- Mar 2021
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
SUPPLEMENTARY DATA
AssayResult: 53
AssayResultAssertion: Indeterminate
PValue: < 0.0001
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 41
AssayResultAssertion: Indeterminate
PValue: < 0.0001
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 95
AssayResultAssertion: Normal
PValue: Not reported
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 90
AssayResultAssertion: Normal
PValue: Not reported
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 83
AssayResultAssertion: Not reported
PValue: Not reported
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 77
AssayResultAssertion: Indeterminate
PValue: < 0.01
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 81
AssayResultAssertion: Not reported
PValue: Not reported
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 38
AssayResultAssertion: Abnormal
PValue: < 0.0001
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 5
AssayResultAssertion: Abnormal
PValue: < 0.0001
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 36
AssayResultAssertion: Abnormal
PValue: < 0.0001
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 85
AssayResultAssertion: Not reported
PValue: Not reported
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 58
AssayResultAssertion: Indeterminate
PValue: < 0.0001
Approximation: Exact assay result value not reported; value estimated from Figure 6C.
-
SUPPLEMENTARY DATA
AssayResult: 86.74
AssayResultAssertion: Not reported
PValue: 0.1836
Comment: Exact values reported in Table S3.
-
To this end, 44 missense variants found in breast cancer patients were identified in the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar) and/or selected by literature curation based on their frequency of description or amino acid substitution position in the protein (Supplemental Table S1).
HGVS: NM_024675.3:c.11C>T p.(Pro4Leu)
Tags
- FuncAssay:1
- Variant:15
- CAID:CA151233
- CAID:CA269636
- ClinVarID:126590
- Variant:14
- CAID:CA269666
- Variant:1
- Variant:41
- Variant:3
- CG:BulkAnnotation
- ValidationControl:Benign
- ClinVarID:241553
- Variant:8
- ValidationControl:Pathogenic
- ClinVarID:126682
- Variant:2
- CAID:CA395139336
- CAID:CA7963465
- ClinVarID:126669
- Variant:45
- CAID:CA151236
- CGType:Variant
- Variant:38
- CAID:CA288392
- Variant:4
- FuncAssay:3
- ClinVarID:126755
- CAID:CA161315
- Variant:37
- ClinVarID:657666
- Variant:10
- ClinVarID:126593
- CAID:CA279502031
- CAID:CA269654
- CAID:CA395144524
- CAID:CA288386
- ClinVarID:126758
- CGType:FunctionalAssayResult
- ClinVarID:126774
- Variant:11
- ClinVarID:126782
- CAID:CA299799
- ClinVarID:657328
- ClinVarID:126652
Annotators
URL
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
analyzed several PALB2 variants in their response to the ICL-inducing agent cisplatin
AssayGeneralClass: BAO:0002805 cell proliferation assay
AssayMaterialUsed: CLO:0037317 mouse embryonic stem cell line
AssayDescription: Stable expression of wild type and variant PALB2 cDNA constructs in Trp53 and Palb2-null mouse cell line containing DR-GFP reporter; exposure to cisplatin for 48 h induces interstrand-crosslink DNA damage; cell survival is measured by FACS 24 h after cisplatin washout
AssayReadOutDescription: Relative resistance to cisplatin represented as cell survival relative to wild type, which was set to 100%
AssayRange: %
AssayNormalRange: Cisplatin resistance levels comparable to that of cells expressing wild type PALB2; no numeric threshold given
AssayAbnormalRange: Cisplatin resistance levels comparable to that of cells expressing empty vector; no numeric threshold given
AssayIndeterminateRange: Not reported
ValidationControlPathogenic: 2
ValidationControlBenign: 2
Replication: 2 independent experiments
StatisticalAnalysisDescription: Not reported
-
Source Data
AssayResult: 128.59
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 14.72
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 19.43
AssayResultAssertion: Abnormal
ReplicateCount: 5
StandardErrorMean: 4.42
ControlType: Abnormal; empty vector
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 100
AssayResultAssertion: Normal
ReplicateCount: 6
StandardErrorMean: 0
ControlType: Normal; wild type PALB2 cDNA
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 84.05
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 16.48
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 97.73
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 5.41
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 19.53
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 8.56
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 119.03
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 6.12
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 37.28
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 11.28
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 111.51
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 7.63
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 80.44
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 9.06
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 27.29
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 6.53
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 102.2
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 12.81
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 112.08
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 4.1
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 87.4
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 0.88
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 100.97
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 7.27
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 20.08
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 6.84
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 89.72
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 7.95
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 93.33
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 11
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 83.16
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 0.2
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 26.03
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardErrorMean: 11.42
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 72.7
AssayResultAssertion: Not reported
ReplicateCount: 3
StandardErrorMean: 9.73
Comment: Exact values reported in “Source Data” file.
-
Source Data
AssayResult: 97.61
AssayResultAssertion: Not reported
ReplicateCount: 2
StandardDeviation: 0.97
StandardErrorMean: 0.68
Comment: Exact values reported in “Source Data” file.
-
We, therefore, analyzed the effect of 48 PALB2 VUS (Fig. 2a, blue) and one synthetic missense variant (p.A1025R) (Fig. 2a, purple)29 on PALB2 function in HR.
HGVS: NM_024675.3:c.10C>T p.(P4S)
Tags
- Variant:5
- ClinVarID:126670
- CAID:CA151239
- ClinVarID:1243
- Variant:30
- Variant:20
- AssayControl:Normal
- CAID:CA151242
- Variant:62
- ValidationControl:Benign
- CAID:CA395139401
- CAID:CA151222
- ValidationControl:Pathogenic
- CAID:CA395125757
- ClinVarID:142468
- AssayRangeType:Quantitative
- Variant:28
- BAO:0002805
- CGType:Variant
- ClinVarID:420826
- ClinVarID:126683
- CAID:CA251717
- MONDO:0016419
- FuncAssay:3
- ValidationControl:WildType
- CAID:CA279502031
- HGNC:26144
- CAID:CA299747
- ClinVarID:126758
- CAID:CA288386
- ClinVarID:126749
- Variant:40
- CAID:CA151250
- FuncAssay:1
- CAID:CA279530867
- AssayControl:Abnormal
- CAID:CA196017
- CAID:CA163622
- ClinVarID:126590
- Variant:24
- Variant:49
- CG:BulkAnnotation
- Variant:3
- ClinVarID:126594
- Variant:46
- ClinVarID:182773
- CGType:FunctionalAssay
- CAID:CA294407
- ClinVarID:530038
- Variant:2
- CAID:CA395141224
- ClinVarID:126699
- FuncAssay:2
- Variant:34
- ClinVarID:922719
- Variant:63
- Variant:38
- CAID:CA16620118
- Variant:4
- CAID:CA195974
- ClinVarID:186840
- CAID:CA161315
- Variant:7
- UO:0000187
- CAID:CA269551
- CLO:0037317
- Variant:48
- ClinVarID:1245
- CGType:FunctionalAssayResult
- Variant:65
- Variant:13
- ClinVarID:657328
- ClinVarID:186824
Annotators
URL
-
-
www.cell.com www.cell.com
-
Most Suspected Brugada Syndrome Variants Had (Partial) Loss of Function
AssayResult: 28.5
AssayResultAssertion: Abnormal
ReplicateCount: 21
StandardErrorMean: 7.6
Comment: This variant had partial loss of function of peak current (10-50% of wildtype) and a >10mV loss of function shift in Vhalf activation, therefore it was considered abnormal (in vitro features consistent with Brugada Syndrome Type 1). (Personal communication: A. Glazer)
-
we selected 73 previously unstudied variants: 63 suspected Brugada syndrome variants and 10 suspected benign variants
HGVS: NM_198056.2:c.1045G>A p.(Asp349Asn)
-
-
jmg.bmj.com jmg.bmj.com
-
We then applied the p53 functional assay on blood samples sent to our laboratory for TP53 molecular analysis (NGS screening of the 11 exons complemented by QMPSF). Molecular and functional analyses were performed in parallel, in double blind conditions.
AssayGeneralClass: BAOCL:20:0010044 targeted transcriptional assay
AssayMaterialUsed: CL:2000001 peripheral blood mononuclear cell from patients
AssayDescription: Comparative transcriptomic analysis using reverse transcription to compare peripheral blood mononuclear cells of patients with wild type or pathogenic TP53 variants in the context of genotoxic stress induced by doxorubicin treatment. Ten biomarkers corresponding to p53 targets were measured to determine a functionality score.
AdditionalDocument: PMID: 23172776
AssayReadOutDescription: In the treated condition, the peak height of each of the 10 p53 target genes was measured and divided by the sum of the heights of the three control genes. This value was then divided by the same ratio calculated in the untreated condition. In the assay, the mean of the 10 values defines the p53 functionality score. The final p53 functionality score is the mean of the scores obtained in RT-MLPA and RT-QMPSF assays.
AssayRange: An arbitrary functionality score was calculated from the induction score of the 10 p53 targets.
AssayNormalRange: >7.5
AssayAbnormalRange: <5.5
AssayIndeterminateRange: Between 5.5 and 7.5 is associated with an intermediate effect.
AssayNormalControl: wild type TP53
AssayAbnormalControl: LFS patient cells
ValidationControlPathogenic: 8 individuals had seven distinct TP53 variants which could be considered as likely pathogenic or pathogenic based on their ClinVar classification or their truncating nature.
ValidationControlBenign: 51 individuals had no detectable germline TP53 variant
Replication: at least two wells were seeded per patient (treated and untreated) and duplicates or triplicates were performed whenever possible.
StatisticalAnalysisDescription: Differentially expressed genes between doxorubicin-treated and untreated cells were arbitrarily defined using, as filters, a P<0.01 and fold-change cutoffs >2 or <2, for up and down regulation, respectively. The resultant signal information was analyzed using one-way analysis of variance (ANOVA, P= 0.001), assuming normality but not equal variances with a Benjamani–Hochberg correction for multiple comparisons using three groups: controls, null, and missense mutations.
SignificanceThreshold: P=0.001
Comment: statistical analysis and P value from previous publication.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors aimed to develop a 2D image analysis workflow that performs bacterial cell segmentation in densely crowded colonies, for brightfield, fluorescence, and phase contrast images. The resulting workflow achieves this aim and is termed "MiSiC" by the authors.
I think this tool achieves high-quality single-cell segmentations in dense bacterial colonies for rod-shaped bacteria, based on inspection of the examples that are shown. However, without a quantification of the segmentation accuracy (e.g. Jaccard coefficient vs. intersection over union, false positive detection, false negative detection, etc), it is difficult to pass a final judgement on the quality of the segmentation that is achieved by MiSiC.
A particular strength of the MiSiC workflow arises from the image preprocessing into the "Shape Index Map" images (before the neural network analysis). These shape index maps are similar for images that are obtained by phase contrast, brightfield, and fluorescence microscopy. Therefore, the neural network trained with shape index maps can apparently be used to analyze images acquired with at least the above three imaging modalities. It would be important for the authors to unambiguously state whether really only a single network is used for all three types of image input, and whether MiSiC would perform better if three separate networks would be trained.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors sought to show how the segments of influenza viruses co-evolve in different lineages. They use phylogenetic analysis of a subset of the complete genomes of H3N2 or the two H1N1 lineages (pre and post 2009), and use a method - Robinson-Foulds distance analysis - to determine the relationships between the evolutionary patterns of each segment, and find some that are non-random.
1) The phylogenetic analysis used leaves out sequences that do not resolve well in the phylogenic analysis, with the goal of achieving higher bootstrap values. It is difficult to understand how that gives the most accurate picture of the associations - those sequences represent real evolutionary intermediates, and their inclusion should not alter the relationships between the more distantly related sequences. It seems that this creates an incomplete picture that artificially emphasizes differences among the clades for each segment analyzed?
2) It is not clear what the significance is of finding that sequences that share branching patterns in the phylogeny, and how that informs our understanding of the likelihood of genetic segments having some functional connection. What mechanism is being suggested - is this a proxy for the gene segments having been present in the same viruses - thereby revealing the favored gene segment combinations? Is there some association suggested between the RNA sequences of the different segments? The frequently evoked HA:NA associations may not be a directly relevant model as those are thought to relate to the balance of sialic acid binding and cleavage associated with mutations focused around the receptor binding site and active site, length of NA stalk, and the HA stalk - does that show up in the overall phylogeny of the HA and NA segments? Is there co-evolution of the polymerase gene segments, or has that been revealed in previous studies, as is suggested?
The mechanisms underlying the genomic segment associations described here are not clear. By definition they would be related to the evolution of the entire RNA segment sequence, since that is being analyzed - (1) is this because of a shared function (seems unlikely but perhaps pointing to a new activity), or is it (2) because of some RNA sequence-associated function (inter-segment hybridization, common association of RNA with some cellular or viral protein)? (3) Related to specific functions in RNA packaging - please tell us whether the current RNA packaging models inform about a possible process. Is there a known packaging assembly process based on RNA sequences, where the association leads to co-transport and packaging - in that case the co-evolution should be more strongly seen in the region involved in that function and not elsewhere? The apparent increased association in the cytoplasm of the subset of genes examined for the single virus looks mainly in the cytoplasm close to the nucleus - suggesting function (2) and/or (3)?.
It is difficult to figure out how the data found correlates with the known data on reassortment efficiency or mechanisms of systems for RNA segment selection for packaging or transport - if that is not obvious, maybe you can suggest processes that might be involved.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This is a well-executed study with interesting and novel findings. The main strength is the combined use of well-executed flow cytometry studies in human patients with MI and in vitro experiments to suggest a role for immature neutrophils in infarction. The main weakness is the descriptive/associative nature of the data. What is lacking is in vivo experimentation documenting the proposed pro-inflammatory role of immature neutrophils. This limits the conclusions. The following specific concerns are raised:
Major:
1.In some cases, conclusions are not supported by robust data. For example, the authors conclude that CD14+HLA-DRneg/lo monocytes play a crucial role in post-infarction inflammation based exclusively on in vitro experiments. Moreover, conclusions regarding the pro-inflammatory role of immature neutrophils are based on in vitro data and associative studies.
2.Immature neutrophils have a short lifespan. Information on the fate of immature neutrophils in the infarct is lacking. The in vivo mouse model may be ideal to address whether immature neutrophils undergo apoptosis or mature within the infarct environment
3.The rationale for selective assessment of specific genes and for the specific neutrophil-lymphocyte co-culture system is unclear. In neutrophils, the basis for selective assessment of some specific genes (MMP9, IL1R1, IL1R2, STAT3 etc), vs. other inflammatory genes known to be expressed at high levels by neutrophils is not explained. Similarly, the rationale for the experiment examining interactions of CD10neg neutrophils with T cells is not clear. Considering the effects of neutrophils on macrophage phenotype and on cardiomyocytes, study of interactions with other cell types may have made more sense.
4.The concept of CMV seropositivity is suddenly introduced without a clear rationale. The data show infiltration of the infarcted heart with immature neutrophils and CD14+HLA-DRneg monocytes. One would have anticipated more experiments investigating the (proposed) role of these cells in the post-infarction inflammatory response, rather than comparison of CMV+ vs negative patients.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This paper from He, Y. et al examines how PKC-theta in activated T cells controls RanBP2 nuclear pore subcomplex formation and nuclear translocation of NFkB, NFAT and AP1 family transcription factors. He, Y et al systematically pull apart a molecular mechanism showing that: 1) T cell receptor-activated PKC-theta localises to the nuclear envelope and associates with RanGAP1, 2) PKC-theta deficiency reduces nuclear localisation of import proteins and AP1-family transcription factors in mature mouse T cells and Jurkat cell line, but not primary mouse thymocytes 3) RanGAP1 is phosphorylated by PKC-theta and that phosphorylation of RanGAP1 on Ser504/Ser506 facilitates RanGAP1 sumoylation and is needed for association with other RanBP2 complex components and 4) that wildtype but not Ser504/506 mutant RanGAP1 can rescue nuclear translocation of transcription factors in RanGAP1 knockdown cells.
A key strength of this work is that, for many key results, multiple methods for validating findings are used e.g. immunoblots of subcellular fractionation + confocal microscopy to show failure of c-Jun into the nucleus in Prkcq-/- mature T cells (Fig 3 G-H). Furthermore, although the majority of the molecular work takes advantage of the more tractable Jurkat cell line for dissection of molecular mechanism, a number of key points are validated in primary mouse or human T cells such as PKC-theta dependent TCR induced association of RanGAP1 with the nuclear pore (Fig 3D-E) and multiple methods of gene deletion were used e.g. siRNA, knockout mouse model and stable CRISPR deletion. The validation of a functionally meaningful phospho-site on the RanGAP1 protein is valuable for further understanding the biology of this protein.
Immune receptor control of nuclear transport machinery has not been extensively studied but, as is highlighted by this study, is increasingly being understood as an important step in immune receptor control of transcription factor function. The molecular mechanism that is uncovered here is novel and interesting to the immunological community as it links TCR signalling to an indirect mechanism for regulating localisation of multiple key transcription factors for the T cell immune response.
There are some concerns listed below. Addressing these concerns would add clarity to the manuscript and support some stated or implied conclusions.
1) The data on the role of PKC-theta driven RanBP2 subcomplex translocation of AP1 transcription factors is largely limited to within 15 min of T cell activation. The broad statements of the paper e.g. line 427 - "PKC-theta plays an indispensable role in NPC assembly" imply that PKC-theta is essential for this process during long-term T cell receptor activation; however, whether PKC-theta deletion has long term impact on nuclear translocation after these first 15 minutes is not established. The demonstration that the RanGAP1 mutant is not able to induce IL-2 production over 24 hrs (Fig 6D) does support the model that a longer-term requirement for RanGAP1 phosphorylation on Ser504/506 is important for translocation and functional AP1 transcriptional outcomes in this system, but from the data presented it does not necessarily follow that PKC-theta is the only regulator of this beyond the 15 min of activation shown here. It is well established that AP1 transcription factors increase in expression for multiple hours after T cell activation and if PKC-theta deletion impact is not long lasting this could mean PKC-theta is important for the kinetics of AP1 translocation but not necessarily for final functional outcome after a longer period of stimulation as is implied here.
2) It has been shown in the published literature the impact of PKC theta deletion on in vivo immune responses has been varied, with studies showing clearance of murine Listeria, LCMV, HSV. The manuscript currently lacks discussion around how the formation of a largely functional immune response in these contexts fits in with the strong defect in nuclear translocation of multiple important T cell transcription factors that they show here.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This manuscript characterizes the additive genetic variance-covariance of behavioural traits and cortisol level in a captive Trinidadian guppy population, in particular to test for the genetic integration of behavioural and physiological stress responses.
The experimental design, trait definitions and statistical analyses appear appropriate. The main weakness of the study is a lack of clarity on the definition of genetic integration and the statistical ways to characterize, confirm or reject genetic integration (in particular, what defines and how to test for a "single major axis of genetic variation"?).
The additive genetic variation-covariation is correctly estimated. The presence of additive genetic correlations and the eigen decomposition of G seem to support genetic integration, but the lack of clear predictions makes the the conclusion not completely clear. Another minor conclusion, that "correlation selection in the past has likely shaped the multivariate stress response" is not directly supported by the results as the argument ignores the possible role of other evolutionary forces (in particular mutational input which is likely to be pleitropic for behaviour and hormone levels).
