads from the single-cell RNA sequencing library prepared with one of the prokaryotic scRNA-seq techniques, PETRI-seq. The advance is very useful since it allows broader access to the technology by lowering the cost of sequencing. It also allows more transcript recovery with fewer sequencing reads. The authors demonstrate the utility and performance of the method for three different model species and find a subpopulation of cells in the E.coli biofilm that express a protein, PdeI, which causes elevated c-di-GMP levels. These cells were shown to be in a state that promotes persister formation in response to ampicillin treatment.

      Strengths:

      The introduced rRNA depletion method is highly efficient, with the depletion for E.coli resulting in over 90% of reads containing mRNA. The method is ready to use with existing PETRI-seq libraries which is a large advantage, given that no other rRNA depletion methods were published for split-pool bacterial scRNA-seq methods. Therefore, the value of the method for the field is high. There is also evidence that a small number of cells at the bottom of a static biofilm express PdeI which is causing the elevated c-di-GMP levels that are associated with persister formation. This finding highlights the potentially complex role of PdeI in regulation of c-di-GMP levels and persister formation in microbial biofilms.

      Weaknesses:

      Given many current methods that also introduce different techniques for ribosomal RNA depletion in bacterial single-cell RNA sequencing, it is unclear what is the place and role of RiboD-PETRI. The efficiency of rRNA depletion varies greatly between species for the majority of the available methods, so it is not easy to select the best fitting technique for a specific application.

      Despite transcriptome-wide coverage, the authors focused on the role of a single heterogeneously expressed gene, PdeI. A more integrated analysis of multiple genes and\or interactions between them using these data could reveal more insights into the biofilm biology.

      The authors should also present the UMIs capture metrics for RiboD-PETRI method for all cells passing initial quality filter (>=15 UMIs/cell) both in the text and in the figures. Selection of the top few cells with higher UMI count may introduce biological biases in the analysis (the top 5% of cells could represent a distinct subpopulation with very high gene expression due to a biological process). For single-cell RNA sequencing, showing the statistics for a 'top' group of cells creates confusion and inflates the perceived resolution, especially when used to compare to other methods (e.g. the parent method PETRI-seq itself).

    1. Reviewer #1 (Public Review):

      Summary:

      The main goal of the paper was to identify signals that activate FLP-1 release from AIY neurons in response to H2O2, previously shown by the authors to be an important oxidative stress response in the worm.

      Strengths:

      This study builds upon the authors' previous work (Jia and Sieburth 2021) by further elucidating the gut-derived signaling mechanisms that coordinate the organism-wide antioxidant stress response in C. elegans.

      By detailing how environmental cues like oxidative stress are transduced into gut-derived peptidergic signals, this study represents a valuable advancement in understanding the integrated physiological responses governed by the gut-brain axis.

      This work provides valuable mechanistic insights into the gut-specific regulation of the FLP-2 peptide signal.

      Weaknesses:

      Although the authors identify intestinal FLP-2 as the endocrine signal important for regulating the secretion of the neuronal antioxidant neuropeptide, FLP-1, there is no effort made to identify how FLP-2 levels regulate FLP-1 secretion or identify whether this regulation is occurring directly through the AIY neuron or indirectly. This is brought up in the discussion, but identifying a target for FLP-2 in this pathway seems like a crucial missing piece of information in characterizing this pathway.

      Comments on revised version:

      In general I think the revision is improved and addresses my comments. It is unfortunate though that the authors did not address my main question (did they test the frpr-18 mutant, and if not, why?). The fact that there are other potentially relevant receptors which bind to some FLP-2 peptides with low affinity is not really a justification not to test the known high-affinity receptor (i.e. FRPR-18).

    2. Reviewer #2 (Public Review):

      Summary:

      The core findings demonstrate that the neuropeptide-like protein FLP-2, released from the intestine of C. elegans, is essential for activating the intestinal oxidative stress response. This process is mediated by endogenous hydrogen peroxide (H2O2), which is produced in the mitochondrial matrix by superoxide dismutases SOD-1 and SOD-3. H2O2 facilitates FLP-2 secretion through the activation of protein kinase C family member pkc-2 and the SNAP25 family member aex-4. The study further elucidates that FLP-2 signaling potentiates the release of the antioxidant FLP-1 neuropeptide from neurons, highlighting a bidirectional signaling mechanism between the intestine and the nervous system.

      Strengths:

      This study presents a significant contribution to the understanding of the gut-brain axis and its role in oxidative stress response and significantly advances our understanding of the intricate mechanisms underlying the gut-brain axis's role in oxidative stress response. By elucidating the role of FLP-2 and its regulation by H2O2, the study provides insights into the molecular basis of inter-tissue communication and antioxidant defense in C. elegans. These findings could have broader implications for understanding similar pathways in more complex organisms, potentially offering new targets for therapeutic intervention in diseases related to oxidative stress and aging.

      Weaknesses:

      (1) The experimental techniques employed in the study were somewhat simple and could benefit from the incorporation of more advanced methodologies.

      (2) The weak identification of the key receptors mediating the interaction between FLP-2 and AIY neurons, as well as the receptors in the gut that respond to FLP-1.

      (3) The study could be improved by incorporating a sensor for the direct measurement of hydrogen peroxide levels.

      Comments on revised version:

      The authors answered my main questions. Although many of the experiments I suggested are in the beginning stages, it is clear that the authors noted that they are critical to understanding the mechanism of action of FLP-2, and hopefully they will continue to push forward and develop more approaches to further identify the receptor mechanism.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Choi and co-authors presents "P3 editing", which leverages dual-component guide RNAs (gRNA) to induce protein-protein proximity. They explore three strategies for leveraging prime-editing gRNA (pegRNA) as a dimerization module to create a molecular proximity sensor that drives genome editing, splitting a pegRNA into two parts (sgRNA and petRNA), inserting self-splicing ribozymes within pegRNA, and dividing pegRNA at the crRNA junction. Among these, splitting at the crRNA junction proved the most promising, achieving significant editing efficiency. They further demonstrated the ability to control genome editing via protein-protein interactions and small molecule inducers by designing RNA-based systems that form active gRNA complexes. This approach was also adaptable to other genome editing methods like base editing and ADAR-based RNA editing.

      Strengths:

      The study demonstrates significant advancements in leveraging guide RNA (gRNA) as a dimerization module for genome editing, showcasing its high specificity and versatility. By investigating three distinct strategies-splitting pegRNA into sgRNA and petRNA, inserting self-splicing ribozymes within the pegRNA, and dividing the pegRNA at the repeat junction-the researchers present a comprehensive approach to achieving molecular proximity and reconstituting function. Among these methods, splitting the pegRNA at the repeat junction emerged as the most promising, achieving editing efficiencies up to 76% of the control, highlighting its potential for further development in CRISPR-Cas9 systems. Additionally, the study extends genome editing control by linking protein-protein interactions to RNA-mediated editing, using specific protein-RNA interaction pairs to regulate editing through engineered protein proximity. This innovative approach expands the toolkit for precision genome editing, demonstrating the feasibility of controlling genome editing with enhanced specificity and efficiency.

      Weaknesses:

      The initial experiments with splitting the pegRNA into sgRNA and petRNA showed low editing efficiency, less than 2%. Similarly, inserting self-splicing ribozymes within pegRNA was inefficient, achieving under 2% editing efficiency in all constructs tested, possibly hindered by the prime editing enzyme. The editing efficiency of the crRNA and petracrRNA split at the repeat junction varied, with the most promising configurations only reaching 76% of the control efficiency. The RNA-RNA duplex formation's inefficiency might be due to the lack of additional protein binding, leading to potential degradation outside the Cas9-gRNA complex. Extending the approach to control genome editing via protein-protein interactions introduced complexity, with a significant trade-off between efficiency and specificity, necessitating further optimization. The strategy combining RADARS and P3 editing to control genome editing with specific RNA expression events exhibited high background levels of non-specific editing, indicating the need for improved specificity and reduced leaky expression. Moreover, P3 editing efficiencies are exclusively quantified after transfecting DNA into HEK cells, a strategy that has resulted in past reproducibility concerns for other technologies. Overall, the various methods and combinations require further optimization to enhance efficiency and specificity, especially when integrating multiple synthetic modules.

      Comments on revisions:

      I think the authors have successfully addressed the initial concerns. Their adaption of the main text and discussion makes the limitations of P3 editing much clearer.

    2. Reviewer #2 (Public review):

      Choi et al. describes a new approach for enabling input-specific CRISPR-based genome editing in cultured cells. While CRISPR-Cas9 is a broadly applied system across all of biology, one limitation is the difficulty in inducing genome editing based on cellular events. A prior study, from the same group, developed ENGRAM - which relies on activity-dependent transcription of a prime editing guide RNA, which records a specific cellular event as a given edit in a target DNA "tape". However, this approach is limited to detection of induced transcription, and does not enable the detection of broader molecular events including protein-protein interactions or exposure to small molecules. As an alternative, this study envisioned engineering the reconstitution of a split prime editing guide RNA (pegRNA) in a protein-protein interaction (PPI)-dependent manner. This would enable location- and content-specific genome editing in a controlled setting.

      Strengths:

      The strengths of this paper include an interesting concept for engineering guide RNAs to enable activity-dependent genome editing in living cells in the future, based on discreet protein-protein interactions (either constitutively, spatially, or chemically induced). Important groundwork is laid down to engineer and improve these guide RNAs in the future (especially the work describing altering the linkers in Supplementary Figure 3 - which provides a path forward).

      Weaknesses:

      In its current state, the editing efficiency appears too low to be applied in physiological settings. Much of the latter work in the paper relies on a LambdaN-MCP direction fusion protein, rather than two interacting protein pairs. Further characterizations in the future, especially varying the transfection amounts/durations/etc of the various components of the system, would be beneficial to improve the system. It will also be important to demonstrate editing at additional sites; to characterize how long the PPI must be active to enable efficient prime editing; and how reversible the reconstitution of the split pegRNA is.

      In the revised version, the authors clearly describe the present limitations of the system in the discussion section, and also highlight specific actions and potential approaches for improving the efficiency of the system for application in biological systems. They also add further insight into why it is advantageous to design engineered guideRNAs, as opposed to engineered Cas9 enzymes, to improve the modularity of the system in the future.

    1. Reviewer #1 (Public review):

      This study is part of an ongoing effort to clarify the effects of cochlear neural degeneration (CND) on auditory processing in listeners with normal audiograms. This effort is important because ~10% of people who seek help for hearing difficulties have normal audiograms and current hearing healthcare has nothing to offer them.

      The authors identify two shortcomings in previous work that they intend to fix. The first is a lack of cross-species studies that make direct comparisons between animal models in which CND can be confirmed and humans for which CND must be inferred indirectly. The second is the low sensitivity of purely perceptual measures to subtle changes in auditory processing. To fix these shortcomings, the authors measure envelope following responses (EFRs) in gerbils and humans using the same sounds, while also performing histological analysis of the gerbil cochleae, and testing speech perception while measuring pupil size in the humans.

      The study begins with a comprehensive assessment of the hearing status of the human listeners. The only differences found between the young adult (YA) and middle-aged (MA) groups are in thresholds at frequencies > 10 kHz and DPOAE amplitudes at frequencies > 5 kHz. The authors then present the EFR results, first for the humans and then for the gerbils, showing that amplitudes decrease more rapidly with increasing envelope frequency for MA than for YA in both species. The histological analysis of the gerbil cochleae shows that there were, on average, 20% fewer IHC-AN synapses at the 3 kHz place in MA relative to YA, and the number of synapses per IHC was correlated with the EFR amplitude at 1024 Hz.

      The study then returns to the humans to report the results of the speech perception tests and pupillometry. The correct understanding of keywords decreased more rapidly with decreasing SNR in MA than in YA, with a noticeable difference at 0 dB, while pupillary slope (a proxy for listening effort) increased more rapidly with decreasing SNR for MA than for YA, with the largest differences at SNRs between 5 and 15 dB. Finally, the authors report that a linear combination of audiometric threshold, EFR amplitude at 1024 Hz, and a few measures of pupillary slope is predictive of speech perception at 0 dB SNR.

      I only have two questions/concerns about the specific methodologies used:

      (1) Synapse counts were made only at the 3 kHz place on the cochlea. However, the EFR sounds were presented at 85 dB SPL, which means that a rather large section of the cochlea will actually be excited. Do we know how much of the EFR actually reflects AN fibers coming from the 3 kHz place? And are we sure that this is the same for gerbils and humans given the differences in cochlear geometry, head size, etc.?

      (2) Unless I misunderstood, the predictive power of the final model was not tested on held-out data. The standard way to fit and test such a model would be to split the data into two segments, one for training and hyperparameter optimization, and one for testing. But it seems that the only split was for training and hyperparameter optimization.

      While I find the study to be generally well executed, I am left wondering what to make of it all. The purpose of the study with respect to fixing previous methodological shortcomings was clear, but exactly how fixing these shortcomings has allowed us to advance is not. I think we can be more confident than before that EFR amplitude is sensitive to CND, and we now know that measures of listening effort may also be sensitive to CND. But where is this leading us?

      I think what this line of work is eventually aiming for is to develop a clinical tool that can be used to infer someone's CND profile. That seems like a worthwhile goal but getting there will require going beyond exploratory association studies. I think we're ready to start being explicit about what properties a CND inference tool would need to be practically useful. I have no idea whether the associations reported in this study are encouraging or not because I have no idea what level of inferential power is ultimately required.

      That brings me to my final comment: there is an inappropriate emphasis on statistical significance. The sample size was chosen arbitrarily. What if the sample had been half the size? Then few, if any, of the observed effects would have been significant. What if the sample had been twice the size? Then many more of the observed effects would have been significant (particularly for the pupillometry). I hope that future studies will follow a more principled approach in which relevant effect sizes are pre-specified (ideally as the strength of association that would be practically useful) and sample sizes are determined accordingly.

      So, in summary, I think this study is a valuable but limited advance. The results increase my confidence that non-invasive measures can be used to infer underlying CND, but I am unsure how much closer we are to anything that is practically useful.

    2. Reviewer #2 (Public review):

      Summary:

      This paper addresses the bottom-up and top-down causes of hearing difficulties in middle-aged adults with clinically-normal audiograms using a cross-species approach (humans vs. gerbils, each with two age groups) mixing behavioral tests and electrophysiology. The study is not only a follow-up of Parthasarathy et al (eLife 2020), since there are several important differences.

      Parthasarathy et al. (2020) only considered a group of young normal-hearing individuals with normal audiograms yet with high complaints of hearing in noisy situations. Here, this issue is considered specifically regarding aging, using a between-subject design comparing young NH and older NH individuals recruited from the general population, without additional criterion (i.e. no specifically high problems of hearing in noise). In addition, this is a cross-species approach, with the same physiological EFR measurements with the same stimuli deployed on gerbils.

      This article is of very high quality. It is extremely clear, and the results show clearly a decrease of neural phase-locking to high modulation frequencies in both middle-aged humans and gerbils, compared to younger groups/cohorts. In addition, pupillometry measurements conducted during the QuickSIN task suggest increased listening efforts in middle-aged participants, and a statistical model including both EFRs and pupillometry features suggests that both factors contribute to reduced speech-in-noise intelligibility evidenced in middle-aged individuals, beyond their slight differences in audiometric thresholds (although they were clinically normal in both groups).

      These provide strong support to the view that normal aging in humans leads to auditory nerve synaptic loss (cochlear neural degeneration - CNR- or, put differently, cochlear synaptopathy) as well as increased listening effort, before any clearly visible audiometric deficits as defined in current clinical standards. This result is very important for the community since we are still missing direct evidence that cochlear synaptopathy might likely underlie a significant part of hearing difficulties in complex environments for listeners with normal thresholds, such as middle-aged and senior listeners. This paper shows that these difficulties can be reasonably well accounted for by this sensory disorder (CND), but also that listening effort, i.e. a top-down factor, further contributes to this problem. The methods are sound and well described and I would like to emphasize that they are presented concisely yet in a very precise manner so that they can be understood very easily - even for a reader who is not familiar with the employed techniques. I believe this study will be of interest to a broad readership.

      I have some comments and questions which I think would make the paper even stronger once addressed.

      Main comments:

      (1) Presentation of EFR analyses / Interpretation of EFR differences found in both gerbils and humans:

      a) Could the authors comment further on why they think they found a significant difference only at the highest mod. frequency of 1024 Hz in their study? Indeed, previous studies employing SAM or RAM tones very similar to the ones employed here were able to show age effects already at lower modulation freqs. of ~100H; e.g. there are clear age effects reported in human studies of Vasilikov et al. (2021) or Mepani et al. (2021), and also in animals (see Garrett et al. bioXiv: https://www.biorxiv.org/content/biorxiv/early/2024/04/30/2020.06.09.142950.full.pdf).

      Furthermore, some previous EEG experiments in humans that SAM tones with modulation freqs. of ~100Hz showed that EFRs do not exhibit a single peak, i.e. there are peaks not only at fm but also for the first harmonics (e.g. 2*fm or 3*fm) see e.g.Garrett et al. bioXiv https://www.biorxiv.org/content/biorxiv/early/2024/04/30/2020.06.09.142950.full.pdf.

      Did the authors try to extract EFR strength by looking at the summed amplitude of multiple peaks (Vasilikov Hear Res. 2021), in particular for the lower modulation frequencies? (indeed, there will be no harmonics for the higher mod. freqs).

      b) How do the present EFR results relate to FFR results, where effects of age are already at low carrier freqs? (e.g. Märcher-Rørsted et al., Hear. Res., 2022 for pure tones with freq < 500 Hz). Do the authors think it could be explained by the fact that this is not the same cochlear region, and that synapses die earlier in higher compared to lower CFs? This should be discussed. Beyond the main group effect of age, there were no negative correlations of EFRs with age in the data?

      (2) Size of the effects / comparing age effects between two species:

      Although the size of the age effect on EFRs cannot be directly compared between humans and gerbils - the comparison remains qualitative - could the authors at least provide references regarding the rate of synaptic loss with aging in both humans and gerbils, so that we understand that the yNH/MA difference can be compared between the two age groups used for gerbils; it would have been critical in case of a non-significant age effect in one species.

      Equalization/control of stimuli differences across the two species: For measuring EFRs, SAM stimuli were presented at 85 dB SPL for humans vs. 30 dB above the detection threshold (inferred from ABRs) for gerbils - I do not think the results strongly depend on this choice, but it would be good to comment on why you did not choose also to present stimuli 30 dB above thresholds in humans.

      Simulations of EFRs using functional models could have been used to understand (at least in humans) how the differences in EFRs obtained between the two groups are *quantitatively* compatible with the differences in % of remaining synaptic connections known from histopathological studies for their age range (see the approach in Märcher-Rørsted et al., Hear. Res., 2022)

      (3) Synergetic effects of CND and listening effort:

      Could you test whether there is an interaction between CNR and listening effort? (e.g. one could hypothesize that MA subjects with the largest CND have also higher listening effort).

    1. Reviewer #1 (Public review):

      Summary:

      The authors test the "OHC-fluid-pump" hypothesis by assaying the rates of kainic acid dispersal both in quiet and in cochleae stimulated by sounds of different levels and spectral content. The main result is that sound (and thus, presumably, OHC contractions and expansions) result in faster transport along the duct. OHC involvement is corroborated using salicylate, which yielded results similar to silence. Especially interesting is the fact that some stimuli (e.g., tones) seem to provide better/faster pumping than others (e.g., noise), ostensibly due to the phase profile of the resulting cochlear traveling-wave response.

      Strengths:

      The experiments appear well controlled and the results are novel and interesting. Some elegant cochlear modeling that includes coupling between the organ of Corti and the surrounding fluid as well as advective flow supports the proposed mechanism.

      The current limitations and future directions of the study, including possible experimental tests, extensions of the modeling work, and practical applications to drug delivery, are thoughtfully discussed.

      Weaknesses:

      Although the authors provide compelling evidence that OHC motility can usefully pump fluid, their claim (last sentence of the Abstract) that wideband OHC motility (i.e., motility in the "tail" region of the traveling wave) evolved for the purposes of circulating fluid---rather then emerging, say, as a happy by-product of OHC motility that evolved for other reasons---seems too strong.

    2. Reviewer #2 (Public review):

      Although recent cochlear micromechanical measurements in living animals have shown that outer hair cells drive broadband vibration of the reticular lamina, the role of this vibration in cochlear fluid circulation remains unknown. The authors hypothesized that motile outer hair cells may facilitate cochlear fluid circulation. To test this hypothesis, they investigated the effects of acoustic stimuli and salicylate, an outer hair cell motility blocker, on kainic acid-induced changes in the cochlear nucleus activities. The results demonstrated that acoustic stimuli reduced the latency of the kainic acid effect, with low-frequency tones being more effective than broadband noise. Salicylate reduced the effect of acoustic stimuli on kainic acid-induced changes. The authors also developed a computational model to provide a physical framework for interpreting experimental results. Their combined experimental and simulated results indicate that broadband outer hair cell action serves to drive cochlear fluid circulation.

      The major strengths of this study lie in its high significance and the synergistic use of electrophysiological recording of the cochlear nucleus responses alongside computational modeling. Cochlear outer hair cells have long been believed to be responsible for the exceptional sensitivity, sharp tuning, and huge dynamic range of mammalian hearing. However, recent observations of the broadband reticular lamina vibration contradict widely accepted view of frequency-specific cochlear amplification. Furthermore, there is currently no effective noninvasive method to deliver the drugs or genes to the cochlea, a crucial need for treating sensorineural hearing loss, one of the most common auditory disorders. This study addresses these important questions by observing outer hair cells' roles in the cochlear transport of kainic acid. The well-established electrophysiological method used to record cochlear nucleus responses produced valuable new data, and the custom-developed developed computational model greatly enhanced the interpretation of the experimental results.

      The authors successfully tested their hypothesis, with both the experimental and modeling results supporting the conclusion that active outer hair cells can enhance cochlear fluid circulation in the living cochlea.

      The findings from this study can potentially be applied for treating sensorineural hearing loss and advance our understanding of how outer hair cells contribute to cochlear amplification and normal hearing.

    3. Reviewer #3 (Public review):

      Summary:

      This study reveals that sound exposure enhances drug delivery to the cochlea through the non-selective action of outer hair cells. The efficiency of sound-facilitated drug delivery is reduced when outer hair cell motility is inhibited. Additionally, low-frequency tones were found to be more effective than broadband noise for targeting substances to the cochlear apex. Computational model simulations support these findings.

      Strengths:

      The study provides compelling evidence that the broad action of outer hair cells is crucial for cochlear fluid circulation, offering a novel perspective on their function beyond frequency-selective amplification. Furthermore, these results could offer potential strategies for targeting and optimizing drug delivery throughout the cochlear spiral.

      Weaknesses:

      The primary weakness of this paper lies in the surgical procedure used for drug administration through the round window. Opening the cochlea can alter intracochlear pressure and disrupt the traveling wave from sound, a key factor influencing outer hair cell activity. However, the authors do not provide sufficient details on how they managed this issue during surgery. Additionally, the introduction section needs further development to better explain the background and emphasize the significance of the work.

      Comments on revisions:

      Thank you for addressing the comments and concerns. The author has responded to all points thoroughly and clarified them well. However, please include the key points from the responses to the comments (Introduction ((3), (5)) and Results ((5)) into the manuscript. While the explanations in the response letter are reasonable, the current descriptions in the manuscript may limit the reader's understanding. Expanding on these points in the Introduction, Results, or Discussion sections would enhance clarity and comprehensiveness.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, Thomas et al. set out to study seasonal brain gene expression changes in the Eurasian common shrew. This mammalian species is unusual in that it does not hibernate or migrate but instead stays active all winter while shrinking and then regrowing its brain and other organs. The authors previously examined gene expression changes in two brain regions and the liver. Here, they added data from the hypothalamus, a brain region involved in the regulation of metabolism and homeostasis. The specific goals were to identify genes and gene groups that change expression with the seasons and to identify genes with unusual expression compared to other mammalian species. The reason for this second goal is that genes that change with the season could be due to plastic gene regulation, where the organism simply reacts to environmental change using processes available to all mammals. Such changes are not necessarily indicative of adaptation in the shrew. However, if the same genes are also expression outliers compared to other species that do not show this overwintering strategy, it is more likely that they reflect adaptive changes that contribute to the shrew's unique traits.

      The authors succeeded in implementing their experimental design and identified significant genes in each of their specific goals. There was an overlap between these gene lists. The authors provide extensive discussion of the genes they found.

      The scope of this paper is quite narrow, as it adds gene expression data for only one additional tissue compared to the authors' previous work in a 2023 preprint. The two papers even use the same animals, which had been collected for that earlier work. As a consequence, the current paper is limited in the results it can present. This is somewhat compensated by an expansive interpretation of the results in the discussion section, but I felt that much of this was too speculative. More importantly, there are several limitations to the design, making it hard to draw stronger conclusions from the data. The main contribution of this work lies in the generated data and the formulation of hypotheses to be tested by future work.

      Strengths:

      The unique biological model system under study is fascinating. The data were collected in a technically sound manner, and the analyses were done well. The paper is overall very clear, well-written, and easy to follow. It does a thorough job of exploring patterns and enrichments in the various gene sets that are identified.

      I specifically applaud the authors for doing a functional follow-up experiment on one of the differentially expressed genes (BCL2L1), even if the results did not support the hypothesis. It is important to report experiments like this and it is terrific to see it done here.

      Weaknesses:

      While the paper successfully identifies differentially expressed seasonal genes, the real question is (as explained by the authors) whether these are evolved adaptations in the shrews or whether they reflect plastic changes that also exist in other species. This question was the motivation for the inter-species analyses in the paper, but in my view, these cannot rigorously address this question. Presumably, the data from the other species were not collected in comparable environments as those experienced by the shrews studied here. Instead, they likely (it is not specified, and might not be knowable for the public data) reflect baseline gene expression. To see why this is problematic, consider this analogy: if we were to compare gene expression in the immune system of an individual undergoing an acute infection to other, uninfected individuals, we would see many, strong expression differences. However, it would not be appropriate to claim that the infected individual has unique features - the relevant physiological changes are simply not triggered in the other individuals. The same applies here: it is hard to draw conclusions from seasonal expression data in the shrews to non-seasonal data in the other species, as shrew outlier genes might still reflect physiological changes that weren't active in the other species.

      There is no solution for this design flaw given the public data available to the authors except for creating matched data in the other species, which is of course not feasible. The authors should acknowledge and discuss this shortcoming in the paper.

      Related to the point above: in the section "Evolutionary Divergence in Expression" it is not clear which of the shrew samples were used. Was it all of them, or only those from winter, fall, etc? One might expect different results depending on this. E.g., there could be fewer genes with inferred adaptive change when using only summer samples. The authors should specify which samples were included in these analyses, and, if all samples were used, conduct a robustness analysis to see which of their detected genes survive the exclusion of certain time points.

      In the same section, were there also genes with lower shrew expression? None are mentioned in the text, so did the authors not test for this direction, or did they test and there were no significant hits?

      The Discussion is too long and detailed, given that it can ultimately only speculate about what the various expression changes might mean. Many of the specific points made (e.g. about the blood-brain-barrier being more permissive to sensing metabolic state, about cross-organ communication, the paragraphs on single, specific genes) are a stretch based on the available data. Illustrating this point, the one follow-up experiment the authors did (on BCL2L1) did not give the expected result. I really applaud the authors for having done this experiment, which goes beyond typical studies in this space. At the same time, its result highlights the dangers of reading too much into differential expression analyses.

