Reviewer #2 (Public Review):
This paper uses the mouse mesoscale connectome, combined with data on the number and fraction of PV-type interneurons, to build a large-scale model of working memory activity in response to inputs from various sensory modalities. The key claims of the paper are two-fold. First, previous work has shown that there does not appear to be an increase in the number of excitatory inputs (spines) per pyramidal neuron along the cortical hierarchy (and this increase was previously suggested to underlie working memory activity occurring preferentially in higher areas along the cortical hierarchy). Thus, the claim is that a key alternative mechanism in the mouse is the heterogeneity in the fraction of PV interneurons. Second, the authors claim to develop novel cell type-specific graph theory.
I liked seeing the authors put all of the mouse connectomic information into a model to see how it behaved and expect that this will be useful to the community at large as a starting point for other researchers wishing to use and build upon such large-scale models. However, I have significant concerns about both primary scientific claims. With regard to the PV fraction, this does not look like a particularly robust result. First, it's a fairly weak result to start, much smaller than the simple effect of the location of an area along the cortical hierarchy (compare Figs. 2D, 2E; 3C, 3D). Second, the result seems to be heavily dependent upon having subdivided the somatosensory cortex into many separate points and focusing the main figures of the paper (and the only ones showing rates as a function of PV cell fraction) solely on simulations in which the sensory input is provided to the visual cortex. With regards to the claim of novel cell type-specific graph theory, there doesn't appear to be anything particularly novel. The authors simply make sure to assign negative rather than positive weights to inhibitory connections in their graph-theoretic analyses.
Major issues:<br /> 1) Weakness of result on effect of PV cell fraction. Comparing Figures 2D and 2E, or 3C and 3D, there is a very clear effect of cortical hierarchy on firing rate during the delay period in Figures 2D and 3C. However, in Figure 2E relating delay period firing rate to PV cell fraction, the result looks far weaker. (And similarly for Figs. 3C, 3D, with the latter result not even significant). Moreover, the PV cell fraction results are dominated by the zero firing rate brain regions (as opposed to being a nice graded set of rates, both for zeros and non-zeros, as with the cortical hierarchy results of Figures 2D), and these zeros are particularly contributed to by subdividing somatosensory (SS) into many subregions, thus contributing many points at the lower right of the graph.<br /> Further, it should be noted that Figure 2E is for visual inputs. In the supplementary Figure 2 - supplement 1, the authors do apply sensory inputs to auditory and somatosensory cortex...but then only show the result that the delay period firing rate increases along the cortical hierarchy (as in Figure 2D for the visual input), but strikingly omit the plots of firing rate versus PV cell fraction. This omission suggests that the result is even weaker for inputs to other sensory modalities, and thus difficult to justify as a defining principle.
2) Graph theoretic analyses. The main comparison made is between graph-theoretic quantities when the quantities account for or do not account for, PV cells contributing negative connection strengths. This did not seem particularly novel.
3) It was not clear to me how much the cell-type specific loop strength results were a result of having inhibitory cell types, versus were a result of the assumption ('counter-stream inhibitory bias') that there is a different ratio of excitation to inhibition in top-down versus bottom-up connections. It seems like the main results were more a function of this assumed asymmetry in top-down vs. bottom-up than it was a function of just using cell-type per se. That is, if one ignored inhibitory neurons but put in the top-down vs. bottom-up asymmetry, would one get the same basic results? And, likewise, if one didn't assume asymmetry in the excitatory vs. inhibitory connectivity in top-down versus bottom-up connections, but kept the Pyramidal and PV cell fraction data, would the basic result go away?
4) In the Discussion, there is a third 'main finding' claimed: "when local recurrent excitation is not sufficient to sustain persistent activity...distributed working memory must emerge from long-range interactions between parcellated areas". Isn't this essentially true by definition?
5) I don't know if it's even "CIB" that's important or just "any asymmetry (excitatory or inhibitory) between top-down vs. bottom-up directions along the hierarchy". This is worth clarifying and thinking more about, as assigning this to inhibition may be over-attributing a more basic need for asymmetry to a particular mechanism.
Other questions:<br /> 1) Is it really true that less than 2% of neurons are PV neurons for some areas? Are there higher fractions of other inhibitory interneuron types for these areas, and does this provide a confound for interpreting model results that don't include these other types?<br /> Maybe related to the above, the authors write in the Results that local excitation in the model is proportional to PV interneuron density. However, in the methods, it looks like there are two terms: a constant inhibition term and a term proportional to density. Maybe this former term was used to account for other cell types. Also, is local excitation in the model likewise proportional to pyramidal interneuron density (and, if not, why not?)?
2) Non-essential areas. The categorization of areas as 'non-essential' as opposed to, e.g. "inputs" is confusing. It seems like the main point is that, since the delay period activity as a whole is bistable, certain areas' contributions may be small enough that, alone, they can't flip the network between its bistable down and up states. However, this does not mean that such areas (such as the purple 'non-essential' area in Figure 5a) are 'non-essential' in the more common sense of the word. Rather, it seems that the purple area is just a 'weaker input' area, and it's confusing to thus label it as 'non-essential' (especially since I'd guess that, whether or not an area flips on/off the bistability may also depend on the assumed strength of the external input signal, i.e. if one made the labeled 'input area' a bit too weak to alone trigger the bistability, then the purple area might become 'essential' to cross the threshold for triggering a bistable-up state).
3) Relation between 'core areas' and loop strength. The measure underlying 'prediction accuracy = 0.93' in Figure 6D and the associated results seems incomplete by being unidirectional. It captures the direction: 'given high cell-type specific loop strength, then core area' but it does not capture the other direction: 'given a cell is part of a core area, is its predicted cell-type specific loop strength strong?'. It would be good to report statistics for both directions of association between loop strength and core area.
4) More justification would be useful on the assumption that the reticular nucleus provides tonic inhibition across the entire thalamus.
5) Is NMDA/AMPA ratio constant across areas and is this another difference between mice and monkeys? I am aware of early work in the mouse (Myme et al., J. Neurophys., 2003) suggesting no changes at least in comparing two brain regions' layer 2/3, but has more work been performed related to this?
6) Are bilateral connections between the left and right sides of a given area omitted and could those be important?