The nature of genetic (co)variation in behaviour and physiology is poorly known because most quantitative genetic studies of behavioural and physiological traits are still univariate, while it is clear that selection and evolution are better understood as multivariate processes. In addition to presenting some fresh results on the topic, this manuscript provides a mutivariate framework that could be applied in other populations. In particular, eigen decomposition of genetic variance-covariance matrices is not new but its application to the study of stress response integration is original and promising. As the authors mention, such methods could help improve health and welfare in captive animal populations via indirect artificial selection against stress, which is quite an original and stimulating idea.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Calcium-permeable AMPA receptors (CP-AMPARs) have been shown to have important roles in modulating many aspects of neuronal function. They are distinguished from calcium-impermeable AMPARs (CI-AMPARs) by a property known as inward rectification and block by relatively selective polyamine compounds; this relative lack of selectivity has led to caveats in the interpretations of the roles of CP-AMPARs. The authors here demonstrate that complete block of CP-AMPARs, with no apparent effect on CI-AMPARs, can be achieved by intracellular application of the polyamine NASPM. Importantly, the authors provide evidence that this block is apparently not affected by the presence of auxiliary subunits, one of the key caveats regarding prior interpretations of the effects of polyamines and the roles of CP-AMPARs. The authors hypothesize that this new approach, use of intracellular NASPM, can provide greater clarity regarding the role of CP-AMPARs in future.
The approach is sound, the experiments are performed appropriately, the data provided is robust, the presentation is clear, the analyses including statistics are appropriate, the immediate interpretations are therefore fully supported, and the overall manuscript outstanding. The authors appropriately used both a heterologous expression system as well as in vitro neuronal preparation to address their hypotheses. The use of intracellular NASPM to unambiguously distinguish CP-AMPARs from CI-AMPARs has the potential to be transformative in future interpretations about the role of CP-AMPARs, so these findings are very relevant and highly impactful to the field.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #3 (Public Review):
Gill et al. presents an extensive analysis of information/data collected as part of a pertussis vaccine study conducted in Zambia (the basis for an earlier publication, Gill et al., CID 2016). As part of the initial study, the investigators collected serial NP samples from mother/infant pairs at sequential follow-up clinic visits and analyzed them by PCR for the presence of IS481 and, in some cases, ptxS1. The results from these assays were evaluated in conjunction with clinical information on potential manifestations of respiratory illness in the infants and mothers. The authors found important patterns of PCR Ct values, which might not have been considered positive on a single sample PCR from a single patient PCR in a US clinical microbiology lab. Together, however, representing a collection of serial samples from study subjects, they strongly support the proposal that asymptomatic infections occurred in these study subjects. The authors used multiple approaches, including determining a mathematical "Evidence For Infection" or EFI to analyze the data from individual subjects and infant/mother pairs. From the collective data and analytical approaches, the authors provide a compelling case for infections with B. pertussis that are not associated with significant clinical symptoms. This possibility has certainly been considered previously, but not possible to address in the absence of the enormous amount of quantitative data and analysis provided from this prospective study. Another important point made from these data is that PCR Ct values can be useful in other than an all-or-nothing (positive or negative) decision, as is done appropriately with single patient samples submitted to clinical microbiology labs for PCR analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In the manuscript entitled "Allosteric communication in Class A 1 b-lactamases occurs via cooperative 2 coupling of loop dynamics", Galdadas et al. aim to use a combination of nonequilibrium and equilibrium molecular dynamics simulations to identify allosteric effects and communication pathways in TEM-1 and KPC-2. They claimed that their simulations revealed pathways of communication where the propagation of signal occurs through cooperative coupling of loop dynamics. This study is highly relevant to the field as allosteric regulation is believed to be a major signal transduction pathway in several drug-targeted proteins. A better understanding of these regulations could increase the efficacy and specificity of drugs.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The paper by Eyal Ben-David and colleagues reports an elegant single cell experiment in a genetic outcross of C. elegans to show where specific genetic regulation of gene expression could be seen at the level of individual cells. This is the first, to my knowledge, genetic mapping experiment at the single cell level in a complex organism. One neat trick was use the transcript sequencing data for genotyping each individual cell. Another above-and-beyond-the-call-of-duty feature was the permutation tests to set FDR levels, which ended up being similar to Benjamini-Hochberg.
There is complex single cell processing to analyse this data. It could be more clear how complex this analysis is: quite complex models are used to both (a) cluster the cells into cell types across each individual and (b) model the resulting eQTLs. (c) somewhat more routinely, a HMM is used to gentoype but from the single cell transcript data, which is cute. Personally I think more should be made in the main text of the methods, highlighting the complexity of the models (there is at least one parameter this reviewer did not understand why was in the model!). However, a variety of bulk to single cell or single cell to previous experiment data shows that they seem to have discovered correct eQTLs.
A particular focus was on single cell neuronal eQTLs; this plays to the unique "named cell" aspect of C. elegans and this dataset, and did not disappoint. they found a fair number and one that they highlighted had the (rare) antagonistic effect between cell lines, something much discussed or theorised might exist in some cell types - here it is in all its glory. Backing up this was evidence that the single cell neuronal QTL data cannot be seen by "pan neuronal" analysis.
Overall this is an excellent paper; it clarifies much of which has been theorised or discussed, while in many ways (in my view) hiding its methodological sophistication in the main text.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This paper presents an extensive study on providing a large dataset CEM500K, pre-trained models for electron microscopy data. This dataset is provided by the authors as an unlabeled dataset for supporting generalization problems like transfer learning.
Strengths:
— The motivation problem is well defined as the lack of large and, importantly, diverse training datasets of supervised DL segmentation models for cellular EM data.
— A large and comprehensive dataset, CEM500K, including both 2D and 3D images is designed by the authors to overcome this issue.
— The experimental results present the efficiency and prominent role of this dataset in training DL.
Concerns:
— Some of the claims have not been well supported by proofs/references/examples. As an example, the following claim "The homogeneity of such datasets often means that they are ineffective for training DL models to accurately segment images from unseen experiments" would be more valuable if some examples are provided by the authors.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In this manuscript, the authors studied how cholinergic neurons in the medial septum contribute to the acquisition of spatial memory. The question that is addressed is that of the requirement for the appropriate timing of cholinergic neurotransmission in memory formation. The main finding is that in mice optogenetic stimulation of cholinergic neurons in the medial septum slowed acquisition of a spatial memory task when the stimulation was applied at the goal location, but not during navigation toward the goal location. Stimulation at the goal location also reduced the rate of hippocampal sharp-wave ripples (SWRs), which the authors point to as a possible explanation of the observed learning deficit.
The task-phase specific manipulation of the MS cholinergic neurons is a good and appropriate approach. The effect on learning in the Y-maze task after goal location specific stimulation is both clear and convincing. The lack of a behavioral effect with navigation-only stimulation may be due to ACh levels already being high during this task phase (as the authors suggest). It would have been nice if the authors had also used inhibition to address the importance of timing of ACh neuromodulation.
The authors used prolonged excitatory optogenetic stimulation that lasted anywhere from several seconds (e.g. at goal without reward or running towards goal) to over 30 seconds (e.g. at goal with reward). There are several potential issues with this stimulation protocol:
— From Figure 1B, it appears that the light-induced increase of mean spike frequency is sustained for quite some time after the light is turned off. The sustained activity will make the manipulation in the behavioral task less temporally specific (and thus less task-phase specific). To assess the possible impact of the sustained activation on the findings in the paper, it should be quantified (i.e. duration of sustained activity, dependence on duration of prior light stimulation) - ideally in awake animals (i.e. under the same conditions as the behavioral experiments). Supporting data to better support this conclusion could be provided in a later study (with a link provided to this study), with this caveat appropriately discussed here.
— Prolonged light stimulation could lead to non-specific side-effects. Importantly, the authors controlled for this by performing the same light-stimulation protocol in animals that did not express ChR2. Although non-specific effects of light stimulation were found for theta power, the effects on learning and SWR rate at the goal location could not be explained by non-specific light effects. These data add confidence to the main findings. Still, the number of control animals is low (n=2) and increasing the sample size would make these control experiments more robust. This potential caveat should be mentioned.
— Because the time that animals spent at the goal location is much longer than the travel time to the goal location, the behavioral difference between the "navigation" and "goal" groups could be due to the duration of optical stimulation. The authors point out that the "throughout" group has overall the longest stimulation duration, but an "intermediate" behavioral performance, which would suggest that stimulation duration is not the determining factor.
Unfortunately, the statistical analysis that the authors performed is inconclusive (i.e. the throughout group is not different from either "navigation" or "goal" groups). However, if duration is an important factor, the hypothesis would be that days-to-criterion for "throughout" condition is larger than "goal" condition (i.e. H0: throughout<=goal and H1: throughout>goal). Authors could test this directly (rather than H0: throughout=goal and H1: throughout≠goal). Bayes Factor analysis could help to assess the confidence in H0 rather than concluding that there is a lack of evidence due to low sampling.
Even so, the authors' argument could be weakened if long-term stimulation has reduced efficacy (as suggested by the authors on page 18). To exclude this possibility, changes in the long-term stimulation efficacy should be quantified, e.g. by quantifying the stability of light-induced firing of ACh neurons with the same stimulation protocol as used in awake animals, and/or by checking whether the stimulation-induced reduction of SWR rate gets smaller across trials within a day. Supporting data to better support this conclusion could be provided in a later study (with a link provided to this study), with this caveat appropriately discussed here.
The main novelty of the study is that specific stimulation of cholinergic neurons in the medial septum when animals reach the goal location results in a learning deficit. The reduction of SWRs upon cholinergic stimulation was shown before, but the authors now show that this reduction coincides with and may provide an explanation of the delayed learning. However, the link between the effect of the stimulation on SWRs and the behavioral deficit is indirect and not extremely convincing. This caveat should be discussed and conclusions tempered accordingly. Specific points related to this that should be discussed are described below.
— First, the analysis of SWR rate is performed in a separate set of experiments as in which the behavioral effect is assessed. This makes it difficult to more directly relate the change of SWR rate to the learning deficit.
— Second, the reduction of SWR rate is not absolute and SWRs are still present at lower rate. The data in Figure 4E indicate that for some animals the average SWR rate with stimulation is higher than for other animals without stimulation.
— Third, the Y-maze task used by the authors tests the acquisition of spatial reference memory and bears similarities to the inbound phase of the continuous spatial alternation task in 3-arm mazes. In Jadhav et al. (2012), the inbound phase was not sensitive to selective SWR disruption. These prior data would be an argument against a causative role of the reduction of SWR rate in the observed behavioral deficit.
— Fourth, while the authors briefly discuss other possible causes (e.g. effects on plasticity), they do not appear to consider non-hippocampal contributions or possible interference with reward-related dopamine signaling.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In the paper entitled "Stress Resets Transgenerational Small RNA Inheritance" Houri-Ze'evi L, Teichman G et al examine the interaction between multiple heritable phenotypes by knocking down a heritable GFP reporter and examining its interaction with other stresses, such as starvation and high temperature, which cause transgenerationally heritable phenotypes. They demonstrate that exposing worms to stresses inhibits the transgenerational silencing of the GFP reporter strain they use. They further demonstrate that deletion of genes involved in the MAPK pathway, the skn-1 transcription factor and the putative H3K9 methyltranferase met-2 eliminate the differential response in the F1 and F2 generations after exposure to stress and the GFP reporter silencing. They also sequence the small RNAs in the P0 and F1 generation with and without the added stresses.
All in all, the authors have expanded the mechanistic understanding of how heritable small RNAs are influenced by environmental conditions. I think that the conservation of several of the known regulators of epigenetic inheritance appearing in this study reflects how the regulators of non-genetic inheritance are beginning to converge on a few central pathways. The bit about MET-2 is still a bit premature as it's link to SKN-1 and regulated small RNAs is not completely fleshed out here, but I'm sure future studies will help delineate how this putative methyltransferase is communicating with SKN-1 on a more mechanistic level. Future studies examining how and why the MAPK pathway is so critical in this inheritance paradigm will be interesting.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3:
The authors present the algorithm clearly by comparing it to the most popular SMLM clustering algorithms and showing its robustness in varying density SMLM data, which is a big problem in the field. The presented experimental test on 3D LAMP-1 SMLM data also contributes to the robustness of the paper.
While reading the manuscript, I missed a comparison with another graph-based SMLM clustering algorithm published previously by Khater et al. in relation to accuracy and computation speed, which is particularly important to demonstrate the advantages of StormGraph. The approach should also be included in Table 1. I also think that a direct comparison in terms of accuracy and computation speed is crucial.
During the review process, a similar paper has been posted to bioRxiv dated 22. December, https://www.biorxiv.org/content/10.1101/2020.12.22.423931v1.full so the authors could not be aware of this work; however, it would be nice if the authors could comment on this work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3:
The use of frequency tagging to analyze continuous processing at phonemic, word, phrasal and sentence-levels offers a unique insight into neural locking at higher-levels. While the approach is novel, there are major concerns regarding the technical details and interpretation of results to support phrase-level responses to structured speech distractors.
Major concerns:
1) Is the peak at 1Hz real and can it be attributed solely to the structured distractor?
The study did not comment on the spectral profile of the "attended" speech, and how much low modulation energy is actually attributed to the prosodic structure of attended sentences? To what extent does the interplay of the attended utterance and distractor shape the modulation dynamics of the stimulus (even dichotically)?
How is the ITPC normalized? Figure 2 speaks of a normalization but it is not clear how? The peak at 1Hz appears extremely weak and no more significant (visually) than other peaks - say around 3Hz and also 2.5Hz in the case of non-structured speech? Can the authors report on the regions in modulation space that showed any significant deviations? What about the effect size of the 1Hz peak relative to these other regions?
It is hard to understand where the noise floor in this analysis - this floor will rotate with the permutation test analysis performed in the analysis of the ITPC and may not be fully accounted for. This issue depends on what the chosen normalization procedure is. The same interpretation put forth by the author regarding a lack of a 0.5Hz peak due to noise still raises the question of interpreting the observed 1Hz peak?
2) Control of attention during task performance
The authors present a very elegant analysis of possible alternative accounts of the results, but they acknowledge that possible attention switches, even if irregular, could result in accumulated information that could emerge as a small neurally-locked response at the phrase-level? As indicated by the authors, the entire experimental design to fully control for such switches is a real feat. That being said, additional analyses could shed some light on variations of attentional state and their effect on observed results. For instance, analysis of behavioral data across different trials (wouldn't be conclusive, but could be informative)
This issue is further compounded by the fact that a rather similar study (Ding et al.) did not report any phrasal-level processing, though there are design differences. The authors suggest differences in attentional load as a possible explanation and provide a very appealing account or reinterpretation of the literature based on a continuous model of processing based on task demands. While theoretically interesting, it is not clear whether any of the current data supports such an account. Again, maybe a correlation between neural responses and behavioral performance in specific trials could shed some light or strengthen this claim.
Additional comments:
What is the statistic shown for the behavioral results? Is this for the multiple choice question? Then what is the t-test on?
Beyond inter-trial phase coherence, can the authors comment on actual power-locked responses at the same corresponding rates?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In this manuscript, Filipowicz and Aballay present a nice story that characterizes a new learned behavioral phenotype prompted by intestinal distention during infection with the bacterial pathogen E. faecalis. The authors show that distention of the anterior portion of the intestine by E. faecalis induces an aversive behavioral response. Importantly, the authors show that this aversive learning response is controlled by multiple sets of neurons, including some that express the GPCR NPR-1 and others that express the ion channels TAX-2/4. The authors nicely showed that TAX-2 expression in ASE neurons was sufficient for pathogen avoidance, but not other chemosensory neurons. Next the authors examined the mechanism of aversive learning following ingestion of E. faecalis, showing that AWB and AWC neurons are required. Finally, the authors show that two proteins that could be mechanoreceptors in the intestine (GON2 and GTL-2) are required for pathogen avoidance. Together these data characterize important mechanisms of pathogen avoidance and an aversive learning response.
I have one issue for the authors to consider. The title of the manuscript emphasizes the role of TRPM channels in mediating the learned pathogen avoidance response. Demonstrating that the site of action of the TRPM channels is the intestine could further strengthen this exciting finding.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors have developed a new culture method to expand adult lung cells in vitro as 3-D organoids. This culture system is different from previous organoid cultures which include either bronchiolar, or alveolar, lineages. Rather, the authors attempted to preserve both lineages over long-term passaging. The 3-D cultured organoids can be dissociated and re-plated as 2D monolayers, which can be either cultured immersed in medium or in air-liquid interface (ALI) conditions, exhibiting a different bias towards alveolar and airway lung cell types respectively. The 2D monolayer cultures can be infected by COVID-19 virus and showed a progressive increase in virus load, which was distinct from iPSC- derived alveolar type 2 (AT2) cell and bronchiolar epithelial cell culture control infections. Through bioinformatics analysis, the authors were able to show that their monolayer cultures acquired similar immune response features to an in vivo COVID infection dataset, indicating that this culture system may be suitable for modeling COVID infection in vitro. It is particularly interesting that the bioinformatics analyses suggested that this adult human lung organoid system, with both airway and alveolar phenotypes, showed greater resemblance to the transcriptional immune response of severely COVID-infected lungs than either cultured cell type alone. This aspect of the manuscript strongly suggests that the authors' approach of developing a mixed lung organoid model is an extremely good one.
However, the data presented in figures 2 and 3 cast serious doubts over the long-term reproducibility of the organoid system. That individual organoids contain both airway and alveolar lineages has not yet been convincingly demonstrated (Fig 2). In addition, bulk RNAseq experiments illustrate that the overall cell composition of the cultures drifts significantly during long-term passaging (Fig 3). Due to this variability, the organoids' ability to act as a suitable model for viral infections that would be amenable to drug screening approaches is also questionable.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #3 (Public Review):
The paper presents results of a serological survey done on 10,000+ employees and workers associated with CSIR labs in India during August-September 2020. The survey finds 10.14% seropositively. In addition, correlations are drawn between seropositivity and biological and lifestyle factors. A follow up study is also done on a subset of employees found seropositive and antibodies are found to survive even after six months in most.
Strengths: This is a one of the two surveys with a pan-India footprint, making it a valuable addition to understanding of Covid-19 pandemic evolution in the country. It also finds good inverse correlation between seropositivity and (i) blood group O, (ii) vegetarian diet, (iii) smoking, and (iv) use of private transport. While (iv) is obvious, (ii) and (iii) are a little surprising. It suggests a deeper study is required to understand the reasons behind it.
Weaknesses: While it is a pan-India survey, the population is not quite representative of general population of the country. CSIR labs are mostly in cities, and most of the employees use private transport. So the results cannot be generalized to the country as a whole. Restricting to people using public transport would be a better representation, although it still would not be fully representative.