      There is no test of whether the five genes observed in both analyses (seasonal change and inter-species) exceed the number expected by chance. When two gene sets are drawn at random, some overlap is expected randomly. The expected overlap can be computed by repeated draws of pairs of random sets of the same size as seen in real data and by noting the overlap between the random pairs. If this random distribution often includes sets of five genes, this weakens the conclusions that can be drawn from the genes observed in the real data.

    2. Reviewer #2 (Public review):

      Summary:

      Shrews go through winter by shrinking their brain and most organs, then regrow them in the spring. The gene expression changes underlying this unusual brain size plasticity were unknown. Here, the authors looked for potential adaptations underlying this trait by looking at differential expression in the hypothalamus. They found enrichments for DE in genes related to the blood-brain barrier and calcium signaling, as well as used comparative data to look at gene expression differences that are unique in shrews. This study leverages a fascinating organismal trait to understand plasticity and what might be driving it at the level of gene expression. This manuscript also lays the groundwork for further developing this interesting system.

      Strengths:

      One strength is that the authors used OU models to look for adaptation in gene expression. The authors also added cell culture work to bolster their findings.

      Weaknesses:

      I think that there should be a bit more of an introduction to Dehnel's phenomenon, given how much it is used throughout.

    3. Reviewer #3 (Public review):

      Summary:

      In their study, the authors combine developmental and comparative transcriptomics to identify candidate genes with plastic, canalized, or lineage-specific (i.e., divergent) expression patterns associated with an unusual overwintering phenomenon (Dehnel's phenomenon - seasonal size plasticity) in the Eurasian shrew. Their focus is on the shrinkage and regrowth of the hypothalamus, a brain region that undergoes significant seasonal size changes in shrews and plays a key role in regulating metabolic homeostasis. Through combined transcriptomic analysis, they identify genes showing derived (lineage-specific), plastic (seasonally regulated), and canalized (both lineage-specific and plastic) expression patterns. The authors hypothesize that genes involved in pathways such as the blood-brain barrier, metabolic state sensing, and ion-dependent signaling will be enriched among those with notable transcriptomic patterns. They complement their transcriptomic findings with a cell culture-based functional assessment of a candidate gene believed to reduce apoptosis.

      Strengths:

      The study's rationale and its integration of developmental and comparative transcriptomics are well-articulated and represent an advancement in the field. The transcriptome, known for its dynamic and plastic nature, is also influenced by evolutionary history. The authors effectively demonstrate how multiple signals-evolutionary, constitutive, and plastic-can be extracted, quantified, and interpreted. The chosen phenotype and study system are particularly compelling, as it not only exemplifies an extreme case of Dehnel's phenotype, but the metabolic requirements of the shrew suggest that genes regulating metabolic homeostasis are under strong selection.

      Weaknesses:

      (1) In a number of places (described in detail below), the motivation for the experimental, analytical, or visualization approach is unclear and may obscure or prevent discoveries.

      (2) Temporal Expression - Figure 1 and Supplemental Figure 2 and associated text:<br /> - It is unclear whether quantitative criteria were used to distinguish "developmental shift" clusters from "season shift" clusters. A visual inspection of Supplemental Figure 2 suggests that some clusters (e.g., clusters 2, 8, and to a lesser extent 12) show seasonal variation, not just developmental differences between stages 1 and 2. While clustering helps to visualize expression patterns, it may not be the most appropriate filter in this case, particularly since all "season shift" clusters are later combined in KEGG pathway and GO analyses (Figure 1B).<br /> - The authors do not indicate whether they perform cluster-specific GO or KEGG pathway enrichment analyses. The current analysis picks up relevant pathways for hypothalamic control of homeostasis, which is a useful validation, but this approach might not fully address the study's key hypotheses.

      (3) Differential expression between shrinkage (stage 2) and regrowth (stage 4) and cell culture targets<br /> - The rationale for selecting BCL2L1 for cell culture experiments should be clarified. While it is part of the apoptosis pathway, several other apoptosis-related genes were identified in the differential gene expression (DGE) analysis, some showing stronger differential expression or shrew-specific branch shifts. Why was BCL2L1 prioritized over these other candidates?<br /> - The authors mention maintaining (or at least attempting to maintain) a 1:1 sex ratio for the comparative analysis, but it is unclear if this was also done for the S. araneus analysis. If not, why? If so, was sex included as a covariate (e.g., a random effect) in the differential expression analysis? Sex-specific expression elevates with group variation and could impact the discovery of differentially expressed genes.

      (4) Discussion: The term "adaptive" is used frequently and liberally throughout the discussion. The interpretation of seasonal changes in gene expression as indicators of adaptive evolution should be done cautiously as such changes do not necessarily imply causal or adaptive associations.

    1. Reviewer #1 (Public review):

      Summary:

      This paper reports an interesting and clever task that allows the joint measurement of both perceptual judgments and confidence (or subjective motion strength) in real/continuous time. The task is used together with a social condition to identify the (incidental, task-irrelevant) impact of another player on decision-making and confidence.

      Strengths:

      The innovation on the task alone is likely to be impactful for the field, extending recent continuous report (CPR) tasks to examine other aspects of perceptual decision-making and allowing more naturalistic readouts. One interesting and novel finding is the observation of dyadic convergence of confidence estimates even when the partner is incidental to the task performance, and that dyads tend to be more risk-seeking (indicating greater confidence) than when playing solo. The paper is well-written and clear.

      Weaknesses:

      (1) One concern with the novel task is whether confidence is disambiguated from a tracking of stimulus strength or coherence. The subjects' task is to track motion direction and use the eccentricity of the joystick to control the arc of a catcher - thus implementing a real-time sensitivity to risk (peri-decision wagering). The variable-width catcher has been used to good effect in other confidence/uncertainty tasks involving learning the spread of targets (the Nassar papers). But in the context of an RDK task, one simple strategy here is to map eccentricity directly to (subjective) motion coherence - such that the joystick position at any moment in time is a vector with motion direction and strength. This would still be an interesting task - but could be solved without invoking metacognition or the need to estimate confidence in one's motion direction decision (the analyses in Supplementary Figure 2 are nice in showing a dissociation from (objective) coherence, such that even within a coherence level, changes in eccentricity scale with direction precision - but this does not get around the potential conflation of confidence with fluctuations in motion energy).

      In other words, in this deflationary framing, what the subjects might be doing is tracking two features of the world - motion strength and direction. This possibility needs to be ruled out if the authors want to claim a mapping between eccentricity and decision confidence (for instance, an ideal observer model of the task that set eccentricity proportional to instantaneous motion strength presumably would also sensibly accrue reward targets, without the need to compute confidence in the direction response). This would be straightforward to simulate and would establish a baseline model against which to compare claims about confidence (eg when evaluating additional social modulations). More generally it casts doubt on claims such as the one on line 210 that eccentricity was "chosen freely via metacognitive assessment of the current perceptual process, [and] can be treated as a proxy measure of subjective perceptual confidence."

      One route to doing this would be to ask whether the eccentricity reports show statistical signatures of confidence that have been established for more classical punctate tasks. Here a key move has been to identify qualitative patterns in the frame of reference of choice accuracy - with confidence scaling positively with stimulus strength for correct decisions, and negatively with stimulus strength for incorrect decisions (the so-called X-pattern, for instance Sanders et al. 2016 Neuron https://pubmed.ncbi.nlm.nih.gov/27151640/).

      (2) I was surprised not to see more analysis of the continuous report data as a function of (lagged) task variables. Some of this analysis is shown in Figure 2b relative to an (objective) direction change, and also in the cross-correlation plots in Supplementary Figure 1d. But to fully characterise the task behaviour it also seems important to ask how and whether fluctuations in motion energy (assuming that the RDK frames were recorded) during a steady state phase are affecting continuous reporting of direction and eccentricity, prior to asking how social information is incorporated into subjects' behaviour.

      Minor points:

      (1) Lines 295-298, isn't it guaranteed to observe these three behavioural patterns (both participants improving, both getting worse, only one improving while the other gets worse) even in random data?

      (2) Lines 703-707, it wasn't clear what the AUC values referred to here (also in Figure 3) - what are the distributions that are being compared? I think part of the confusion here comes from AUC being mentioned earlier in the paper as a measure of metacognitive sensitivity (correct vs. incorrect trial distributions), whereas my impression here is that here AUC is being used to investigate differences in variables (eg confidence) between experimental conditions.

      (3) Could the findings of the worse solo player benefitting more than the better solo player (Figure 4c) be partly due to a compressive ceiling effect - eg there is less room to move up the psychometric function for the higher-scoring player?

    2. Reviewer #2 (Public review):

      Summary:

      Schneider et al examine perceptual decision-making in a continuous task setup when social information is also provided to another human (or algorithmic) partner. The authors track behaviour in a visual motion discrimination task and report accuracy, hit rate, wager, and reaction times, demonstrating that choice wager is affected by social information from the partner.

      Strengths:

      There are many things to like about this paper. The visual psychophysics has been undertaken with much expertise and care to detail. The reporting is meticulous and the coverage of the recent previous literature is reasonable. The research question is novel.

      Weaknesses:

      The paper is difficult to read. It is very densely written, with little to distinguish between what is a key message and what is an auxiliary side note. The Figures are often packed with sometimes over 10 panels and very long captions that stick to the descriptive details but avoid clarity. There is much that could be shifted to supplementary material for the reader to get to the main points.

      Example: In lines 176-181, we read about reaction times in the motion task with a level of detail and repetition that has very little relevance to the message of the paper. When we get to social condition and we read about RT in lines 239-243, it is not quite clear what it is that we should take away from this.

      Another example: the word "eccentricity" is used to refer to "deviation from central position" as a measure of wager. But we see in Figure 1 that it actually refers to the width of the ARC straddling the reported direction of motion. The confusion is compounded when we see in Figure 2b that the two subjects' different levels of confidence are (short red and long green) arcs at the SAME Eccentricity and overlap one another. The use of the word eccentricity is clearly driven by the Joystick action description and is in direct conflict with the meaning of what eccentricity is in visual perception.

      A third and very important one is what the word "dyadic" refers to in the paper. The subjects do not make any joint decisions. However, the authors calculate some "dyadic score" to measure if the group has been able to do better than individuals. So the word dyadic sometimes refers to some "nominal" group. In other places, dyadic refers to the social experimental condition. For example, we see in Figure 3c that AUC is compared for solo vs dyadic conditions. This is confusing.

      A key problem with the paper is that it introduces many terms and the main text often overlooks defining them clearly. I still do not understand the difference between Accuracy and Hit in the paper's jargon. The same goes for "score". Please note that the answer "this is defined in the supplementary method" is not acceptable. These are key constructs in the paper. The flow of the paper's main text depends on them.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript explores the transcriptional landscape of high-grade serous ovarian cancer (HGSOC) using consensus-independent component analysis (c-ICA) to identify transcriptional components (TCs) associated with patient outcomes. The study analyzes 678 HGSOC transcriptomes, supplemented with 447 transcriptomes from other ovarian cancer types and noncancerous tissues. By identifying 374 TCs, the authors aim to uncover subtle transcriptional patterns that could serve as novel drug targets. Notably, a transcriptional component linked to synaptic signaling was associated with shorter overall survival (OS) in patients, suggesting a potential role for neuronal interactions in the tumor microenvironment. Given notable weaknesses like lack of validation cohort or validation using another platform (other than the 11 samples with ST), the data is considered highly descriptive and preliminary.

      Strengths:

      (1) Innovative Methodology:<br /> The use of c-ICA to dissect bulk transcriptomes into independent components is a novel approach that allows for the identification of subtle transcriptional patterns that may be overshadowed in traditional analyses.

      (2) Comprehensive Data Integration:<br /> The study integrates a large dataset from multiple public repositories, enhancing the robustness of the findings. The inclusion of spatially resolved transcriptomes adds a valuable dimension to the analysis.

      (3) Clinical Relevance:<br /> The identification of a synaptic signaling-related TC associated with poor prognosis highlights a potential new avenue for therapeutic intervention, emphasizing the role of the tumor microenvironment in cancer progression.

      Weaknesses:

      (1) Mechanistic Insights:<br /> While the study identifies TCs associated with survival, it provides limited mechanistic insights into how these components influence cancer progression. Further experimental validation is necessary to elucidate the underlying biological processes.

      (2) Generalizability:<br /> The findings are primarily based on transcriptomic data from HGSOC. It remains unclear how these results apply to other subtypes of ovarian cancer or different cancer types.

      (3) Innovative Methodology:<br /> Requires more validation using different platforms (IHC) to validate the performance of this bulk-derived data. Also, the lack of control over data quality is a concern.

      (4) Clinical Application:<br /> Although the study suggests potential drug targets, the translation of these findings into clinical practice is not addressed. Probably given the lack of some QA/QC procedures it'll be hard to translate these results. Future studies should focus on validating these targets in clinical settings.

    2. Reviewer #2 (Public review):

      Summary:

      Consensus-independent component analysis and closely related methods have previously been used to reveal components of transcriptomic data that are not captured by principal component or gene-gene coexpression analyses.

      Here, the authors asked whether applying consensus-independent component analysis (c-ICA) to published high-grade serous ovarian cancer (HGSOC) microarray-based transcriptomes would reveal subtle transcriptional patterns that are not captured by existing molecular omics classifications of HGSOC.

      Statistical associations of these (hitherto masked) transcriptional components with prognostic outcomes in HGSOC could lead to additional insights into underlying mechanisms and, coupled with corroborating evidence from spatial transcriptomics, are proposed for further investigation.

      This approach is complementary to existing transcriptomics classifications of HGSOC.

      The authors have previously applied the same approach in colorectal carcinoma (Knapen et al. (2024) Commun. Med).

      Strengths:

      Overall, this study describes a solid data-driven description of c-ICA-derived transcriptional components that the authors identified in HGSOC microarray transcriptomics data, supported by detailed methods and supplementary documentation.

      The biological interpretation of transcriptional components is convincing based on (data-driven) permutation analysis and a suite of analyses of association with copy-number, gene sets, and prognostic outcomes.

      The resulting annotated transcriptional components have been made available in a searchable online format.

      For the highlighted transcriptional component which has been annotated as related to synaptic signalling, the detection of the transcriptional component among 11 published spatial transcriptomics samples from ovarian cancers appears to support this preliminary finding and requires further mechanistic follow-up.

      Weaknesses:

      This study has not explicitly compared the c-ICA transcriptional components to the existing reported transcriptional landscape and classifications for ovarian cancers (e.g. Smith et al Nat Comms 2023; TCGA Nature 2011; Engqvist et al Sci Rep 2020) which would enable a further assessment of the additional contribution of c-ICA -- whether the cICA approach captured entirely complementary components, or whether some components are correlated with the existing reported ovarian transcriptomic classifications.

      Here, the authors primarily interpret the c-ICA transcriptional components as a deconvolution of bulk transcriptomics due to the presence of cells from tumour cells and the tumour microenvironment.

      However, c-ICA is not explicitly a deconvolution method with respect to cell types: the transcriptional components do not necessarily correspond to distinct cell types, and may reflect differential dysregulation within a cell type. This application of c-ICA for the purpose of data-driven deconvolution of cell populations is distinct from other deconvolution methods that explicitly use a prior cell signature matrix.

    1. Reviewer #1 (Public review):

      Summary:

      In the present study, Chen et al. investigate the role of Endophilin A1 in regulating GABAergic synapse formation and function. To this end, the authors use constitutive or conditional knockout of Endophilin A1 (EEN1) to assess the consequences on GABAergic synapse composition and function, as well as the outcome for PTZ-induced seizure susceptibility. The authors show that EEN1 KO mice show a higher susceptibility to PTZ-induced seizures, accompanied by a reduction in the GABAergic synaptic scaffolding protein gephyrin as well as specific GABAAR subunits and eIPSCs. The authors then investigate the underlying mechanisms, demonstrating that Endophilin A1 binds directly to gephyrin and GABAAR subunits, and identifying the subdomains of Endophilin A1 that contribute to this effect. Overall, the authors state that their study places Endophilin A1 as a new regulator of GABAergic synapse function.

      Strengths:

      Overall, the topic of this manuscript is very timely, since there has been substantial recent interest in describing the mechanisms governing inhibitory synaptic transmission at GABAergic synapses. The study will therefore be of interest to a wide audience of neuroscientists studying synaptic transmission and its role in disease. The manuscript is well-written and contains a substantial quantity of data.

      Weaknesses:

      A number of questions remain to be answered in order to be able to fully evaluate the quality and conclusions of the study. In particular, a key concern throughout the manuscript regards the way that the number of samples for statistical analysis is defined, which may affect the validity of the data analysed. Addressing this weakness will be essential to providing conclusive results that support the authors' claims.

    2. Reviewer #2 (Public review):

      Summary:

      The function of neural circuits relies heavily on the balance of excitatory and inhibitory inputs. Particularly, inhibitory inputs are understudied when compared to their excitatory counterparts due to the diversity of inhibitory neurons, their synaptic molecular heterogeneity, and their elusive signature. Thus, insights into these aspects of inhibitory inputs can inform us largely on the functions of neural circuits and the brain.

      Endophilin A1, an endocytic protein heavily expressed in neurons, has been implicated in numerous pre- and postsynaptic functions, however largely at excitatory synapses. Thus, whether this crucial protein plays any role in inhibitory synapse, and whether this regulates functions at the synaptic, circuit, or brain level remains to be determined.

      New Findings:

      (1) Endophilin A1 interacts with the postsynaptic scaffolding protein gephyrin at inhibitory postsynaptic densities within excitatory neurons.

      (2) Endophilin A1 promotes the organization of the inhibitory postsynaptic density and the subsequent recruitment/stabilization of GABA A receptors via Endophilin A1's membrane binding and actin polymerization activities.

      (3) Loss of Endophilin A1 in CA1 mouse hippocampal pyramidal neurons weakens inhibitory input and leads to susceptibility to epilepsy.

      (4) Thus the authors propose that via its role as a component of the inhibitory postsynaptic density within excitatory neurons, Endophilin A1 supports the organization, stability, and efficacy of inhibitory input to maintain the excitatory/inhibitory balance critical for brain function.

      (5) The conclusion of the manuscript is well supported by the data but will be strengthened by addressing our list of concerns and experiment suggestions.

      Weaknesses:

      Technical concerns:

      (1) Figure 1F and Figure 1H, Figures 7H,J:<br /> Can the authors justify using a paired-pulse interval of 50 ms for eEPSCs and an interval of 200 ms for eIPSCs? Otherwise, experiments should be repeated using the same paired pulse interval.

      (2) Figures 3G,H,I:<br /> While 3D representations of proteins of interest bolster claims made by superresolution microscopy, SIM resolution is unreliable when deciphering the localization of proteins at the subsynaptic level given the small size of these structures (<1 micrometer). In order to determine the actual location of Endophilin A1, especially given the known presynaptic localization of this protein, the authors should complete SIM experiments with a presynaptic marker, perhaps an active zone protein, so that the relative localization of Endophilin A1 can be gleaned. Currently, overlapping signals could stem from the presynapse given the poor resolution of SIM in this context.

      Manuscript consistency:

      (1) Figure 2:<br /> The authors looked at VGAT and noticed a reduction of signals in hippocampal regions in their P21 slices, indicating that the proposed postsynaptic organization/stabilization functions of Endophilin A1 extend to the inhibitory presynapse, perhaps via Neuroligin 2-Neurexin. Simultaneously, hippocampal regions in P21 slices showed a reduction in PSD-95 signals, indicating that excitatory synapses are also affected. It would be crucial to also look at excitatory presynapses, via VGLUT staining, to assess whether EndoA1 -/- also affects presynapses. Given the extensive roles of Endophilin A1 in presynapses, especially in excitatory presynapses, this should be investigated.

      (2) Figure 7C:<br /> The authors do not assess whether p140Cap overexpression rescues GABAAR receptor loss exhibited in Endophilin A1 KO, as they did for Gephryin. This would be an important data point to show, as p140Cap may somehow rescue receptor loss by another pathway. In fact, it is mentioned in the text that this experiment was done, "Consistently, neither p140Cap nor the endophilin A1 loss-of-function mutants could rescue the GABAAR clustering phenotype in EEN1 KO neurons (Figure 7C, D)" yet the data for p140Cap overexpression seem to be missing. This should be remedied.

    3. Reviewer #3 (Public review):

      Summary:

      Chen et al. identify endophilin A1 as a novel component of the inhibitory postsynaptic scaffold. Their data show impaired evoked inhibitory synaptic transmission in CA1 neurons of mice lacking endophilin A1, and an increased susceptibility to seizures. Endophilin can interact with the postsynaptic scaffold protein gephyrin and promote assembly of the inhibitory postsynaptic element. Endophilin A1 is known to play a role in presynaptic terminals and in dendritic spines, but a role for endophilin A1 at inhibitory postsynaptic densities has not yet been described.

      Strengths:

      The authors used a broad array of experimental approaches to investigate this, including tests of seizure susceptibility, electrophysiology, biochemistry, neuronal culture, and image analysis.

      Weaknesses:

      Many results are difficult to interpret, and the data quality is not always convincing, unfortunately. The basic premise of the study, that gephyrin and endophilin A1 interact, requires a more robust analysis to be convincing.

    1. Reviewer #1 (Public review):

      Summary:

      Dendrotweaks provides its users with a solid tool to implement, visualize, tune, validate, understand, and reduce single-neuron models that incorporate complex dendritic arbors with differential distribution of biophysical mechanisms. The visualization of dendritic segments and biophysical mechanisms therein provide users with an intuitive way to understand and appreciate dendritic physiology.

      Strengths:

      (1) The visualization tools are simplified, elegant, and intuitive.

      (2) The ability to build single-neuron models using simple and intuitive interfaces.

      (3) The ability to validate models with different measurements.

      (4) The ability to systematically and progressively reduce morphologically-realistic neuronal models.

      Weaknesses:

      (1) Inability to account for neuron-to-neuron variability in structural, biophysical, and physiological properties in the model-building and validation processes.

      (2) Inability to account for the many-to-many mapping between ion channels and physiological outcomes. Reliance on hand-tuning provides a single biased model that does not respect pronounced neuron-to-neuron variability observed in electrophysiological measurements.

      (3) Lack of a demonstration on how to connect reduced models into a network within the toolbox.

      (4) Lack of a set of tutorials, which is common across many "Tools and Resources" papers, that would be helpful in users getting acquainted with the toolbox.

    2. Reviewer #2 (Public review):

      The paper by Makarov et al. describes the software tool called DendroTweaks, intended for the examination of multi-compartmental biophysically detailed neuron models. It offers extensive capabilities for working with very complex distributed biophysical neuronal models and should be a useful addition to the growing ecosystem of tools for neuronal modeling.

      Strengths

      (1) This Python-based tool allows for visualization of a neuronal model's compartments.

      (2) The tool works with morphology reconstructions in the widely used .swc and .asc formats.

      (3) It can support many neuronal models using the NMODL language, which is widely used for neuronal modeling.

      (4) It permits one to plot the properties of linear and non-linear conductances in every compartment of a neuronal model, facilitating examination of the model's details.

      (5) DendroTweaks supports manipulation of the model parameters and morphological details, which is important for the exploration of the relations of the model composition and parameters with its electrophysiological activity.

      (6) The paper is very well written - everything is clear, and the capabilities of the tool are described and illustrated with great attention to detail.

      Weaknesses

      (1) Not a really big weakness, but it would be really helpful if the authors showed how the performance of their tool scales. This can be done for an increasing number of compartments - how long does it take to carry out typical procedures in DendroTweaks, on a given hardware, for a cell model with 100 compartments, 200, 300, and so on? This information will be quite useful to understand the applicability of the software.

      (2) Let me also add here a few suggestions (not weaknesses, but something that can be useful, and if the authors can easily add some of these for publication, that would strongly increase the value of the paper).

      (3) It would be very helpful to add functionality to read major formats in the field, such as NeuroML and SONATA.

      (4) Visualization is available as a static 2D projection of the cell's morphology. It would be nice to implement 3D interactive visualization.

      (5) It is nice that DendroTweaks can modify the models, such as revising the radii of the morphological segments or ionic conductances. It would be really useful then to have the functionality for writing the resulting models into files for subsequent reuse.

      (6) If I didn't miss something, it seems that DendroTweaks supports the allocation of groups of synapses, where all synapses in a group receive the same type of Poisson spike train. It would be very useful to provide more flexibility. One option is to leverage the SONATA format, which has ample functionality for specifying such diverse inputs.

      (7) "Each session can be saved as a .json file and reuploaded when needed" - do these files contain the whole history of the session or the exact snapshot of what is visualized when the file is saved? If the latter, which variables are saved, and which are not? Please clarify.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses a well-validated behavioral estimation task to investigate the degree to which optimistic belief updating was attenuated during the 2020 global pandemic. Online participants recruited during and outside of the pandemic estimated how likely different negative life events were to happen to them in the future and were given statistics about these events happening. Belief updating (measured as the degree to which estimations changed after viewing the statistics) was less optimistically biased during the pandemic (compared to outside of it). This resulted from reduced updating from "good news" (better than expected information). Computational models were used to try to unpack how statistics were integrated and used to revise beliefs. Two families of models were compared - an RL set of models where "estimation errors" (analogous to prediction errors in classic RL models) predict belief change and a Bayesian set of models where an implied likelihood ratio was calculated (derived from participants estimations of their own risk and estimation of the base rate risk) and used to predict belief change. The authors found evidence that the former set of models accounted for updating better outside of the pandemic, but the latter accounted for updating during the pandemic. In addition, the RL model provides evidence that learning was asymmetrically positively biased outside of the pandemic but symmetric during it (as a result of reduced learning rates from good news estimation errors).

      Strengths:

      Understanding whether biases in learning are fixed modes of information processing or flexible and adapt in response to environmental shocks (like a global pandemic or economic recession) is an important area of research relevant to a wide range of fields, including cognitive psychology, behavioral economics, and computational psychiatry. The study uses a well-validated task, and the authors conduct a power analysis to show that the sample sizes are appropriate. Furthermore, the authors test that their results hold in both a between-group analysis (the focus of the main paper) and a within-group analysis (mainly in the supplemental).

      The finding that optimistic biases are reduced in response to acute stress, perceived threat, and depression has been shown before using this task both in the lab (social stress manipulation), in the real world (firefighters on duty), and clinical groups (patients with depression). However, the work does extend these findings here in important ways:

      (1) Examining the effect of a new real-world adverse event (the pandemic).<br /> (2) The reduction in optimistic updating here arises due to reduced updating from positive information (previously, in the case of environmental threat, this reduction mainly arose from increased sensitivity to negative information).<br /> (3) Leveraging new RL-inspired computational approaches, demonstrating that the bias - and its attenuation - can be captured using trial-by-trial computational modeling with separate learning rates for positive and negative estimation errors.

      Weaknesses:

      Some interpretation and analysis (the computational modeling in particular) could be improved.

      On the interpretation side, while the pandemic was an adverse experience and stressful for many people (including myself), the absence of any measures of stress/threat levels limits the conclusions one can draw. Past work that has used this task to examine belief updating in response to adverse environmental events took physiological (e.g., SCR, cortisol) and/or self-report (questionnaires) measures of mood. In SI Table 1, the authors possibly had some questionnaire measures along these lines, but this might be for the participants tested during the pandemic.

