Reviewer #2 (Public Review):
The authors aim to test the hypothesis that dopamine mediates the evaluation of temporal costs in intertemporal choice in humans, with a specific goal of synthesizing the competing accounts and previous results regarding whether dopamine increases or decreases evaluation of delays in comparing differently delayed future rewards. To do this, they computationally dissect the impact of the drug amisulpride, a D2R antagonist, using a variant of a sequential sampling model, the drift-diffusion model (DDM), that is well established in decision-making literature as a cognitive process model of choice. This model allows the dissociation of starting bias from the rate at which decision evidence is integrated ('drift'), which the authors map to different accounts of the role of dopamine: the temporal proximity of an outcome is proposed to impact bias, while the cost of a delay to impact the drift rate of evidence evaluation/accumulation. Consistent with previous results, and perhaps integrating conflicting findings, the authors find that d2R blockade impacts both bias and drift rate in a cohort of 50 participants, demonstrating dopaminergic action at this receptor is implicated in dissociable components of intertemporal choice, with D2R block reducing the bias towards sooner, more temporally proximate rewards as well as enhancing the contrast between reward magnitudes irrespective of delay, effectively diminishing the effect of delay in the drug condition. These effects are consistent across a small subset of alternative models, confirming the multiple cognitive mechanisms through which D2R block impacts intertemporal choice is a robust feature of decisions on this task.
Overall, this study is a detailed dissection of the specific effects of amisulpride on a type of future-oriented, hypothetical intertemporal choice, and provides consistent evidence integrating conflicting accounts that implicate dopaminergic signaling on evaluation of the cognitive costs, such as a delay, on choice. However the specificity of the empirical intervention and the task design limits the interpretation of the broader dopaminergic mechanisms at play in intertemporal choice, especially given the complexity of receptor specificity of this drug, dopamine precursor availability and individual differences and the specifics of the intertemporal choice in this task. As it stands, the results contribute an interesting, synthesized account of how D2R manipulation can impact evaluation of delays in multiple ways, that will likely be useful for motivating future studies and more detailed computational assessments of the cognitive process-level components of intertemporal choice more generally.
The focus of this study is important, and delineating the role of DA in intertemporal choice is of high relevance given DA disfunction is prevalent in many psychiatric disorders and a key target of pharmacological treatment. While the hypotheses of the current study are framed with respect to "costs", the task used by the authors reduces these to evaluation of a hypothetical delay, one which the participants do not necessarily experience in the context of the task. In some respects this is reasonable, given the prevalence of this task paradigm in testing temporal aspects of choice in humans in an economic sense. However, humans are also notoriously subject to framing effects and the impact of instructions in cognitive tasks like these, which can limit the generality of the conclusions, and in particular the specific ways in which a delay can be interpreted as costly (for eg cost as loss of potential earnings, cost as effortful waiting, cost as computational/simulation cost in future evaluation). Given the hypothesis recruits the idea of cost in assessing the role of dopamine, testing for generality in the effects of amisulpride in related but differently framed tasks seems critical for making this link in a general sense, and in connecting it to the previous studies in the literature the authors point to as demonstrating conflicting effects.
Further, while the study aims to test the actions of dopamine broadly, the empirical manipulation is limited to the action of amisulpride, a D2R anatgonist. There is little to no discussion of, or control for, the relationship between dopaminergic action at D2 receptors (the site of amisulpride effects) and wider mechanisms of dopaminergic action at other sites eg D1-like receptors, and the interplay between activation at these two receptor types alongside baseline levels of dopamine concentration. This is necessary for a comprehensive account of dopamine effects on intertemporal choice as the authors aim to test, as opposed to a specific test of the role of the D2 receptor, which is what the study achieves. On a related note, in some preparations at least, amisulpride also acts at some of the 5-HT receptors, raising the possibility of a non-dopaminergic mechanism by which this drug might impact intertemporal decisions. This possibility, while it would not be expected to act without dopaminergic effects as well, is consistent with established effects of serotonin on waiting behaviors and patience. Granted, the limits of pharmacology in humans does not necessarily mean this can be controlled for, it should be kept in mind with a systemic manipulation such as this.
Overall the modeling methods are robust and appropriate for the specific test of decision impacts of D2R blockade, and include several prima facie variable alternative models for comparison. Some caution is warranted, since there are not many trials per subject, and some trials are discarded as well as outliers, which raises the question of power. Given the models are fit hierarchically, which gives both group-level and individual-level parameter estimates, the elements are there to probe more deeply into individual differences, and to test how reliably this approach can dissociate the dual effects of bias and drift rate at the individual level, and perhaps correlate it with other informative subject measures of either dopamine activity/capacity or other dopamine-dependent behaviors. Alternative DDMs might also capture some of this individual variation, with meaningful differences potentially in model comparison at the individual level. It should be noted that the scope of these models do not exhaust the ways in which proximity (here, temporal) of rewards and contrast between choice options might be incorporated into a cognitive process model account of choice; all alternatives here rest on the same implicit 2-alternative forced choice assumption of the DDM, and the assumptions of this model are not here tested against other accounts of choice, for example the linear ballistic accumulator (LBA) and its derivatives. Further, the concept of proximity as a global feature of a trial (on average, how soon are these options overall?) is never tested on my read of the alternative models.