The data collection and analysis are done meticulously, and provide some new insights into differential impact of Covid-19 virus on people.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The article by Hesse, Owenier et al entitled "Single-cell transcriptomics 1 defines heterogeneity of epicardial cells and fibroblasts within the infarcted heart" will be of interest to the readers of heart regeneration, as it helps in understanding how epicardial cells contribute to heart regeneration following myocardial Infarction. Hesse, Owenier et al. investigate the role of epicardial stromal cells(EpiSC) after arterial ligation induced myocardial infarction (MI) in mouse. They perform single-cell RNASeq (scRNASeq) on isolated, FAC sorted, epicardial stromal cells, activated cardiac stromal cells (aCSC) from infarcted hearts and control cardiac stromal cells (CSC). The authors find 11 cell clusters of EpiSC. They confirmed the spatial localization of the different clusters by in situ hybridization and performed Gene ontology studies to understand the biological processes affected by those clusters. They found that those clusters fall into three major functional groups, as follows: 1) Wt1 expressing and cardiogenic factor expressing, 2) chemokine expressing and HOX genes expressing and 3) cardiogenic factor expressing. Interestingly there are two identified groups which express different cardiogenic factors 1) Wt1 positive with cardiogenic factors MESP1, WNT11, ISL11, TBX5, GATA 4,5,6 and the other group 3) Wt1-with Nkx2.5, BMP2 and BMP4. Authors show that multiple clusters are enriched in Hif1a, Hif1a related genes and glycolysis related genes which are known to be downstream of Wt1 cells. To further understand the hierarchical development of the EpiSC cells, the authors performed pseudo time-series analysis using RNA Velocity analysis on Wt1 reporter mice and find three different groups. Interestingly Wt1+ cells did not convert into other cell types. They further performed ligand receptor analysis to find interactions between different cell types. The authors implemented scRNAseq for aCSC and find cell clusters ECM rich cells, fibroblasts, interferon expressing cells, and cycling fibroblasts/myofibroblasts. They further compared the transcriptional profiles of EpiSC with the aCSC. They found gene sets, which are specific for EpiSC, and genes that are specific for aCSCs. Specifically, they found that Hif1a, glycolysis responsive genes, and cardiac contractile proteins were highly expressed in EpiSCs. Furthermore, the authors showed that the transcriptional profile of EpiSC, aCSC and CSC are different.
These data add an important knowledgebase to the understanding of the transcriptional landscape of the Epicardial stromal cells and would help identifying specific pathways/transcriptional genes which are activated during myocardial infarction.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The differences in signaling and responses in the three different T cell receptor transgenics are shown by several different means. These include Nur77 and CD5 expression as markers for the strength of signaling, the frequency of calcium fluxes and length of signaling-induced pauses in movement, using 2 photon microscopy of thymic slices (comparing selecting and non-selecting thymus), time course of induction of markers of positive selection signaling, the time course of "arrival" of CD8 single positive cells and CCR7+ cells in the post-natal thymus, and a time course of development of SP thymocytes after injection of EdU. Each of these methods is fairly convincing on its own, but added up, they are very convincing.
The only issues that I could take issue with are about how we define self-reactivity. Because it is not feasible to measure the affinities for self peptides on MHC (due to low affinity and the fact that we mostly don't know what they are), the authors have to rely on surrogate markers, the upregulation of CD69 and of Nur77. These are widely accepted in the field, so they are as good a surrogate as is possible at this time.
Similarly, 3 transgenic strains are taken as examples of high, medium and low self-reactivity. Two of the strains are positively selected on H2Kb, one on Db, one on Ld. Therefore, the experiments cannot be genetically controlled in the same manner. On balance, I accept that there aren't too many other ways to do the experiment, and that all the main points are supported by other types of experiment.
The most interesting aspect of the work consists of analysis of gene expression by RNASeq from cells from each of the three TCR transgenic mice from early positive selection, late positive selection, and mature CD8 SP. Perhaps unsurprisingly, the more strongly self-reactive cells showed increased expression of genes involved in protein translation, RNA processing, etc. However, genes associated with lower self-reactivity were enriched for lots of different ion channels. These included calcium, potassium, sodium and chloride channels. One of these was Scn4b, part of a voltage gated sodium channel previously shown by Paul Allen's lab to be involved in positive selection. These types of genes were associated with the stage of development before selection, and were retained through selection in the weakly self-reactive thymocytes. Other ion channel genes that typically came on at the end of selection were also upregulated earlier in the lower self-reactivity cells, and may be involved in allowing long-term signaling for these cells to undergo the whole positive selection program.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors present here a very interesting and thorough systems biology study of S. cerevisiae involving 22 steady state conditions with different growth rates and nitrogen sources. Proteomics and transcriptomics data, as well as intracellular amino acid concentrations, are gathered in a study that, if only for the sheer amount of data, is quite unique.
The authors use differential expression analysis, clustering algorithms and correlations to divide the genes and proteins studied into a small number of groups whose behaviour can be generally categorized. For a starter there is a small group (~10%) that map to central carbon metabolism and seems to be regulated by cues not covered in this study (growth rate and metabolic parameters involving amino acid and nucleotide availability). The rest of genes (90%) seem to have their transcript and protein levels heavily determined by growth rate and/or amino acid metabolism. For different growth rates, the expression of these genes and corresponding proteins seemed to be very correlated, and dependent on the availability of translation and transcription machinery (RNA polymerase and ribosomes). For different nitrogen sources, gene expression seemed dependent on amino acid and nucleotide availability.
These general rules are insightful and can provide a much more informative way to analyze multiomics data sets, by e.g. accounting for expected over/under expressions due to growth rate changes. Indeed, the authors attempt this for two cases: a distantly related yeast (S. pombe) and a human cancer cell model. While they are able to show that most transcript variation for S. pombe seems to be due to growth rate changes, the rest of the inferences do not seem very informative.
In general, while the findings are interesting and seemed to be mainly supported by the evidence, the manuscript is complicated to read. Evidence is scattered throughout the manuscript and needs to be gathered and compiled by the reader to check the results. Some of the writing is remiss: Figures 6A and 6C have the same caption and different graphs. It is also not clear how the differential expression calculations in Figure 1C were done: what are the two conditions being compared? Figure 7 encapsulates what is learnt from this paper but needs a more informative caption describing the full metabolic lesson learnt.
In summary, the data presented here is a golden data set that will make a great contribution to science, the general rules are interesting and seemed to be supported by the data, but to be more useful to readers the writing of the paper could be made clearer.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The combination of Cre and Flp recombinase dependent system is powerful in manipulating specific intersectional neurons and has been successfully used in many systems. However, the system cannot express target genes sufficiently in some neurons, e.g., the LepRbVMH neurons. This paper solved this problem by developing a novel AAVs system, in which two AAVs were used, the "Driver" AAV permits Flp dependent expression of tTA, and the "Payload" AAV permits TRE-driven and Cre dependent expression of target gene. Because there two AAVs used, it is also expected to increase the capacity to incorporate more transgenes into the AAV system. The novel system to manipulate the intersectional neurons described in this work is an important addition to the current tools. It should be an excellent resource for the neuroscience community.
This paper is nicely written and compared the previous intersectional approach of AAV-EF1α-Con/Fon-hChR2(H134R)-EYFP with their novel tTARGIT approach in labelling LepRbVMH neurons. The data convincingly demonstrated that the tTARGIT system can label many more cells. Small caveats include the author co-injected AAV-hSYN-Flex(Lox)-hM3Dq-mCherry as an injection site marker with AAV-EF1α-Con/Fon-hChR2(H134R)-EYFP, the serotypes of these AAVs were not reported. It is well known that different serotypes of AAVs infect different types of neurons with a different efficiency. Furthermore, the combination of the different AAV might affect each other's infection, leading to low expression of one type of AAV. The titres of AAVs also make a big difference to many AAVs, which were not reported in this paper. These information are important for other investigators if they would adopt the tTARGIT system in their own research.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Miskolci et al have investigated if it is possible to measure the natural fluorescence of two important co-enzymes (NADH/NADPH and FAD) in living cells to determine their metabolic status. This tests the hypothesis that changes to the relative ratio of NADH/NADPH to FAD+ reflect a shift between glycolytic and oxidative phosphorylation in living macrophages. To investigate this they have used 2-photon FLIM to measure intensity and fluorescence lifetime of NAD/NADPH and FAD+ in mouse macrophages in vitro and zebrafish macrophages in vivo in a tail injury model. By comparing their measures of NAD(P)H and FAD+ from macrophages responding to different injury or infection cues and comparing this to a maRker of inflammation (TNF-alpha) they argue that there is a reduced redox state indicative of glycolytic metabolism in pro-inflammatory macrophages.
The adoption of label free imaging techniques to measure metabolic processes in cells in vivo is a valuable and important development that, although not novel to this work, will help researchers to probe cell biology in situ. FLIM using time correlated single photon counting (TCSPC) allows an accurate and robust measure of the relative state of a molecule that shows changes in its fluorescent lifetime as a consequence of changing chemical state. Although Stringari et al (doi.org/10.1038/s41598-017-03359-8) were the first to describe the utility of wavelength mixing FLIM for measuring NAD(P)H and FAD+ levels in zebrafish, they did not focus on macrophages which is the focus of this work.
The results from this work are interesting, as they argue that it is possible to determine cell metabolism in cells within living animals without a need to use a genetically encoded sensor and they argue that pro-inflammatory macrophages in zebrafish appear to have a lower redox state, which may reflect a more glycolytic metabolism. This assumption is not tested but rather inferred based on the measures of fluorescence intensity and lifetime of endogenous NADH/NADPH and FAD coupled with a small metabolic sampling of injured tissue. This lack of corroboration for a the supposed difference in metabolism between pro-inflammatory and non-inflammatory macrophages is a weakness of the paper and makes it hard to accept the conclusion that the redox state may reflect different metabolic profiles. A biosensor for NADH/NADPH (iNap) has been demonstrated to be a sensitive tool for measuring NADPH concentration in vivo in zebrafish during the injury response (Tao et al (doi: 10.1038/nmeth.4306) and it would be intriguing to know how similar the response is of this biosensor to the label free measurements described using FLIM. This is additionally relevant as the authors also note that in mouse macrophages cultured in vitro, they observe an opposite redox response which is well supported by the literature and a variety of different methods. Why the zebrafish macrophages should show a different redox state to mouse macrophages is not clear and an alternative explanation is that the measures used do not directly reflect the metabolic profile of the cells. One further caveat to the chosen method of using fluorescence lifetime to measure the redox state of NADH/NADPH is that lifetime of NADH is affected by which proteins it is bound to. This is not accounted for in the method used for calculating the redox ratio used for defining the redox state and could potentially alter the interpretations of relative NADH/NADPH levels in a cell. The authors acknowledge this, but do not consider whether this would affect the conclusions they arrive at from their measures of NAD(P)H intensity and fluorescence lifetime in macrophages.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This analysis is enormous in scope. That said, approximately half the glomeruli were either truncated or had very fragmented ALRNs. The authors may wish to reserve use of the term "full" in the title ("....a full olfactory connectome") until a subsequent paper.
ALRN-ALRN connectivity seems very interesting. It would be helpful to provide more information about this in the text (line 148 or so). The information in Fig. 3D is hard for non-specialists to interpret. Does the connectivity show any patterns? Is it stereotyped? Do the connections make functional sense?
One intriguing finding is the "shortcuts" between the olfactory and motor systems that could be used for behaviors that are hard-wired or require fast responses. These may be particularly relevant to thermosensory and hygrosensory input, but can the authors say anything about what kind of olfactory information flows through these shortcuts? For example, the ALRNs that respond to wasp odorants have been identified. Please note that most readers do not know what kind of odorants project to individual glomeruli, e.g. "DC4" .
Fig. 8C It's hard to know how confident to be of the neurotransmitter assignments here. It would be helpful to provide in the text a statement about what assumptions these assignments are based on. In the same vein, line 380 refers to "a neurotransmitter prediction pipeline". Some kind of reference should be provided here.
line 522 "This suggests that thermo/hygrosensation might employ labeled lines whereas olfaction uses population coding to affect motor output." This brings up the question of whether very narrowly tuned ORNs such as the one signaling geosmin show any differences in connectivity from broadly tuned ORNs.
lines 94-96 Graph traversal model. Some more discussion of this model and its underlying assumptions would be helpful. Are the results influenced by the lack of some of the glomeruli from the dataset?
Fig. 7D Can the authors provide more discussion of the possible functional significance of the two uPN types?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Schrieber et al. studied the effects of biparental inbreeding in the dioecious plant Silene latifolia, focusing specifically on traits important for floral attractiveness and pollinator attraction. These traits are especially important for dioecious species with separate sexes as they are obligate outcrossers. The authors find that inbreeding mostly decreases floral attractiveness, but that this effect tended to be stronger in the female flowers, which the authors suspect to result from the trade-off with larger investment in the sexual functions in the female plants. The authors then go on to couple the changes in visual and olfactory floral traits to pollinator attraction which allows them to conclude or at least speculate that differences in pollinator behavior are mostly driven by the changes in olfactory traits. The study is robust in its broad and well-balanced sampling of populations, rigorous and in large part meticulously documented experimental designs and linking of the effects on mechanisms to ecological function. The hypothesis are clearly stated and the study is able to address them mostly convincingly. However, some of the aspects of the decisions the authors made and possible caveats need to be addressed and elaborated on.
A major caveat, in my opinion, is that while the authors find stronger effects of inbreeding on pollinator visitation rates in the plants from the North American (Na) origin, these plants were tested in an environment that was foreign to them, which could have important consequences for the results of this study. This is specifically because the main pollinator Hadena bicruris moth is completely absent from the populations in Na, and yet, was the main pollinator observed in the pollinator attraction experiment. As this pollinator is also a seed predator, the Na populations are released from the selection pressure to avoid attracting the females of this species and thus risking the loss of seeds and fitness. In fact, some of the results suggest that the release from the specialist pollinator and seed predator in Na has led to increase in the attractiveness of the female flowers based on the higher number of flowers visited in the outcrossed females compared to outcrossed males in the plant from the Na origin and the similar, though not statistically significant, pattern in the olfactory cue. While ideally this pollinator attraction experiment should be repeated within the local range of the Na plants, this is of course is not feasible. Instead I suggest the problem should be addressed in the discussion explicitly and its consequences for the interpretation of the results should be considered.
The incorporation of the VOC data in the actual manuscript was quite limited and I found the reasoning for picking only the three lilac aldehydes (in addition to the Shannon diversity index) for the univariate statistical tests insufficient. How much more efficient was the effect of the lilac aldehydes compared to the other 17 compounds deemed important in the previous study? While the data on this one aldehyde matches the pollinator attraction results, having one compound out of 70 (or out of 20 if only considering the ones identified important for the main pollinator) seems, perhaps, fortuitous lest there is a good reason for focusing on these particular compounds.
Sampling time of VOCs is reported ambiguously. Was it from 21:00 to 17:00 the next day or in fact from 9pm to 5AM (instead of 5 pm as reported)? Please be more specific in the text as this is quite important. If sampling tubes were left in place during the daytime, some of the compounds could have evaporated due to heating of the tubes in the summer. It would also be important to mention whether all of the headspace VOCs were sampled on the same day and whether there could be variation in i.e. temperature.
Considering the experimental setup for the pollinator attraction observations and the pooling of the data at the block level (which I think is the right choice) it seems possible the authors were more likely to get a result where pollinator behavior matches the long-distance cue, the VOCs. Short-distance cues such a subtle difference in flower size would perhaps not be distinguished with the current setup. I would be interested to know if the authors agree, and if so, mention this in the discussion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Using high fat diet (HFD)-fed male mice and a variety of experimental approaches, the authors demonstrated the efficacy of xanthohumol (XN) and tetrahydro-xanthohumol (TXN) in attenuating weight gain and hepatic steatosis independently of calorie intake and identify inhibition of PPARγ as a mechanism. A strength of the study design was the incorporation of the test compounds into isocaloric, ingredient matched high-fat diet (HFD) formations and inclusion of a LFD control group. A weakness of the study, although minor, is that the dose of compound consumed will vary between mice and from day-to-day depending on how much food each animal consumes. The lower dose of XN (LXN, given as 30 mg/kg of diet) was found ineffective compared to the higher dose of XN (HZN, 60 mg/kg of diet) and TXN (30 mg/kg of diet) was most effective in attenuating weight gain and reversing HFD-induced liver steatosis. TXN almost completely suppressed hepatic lipid vacuole accumulation and showed greatest reduction in liver mass relative to body weight. TXN increased fasting plasma triglycerides compared to all other groups, but explanation is uncertain. Fecal excretion of TAG between groups was similar and therefore could not explain the decreased weight gain or improved liver phenotypes in XN- or TXN-treated groups. Whole body energy metabolism suggested that XN and TXN supplemented mice were more physically active then HFD-fed mice. HXN and TXN supplemented mice showed less accumulation of subcutaneous and mesenteric fat mass, but these groups had somewhat higher levels of epididymal fat mass.
After 16 weeks on diets, RNAseq performed on murine liver tissues. Compared to HFD group, TXN group had 295 differentially expressed genes (DEGs), HXN group had 6 DEGs, and LFD group had 212 DEGs. TXN supplementation upregulated 6 and down regulated 25 KEGG pathways. SVM was used to identify signature genes that significantly differentiated HFD and TXN group transcriptomes. Of 13 identified genes, 8 showed significant, differential hepatic expression between TXN and HFD groups. Of these 8 genes, 3 genes (Ucp2, Cidec, Mogat1) were identified as known target genes of PPARγ with roles in lipid metabolism. qPCR of liver tissues was used to verify these RNAseq results.
XN or TXN were shown to inhibit murine preadipocyte 3T3-L1 differentiation and adipogenesis and lipid accumulation in a dose dependent manner. In a second dose escalating experiment, TXN or XN were shown to block the ability of rosiglitazone (RGZ), a PPARγ agonist, to promote adipogenesis of 3T3-L1. These data suggested that XN and TXN may interfere or compete with binding of RGZ to the PPARγ receptor. qPCR of 3T3-L1 cells confirmed that TXN or XN could inhibit gene expression of RGZ-induced PPARγ target genes (Cd36, Fabp4, Mogat1, Cidec, Plin4, Fgf21) and further supported the hypothesis that TXN and XN are PPARγ antagonists. To further test this idea the authors performed a competitive PPARγ TR-FRET binding assay and showed that XN and TXN could displace a labelled pan-PPARγ ligand in a dose-dependent manner. Finally, molecular docking experiments confirmed the putative binding pose and position of XN/TXN and estimated the relative binding affinities of various ligands for PPARγ. XN and TXN may serve as scaffolds for the development of more potent therapeutics in structure-activity relationship (SAR) studies. Overall, this work contributes compelling preclinical data to support future clinical investigations to determine dosing, efficacy, and safety of XN and TXN as therapeutics for diet-induced NAFLD.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The manuscript "HPF1 and nucleosomes mediate a dramatic switch in activity of PARP1 from polymerase to Hydrolase" by Rudolph et al. studies the effect of HPF1 on the steps of the catalytic reaction of PARP1. They use various PARP1 activators i.e. free DNA and varied forms of core nucleosomes to quantify reaction rates in the presence and absence of HPF1, using several assays. The main point of the manuscript is the observation that in the presence of HPF1, PARP1 is converted to an NAD+ hydrolase, which releases free ADPr, instead of its normal activity to produce ADPr polymers. The PARP1 hydrolase activity has been described previously, but they now show that HPF1 increases it substantially under the conditions that they tested. The authors also describe their independent identification of HPF1 residue E284 as a residue that is essential for Ser modification, confirming previous structural and biochemical work from Ivan Ahel's group. Although the assays are well performed and controlled and yield important quantitative information that was missing in the field, the main result of the hydrolase activity of PARP1 is hard to reconcile with current knowledge of HPF1 effects in cell-based experiments.