      On the analysis side, it was unclear what the motivation was for the different sets of models tested. Both families of models test asymmetric vs symmetric learning (which is the main question here) and have similar parameters (scaling and asymmetry parameters) to quantify these different aspects of the learning process. Conceptually, the different behavioral patterns one could expect from the two families of models needed to be clarified. Do the "winning" models produce the main behavioral patterns in Figure 1, and are they in some way uniquely able to do so, for instance? How would updating look different for an optimistic RL learner versus an optimistic Bayesian RL learner? Would the asymmetry parameter in the former be correlated with the asymmetry parameter in the latter? Moreover, crucially, would one be able to reliably distinguish the models from one another under the model estimation and selection criteria that the authors have used here (presenting robust model recovery could help to show this)?

    2. Reviewer #2 (Public review):

      The authors investigated how experiencing the COVID-19 pandemic affected optimism bias in updating beliefs about the future. They ran a between-subjects design testing for participants on cognitive tasks before, during, and after lifting the sanitary state of emergence during the pandemic. The authors show that optimism bias varied depending on the context in which it was tested. Namely, it disappeared during COVID-19 and re-emerged at the time of lift of sanitary emergency measures. Through advanced computational modeling, they are able to thoroughly characterize the nature of such alternations, pinpointing specific mechanisms underlying the lack of optimistic bias during the pandemic.

      Strengths pertain to the comprehensive assessment of the results via computational modeling and from a theoretical point of view to the notion that environmental factors can affect cognition. However, the relatively small sample size for each group is a limitation. A major impediment interpreting of the findings is the need for additional measures. While the information on for example, risk perception or the need for social interaction was collected from participants during the pandemic, the fact that these could not be included in the analysis hinders the interpretation of findings, which is now generally based on data collected during the pandemic, for example, reporting increased stress. While authors suggest an interpretation in terms of uncertainty of real-life conditions it is currently difficult to know if that factor drove the effect. Many concurrent elements might have accounted for the findings. This limits understanding of the underlying mechanisms related to changes in optimism bias

    1. Reviewer #1 (Public review):

      First, the authors confirm the up-regulation of the main genes involved in the three branches of the Unfolded Protein Response (UPR) system in diet-induced obese mice in AT, observations that have been extensively reported before. Not surprisingly, IRE1a inhibition with STF led to an amelioration of the obesity and insulin resistance of the animals. Moreover, non-alcoholic fatty liver disease was also improved by the treatment. More novel are their results in terms of thermogenesis and energy expenditure, where IRE1a seems to act via activation of brown AT. Finally, mice treated with STF exhibited significantly fewer metabolically active and M1-like macrophages in the AT compared to those under vehicle conditions. Overall, the authors conclude that targeting IRE1a has therapeutical potential for treating obesity and insulin resistance.

      The study has some strengths, such as the detailed characterization of the effect of STF in different fat depots and a thorough analysis of macrophage populations. However, the lack of novelty in the findings somewhat limits the study´s impact on the field.

    2. Reviewer #2 (Public review):

      The manuscript by Wu et al demonstrated that IRE1a inhibition mitigated insulin resistance and other comorbidities through increased energy expenditure in DIO mice. In this reviewer's opinion, this timely study has high significance in the field of metabolism research for the following reasons.

      (1) The authors' findings are significant and may offer a new therapeutic target to treat metabolic diseases, including diabetes, obesity, NAFLD, etc.

      (2) The authors carefully profiled the ATMs and examined the changes in gene expression after STF treatment.

      (3) The authors presented evidence collected from both systemic indirect calorimetry and individual tissue gene expression to support the notion of increased energy expenditure.

      Overall, the authors have presented sufficient background in a clear and logically organized structure, clearly stated the key question to be addressed, used the appropriate methodology, produced significant and innovative main findings, and made a justified conclusion.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Wu D. et al. explores an innovative approach to immunometabolism and obesity by investigating the potential of targeting macrophage Inositol-requiring enzyme 1α (IRE1α) in cases of overnutrition. Their findings suggest that pharmacological inhibition of IRE1α could influence key aspects such as adipose tissue inflammation, insulin resistance, and thermogenesis. Notable discoveries include the identification of High-Fat Diet (HFD)-induced CD9+ Trem2+ macrophages and the reversal of metabolically active macrophages' activity with IRE1α inhibition using STF. These insights could significantly impact future obesity treatments.

      Strengths:

      The study's key strengths lie in its identification of specific macrophage subsets and the demonstration that inhibiting IRE1α can reverse the activity of these macrophages. This provides a potential new avenue for developing obesity treatments and contributes valuable knowledge to the field.

      Weaknesses:

      The research lacks an in-depth exploration of the broader metabolic mechanisms involved in controlling diet-induced obesity (DIO). Addressing this gap would strengthen the understanding of how targeting IRE1α might fit into the larger metabolic landscape.

      Impact and Utility:

      The findings have the potential to advance the field of obesity treatment by offering a novel target for intervention. However, further research is needed to fully elucidate the metabolic pathways involved and to confirm the long-term efficacy and safety of this approach. The methods and data presented are useful, but additional context and exploration are required for broader application and understanding.

    1. Reviewer #1 (Public review):

      This study examined the interaction between two key cortical regions in the mouse brain involved in goal-directed movements, the rostral forelimb area (RFA) - considered a premotor region involved in movement planning, and the caudal forelimb area (CFA) - considered a primary motor region that more directly influences movement execution. The authors ask whether there exists a hierarchical interaction between these regions, as previously hypothesized, and focus on a specific definition of hierarchy - examining whether the neural activity in the premotor region exerts a larger functional influence on the activity in the primary motor area than vice versa. They examine this question using advanced experimental and analytical methods, including localized optogenetic manipulation of neural activity in either region while measuring both the neural activity in the other region and EMG signals from several muscles involved in the reaching movement, as well as simultaneous electrophysiology recordings from both regions in a separate cohort of animals.

      The findings presented show that localized optogenetic manipulation of neural activity in either RFA or CFA resulted in similarly short-latency changes in the muscle output and in firing rate changes in the other region. However, perturbation of RFA led to a larger absolute change in the neural activity of CFA neurons. The authors interpret these findings as evidence for reciprocal, but asymmetrical, influence between the regions, suggesting some degree of hierarchy in which RFA has a greater effect on the neural activity in CFA. They go on to examine whether this asymmetry can also be observed in simultaneously recorded neural activity patterns from both regions. They use multiple advanced analysis methods that either identify latent components at the population level or measure the predictability of firing rates of single neurons in one region using firing rates of single neurons in the other region. Interestingly, the main finding across these analyses seems to be that both regions share highly similar components that capture a high degree of variability of the neural activity patterns in each region. Single units' activity from either region could be predicted to a similar degree from the activity of single units in the other region, without a clear division into a leading area and a lagging area, as one might expect to find in a simple hierarchical interaction. However, the authors find some evidence showing a slight bias towards leading activity in RFA. Using a two-region neural network model that is fit to the summed neural activity recorded in the different experiments and to the summed muscle output, the authors show that a network with constrained (balanced) weights between the regions can still output the observed measured activities and the observed asymmetrical effects of the optogenetic manipulations, by having different within-region local weights. These results put into question whether previous and current findings that demonstrate asymmetry in the output of regions can be interpreted as evidence for asymmetrical (and thus hierarchical) inputs between regions, emphasizing the challenges in studying interactions between any brain regions.

      Strengths:

      The experiments and analyses performed in this study are comprehensive and provide a detailed examination and comparison of neural activity recorded simultaneously using dense electrophysiology probes from two main motor regions that have been the focus of studies examining goal-directed movements. The findings showing reciprocal effects from each region to the other, similar short-latency modulation of muscle output by both regions, and similarity of neural activity patterns without a clear lead/lag interaction, are convincing and add to the growing body of evidence that highlight the complexity of the interactions between multiple regions in the motor system and go against a simple feedforward-like network and dynamics. The neural network model complements these findings and adds an important demonstration that the observed asymmetry can, in theory, also arise from differences in local recurrent connections and not necessarily from different input projections from one region to the other. This sheds an important light on the multiple factors that should be considered when studying the interaction between any two brain regions, with a specific emphasis on the role of local recurrent connections, that should be of interest to the general neuroscience community.

      Weaknesses:

      While the similarity of the activity patterns across regions and lack of a clear leading/lagging interaction are interesting observations that are mostly supported by the findings presented (however, see comment below for lack of clarity in CCA/PLS analyses), the main question posed by the authors - whether there exists an endogenous hierarchical interaction between RFA and CFA - seems to be left largely open. The authors note that there is currently no clear evidence of asymmetrical reciprocal influence between naturally occurring neural activity patterns of the two regions, as previous attempts have used non-natural electrical stimulation, lesions, or pharmacological inactivation. The use of acute optogenetic perturbations does not seem to be vastly different in that aspect, as it is a non-natural stimulation of inhibitory interneurons that abruptly perturbs the ongoing dynamics. Furthermore, the main finding that supports a hierarchical interaction is a difference in the absolute change of firing rates as a result of the optogenetic perturbation, a finding that is based on a small number of animals (N = 3 in each experimental group), and one which may be difficult to interpret. As the authors nicely demonstrate in their neural network model, the two regions may differ in the strength of local within-region inhibitory connections. Could this theoretically also lead to a difference in the effect of the artificial light stimulation of the inhibitory inter-neurons on the local population of excitatory projection neurons, driving an asymmetrical effect on the downstream region? Moreover, the manipulation was performed upon the beginning of the reaching movement, while the premotor region is often hypothesized to exert its main control during movement preparation, and thus possibly show greater modulation during that movement epoch. It is not clear if the observed difference in absolute change is dependent on the chosen time of optogenetic stimulation and if this effect is a general effect that will hold if the stimulation is delivered during different movement epochs, such as during movement preparation.

      Another finding that is not clearly interpretable is in the analysis of the population activity using CCA and PLS. The authors show that shifting the activity of one region compared to the other, in an attempt to find the optimal leading/lagging interaction, does not affect the results of these analyses. Assuming the activities of both regions are better aligned at some unknown ground-truth lead/lag time, I would expect to see a peak somewhere in the range examined, as is nicely shown when running the same analyses on a single region's activity. If the activities are indeed aligned at zero, without a clear leading/lagging interaction, but the results remain similar when shifting the activities of one region compared to the other, the interpretation of these analyses is not clear.

    2. Reviewer #2 (Public review):

      Summary:

      While technical advances have enabled large-scale, multi-site neural recordings, characterizing inter-regional communication and its behavioral relevance remains challenging due to intrinsic properties of the brain such as shared inputs, network complexity, and external noise. This work by Saiki-Ishkawa et al. examines the functional hierarchy between premotor (PM) and primary motor (M1) cortices in mice during a directional reaching task. The authors find some evidence consistent with an asymmetric reciprocal influence between the regions, but overall, activity patterns were highly similar and equally predictive of one another. These results suggest that motor cortical hierarchy, though present, is not fully reflected in firing patterns alone.

      Strengths:

      Inferring functional hierarchies between brain regions, given the complexity of reciprocal and local connectivity, dynamic interactions, and the influence of both shared and independent external inputs, is a challenging task. It requires careful analysis of simultaneous recording data, combined with cross-validation across multiple metrics, to accurately assess the functional relationships between regions. The authors have generated a valuable dataset simultaneously recording from both regions at scale from mice performing a cortex-dependent directional reaching task.

      Using electrophysiological and silencing data, the authors found evidence supporting the traditionally assumed asymmetric influence from PM to M1. While earlier studies inferred a functional hierarchy based on partial temporal relationships in firing patterns, the authors applied a series of complementary analyses to rigorously test this hierarchy at both individual neuron and population levels, with robust statistical validation of significance.

      In addition, recording combined with brief optogenetic silencing of the other region allowed authors to infer the asymmetric functional influence in a more causal manner. This experiment is well designed to focus on the effect of inactivation manifesting through oligosynaptic connections to support the existence of a premotor to primary motor functional hierarchy.

      Subsequent analyses revealed a more complex picture. CCA, PLS, and three measures of predictivity (Granger causality, transfer entropy, and convergent cross-mapping) emphasized similarities in firing patterns and cross-region predictability. However, DLAG suggested an imbalance, with RFA capturing CFA variance at a negative time lag, indicating that RFA 'leads' CFA. Taken together these results provide useful insights for current studies of functional hierarchy about potential limitations in inferring hierarchy solely based on firing rates.

      While I would detail some questions and issues on specifics of data analyses and modeling below, I appreciate the authors' effort in training RNNs that match some behavioral and recorded neural activity patterns including the inactivation result. The authors point out two components that can determine the across-region influence - 1) the amount of inputs received and 2) the dependence on across-region input, i.e., the relative importance of local dynamics, providing useful insights in inferring functional relationships across regions.

      Weaknesses:

      (1) Trial-averaging was applied in CCA and PLS analyses. While trial-averaging can be appropriate in certain cases, it leads to the loss of trial-to-trial variance, potentially inflating the perceived similarities between the activity in the two regions (Figure 4). Do authors observe comparable degrees of similarity, e.g., variance explained by canonical variables? Also, the authors report conflicting findings regarding the temporal relationship between RFA and CFA when using CCA/PLS versus DLAG. Could this discrepancy be due to the use of trial-averaging in former analyses but not in the latter?

      (2) A key strength of the current study is the precise tracking of forelimb muscle activity during a complex motor task involving reaching for four different targets. This rich behavioral data is rarely collected in mice and offers a valuable opportunity to investigate the behavioral relevance of the PM-M1 functional interaction, yet little has been done to explore this aspect in depth. For example, single-trial time courses of inter-regional latent variables acquired from DLAG analysis can be correlated with single-trial muscle activity and/or reach trajectories to examine the behavioral relevance of inter-regional dynamics. Namely, can trial-by-trial change in inter-regional dynamics explain behavioral variability across trials and/or targets? Does the inter-areal interaction change in error trials? Furthermore, the authors could quantify the relative contribution of across-area versus within-area dynamics to behavioral variability. It would also be interesting to assess the degree to which across-area and within-area dynamics are correlated. Specifically, can across-area dynamics vary independently from within-area dynamics across trials, potentially operating through a distinct communication subspace?

      (3) While network modeling of RFA and CFA activity captured some aspects of behavioral and neural data, I wonder if certain findings such as the connection weight distribution (Figure 7C), across-region input (Figure 7F), and the within-region weights (Figure 7G), primarily resulted from fitting the different overall firing rates between the two regions with CFA exhibiting higher average firing rates. Did the authors account for this firing rate disparity when training the RNNs?

      (4) Another way to assess the functional hierarchy is by comparing the time courses of movement representation between the two regions. For example, a linear decoder could be used to compare the amount of information about muscle activity and/or target location as well as time courses thereof between the two regions. This approach is advantageous because it incorporates behavior rather than focusing solely on neural activity. Since one of the main claims of this study is the limitation of inferring functional hierarchy from firing rate data alone, the authors should use the behavior as a lens for examining inter-areal interactions.

    3. Reviewer #3 (Public review):

      This study investigates how two cortical regions that are central to the study of rodent motor control (rostral forelimb area, RFA, and caudal forelimb area, CFA) interact during directional forelimb reaching in mice. The authors investigate this interaction using<br /> (1) optogenetic manipulations in one area while recording extracellularly from the other,<br /> (2) statistical analyses of simultaneous CFA/RFA extracellular recordings, and<br /> (3) network modeling.<br /> The authors provide solid evidence that asymmetry between RFA and CFA can be observed, although such asymmetry is only observed in certain experimental and analytical contexts.

      The authors find asymmetry when applying optogenetic perturbations, reporting a greater impact of RFA inactivation on CFA activity than vice-versa. The authors then investigate asymmetry in endogenous activity during forelimb movements and find asymmetry with some analytical methods but not others. Asymmetry was observed in the onset timing of movement-related deviations of local latent components with RFA leading CFA (computed with PCA) and in a relatively higher proportion and importance of cross-area latent components with RFA leading than CFA leading (computed with DLAG). However, no asymmetry was observed using several other methods that compute cross-area latent dynamics, nor with methods computed on individual neuron pairs across regions. The authors follow up this experimental work by developing a two-area model with asymmetric dependence on cross-area input. This model is used to show that differences in local connectivity can drive asymmetry between two areas with equal amounts of across-region input.

      Overall, this work provides a useful demonstration that different cross-area analysis methods result in different conclusions regarding asymmetric interactions between brain areas and suggests careful consideration of methods when analyzing such networks is critical. A deeper examination of why different analytical methods result in observed asymmetry or no asymmetry, analyses that specifically examine neural dynamics informative about details of the movement, or a biological investigation of the hypothesis provided by the model would provide greater clarity regarding the interaction between RFA and CFA.

      Strengths:

      The authors are rigorous in their experimental and analytical methods, carefully monitoring the impact of their perturbations with simultaneous recordings, and providing valid controls for their analytical methods. They cite relevant previous literature that largely agrees with the current work, highlighting the continued ambiguity regarding the extent to which there exists an asymmetry in endogenous activity between RFA and CFA.

      A strength of the paper is the evidence for asymmetry provided by optogenetic manipulation. They show that RFA inactivation causes a greater absolute difference in muscle activity than CFA interaction (deviations begin 25-50 ms after laser onset, Figure 1) and that RFA inactivation causes a relatively larger decrease in CFA firing rate than CFA inactivation causes in RFA (deviations begin <25ms after laser onset, Figure 3). The timescales of these changes provide solid evidence for an asymmetry in the impact of inactivating RFA/CFA on the other region that could not be driven by differences in feedback from disrupted movement (which would appear with a ~50ms delay).

      The authors also utilize a range of different analytical methods, showing an interesting difference between some population-based methods (PCA, DLAG) that observe asymmetry, and single neuron pair methods (granger causality, transfer entropy, and convergent cross mapping) that do not. Moreover, the modeling work presents an interesting potential cause of "hierarchy" or "asymmetry" between brain areas: local connectivity that impacts dependence on across-region input, rather than the amount of across-region input actually present.

      Weaknesses:

      There is no attempt to examine neural dynamics that are specifically relevant/informative about the details of the ongoing forelimb movement (e.g., kinematics, reach direction). Thus, it may be preemptive to claim that firing patterns alone do not reflect functional influence between RFA/CFA. For example, given evidence that the largest component of motor cortical activity doesn't reflect details of ongoing movement (reach direction or path; Kaufman, et al. PMID: 27761519) and that the analytical tools the authors use likely isolate this component (PCA, CCA), it may not be surprising that CFA and RFA do not show asymmetry if such asymmetry is related to the control of movement details. An asymmetry may still exist in the components of neural activity that encode information about movement details, and thus it may be necessary to isolate and examine the interaction of behaviorally-relevant dynamics (e.g., Sani, et al. PMID: 33169030).

      The idea that local circuit dynamics play a central role in determining the asymmetry between RFA and CFA is not supported by experimental data in this paper. The plausibility of this hypothesis is supported by the model but is not explored in any analyses of the experimental data collected. Given the focus on this idea in the discussion, further experimental investigation is warranted.

    1. Reviewer #1 (Public review):

      This study investigates how ant group demographics influence nest structures and group behaviors of Camponotus fellah ants, a ground-dwelling carpenter ant species (found locally in Israel) that build subterranean nest structures. Using a quasi-2D cell filled with artificial sand, the authors perform two complementary sets of experiments to try to link group behavior and nest structure: first, the authors place a mated queen and several pupae into their cell and observe the structures that emerge both before and after the pupae eclose (i.e., "colony maturation" experiments); second, the authors create small groups (of 5,10, or 15 ants, each including a queen) within a narrow age range (i.e., "fixed demographic" experiments) to explore the dependence of age on construction. Some of the fixed demographic instantiations included a manually induced catastrophic collapse event; the authors then compared emergency repair behavior to natural nest creation. Finally, the authors introduce a modified logistic growth model to describe the time-dependent nest area. The modification introduces parameters that allow for age-dependent behavior, and the authors use their fixed demographic experiments to set these parameters, and then apply the model to interpret the behavior of the colony maturation experiments. The main results of this paper are that for natural nest construction, nest areas, and morphologies depend on the age demographics of ants in the experiments: younger ants create larger nests and angled tunnels, while older ants tend to dig less and build predominantly vertical tunnels; in contrast, emergency response seems to elicit digging in ants of all ages to repair the nest.

    2. Reviewer #2 (Public review):

      I enjoyed this paper and the approach to examining an accepted wisdom of ants determining overall density by employing age polyethism that would reduce the computational complexity required to match nest size with population (although I have some questions about the requirement that growth is infinite in such a solution). Moreover, the realization that models of collective behaviour may be inappropriate in many systems in which agents (or individuals) differ in the behavioural rules they employ, according to age, location, or information state. This is especially important in a system like social insects, typically held as a classic example of individual-as-subservient to whole, and therefore most likely to employ universal rules of behaviour. The current paper demonstrates a potentially continuous age-related change in target behaviour (excavation), and suggests an elegant and minimal solution to the requirement for building according to need in ants, avoiding the invocation of potentially complex cognitive mechanisms, or information states that all individuals must have access to in order to have an adaptive excavation output.

      The only real reservation I have is in the question of how this relationship could hold in properly mature colonies in which there is (presumably) a balance between the birth and death of older workers. Would the prediction be that the young ants still dig, or would there be a cessation of digging by young ants because the area is already sufficient? Another way of asking this is to ask whether the innate amount of digging that young ants do is in any way affected by the overall spatial size of the colony. If it is, then we are back to a problem of perfect information - how do the young ants know how big the overall colony is? Perhaps using density as a proxy? Alternatively, if the young ants do not modify their digging, wouldn't the colony become continuously larger? As a non-expert in social insects, I may be misunderstanding and it may be already addressed in the citations used.

      In any case, this is an excellent paper. The modelling approach is excellent and compelling, also allowing extrapolation to other group sizes and even other species. This to me is the main strength of the paper, as the answer to the question of whether it is younger or older ants that primarily excavate nests could have been answered by an individual tracking approach (albeit there are practical limitations to this, especially in the observation nest setup, as the authors point out). The analysis of the tunnel structure is also an important piece of the puzzle, and I really like the overall study.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, Harikrishnan Rajendran, Roi Weinberger, Ehud Fonio, and Ofer Feinerman measured the digging behaviours of queens and workers for the first 6 months of colony development, as well as groups of young or old ants. They also provide a quantitative model describing the digging behaviours and allowing predictions. They found that young ants dig more slanted tunnels, while older ants dig more vertically (straight down). This finding is important, as it describes a new form of age polyethism (a division of labour based on age). Age polyethism is described as a "yes or no" mechanism, where individuals perform or not a task according to their age (usually young individuals perform in-nest tasks, and older ones foraging). Here, the way of performing the task is modified, not only the propensity to carry it or not. This data therefore adds in an interesting way to the field of collective behaviours and division of labour.

      The conclusions of the paper are well supported by the data. Measurements of the same individuals over time would have strengthened the claims.

      Strengths:

      I find that the measure of behaviour through development is of great value, as those studies are usually done at a specific time point with mature colonies. The description of a behaviour that is modified with age is a notable finding in the world of social insects. The sample sizes are adequate and all the information clearly provided either in the methods or supplementary.

      Weaknesses:

      I think the paper is failing to take into consideration or at least discuss the role of inter-individual variabilities. Tasks have been known to be undertaken by only a few hyper-active individuals for example. Comments on the choice to use averages and the potential roles of variations between individuals are in my opinion lacking. Throughout the paper wording should be modified to refer to the group and not the individuals, as it was the collective digging that was measured. Another issue I had was the use of "mature colony" for colonies with very few individuals and only 6 months of age. Comments on the low number of workers used compared to natural mature colonies would be welcome.

    1. Reviewer #1 (Public review):

      Summary:

      The authors introduce a novel algorithm for the automatic identification of long-range axonal projections. This is an important problem as modern high-throughput imaging techniques can produce large amounts of raw data, but identifying neuronal morphologies and connectivities requires large amounts of manual work. The algorithm works by first identifying points in three-dimensional space corresponding to parts of labelled neural projections, these are then used to identify short sections of axons using an optimisation algorithm and the prior knowledge that axonal diameters are relatively constant. Finally, a statistical model that assumes axons tend to be smooth is used to connect the sections together into complete and distinct neural trees. The authors demonstrate that their algorithm is far superior to existing techniques, especially when dense labelling of the tissue means that neighbouring neurites interfere with the reconstruction. Despite this improvement, however, the accuracy of reconstruction remains below 90%, so manual proofreading is still necessary to produce accurate reconstructions of axons.

      Strengths:

      The new algorithm combines local and global information to make a significant improvement on the state-of-the-art for automatic axonal reconstruction. The method could be applied more broadly and might have applications to reconstructions of electron microscopy data, where similar issues of high-throughput imaging and relatively slow or inaccurate reconstruction remain.

      Weaknesses:

      There are three weaknesses in the algorithm and manuscript.

      (1) The best reconstruction accuracy is below 90%, which does not fully solve the problem of needing manual proofreading.

      (2) The 'minimum information flow tree' model the authors use to construct connected axonal trees has the potential to bias data collection. In particular, the assumption that axons should always be as smooth as possible is not always correct. This is a good rule-of-thumb for reconstructions, but real axons in many systems can take quite sharp turns and this is also seen in the data presented in the paper (Figure 1C). I would like to see explicit acknowledgement of this bias in the current manuscript and ideally a relaxation of this rule in any later versions of the algorithm.

      (3) The writing of the manuscript is not always as clear as it could be. The manuscript would benefit from careful copy editing for language, and the Methods section in particular should be expanded to more clearly explain what each algorithm is doing. The pseudo-code of the Supplemental Information could be brought into the Methods if possible as these algorithms are so fundamental to the manuscript.

    2. Reviewer #2 (Public review):

      In this manuscript, Cai et al. introduce PointTree, a new automated method for the reconstruction of complex neuronal projections. This method has the potential to drastically speed up the process of reconstructing complex neurites. The authors use semi-automated manual reconstruction of neurons and neurites to provide a 'ground-truth' for comparison between PointTree and other automated reconstruction methods. The reconstruction performance is evaluated for precision, recall, and F1-score and positions. The performance of PointTree compared to other automated reconstruction methods is impressive based on these 3 criteria.

      As an experimentalist, I will not comment on the computational aspects of the manuscript. Rather, I am interested in how PointTree's performance decreases in noisy samples. This is because many imaging datasets contain some level of background noise for which the human eye appears essential for the accurate reconstruction of neurites. Although the samples presented in Figure 5 represent an inherent challenge for any reconstruction method, the signal-to-noise ratio is extremely high (also the case in all raw data images in the paper). It would be interesting to see how PointTree's performance changes in increasingly noisy samples, and for the author to provide general guidance to the scientific community as to what samples might not be accurately reconstructed with PointTree.

    1. Reviewer #1 (Public review):

      Summary:

      Zhang et al. addressed the question of whether hyperaltruistic preference is modulated by decision context, and tested how oxytocin (OXT) may modulate this process. Using an adapted version of a previously well-established moral decision-making task, healthy human participants in this study undergo decisions that gain more (or lose less, termed as context) meanwhile inducing more painful shocks to either themselves or another person (recipient). The alternative choice is always less gain (or more loss) meanwhile less pain. Through a series of regression analyses, the authors reported that hyperaltruistic preference can only be found in the gain context but not in the loss context, however, OXT reestablished the hyperaltruistic preference in the loss context similar to that in the gain context.

      Strengths:

      This is a solid study that directly adapted a previously well-established task and the analytical pipeline to assess hyperaltruistic preference in separate decision contexts. Context-dependent decisions have gained more and more attention in literature in recent years, hence this study is timely. It also links individual traits (via questionnaires) with task performance, to test potential individual differences. The OXT study is done with great methodological rigor, including pre-registration. Both studies have proper power analysis to determine the sample size.