-
-
www.scienceintheclassroom.org www.scienceintheclassroom.org
-
(A) Optical image of the undeformed device (left) and the FEA model for simulation (right). Optical images and max principal strain contours of the multifunctional wearable electronics being uniaxially stretched by 60% along vertical direction (B), along horizontal direction (C), and being biaxially stretched by 30% (D). (E) ECG data of the same device under different deformation modes. Photo credit: Chuanqian Shi, University of Colorado, Boulder.
(A) Model of the device without any stress/strain (left) and Finite element analysis model of the wearable device, not deformed (right). The model to the right exhibits the components inside the device. (B-C) The model shown being stretched 60%, vertically and horizontally respectively, show the maximum strain of the chip being 0.01%. This is much less than the normal failure strain for silicon (1%). (D) This figure shows the FMEA model being stretched 30% vertically and horizontally. The maximum strain in the chip components is below 0.004%. (E) Figure shows sensing performance of device when being stretched using an ECG. No significant effects from the mechanical stretching where evident in the results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The goal of this study was to test the hypothesis that the calcium-activated TRPM4 channel regulates left ventricular (LV) hypertrophy which occurs after pressure overload. The authors use the transaortic constriction model (TAC) which represents a common and well-validated model of LV hypertrophy and of heart failure. Typical LV pressure overload models range from relatively mild constriction using a 25 gauge needle to more severe constriction with a 27 gauge needle. In this study the authors demonstrate that two weeks of pressure overload with a 25 gauge needle in mice produces LV hypertrophy, increased fibrosis, and a pattern of fetal gene re-expression which marks the pathological hypertrophy phenotype. This phenotype precedes overt cardiac dysfunction, in the sense that the functional measures the authors used did not worsen after two weeks in TAC mice, compared to sham-treated controls. These results reproduce prior observations in this model.
The authors next apply the 2 week TAC model to previously-generated mice with cardiac myocyte-restricted deletion of the TRPM4 channel. They demonstrate that deletion of TRPM4 generates a protective response, in that despite the same degree of pressure overload, the TRPM4 cardiac myocyte-specific deletion mice develop less LV hypertrophy, less LV fibrosis, and less fetal gene re-expression. Thus the authors successfully demonstrate that deletion of TRPM4 reduces pressure overload-induced LV hypertrophy. This suggests that TRPM4 normally promotes pathological LV hypertrophy after pressure overload.
While this work convincingly demonstrates that TRPM4 deletion from the cardiac myocyte leads to reduced pressure overload-induced LV hypertrophy, the study does not prove the intracellular signaling mechanisms which mediate this effect. The authors' model is that: 1) neurohormonal signals for pressure overload predominantly induce LV hypertrophy through a calcineurin pathway leading to nuclear import of NFAT; and 2) mechanical stretch (such as induced by TAC) predominantly acts through the intracellular kinase CaMKII which then phosphorylates histone deacetylase 4, thus promoting HDAC4 nuclear import. The study does not prove whether any of these signaling components are necessary or sufficient for the effects of TRPM4 on LV hypertrophy in vivo.
As a whole this work will be of interest to the larger scientific community for several reasons. First, in response to a different model of pathologic LV hypertrophy, the angiotensin II infusion model, the TRPM4 cardiac myocyte deletion mice actually develop increased, rather than decreased, LV hypertrophy. Thus the combined observations that TRPM4 deletion suppresses pressure overload LV hypertrophy by TAC, but augments neurohormonal hypertrophy by angiotensin administration support the important concept that different stimuli of hypertrophy likely act through and are regulated by different signaling pathways. Second, as a membrane associated ion channel, TRPM4 might be a potential drug target especially in patients with pressure overload-induced pathological hypertrophy.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This manuscript is well written and presents several new mouse models including animals with brown fat specific deletion of multiple genes of interest to assess whether they may function in a common pathway. The authors draw on their existing expertise in mitochondrial biology to provide new information regarding the role of OPA1 and mitochondrial dynamics in brown fat function. Weaknesses of this study include a relative lack of mechanistic insights and incomplete characterization of whole-body energy expenditure data from the multiple models reported here.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This study implements a secondary analysis of data collected as part of a randomized control trial of malaria vector control interventions in Malawi. The key outputs are statistical associations between two metrics of malaria transmission: P. falciparum parasite prevalence (PfPR) and P. falciparum entomological inoculation rate (PfEIR). There is a rich history of studies investigating this association, spanning a range of approaches: (i) meta-analyses (e.g. Smith et al Nature 2005); (ii) local epidemiological analyses (e.g. Beier et al. AJTMH 1999); (iii) large-scale geo-spatial mapping (e.g. Malaria Atlas Project); and (iv) mathematical transmission models (e.g. Griffin et al Nature Comms 2014). This paper promises to add to this literature using spatio-temporal modelling.
I was excited by the abstract, and especially by the ambitious questions posed in the introduction (lines 112-117). However, upon reading the manuscript I was left a bit underwhelmed, as the results didn't have much to say in terms of either the spatial or temporal aspects of this relationship. Rather the best-fit model was simply a logit linear model between PfPR and PfEIR with a one month lag.
Major comments:
1) Spatial aspect of association. Geostatistical models are challenging to fit, but I have confidence in the authors' ability to do so. Rather, the authors have not demonstrated the extra value of using this approach. Indeed, no spatial results are presented in the manuscript, apart from estimates of model parameters in the appendix which will be uninterpretable to most readers. Points of interest would include, what does a hot spot look like? What does the overlap between different types of hotspot look like? What is the degree of spatial correlation? I appreciate some of this is provided in the separate online animation, but there's no interpretation of what we're seeing.
2) Temporal aspect of association. The association between PfEIR and PfPR is clearly a temporally complex one as demonstrated by the data in Figure 2. I don't think this complexity has been fully accounted for, beyond simple time lags. For example, I'm quite skeptical of the following result:
"From the estimated relationship for children, a decrease in PfEIR from 1 ib/person/month to 0.001 ib/person/month is associated with a reduction in PfPR from 37.2% to 20.7% on average (i.e., a 44.5% decrease in PfPR). When transmission has been driven almost to zero, PfPR remains consistently high in children."
This is a 1000-fold reduction in PfEIR associated with a 44.5% decrease in PfPR. I find this hard to believe, and don't think such a generalizable statement should be made. Rather these are dynamic quantities that vary with each other, and with the time scale over which they are measured.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Strengths: It is clear through this manuscript that the authors intend for this to be a useful approach for as many fields as possible. While previous technical approaches to maximize the capture of members of microbiomes fail to translate to other environments or hosts, the authors demonstrate the utility of hamPCR by testing it in a number of other systems. The diagrams presented (particularly in Figure 3) nicely convey the steps in the protocol with expected sample outcomes to further facilitate the ability of other researchers to employ hamPCR.
Weaknesses: The challenge of demonstrating the widespread utility in other systems is creating and maintaining biologically-driven narrative. While this is not necessary if the goal is to simply show that a techniques works, it does help to highlight the importance of implementing a new method and increase the likelihood that it will be adopted by other researchers.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:
This is a tools paper that describes an open source software package, BonVision, which aims to provide a non-programmer-friendly interface for configuring and presenting 2D as well as 3D visual stimuli to experimental subjects. A major design emphasis of the software is to allow users to define visual stimuli at a high level independent of the actual rendering physical devices, which can range from monitors to curved projection surfaces, binocular displays, and also augmented reality setups where the position of the subject relative to the display surfaces can vary and needs to be adjusted for. The package provides a number of semi-automated software calibration tools to significantly simplify the experimental job of setting up different rigs to faithfully present the intended stimuli, and is capable of running at hardware-limited speeds comparable to and in some conditions better than existing packages such as Psychtoolbox and PsychoPy.
Major comments:
While much of the classic literature on visual systems studies have utilized egocentrically defined ("2D") stimuli, it seems logical to project that present and future research will extend to not only 3D objects but also 3D environments where subjects can control their virtual locations and viewing perspectives. A single software package that easily supports both modalities can therefore be of particular interest to neuroscientists who wish to study brain function in 3D viewing conditions while also referencing findings to canonical 2D stimulus responses. Although other software packages exist that are specialized for each of the individual functionalities of BonVision, I think that the unifying nature of the package is appealing for reasons of reducing user training and experimental setup time costs, especially with the semi-automated calibration tools provided as part of the package. The provisions of documentation, demo experiments, and performance benchmarks are all highly welcome and one would hope that with community interest and contributions, this could make BonVision very friendly to entry by new users.
Given that one function of this manuscript is to describe the software in enough detail for users to judge whether it would be suited to their purposes, I feel that the writing should be fleshed out to be more precise and detailed about what the algorithms and functionalities are. This includes not shying away from stating limitations -- which as I see it, is just the reality of no tool being universal, but because of that is one of the most important information to be transmitted to potential users. My following comments point out various directions in which I think the manuscript can be improved.
The biggest point of confusion for me was whether the 3D environment functionality of BonVision is the same as that provided by virtual spatial environment packages such as ViRMEn and gaming engines such as Unity. In the latter software, the virtual environment is specified by geometrically laying out the shape of the traversable world and locations of objects in it. The subject then essentially controls an avatar in this virtual world that can move and turn, and the software engine computes the effects of this movement (i.e. without any additional user code) then renders what the avatar should see onto a display device. I cannot figure out if this is how BonVision also works. My confusion can probably be cured by some additional description of what exactly the user has to do to specify the placement of 3D objects. From the text on cube mapping (lines 43 and onwards), I guessed that perhaps objects should be specified by their vectorial displacement from the subject, but I have very little confidence in my guess and also cannot locate this information either in the Methods or the software website. For Figure 5F it is mentioned that BonVision can be used to implement running down a virtual corridor for a mouse, so if some description can be provided of what the user has to do to implement this and what is done by the software package, that may address my confusion. If BonVision is indeed not a full 3D spatial engine, it would be important to mention these design/intent differences in the introduction as well as Supplementary Table 1.
More generally, it would be useful to provide an overview of what the closed-loop rendering procedure is, perhaps including a Figure (different from Supplementary Figure 2, which seems to be regarding workflow but not the software platform structure). For example, I imagine that after the user-specified texture/object resources have been loaded, then some engine runs a continual loop where it somehow decides the current scene. As a user, I would want to know what this loop is and how I can control it. For example, can I induce changes in the presented stimuli as a function of time, whether this time-dependence has to be prespecified before runtime, or can I add some code that triggers events based on the specific history of what the subject has done in the experiment, and so forth. The ability to log experiment events, including any viewpoint changes in 3D scenes, is also critical, and most experimenters who intend to use it for neurophysiological recordings would want to know how the visual display information can be synchronized with their neurophysiological recording instrumental clocks. In sum, I would like to see a section added to the text to provide a high-level summary of how the package runs an experiment loop, explaining customizable vs. non-customizable (without directly editing the open source code) parts, and guide the user through the available experiment control and data logging options.
Having some experience myself with the tedium (and human-dependent quality) of having to adjust either the experimental hardware or write custom software to calibrate display devices, I found the semi-automated calibration capabilities of BonVision to be a strong selling point. However I did not manage to really understand what these procedures are from the text and Figure 2C-F. In particular, I'm not sure what I have to do as a user to provide the information required by the calibration software (surely it is not the pieces of paper in Fig. 2C and 2E..?). If for example, the subject is a mouse head-fixed on a ball as in Figure 1E, do I have to somehow take a photo from the vantage of the mouse's head to provide to the system? What about the augmented reality rig where the subject is free to move? How can the calibration tool work with a single 2D snapshot of the rig when e.g. projection surfaces can be arbitrarily curved (e.g. toroidal and not spherical, or conical, or even more distorted for whatever reasons)? Do head-mounted displays require calibration, and if so how is this done? If the authors feel all this to be too technical to include in the main text, then the information can be provided in the Methods. I would however vote for this as being a major and important aspect of the software that should be given air time.
As the hardware-limited speed of BonVision is also an important feature, I wonder if the same ~2 frame latency holds also for the augmented reality rendering where the software has to run both pose tracking (DeepLabCut) as well as compute whole-scene changes before the next render. It would be beneficial to provide more information about which directions BonVision can be stressed before frame-dropping, which may perhaps be different for the different types of display options (2D vs. 3D, and the various display device types). Does the software maintain as strictly as possible the user-specified timing of events by dropping frames, or can it run into a situation where lags can accumulate? This type of technical information would seem critical to some experiments where timings of stimuli have to be carefully controlled, and regardless one would usually want to have the actual display times logged as previously mentioned. Some discussion of how a user might keep track of actual lags in their own setups would be appreciated.
On the augmented reality mode, I am a little puzzled by the layout of Figure 3 and the attendant video, and I wonder if this is the best way to showcase this functionality. In particular, I'm not entirely sure what the main scene display is although it looks like some kind of software rendering — perhaps of what things might look like inside an actual rig looking in from the top? One way to make this Figure and Movie easier to grasp is to have the scene display be the different panels that would actually be rendered on each physical panel of the experiment box. The inset image of the rig should then have the projection turned on, so that the reader can judge what an actual experiment looks like. Right now it seems for some reason that the walls of the rig in the inset of the movie remain blank except for some lighting shadows. I don't know if this is intentional.
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
RRID:ZFIN_ZDB-ALT-080321-3
DOI: 10.7554/eLife.64267
Resource: (ZFIN Cat# ZDB-ALT-080321-3,RRID:ZFIN_ZDB-ALT-080321-3)
Curator: @scibot
SciCrunch record: RRID:ZFIN_ZDB-ALT-080321-3
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The main findings are that loss of the Piezo1 protein in keratinocytes accelerate migration and wound healing, while genetic and pharmacological manipulations known to increase currents carried by Piezo1 slow migration and wound healing. The channels are shown to accumulate and cluster at the trailing edge of single migrating cells and at the wound margin during in vitro studies of wound healing. These findings demonstrate that Piezo1 mechanosensitive channels are not required for keratinocyte migration or wound healing, but rather function as essential regulators of the speed of both migration and would healing. Further, the findings suggest that increased flux through Piezo1 channels slows migration and wound healing. These channels are found to cluster in migrating cells and at wound margins. The conclusions are well-supported by the presented data and the authors' composition does an outstanding job of recognizing the limits of what has been learned and what remains uncertain.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Slavetinsky and colleagues investigated the capability of monoclonal antibodies (mAb) against MprF, a critical protein of S. aureus, to act as re-sensitizing factors towards resistance strains and as supporting factors for S. aureus killing by human polymorphonuclear leukocytes.
They created 8 mAbs against four different loops of MprF and showed that they were able to bind MprF-expressing S. aureus strains. Two of the mAbs led to significant reduction of S. aureus survival upon exposure with nisin (i.e. a cationic antimicrobial against towards which MprF normally confers resistance). The authors focused on the mAb against loop 7 and showed that it reduced survivals also against two other antimicrobials and, most important, it restored Daptomycin killing of a resistant strain. Moreover, although this mAb did not increase phagocytosis by leukocites, it decreased the survival of the phagocytized S. aureus cells, most likely by rendering them sensitive towards the cationic antimicrobial peptides.
In parallel, the authors used this mAb to revise the ambiguous location of loop 7 of MprF. They employed two different experiment settings and concluded that this loop might have some degree of mobility in the membrane, which also explain the ambiguity of its location in previous studies. By showing that the mAb against loop 7 act by inhibiting the flippase activity of MprF while leaving the synthase activity intact, they speculated that the mobility of loop 7 might play an important role for LysPG translocation process.
The data support the conclusion of the manuscript and show how promising monoclonal antibody are against staphylococcal infections.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In the present study, the authors have shown that Nkx2-1 depleted BRAFV600E driven mouse tumors show higher p-ERK activation. MAPK inhibition in these tumors leads to a cellular shift towards the gastric stem and progenitor lineage. The authors have provided detailed mechanistic insights on how MAPK inhibition influences lineage specifiers and oncogenic signaling pathways to form invasive mucinous adenocarcinoma. All experiments are carefully performed and entails advanced research methodologies such as organoid culture systems, novel genetically engineered mouse models and single cell RNA seq. The manuscript is well written, the research findings are logically interpreted and presented. Taken together, all major scientific claims are well supported by the data and offers major technical advancements for the development of precision medicine.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In this work, Schuster et al. have explored the requirement of the short stumpy morphological form of the African trypanosome, Trypanosoma brucei, for the completion of the parasite lifecycle. Heretofore, short stumpy form parasites, which have been proposed to be pre-adapted for life in the tsetse fly insect vector, were considered an essential stage in the transitions from mammalian blood forms to insect-infective stages. These parasites do not divide and are generated in a density-dependent manner from the rapidly dividing long slender blood form. The quiescent short stumpy forms have been shown in vitro to undergo differentiation into insect-infective forms in response to a diversity of environmental cues and stress, supporting their position as the lifecycle stage that initiates colonization of the fly midgut.
The findings presented in this work call into question the longstanding notion that short stumpy parasites play a central role in the lifecycle. Notably, the authors have found that long slender forms are as competent as short stumpy parasites to infect flies. This observation may solve a major conundrum raised when short stumpy forms are considered essential intermediates in disease transmission. That is, how is the parasite successfully transmitted to tsetse flies when the flies only ingest very small bloodmeals from hosts with parasitemia too low to trigger density dependent stumpy form development?
The authors perform an extensive analysis of parasites isolated from infected flies and compare fly infections established using different numbers of short stumpy and slender parasites. This effort includes dissection of a variety of fly tissues and scoring parasites for expression of key developmental markers. Interestingly, the data indicate that the long slender parasites activate pathways described from short stumpy parasites to complete differentiation; however, unlike the stumpy forms that are arrested in the cell cycle, the parasites continue to proliferate. Overall, the process of differentiation to the insect stage is not identical for the long slender and short stumpy forms, as expression of key markers (PAD1 and EP1) occurs more quickly when short stumpy forms are used in fly infection studies while, unlike the long slender forms, they are delayed in return to the normal cell cycle.
The conclusions of the paper are supported by the presented data and the discussion further develops the case that long slender forms may be key to parasite transmission to the vector. The work is based on using the standard model African trypanosome subspecies that infects rodents and not a trypanosome species that infects humans. This does not, however, diminish the potential impact of the work, as the rodent parasites are the field standard (and molecular tools have primarily been developed in that background). In addition to finding that long slender forms are competent for lifecycle completion, which could ultimately require amendment of medical school textbook lifecycles, this work also raises important questions about the role of the short stumpy form in parasite biology. The authors speculate the short stumpy forms may serve to control population size in a quorum sensing-dependent-fashion. While this notion conflicts with observations presented from human infections where blood parasite levels are very low, it remains unresolved what cues environments like the skin and other tissues present to the parasite, and how these may influence short stumpy differentiation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Developing animals must couple information about external and internal conditions with developmental programs to adapt to changing environments. In animals ranging from flies to mammals, growth and developmental progression is controlled by a neuroendocrine system that integrates environmental and developmental cues. In mammals, this system involves the reproductive axis (hypothalamic-pituitary-gonadal axis, HPG). In the fruit fly Drosophila, neurosecretory cells that project onto the ring gland, a composite endocrine organ that houses the corpora cardiaca (CC), the corpus allatum (CA), and the prothoracic gland (PG), serves analogous functions. Characterizing the neurosecretory cells that project to the ring gland and the inputs they receive is therefore key to a deeper understanding of how the neuroendocrine system receives and processes information about external and internal conditions, and in response, adjusts growth and development. Building on the electron-microscopic reconstruction of the Drosophila L1 larval brain, the authors perform a comprehensive analysis of the neurosecretory cells that target the larval ring gland and the neurons that form synaptic contacts with these neurosecretory cells. This work is truly impressive on its own, and more than that it will also be extremely important for the future characterization of inputs received by the neuroendocrine system to modulate its activity, thus coupling development with environmental conditions. The work is well-written, and I have no doubt that it will be of great value to the field.
-
- Feb 2021
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
RRID:ZFIN_ZDB-GENO-170619-3
DOI: 10.7554/eLife.60432
Resource: (ZFIN Cat# ZDB-GENO-170619-3,RRID:ZFIN_ZDB-GENO-170619-3)
Curator: @scibot
SciCrunch record: RRID:ZFIN_ZDB-GENO-170619-3
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
RRID:ZDB-ALT-170927-3
DOI: 10.7554/eLife.54491
Resource: (ZFIN Cat# ZDB-ALT-170927-3,RRID:ZFIN_ZDB-ALT-170927-3)
Curator: @scibot
SciCrunch record: RRID:ZFIN_ZDB-ALT-170927-3
-
-
www.cell.com www.cell.com
-
RRID:ZFIN_ZDB-ALT-140811-3
DOI: DOI:10.1016/j.cub.2020.08.103
Resource: (ZFIN Cat# ZDB-ALT-140811-3,RRID:ZFIN_ZDB-ALT-140811-3)
Curator: @scibot
SciCrunch record: RRID:ZFIN_ZDB-ALT-140811-3
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
RRID:ZFIN_ZDB-ALT-181031-3
DOI: 10.1523/ENEURO.0022-20.2020
Resource: (ZFIN Cat# ZDB-ALT-181031-3,RRID:ZFIN_ZDB-ALT-181031-3)
Curator: @scibot
SciCrunch record: RRID:ZFIN_ZDB-ALT-181031-3
-
RRID:ZFIN_ZDB-ALT-140924-3
DOI: 10.1523/ENEURO.0022-20.2020
Resource: (ZFIN Cat# ZDB-ALT-140924-3,RRID:ZFIN_ZDB-ALT-140924-3)
Curator: @scibot
SciCrunch record: RRID:ZFIN_ZDB-ALT-140924-3
-
-
elifesciences.org elifesciences.org
-
RRID:ZFIN_ZDB-ALT-120723-3
DOI: 10.7554/eLife.42881
Resource: (ZFIN Cat# ZDB-ALT-120723-3,RRID:ZFIN_ZDB-ALT-120723-3)
Curator: @scibot
SciCrunch record: RRID:ZFIN_ZDB-ALT-120723-3
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
It is established that Kinase suppressor of Ras 1 (KSR1) contributes to the oncogenic actions of Ras by promoting ERK activation. However, the downstream actions of this pathway are poorly understood. Here Rao et al. demonstrate that this KSR1-dependent pathway increases translation of Epithelial-Stromal Interaction-1 (EPSTI1) mRNA and expression of EPSTI1 protein. This is significant because EPSTI1 drives aspects of EMT, including expression of ZEB1, SLUG, and N-Cadherin. The analysis is thorough and includes both loss-of-function and gain-of-function studies. Overall, the conclusions of this study are convincing and advance our understanding of cancer development.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors have studied preclinical models of human small cell lung cancer (SCLC) using characterized SCLC cell lines that have been manipulated to conditionally express mutant EGFR (L858R) or KRAS (G12V) alleles and then assessing their morphology in cell culture, expression of neuroendocrine differentiation markers and transcription factors, and main signaling pathways such as the MAPK pathway. They focus on this because activation of ERK and the MAPK pathways are seen in nearly all non-small cell lung cancers (NSCLCs) including those with EGFR or KRAS mutations but mutations in these driver oncogenes or active ERK and MAPK pathway are essentially never found in SCLCs. In addition, chromatin modifications are assessed after manipulations and functional genomics targeting and pharmacologic inhibition of various components of the MAPK pathway are tested to see their effect on NE expression. Because of the known clinical phenomenon of transformation to SCLC like tumors by lung adenocarcinomas with EGFR mutations that become resistant to EGFR tyrosine kinase inhibitors, findings from the SCLC studies were applied to try to experimentally generate such LUAD to SCLC transformation. Overall, they found that activation of ERK/MAPK pathway by oncogenic mutations led to loss of NE differentiation and that the "ERK-CBP/p300-ETS axis promotes a lineage shift between neuroendocrine and non-neuroendocrine lung cancer phenotypes". They conclude: "In summary, we provide the first reported biological rationale for why alterations in MAPK pathway are rarely found in SCLC and describe the molecular underpinnings of how the central node in this pathway, ERK2, suppresses the NE differentiation program. " The authors conclusions and claims are justified by the experiments and data they present and they provide a mechanistic basis of what happens with MAPK/ERK activation in SCLC, why one does not find MAPK/ERK activation in SCLC, or the presence of related oncogenic driver mutations such as mutant KRAS or EGFR.
-
-
elifesciences.org elifesciences.org
-
RRID:ZFIN_ZDB-ALT-100419-3
DOI: 10.7554/eLife.53403
Resource: (ZFIN Cat# ZDB-ALT-100419-3,RRID:ZFIN_ZDB-ALT-100419-3)
Curator: @scibot
SciCrunch record: RRID:ZFIN_ZDB-ALT-100419-3
Tags
Annotators
URL
-
-
jmg.bmj.com jmg.bmj.com
-
We analysed a total of 82 blood samples derived from 77 individuals (online supplemental table 3). These 77 individuals corresponded either to new index cases suspected to harbour a pathogenic TP53 variant or to relatives of index cases harbouring TP53 variants.
HGVS: NM000546.5:c.(?-202)(29+1-28+1)del p.?
Comment: A CAID could not be generated for this deletion variant with uncertain breakpoints.
-
Supplemental material
AssayResult: 8.3
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 12
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 6.4
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 3.1
AssayResultAssertion: Abnormal
Comment: See Table S3 for details; The blood sample used to test this variant was derived from an individual carrying the c.723del variant in combination with the c.*1175A>C variant in heterozygosity.
-
Supplemental material
AssayResult: 5.5, 5.7
AssayResultAssertion: Abnormal
Comment: See Table S3 for details; The blood sample used to test this variant was derived from an individual carrying the variant in homozygosity.
-
Supplemental material
AssayResult: 20.5
AssayResultAssertion: Normal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 3.4
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 2.6, 4.8
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 3.8
AssayResultAssertion: Abnormal
Comment: See Table S3 for details; This variant was reported as c.323_235del but assumed to be c.323_325del, which corresponds to the reported protein change (p.(Gly108_Phe109delinsVal)).
-
Supplemental material
AssayResult: 4, 5
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 5.8, 6.1
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 5.3
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 5.1
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 17.1
AssayResultAssertion: Normal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 3.2
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 3.5
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 4.1
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 2.9
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 6.1
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 12.9
AssayResultAssertion: Normal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 4.7
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 7.1, 6.0
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 3.1
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 5.4
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 5
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 4.8
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 3.8
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 3.2
AssayResultAssertion: Abnormal
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 14.7
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 16
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 12.3
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 11.8
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 16.3
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 15.4
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 19.3
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 9.8
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 9.1
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 8.7
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 15.1
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 10.4
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 11.1
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 17.2
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 19.7
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 11.1
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 17.4
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 11.7
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 14.2
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 8
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 18.1
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 15.1
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 14.7
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 10
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 11.1
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 11.7
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 9.4
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 12.9
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 10.8
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 13
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 8.4
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 15.4
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 13
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 22.8
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 14.6
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 16.5
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 14.1
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 10.3
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 7.5
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 12.1
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 10
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 7.8
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 12.8
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 14.6
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 10.6
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 8.9
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 12.1
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 10.6
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 12.5
AssayResultAssertion: Normal
ControlType: Normal, wild type TP53
Comment: See Table S3 for details
-
Supplemental material
AssayResult: 58
AssayResultAssertion: Normal
Comment: See Table S2 for details
-
Supplemental material
AssayResult: 5.8
AssayResultAssertion: Abnormal
Comment: See Table S2 for details
Tags
- Variant:5
- ClinVarID:127816
- FuncAssay:1
- CAID:CA000272
- ClinVarID:481148
- ClinVarID:35555
- CAID:CA000225
- Variant:15
- CAID:CA397832246
- ClinVarID:12364
- Variant:18
- CAID:CA000343
- Variant:36
- CAID:CA000144
- Variant:23
- ClinVarID:185120
- CAID:CA397842793
- Variant:6
- Variant:42
- Variant:20
- AssayControl:Normal
- ClinVarID:127812
- CAID:CA497717451
- ClinVarID:127808
- Variant:1
- CAID:CA000102
- Variant:3
- CAID:CA1139768486
- Variant:41
- CAID:CA000049
- CAID:CA16603061
- ValidationControl:Benign
- Variant:46
- Variant:8
- CAID:CA000259
- ValidationControl:Pathogenic
- CAID:CA000251
- Variant:12
- Variant:16
- FuncAssay:2
- ClinVarID:127821
- Variant:45
- Variant:17
- CAID:CA397832401
- Variant:26
- ClinVarID:141114
- ClinVarID:12379
- CAID:CA1139768484
- CGType:Variant
- CAID:CA1139768485
- Variant:4
- CAID:CA000013
- FuncAssay:3
- CAID:CA000123
- Variant:7
- ClinVarID:246343
- ValidationControl:WildType
- Variant:10
- Variant:35
- ClinVarID:177825
- Variant:48
- CAID:CA000071
- ClinVarID:142320
- CAID:CA10584593
- CAID:CA645588451
- CGType:FunctionalAssayResult
- ClinVarID:376644
- CAID:CA000454
- CAID:CA000457
- ClinVarID:127824
- ClinVarID:12374
- Variant:25
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Advances in understanding the biochemical and cellular mechanism of neuronal damage are investigated here and are to be appreciated. The strength of this work on SARM1 is its success in establishing that a concentration-dependent phase change activates the enzyme to degrade NAD, an essential component of neuronal integrity. Cellular significance is demonstrated in C. elegans neuronal damage triggered by citrate. Weaknesses are that high citrate is required for SARM1 effects but low citrate is used in the C. elegans model without establishing concentration dependence in the C. elegans system. The progression on neuronal damage from enzyme activation to neuronal damage in C. elegans is missing the quantitation of NAD change. A strength of the work is to provide a solid stepping-stone to permit the next steps in cementing the biochemical pathways of initiating cellular damage to neurons.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In this article, Gregory Grecco and colleagues developed a novel translational mouse model of prenatal methadone exposure (PME) that closely resembles the opioid exposure experienced by pregnant women living with opioid use disorder and treated with methadone maintenance pharmacotherapy. The article delineates the impact of prenatal methadone exposure on physical development and motor behavior of the next generation male and female progeny. The authors also relied on a combination of electrophysiological, immunohistochemical and volumetric MRI imaging approaches to investigate the mechanisms underlying PME-derived phenotypes in male and female offspring. Overall, PME produced changes in motor function, motor coordination and growth in progeny. These phenotypes were accompanied by changes in the electrophysiological properties and density of neurons in the primary motor cortex of offspring raised by opioid-exposed dams.
One of the stated goals by the authors was to develop a mouse model that closely mirrored exposure and dosing regimens in clinical populations living with opioid use disorder in order to increase the translational value of the findings outlined in this report. One of the strengths of the article is the experimental design and the longitudinal nature of the studies. The dams were first treated with oxycodone, a commonly abused pain killer to mimic this condition in patients living with SUD. 5 days prior to mating, the animals were switched to methadone to model maintenance pharmacotherapy that is commonly used in SUD patients. The doses of oxycodone and methadone were carefully selected to mimic as closely as possible the suspected exposure experienced by pregnant women and their unborn offspring. The authors demonstrated that the concentrations of methadone and related metabolites were present in the plasma, brain and placentas of dams and offspring in the opioid-treated group during gestation, parturition and up to one week after birth. Another strength of the study was the fact that the authors convincingly demonstrated a lack of change in maternal behavior in the opioid-treated dams, which could have been a major confounding factor. The dams exposed to oxycodone and methadone did develop dependence to opioids as expected, however the amount and nature of maternal care delivered to their offspring was not affected by oxycodone and methadone exposure. This critical finding enabled the authors to delve further into the biological underpinnings of the observed phenotypes. The offspring produced by opioid-exposed dams showed some phenotypes consistent with neonatal opioid withdrawal syndrome (NOWS) in humans, including hyperthermia and twitches or jerks. Together, these findings demonstrate that the authors were successful in creating a novel model of prenatal opioid use and methadone maintenance in mice.
Overall, both males and females produced by opioid-treated dams had lower body weight and length during development and through adolescence. Bone volume was also lower in PME offspring compared to controls at 1 week of age, an effect that dissipated by adolescence in PME progeny. Locomotor activity was reduced at P1 and increased at P7 and P21. Interestingly, ultra sonic vocalization emitted by pups when separated from their mothers, was highest for PME females compared to all groups and this increase in calls also coincided with increased activity. PME offspring also had delays in demonstrated coordinated motor behaviors such as acquisition of surface righting, forelimb grasp and cliff aversion during the early stages of development. Prepulse inhibition, a measure of sensorimotor gating was not disrupted by PME.
At the anatomical level, the largest impact of PME was found in the primary motor region of the cortex, where cell density was reduced particularly in the upper cortical layers. Next, the authors probed the properties of cells and circuits in primary motor cortex and found reduced firing rates in response to injected currents in PME animals compared to controls. The input resistance of these cells was also diminished in the PME group. Together, these findings suggest that the number of cells may be reduced by PME in primary motor cortex and that the remaining neurons are not able to fire as effectively, resulting in blunted transmission within this brain region. Lastly, the authors stimulated local synaptic inputs to M1 using glutamate uncaging and found that the neural circuits connecting the top layers of M1 to layer 5 are enhanced in PME animals.
Overall, the authors identified some electrophysiological correlates of altered motor function and coordination produced by a novel prenatal opioid exposure model and regimen. This article had several strengths highlighted above but also included some areas of potential improvement. The authors included both sexes in many of their analyses but it is not always clear when the sex of the offspring were combined in the analyses and/or whether sex was always included as a factor in the many endpoints described in the paper. The authors acknowledge some of the limitations of their model in better understanding OUD in pregnant women. Including the caveat that many women do not switch to maintenance therapy prior to conception would be worth mentioning. Moreover the use of buprenorphine has increased in recent years and methadone is not the only maintenance therapy available. Lastly, the electrophysiological recordings do not exactly coincide with some of the overt phenotypes reported: at P21, the PME animals are hyperactive but the time window does not match with the coordination deficits reported. Overall, these minor weaknesses detracted only slightly from the overall impact and value of the reported findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In this work Farber and colleagues describe the generation of Fus(EGFP-plin2) and Fus(plin3-RFP) two knock-in zebrafish lines that alllow to study perilipins and lipid droplet biology in vivo at whole animal level. These lines could be important tools to understand how lipid droplet dynamics are affected by different genetic and physiological manipulations.
The article is well written and the work is carries out with a good methodological approach and the results support their conclusions. The weakness is the lack of originality since it does not really go behind the current knowledge in the field. Most of the data are a detailed description of zebrafish lines but I doubt that could be interested to a broad audience.
It also lacks novelty since the work does not add anything compared to what is already known regarding peripilin 2 and 3. I think this manuscript should be submitted to a more specialized journal on lipid metabolism or to a technical "zebrafish" journal.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors set out to determine the role of interleukin (IL)-33 in the host immune response to the parasite Toxoplasma gondii. They achieve this using a mouse model of infection and a range of genetically modified mice to systematically prove the pathway involved.
A major strength of the study is the use of strategic immune cell/factor-deficient mice in combination with recombinant proteins in vivo. This may be further strengthened by future studies that test the impact off inhibitory antibodies against the primary factor of interest, IL-33. This would allow for a loss and gain of function approach, supporting the exisiting in vivo data with recombinant mouse IL-33.
Overall, the approach taken achieves the goal of the study. The manuscript is well written and systematically addresses the steps in the pathway that are required to mount an effective IL-33-mediate immune response to T. gondii.
The likely impact of this work are new knowledge of the function of IL-33 in response to infection and the interaction between different components of the immune system to achieve a balanced, context dependent response. The study does not highlight new methods or technical advances, but does provide important new information on immune responses to infection.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This paper examines the role of neutrophils, inflammatory immune cells, in disease caused by genital herpes virus infection. The experiments describe a role for type I interferon stimulation of neutrophils later in the infection that drives inflammation. Blockade of interferon, and to a lesser degree, IL-18 ameliorated disease. This study should be of interest to immunologists and virologists.
This study sought to examine the role of neutrophils in pathology during mucosal HSV-2 infection in a mouse model. The data presented in this manuscript suggest that late or sustained IFN-I signals act on neutrophils to drive inflammation and pathology in genital herpes infection. The authors show that while depletion of neutrophils from mice does not impact viral clearance or recruitment of other immune cells to the infected tissue, it did reduce inflammation in the mucosa and genital skin. Single cell sequencing of immune cells from the infected mucosa revealed increased expression of interferon stimulated genes (ISGs) in neutrophils and myeloid cells in HSV-2 infected mice. Treatment of anti-IFNAR antibodies or neutrophil-specific IFNAR1 conditional knockout mice decreased disease and IL-18 levels. Blocking IL-18 also reduced disease, although these data show that other signals are likely to also be involved. It is interesting that viral titers and anti-viral immune responses were unaffected by IFNAR or IL-18 blockade when this treatment was started 3-4 days after infection, because data shown here (for IFN-I) and by others in published studies (for IFN-I or IL-18) have shown that loss of IFN-I or IL-18 prior to infection is detrimental.
These data are interesting and show pathways (namely IFN-I and IL-18) that could be blocked to limit disease. While this suggests that IL-18 blockade might be an effective treatment for genital inflammation caused by HSV-2 infection, the utility of IL-18 blockade is still unclear, because the magnitude of the effect in this mouse model was less than IFNAR blockade. Additionally, further experiments, such as conditional loss of IL-18 in neutrophils, would be required to better define the role and source(s) of IL-18 that drive disease in this model.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Mutations in Naa10 are known to be causative in Ogden syndrome, a genetic disorder associated with infantile death. The paper by Kweon et al describes a series of experiments using mouse models of Naa10, an x-linked gene with the function of a major acetyltranferase in a complex accounting for 40-50% of acetylation of all proteins. The lack of complete embryonic lethality in the Naa10 hemizygous mice, leads the authors discover a paralogous mouse gene Naa12. The authors further demonstrate that Naa12 can compensate for Naa10 loss of function and that null mutations in both genes lead to complete embryonic lethality.