      Weaknesses:

      Despite the strengths, multiple analytical decisions have to be explained, justified, or clarified. Also, there is scope to enhance the clarity and coherence of the writing - as it stands, readers will have to go back and forth to search for information. Last, it would be helpful to add line numbers in the manuscript during the revision, as this will help all reviewers to locate the parts we are talking about.

      (1) Introduction:<br /> The introduction is somewhat unmotivated, with key terms/concepts left unexplained until relatively late in the manuscript. One of the main focuses in this work is "hyperaltruistic", but how is this defined? It seems that the authors take the meaning of "willing to pay more to reduce other's pain than their own pain", but is this what the task is measuring? Did participants ever need to PAY something to reduce the other's pain? Note that some previous studies indeed allow participants to pay something to reduce other's pain. And what makes it "HYPER-altruistic" rather than simply "altruistic"? Plus, in the intro, the authors mentioned that the "boundary conditions" remain unexplored, but this idea is never touched again. What do boundary conditions mean here in this task? How do the results/data help with finding out the boundary conditions? Can this be discussed within wider literature in the Discussion section? Last, what motivated the authors to examine the decision context? It comes somewhat out of the blue that the opening paragraph states that "We set out to [...] decision context", but why? Are there other important factors? Why decision context is more important than studying those others?

      (2) Experimental Design:<br /> (2a) The experiment per se is largely solid, as it followed a previously well-established protocol. But I am curious about how the participants got instructed? Did the experimenter ever mention the word "help" or "harm" to the participants? It would be helpful to include the exact instructions in the SI.

      (2b) Relatedly, the experimental details were not quite comprehensive in the main text. Indeed, the Methods come after the main text, but to be able to guide readers to understand what was going on, it would be very helpful if the authors could include some necessary experimental details at the beginning of the Results section.

      (3) Statistical Analysis<br /> (3a) One of the main analyses uses the harm aversion model (Eq1) and the results section keeps referring to one of the key parameters of it (ie, k). However, it is difficult to understand the text without going to the Methods section below. Hence it would be very helpful to repeat the equation also in the main text. A similar idea goes to the delta_m and delta_s terms - it will be very helpful to give a clear meaning of them, as nearly all analyses rely on knowing what they mean.

      (3b) There is one additional parameter gamma (choice consistency) in the model. Did the authors also examine the task-related difference of gamma? This might be important as some studies have shown that the other-oriented choice consistency may differ in different prosocial contexts.

      (3c) I am not fully convinced that the authors included two types of models: the harm aversion model and the logistic regression models. Indeed, the models look similar, and the authors have acknowledged that. But I wonder if there is a way to combine them? For example:<br /> Choice ~ delta_V * context * recipient (*Oxt_v._placebo)<br /> The calculation of delta_V follows Equation 1.<br /> Or the conceptual question is, if the authors were interested in the specific and independent contribution of dalta_m and dalta_s to behavior, as their logistic model did, why did the authors examine the harm aversion first, where a parameter k is controlling for the trade-off? One way to find it out is to properly run different models and run model comparisons. In the end, it would be beneficial to only focus on the "winning" model to draw inferences.

      (3d) The interpretation of the main OXT results needs to be more cautious. According to the operationalization, "hyperaltruistic" is the reduction of pain of others (higher % of choosing the less painful option) relative to the self. But relative to the placebo (as baseline), OXT did not increase the % of choosing the less painful option for others, rather, it decreased the % of choosing the less painful option for themselves. In other words, the degree of reducing other's pain is the same under OXT and placebo, but the degree of benefiting self-interest is reduced under OXT. I think this needs to be unpacked, and some of the wording needs to be changed. I am not very familiar with the OXT literature, but I believe it is very important to differentiate whether OXT is doing something on self-oriented actions vs other-oriented actions. Relatedly, for results such as that in Figure 5A, it would be helpful to not only look at the difference but also the actual magnitude of the sensitivity to the shocks, for self and others, under OXT and placebo.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors reported two studies where they investigated the context effect of hyperaltruistic tendency in moral decision-making. They replicated the hyperaltruistic moral preference in the gain domain, where participants inflicted electric shocks on themselves or another person in exchange for monetary profits for themselves. In the loss domain, such hyperaltruistic tendency is abolished. Interestingly, oxytocin administration reinstated the hyperaltruistic tendency in the loss domain. The authors also examined the correlation between individual differences in utilitarian psychology and the context effect of hyperaltruistic tendency.

      Strengths:

      (1) The research question - the boundary condition of hyperaltruistic tendency in moral decision-making and its neural basis - is theoretically important.

      (2) Manipulating the brain via pharmacological means offers a causal understanding of the neurobiological basis of the psychological phenomenon in question.

      (3) Individual difference analysis reveals interesting moderators of the behavioral tendency.

      Weaknesses:

      (1) The theoretical hypothesis needs to be better justified. There are studies addressing the neurobiological mechanism of hyperaltruistic tendency, which the authors unfortunately skipped entirely.

      (2) There are some important inconsistencies between the preregistration and the actual data collection/analysis, which the authors did not justify.

      (3) Some of the exploratory analysis seems underpowered (e.g., large multiple regression models with only about 40 participants).

      (4) Inaccurate conceptualization of utilitarian psychology and the questionnaire used to measure it.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, the authors aimed to index individual variation in decision-making when decisions pit the interests of the self (gains in money, potential for electric shock) against the interests of an unknown stranger in another room (potential for unknown shock). In addition, the authors conducted an additional study in which male participants were either administered intranasal oxytocin or placebo before completing the task to identify the role of oxytocin in moderating task responses. Participants' choice data was analyzed using a harm aversion model in which choices were driven by the subjective value difference between the less and more painful options.

      Strengths:

      Overall I think this is a well-conducted, interesting, and novel set of research studies exploring decision-making that balances outcomes for the self versus a stranger, and the potential role of the hormone oxytocin (OT) in shaping these decisions. The pain component of the paradigm is well designed, as is the decision-making task, and overall the analyses were well suited to evaluating and interpreting the data. Advantages of the task design include the absence of deception, e.g., the use of a real study partner and real stakes, as a trial from the task was selected at random after the study and the choice the participant made was actually executed. 

      Weaknesses:

      The primary weakness of the paper concerns its framing. Although it purports to be measuring "hyper-altruism" it does not provide evidence to support why any of the behavior being measured is extreme enough to warrant the modifier "hyper" (and indeed throughout I believe the writing tends toward hyperbole, using, e.g., verbs like "obliterate" rather than "reduce"). More seriously, I do not believe that the task constitutes altruism, but rather the decision to engage, or not engage, in instrumental aggression.

      I found it surprising that a paradigm that entails deciding to hurt or not hurt someone else for personal benefit (whether acquiring a financial gain or avoiding a loss) would be described as measuring "altruism." Deciding to hurt someone for personal benefit is the definition of instrumental aggression. I did not see that in any of the studies was there a possibility of acting to benefit the other participant in any condition. Altruism is not equivalent to refraining from engaging in instrumental aggression. True altruism would be to accept shocks to the self for the other's benefit (e.g., money).  The interpretation of this task as assessing instrumental aggression is supported by the fact that only the Instrumental Harm subscale of the OUS was associated with outcomes in the task, but not the Impartial Benevolence subscale. By contrast, the IB subscale is the one more consistently associated with altruism (e.g,. Kahane et al 2018; Amormino at al, 2022) I believe it is important for scientific accuracy for the paper, including the title, to be re-written to reflect what it is testing.

      Relatedly: in the introduction I believe it would be important to discuss the non-symmetry of moral obligations related to help/harm--we have obligations not to harm strangers but no obligation to help strangers. This is another reason I do not think the term "hyper altruism" is a good description for this task--given it is typically viewed as morally obligatory not to harm strangers, choosing not to harm them is not "hyper" altruistic (and again, I do not view it as obviously altruism at all).

      The framing of the role of OT also felt incomplete. In introducing the potential relevance of OT to behavior in this task, it is important to pull in evidence from non-human animals on origins of OT as a hormone selected for its role in maternal care and defense (including defensive aggression). The non-human animal literature regarding the effects of OT is on the whole much more robust and definitive than the human literature. The evidence is abundant that OT motivates the defensive care of offspring of all kinds. My read of the present OT findings is that they increase participants' willingness to refrain from shocking strangers even when incurring a loss (that is, in a context where the participant is weighing harm to themselves versus harm to the other). It will be important to explain why OT would be relevant to refraining from instrumental aggression, again, drawing on the non-human animal literature.

      Another important limitation is the use of only male participants in Study 2. This was not an essential exclusion. It should be clear throughout sections of the manuscript that this study's effects can be generalized only to male participants.

    1. Reviewer #1 (Public review):

      The paper by Auer et. makes several contributions:

      (1) The study developed a novel approach to map the microstructural organization of the human amygdala by applying radiomics and dimensionality reduction techniques to high-resolution histological data from the BigBrain dataset.

      (2) The method identified two main axes of microstructural variation in the amygdala, which could be translated to in vivo 7 Tesla MRI data in individual subjects.

      (3) Functional connectivity analysis using resting-state fMRI suggests that microstructurally defined amygdala subregions had distinct patterns of functional connectivity to cortical networks, particularly the limbic, frontoparietal, and default mode networks.

      (4) Meta-analytic decoding was used to suggest that the superior amygdala subregion's connectivity is associated with autobiographical memory, while the inferior subregion was linked to emotional face processing.

      (5) Overall, the data-driven, multimodal approach provides an account of amygdala microstructure and possibly function that can be applied at the individual subject level, potentially advancing research on amygdala organization.

      Although these are meritorious contributions there are some concerns that I will summarize below.

      (1) The paper makes little-to-no contact with the monkey literature regarding the anatomy of amygdala subregions, their functionality, and their patterns of anatomical connectivity. This is surprising because such literature on non-human primates is a very important starting point for understanding the human amygdala. I recommend taking a careful look at the work by Helen Barbas, among others. There are too many papers to cite but a notable example is: Ghashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage, 34(3), 905-923. The work of Amaral is also highly relevant. Furthermore, the authors subscribe to a model with LB, CM, and SF sectors. How does the SF sector relate to monkey anatomy?

      (2) The authors use meta-analytical decoding via NeuroSynth. If the authors like those results of course they should keep them but the quality of coordinate reporting in the literature is insufficient to conclude much in the context of amygdala subregion function in my opinion. I believe the results reported are at most "somewhat suggestive".

      (3) Another significant concern has to do with the results in Figure 3. The red and yellow clusters identified are quite distinct but the differences in functional connectivity are very modest. Figure 3C reveals very similar functional connectivity with the networks investigated. This is very surprising, and the authors should include a careful comparison with related findings in the literature. Overall, there is limited comparison between the observed results and those obtained via other methods. On a more pessimistic note, the results of Figure 3 seem to question the validity of the general approach.

      (4) Some statements in the Discussion feel unwarranted. For example, "significant dissociation in functional connectivity to prefrontal structures that support self-referential, reward-related, and socio-affective processes." This feels way beyond what can be stated based on the analyses performed.

    2. Reviewer #2 (Public review):

      Summary:

      This study bridges a micro- to macroscale understanding of the organization of the amygdala. First, using a data-driven approach, the authors identify structural clusters in the human amygdala from high-resolution post-mortem histological data. Next, multimodal imaging data to identify structural subunits of the amygdala and the functional networks in which they are involved. This approach is exciting because it permits the identification of both structural amygdalar subunits, and their functional implications, in individual subjects. There are, however, some differences in the macro and microscale levels of organization that should be addressed.

      Strengths:

      The use of data-driven parcellation on a structure that is important for human emotion and cognition, and the combination of this with high-resolution individual imaging-based parcellation, is a powerful and exciting approach, addressing both the need for a template-level understanding of organization as well as a parcellation that is valid for individuals. The functional decoding of rsfMRI permits valuable insight into the functional role of structural subunits. Overall, the combination of micro to macro, structure, and function, and general organization to individual relevance is an impressive holistic approach to brain mapping.

      Weaknesses:

      (1) UMAP 1, as calculated from the histological data, appears to correlate well across individuals, and decently with the MRI data, although the medial-lateral coordinate axis is an outlier. UMAP 2, on the other hand, does not appear to correlate well with imaging data or across individuals. This does pose a problem with the claim that this paper bridges micro- and macroscale parcellations. One might certainly expect, however, that different levels of organization might parcellate differently, but the authors should address this in the discussion and offer ways forward.

      (2) It would be interesting to see functional decoding for the right amygdala. This could be included in the supplementary material. A discussion of differences in the results in the two hemispheres could be illuminating.

      (3) The authors acknowledge that this mapping matches some but not all subunits that have been previously described in the amygdala. It would be helpful to neuroanatomists if the authors could discuss these differences in more detail in the discussion, to identify how this mapping differs and what the implications of this are.

      (4) The acronym UMAP is not explained. A brief explanation and description would be useful to the reader.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Fakhar et al. use a game-theoretical framework to model interregional communication in the brain. They perform virtual lesioning using MSA to obtain a representation of the influence each node exerts on every other node, and then compare the optimal influence profiles of nodes across different communication models. Their results indicate that cortical regions within the brain's "rich club" are most influential.

      Strengths:

      Overall, the manuscript is well-written. Illustrative examples help to give the reader intuition for the approach and its implementation in this context. The analyses appear to be rigorously performed and appropriate null models are included.

      Weaknesses:

      The use of game theory to model brain dynamics relies on the assumption that brain regions are similar to agents optimizing their influence, and implies competition between regions. The model can be neatly formalized, but is there biological evidence that the brain optimizes signaling in this way? This could be explored further. Specifically, it would be beneficial if the authors could clarify what the agents (brain regions) are optimizing for at the level of neurobiology - is there evidence for a relationship between regional influence and metabolic demands? Identifying a neurobiological correlate at the same scale at which the authors are modeling neural dynamics would be most compelling.

      It is not entirely clear what Figure 6 is meant to contribute to the paper's main findings on communication. The transition to describing this Figure in line 317 is rather abrupt. The authors could more explicitly link these results to earlier analyses to make the rationale for this figure clearer. What motivated the authors' investigation into the persistence of the signal influence across steps?

      The authors used resting-state fMRI data to generate functional connectivity matrices, which they used to inform their model of neural dynamics. If I understand correctly, their functional connectivity matrices represent correlations in neural activity across an entire fMRI scan computed for each individual and then averaged across individuals. This approach seems limited in its ability to capture neural dynamics across time. Modeling time series data or using a sliding window FC approach to capture changes across time might make more sense as a means of informing neural dynamics.

      The authors evaluated their model using three different structural connectomes: one inferred from diffusion spectrum imaging in humans, one inferred from anterograde tract tracing in mice, and one inferred from retrograde tract-tracing in macaque. While the human connectome is presumably an undirected network, the mouse and macaque connectomes are directed. What bearing does experimentally inferred knowledge of directionality have on the derivation of optimal influence and its interpretation?

      It would be useful if the authors could assess the performance of the model for other datasets. Does the model reflect changes during task engagement or in disease states in which relative nodal influence would be expected to change? The model assumes optimality, but this assumption might be violated in disease states.

      The MSA approach is highly computationally intensive, which the authors touch on in the Discussion section. Would it be feasible to extend this approach to task or disease conditions, which might necessitate modeling multiple states or time points, or could adaptations be made that would make this possible?

    2. Reviewer #2 (Public review):

      Summary:

      The authors provide a compelling method for characterizing communication within brain networks. The study engages important, biologically pertinent, concerns related to the balance of dynamics and structure in assessing the focal points of brain communication. The methods are clear and seem broadly applicable, however further clarity on this front is required.

      Strengths:

      The study is well-developed, providing an overall clear exposition of relevant methods, as well as in-depth validation of the key network structural and dynamical assumptions. The questions and concerns raised in reading the text were always answered in time, with straightforward figures and supplemental materials.

      Weaknesses:

      The narrative structure of the work at times conflicts with the interpretability. Specifically, in the current draft, the model details are discussed and validated in succession, leading to confusion. Introducing a "base model" and "core datasets" needed for this type of analysis would greatly benefit the interpretability of the manuscript, as well as its impact.

    1. Reviewer #1 (Public review):

      Summary:

      Winkler et al. present brain activity patterns related to complex motor behaviour by combining whole-head magnetoencephalography (MEG) with subthalamic local field potential (LFP) recordings from people with Parkinson's disease. The motor task involved repetitive circular movements with stops or reversals associated with either predictable or unpredictable cues. Beta and gamma frequency oscillations are described, and the authors found complex interactions between recording sites and task conditions. For example, they observed stronger modulation of connectivity in unpredictable conditions. Moreover, STN power varied across patients during reversals, which differed from stopping movements. The authors conclude that cortex-STN beta modulation is sensitive to movement context, with potential relevance for movement redirection.

      Strengths:

      This study employs a unique methodology, leveraging the rare opportunity to simultaneously record both invasive and non-invasive brain activity to explore oscillatory networks.

      Weaknesses:

      It is difficult to interpret the role of the STN in the context of reversals because no consistent activity pattern emerged.

    2. Reviewer #2 (Public review):

      Summary:

      This study examines the role of beta oscillations in motor control, particularly during rapid changes in movement direction among patients with Parkinson's disease. The researchers utilized magnetoencephalography (MEG) and local field potential (LFP) recordings from the subthalamic nucleus to investigate variations in beta band activity within the cortex and STN during the initiation, cessation, and reversal of movements, as well as the impact of external cue predictability on these dynamics. The primary finding indicates that beta oscillations more effectively signify the start and end of motor sequences than transitions within those sequences. The article is well-written, clear, and concise.

      Strengths:

      The use of a continuous motion paradigm with rapid reversals extends the understanding of beta oscillations in motor control beyond simple tasks. It offers a comprehensive perspective on subthalamo-cortical interactions by combining MEG and LFP.

      Weaknesses:

      (1) The small and clinically diverse sample size may limit the robustness and generalizability of the findings. Additionally, the limited exploration of causal mechanisms reduces the depth of its conclusions and focusing solely on Parkinson's disease patients might restrict the applicability of the results to broader populations.

      (2) The small sample size and variability in clinical characteristics among patients may limit the robustness of the study's conclusions. It would be beneficial for the authors to acknowledge this limitation and propose strategies for addressing it in future research. Additionally, incorporating patient-specific factors as covariates in the ANOVA could help mitigate the confounding effects of heterogeneity.

      (3) The author may consider using standardized statistics, such as effect size, that would provide a clearer picture of the observed effect magnitude and improve comparability.

      (4) Although the study identifies revelance between beta activity and motor events, it lacks causal analysis and discussion of potential causal mechanisms. Given the valuable datasets collected, exploring or discussing causal mechanisms would enhance the depth of the study.

      (5) The study cohort focused on senior adults, who may exhibit age-related cortical responses during movement planning in neural mechanisms. These aspects were not discussed in the study.

      (6) Including a control group of patients with other movement disorders who also undergo DBS surgery would be beneficial. Because we cannot exclude the possibility that the observed findings are specific to PD or can be generalized. Additionally, the current title and the article, which are oriented toward understanding human motor control, may not be appropriate.

    3. Reviewer #3 (Public review):

      Summary:

      The study highlights how the initiation, reversal, and cessation of movements are linked to changes in beta synchronization within the basal ganglia-cortex loops. It was observed that different movement phases, such as starting, stopping briefly, and stopping completely, affect beta oscillations in the motor system.

      It was found that unpredictable cues lead to stronger changes in STN-cortex beta coherence. Additionally, specific patterns of beta and gamma oscillations related to different movement actions and contexts were observed. Stopping movements was associated with a lack of the expected beta rebound during brief pauses within a movement sequence.

      Overall, the results underline the complex and context-dependent nature of motor-control and emphasize the role of beta oscillations in managing movement according to changing external cues.

      Strengths:

      The paper is very well written, clear, and appears methodologically sound.

      Although the use of continuous movement (turning) with reversals is more naturalistic than many previous button push paradigms.

      Weaknesses:

      The generalizability of the findings is somewhat curtailed by the fact that this was performed peri-operatively during the period of the microlesion effect. Given the availability of sensing-enabled DBS devices now and HD-EEG, does MEG offer a significant enough gain in spatial localizability to offset the fact that it has to be done shortly postoperatively with externalized leads, with an attendant stun effect? Specifically, for paradigms that are not asking very spatially localized questions as a primary hypothesis?

      Further investigation of the gamma signal seems warranted, even though it has a slightly lower proportional change in amplitude in beta. Given that the changes in gamma here are relatively wide band, this could represent a marker of neural firing that could be interestingly contrasted against the rhythm account presented.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Mendoza-Romero et al. investigate the effects of maternal high-fat diet (MHFD) on microglia and AgRP synaptic terminals in the hypothalamus of postnatal mice during lactation. The study employs 3D microglial morphology reconstruction and genetically targeted axonal labeling, offering a detailed examination of microglial changes and their implications for AgRP terminal density and body weight regulation, focusing on the PVN and ARC nuclei. The authors also use pharmacological (e.g., PLX5622) elimination of microglia to test the sufficiency of microglia to shape PVN AgRP+ synapses.

      Strengths:

      This is a well-written paper with a thorough introduction and discussion.

      The impact of microglia on hypothalamic synaptic pruning is poorly characterized, so the findings herein are especially interesting.

      Weaknesses:

      (1) A cartoon paradigm of the HFD treatment window would be a helpful addition to Figure 1. Relatedly, the authors might consider qualifying MHFD as 'lactational MHFD.' Readers might miss the fact that the exposure window starts at birth.

      (2) More details on the modeling pipeline are needed either in Figure 1 or text. Of the ~50 microglia that were counted (based on Figure 1J), were all 50 quantified for the morphological assessments? Were equal numbers used for the control and MHFD groups? Were the 3D models adjusted manually for accuracy? How much background was detected by IMARIS that was discarded? Was the user blind to the treatment group while using the pipeline? Were the microglia clustered or equally spread across the PVN?

      (3) Suggest toning back some of the language. For example: "...consistent with enhanced activity and surveillance of their immediate microenvironment" (Line 195) could be "...perhaps consistent with...". Likewise, "profound" (Lines 194, 377) might be an overstatement.

      (4) Representative images for AgRP+ cells (quantified in Figure 2J) are missing. Why not a co-label of Iba1+/AgRP+ as per Figure 1, 3? Also, what was quantified in Figure 2J - soma? Total immunoreactivity?

      (5) For the PLX experiment:<br /> a) "...we depleted microglia during the lactation period" (Line 234). This statement suggests microglia decreased from the first injection at P4 and throughout lactation, which is inaccurate. PLX5622 effects take time, upwards of a week. Thus, if PLX5622 injections started at P4, it could be P11 before the decrease in microglia numbers is stable. Moreover, by the time microglia are entirely knocked down, the pups might be supplementing some chow for milk, making it unclear how much PLX5622 they were receiving from the dam, which could also impact the rate at which microglia repopulation commences in the fetal brain. Quantifying microglia across the P4-P21 treatment window would be helpful, especially at P16, since the PVN AgRP microglia phenotypes were demonstrated and roughly when pups might start eating some chow.

      b) I am surprised that ~70% of the microglia are present at P21. Does this number reflect that microglia are returning as the pups no longer receive PLX5622 from milk from the dam? Does it reflect the poor elimination of microglia in the first place?

      (6) Was microglia morphology examined for all microglia across the PVN? It is possible that a focus on PVNmpd microglia would reveal a stronger phenotype? In Figure 4H, J, AgRP+ terminals are counted in PVN subregions - PVNmpd and PVNpml, with PVNmpd showing a decrease of ~300 AgRP+ terminals in MHFD/Veh (rescued in MHFD/PLX5622). In Figure 1K, AgRP+ terminals across what appears to be the entire PVN decrease by ~300, suggesting that PVNmpd is driving this phenotype. If true, then do microglia within the PVNmpd display this morphology phenotype?

      (7) What chow did the pups receive as they started to consume solid food? Is this only a MHFD challenge, or could the pups be consuming HFD chow that fell into the cage?

      (8) Figure 5: Does internalized AgRP+ co-localize with CD68+ lysosomes? How was 'internalized' determined?

      (9) Different sample sizes are used across experiments (e.g., Figure 4 NCD n=5, MHFD n=4). Does this impact statistical significance?

    2. Reviewer #2 (Public review):

      Summary:

      Microglia sense stressors and other environmental factors during the postnatal period in rodents and can sculpt developing circuits by promoting or pruning synaptic connections, depending on the brain region and context. Here, the authors examine the contributions of microglia to the effects of maternal high-fat diet during lactation (MHFD) to reduce the formation of projections from AgRP neurons in the ARH to the PVH, a critical node in circuits regulating energy balance. Using detailed histomorphometric analyses of Iba-1+ cells in 3 hypothalamic nuclei (ARH, PVH, and BNST) at two-time points (P16 and P30), the authors show that microglial volume and complexity increase while cell numbers decrease across this period. Exposure to MHFD is associated with an increase in the complexity/volume of microglia at P16 in the PVH but not in the other brain regions or time points assessed. The authors cite this as evidence of "spatial-specific" effects. They also demonstrate that reducing the number of microglia using a pharmacological approach (injection of the CSFR inhibitor from P4-P21) in pups exposed to MHFD enhances AgRP outgrowth to the PVH and reduces body weight at weaning, effectively reversing the effects of MHFD. The central claim in the manuscript is that microglia in the PVH "sculpt the density of AgRP inputs to the PVH" in a spatially restricted manner.

      Strengths:

      (1) Detailed 3-D reconstructions of Iba-1 staining in microglia are used to perform unbiased and comprehensive analyses of microglial complexity and to quantify the spatial relationship between microglial processes and AgRP terminals.

      (2) The rationale for exploring whether the effects of maternal HFD on the formation of AgRP projections to the PVH is mediated via changes in microglia is supported by the literature. For example, microglial development in the postnatal hippocampus and cortex is sensitive to maternal factors, such as inflammation, with lasting effects on circuit formation and function.

      (3) Here the authors explored whether changes in microglia contribute to the effects of maternal HFD feeding during lactation on the formation of AgRP to PVH circuits that are important for the regulation of food intake and energy expenditure.

      Weaknesses:

      (1) Under chow-fed conditions, there is a decrease in the number of microglia in the PVH and ARH between P16 and P30, accompanied by an increase in complexity/volume. With the exception of PVH microglia at P16, this maturation process is not affected by MHFD. This "transient" increase in microglial complexity could also reflect premature maturation of the circuit.

      (2) The key experiment in this paper, the ablation of microglia, was presumably designed to prevent microglial expansion/activation in the PVH of MHFD pups. However, it also likely accelerates and exaggerates the decrease in cell number during normal development regardless of maternal diet. Efforts to interpret these findings are further complicated because microglial and AgRP neuronal phenotypes were not assessed at earlier time points when the circuit is most sensitive to maternal influences.

      (3) Microglial loss was induced broadly in the forebrain. Enhanced AgRP outgrowth to the PVH could be caused by actions elsewhere, such as direct effects on AgRP neurons in the ARH or secondary effects of changes in growth rates.

      (4) Prior publications from the authors and other groups support the idea that the density of AgRP projections to the PVH is primarily driven by factors regulating outgrowth and not pruning. The failure to observe increased engulfment of AgRP fibers by PVH microglia is surprising. Therefore, not surprising. The possibility that synaptic connectivity is modulated by microglia was not explored.