Genetic experiments described in this paper involve 2 distinct knockouts of the Naa10 in mice. The resulting hemizygous male mice displayed a variety of developmental defects, and while hemizygous males were underrepresented at birth, some surviving mice experienced early neonatal lethality while a proportion of the hemizygous mice survived to adulthood. Severely affected animals exhibited a variety of development abnormalities but importantly, no major reductions in the acetylation patterns were observed. A similar spectrum of phenotypes were reported in 2017 in a separate paper by Lee et al. The lack of complete embryonic lethality in Naa10 hemizygous males led to the hypothesis that a compensatory gene in mice may exist. The authors then identified the autosomal Naa12 gene in mice. This is a major finding of the paper. Naa12 and Naa10 share 80% sequence identity. The authors continued on to generate a Naa12 knockout mouse that in combination with the Naa10 knockout mice, demonstrate complete embryonic lethality to support the hypothesis that Naa12 is a function homolog to Naa10 in mice. This is strong evidence supporting the functional compensation of Naa12. The authors provided a thorough account of the variety of development abnormalities in the Naa10 hemizygous mice at all stages of development, noting changes in bodyweight, hydrocephaly and significant cardiac defects, pigmentation, skeletal and reproductive abnormalities. The variation and heterogeneity ranged from severe embryonic abnormalities through to milder phenotypes in surviving adults. Importantly, the authors identified several phenotypes in the mice that upon further analysis, we also not in the patients with an assumption of incomplete penetrance.
This reviewer finds this paper to be an important finding worthy of publication. The experiments were well powered and the genetic crosses thoroughly examined. The discussion was thoughtful and considered mechanisms of compensation between Naa10 and Naa12 based on the observed experiments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In this study from the Selimi lab, Gónzalez-Calvo and colleagues investigate the role of the uncharacterized complement family protein SUSD4. SUSD4 is expressed at the time of cerebellar synaptogenesis and localizes to dendritic spines of Purkinje cells. Susd4 KO mice show impaired motor learning, a cerebellum-dependent task. Susd4 KO mice display impaired LTD and facilitated LTP at parallel fiber (PF)-Purkinje cell (PC) synapses, indicating altered synaptic plasticity in the absence of Susd4. Climbing fiber (CF)-Purkinje cell synapses show largely normal basal transmission, with the exception of larger quantal EPSCs. Immunohistochemical analysis shows a small decrease in the proportion of CF/PC synapses lacking GluA2. As their data indicates a role for SUSD4 in regulation of postsynaptic GluA2 content at cerebellar synapses, they next explored the molecular mechanism by which SUSD4 might do so. Activity-dependent degradation of GluA2 does not occur in the absence of SUSD4. Affinity purification of proteins associated with recombinant SUSD4 identifies ubiquitin ligases as well as several proteins involved in AMPAR turnover. Finally, the authors show that SUSD4 can bind GluA2 in HEK cells, and that SUSD4 can bind the ubiquitin ligase NEDD4, but that these two interactions are not dependent on each other.
This study provides novel insight in the uncharacterized role of SUSD4 and provides a detailed and well-performed analysis of the Susd4 loss of function phenotype in the cerebellar circuit. The exact mechanism by which SUSD4 affects GluA2 levels remains unclear. However, their findings provide leads for further functional follow-up studies of SUSD4.
Specific comments:
1) Localization of SUSD4. The authors demonstrate localization to spines in distal PC dendrites (Fig. 1C). Does SUSD4 also localize to CF/PC synapses? This is important to establish given the phenotype of increased quantal EPSCs and decreased proportion of synapses without GluA2 at the CF/PC synapse.
2) Figure 4B: There seems to be considerably less surface GluA2 in Susd4 KO cerebellar slices. Is the difference in surface GluA2 between WT and KO significant? Although the mean reduction in surface GluA2 in Susd4 KO following cLTD is similar to WT, the difference with control is not significant. This should be pointed out in the text because it can not be definitively concluded that endocytosis of GluA2 is not altered in Susd4 KO on the basis of this experiment.
3) Figure 4D: The colocalization of SUSD4 with GluA2 is difficult to see in this image. An inset with higher zoom could help. Quantification of colocalization using e.g. Manders coefficient would help.
4) Figure 5B: The negative control used here, PVRL3alpha, lacks an HA tag. This therefore does not control for non-specific interactions of highly overexpressed membrane proteins in co-transfected HEK cells. The authors should use an HA-tagged membrane protein as a control here to demonstrate that the interaction of SUSD4 and GluA2 is specific for SUSD4.
5) Figure 5D: The level of GluA2 recovered in the IP appears normalized to HA-SUSD4. This does not control for the variations in GluA2 input levels shown in Fig. S11. Statements on amounts of GluA2 recovered for various SUSD4 mutants should be adjusted to take this into account.
6) Line 357: binding of SUSD4=is likely meant to be binding of NEDD4.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Bridget A. Matikainen-Ankney et al. discuss the newest generation of their open-source Feeding Experimentation Device (FED3) platform capable of detailed tracking of food pellet intake and dual nose-poke operant behavioral testing. This platform provides a complete solution for these types of studies and includes all necessary open-source hardware, firmware, visualization code, and Arduino and Python libraries for user customization of experiments and analysis. FED3 has a rechargeable battery life of around one week and can operate without any external wires, logging data onto an on-board SD card and allowing for flexible placement in a rodent's home-cage. The platform also includes an on-board display for showing current experimental parameters/data and a variable voltage digital output for synchronizing the system with other external devices such as an optogenetic simulation system. The authors show multiple applications of the FED3 platform including detailed food intake tracking, fixed-ratio operant behavior experiments, and optogenetic self-stimulation. Importantly, they also highlight the ability to do studies across multiple, remote laboratories by leveraging the standardization of such a food intake platform.
Strengths:
The FED3 platform is well thought out and clearly builds off the authors' experience designing and working with their previous generation systems. The specific open-source approach taken by the authors include, not just openly providing design files but, building an understandable and open ecosystem of tools and libraries for laboratories to customize the platform to fit a broad range of experiments. By including data visualization tools and a Python library for working with FED3 data, the authors effectively lower the technical entry point for using such a platform and streamline the process of implanting the system in one's own experiments. The paper provides strong evidence of the FED3's capabilities and relevance of data generated across a range of use cases. There is compelling evidence of the usefulness of developing an open standard for food intake tracking, allowing for multi-site studies and across-laboratory comparisons. Finally, the system is significantly more affordable than other commercial options, lowering the economic barrier for implementing food intake tracking and operant behavior experiments.
Weaknesses:
While this paper presents a very useful, customizable, and flexible approach to food intake and operant behavior studies, certain aspects of the device could be better described in the paper. This is only a minor weakness as all hardware and code is openly available online, allowing for a more detailed understanding of the system beyond what is presented in the paper. It would be helpful to identify the major electronics components on the custom printed circuit board to aid in customization of the system. It would also be useful to provide more details as to the mechanical mechanism used to deliver food pellets and the optical beam breaks for detecting nose-pokes and food pellets.
Some potential limitations of the system include the inability to detect food pellet hoarding, lack of wireless option to access and configure the system, limited battery life, complications when using granular bedding, and no way to identify individual mice. The authors identify and discuss these limitations within the paper which is appreciated.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In this study, van Dorp et al. provide new insights into the structure of the C-terminus of STIM1 in the quiescent as well as the active state. By using extensive smFRET and protein crosslinking techniques, the authors substantially advanced our understanding of STIM1 cytosolic domains orientation and revealed inter- and intramolecular interactions within a STIM1 dimer. Structures have been derived for both STIM1 resting and activated state. Altogether, this study substantially contributes to a mechanistic and structural understanding of the STIM1 activation process, and it paths the way for the comprehensive dynamic resolution of conformational transitions from the inactive to the fully active state.
The single molecule studies represent a very elegant approach to derive novel details on STIM1 structure and dynamics. Utilization of these developed smFRET protein probes of ctSTIM1 in the interaction with Orai1, either reconstituted or even in living cells, would be phantastic, but certainly experimentally challenging based on the low fluorescent background required to resolve single molecule FRET.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3:
In this paper Werkhoven et al. ask a fundamental question in behavioral neuroscience - what is the structure of co-varying behaviors among individuals within populations. While questions in the context of inter-individual behavioral differences have been studied across organisms, this work represents a highly novel and comprehensive analysis of the behavioral structure of inter-individual variation in the fly, and the underlying biological mechanism that may shape this structure of covariation. In particular, for their experiments they combined a set of behavioral tests (some of them were explored in previous studies) to a 13-day long behavioral paradigm that tested single individuals in a highly controlled and precise way. Through clever analysis the authors interestingly showed strong correlations only between a small set of behaviors, indicating that most of the behaviors that they tested do not co-vary, exhibiting many dimensions of inter-individual variation in the data. They further used perturbations of neuronal circuits and showed that temperature and circuit perturbations can change dependencies among sets of behaviors. In a different set of experiments where they integrated gene-expression data (from the brains of single individuals), they showed that some of the genes are correlated with individual-specific parameters of behaviors. Interestingly, through comparison of inbred and outbred population they demonstrated that also outbred populations are showing relatively low covariance of behaviors across individuals.
Overall, the data in the paper indicate that surprisingly, even for a 'simple' organism, there are many dimensions of inter-individual variation, e.g. many specific characters that can change among individuals in a non-dependent way. The ability of the authors to precisely measure such dependencies in such a highly robust and precise way allowed their investigation of the underlying processes that may generate this variation. The results in this study are highly interesting and novel. They uncover a general picture of the structure of behavioral variation among individuals and open many avenues for further analyses of the underlying neuronal and molecular mechanisms that control variation in sets of behaviors. Furthermore, the methods that were developed in this paper can be of great use by other researches in the field.
However, while the key claims of the manuscript are well supported by the data and analyses methods, some aspects of data analysis need to be clarified or extended:
It is not clear what the motivation is for using the 'Effective dimensionality spectrum' analysis presented in the paper and how it significantly adds to existing methods of clustering that are relying directly on the correlation/distance matrix (some of them were used in this study).
While it is clear that the distilled behavioral covariation matrix has many independent dimensions (as the authors indicated, most of the a-priori PCs are not strongly correlated), the number of 'significant' Pcs was not calculated directly for the distilled matrix, and t-SNE analysis is presented only for the original covariation matrix (1L).
It is possible that some of the behaviors that covary across individuals in the high temporal resolution assay and also tend to be associated over time within an individual, may indicate sequences of behavior on longer time-scales (than the timescales in which parameters are quantified).
Further analyses are needed for extending the detection of correlations between variation in gene-expression data and the independent behavioral measures in the covariance matrix.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3:
The authors propose a new method of focused ultrasound (FUS) neuromodulation namely amplitude modulated FUS that they propose can differentially affect inhibitory and excitatory cells depending upon the intensity employed. Parameter selection is an issue for this field and the introduction of new methods for efficacious modulation are highly desirable. However, this paper does not explicitly test AM FUS against existing forms of FUS thus lending no evidence to its efficacy. While the differential effects are interesting in themselves, we gain no insight if AM FUS is the critical factor leading to this.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
By applying modern viral tracing methods, this paper described in detail extensive input-output connections of Gad1Cre+, VgatCre+, or Ntsr1Cre+ IntA projection neurons.
Because diverse neurons are intermingled in a small region, it is generally challenging to isolate specific excitatory or inhibitory neurons and their circuits in the cerebellar nucleus.
The authors focused on IntA of CN and demonstrated that 1) both inhibitory (Gad1Cre+ and/or VgatCre+) and excitatory (Ntsr1Cre+) neurons comprise extensive input-output connections with many extracerebellar regions, and 2) inhibitory circuits are functionally distinct from excitatory circuits on the basis of projection targets. This work could provide insights into diversity of inhibitory IntA neurons, and thus could be an interesting addition to the field's expanding efforts to identify cell types of CN, their input-output connections, and their functions.
However, interpreting the data is difficult because of technical challenges. Critically, the main conclusion could be compromised by experimental artifacts, which need better characterization. In addition, the text could be revised to make it more accessible to a broad audience.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The manuscript by Sando et al. describes experiments directed at unraveling how latrophilins (Lphns) orchestrate synapse formation. Lphns are a unique family of adhesion molecules harboring extensive extracellular N-terminal domains with several known interacting motifs coupled to the classical 7 transmembrane architecture of G-protein coupled receptors. In recently published work from the Sudhof group, Lphns were shown to play a surprising postsynaptic role in synapse formation onto CA1 pyramidal neurons with Lphn2 and 3 important for perforant path and Schaffer collateral synapse formation respectively (Sando et al., Anderson et al). However, it remains unclear whether G-protein signaling through Lphns is important for their role as synapse organizers.
To address this issue, the authors use conditional knockout/rescue approaches to convincingly demonstrate an essential role of the GPCR domain of Lphns 2 and 3 both in vitro and in vivo. Replacing the intracellular 3rd loop of the GPCR domain (which is essential for G-protein activation) of either Lphn2 or 3 fails to rescue reduced synapse number in the knockout background (nor does deleting the entire GPCR domain). Thus it appears that cell adhesion properties alone are not sufficient for Lphn-mediated synapse formation. The experiments appear to be robust and convincing and the conceptual advance of Lphn-mediated GPCR signaling during synapse formation is substantial. I have a few specific points outlined below, but overall the authors use a nice combination of imaging, electrophysiology and rabies virus-based synaptic connectivity measurements to support their conclusions. Naturally, I'd like to know more details about the signaling requirement (e.g. how is Lphn signaling spatially compartmentalized compared to other GPCRs present, which G-protein(s) Lphns couple to, how/when/whether GPCR signaling is regulated by ligand engagement etc.) but these questions seem better suited to a separate study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3:
This is an interesting manuscript in which the authors have investigated the effect of intracellular injection of oligomeric beta-amyloid into hippocampal neurons both in cultures and adult animals. They find that starting from 500 pM, intracellular injection of oligomeric beta-amyloid rapidly increases the frequency of synaptic currents and higher concentrations potentiate the AMPA receptor-mediated current. Both effects were PKC-dependent. Furthermore, they find that following PKC activation there is release of NO which in turn increases release of neurotransmitter not only in the nearby pre-synaptic site, but also in neighboring cells. This suggests that intracellular injections of oligomeric beta-amyloid into the postsynaptic neuron can increase network excitability at a distance. The effect on neuronal excitability would involve AMPA-driven synaptic activity without altering membrane intrinsic properties. The conclusions are sound. However, there are two main aspects of the observed phenomenon that have not been taken adequately into account, or have been avoided by the authors. The authors have not investigated the effects of application of oligomeric beta-amyloid into the extracellular space and the presynaptic neurons, two other compartments of the synapse. They might have performed experiments comparing findings from experiments with intracellular injections of oligomeric beta-amyloid into the post-synaptic neurons, with effects of extracellular application and those of injections into the presynaptic neuron.
Additional minor concerns are related to the following issues:
a) The raw data on Figure 3 suggest that not only excitatory transmission is affected but also inhibitory transmission is somewhat modified. Measurement of the charge might be misleading.
b) This reviewer is not clear on the meaning of the following sentence in the discussion "Contrary to previously published data using extracellular Aβ or with more chronic application models [45-50], we did not find any synaptic deficits". The current work shows synaptic changes!
c) There is a mistake in the numbering of figures in the discussion. The paper has no figure 11. When referring to figure 10, they must mean something else.
d) The model on Figure 10 needs work. The authors should explain what various elements of the drawing mean, or better label them directly on the figure.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3:
Huss et al. describe a phage genome engineering technology that they call ORACLE. This technique uses recombineering of a phage target gene with a variant library to identify both gain and loss of function mutations. The beauty of this method and what makes it superior to other techniques is that it dramatically limits loss of mutants that are less fit during the initial round of library generation. Thus, the pool of variants is vast and is reduced in bias toward more fit species based on the host used for initial library amplification. They use the model coliphage T7 as a proof of principle and show that several previously unidentified residues in the T7 tail fiber play critical roles in both loss and gain of function for phage infectivity and they also identify residues that are major drivers of altered host tropism. Lastly, they apply this library to a pathogenic UTI associated strain of E. coli which is normally resistant to wild type T7 infection and identify tail variants of T7 that can now infect this strain, highlighting the applicability of this method toward the discovery of engineered phages that could be used therapeutically. Altogether this is an important advancement in phage engineering that shows potential promise for future phage therapies.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors herein have nicely dissected the role of RNF43 in WNT5A signaling in mammalian cells, with a focus in the context of melanoma. They show that RNF43 inhibits WNT5A activity by ubiquitinating and thereby marking for proteasomal degradation multiple proteins involved in WNT5A signal transduction (i.e., VANGL2). The authors have performed the study in a thorough manner.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
P2X2 receptor channels do not have a canonical voltage-sensor, yet they display profound voltage-dependence especially when activated by physiologically relevant low ATP concentrations. Understanding the mechanisms of this voltage dependence is not an easy undertaking because there are neither similar proteins as precedent nor clear indications from available structures. In this manuscript, Andriani and Kubo incorporated Anap into 96 residues (separately) in P2X2 receptor channels and performed a comprehensive scanning using voltage-clamp fluorometry technique to probe structural changes during ATP- and voltage-dependent gating. Out of the 96 residues, the authors only observed voltage-dependent fluorescence intensity (F) changes at A337 and I341 in the TM2 domain. The changes are fast and linear, consistent with them being electrochromic effect. When an additional mutant K308R is introduced, the authors were able to detect a small slow and voltage-dependent F change at A337, which could potentially result from structural rearrangements at this position. With a P2X2 model built upon the hP2X3 open state structure, they also proposed that A337 interacts with F44 in TM1, and this interaction is important for activation. The amount of work involved in this study is impressive. The data presented are of good quality. Most conclusions drawn from the results are reasonable and backed with good evidence.
Overall, the identification of a converged electric field around A337 and I341 is new and intriguing. Previously reported functional results and available high resolution P2X receptor structures all suggest that residues A337 and I341 are facing TM1 and they are accessible to Ag+ when mutated to Cys. It is conceivable that the "voltage-sensor" in P2X2 receptor channels involve ion filled crevices between TM1 and TM2 in the membrane. This work is of great value for understanding how membrane proteins sense voltages.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors describe a method for fitting a simple, separable function of contrast and cone excitation to a set of fMRI data generated from large, unstructured chromatic flicker stimuli that drive the L- and M- cone photoreceptors across a range of amplitudes and ratios. The function is of the form of a scaled ellipse – hereafter referred to as a 'Quadratic Color Model' (QCM). The QCM fits 6 parameters (ellipse orientation, ellipse elongation, and 4 parameters from a non-linear, saturating (Naka-Rushton) contrast response curve. The QCM fits the dataset well and the authors compare it (favorably) to a 40-parameter GLM that fits each separate combination of chromatic direction and contrast separately.
The authors note three things that 'did not have to be true' (and which are therefore interesting):
1) The data are well-fit by a separable ellipse+contrast transducer - consistent with the idea that the underlying neuronal computations that process these stimuli combine relatively independent L-M and L+M contrast.
2) The short axis of the QCM tends to align with the L-M cone contrast directing (indicating that this direction is one of maximum sensitivity and the L+M direction (long axis) is least sensitive. This finding is qualitatively consistent with psychophysical measurements of chromatic sensitivity.
3) Fit parameters do not change much across the cortical surface – and in particular they are relatively constant with respect to eccentricity.
This is a technically solid paper – the data processing pipeline is meticulous, stimuli are tightly-calibrated (the ability to apply cone-isolating stimuli to fovea and periphery simultaneously is an impressive application of the 56-primary stimulus generator) and the authors have been careful to measure their stimuli before and after each experimental session. I have a few technical questions but I am completely satisfied that the authors are measuring what they think they are measuring.
The analysis, similarly, is exemplary in many ways. Robust fitting procedures are used and model performance and generalizablility are evaluated with a leave-run-out and leave-session-out cross validation procedures. Bootstrapped confidence intervals are generated for all fits and analysis code is available online.
The paper is also useful: it summarises a lot of (similar) previous findings in the fMRI color literature going back to the late 90s and points out that they can, in general, be represented with far fewer parameters than conditions. My main concerns are:
1) Underlying mechanisms: The QCM is a convenient parameterization of low spatial-frequency, high temporal-frequency L-M responses. It will be a useful tool for future color vision researchers but I do not feel that I am learning very much that is new about human color vision. The choice to fit an ellipse to these data must have been motivated at least in part by inspection. It works in this case (possibly because of the particular combination of spatial and temporal frequencies that are probed) but it is not clear that this is a generic parametric model of human color responses in V1. Even very early fMRI data from stimuli with non-zero spatial frequency (for example, Engel, Zhang and Wandell '97) show response envelopes that are ellipse-like but which might well also have additional 'orthogonal' lobes or other oddities at some temporal frequencies.
2) Model comparison: The 40-parameter GLM model provides a 'best possible' linear fit and gives a sense of the noisiness of the data but it feels a little like a strawman. It is possible to reduce the dimensionality of the fit significantly with the QCM but was it ever really plausible that the visual system would generate separate, independent responses for each combination of color direction and contrast? I suspect that given the fact that the response data are not saturating, it would be possible to replace the Naka-Rushton part of the model with a simple power function, reducing the parameter space even further. It would be more interesting to use the data to compare actual models of color processing in retina/V1 and, potentially, beyond V1.
3) Link to perception. As the authors note, there is a rich history of psychophysics in this domain. The stimuli they choose are also, I think, well suited to modelling in the sense that they are likely to drive a very limited class of chromatic cells in V1 (those with almost no spatial frequency tuning). It is a shame therefore that no corresponding psychophysical data are presented to link physiology to perception. The issue is particularly acute because the stimulus differs from those typically used in more recent psychophysical experiments: it flickers relatively quickly and it has no spatial structure. It may, however, be more similar to the types of stimuli used prior to the advent of color CRTs : Maxwellian view systems that presented a single spot of light.
-
-
-
Reviewer #3 (Public Review):
Myotonia congenita is a heritable disorder of muscle fiber excitability in which a severe reduction of the resting chloride conductance (gCl, CLCN1 mutations) produces susceptibility to involuntary after-contractions and transient weakness. Fifty years ago, Bryant, Adrian and colleagues showed that loss of > 50% of gCl is sufficient to cause myotonic bursts of after-discharges. Much less is known about the mechanistic basis for the transient weakness (several seconds, up to 1 minute) that occurs with initial contractions after rest. This study elegantly confirms what has long been suspected; that sustained depolarization of the resting potential is the basis for the transient weakness. The experimental approach employed several new techniques to achieve this demonstration. First, the use of repeated in situ contraction tests every 4 sec (Fig. 1) clearly shows the coincidence of myotonia and transient weakness, both of which exhibit warm-up. This animal model for the transient weakness in a low gCl state was essential for the success of this study. Secondly, the remarkably stable measurements of membrane potential (Vm), without the need to apply a holding current to achieve the normal resting potential (Figure 2) is necessary to convincingly demonstrate the plateau depolarizations are a consequence of the myotonic condition, and not a stimulation artifact. Moreover, a severe reduction of fiber excitability was directly demonstrated by application of brief current pulses during the plateau depolarization (Figure 2E). Third, the authors have used the ncDHPR mouse (non-conducting CaV1.1) to show the Ca current has some role in prolonging the duration of the plateau. This is an important contribution because the sluggish, low-amplitude Ca current in skeletal muscle has not previously been implicated in the pathogenesis of myotonia. Finally, the authors built upon their recent work showing ranolazine suppresses myotonia in low gCl muscle to also show this drug abolishes the plateau potential. Taken together, this excellent study provides the most definitive experimental evidence to date for the mechanistic basis of transient weakness in myotonia congenita and also suggests ranolazine may be beneficial for prophylactic management.
Major Points:
1) The major experimental limitation that prevented prior studies from establishing the mechanism for the transiently reduced excitability and weakness in MC was the concern that plateau depolarizations frequently occur as an artifact in studies of skeletal muscle membrane potential (e.g. secondary to leakage current from electrode impalement or failure to completely suppress contraction with motion-induced damage). The authors are to be commended for including many records of Vm (absolutely necessary for this publication) and for explicitly stating that a holding current was not applied to maintain Vrest. The confidence of these observation could be further increased by addressing these questions:
— Were recordings excluded from the analysis if the plateau potential was not followed by a subsequent return to Vrest? Was a criterion used to define successful return to the resting potential?
— If fibers that failed to repolarize were excluded, was this a frequent or a rare event, and importantly, was the likelihood of failure different for control versus myotonic fibers?
2) The data clearly show a large variance for the duration of the plateau potential (e.g. horizontal extent of data in Figure 3B), which is interesting and may provide additional insights on the balance of currents that contribute to this phenomenon. The authors also point out that the distribution was skewed toward briefer plateau periods for the 9-AC model than the adr mouse. It is suggested this difference may be a consequence of life-long reduced gCl in adr mice with some chronic compensation versus the acute block of ClC-1 in the 9-AC model. What about the possibility that the reduction of gCl is more severe in the adr fibers than in 9-AC treated animals? A residual Cl current could foreshorten the duration of the plateau potential. Another question with regard to the variable duration of the plateau potential is a "duration of 0". In other words, as shown in Fig 3C, how frequently was the absence of a PP encountered?
3) The possibility that activity-dependent accumulation of myoplasmic Ca may contribute to the PP is suggested (page 9 line 175), but this is not further commented upon in the Discussion. Namely, is the reduction of PP duration in ncDHPR fibers proposed to be a consequence of less inward charge movement or of less myoplasmic Ca accumulation (i.e. is it a balance of ionic currents or an intracellular signaling factor)? Moreover, with regard to an activity-dependent process that influences the likelihood and/or duration of the PP, the authors quantify the "mean firing rate" and the "mean membrane potential", both quantified during the preceding myotonic burst. Both of these factors may contribute to an activity-dependent process, but another factor has been omitted; namely the duration of the antecedent myotonic run. It would be interesting to test whether the duration of the myotonic burst had an influence on the PP.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Lee et al. report results from an fMRI experiment with repeated viewings of a single movie clip, finding that different brain regions come to anticipate events to different degrees. The findings are brief but a potentially very interesting contribution to the literature on prediction in the brain, as they use rich movie stimuli. This literature has been limited as it has typically focused on fixed short timescales of possible anticipation, with many repetitions of static visual stimuli, leading to only one possible time scale of anticipation. In contrast, the current video design allows the authors to look in theory for multiple timescales of anticipation spanning simple sensory prediction across seconds to complex social dynamics across tens of seconds.
The authors applied a Hidden Markov Model to multivoxel fMRI data acquired across six viewings of a 90 second movie. They fit a small set of components with the goal of capturing the different sequentially-experienced events that make up the clip. The authors report clusters of regions across the brain that shift in their HMM-identified events from the first viewing of the movie through the (average of the) remaining 5 viewings. In particular, more posterior regions show a shift (or 'anticipation') on the order of a few seconds, while more anterior regions show a shift on the order of ~10 seconds. These identified regions are then investigated in a second way, to see how the HMM-identified events correspond to subjective event segmentation given by a separate set of human participants. These data are a re-analysis of previously published data, presenting a new set of results and highlighting how open sharing of imaging data can have great benefits. There are a few important statistical issues that the authors should address in a revision in order to fully support their arguments.
1) The authors report different timescales of anticipation across what may be a hierarchy of brain regions. However, do these timescales change significantly across regions? The paper rests in part on these differences, but the analyses do not yet actually test for any change. For this, there are multiple methods the authors could employ, but it would be necessary to do more than fit a linear model to the already-reported list of (non-independently-sorted) regions.
2) The description of the statistical methods is unclear at critical points, which leads to questions about the strength of the results. The authors applied the HMM to group-averaged fMRI data to find the neural events. Then they run statistical tests on the difference in the area-under-the-curve (AUC) results from first to other viewings. It seems like they employ bootstrap testing using the group data? Perhaps it got lost, but the methods described here about resampling participants do not seem to make sense if all participants contributed to the results. Following this, they note that they used a q < 0.05 threshold after applying FDR for the resulting searchlight clusters, but based on their initial statement about the AUC tests, this is actually one-tailed? Is the actual threshold for all these clusters q < 0.10? That would be quite a lenient threshold and it would be hard to support using it. The authors should clarify how these statistics are computed.
3) Regarding the relationship to annotated transitions, the reported difference in correlations at zero lag don't tell the story that the authors wish they tell, and as such it does not appear that they support the paper. While it is interesting to see that the correlation at zero lag in the initial viewing is often positive in the independently identified clusters, the fact that there is a drop in correlation on repeated viewings doesn't, in itself, mean that there has been a shift in the temporal relationship between the neural and annotated events. A drop in correlation could also occur if there was just no longer any correlation between the neural and annotated events at any lag due to noisy measurements, or even if, for example, the comparison wasn't to repeated viewings but to a totally different clip. The authors want to say something about the shift in in the waveform/peak, but they need to apply a different method to be able to make this argument.
4) Imaging methods with faster temporal resolution could reveal even earlier reactivation, or replay, of the movies, that would be relatively invisible with fMRI, and the authors do not discuss relevant recent work. E.g. Michelmann et al. 2019 (Nat Hum Beh) and Wimmer et al. 2020 (Nat Neuro) are quite relevant citations from MEG. Michelmann et al. utilize similar methods and results very similar to the current findings, while Wimmer et al. use a similar 'story' structure with only one viewing (followed by cued retrieval) and find a very high degree of temporal compression. The authors vaguely mention faster timescale methods in the discussion, but it would be important to discuss these existing results, and the relative benefits of these methods versus the benefits and limitations of fMRI. It would be interesting and puzzling if there were multiple neural timescales revealed by different imaging methods.
5) The original fMRI experiment contained three conditions, while the current results only examine one of these conditions. Why weren't the results from the two scrambled clip conditions in the original experiment reported? Presumably there were no effects observed, but given that the original report focused on a change in response over time in a scrambled video where the scrambled order was preserved across repetitions, and the current report also focuses on changes across viewings, it would be important to describe reasons for not expecting similar results to these new ones in the scrambled condition.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In a previous study, the authors had shown that germline tumors that accumulate in the C. elegans gonad because of the lack the RNA binding translational repressor GLD-1, have an increased propensity to differentiate and express somatic proteins in response to ER stress induced by tunicamycin or the absence of the TRK kinase protein tfg-1 (a process the authors call GED). Using this as a model, here, the authors investigate the mechanisms by which the abnormal nuclei accumulate in the tumorous gonad of glp-1 animals by manipulating genes in the soma and germline.
The key message of this paper is, then, the identification of neurons and neuromodulators that suppress or enhance this accumulation of abnormal germline cells in the glp-1 germline. While the results of this analysis could potentially provide an interesting advance, the validity of the many of the conclusions are difficult to evaluate because of limitations posed by the experimental methods and ambiguity in defining the GED.
Weaknesses:
A key issue is the identity of the abnormal germline cells that accumulate in glp-1 gonads. Modulation of the neuronal circuits examined (FLP-6, serotonin, cholinergic) change the germline, alter ovulation rates, modulate somatic gonad contraction rates etc. in wild-type animals. The effects of these circuits on a glp-1 germline are not known, but some of the same effects are likely to continue even if germ cells turned tumorous. Therefore, how neurons and neuromodulators alter the accumulation of abnormal cells in the gonad may or may not be surprising or novel, based on what is actually happening to these cells (the phenotype scored as GED). However, this is unclear as all the abnormal effects on the germline are assessed using DAPI at some steady state. Therefore, GED (ectopic differentiation) needs to be better demonstrated separate from the simple accumulation of abnormal nuclei, which could happen for a number of different reasons.
Strengths:
One strength of this paper is the identification of the neuropeptide FLP-6 as a suppressor of GED and a possible RIDD target. However, there is insufficient analysis conducted to fully support this claim.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
This is a very interesting and well conducted study that addresses a question of crucial importance and will make a very valuable contribution to the literature. The question of the vulnerability of newly generated oligodendrocytes in an inflamed environment has not previously been examined with anything like the sophistication of the current series of experiments. The paper is excellent and the data convincing. I only have a few relatively minor issues that the authors might want to consider.
The first results section on sephin1 in EAE is a little confusing. If I have understood the rationale correctly, it is to activate the ISR to protect oligodendrocytes, newly generated from OPCs, in the face of a hostile inflammatory environment. If that is correct, then perhaps this could be explained more explicitly, and the concluding sentence re-worded so as not to give the impression that sephin-1 is able to enhance remyelination (which I realise is not what is stated but is the conclusion that might be drawn).
The effect of the BZA-sephin combination of g ratio of remyelinated axons is very interesting. This could, of course, be because the process is accelerated with this combination rather than enhanced given that g ratios in the CC will eventually return to normal after cuprizone induced demyelination (eg Stidworthy et al., Brain Pathology 2003). This could perhaps be addressed in the discussion.
The authors could make the point in the discussion that regenerative medicines are very unlikely to be given in the absence of effective drug-mediated suppression of aggrieved inflammation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3:
In this manuscript, the authors investigated roles of PSD95 in the hippocampus for contextual fear extinction. The authors showed that PSD95 levels in the spine and density of PSD-95-positive spines in the dorsal CA1 (dCA1) are changed following contextual fear conditioning and extinction learning. Interestingly, overexpression of PSD95-S73A mutant or chemogenetic inhibition of dCA1 impairs only the second extinction learning at 24 hrs following the first extinction learning. Importantly, these manipulations also blocked the changes of PSD95-positive spines following the first extinction learning. These observations suggest that phosphorylation of PSD95 at S73 in the dCA1 of hippocampus contributes to contextual fear extinction. This manuscript suggests the importance of PSD95 phosphorylation in the hippocampus in some aspects of mechanisms of contextual fear extinction at the molecular and spine levels. However, the title, abstract and conclusions do not well reflect observations and experimental designs in this manuscript. I have several concerns as follows.
Major concerns:
1) The authors used viral overexpression of PSD-95 S73A mutant that may function as a dominant negative mutant, but not knock in mutation. Therefore, the function of phosphorylation of PSD 95 at S73 on spine morphology and contextual fear extinction have been not yet investigated well. The experimental design in this manuscript made limitations to understand behavioral results. It is better to use knock-in mutation strategy than overexpression of the mutant. Alternatively, the authors can examine the phosphorylation levels of PSD95 following contextual fear conditioning and extinction learning and/or function of this mutant at the molecular and cellular levels using biochemistry/molecular biology/cell culture.
2) Overexpression of S73A or chemogenetic inhibition of CA1 impaired additional extinction learning. These observations are interesting. However, the authors have not well characterized these findings at the behavioral levels. In other words, the authors should clarify the effects of these manipulations on contextual fear extinction at the behavioral levels. According to abundant knowledge of fear memory extinction, the behavioral results in this manuscript raised a lot of questions to understand the impact of those genetic manipulations on "contextual fear extinction". How about effects on extended extinction learning (60 min), additional 30 min extinction learning at the same day after first extinction training, spontaneous recovery, renewal, and reinstatement? Some answers of these questions will help to understand behavioral observations in this study and enable us to identify roles of PSD95 and its phosphorylation in extinction of contextual fear memory. It is also important to examine PSD95-positive spines just after the additional extinction learning to understand behavioral observations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In the article "Widespread premature transcription termination of Arabidopsis thaliana NLR genes by the spen protein FPA", the authors describe the function of FPA as a mediator of premature cleavage and polyadenylation of transcripts. They also focused their study on NLR-encoding transcripts, as that was their most novel observation, describing an additional layer of control.
In general, the article is well written and clear. The experimental design is good, they didn't seem to over-interpret the results, the controls were solid, and the nanopore data were quite informative for their work. It is rather descriptive, but the results will be helpful for those working on NLRs, and demonstrate the utility of bulk long-read transcript data. The authors were able to string together a number of descriptive observations or vignettes into an informative paper. Overall, it is solid science.
One minor complaint is that the authors don't focus on NLRs starting on line 436, and then they have extensive results on NLRs; by the time I got to the discussion, I'd forgotten about the early focus on the M6A. While the first part of the article is necessary, I would suggest a more concise results section to give the paper more focus on the NLR control (since that is emphasized in the abstract and the title of the manuscript).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The manuscript of Anchimiuk and colleagues investigates the mechanism of translocation of Bacillus subtilis SMC-ScpAB, a well characterized bacterial condensin. First, the authors use several SMC constructs where the coil-coiled region has been extended and /or the hinge exchanged and test what are the effects on growth and on the organization of the chromosome. They find highly altered conformations for most of the mutants. Particularly, these altered SMCs are unable to bridge two arms in the presence of the naturally-occurring parS sequences. Interestingly, they are partially able to restore arm pairing if a single parS sequence is provided.
Next, the authors used Chipseq to compare the binding pattern of wildtype SMC and SMC-CC425 (a mutant with an extended coil coiled region and a different hinge). They observe that the binding of wt-SMC is only midly affected by removal of most parS sequences, whilst that of the mutant is highly affected. In time-lapse experiments where ParB is depleted and then re-expressed, the authors show that in a strain with a single parS wt-SMC loads in the origin region and then redistributes over the chromosome while the mutant can only partially achieve redistribution and to a large extent remains concentrated on the origin region.
The authors then use wt-SMC and investigate how the conformation of the chromosome changes with two different parS sites located in different positions. They observe that each parS site is able to produce arm-pairing. They observe a decrease in the strength of arm pairing when both parS sites are present.
Finally, the authors increase the expression level of wt-SMC, and observe decreased levels of arm-pairing in the presence of all the naturally-occurring parS sites. More normal levels of arm-pairing are observed when only one parS is present, despite the higher wt-SMC levels. When two parS sites are introduced, more complex structures appear in the contact map.
These observations are new, interesting and intriguing. However, there are multiple possible interpretations, models and mechanism that are not discerned by the data presently presented in the manuscript.
At times, there seem to be inconsistencies in their interpretation of results, and at times the models proposed do not seem well supported by data.
Finally, the presentation of previous models and results from the literature could be improved.
Major issues:
In Fig. 1 the authors make several mutant SMC constructs with larger or shorter arms and different hinges and use Hi-C to explore the changes in 3D chromosome organization. Is it not clear to me why the arc is still visible in the mutants, nor what happens to the overall organization of the chromosome in the mutants? Is chromosome choreography normal?