    3. Reviewer #3 (Public review):

      Summary:

      The authors interrogated the putative role of microglia in determining AgRP fiber maturation in offspring exposed to a maternal high-fat diet. They found that changes in specific parts of the hypothalamus (but not in others) occur in microglia and that the effect of microglia on AgRP fibers appears to be beyond synaptic pruning, a classical function of these brain-resident macrophages.

      Strengths:

      The work is very strong in neuroanatomy. The images are clear and nicely convey the anatomical differences. The microglia depletion study adds functional relevance to the paper; however, the pitfalls of the technology regarding functional relevance should be discussed.

      Weaknesses:

      There was no attempt to interrogate microglia in different parts of the hypothalamus functionally. Morphology alone does not reflect a potential for significant signaling alterations that may occur within and between these and other cell types.

      The authors should discuss the limitations of their approach and findings and propose future directions to address them.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Hu et al. investigated the role of olfactory ErbB4 in regulating olfactory information processing. The authors demonstrated that ErbB4 deletion impairs odor discrimination, sensitivity, habituation, and dishabituation by using an impressive combination of techniques from morphological to electrophysiology (both slice and in vivo) and from viral injection to cell-type-specific mutation to behavioral analysis. The findings underscore the crucial role of ErbB4 in olfactory PV neurons in modulating mitral cell function and odor perception.

      Strengths:

      This study contains a pretty comprehensive set of experiments.

      Major concerns:

      (1) Line 151 page 7, "PV-Erbb4+/+ mice (generated by crossing PV-Cre mice (Wen et al., 2010) with loxP flanked Erbb4 mice". Does this mean mice carrying PV-Cre and ErbB4 floxed allele? Or with the WT allele? This is confusing. Figures 2B and 2C, ErbB4 expression was evident in many cells that were not positive for PV. What are the identities of those cells? Are they important?

      (2) In Figure 4, the authors performed tetrode recordings in awake head-fixed animals. Although individual neuron spikes could be obtained by spike-sorting, this is not a "single-unit" experiment due to the nature of this approach.

      What is the odor used in Figure 4? How did the authors clean up the odor to limit the stimulation within 2 seconds? In what layer were the tetrodes placed? What is the putative cell type presented in Figure 4C? If Figure 4C is a representative neuron recorded, the odor-induced suppression of spike activity seems to be impaired in PV-ErbB4-/- animals. However, Figure 4D shows that suppressed neurons were similar between the two types of animals. Such comparisons among individual mice are difficult for in vivo electrophysiological experiments because the recorded cell type and placement of electrodes would be different. The authors should apply ErbB4 inhibitors to the same animals and compare the effects before and after. This would ensure the recoding of the same population of neurons.

      (3) At a glance in the heatmap in Figure 4D, excited neurons were reduced in PV-ErbB4-/- mice, but not inhibited neurons. This was different from Figure 4L. The authors need to have a criteria or threshold to show how they categorized each population.

      (4) Figure 4D, 4F and 4J seemed to be inconsistent. In Figure 4D before odor, there was no clear increase in the spontaneous activity in PV-ErbB4-/- mice; in Figure 4F-4G and 4J-4K, clearly, there was a high spontaneous activity in PV-ErbB4-/- mice.

      (5) What are the neurons recorded in Figure 6E-6F? If they were MCs, loss of ErbB4 in PV neurons should not alter their intrinsic electrical properties. Rather GABAergic inputs could be altered. Indeed, the authors presented a reduction of GABAergic inputs from PV neurons to MCs.

      (6) Figure 8E-8H, a better experiment would be specifically expressing ErbB4 or PV neurons. In Figure 8F and Figure 8I, was it the excitability after the current injection? Why not perform the spontaneous activity recording?

    2. Reviewer #2 (Public review):

      Summary:

      Hu et al investigate the role of PV neurons and their expression of Erbb4 in olfactory performance through a series of behavioral tests, selective knockout experiments, and in vivo and in vitro electrophysiology. Knockout of Erbb4, either in PV cells or the whole OB, resulted in impairment of discriminating complex odors. The authors present data that inhibition is impaired in MCs, which is likely underlying the abnormal odor-evoked responses of MCs in vivo and the impaired behavioral responses.

      Strengths:

      Overall, a key strength of this manuscript is the breadth of experiments to test the role of PV Erbb4 expression on circuit dynamics and behavior. The behavioral experiments were clear and sufficiently powered.

      Weaknesses:

      The major drawback of this manuscript is the lack of depth and rigor in experiments. Some experiments are preliminary, underpowered, and not quantified. As a result, many conclusions of the manuscript are weakly supported in its current form and would require significant revisions to address these shortcomings. Major weaknesses that should be addressed are as follows:

      AAV-PV-Cre-GFP is not described or validated. Is this the S5E2 enhancer or something else? What is the specificity and efficacy of this approach in selectively knocking out Erbb4 in PV neurons? Reduced Erbb4 expression in the entire OB with PCR does not validate the selectivity of this approach. At a titer of 10^12, it is unlikely to be specific. Even a small amount of off-target Cre expression will knock out the gene in non-PV cells, so the authors should show whether the gene is knocked out at the single cell level from PV and non-PC cells. Without validation of this approach, this experiment is no different than the AAV-Cre-GFP experiments.

      Figure 1D - three mice per group is insufficient. There is no control group error (the same as Figure 9). Why is it a paired t-test when there is a control group? The authors should be comparing go/go vs. go/no-go. The methods for normalization are unclear and are likely to hide the fact that n=3 is insufficient to capture a difference without extra measures to normalize the data.

      The analysis of LFP is limited. During what period was this quantified? Are there any differences in task-related LFP changes? Also related to in vivo electrophysiology, the authors should show examples of isolated units, including their waveforms and how units were clustered and assigned to M/TCs.

      The authors use 80pA and 100pA to elicit equivalent AP spiking in MCs to determine if recurrent inhibition differs, but do not actually show that AP spiking is the same across groups. This should be quantified.

      There seems to be a prominent increase in the firing of MCs in PV-Erbb4+/+ mice before odor presentation, but not in PV-Erbb4-/- mice. What is the significance of this?

      There is a disconnect between the in vivo firing rates of MCs and ex vivo firing rates. In slice, the authors note that the spontaneous activity of MCs is elevated in the KO, but this is not observed in vivo, where conditions are physiological. Therefore, it is unclear whether the concept of signal-to-noise changes in slice (higher spontaneous, lower evoked), indeed translate to something in vivo. It would be important to know what the PV cells are doing in vivo. Perhaps they have low firing rates prior to odor onset, which may explain the lack of observed difference in baseline FRs in MCs. The authors should have this data in their tetrode recordings, which would offer insight into when inhibition is recruited.

      Since PV neurons are required for gamma oscillations, why is it that KOs have higher gamma oscillations? Is it indeed the case that PV cells have a hypofunctional phenotype in this model? Again, recording from PV cells in vivo would help make sense of this.

      A clearer picture of how PV cell inhibition changes with Erbb4 KO would be achieved with optogenetically evoked IPSPs, rather than changes in mini frequency.

    3. Reviewer #3 (Public review):

      Summary:

      The authors investigate the role of ErbB4 in parvalbumin (PV) interneurons within the olfactory bulb (OB) and its regulation of odor discrimination behavior in mice. They demonstrate that odor discrimination increases ErbB4 kinase activity and that the loss of ErbB4 in the OB impairs the dishabituation of odor response and discrimination of complex odors. The study also characterizes the expression of ErbB4 in the OB, showing it is enriched in PV neurons. Furthermore, the authors utilize a mouse model in which ErbB4 is knocked out in PV neurons and perform a variety of behavioral, electrophysiological, and local field potential (LFP) recording experiments to characterize alterations in olfactory bulb activity. They then use a model in which ErbB4 is specifically knocked out in PV neurons in the OB and show that this manipulation disrupts odor-related behaviors in mice.

      Strengths:

      The study's strengths lie in its use of a diverse range of techniques, including RNAscope, IHC, and Western blotting, to assess the presence of ErbB4 in PV neurons within the OB. Additionally, the authors employ various behavioral tests to evaluate the effects of ErbB4 manipulation in different mouse models, alongside comprehensive electrophysiological experiments and LFP recordings to examine the impact of these manipulations on OB physiology.

      Weaknesses:

      While the data presented in this paper are interesting, several major concerns reduce my enthusiasm for this study, as outlined below:

      (1) In reviewing Figure 1C/D, there are several concerns regarding the clarity and interpretation of the data:

      a) While the Western blot for ErbB4 in other figures (Figure 1F, 2I) of the manuscript shows a clear single band, the blot presented in Figure 1C (for both p-ErbB4 and total ErbB4) shows multiple bands, which is unexpected. This discrepancy raises concerns about the consistency of the results.

      b) The data presented in Figure 1D uses only 3 mice per group, and the reported p-value of 0.0492, while technically significant, is very close to the threshold. This raises concerns about the robustness of the finding, especially given the small sample size. Additionally, the p-ErbB4 band intensity in the Go/No-Go condition in Figure 1C does not appear to show a clear increase over the Go/Go condition, which is not congruent with the bar graph in Figure 1D showing a 50% increase in p-ErbB4/ErbB4 levels.

      c) It is a standard practice in many journals to include full, uncropped Western blot images as supplementary material. This transparency helps ensure that no bands are selectively shown or omitted and increases confidence in the presented data.

      (2) In Figure 2, the authors used the anti-ErbB4 antibody sc-283 from Santa Cruz to assess the expression of ErbB4 in PV neurons and the absence of its expression in PV-ErbB4 knock-out mice. However, this particular antibody has been shown to produce non-specific bands in Western blotting and also generate non-specific labeling in IHC. This non-specificity has been demonstrated in Vullhorst et al. (2009, J Neurosci), raising significant concerns about the reliability of the data generated using this antibody.

      (3) In reviewing the statistical analysis for the series of odor discrimination tests, there could be a potential issue with the clarity of the significance testing. Although the figure legend reports the F and p values from the two-way ANOVA, it is unclear whether these values represent the main effects or the results of a post hoc test. Additionally, it is not clear whether the asterisk in the figures reflects significance from a post hoc test or from the overall ANOVA. The methods section does not explicitly state whether a post hoc test was performed to assess differences between the knockout and control groups. Given that the tests were conducted across multiple days or conditions, a post hoc test that can adjust for multiple comparisons would be necessary to accurately identify where specific differences between the groups exist.

      (4) Throughout the manuscript, the authors use different mouse models, including ErbB4 knockout specifically in the OB (AAV-Cre-GFP), ErbB4 knockout in PV interneurons throughout the brain (PV-ErbB4-/-), and ErbB4 knockout in PV interneurons within the OB (AAV-PV-Cre-GFP). For Figures 4 and 5, the authors use the PV-ErbB4-/- model to examine odor-evoked activity and neural oscillations within the OB. Since the knockout affects PV interneurons across the entire brain, it is difficult to disentangle whether the observed changes in the OB are due to local effects or broader network alterations elsewhere in the brain.

      (5) While the electrophysiological experiments shown in Figures 6-8 provide valuable insights into the reduced inhibition to MCs in PV-ErbB4 knockout mice, it appears that the authors did not record from PV interneurons themselves. Since PV interneurons are central to the proposed mechanism, directly recording them would provide critical information on how the ErbB4 knockout affects their intrinsic properties, synaptic inputs, and firing behavior. Without these direct recordings, the conclusions about the specific role of PV neurons in regulating MC activity remain somewhat indirect. Prior studies have established that knockout of ErbB4 in PV interneurons reduces mEPSC frequency in PV neurons (Del Pino et al., 2013).

      (6) In Figure 9, the authors knock out ErbB4 in PV neurons in the OB with AAV-PV-Cre-GFP and show with western blotting that ErbB4 expression is reduced in the mouse injected with AAV-PV-Cre-GFP. However, it is not clear whether ErbB4 was selectively knocked out in PV neurons without the quantification from IHC assays.

    1. Reviewer #1 (Public review):

      Summary:

      In this study from Zhu and colleagues, a clear role for MED26 in mouse and human erythropoiesis is demonstrated that is also mapped to amino acids 88-480 of the human protein. The authors also show the unique expression of MED26 in later-stage erythropoiesis and propose transcriptional pausing and condensate formation mechanisms for MED26's role in promoting erythropoiesis. Despite the author's introductory claim that many questions regarding Pol II pausing in mammalian development remain unanswered, the importance of transcriptional pausing in erythropoiesis has actually already been demonstrated (Martell-Smart, et al. 2023, PMID: 37586368, which the authors notably did not cite in this manuscript). Here, the novelty and strength of this study is MED26 and its unique expression kinetics during erythroid development.

      Strengths:

      The widespread characterization of kinetics of mediator complex component expression throughout the erythropoietic timeline is excellent and shows the interesting divergence of MED26 expression pattern from many other mediator complex components. The genetic evidence in conditional knockout mice for erythropoiesis requiring MED26 is outstanding. These are completely new models from the investigators and are an impressive amount of work to have both EpoR-driven deletion and inducible deletion. The effect on red cell number is strong in both. The genetic over-expression experiments are also quite impressive, especially the investigators' structure-function mapping in primary cells. Overall the data is quite convincing regarding the genetic requirement for MED26. The authors should be commended for demonstrating this in multiple rigorous ways.

      Weaknesses:

      (1) The authors state that MED26 was nominated for study based on RNA-seq analysis of a prior published dataset. They do not however display any of that RNA-seq analysis with regards to Mediator complex subunits. While they do a good job showing protein-level analysis during erythropoiesis for several subunits, the RNA-seq analysis would allow them to show the developmental expression dynamics of all subunit members.

      (2) The authors use an EpoR Cre for red cell-specific MED26 deletion. However, other studies have now shown that the EpoR Cre can also lead to recombination in the macrophage lineage, which clouds some of the in vivo conclusions for erythroid specificity. That being said, the in vitro erythropoiesis experiments here are convincing that there is a major erythroid-intrinsic effect.

      (3) The donor chimerism assessment of mice transplanted with MED26 knockout cells is a bit troubling. First, there are no staining controls shown and the full gating strategy is not shown. Furthermore, the authors use the CD45.1/CD45.2 system to differentiate between donor and recipient cells in erythroblasts. However, CD45 is not expressed from the CD235a+ stage of erythropoiesis onwards, so it is unclear how the authors are detecting essentially zero CD45-negative cells in the erythroblast compartment. This is quite odd and raises questions about the results. That being said, the red cell indices in the mice are the much more convincing data.

      (4) The authors make heavy use of defining "erythroid gene" sets and "non-erythroid gene" sets, but it is unclear what those lists of genes actually are. This makes it hard to assess any claims made about erythroid and non-erythroid genes.

      (5) Overall the data regarding condensate formation is difficult to interpret and is the weakest part of this paper. It is also unclear how studies of in vitro condensate formation or studies in 293T or K562 cells can truly relate to highly specialized erythroid biology. This does not detract from the major findings regarding genetic requirements of MED26 in erythropoiesis.

      (6) For many figures, there are some panels where conclusions are drawn, but no statistical quantification of whether a difference is significant or not.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Zhu et al describes a novel role for MED26, a subunit of the Mediator complex, in erythroid development. The authors have discovered that MED26 promotes transcriptional pausing of RNA Pol II, by recruiting pausing-related factors.

      Strengths:

      This is a well-executed study. The authors have employed a range of cutting-edge and appropriate techniques to generate their data, including: CUT&Tag to profile chromatin changes and mediator complex distribution; nuclear run-on sequencing (PRO-seq) to study Pol II dynamics; knockout mice to determine the phenotype of MED26 perturbation in vivo; an ex vivo erythroid differentiation system to perform additional, important, biochemical and perturbation experiments; immunoprecipitation mass spectrometry (IP-MS); and the "optoDroplet" assay to study phase-separation and molecular condensates.

      This is a real highlight of the study. The authors have managed to generate a comprehensive picture by employing these multiple techniques. In doing so, they have also managed to provide greater molecular insight into the workings of the MEDIATOR complex, an important multi-protein complex that plays an important role in a range of biological contexts. The insights the authors have uncovered for different subunits in erythropoiesis will very likely have ramifications in many other settings, in both healthy biology and disease contexts.

      Weaknesses:

      There are almost no discernible weaknesses in the techniques used, nor the interpretation of the data. The IP-MS data was generated in HEK293 cells when it could have been performed in the human CD34+ HSPC system that they employed to generate a number of the other data. This would have been a more natural setting and would have enabled a more like-for-like comparison with the other data.

    3. Reviewer #3 (Public review):

      Summary:

      The authors aim to explore whether other subunits besides MED1 exert specific functions during the process of terminal erythropoiesis with global gene repression, and finally they demonstrated that MED26-enriched condensates drive erythropoiesis through modulating transcription pausing.

      Strengths:

      Through both in vitro and in vivo models, the authors showed that while MED1 and MED26 co-occupy a plethora of genes important for cell survival and proliferation at the HSPC stage, MED26 preferentially marks erythroid genes and recruits pausing-related factors for cell fate specification. Gradually, MED26 becomes the dominant factor in shaping the composition of transcription condensates and transforms the chromatin towards a repressive yet permissive state, achieving global transcription repression in erythropoiesis.

      Weaknesses:

      In the in vitro model, the author only used CD34+ cell-derived erythropoiesis as the validation, which is relatively simple, and more in vitro erythropoiesis models need to be used to strengthen the conclusion.

    1. Reviewer #1 (Public Review):

      The authors investigate whether during free exploration of an environment with an internal structure of corridors and occasionally fluid-rewarded alleys, rat CA1 place cells generate multiple firing fields in repeating patterns, allowing the investigators to analyze whether firing field positional properties like alley orientation, and non-positional properties like heading, field-rate modulation and other properties are similar or different within and across single place cell place fields. They adopt a standard cognitive map analysis framework, conceiving each cell as an individual map element and characterizing each cell's individual activity independently of the activity of other cells, such that the main unit of analysis is a place field averaged across recording times of many minutes. Despite framing the work as an investigation of a fundamentally-subjective episodic memory system sensitive to hidden cognitive and attentional variables, the experiment and analyses are conceived as if the cells respond to positional and non-positional features of experience as static "inputs" that the investigators infer. These "inputs" are conceptualized as effectively stationary and steady, and they are not manipulated. The authors find that there are many "repeated" firing fields, that they tend to have similar orientation more than expected by chance, and that each field's rate is modulated distinctly by heading direction and other factors, leading them to conclude that each field's nonpositional inputs are "individually addressable." The authors do not consider alternative possibilities for which there are strong indications in the contemporary literature like 1) CA1 activity could be internally generated; 2) that there could be hidden cognitive variables that influence CA1 activity episodically and in non-stationary ways rather than consistently; 3) that CA1 cells exhibit mixed tuning to a variety of environmental and navigational variables; 4) that CA1 activity is better interpreted from the point-of-view of a neural ensemble or a neural manifold of conjoint neural activity that represents multiple information variables, or 5) that stable neural representations of information need not depend on stable stimulus-response properties of individual cells. In fact, the analyses provide evidence consistent with each of these alternatives, but they are not considered. There is a case to be made that the authors are allowed to ignore these alternatives because they properly engage the dogmatic point of view, in which case there is little to adjust in the manuscript, which is both well-conceived and well-executed in the classic (but not contemporary) norms of place cell investigations.

      My comments are focused on improving the manuscript without insisting that the authors adopt alternative (contemporary) points of view, but requiring them to clarify their point of view and explain that there are alternatives.

      (1) The authors define what they mean by "positional" and "non-positional" "inputs" later in the manuscript. Since the experimental apparatus and task have been designed to isolate these "inputs" the authors should in the initial description of the environment and task explain what the task does and does not allow them to analyze. Instead, they have repeatedly asserted that the environment is a hybrid of an open-field and a linear track environment. This may be the case, but so what? The authors need to better explain, up front, why that matters and what they will be able to investigate as a result. As written, this all seems to me rather vague and post hoc.

      (2) The abstract states "Previous work implies a distinction between positional inputs to the hippocampus that provide information about an animal's location and non-positional inputs which provide information about the content of experience." While I understand what the authors mean, I want to point out that it is not straightforward to identify the "positional inputs" and the "non-positional inputs." What are they, how can they be measured? Is it not also possible that hippocampus generates "positional" information rather than receiving it, that is in fact the longstanding view of the cognitive map framework that the authors have adopted, and yet they frame the essential issue as one of differential receipt of positional and non-positional inputs. This seems to me imprecise and hard to defend but demonstrates the authors' opinion in framing this work. In my view a more objective and accurate statement might be "Previous work implies a distinction between hippocampal (positional) activity representing information about an animal's location and (non-positional) activity which represents information about the content of experience." This opinion about "inputs" is found throughout the manuscript over 50 times, starting with the title. While in my view this is not an objective treatment of the experimental design or data (positional and non-positional inputs are never identified or manipulated, they are merely inferred), I accept that the authors can say whatever they want so long as they make it clear to the reader that theirs is an opinion or assumption rather than a measurement. The manuscript is written as if the different inputs are identified and valid, rather than inferred.

      (3) The abstract states "even though the animal's behavior was not constrained to 1-D trajectories" whereas page 13 states "but their trajectories were constrained to orthogonal directions by the city-maze architecture" and page 23 states "but their trajectories were constrained to a rectilinear grid." While I understand what the authors mean, the first statement appears to contradict the others. There are additional examples that I do not identify here. In any case, I would like to have seen examples of the animals' trajectories through the maze. A figure showing the raw trajectories and another after the unwanted behaviors have been filtered out should be given, allowing the reader to understand how much the animals tended to travel through the alleys, how much they turned and lingered within them, etc.

      (4) The abstract ends with "These results demonstrate that the positional inputs that drive a cell to fire in similar locations across the maze can be behaviorally and temporally dissociated from the nonpositional inputs that alter the firing rates of the cell within its place fields, thereby increasing the flexibility of the system to encode episodic variables within a spatiotemporal framework provided by place cells." I don't see the evidence for the "thereby ..." claim. The authors are free to speculate and discuss but they should say they are speculating and/or discussing a possibility, rather than assert as if they have demonstrated a fact.

      (5) The Introduction begins with "All behavior is embedded within a spatial and temporal framework." By this statement, I believe the authors mean to assert, or at least they cause a reader to understand that there is a spatial and temporal framework that is separate from the behaving subject. They will use this point of view to design their experiment around the utility of a city- maze. Since the authors appeal to cognitive map theory so much, I point out that O'Keefe and Nadel write in The Hippocampus as a Cognitive Map that "Space was a way of perceiving, not a thing to be perceived." Sentence number 2 of the book states "We shall argue that the hippocampus is the core of a neural memory system providing an objective spatial framework within which the items and events of an organism's experience are located and interrelated." Consistent with Kant and O'Keefe and Nadel, the present authors might more accurately state "All behavior is embedded within a subjective spatial and temporal framework." but then they will have to explain why they conceive of there being "positional inputs" to which they are measuring CA1 responses. This framing seems to me problematic and not logically self-consistent.

      (6) On page 2 the authors assert "Neurons within the hippocampus respond to a wide array of sensory and otherwise nonspatial cues..." then they go on to list sensory features and "non-positional" features of experience to which CA1 cells respond. It seems to me they leave out a class of features of experience that might be considered "subjective spatial frames" that have been investigated by Gothard and Redish when they were in the McNaughton and Barnes lab, as well the Fenton and Muller labs, amongst others. All of these papers describe non-stationary, multi-stable place cell phenomena that are tied to subjective variables, which have the potential to undermine the premise of the present work's analyses and so they should be considered. I list a sample but certainly not all the work that might be considered.

      Gothard KM, Skaggs WE, Moore KM, McNaughton BL (1996) Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J Neurosci 16:823-835.

      Gothard KM, Skaggs WE, McNaughton BL (1996) Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J Neurosci 16:8027-8040.

      Gothard KM, Hoffman KL, Battaglia FP, McNaughton BL (2001) Dentate gyrus and ca1 ensemble activity during spatial reference frame shifts in the presence and absence of visual input. J Neurosci 21:7284-7292.

      Redish AD, Rosenzweig ES, Bohanick JD, McNaughton BL, Barnes CA (2000) Dynamics of hippocampal ensemble activity realignment: time versus space. J Neurosci 20:9298-9309.

      Rosenzweig ES, Redish AD, McNaughton BL, Barnes CA (2003) Hippocampal map realignment and spatial learning. Nat Neurosci 6:609-615.

      Jackson J, Redish AD (2007) Network dynamics of hippocampal cell-assemblies resemble multiple spatial maps within single tasks. Hippocampus 17:1209-1229

      Lenck-Santini PP, Fenton AA, Muller RU (2008) Discharge properties of hippocampal neurons during performance of a jump avoidance task. J Neurosci 28:6773-6786.

      Fenton AA, Lytton WW, Barry JM, Lenck-Santini PP, Zinyuk LE, Kubik S, Bures J, Poucet B, Muller RU, Olypher AV (2010) Attention-like modulation of hippocampus place cell discharge. J Neurosci 30:4613-4625.

      Kelemen E, Fenton AA (2013) Key features of human episodic recollection in the cross-episode retrieval of rat hippocampus representations of space. PLoS Biol 11:e1001607.

      (7) The Introduction asserts that "rate remapping" is a hypothesis. Rate remapping is a phenomenon, something that is observed. The interpretation of the observation as being the substrate of episodic memory is certainly a hypothesis that in my opinion has not been tested and is not being tested in the present work. After making the above statement, the authors go on to describe that firing rates differ across "repeated" firing fields, which seems to be a form of rate remapping, and predicted by the relevant hypothesis that different episodes of experience at the same locations are represented by different firing rates. This is very speculative and there are many other explanations.

      (8) The Introduction ends with the statement "Here, we show that repeating fields of the same neuron do not always display the same nonpositional rate modulation, demonstrating that nonpositional cues are dissociable from, and more flexible than, the positional inputs onto place cells in a given environment." Apart from my concern about using the "input" terminology I which to point out that there is very little novel in this statement. It has been described many times before that on linear tracks CA1 firing fields are directionally modulated such that the field rates for traversals in one direction are different compared to field traversals in the opposite direction. Jackson and Redish (2007) cited above show this to be due to reference frame or map switching. That and other work allow one to state that "Others show that repeating fields of the same neuron do not always display the same nonpositional rate modulation, demonstrating that nonpositional cues are dissociable from, and more flexible than, the positional inputs onto place cells in a given environment." Either the present authors should acknowledge that they are demonstrating what others have already demonstrated, or they should more precisely describe what about their contribution is unique.

      (9) Page 6 Methods - Data Filtering and Pre-processing. How did the authors handle theta cells and others that fired more or less everywhere but with spatial modulation?

      (10) Page 9 Methods - Why was the session-wide activity used to normalize the firing rates for the activity vector input to the random forest classifier? The authors state "The normalized firing rate was computed as discussed above with the change that the session-wide activity in the alley was used." It seems to me better to have used the session-averaged firing rate map because the activity would be normalized by the expected positional firing. I imagine "The classifier used the population vector of firing rates as the input." is incorrect and the authors mean to state "The classifier used the population vector of normalized firing rates as the input."

      (11) What does "spatially-gated" mean? The use of such jargon should be explained, or better avoided.

      (12) Page 12: Since fields tend to have similar orientations, but not repeat at all geometrically similar locations, did they tend to be clustered? Was there a proximity feature to their distribution?

      (13) Page 18 states "Thus, although there was a slight trend for repeating field ..." The authors are reporting a significant effect not a "slight trend." They do something similar in reporting Figure 5's result. Despite significant effects, they seem to think the findings are not large enough so state that repeating-field directionality is not conserved. It is fine to explain that a significant effect was small (for example give the effect size, which would have been welcome throughout) but as in these cases and others, the authors should be more objective in their reporting of the outcomes. Either a statistical test was or was not significant. It is not "a little" or "a lot" significant.