In Fig. 1C the authors show that strains with parS-359 only display a secondary diagonal and conclude "chromosome arm alignment was comparable to wild-type". A quantification of the degree of pairing for each mutant normalized by the wild-type is necessary to evaluate the degree of pairing and its dependence on genomic distance to the origin.
In Fig. 2, the authors use HiC and chip-seq to quantify the effects of changes in SMC arm length on chromosome organization and SMC genomic distributions. It would be important to verify that the expression levels of these SMC mutants are the same as wt, as as they show in Fig. 4 changes in protein levels can change also 3D chromosome organization.
In Fig. 2C, what is the distribution of SMC at t0? Showing this result would support their claim that SMC can load in absence of ParB.
In Fig. 2C it is claimed that SMC-CC425 moves at a slower rate than WT. Can the authors provide a quantification?
In Fig. 2, the authors focused on one of the mutants with longer SMC arms (CC425) and performed HiC and Chip-seq in time-lapse after induction of ParB in a ParB-depleted culture. These experiments clearly establish that SMC-CC425 can redistribute from the origin and can achieve arm pairing but to a lesser extent than the WT. The authors speculate that a slower translocation rate and/or a faster dissociation rate explain the experiments. However, other possibilities exist: for instance that the mutant SMC is defective at passing through road-blocks (highly expressed genomic regions, e.g rRNA sites) or at managing collisions with RNAP/ DNAP/ other SMCs, it makes different higher-order complexes than wt-SMC, etc. This could could be due to the change in the length of the SMC, or to the use of a hinge/coiled-coil region different from that of the wt-SMC. Thus, I am not convinced that the text explores all the possible models or that the data shown discerns between any of them.
In Fig. 3B, the authors show that use of two parS-opt sites at -304kb and -9kb lead to the formation of two secondary diagonals. They argue that these can be rationalized in terms of the diagonals formed by the strains harboring single parS-opt (either -9kb or -304kb). However, I cannot see how these can happen at the same time! If a cells makes arm pairing from -9kb then it cannot make it from -304kb right? I do not understand either how the authors can conclude from these experiments that ParS may act as unloading sites for SMC. Again, the authors are speculating over mechanisms that are not really tested.
If parS sites triggered the unloading of SMCs, then one would assume that ~5-6 natural parS sites in the origin region are unloading the SMC complexes loaded at other parS sites? This makes little sense to me, or there is something I clearly do not understand in their explanations.
In their text, the authors explain that "A small but noticeable fraction of SMC complexes however managed to translocate towards and beyond other parS sites apparently mostly unhindered". I am confused as to where is the evidence supporting this statement. I do not think the ensemble Hi-C experiments provided in Fig. 3 can provide conclusive evidence for this.
The authors often hypothesize on a mechanism, but then assume this mechanism is correct. For instance, the disruption in the secondary diagonals in Fig. 3B when experiments are performed with two parS sites are initially hypothesized to be due to roadblocks (e.g with highly transcribed regions) or to collisions between SMCs loaded at different parS sites. These possibilities cannot be discerned from their data. However, the authors then assume that collisions is what is going on (e.g. paragraph in lines 274-284). I think they should provide evidence on what is producing the changes in the secondary diagonals in mutants with two ParS sites.
Why is the ChIP-seq profile for a strain with all the natural parS sites and for a strain with only parS-9kb the same? even with the same peaks at the same locations? Does this mean that SMC peaks do not require the presence of parS? But, then SMCs do not load equally well in all naturally occurring parS sites? This is then in contradiction to their assumption that parS cannot be selectively loaded?
Do we really know that it is a single SMC ring that is responsible for translocation? The authors assume so in their models and interpretations, but if it were not the case it could drastically modify the mechanisms proposed. For instance, SMC may be able to load on a ParS site without pairing arms (i.e. only one dsDNA strand going through the SMC ring).
In Fig. 2C-D it is shown that a large fraction of wildtype SMC and SMC-CC425 accumulate at the origin region at early time points (Fig. 2C) however this does not seem to lead to an increased Hi-C signal in the origin region (compare early time points to the final t60). Also, despite small amounts of wt-SMC in the chromosome at the latter time points, the intensity of the secondary diagonal is very strong. Why is this? These results would be consistent with many SMCs loading at the origin region but only a fraction of them being responsible for arm-pairing. Is this not in contradiction to their assumption that SMCs pair two dsDNA arms when they load?
The authors state that: "If SMC-CC425 indeed fails to juxtapose chromosome arms due to over-enrichment in the replication origin region, collisions may be rare in wild-type cells because of a high chromosome residence time and a limited pool of soluble SMC complexes, resulting in a small flux of SMC onto the chromosome. If so, artificially increasing the flux of SMC should lead to defects in chromosome organization with multiple parS sites but not with a single parS site (assuming that most SMC is loaded at parS sites)". However, this assumption seems inconsistent with their results in Fig. 2 that show that the peaks of SMC do not change upon removal of most parS sites.
I am a bit confused about the interpretation of the results in Fig. 4D. The authors talk about 'loop contacts' and point to the secondary diagonal (yellow ellipses). But these are not loop contacts, but rather contacts between arms that have surpassed the two parS sequences, right? Also, it is not clear what they mean by paired-loop contacts (red ellipse). Do they mean contacts between the two loops originating at parS-359 and parS-334? If this where the case, then it means SMCs are bridging more than two dsDNA segments? Or that there are multimers of SMC linking together? Or that and SMC can circle one arm from one loop and another from the other...? But in this case, how can it load? For me it is very unclear what these experiments really mean. The explanations provided by the authors seem again highly hypothetical.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The authors of this manuscript combine electrophysiological recordings, anatomical reconstructions and simulations to characterize synapses between neurogliaform interneurons (NGFCs) and pyramidal cells in somatosensory cortex. The main novel finding is a difference in summation of GABAA versus GABAB receptor-mediated IPSPs, with a linear summation of metabotropic IPSPs in contrast to the expected sublinear summation of ionotropic GABAA IPSPs. The authors also provide a number of structural and functional details about the parameters of GABAergic transmission from NGFCs to support a simulation suggesting that sublinear summation of GABAB IPSPs results from recruitment of dendritic shaft GABAB receptors that are efficiently coupled to GIRK channels.
I appreciate the topic and the quality of the approach, but there are underlying assumptions that leave room to question some conclusions. I also have a general concern that the authors have not experimentally addressed mechanisms underlying the linear summation of GABAB IPSPs, reducing the significance of this most interesting finding.
1) The main novel result of broad interest is supported by nice triple recording data showing linear summation of GABAB IPSPs (Figure 4), but I was surprised this result was not explored in more depth.
2) To assess the effective radius of NGFC volume transmission, the authors apply quantal analysis to determine the number of functional release sites to compare with structural analysis of presynaptic boutons at various distances from PC dendrites. This is a powerful approach for analyzing the structure-function relationship of conventional synapses but I am concerned about the robustness of the results (used in subsequent simulations) when applied here because it is unclear whether volume transmission satisfies the assumptions required for quantal analysis. For example, if volume transmission is similar to spillover transmission in that it involves pooling of neurotransmitter between release sites, then the quantal amplitude may not be independent of release probability. Many relevant issues are mentioned in the discussion but some relevant assumptions about QA are not justified.
3) The authors might re-think the lack of GABA transporters in the model since the presence and characteristics of GATs will have a large effect on the spread of GABA in the extracellular space.
4) I'm not convinced that the repetitive stimulation protocol of a single presynaptic cell shown (Figure 5) is relevant for understanding summation of converging inputs (Figure 4), particularly in light of the strong use-dependent depression of GABA release from NGFCs. It is also likely that shunting inhibition contributes to sublinear summation to a greater extent during repetitive stimulation than summation from presynaptic cells that may target different dendritic domains. The authors claim that HCN channels do not affect integration of GABAB IPSPs but one would not expect HCN channel activation from the small hyperpolarization from a relatively depolarized holding potential.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In zebrafish embryo development the surface epithelium, the enveloping layer (EVL), proliferates and migrates along with the yolk sac during epiboly. This process requires the simultaneous proliferation and migration of cells, which must undergo cell shape changes. Co-ordination of these processes is regulated by proliferation, whereby cell number and shape perturb tissue-scale forces necessary for epiboly. This paper investigates explicitly the importance of successful cytokinesis, through abscission of cytokinetic bridges, on regulating these forces and epiboly progression. They show that Rab25, a GTPase belonging to the Rab11 subfamily, regulates abscission through endomembrane trafficking in the EVL. Through their detailed analysis of cellular-level phenotypes, including qualitative and quantitative approaches, this paper presents convincing evidence for this novel role of Rab25. The authors should be congratulated on excellent time-lapse movies of cytokinesis in early zebrafish development.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
The manuscript by Turner et al. employs a transcriptome-wide approach to study the effects of mutants of the 3'-end processing machinery and the anti-cancer drug cordycepin (3' deoxyadenosine) on alternative poly(A) site selection in budding yeast to better understand alternative polyadenylation (APA) mechanism(s). In particular, poly(A) test sequencing (PAT-seq), a 3'-end focused deep sequencing technique, is employed to determine cleavage/poly(A) site choice in seven mutants of the core 3'-end processing machinery – three cleavage factor IA (CFIA) mutants (rna14-1, pcf11-2, clp1-pm), one cleavage factor IB (CFIB) mutant (nab4-1), and three cleavage and polyadenylation factor (CPF) mutants (ysh1-13, fip1-1, pap1-1). Six of the 3'-end processing factor mutants exhibit increased distal poly(A) site usage and lengthening of 3'-UTRs, with rna14-1 and pcf11-2 showing the greatest effect, but clp1-pm exhibiting little effect. Notably, 3511/7091 genomic annotations (49.5%) have two or more poly(A) sites and 422 genes have significantly changed poly(A) sites in all the 3'-end processing factors mutants except clp1-pm. APA is also examined in 41 genes in a full spectrum of 3'-end processing mutants (22) using a multiplexed poly(A) test (mPAT) method and most of the mutants alter poly(A) site choice, with a predominant shift to distal site usage. In addition, APA analysis of cells treated with cordycepin using PAT-seq indicates that cordycepin alters poly(A) site choice in 1959 genes, with predominant distal cleavage site usage and lengthening of 3'-UTRs. Cordycepin is also shown to increase nucleotide abundance. Interestingly, impairment of transcription elongation, using mycophenolic acid (MPA), which reduces GTP levels, or an RNA polymerase II mutant, rpb1-H1085Y, in cells treated with cordycepin promotes proximal poly(A) site usage and shorter 3'-UTRs, reversing the effects of cordycepin. Finally, comparison of genes altered in APA by cordycepin to a dataset of yeast nucleosome occupancy suggests that 3'-end nucleosome positioning and length of intergenic regions in convergent genes correlates with cordycepin responsiveness. The data presented in the paper suggest a kinetic model for cleavage/poly(A) site selection in yeast that involves a balance between the concentration/availability of the cleavage and polyadenylation machinery and transcription elongation rate.
The strengths of the study include the generation of transcriptome-wide datasets for poly(A) site usage in numerous mutants of evolutionarily conserved, essential cleavage and polyadenylation factors using the PAT-seq method. In addition, the study indicates that almost 50% of the annotated genes in budding yeast exhibit alternative polyadenylation. The study also indicates that impairment of numerous 3'-end processing factors, irrespective of subcomplex, predominantly causes an increase in distal poly(A) site usage and lengthening of 3'-UTRs. Interestingly, the study also suggests that the choice of poly(A) site is regulated by the availability of cleavage and polyadenylation factors and transcription elongation. Finally, the study shows that anticancer drug cordycepin causes transcriptome-wide changes in alternative polyadenylation, predominantly elevating distal poly(A) site usage.
The weaknesses of the study revolve around basing some conclusions solely on the transcriptome-wide data without additional small-scale experiments. In addition, the effects of 3'-end processing mutants and cordycepin on alternative polyadenylation have been examined in two different strain backgrounds, which could impact direct comparisons of the data. The proposed kinetic model for cleavage site choice in yeast seems only to be tested in cells treated with cordycepin.
Overall, the authors achieved their aims of providing greater insight into the mechanism of alternative polyadenylation and its links to transcription and more understanding of the biological effects of cordycepin in cells. At present, most of the conclusions are supported by the results, but some conclusions require additional experiments.
This study will be of enormous interest to the RNA processing field and to the wider community, especially given that alternative polyadenylation regulates so many aspects of mRNA function, the 3'-end processing factors studied are evolutionary conserved, and cordycepin is an anti-cancer agent.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Microstimulation of the somatosensory cortex is a very promising approach to restore sensory feedback in disabled people. Hughes and colleagues performed cortical microstimulation experiments in a spinal cord injured subject to characterize the relationship between the stimulation parameters (frequency and amplitude) and the perceived sensation (type and intensity). This type of experiment is very important to better understand the potentials and limits of this approach. The results achieved by the authors are very interesting and can represent a first step towards the development of more effective and personalized approaches to restore sensory feedback. These results need to be confirmed with additional subjects and during closed-loop experiments.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #3 (Public Review):
Hallast and coworkers identify a potentially novel complex Y chromosome structural rearrangement that is associated with male infertility in a carefully phenotyped European cohort. The authors interrogate the Y chromosome AFZc region in 1190 Estonian idiopathic male infertility cases of varying severity and 1134 controls (healthy young men or proven fathers). They replicate partial AFZc deletions and replicate a known gr/gr deletion association with comparable effect sizes. After conditioning on gr/gr deletion status, they identify an association with secondary b2/b4 duplications on case status, but with no accompanying observed effect on andrological sub-phenotypes.
The authors identify multiple non-syntenic DAZ/CDY1 deletion patterns that are consistent with a large inversion followed by deletion. The authors further infer that this putative inversion is fixed in a Y chromosome sub-lineage. Based on population haplotype frequency estimates they infer that a surprisingly large number of individuals harbouring the r2/r3 inversion have a subsequent deletion. They show through detailed phenotyping shows that r2/r3 inversion+deletion cases in their cohort have more severe disease.
Strengths:
1) Despite being a very common disease, idiopathic infertility is severely understudied, due in large part to difficulties in sample acquisition. More generally, sex chromosome genetic associations for common disease as a whole are understudied owing to their structural complexity and other technical issues. The authors should be applauded for attempting to overcome these challenges.
2) The putative finding of a large-effect common variant conferring risk to a common genetic disease is of great interest. The authors leverage the advantages of a logistically coherent health care system. The level of phenotypic detail of andrological parameters in both cases and controls is impressive and aid in biological interpretation of the genetic findings. For example, the distinction between azoo- versus oligozoo-spermia shed light on a potential meiotic disease aetiology. The endocrine values add important context.
3) The authors imply that the combination of the inversion+deletion risk allele favours a meiotic failure disease aetiology as opposed to a gene dosage aetiology. This is a potentially disruptive finding.
Weaknesses:
1) The authors do not replicate their association, raising the possibility of a false positive finding.
2) The study is underpowered to reliably detect variants of small effect, and underpowered in general. This is a common challenge in reproductive genetics.
3) The logical inferences (as opposed to direct measurement) made by the authors are elegant but add substantial uncertainty to the findings. Most notably, cytogenetic or long-read sequencing based validation of the inversion genotype would strengthen confidence in the study considerably.
If the genetic association is robust and the allele frequency estimates are well calibrated, the implications of this work are considerable. The locus could become a genetic biomarker for infertility. The locus could potentially account for a huge amount of variance in polygenic risk associated with infertility. The findings also raise a fascinating evolutionary conundrum as to how an allele associated with such an evolutionarily destructive phenotype could occur at such high frequencies. The authors briefly raise the possibility of age-dependent effects, but with extremely sparse data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
These authors report the identification of the function of a genetic determinant (dev1, formerly ydcO ) carried by the ICEBs1 element that increases fitness of the host strain by delaying the entry into the normal developmental pathway leading to biofilm formation and ultimately sporulation, such that the subpopulation expressing the product of dev1 increases in a mixed pool. An interesting novel aspect of the dev1 system is that it is co-regulated with ICEBs1 conjugation, and thus is only activated when the host strain is a minority of a mixed population; in this scenario the Dev1+ subpopulation is essentially cheating on the Dev-. Since expression of the Dev1 phenotype in an entire population would likely cause a crash, the ICE- population density-dependent regulation ensures that the fitness advantage disappears before the crash can occur. I think that the gene is interesting and this report adds a significant aspect to our understanding of the biology and evolution of ICE elements. Overall I am positive about this paper.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
In "KLF10 integrates circadian timing and sugar signaling to coordinate hepatic metabolism", Anthony Ruberto and colleagues characterize the role of the transcription factor KLF10 in circadian transcription and the transcriptional and physiological responses to hexose sugars in mouse hepatocytes. They confirm earlier reports that Klf10 is expressed rhythmically in mouse liver, with peak expression at ZT9. They show that Klf10 expression is induced by glucose and fructose and that hepatocyte-specific deletion of Klf10 exacerbates hyperglycemic and hepatosteatotic responses to 8 weeks of elevated sugar consumption. They use RNA sequencing and ChIP sequencing to define the complement of Klf10 target genes in hepatocytes and how they are regulated by glucose and fructose. Together their data support a model in which KLF10 limits the transcriptional induction of rate-limiting enzymes involved in gluconeogenesis and lipogenesis in response to elevated sugar consumption, thus mitigating the pathophysiological impact of high sugar diets. The experiments are mostly well designed, presented, and interpreted but several points require additional investigation and/or clarification. While the current manuscript suggests an integration of circadian timing and sugar signaling by KLF10, additional experiments to establish how some of the molecular and physiological effects are modulated by time of day are needed to better support that claim.
Strengths:
This study uses a combination of genetic, biochemical, and physiological approaches to investigate the hepatocyte-specific function of the transcription factor KLF10. Deletion of KLF10 specifically in hepatocytes distinguishes this study from other related work. Further, the characterization of global daily gene expression patterns in mouse liver is well designed and analyzed and establishes that hepatocyte-specific deletion of Klf10 remodels daily rhythms of gene expression in the liver. The combination of that analysis with ChIP sequencing provides powerful evidence to establish the hepatocyte-specific KLF10-dependent transcriptome and highlights its targeting of rate-limiting enzymes in lipogenic pathways. Together, the molecular and physiological analyses in this study provide compelling evidence that KLF10 plays a protective role in the context of excessive sugar consumption by limiting lipogenic gene expression pathways and thereby suppressing hepatic steatosis.
Weaknesses:
In its present form, this study does not thoroughly connect the in vitro and in vivo findings and misses the opportunity to fully characterize the role of KLF10 in circadian regulation of lipogenesis in response to excessive sugar consumption in vivo. It is unclear whether the concentrations of glucose and fructose used to stimulate primary hepatocytes are similar to those experienced in response to the dietary stimulus in vivo and there is no examination of the impact of sucrose on Klf10 expression or downstream gene expression. This omission complicates the interpretation of the response to the combined sugar stimulus in vivo, especially in light of a recent report that KLF10 deletion protects against hepatosteatosis caused by consumption of a high sucrose diet. It also does not examine how time of day influences KLF10-dependent gene regulation in response to sugar consumption. Without these analyses, it falls short of connecting the circadian and sugar-response pathways through KLF10.
-