      (14) Page 18: What do the authors mean by "topology?" Might they mean "topography?"

      (15) Figure 6 shows field instability and multi-stability (termed temporal dynamics) as described on page 22. The recording sessions were 60 min. Is this impression simply due to long recording sessions? If 10 or 15 minutes of data were analyzed (which is more the norm), would similar instability be observed/detectable?

      (16) I found the Discussion very confusing. On the one hand, there is an assertion that because the location of firing fields is stable there is a "positional code." How would that actually work? Any neural system has to signal by firing rates or firing coincidences across groups of cells (that are affected by changes in rate) so if there is firing field firing rate instability the authors should explain how position can be accurately decoded on a behaviorally-meaningful time scale. In fact, they should demonstrate such decoding explicitly. Just because there is modulation and instability, it is a rather long leap to assert that this is how episodic experience/memory is encoded (as stated at the end of the abstract and elsewhere for example on page 24: "The present data utilize repeating fields to suggest that, within an environment, the positional inputs are relatively rigid, whereas the nonpositional inputs are more flexible, allowing different repeating fields to show different directional preferences. In other words, fields are individually addressable with respect to the nonpositional inputs they receive; they do not inherit their nonpositional tuning as a global property of the cell." What does it mean that a field is "individually addressable?" How is that achieved by neurons? If the authors want to make such assertions they should explain and demonstrate how their assertions can be valid, given the data and findings. At least they should explain what they are assuming.<br /> The main findings seem related to the published finding that in large environments place cells have multiple firing fields, with distinct rates in each field, quite similar to what is here described in the city maze. In my opinion, positional representations can only plausibly work in such cases by using the conjoint population activity moment to moment, which necessarily marginalizes the value of individual firing fields, yet the present work focuses the discussion (and analyses) on interpretations of single firing fields (which they assert are individually addressable multiple times). I don't know what that means exactly and the authors should explain why maintaining the standard single-field perspective is appropriate and how position can be represented in such a system, given the data. In fact, I would have thought that the present findings would cause the authors to reject as invalid the framework they have adopted.

      (17) This is a further example, on page 25 which asserts that "Directionality is affected by an animal's experience through the field (Navratilova et al., 2012), so it is possible the difference in experience between sampling fields on the same versus different corridors affects the directional tuning properties between them." I do not understand how "the difference in experience between sampling fields on the same versus different corridors affects the directional tuning properties between them." If I follow the logic then the so-called directionality would depend on experience and so only emerge after a certain time for experience, or else the firing during one traversal would need to be modulated by information about future traversals, which I suppose the authors would agree does not make sense.

      (18) I found it at times confusing to follow the arguments because the terms "route" and "trajectory" and also "direction" and "heading" were used sometimes interchangeably and sometimes in ways that appear distinct.

      (19) Page 25 states "One explanation for these data is that fields sampled along contiguous routes, without interruptions from heading change or reward delivery, are more likely to share their directionality." The authors should consider alternative explanations like reference frame shifts as mentioned in comment 6 above. These alternatives can be rejected based on data, but they should be considered because they seem to offer more parsimonious explanations for the observations than what the authors have offered. For example, what can explain the bimodality reported in Fig. 5G?

      (20) The authors assert on page 15 that "In the present study, turns at the ends of corridors, along with reward deliveries, may be salient task boundaries at which point theta sequences are terminated. Fields active within the same theta sequence (typically same corridor fields) may be functionally coupled, while fields active on opposite sides of a theta sequence termination (different corridor fields) may be uncoupled and their tuning uncorrelated." The authors should check this. They recorded the LFPs. Why speculate when they can evaluate the speculation?

      (21) The authors assert on page 26 "It is important to note that because a Pearson correlation was used, it is possible the fields are related in time with a phase shift, and we did not have the statistical power to test this possibility adequately." I either do not understand this statement or it is untrue. Please clarify.

      (22) The authors continue on page 26, asserting "Thus, although it is clear that the place fields of repeating cells do not change their firing rates in synchrony, as if the cell had a global excitability change that made all its fields wax and wane together, it nonetheless remains an open question as to whether the subfields of repeating cells engage in certain types of competitive interactions or other network dynamics that couple changes in their firing rates in more complex ways." This statement implies that it might even be possible for firing fields in distinct and distant locations to be modulated together. Could the authors please explain how that is possible? A firing field is an observation that requires averaging over minutes and behavioral sampling across minutes. How might one cell be modulated to fire at a low rate during one minute and then at another minute later be modulated to fire at a high rate everywhere in the environment? Perhaps I am again not understanding the assertion - please clarify.

    2. Reviewer #2 (Public Review):

      The authors present evidence that free-foraging behavior within an environment having structural regularity in its distribution of obstacles (an internal "city block" configuration) yields multiple place-specific firing fields for CA1 neurons. These fields tend to be aligned to analogous locations within the environment. Aligned fields tend to share direction-biased tuning of place-specific activity. The distribution of in-field firing rates across repeating fields of individual neurons varies and in a reliable enough fashion, that reconstruction of the animal's location in the environment can still be achieved. These results are interpreted as reflecting a combined mapping of environmental position as well as repeating structural features of the environment. The results have strong implications for understanding how navigation and spatial awareness might be represented within environments having such regularities (e.g., a city such as Manhattan). Further, the results suggest that repeating firing fields for CA1 neurons can develop in the absence of regularized path-running behavior. Finally, the authors consider drift in the character of the representation across time to represent the position in time across the foraging session. This last claim lacks evidence for reproducibility and is unnecessarily speculative. Altogether, the work is original and, for the most part, well-evidenced.

    1. Reviewer #1 (Public review):

      Summary:

      This paper describes the covalent interactions of small molecule inhibitors of carbonic anhydrase IX, utilizing a pre-cursor molecule capable of undergoing beta-elimination to form the vinyl sulfone and covalent warhead.

      Strengths:

      The use of a novel covalent pre-cursor molecule that undergoes beta-elimination to form the vinyl sulfone in situ. Sufficient structure-activity relationships across a number of leaving groups, as well as binding moieties that impact binding and dissociation constants.

      Weaknesses:

      No major weaknesses noted. Suggested corrections were addressed.

    2. Reviewer #2 (Public review):

      Summary:

      The authors utilized a "ligand-first" targeted covalent inhibition approach to design potent inhibitors of carbonic anhydrase IX (CAIX) based on a known non-covalent primary sulfonamide scaffold. The novelty of their approach lies in their use of a protected pre-vinylsulfone as a precursor to the common vinylsulfone covalent warhead to target a nonstandard His residue in the active site of CAIX. In addition to biochemical assessment of their inhibitors, they showed that their compounds compete with a known probe on the surface of HeLa cells.

      Strengths:

      The authors use a protected warhead for what would typically be considered an "especially hot" or even "undevelopable" vinylsulfone electrophile. This would be the first report of doing so making it a novel targeted covalent inhibition approach specifically with vinylsulfones.

      The authors used a number of orthogonal biochemical and biophysical methods including intact MS, 2D NMR, x-ray crystallography, and an enzymatic stopped-flow setup to confirm the covalency of their compounds and even demonstrate that this novel pre-vinylsulfone is activated in the presence of CAIX. In addition, they included a number of compelling analogs of their inhibitors as negative controls that address hypotheses specific to the mechanism of activation and inhibition.

      The authors employed an assay that allows them to assess target engagement of their compounds with the target on the surface of cells and a fluorescent probe which is generally a critical tool to be used in tandem with phenotypic cellular assays.

      Weaknesses:

      This reviewer does not find any major weaknesses beyond those noted in the first round of review.<br /> I understand that some of the previously suggested experiments are cumbersome and I look forward to seeing this manuscript published as well as follow-up on this work in the future.

    3. Reviewer #3 (Public review):

      Summary:

      Targeted covalent inhibition of therapeutically relevant proteins is an attractive approach in drug development. This manuscript now reports a series of covalent inhibitors for human carbonic anhydrase (CA) isozymes (CAI, CAII, and CAIX, CAXIII) for irreversible binding to a critical histidine amino acid in the active site pocket. To support their findings, they included co-crystal structures of CAI, CAII, and CAIX in the presence of three such inhibitors. Mass spectrometry and enzymatic recovery assays validate these findings, and the results and cellular activity data are convincing.

      Strengths:

      The authors designed a series of covalent inhibitors and carefully selected non-covalent counterparts to make their findings about the selectivity of covalent inhibitors for CA isozymes quite convincing. The supportive X-ray crystallography and MS data are significant strengths. Their approach of targeted binding of the covalent inhibitors to histidine in CA isozyme may have broad utility for developing covalent inhibitors.

      Weaknesses:

      This reviewer did not find any significant weaknesses. The authors have incorporated most of my suggestions from the first round of review.

    1. Reviewer #1 (Public review):

      Previous studies have used a randomly induced label to estimate the number of hematopoietic precursors that contribute to hematopoiesis. In particular, the McKinney-Freeman lab established a measurable range of precursors of 50-2500 cells using random induction of one of the 4 fluorescent proteins (FPs) of a Confetti reporter in the fetal liver to show that hundreds of precursors establish lifelong hematopoiesis. In the presented work, Liu and colleagues aim to extend the measurable range of precursor numbers previously established and enable measurement in a variety of contexts beyond embryonic development. To this end, the authors investigated whether the random induction of a given Confetti FP follows the principles of binomial distribution such that the variance inversely correlates with the precursor number. The authors validated their hypothesis and identified sampling conditions to minimize experimental error using a simplified in vitro system. They use tamoxifen-inducible Scl-CreER, active in hematopoietic stem and progenitor cells (HSPCs), to induce Confetti labeling and investigate whether they could extend their model to cell numbers below 50 with in vivo transplantation of high versus low numbers of Confetti total bone marrow (BM) cells. The data generated are generally robust. While the lower and upper limits of the model may show some small error or have not yet been completely validated experimentally, it extends the measurable range of precursor from 15 - 10^5 cells. The authors then apply their model to estimate the number of hematopoietic precursors that contribute to hematopoiesis in a variety of contexts including adult steady state, fetal liver, following myeloablation, and a genetic model of Fanconi anemia.

      Their data highlight the importance of estimating precursor numbers and not just donor frequency in transplantation settings and show that native hematopoiesis is highly polyclonal. Their data also confirm previous findings from Ganuza et al, 2022 that demonstrate no major expansion of precursors between E11.5 - E14.5. Finally, their work reveals intact Fancc-/-precursor numbers following transplantation, suggesting that the observed reduced chimerism is due to defects in cell proliferation.

      The conclusions are generally sound and based on high-quality data. As the authors note, future studies should validate the model using alternative Cre-drivers to exclude any potential functional difference between labelled and non-labelled cells. Although this system does not permit tracing of individual clones, the modeling presented allows measurements of clonal activity covering nearly the entire HSPC population (as recently estimated by Cosgrove et al, 2021) and can be applied to a wide range of in vivo contexts with relative ease.

    2. Reviewer #2 (Public review):

      The manuscript is well written, with beautiful and clear figures, and both methods and mathematical models are clear and easy to understand. Since 2017, Mikel Ganuza, Shannon McKinney-Freeman et al have been using these Confetti approaches that rely on calculating the variance across independent biological replicates as a way to infer clonal dynamics. This is a powerful tool and it is a pleasure to see it being implemented in more labs around the world. One of the cool novelties of the current manuscript is using a mathematical model (based on a binomial distribution) to avoid directly regressing the Confetti labeling variance with the number of clones (which only has linearity for a small range of clone numbers). As a result, this current manuscript of Liu et al. methodologically extends the usability of the Confetti approach, allowing them more precise and robust quantification.

      They then use this model to revisit some questions from various Ganuza et al. papers, validating most of their conclusions. The application to the clonal dynamics of hematopoiesis in a model of Fanconi anemia (Fancc mice) is very much another novel aspect, and shows the surprising result that clonal dynamics are remarkably similar to the wild-type (in spite of the defect that these Fancc HSCs have during engraftment).

      Overall, the manuscript succeeds at what it proposes to do, stretching out the possibilities of this Confetti model, which I believe will be useful for the entire community of stem cell biologists, and possibly make these assays available to other stem cell regenerating systems.

      The revised version has incorporated the reviewer suggestions, strengthening the solidity of the arguments and statements, and highlighting alternative interpretations. My comments were addressed in full.

    3. Reviewer #3 (Public review):

      The paper presents a solid method for quantifying hematopoietic precursors using statistical variance as a proxy, providing valuable insights into hematopoietic dynamics across different physiological and pathological scenarios. The findings are pivotal for understanding hematopoietic dynamics. The strength of the evidence is convincing and acknowledges limitations such as the binomial assumption and the need of tools to measure clonality.

      Liu et al. focus on a mathematical method to quantify active hematopoietic precursors in mice using Confetti reporter mice combined with Cre-lox technology. The paper explores the hematopoietic dynamics in various scenarios, including homeostasis, myeloablation with 5-fluorouracil, Fanconi anemia (FA), and post-transplant environments. The key findings and strengths of the paper include (1) precursor quantification: The study develops a method based on the binomial distribution of fluorescent protein expression to estimate precursor numbers. This method is validated across a wide dynamic range, proving more reliable than previous approaches that suffered from limited range and high variance outside this range; (2) dynamic response analysis: The paper examines how hematopoietic precursors respond to myeloablation and transplantation; (3) application in disease models: The method is applied to the FA mouse model, revealing that these mice maintain normal precursor numbers under steady-state conditions and post-transplantation, which challenges some assumptions about FA pathology. Despite the normal precursor count, a diminished repopulation capability suggests other factors at play, possibly related to cell proliferation or other cellular dysfunctions. In addition, the FA mouse model showed a reduction in active lymphoid precursors post-transplantation, contributing to decreased repopulation capacity as the mice aged. The authors are aware of the limitation of the assumption of uniform expansion. The paper assumes a uniform expansion from active precursor to progenies for quantifying precursor numbers. This assumption may not hold in all biological scenarios, especially in disease states where hematopoietic dynamics can be significantly altered. If non-uniformity is high, this could affect the accuracy of the quantification. Overall, the study underscores the importance of precise quantification of hematopoietic precursors in understanding both normal and pathological states in hematopoiesis, presenting a robust tool that could significantly enhance research in hematopoietic disorders and therapy development. This manuscript would be interesting to the readers of eLife.

    1. Reviewer #1 (Public review):

      Summary:

      This study serves as a proof of concept for KMO inhibition as a new non-hormonal treatment for endometriosis. The authors investigated KMO expression in human endometrial and endometriosis lesion tissues, confirmed that KNS898 effectively inhibits KMO and alleviates manifestations of endometriosis in mice - reduced endometriosis lesions and improved hyperalgesia and cage behaviour.

      Strengths:

      (1) Inhibition of KMO may present as a promising first-in-class non-hormonal therapeutic agent for patients suffering from endometriosis and the side-effects of hormonal treatments.<br /> (2) The expression of KMO in endometrial tissues was demonstrated in both human (multiple patients per AFS stage of disease) and mice tissues.<br /> (3) Measurement of multiple substrates/analytes of the KMO regulatory pathway was performed and demonstrated strong correlation to each other in response to KMO inhibition.<br /> (4) The aims of study (as proof-of-concept) were achieved in the study and the results support their conclusions.

      Weaknesses:

      If any dysregulation in the KMO/tryptophan metabolic activity, expression and/or pathway in endometriosis can be shown, this will strengthen the rationale for the use of KMO inhibitor in the disease.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aim to address the clinical challenge of treating endometriosis, a debilitating condition with limited and often ineffective treatment options. They propose that inhibiting KMO could be a novel non-hormonal therapeutic approach. Their study focuses on:<br /> • Obtaining proof-of-concept for KMO inhibition as a novel therapy for endometriosis.<br /> • Characterising KMO expression in human and mouse endometriosis tissues.<br /> • Demonstrating the efficacy of KMO inhibition in improving histological and symptomatic features of endometriosis.

      Strengths:

      • Novelty and Relevance: The study addresses a significant clinical need for better endometriosis treatments and explores a novel therapeutic target.

      Weaknesses:

      • Limited Mechanistic Insight: The study lacks a comprehensive investigation of the mechanistic pathways through which KNS898 affects endometriosis. The dysregulation of KMO activity and the kynurenine pathway in endometriosis remains poorly characterized, both in the human condition and the experimental model. While the authors present preliminary evidence that kynurenine metabolites (KYN, 3HK, and KYNA) are not dysregulated in the experimental model of endometriosis, they show that KMO inhibition modulates these metabolite levels and leads to some improvement in disease features. However, these findings do not significantly close the existing knowledge gap or provide a strong rationale for targeting KMO as a therapeutic approach for endometriosis. Further mechanistic insights are necessary to justify the potential of KMO inhibition in this context.

      Achievement of Aims:

      • The authors demonstrated that KMO is expressed in endometriosis lesions and that KNS898 can induce KMO inhibition, leading to biochemical changes and improvements in few endometriosis features in a mouse model. Therefore, the authors addressed the proposed specific aims. However, fail to provide a clear rationale for proposing KMO inhibition as a novel therapy for endometriosis.

      Support of Conclusions:

      • The conclusions are somewhat overextended given the limitations in mechanistic insights to explain how KMO inhibition result in improvment of histological and symptomatic features of experimental endometriosis. The study provides promising initial evidence but requires further exploration to firmly establish the efficacy of KNS898 for endometriosis treatment.

      Impact on the Field:

      • The study introduces a novel therapeutic target to be explored for endometriosis, potentially leading to non-hormonal treatment options.

      Utility of Methods and Data:

      • The methods used provide a foundation for further research, although they require refinement. The data, while promising, need more rigorous investigation and deeper mechanistic exploration to be fully convincing and useful to the community.

    1. Reviewer #1 (Public review):

      Summary:

      Orlovski and his colleagues revealed an interesting phenomenon that SAP54-overexpressing leaf exposure to leafhopper males is required for the attraction of followed females. By transcriptomic analysis, they demonstrated that SAP54 effectively suppresses biotic stress response pathways in leaves exposed to the males. Furthermore, they clarified how SAP54, by targeting SVP, heightens leaf vulnerability to leafhopper males, thus facilitating female attraction and subsequent plant colonization by the insects.

      Strengths:

      The phenomenon of this study is interesting and exciting.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, the authors show that leaf exposure to leafhopper males is required for female attraction in the SAP54-expressing plant. They clarify how SAP54, by degrading SVP, suppresses biotic stress response pathways in leaves exposed to the males, thus facilitating female attraction and plant colonization.

      Strengths:

      This study suggests the possibility that the attraction of insect vectors to leaves is the major function of SAP54, and the induction of the leaf-like flowers may be a side-effect of the degradation of MTFs and SVP. It is a very surprising discovery that only male insect vectors can effectively suppress the plant's biotic stress response pathway. Although there has been interest in the phyllody symptoms induced by SAP54, the purpose and advantage of secreting SAP54 were unknown. The results of this study shed light on the significance of secreted proteins in the phytoplasma life cycle and should be highly evaluated.

      Weaknesses:

      There are no major weaknesses. The mechanism behind why only male leafhoppers reduce plant defense responses in the presence of SAP54 remains somewhat unclear, but clarifying this is beyond the scope of this study and is for future work.

    1. Reviewer #1 (Public review):

      Summary:

      By employing human primary microvascular endothelial cells, along with live confocal imaging, proteomics, and chemical validation studies, the authors reveal a novel cellular mechanism underlying mycolactone's effects in Buruli ulcer lesions. This finding provides important insights into the specific mechanisms of skin pathogenesis.

      Strengths:

      The techniques employed are state-of-the-art.

      Weaknesses:

      The study lacks genetic validation of the findings.

    2. Reviewer #2 (Public review):

      The authors have investigated the effect of the toxin mycolactone produced by Mycobacterium ulcerans on the endothelium. Mycobacterium ulcerans is involved in Buruli ulcer lesions classified as a neglected disease by WHO. This disease has dramatic consequences on the microcirculation causing important cutaneous lesions. The authors have previously demonstrated that endothelial cells are especially sensitive to mycolactone. The present study brings more insight into the mechanism involved in mycolactone-induced endothelial cells defect and thus in microcirculatory dysfunction. The authors showed that mycolactone directly affected the synthesis of proteoglycans at the level of the golgi with a major consequence on the quality of the glycocalyx and thus on the endothelial function and structure. Importantly, the authors show that blockade of the enzyme involve in this synthesis (galactosyltransferase II) phenocopied the effects of mycolactone. The effect of mycolactone on the endothelium was confirmed in vivo. Finally, the authors showed that exogenous laminin-511 reversed the effects of mycolactone, thus opening an important therapeutic perspective for the treatment of wound healing in patients suffering Buruli ulcer lesions.

    1. Reviewer #1 (Public review):

      Summary:

      The investigators undertook detailed characterization of a previously proposed membrane targeting sequence (MTS), a short N-terminal peptide, of the bactofilin BacA in Caulobacter crescentus. Using light microscopy, single molecule tracking, liposome binding assays, and molecular dynamics simulations, they provide data to suggest that this sequence indeed does function in membrane targeting and further conclude that membrane targeting is required for polymerization. While the membrane association data are reasonably convincing, there are no direct assays to assess polymerization and some assays used lack proper controls as detailed below. Since the MTS isn't required for bactofilin polymerization in other bacterial homologues, showing that membrane binding facilitates polymerization would be a significant advance for the field.

      Major concerns

      (1) This work claims that the N-termina MTS domain of BacA is required for polymerization, but they do not provide sufficient evidence that the ∆2-8 mutant or any of the other MTS variants actually do not polymerize (or form higher order structures). Bactofilins are known to form filaments, bundles of filaments, and lattice sheets in vitro and bundles of filaments have been observed in cells. Whether puncta or diffuse labeling represents different polymerized states or filaments vs. monomers has not been established. Microscopy shows mis-localization away from the stalk, but resolution is limited. Further experiments using higher resolution microscopy and TEM of purified protein would prove that the MTS is required for polymerization.<br /> (2) Liposome binding data would be strengthened with TEM images to show BacA binding to liposomes. From this experiment, gross polymerization structures of MTS variants could also be characterized.<br /> (3) The use of the BacA F130R mutant throughout the study to probe the effect of polymerization on membrane binding is concerning as there is no evidence showing that this variant cannot polymerize. Looking through the papers the authors referenced, there was no evidence of an identical mutation in BacA that was shown to be depolymerized or any discussion in this study of how the F130R mutation might to analogous to polymerization-deficient variants in other bactofilins mentioned in these references.<br /> (4) Microscopy shows that a BacA variant lacking the native MTS regains the ability to form puncta, albeit mis-localized, in the cell when fused to a heterologous MTS from MreB. While this swap suggests a link between puncta formation and membrane binding the relationship between puncta and polymerization has not been established (see comment 1).<br /> (5) The authors provide no primary data for single molecule tracking. There is no tracking mapped onto microscopy images to show membrane localization or lack of localization in MTS deletion/variants. A known soluble protein (e.g. unfused mVenus) and a known membrane bound protein would serve as valuable controls to interpret the data presented. It also is unclear why the authors chose to report molecular dynamics as mean squared displacement rather than mean squared displacement per unit time, and the number of localizations is not indicated. Extrapolating from the graph in figure 4 D for example, it looks like WT BacA-mVenus would have a mobility of 0.5 (0.02/0.04) micrometers squared per second which is approaching diffusive behavior. Further justification/details of their analysis method is needed. It's also not clear how one should interpret the finding that several of the double point mutants show higher displacement than deleting the entire MTS. These experiments as they stand don't account for any other cause of molecular behavior change and assume that a decrease in movement is synonymous with membrane binding.<br /> (6) The experiments that map the interaction surface between the N-terminal unstructured region of PbpC and a specific part of the BacA bactofilin domain seem distinct from the main focus of the paper and the data somewhat preliminary. While the PbpC side has been probed by orthogonal approaches (mutation with localization in cells and affinity in vitro), the BacA region side has only been suggested by the deuterium exchange experiment and needs some kind of validation.

    2. Reviewer #2 (Public review):

      Summary:

      The authors of this study investigated the membrane-binding properties of bactofilin A from Caulobacter crescentus, a classic model organism for bacterial cell biology. BacA was the progenitor of a family of cytoskeletal proteins that have been identified as ubiquitous structural components in bacteria, performing a range of cell biological functions. Association with the cell membrane is a common property of the bactofilins studied and is thought to be important for functionality. However, almost all bactofilins lack a transmembrane domain. While membrane association has been attributed to the unstructured N-terminus, experimental evidence had yet to be provided. As a result, the mode of membrane association and the underlying molecular mechanics remained elusive.

      Liu at al. analyze the membrane binding properties of BacA in detail and scrutinize molecular interactions using in-vivo, in-vitro and in-silico techniques. They show that few N-terminal amino acids are important for membrane association or proper localization and suggest that membrane association promotes polymerization. Bioinformatic analyses revealed conserved lineage-specific N-terminal motifs indicating a conserved role in protein localization. Using HDX analysis they also identify a potential interaction site with PbpC, a morphogenic cell wall synthase implicated in Caulobacter stalk synthesis. Complementary, they pinpoint the bactofilin-interacting region within the PbpC C-terminus, known to interact with bactofilin. They further show that BacA localization is independent of PbpC.

      Strengths

      These data significantly advance the understanding of the membrane binding determinants of bactofilins and thus their function at the molecular level. The major strength of the comprehensive study is the combination of complementary in vivo, in vitro and bioinformatic/simulation approaches, the results of which are consistent.

      Weaknesses:

      The results are limited to protein localization and interaction, as there is no data on phenotypic effects. Therefore, the cell biological significance remains somewhat underrepresented.

    1. Reviewer #1 (Public review):

      Summary:

      This paper tests the hypothesis that neuronal adaptation to spatial frequency affects the estimation of spatial population receptive field sizes as commonly measured using the pRF paradigm in fMRI. To this end, the authors modify a standard pRF setup by presenting either low or high SF (near full field) adaptation stimuli prior to the start of each run and interleaved between each pRF bar stimulus. The hypothesis states that adaptation to a specific spatial frequency (SF) should affect only a specific subset of neurons in a population (measured with an fMRI voxel), leaving the other neurons in the population intact, resulting in a shift in the tuning of the voxel in the opposite direction of the adapted stimulus (so high SF adaptation > larger pRF size and vice versa). The paper shows that this 'repelling' effect is robustly detectable psychophysically and is evident in pRF size estimates after adaptation in line with the hypothesized direction, thereby demonstrating a link between SF tuning and pRF size measurements in the human visual cortex.

      Strengths:

      The paper introduces a new experimental design to study the effect of adaptation on spatial tuning in the cortex, nicely combining the neuroimaging analysis with a separate psychophysical assessment.

      The paper includes careful analyses and transparent reporting of single-subject effects, and several important control analyses that exclude alternative explanations based on perceived contrast or signal-to-noise differences in fMRI.

      The paper contains very clear explanations and visualizations, and a carefully worded Discussion that helpfully contextualizes the results, elucidating prior findings on the effect of spatial frequency adaptation on size illusion perception.

      Weaknesses:

      The fMRI experiments consist of a relatively small sample size (n=8), of which not all consistently show the predicted pattern in all ROIs. For example, one subject shows a strong effect in the pRF size estimates in the opposite direction in V1. It's not clear if this subject is also in the psychophysical experiment and if there is perhaps a behavioral correlate of this deviant pattern. The addition of a behavioral task in the scanner testing the effect of adaptation could perhaps have helped clarify this (although arguably it's difficult to do psychophysics in the scanner). Although the effects are clearly robust at the group level here, a larger sample size could clarify how common such deviant patterns are, and potentially allow for the assessment of individual differences in adaption effects on spatial tuning as measured with fMRI, and their perceptual implications.

      The psychophysical experiment in which the perceptual effects are shown included a neutral condition, which allowed for establishing a baseline for each subject and the discovery of an asymmetry in the effects with stronger perceptual effects after high SF adaptation compared to low SF. This neutral condition was lacking in fMRI, and thus - as acknowledged - this asymmetry could not be tested at the neural level, also precluding the possibility of comparing the obtained pRF estimates to the typical ranges found using standard pRF mapping procedures (without adaptation), or to compare the SNR using in the adaptation pRF paradigm with that of a regular paradigm, etc.

      The results indicate quite some variability in the magnitude of the shift in pRF size across eccentricities and ROIs (Figure 5B). It would be interesting to know more about the sources of this variability, and if there are other effects of adaptation on the estimated retinotopic maps other than on pRF size (there is one short supplementary section on the effects on eccentricity tuning, but not polar angle).

    2. Reviewer #2 (Public review):

      The manuscript "Spatial frequency adaptation modulates population receptive field sizes" is a heroic attempt to untangle a number of visual phenomena related to spatial frequency using a combination of psychophysical experiments and functional MRI. While the paper clearly offers an interesting and clever set of measurements supporting the authors' hypothesis, my enthusiasm for its findings is somewhat dampened by the small number of subjects, high noise, and lack of transparency in the report. Despite several of the methods being somewhat heuristically and/or difficult to understand, the authors do not appear to have released the data or source code nor to have committed to doing so, and the particular figures in the paper and supplements give a view of the data that I am not confident is a complete one. If either data or source code for the analyses and figures were provided, this concern could be largely mitigated, but the explanation of the methods is not sufficient for me to be anywhere near confident that an expert could reproduce these results, even starting from the authors' data files.

      Major Concerns:

      I feel that the authors did a nice job with the writing overall and that their explanation of the topic of spatial frequency (SF) preferences and pRFs in the Introduction was quite nice. One relatively small critique is that there is not enough explanation as to how SF adaptation would lead to changes in pRF size theoretically. In a population RF, my assumption is that neurons with both small and large RFs are approximately uniformly distributed around the center of the population. (This distribution is obviously not uniform globally, but at least locally, within a population like a voxel, we wouldn't expect the small RFs to be on average nearer the voxel's center than the voxel's edges.) Why then would adaptation to a low SF (which the authors hypothesize results in higher relative responses from the neurons with smaller RFs) lead to a smaller pRF? The pRF size will not be a function of the mean of the neural RF sizes in the population (at least not the neural RF sizes alone). A signal driven by smaller RFs is not the same as a signal driven by RFs closer to the center of the population, which would more clearly result in a reduction of pRF size. The illustration in Figure 1A implies that this is because there won't be as many small RFs close to the edge of the population, but there is clearly space in the illustration for more small RFs further from the population center that the authors did not draw. On the other hand, if the point of the illustration is that some neurons will have large RFs that fall outside of the population center, then this ignores the fact that such RFs will have low responses when the stimulus partially overlaps them. This is not at all to say that I think the authors are wrong (I don't) - just that I think the text of the manuscript presents a bit of visual intuition in place of a clear model for one of the central motivations of the paper.

      The fMRI methods are clear enough to follow, but I find it frustrating that throughout the paper, the authors report only normalized R2 values. The fMRI stimulus is a very interesting one, and it is thus interesting to know how well pRF models capture it. This is entirely invisible due to the normalization. This normalization choice likely leads to additional confusion, such as why it appears that the R2 in V1 is nearly 0 while the confidence in areas like V3A is nearly 1 (Figure S2). I deduced from the identical underlying curvature maps in Figures 4 and S2 that the subject in Figure 4 is in fact Participant 002 of Figure S2, and, assuming this deduction is correct, I'm wondering why the only high R2 in that participant's V1 (per Figure S2) seems to correspond to what looks like noise and/or signal dropout to me in Figure 4. If anything, the most surprising finding of this whole fMRI experiment is that SF adaptation seems to result in a very poor fit of the pRF model in V1 but a good fit elsewhere; this observation is the complete opposite of my expectations for a typical pRF stimulus (which, in fairness, this manuscript's stimulus is not). Given how surprising this is, it should be explained/discussed. It would be very helpful if the authors showed a map of average R2 on the fsaverage surface somewhere along with a map of average normalized R2 (or maps of each individual subject).

      On page 11, the authors assert that "Figure 4c clearly shows a difference between the two conditions, which is evident in all regions." To be honest, I did not find this to be clear or evident in any of the highlighted regions in that figure, though close inspection leads me to believe it could be true. This is a very central point, though, and an unclear figure of one subject is not enough to support it. The plots in Figure 5 are better, but there are many details missing. What thresholding was used? Could the results in V1 be due to the apparently small number of data points that survive thresholding (per Figure S2)? I would very much like to see a kernel density plot of the high-adapted (x-axis) versus low-adapted (y-axis) pRF sizes for each visual area. This seems like the most natural way to evaluate the central hypothesis, but it's notably missing.

      Regarding Figure 4, I was curious why the authors didn't provide a plot of the difference between the PRF size maps for the high-adapted and low-adapted conditions in order to highlight these apparent differences for readers. So I cut the image in half (top from bottom), aligned the top and bottom halves of the figure, and examined their subtraction. (This was easy to do because the boundary lines on the figure disappear in the difference figure when they are aligned correctly.) While this is hardly a scientific analysis (the difference in pixel colors is not the difference in the data) what I noticed was surprising: There are differences in the top and bottom PRF size maps, but they appear to correlate spatially with two things: (1) blobs in the PRF size maps that appear to be noise and (2) shifts in the eccentricity maps between conditions. In fact, I suspect that the difference in PRF size across voxels correlates very strongly with the difference in eccentricity across voxels. Could the results of this paper in fact be due not to shifts in PRF size but shifts in eccentricity? Without a better analysis of the changes in eccentricity and a more thorough discussion of how the data were thresholded and compared, this is hard to say.

      While I don't consider myself an expert on psychophysics methods, I found the sections on both psychophysical experiments easy to follow and the figures easy to understand. The one major exception to this is the last paragraph of section 4.1.2, which I am having trouble following. I do not think I could reproduce this particular analysis based on the text, and I'm having a hard time imagining what kind of data would result in a particular PSE. This needs to be clearer, ideally by providing the data and analysis code.

      Overall, I think the paper has good bones and provides interesting and possibly important data for the field to consider. However, I'm not convinced that this study will replicate in larger datasets - in part because it is a small study that appears to contain substantially noisy data but also because the methods are not clear enough. If the authors can rewrite this paper to include clearer depictions of the data, such as low- and high-adapted pRF size maps for each subject, per visual-area 2D kernel density estimates of low- versus high-adapted pRF sizes for each voxel/vertex, clear R2 and normalized-R2 maps, this could be much more convincing.

    3. Reviewer #3 (Public review):

      This is a well-designed study examining an important, surprisingly understudied question: how does adaptation affect spatial frequency processing in the human visual cortex? Using a combination of psychophysics and neuroimaging, the authors test the hypothesis that spatial frequency tuning is shifted to higher or lower frequencies, depending on the preadapted state (low or high s.f. adaptation). They do so by first validating the phenomenon psychophysically, showing that adapting to 0.5 cpd stimuli causes an increase in perceived s.f., and 3.5 cpd causes a relative decrease in perceived s.f. Using the same stimuli, they then port these stimuli to a neuroimaging study, in which population receptive fields are measured under high and low spatial frequency adaptation states. They find that adaptation changes pRF size, depending on adaptation state: adapting to high s.f. led to broader overall pRF sizes across the early visual cortex, whereas adapting to low s.f. led to smaller overall pRF sizes. Finally, the authors carry out a control experiment to psychophysically rule out the possibility that the perceived contrast change w/ adaptation may have given rise to these imaging results (this doesn't appear to be the case). All in all, I found this to be a good manuscript: the writing is taut, and the study is well designed There are a few points of clarification that I think would help, though, including a little more detail about the pRF analyses carried out in this study. Moreover, one weakness is that the sample size is relatively small, given the variability in the effects.

      (1) The pRF mapping stimuli and paradigm are slightly unconventional. This is, of course, fairly necessary to assess the question at hand. But, unless I missed it, there is a potentially critical piece of the analyses that I couldn't find in the results or methods: is the to-our adapter incorporated into the inputs for the pRF analyses, or was it simply estimating pRF size in response to the pRF mapping bar? Ignoring the large, full field-ish top-up seems like it might be dismissing an important nonlinearity in RF response to that aspect of the display (including that that had different s.f. content from the mapping stimulus) -especially because it occurred 50% of the time during the pRF mapping procedure. While the bar/top-up were events sub-TR, you could still model the prfprobe+topup response, then downsample to TR level afterwards. In any case, to fully understand this, some more detail is needed here regarding the prf fitting procedure.

      (2) I appreciate the eccentricity-dependent breakdown in Figure 5b. However, it would be informative to have included the actual plots of the pRF size as a function of eccen, for the two conditions individually, in addition to the difference effects depicted in 5b.

      (3) I know the N is small for this, but did the authors take a look at whether there was any relationship between the magnitude of the psychophysical effect and the change in pRF size, per individual? This is probably underpowered but could be worth a peek.

    1. Reviewer #1 (Public review):

      Summary:

      This study addresses the issue of rapid skill learning and whether individual sequence elements (here: finger presses) are differentially represented in human MEG data. The authors use a decoding approach to classify individual finger elements, and accomplish an accuracy of around 94%. A relevant finding is that the neural representations of individual finger elements dynamically change over the course of learning. This would be highly relevant for any attempts to develop better brain machine interfaces - one now can decode individual elements within a sequence with high precision, but these representations are not static but develop over the course of learning.

      Strengths:

      The work follows a large body of work from the same group on the behavioural and neural foundations of sequence learning. The behavioural task is well established and neatly designed to allow for tracking learning and how individual sequence elements contribute. The inclusion of short offline rest periods between learning epochs has been influential because it has revealed that a lot, if not most of the gains in behaviour (ie speed of finger movements) occur in these so-called micro-offline rest periods.

      The authors use a range of new decoding techniques, and exhaustively interrogate their data in different ways, using different decoding approaches. Regardless of the approach, impressively high decoding accuracies are observed, but when using a hybrid approach that combines the MEG data in different ways, the authors observe decoding accuracies of individual sequence elements from the MEG data of up to 94%.

      Weaknesses:

      There are a few concerns which the authors may well be able to resolve. These are not weaknesses as such, but factors that would be helpful to address as these concern potential contributions to the results that one would like to rule out.

      Regarding the decoding results shown in Figure 2 etc, a concern is that within individual frequency bands, the highest accuracy seems to be within frequencies that match the rate of keypresses. This is a general concern when relating movement to brain activity, so is not specific to decoding as done here. As far as reported, there was no specific restraint to the arm or shoulder, and even then it is conceivable that small head movements would correlate highly with the vigor of individual finger movements. This concern is supported by the highest contribution in decoding accuracy being in middle frontal regions - midline structures that would be specifically sensitive to movement artefacts and don't seem to come to mind as key structures for very simple sequential keypress tasks such as this - and the overall pattern is remarkably symmetrical (despite being a unimanual finger task) and spatially broad. This issue may well be matching the time course of learning, as the vigor and speed of finger presses will also influence the degree to which the arm/shoulder and head move.

      This is not to say that useful information is contained within either of the frequencies or broadband data. But it raises the question of whether a lot is dominated by movement "artefacts" and one may get a more specific answer if removing any such contributions.

      A somewhat related point is this: when combining voxel and parcel space, a concern is whether a degree of circularity may have contributed to the improved accuracy of the combined data, because it seems to use the same MEG signals twice - the voxels most contributing are also those contributing most to a parcel being identified as relevant, as parcels reflect the average of voxels within a boundary. In this context, I struggled to understand the explanation given, ie that the improved accuracy of the hybrid model may be due to "lower spatially resolved whole-brain and higher spatially resolved regional activity patterns". Firstly, there will be a relatively high degree of spatial contiguity among voxels because of the nature of the signal measured, ie nearby individual voxels are unlikely to be independent. Secondly, the voxel data gives a somewhat misleading sense of precision; the inversion can be set up to give an estimate for each voxel, but there will not just be dependence among adjacent voxels, but also substantial variation in the sensitivity and confidence with which activity can be projected to different parts of the brain. Midline and deeper structures come to mind, where the inversion will be more problematic than for regions along the dorsal convexity of the brain, and a concern is that in those midline structures, the highest decoding accuracy is seen.

      Some of these concerns could be addressed by recording head movement (with enough precision) to regress out these contributions. The authors state that head movement was monitored with 3 fiducials, and their timecourses ought to provide a way to deal with this issue. The ICA procedure may not have sufficiently dealt with removing movement-related problems, but one could eg relate individual components that were identified to the keypresses as another means for checking. An alternative could be to focus on frequency ranges above the movement frequencies. The accuracy for those still seems impressive, and may provide a slightly more biologically plausible assessment.

      One question concerns the interpretation of the results shown in Figure 4. They imply that during the course of learning, entirely different brain networks underpin the behaviour. Not only that, but they also include regions that would seem rather unexpected to be key nodes for learning and expressing relatively simple finger sequences, such as here. What then is the biological plausibility of these results? The authors seem to circumnavigate this issue by moving into a distance metric that captures the (neural network) changes over the course of learning, but the discussion seems detached from which regions are actually involved; or they offer a rather broad discussion of the anatomical regions identified here, eg in the context of LFOs, where they merely refer to "frontoparietal regions".

      If I understand correctly, the offline neural representation analysis is in essence the comparison of the last keypress vs the first keypress of the next sequence. In that sense, the activity during offline rest periods is actually not considered. This makes the nomenclature somewhat confusing. While it matches the behavioural analysis, having only key presses one can't do it in any other way, but here the authors actually do have recordings of brain activity during offline rest. So at the very least calling it offline neural representation is misleading to this reviewer because what is compared is activity during the last and during the next keypress, not activity during offline periods. But it also seems a missed opportunity - the authors argue that most of the relevant learning occurs during offline rest periods, yet there is no attempt to actually test whether activity during this period can be useful for the questions at hand here.

    2. Reviewer #2 (Public review):

      Summary

      Dash et al. asked whether and how the neural representation of individual finger movements is "contextualized" within a trained sequence during the very early period of sequential skill learning by using decoding of MEG signal. Specifically, they assessed whether/how the same finger presses (pressing index finger) embedded in the different ordinal positions of a practiced sequence (4-1-3-2-4; here, the numbers 1 through 4 correspond to the little through the index fingers of the non-dominant left hand) change their representation (MEG feature). They did this by computing either the decoding accuracy of the index finger at the ordinal positions 1 vs. 5 (index_OP1 vs index_OP5) or pattern distance between index_OP1 vs. index_OP5 at each training trial and found that both the decoding accuracy and the pattern distance progressively increase over the course of learning trials. More interestingly, they also computed the pattern distance for index_OP5 for the last execution of a practice trial vs. index_OP1 for the first execution in the next practice trial (i.e., across the rest period). This "off-line" distance was significantly larger than the "on-line" distance, which was computed within practice trials and predicted micro-offline skill gain. Based on these results, the authors conclude that the differentiation of representation for the identical movement embedded in different positions of a sequential skill ("contextualization") primarily occurs during early skill learning, especially during rest, consistent with the recent theory of the "micro-offline learning" proposed by the authors' group. I think this is an important and timely topic for the field of motor learning and beyond.

      Strengths

      The specific strengths of the current work are as follows. First, the use of temporally rich neural information (MEG signal) has a large advantage over previous studies testing sequential representations using fMRI. This allowed the authors to examine the earliest period (= the first few minutes of training) of skill learning with finer temporal resolution. Second, through the optimization of MEG feature extraction, the current study achieved extremely high decoding accuracy (approx. 94%) compared to previous works. As claimed by the authors, this is one of the strengths of the paper (but see my comments). Third, although some potential refinement might be needed, comparing "online" and "offline" pattern distance is a neat idea.

      Weaknesses

      Along with the strengths I raised above, the paper has some weaknesses. First, the pursuit of high decoding accuracy, especially the choice of time points and window length (i.e., 200 msec window starting from 0 msec from key press onset), casts a shadow on the interpretation of the main result. Currently, it is unclear whether the decoding results simply reflect behavioral change or true underlying neural change. As shown in the behavioral data, the key press speed reached 3~4 presses per second already at around the end of the early learning period (11th trial), which means inter-press intervals become as short as 250-330 msec. Thus, in almost more than 60% of training period data, the time window for MEG feature extraction (200 msec) spans around 60% of the inter-press intervals. Considering that the preparation/cueing of subsequent presses starts ahead of the actual press (e.g., Kornysheva et al., 2019) and/or potential online planning (e.g., Ariani and Diedrichsen, 2019), the decoder likely has captured these future press information as well as the signal related to the current key press, independent of the formation of genuine sequential representation (e.g., "contextualization" of individual press). This may also explain the gradual increase in decoding accuracy or pattern distance between index_OP1 vs. index_OP5 (Figure 4C and 5A), which co-occurred with performance improvement, as shorter inter-press intervals are more favorable for the dissociating the two index finger presses followed by different finger presses. The compromised decoding accuracies for the control sequences can be explained in similar logic. Therefore, more careful consideration and elaborated discussion seem necessary when trying to both achieve high-performance decoding and assess early skill learning, as it can impact all the subsequent analyses.

      Related to the above point, testing only one particular sequence (4-1-3-2-4), aside from the control ones, limits the generalizability of the finding. This also may have contributed to the extremely high decoding accuracy reported in the current study.

      In terms of clinical BCI, one of the potential relevance of the study, as claimed by the authors, it is not clear that the specific time window chosen in the current study (up to 200 msec since key press onset) is really useful. In most cases, clinical BCI would target neural signals with no overt movement execution due to patients' inability to move (e.g., Hochberg et al., 2012). Given the time window, the surprisingly high performance of the current decoder may result from sensory feedback and/or planning of subsequent movement, which may not always be available in the clinical BCI context. Of course, the decoding accuracy is still much higher than chance even when using signal before the key press (as shown in Figure 4 Supplement 2), but it is not immediately clear to me that the authors relate their high decoding accuracy based on post-movement signal to clinical BCI settings.

      One of the important and fascinating claims of the current study is that the "contextualization" of individual finger movements in a trained sequence specifically occurs during short rest periods in very early skill learning, echoing the recent theory of micro-offline learning proposed by the authors' group. Here, I think two points need to be clarified. First, the concept of "contextualization" is kept somewhat blurry throughout the text. It is only at the later part of the Discussion (around line #330 on page 13) that some potential mechanism for the "contextualization" is provided as "what-and-where" binding. Still, it is unclear what "contextualization" actually is in the current data, as the MEG signal analyzed is extracted from 0-200 msec after the keypress. If one thinks something is contextualizing an action, that contextualization should come earlier than the action itself.

      The second point is that the result provided by the authors is not yet convincing enough to support the claim that "contextualization" occurs during rest. In the original analysis, the authors presented the statistical significance regarding the correlation between the "offline" pattern differentiation and micro-offline skill gain (Figure 5. Supplement 1), as well as the larger "offline" distance than "online" distance (Figure 5B). However, this analysis looks like regressing two variables (monotonically) increasing as a function of the trial. Although some information in this analysis, such as what the independent/dependent variables were or how individual subjects were treated, was missing in the Methods, getting a statistically significant slope seems unsurprising in such a situation. Also, curiously, the same quantitative evidence was not provided for its "online" counterpart, and the authors only briefly mentioned in the text that there was no significant correlation between them. It may be true looking at the data in Figure 5A as the online representation distance looks less monotonically changing, but the classification accuracy presented in Figure 4C, which should reflect similar representational distance, shows a more monotonic increase up to the 11th trial. Further, the ways the "online" and "offline" representation distance was estimated seem to make them not directly comparable. While the "online" distance was computed using all the correct press data within each 10 sec of execution, the "offline" distance is basically computed by only two presses (i.e., the last index_OP5 vs. the first index_OP1 separated by 10 sec of rest). Theoretically, the distance between the neural activity patterns for temporally closer events tends to be closer than that between the patterns for temporally far-apart events. It would be fairer to use the distance between the first index_OP1 vs. the last index_OP5 within an execution period for "online" distance, as well.

      A related concern regarding the control analysis, where individual values for max speed and the degree of online contextualization were compared (Figure 5 Supplement 3), is whether the individual difference is meaningful. If I understood correctly, the optimization of the decoding process (temporal window, feature inclusion/reduction, decoder, etc.) was performed for individual participants, and the same feature extraction was also employed for the analysis of representation distance (i.e., contextualization). If this is the case, the distances are individually differently calculated and they may need to be normalized relative to some stable reference (e.g., 1 vs. 4 or average distance within the control sequence presses) before comparison across the individuals.

    3. Reviewer #3 (Public review):

      Summary:

      One goal of this paper is to introduce a new approach for highly accurate decoding of finger movements from human magnetoencephalography data via dimension reduction of a "multi-scale, hybrid" feature space. Following this decoding approach, the authors aim to show that early skill learning involves "contextualization" of the neural coding of individual movements, relative to their position in a sequence of consecutive movements. Furthermore, they aim to show that this "contextualization" develops primarily during short rest periods interspersed with skill training, and correlates with a performance metric which the authors interpret as an indicator of offline learning.

      Strengths:

      A clear strength of the paper is the innovative decoding approach, which achieves impressive decoding accuracies via dimension reduction of a "multi-scale, hybrid space". This hybrid-space approach follows the neurobiologically plausible idea of the concurrent distribution of neural coding across local circuits as well as large-scale networks. A further strength of the study is the large number of tested dimension reduction techniques and classifiers (though the manuscript reveals little about the comparison of the latter).

      A simple control analysis based on shuffled class labels could lend further support to this complex decoding approach. As a control analysis that completely rules out any source of overfitting, the authors could test the decoder after shuffling class labels. Following such shuffling, decoding accuracies should drop to chance level for all decoding approaches, including the optimized decoder. This would also provide an estimate of actual chance-level performance (which is informative over and beyond the theoretical chance level). Furthermore, currently, the manuscript does not explain the huge drop in decoding accuracies for the voxel-space decoding (Figure 3B). Finally, the authors' approach to cortical parcellation raises questions regarding the information carried by varying dipole orientations within a parcel (which currently seems to be ignored?) and the implementation of the mean-flipping method (given that there are two dimensions - space and time - what do the authors refer to when they talk about the sign of the "average source", line 477?).

      Weaknesses:

      A clear weakness of the paper lies in the authors' conclusions regarding "contextualization". Several potential confounds, described below, question the neurobiological implications proposed by the authors and provide a simpler explanation of the results. Furthermore, the paper follows the assumption that short breaks result in offline skill learning, while recent evidence, described below, casts doubt on this assumption.

      The authors interpret the ordinal position information captured by their decoding approach as a reflection of neural coding dedicated to the local context of a movement (Figure 4). One way to dissociate ordinal position information from information about the moving effectors is to train a classifier on one sequence and test the classifier on other sequences that require the same movements, but in different positions (Kornysheva et al., Neuron 2019). In the present study, however, participants trained to repeat a single sequence (4-1-3-2-4). As a result, ordinal position information is potentially confounded by the fixed finger transitions around each of the two critical positions (first and fifth press). Across consecutive correct sequences, the first keypress in a given sequence was always preceded by a movement of the index finger (=last movement of the preceding sequence), and followed by a little finger movement. The last keypress, on the other hand, was always preceded by a ring finger movement, and followed by an index finger movement (=first movement of the next sequence). Figure 4 - Supplement 2 shows that finger identity can be decoded with high accuracy (>70%) across a large time window around the time of the key press, up to at least {plus minus}100 ms (and likely beyond, given that decoding accuracy is still high at the boundaries of the window depicted in that figure). This time window approaches the keypress transition times in this study. Given that distinct finger transitions characterized the first and fifth keypress, the classifier could thus rely on persistent (or "lingering") information from the preceding finger movement, and/or "preparatory" information about the subsequent finger movement, in order to dissociate the first and fifth keypress. Currently, the manuscript provides no evidence that the context information captured by the decoding approach is more than a by-product of temporally extended, and therefore overlapping, but independent neural representations of consecutive keypresses that are executed in close temporal proximity - rather than a neural representation dedicated to context.

      Such temporal overlap of consecutive, independent finger representations may also account for the dynamics of "ordinal coding"/"contextualization", i.e., the increase in 2-class decoding accuracy, across Day 1 (Figure 4C). As learning progresses, both tapping speed and the consistency of keypress transition times increase (Figure 1), i.e., consecutive keypresses are closer in time, and more consistently so. As a result, information related to a given keypress is increasingly overlapping in time with information related to the preceding and subsequent keypresses. The authors seem to argue that their regression analysis in Figure 5 - Figure Supplement 3 speaks against any influence of tapping speed on "ordinal coding" (even though that argument is not made explicitly in the manuscript). However, Figure 5 - Figure Supplement 3 shows inter-individual differences in a between-subject analysis (across trials, as in panel A, or separately for each trial, as in panel B), and, therefore, says little about the within-subject dynamics of "ordinal coding" across the experiment. A regression of trial-by-trial "ordinal coding" on trial-by-trial tapping speed (either within-subject or at a group-level, after averaging across subjects) could address this issue. Given the highly similar dynamics of "ordinal coding" on the one hand (Figure 4C), and tapping speed on the other hand (Figure 1B), I would expect a strong relationship between the two in the suggested within-subject (or group-level) regression. Furthermore, learning should increase the number of (consecutively) correct sequences, and, thus, the consistency of finger transitions. Therefore, the increase in 2-class decoding accuracy may simply reflect an increasing overlap in time of increasingly consistent information from consecutive keypresses, which allows the classifier to dissociate the first and fifth keypress more reliably as learning progresses, simply based on the characteristic finger transitions associated with each. In other words, given that the physical context of a given keypress changes as learning progresses - keypresses move closer together in time and are more consistently correct - it seems problematic to conclude that the mental representation of that context changes. To draw that conclusion, the physical context should remain stable (or any changes to the physical context should be controlled for).

      A similar difference in physical context may explain why neural representation distances ("differentiation") differ between rest and practice (Figure 5). The authors define "offline differentiation" by comparing the hybrid space features of the last index finger movement of a trial (ordinal position 5) and the first index finger movement of the next trial (ordinal position 1). However, the latter is not only the first movement in the sequence but also the very first movement in that trial (at least in trials that started with a correct sequence), i.e., not preceded by any recent movement. In contrast, the last index finger of the last correct sequence in the preceding trial includes the characteristic finger transition from the fourth to the fifth movement. Thus, there is more overlapping information arising from the consistent, neighbouring keypresses for the last index finger movement, compared to the first index finger movement of the next trial. A strong difference (larger neural representation distance) between these two movements is, therefore, not surprising, given the task design, and this difference is also expected to increase with learning, given the increase in tapping speed, and the consequent stronger overlap in representations for consecutive keypresses. Furthermore, initiating a new sequence involves pre-planning, while ongoing practice relies on online planning (Ariani et al., eNeuro 2021), i.e., two mental operations that are dissociable at the level of neural representation (Ariani et al., bioRxiv 2023).

      Given these differences in the physical context and associated mental processes, it is not surprising that "offline differentiation", as defined here, is more pronounced than "online differentiation". For the latter, the authors compared movements that were better matched regarding the presence of consistent preceding and subsequent keypresses (online differentiation was defined as the mean difference between all first vs. last index finger movements during practice). It is unclear why the authors did not follow a similar definition for "online differentiation" as for "micro-online gains" (and, indeed, a definition that is more consistent with their definition of "offline differentiation"), i.e., the difference between the first index finger movement of the first correct sequence during practice, and the last index finger of the last correct sequence. While these two movements are, again, not matched for the presence of neighbouring keypresses (see the argument above), this mismatch would at least be the same across "offline differentiation" and "online differentiation", so they would be more comparable.

      A further complication in interpreting the results regarding "contextualization" stems from the visual feedback that participants received during the task. Each keypress generated an asterisk shown above the string on the screen, irrespective of whether the keypress was correct or incorrect. As a result, incorrect (e.g., additional, or missing) keypresses could shift the phase of the visual feedback string (of asterisks) relative to the ordinal position of the current movement in the sequence (e.g., the fifth movement in the sequence could coincide with the presentation of any asterisk in the string, from the first to the fifth). Given that more incorrect keypresses are expected at the start of the experiment, compared to later stages, the consistency in visual feedback position, relative to the ordinal position of the movement in the sequence, increased across the experiment. A better differentiation between the first and the fifth movement with learning could, therefore, simply reflect better decoding of the more consistent visual feedback, based either on the feedback-induced brain response, or feedback-induced eye movements (the study did not include eye tracking). It is not clear why the authors introduced this complicated visual feedback in their task, besides consistency with their previous studies.

      The authors report a significant correlation between "offline differentiation" and cumulative micro-offline gains. However, it would be more informative to correlate trial-by-trial changes in each of the two variables. This would address the question of whether there is a trial-by-trial relation between the degree of "contextualization" and the amount of micro-offline gains - are performance changes (micro-offline gains) less pronounced across rest periods for which the change in "contextualization" is relatively low? Furthermore, is the relationship between micro-offline gains and "offline differentiation" significantly stronger than the relationship between micro-offline gains and "online differentiation"?

      The authors follow the assumption that micro-offline gains reflect offline learning. However, there is no direct evidence in the literature that micro-offline gains really result from offline learning, i.e., an improvement in skill level. On the contrary, recent evidence questions this interpretation (Gupta & Rickard, npj Sci Learn 2022; Gupta & Rickard, Sci Rep 2024; Das et al., bioRxiv 2024). Instead, there is evidence that micro-offline gains are transient performance benefits that emerge when participants train with breaks, compared to participants who train without breaks, however, these benefits vanish within seconds after training if both groups of participants perform under comparable conditions (Das et al., bioRxiv 2024).

    1. Reviewer #1 (Public review):

      Summary:

      Mollá-Albaladejo et al. investigate the neurons downstream of GR64f and Gr66a, called G2Ns. They identify downstream neurons using trans-Tango labeling with RFP and then perform bulk RNA-seq on the RFP-sorted cells. Gene expression is up- or downregulated between the cell populations and between fed and starved states. They specifically identify Leukocinin as a neuropeptide that is upregulated in starved Gr66a cells. Leucokinin cells, identified by a GAL4 line indeed show higher expression when starved, especially in the SEZ. Furthermore, Leucokinin cells colocalize with the trans-Tango signal from downstream neurons of both GRs. This connection is confirmed with GRASP. According to EM data, Leucokinin cells in the SEZ receive a lot of input and connect to many downstream neurons. In behavior experiments performed with flies lacking Leucokinin neurons, flies show reduced responsiveness to sugar and bitter mixtures when starved. The authors suggest that Leucokinin neurons integrate bitter and sugar tastes and that their output is modified by a hunger state.

      Strengths:

      The authors use a multitude of tools to identify SELK neurons downstream of taste sensory neurons and as starvation-sensitive cells. This study provides an example of how combining genetic labeling, RNA-seq, and EM analysis can be combined to investigate neural circuits.

      Weaknesses:

      The authors do not show a functional connection between sensory neurons and SELK neurons. Additionally, data from RNA seq, anatomical studies, and EM analysis are sometimes contradictory in terms of connectivity. GRASP signal is not foolproof that cells are synaptically connected.

      The authors describe a behavioral phenotype when flies are starved, however, they do not use a specific driver for the described cell type, thus they should also tone down their claims.

      Generally, the authors do not provide a big advancement to the field and some of the results are contradictory with previous publications.

    2. Reviewer #2 (Public review):

      Summary:

      A core task of the brain is processing sensory cues from the environment. The neural mechanisms of how sensory information is transmitted from peripheral sense organs to subsequent being processing in defined brain centers remain an important topic in neuroscience. The taste system hereby assesses the palatability of food by evaluating the chemical composition and nutrient content while integrating the current need for energy by assessing the satiation level of the organism. The current manuscript provides insights into the early circuits of gustatory coding using the fruit fly as a model. By combining trans-tango and FACS-based bulk RNAseq to assess the target neurons of sweet sensing (using Gr64f-Gal4) and bitter sensing (using Gr66a-Gal4) in a first set of experiments the authors investigate genes that are differentially expressed or co-expressed in normal and starved conditions. With a focus on neuropeptides and neurotransmitters, different expressions in the different conditions were assessed resulting in the identification of Leucokinin as a potentially interesting gene. The notion is further supported by RNAseq of Lk-Gal4>mCD8:GFP sorted cells and immunostainings. GRASP and BacTrace experiments further support that the two Lk-expressing cells in the SEZ should indeed be postsynaptic to both types of sensories. Using EM-based connectomics data (based on a previous publication by Engert et al.), the authors also look for downstream targets of the bitter versus sweet gustatory neurons to identify the Lk-neurons. Based on the morphology they identify candidates and further depict the potential downstream neurons in the connectome, which appears largely in agreement with GRASP experiments. Finally silencing the Lk-neurons shows an increased PER response in starved flies (when combined with bitter compounds) as well as increased feeding in a FlyPad assay.

      Strengths:

      Overall this is an intriguing manuscript, which provides insight into the organization of 2nd order gustatory neurons. It specifically provides strong evidence for the Lk-neurons as a target of sweet and bitter GRNs and provides evidence for their role in regulating sweet vs bitter-based behavioral responses. Particularly the integration of different techniques and datasets in an elegant fashion is a strong side of the manuscript. Moreover to put the known LK-neurons into the context of 2nd order gustatory signalling is strengthening the knowledge about this pathway.

      Weaknesses:

      I do not see any major weakness in the current manuscript. Novelty is to some degree lessened by the fact, that the RNAseq approach did not identify new neurons but rather put the known LK-neurons as major findings. Similarly, the final behavioral section is not very deep and to some degree corroborates the previous publication by the Keene and Nässel labs - that said, the model they propose is indeed novel (but lacks depth in analyses; e.g. there is no physiology that would support the modulation of Lk neurons by either type of GRN). The connectomic section appears a bit out of place and after reading it it's not really clear what one should make of the potential downstream neurons (particularly since the Lk-receptor expression has been previously analyzed); here it might have been interesting to address if/how Lk-neurons may signal directly via a classical neurotransmitter (an information that might be found easily in the adult brain single-cell data).

    3. Reviewer #3 (Public review):

      Summary:

      To make feeding decisions, animals need to process three types of information: positive cues like sweetness, negative cues like bitterness, and internal states such as hunger or satiety. This study aims to identify where the information is integrated into the fruit fly brain. The authors applied RNA sequencing on second-order gustatory neurons responsible for sweet and bitter processing, under fed and starved conditions. The sequencing data reveal significant changes in gene expression across sweet vs. bitter pathways and fed vs. starved states. The authors focus on the neuropeptide Leucokinin (Lk), whose expression is dependent on the starvation state. They identify a pair of neurons, named SELK neurons, which express Lk and receive direct input from both sweet and bitter gustatory neurons. These SELK neurons are ideal candidates to integrate gustatory and internal state information. Behavioral experiments show that blocking these neurons in starved flies alters their tolerance to bitter substances during feeding.

      Strengths:

      (1) The study employs a well-designed approach, targeting specific neuronal populations, which is more efficient and precise compared to traditional large-scale genetic screening methods.

      (2) The RNAseq results provide valuable data that can be utilized in future studies to explore other molecules beyond Lk.

      (3) The identification of SELK neurons offers a promising avenue for future research into how these neurons integrate conflicting gustatory signals and internal state information.

      Weaknesses:

      (1) Unfortunately, due to technical challenges, the authors were unable to directly image the functional activity of SELK neurons.

      (2) In the behavioral experiments, tetanus toxin was used to block SELK neurons. Since these neurons may release multiple neurotransmitters or neuropeptides, the results do not specifically demonstrate that Leucokinin (Lk) is the critical factor, as suggested in Figure 8. To address this, I recommend using RNAi to inhibit Lk expression in SELK neurons and comparing the outcomes to wild-type controls via the PER assay.

    1. Reviewer #1 (Public review):

      This paper describes "Ais", a new software tool for machine-learning based segmentation and particle picking of electron tomograms. The software can visualise tomograms as slices and allows manual annotation for the training of a provided set of various types of neural networks. New networks can be added, provided they adhere to a python file with an (undescribed) format. Once networks have been trained on manually annotated tomograms, they can be used to segment new tomograms within the same software. The authors also set up an online repository to which users can upload their models, so they might be re-used by others with similar needs. By logically combining the results from different types of segmentations, they further improve the detection of distinct features. The authors demonstrate the usefulness of their software on various data sets. Thus, the software appears to be a valuable tool for the cryo-ET community that will lower the boundaries of using a variety of machine-learning methods to help interpret tomograms.

    2. Reviewer #2 (Public review):

      Summary:

      Last et al. present Ais, a new deep learning based software package for segmentation of cryo electron tomography data sets. The distinguishing factor of this package is its orientation to the joint use of different models, rather than the implementation of a given approach: Notably, the software is supported by an online repository of segmentation models, open to contributions from the community.

      The usefulness of handling different models in one single environment is showcased with a comparative study on how different models perform on a given data set; then with an explanation on how the results of several models can be manually merged by the interactive tools inside Ais.

      The manuscripts presents two applications of Ais on real data sets; one oriented to showcase its particle picking capacities on a study previously completed by the authors; a second one refers to a complex segmentation problem on two different data sets (representing different geometries as bacterial cilia and mitochondria in a mouse neuron), both from public databases.

      The software described in the paper is compactly documented in its website, additionally providing links to some youtube videos (less than an hour it toral) where the authors videocapture and comment major workflows.

      In short, the manuscript describes a valuable resource for the community of tomography practitioners.

      Strengths:

      Public repository of segmentation models; easiness of working with several models and comparing/merging the results.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Last and colleagues describe Ais, an open-source software package for the semi-automated segmentation of cryo-electron tomography (cryo-ET) maps. Specifically, Ais provides a graphical user interface (GUI) for the manual segmentation and annotation of specific features of interest. These manual annotations are then used as input ground-truth data for training a convolutional neural network (CNN) model, which can then be used for automatic segmentation. Ais provides the option of several CNNs so that users can compare their performance on their structures of interest in order to determine the CNN that best suits their needs. Additionally, pretrained models can be uploaded and shared to an online database.

      Algorithms are also provided to characterize "model interactions" which allows users to define heuristic rules on how the different segmentations interact. For instance, a membrane adjacent protein can have rules where it must colocalize a certain distance away from a membrane segmentation. Such rules can help reduce false positives; as in the case above, false negatives predicted away from membranes are eliminated.

      The authors then show how Ais can be used for particle picking and subsequent subtomogram averaging and for segmentation of cellular tomograms for visual analysis. For subtomogram averaging, they used a previously published dataset and compared the averages of their automated picking with the published manual picking. Analysis of cellular tomogram segmentations were primarily visual.

      Strengths:

      CNN-based segmentation of cryo-ET data is a rapidly developing area of research, as it promises substantially faster results than manual segmentation as well as the possibility for higher accuracy. However, this field is still very much in the development and the overall performance of these approaches, even across different algorithms, still leaves much to be desired. In this context, I think Ais is an interesting packages, as it aims to provide both new and experienced users streamlined approaches for manual annotation, access to a number of CNNs, and methods to refine the outputs of CNN models against each other. I think this can be quite useful for users, particularly as these methods develop.

    1. Reviewer #1 (Public review):

      In their manuscript "PDGFRRa signaling regulates Srsf3 transcript binding to affect PI3K signaling and endosomal trafficking" Forman and colleagues use iMEPM cells to characterize the effects of PDGF signaling on alternative splicing. They first perform RNA-seq using a one-hour stimulation with Pdgf-AA in control and Srsf3 knockdown cells. While Srsf3 manipulation results in a sizeable number of DE genes, PDGF does not. They then turn to examine alternative splicing, due to findings from this lab. They find that both PDGF and Srsf3 contribute much more to splicing than transcription. They find that the vast majority of PDGF-mediated alternative splicing depends upon Srsf3 activity and that skipped exons are the most common events with PDGF stimulation typically promoting exon skipping in the presence of Srsf3. They used eCLIP to identify RNA regions bound to Srsf3. Under both PDGF conditions, the majority of peaks were in exons with +PDGF having a substantially greater number of these peaks. Interestingly, they find differential enrichment of sequence motifs and GC content in stimulated versus unstimulated cells. They examine 2 transcripts encoding PI3K pathway (enriched in their GO analysis) members: Becn1 and Wdr81. They then go on to examine PDGFRRa and Rab5, an endosomal marker, colocalization. They propose a model in which Srsf3 functions downstream of PDGFRRa signaling to, in part, regulate PDGFRa trafficking to the endosome. The findings are novel and shed light on the mechanisms of PDGF signaling and will be broadly of interest. This lab previously identified the importance of PDGF naling on alternative splicing. The combination of RNA-seq and eCLIP is an exceptional way to comprehensively analyze this effect. The results will be of great utility to those studying PDGF signaling or neural crest biology.

      Comments on the revised version:

      The authors have fully addressed my previous comments and I have no further concerns.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript builds upon the work of a previous study published by the group (Dennison, 2021) to further elucidate the coregulatory axis of Srsf3 and PDGFRa on craniofacial development. The authors in this study investigated the molecular mechanisms by which PDGFRa signaling activates the RNA-binding protein Srsf3 to regulate alternative splicing (AS) and gene expression (GE) necessary for craniofacial development. PDGFRa signaling-mediated Srsf3 phosphorylation drives its translocation into the nucleus and affect binding affinity to different proteins and RNA, but the exact molecular mechanisms were not known. The authors performed RNA sequencing on immortalized mouse embryonic mesenchyme (MEPM) cells treated with shRNA targeting 3' UTR of Srsf3 or scramble shRNA (to probe AS and DE events that are Srsf3 dependent) and with and without PDGF-AA ligand treatment (to probe AS and DE events that are PDGFRa signaling dependent). They found that PDGFRa signaling has more effect on AS than on DE. A matching eCLIP-seq experiment was performed to investigate how Srsf3 binding sites change with and without PDGFRa signaling.

      Strengths:

      (1) The work builds well upon the previous data and the authors employ a variety of appropriate techniques to answer their research questions.

      (2) The authors show that Srsf3 binding pattern within the transcript as well as binding motifs change significantly upon PDGFRa signaling, providing a mechanistic explanation for the significant changes in AS.

      (3) By combining RNA-seq and eCLIP datasets together, the authors identified a list of genes that are directly bound by Srsf3 and undergo changes in GE and/or AS. Two examples are Becn1 and Wdr81, which are involved in early endosomal trafficking.

      Weaknesses:

      (1) The authors identify two genes whose AS are directly regulated by Srsf3 and involved in endosomal trafficking; however, they do not validate the differential AS results and whether changes in these genes can affect endosomal trafficking. In Figure 6, they show that PDGFRa signaling is involved in endosome size and Rab5 colocalization, but do not show how Srsf3 and the two genes are involved.

      (2) The proposed model does not account for other proteins mediating the activation of Srsf3 after Akt phosphorylation. How do we know this is a direct effect (and not secondary or tertiary effect)?

      This is a thoroughly revised manuscript. I would like to congratulate the authors to have invested a lot of time, resources, new data, and a more refined discussion to make this a compelling piece of work. I have no further concerns.

    1. Reviewer #4 (Public review):

      Summary:

      This study describes an understudied migration pattern of dynamic non-breeding range using data from an Arctic raptor. Using data from GPS tags, the study describes the known pattern of fast migration during autumn and spring, and an undescribed pattern of slow migration, at much slower pace, throughout the over-wintering season.

      Strengths:

      The study presents a comprehensive analysis of the annual cycle of an interesting and undescribed migration system. The conceptual advancement is original and the data is rich and persuading. The Discussion part of the manuscript is well written.

      Weaknesses:

      Other sections of the manuscript need some more polish, both in terms of the terminology, the language and the logic of the presentation of the subject. The title is not good. During most of the text, the authors do not properly follow a certain terminology regarding migration, over-wintering, non-breeding range, and this is very confusing. So, consistency of the text is warranted. A bigger issue is the selection of latitudes (or the actual reason for movement) during the over-wintering period. The study claims that this relates to snow cover but fails to properly demonstrate it. It is likely that the birds move because of changes in snow cover rather than because of the level of snow cover. This is a testable prediction. A possible explanation is that there is a cost for moving further south and thus the birds are reluctant of moving unless they are forced to do it by the high snow cover. Another, similar and testable prediction is that the birds aim at selecting latitudes where snow cover is partial and move slowly during the winter to areas that are only partially covered by the snow with the progression of the winter. A modified, non-linear, snow cover analysis using GAMM could uncover such patterns.

    1. Reviewer #1 (Public review):

      Summary:

      In an era of increasing antibiotic resistance, there is a pressing need for the development of novel sustainable therapies to tackle problematic pathogens. In this study, the authors hypothesize that pyoverdines - metal-chelating compounds produced by fluorescent pseudomonads - can act as antibacterials by locking away iron, thereby arresting pathogen growth. Using biochemical, growth and virulence assays on 12 opportunistic pathogens strains, the authors demonstrate that pyoverdines induce iron starvation, but this affect was highly context dependent. This same effect has been demonstrated for plant pathogens, but not for human opportunistic pathogens exposed to natural siderophores. Only those pathogens lacking (1) a matching receptor to take up pyoverdine-bound iron and/or (2) the ability to produce strong iron chelators themselves experienced strong growth arrest. This would suggest that pyoverdines might not be effective against all pathogens, thereby potentially limiting the utility of pyoverdines as global antibacterials.

      Strengths:

      The work addresses an important and timely question - can pyoverdines be used as an alternative strategy to deal with opportunistic pathogens? In general, the work is well conducted with rigorous biochemical, growth and virulence assays. In line, the work is clearly written, and the findings are supported by high-quality figures.

      Weaknesses:

      I do not think there are any 'weaknesses' as such. The authors have taken all suggestions on board and this has greatly improved the quality and robustness of the work

    2. Reviewer #2 (Public review):

      In this work, Vollenweider et al. examine the effectiveness of using natural products, specifically molecules that chelate iron, to treat infectious agents. Through the purification of 320 environmental isolates, 25 potential candidates were identified based on inhibition assays and further screened. The structural information and chemical composition of these candidates were determined. Using a series of well-described and standard assays, the authors show that three compounds have some effect in reducing mortality in a simple in vivo model.

      The paper is well-structured and thorough; targeting virulence factors in this manner is an excellent approach. However, my enthusiasm is dampened by the mediocre effects of the compounds. A reduction in the hazard ratio is reported, indicating that the compounds are having an effect, but without comparison to other iron-chelating molecules or current standards of care, it is difficult to contextualize the significance of these reductions.

      I am less convinced by a claim from the abstract: "Furthermore, experimental evolution combined with whole-genome sequencing revealed reduced potentials for resistance evolution compared to an antibiotic." Perhaps this is a semantic issue, but what is meant by "potential for resistance evolution"? My understanding is that this refers to mutations or sets of mutations that would be favored under selective pressure, allowing the bacteria to more easily climb a fitness landscape peak. However, the authors present a different result: the bacteria did not grow better after selection in different conditions (except for the positive control using ciprofloxacin). They correctly suggest that there may be individuals in the populations that have developed resistance and recommend isolating 8 from each treatment for testing. However, they then use the mean value of these individuals to conclude that there is no difference from the ancestor. This seems incorrect-surely the point of using individuals is not to compare them as a group but to determine if any one has a growth rate outside the expected distribution. In short, Figure S10 does not seem to support the findings reported in line 417.

      A final consideration for the evolution experiment is the choice of a bactericidal antibiotic. It might have been more appropriate to use a bacteriostatic drug as a control. However, I feel that additional work on this topic is beyond the scope of the current paper.

      Similarly, it would be interesting to consider how evolving the isolates in iron-limited media would affect resistance levels. Currently, I think the difference in growth rate is attributed to the iron-scavenging nature of the siderophores. In future work, this could be tested, and an evolution experiment in which iron availability is measured could provide valuable insights. To clarify, I believe this work is not necessary for the current paper, but it would be an interesting avenue for future research.

    1. Joint Public Review:

      Summary:

      This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as the gremubamab has failed in Phase 2 trials. Clarification of this point would greatly benefit this paper.

      Strengths:

      (1) High efficiency of isolating antigen-specific BCRs using an antigenic hook.

      (2) The authors' conclusion is supported by data.

      Weaknesses:

      Although the authors state that the goal of this study was to generate novel protective mAbs for therapeutic use (P12; Para. 2), it is unclear whether PcrV-specific mAbs isolated in this study have therapeutic potential better than the gremubamab, which has failed in Phase 2 trials. Four of five PcrV-specific mAbs isolated in this study reduced bacterial burdens in mice as potent as, but not superior to, gremubamab-equivalent mAb. Clarification of this concern by revising the text or providing experimental results that show better potential than gremubamab would greatly benefit this paper.

    1. Reviewer #1 (Public review):

      In their paper, Kang et al. investigate rigidity sensing in amoeboid cells, showing that, despite their lack of proper focal adhesions, amoeboid migration of single cells is impacted by substrate rigidity. In fact, many different amoeboid cell types can durotax, meaning that they preferentially move towards the stiffer side of a rigidity gradient.

      The authors observed that NMIIA is required for durotaxis and, buiding on this observation, they generated a model to explain how durotaxis could be achieved in the absence of strong adhesions. According to the model, substrate stiffness alters the diffusion rate of NMAII, with softer substrates allowing for faster diffusion. This allows for NMAII accumulation at the back, which, in turn, results in durotaxis.

      The evidence provided for durotaxis of non adherent (or low-adhering) cells is strong. I am particularly impressed by the fact that amoeboid cells can durotax even when not confined. I wish to congratulate the authors for the excellent work, which will fuel discussion in the field of cell adhesion and migration.

    2. Reviewer #2 (Public review):

      Summary:

      The authors developed an imaging-based device, that provides both spatial confinement and stiffness gradient, to investigate if and how amoeboid cells, including T cells, neutrophils and Dictyostelium can durotax. Furthermore, the authors showed that the mechanism for the directional migration of T cells and neutrophils depends on non-muscle myosin IIA (NMIIA) polarized towards the soft-matrix-side. Finally, they developed a mathematical model of an active gel that captures the behavior of the cells described in vitro.

      Strengths:

      The topic is intriguing as durotaxis is essentially thought to be a direct consequence of mechanosensing at focal adhesions. To the best of my knowledge, this is the first report on amoeboid cells that are not dependent on FAs to exert durotaxis. The authors developed an imaging-based durotaxis device that provides both spatial confinement and stiffness gradient and they also utilized several techniques such as quantitative fluorescent speckle microscopy and expansion microscopy. The results of this study have well-designed control experiments and are therefore convincing.

    1. Joint Public review:

      Summary

      This manuscript offers significant insights into the impact of maternal obesity on oocyte methylation and its transgenerational effects. Chao and colleagues demonstrated the potential mechanisms behind the DNA methylation changes. The major observations of the work include transgenerational DNA methylation changes in offspring of maternal obesity and metabolites such as methionine and melatonin which correlated with the epigenetic changes. Exogenous melatonin treatment could reverse the effects of obesity. The authors further hypothesized that the linkage may be mediated by the cAMP/PKA/CREB pathway to regulate the expression of DNMTs. This work has done lots of breeding and DNA Methylation analysis across multiple generations, which provides solid data for future research. The results of this work may benefit from deeper data analysis to make more causal analyses and conclusions more concrete.

      Strengths

      The study employs comprehensive methodologies, including transgenerational breeding experiments, whole genome bisulfite sequencing, and metabolomics analysis, and provides the convincing data.

      Weaknesses

      The results of this work are correlational, which may require further analysis to establish more concrete conclusions on causal relationships.

    1. Reviewer #1 (Public review):

      Summary:

      In this work by Wang et al., the authors use single-molecule super-resolution microscopy together with biochemical assays to quantify the organization of Nipah virus fusion protein F (NiV-F) on cell and viral membranes. They find that these proteins form nanoscale clusters which favors membrane fusion activation, and that the physical parameters of these clusters are unaffected by protein expression level and endosomal cleavage. Furthermore, they find that the cluster organization is affected by mutations in the trimer interface on the NiV-F ectodomain and the putative oligomerization motif on the transmembrane domain, and that the clusters are stabilized by interactions among NiV-F, the AP2-complex, and the clathrin coat assembly. This work improves our understanding of the NiV fusion machinery, which may also have implications for our understanding of the function of other viruses.

      Strengths:

      The conclusions of this paper are well-supported by the presented data. This study sheds light on the activation mechanisms underlying the NiV fusion machinery.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Wang and co-workets employ single molecule light microscopy (SMLM) to detect Nipah virus Fusion protein (NiV-F) in the surface of cells. They corroborate that these glycoproteins form microclusters (previously seen and characterized together with the NiV-G and Nipah Matrix protein by Liu and co-workers (2018) also with super-resolution light microscopy). Also seen by Liu and coworkers the authors show that the level of expression of NiV-F does not alter the identity of these microclusters nor endosomal cleavage. Moreover, mutations and the transmembrane domain or the hexamer-of-trimer interface seem to have a mild effect on the size of the clusters that the authors quantified. Importantly, it has also been shown that these particles tend to cluster in Nipah VLPs.

      Strengths:

      The authors have tried to perform SMLM in single VLPs and have shown partially the importance of NiV-F clustering.

      Comments on the revised version:

      I am happy with the answers the authors have provided to my questions

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Wang and colleagues describes single molecule localization microscopy to quantify the distribution and organization of Nipah virus F expressed on cells and on virus-like particles. Notably the crystal structure of F indicated hexameric assemblies of F trimers. The authors propose that F clustering favors membrane fusion.

      Strengths:

      The manuscript provides solid data on imaging of F clustering with the main findings of:<br /> - F clusters are independent of expression levels<br /> - Proteolytic cleavage does not affect F clustering<br /> - Mutations that have been reported to affect the hexamer interface reduce clustering on cells and its distribution on VLPs<br /> - F nanoclusters are stabilized by AP

      Comments on the revised version:

      The authors addressed most of my previous concerns.

    1. Reviewer #1 (Public review):

      Summary:

      The authors make a new contribution with careful computational validation/exploration of their method on synthetic and real-world datasets. Overall, I find their results significant and their presentation compelling.

      Strengths:

      The authors provide extensive computational validation of their approach to synthetic and real-world datasets of increasing complexity.

      Weaknesses:

      The authors should provide a comparison of their approach to other state-of-the-art neural network-based methods. Without this, it is difficult to tell which aspects of their approach (novel coupling metric, or network architecture) are most important for their results.