9,469 Matching Annotations
  1. Oct 2024
    1. Reviewer #1 (Public review):

      In this study, Hama et al. explored the molecular regulatory mechanisms underlying the formation of the ULK1 complex. By employing the AlphaFold structural prediction tool, they showed notable differences in the complex formation mechanisms between ULK1 in mammalian cells and Atg1 in yeast cells. Their findings revealed that in mammalian cells, ULK1, ATG13, and FIP200 form a complex with a stoichiometry of 1:1:2. These predicted interaction regions were validated through both in vivo and in vitro assays, enhancing our understanding of the molecular mechanisms governing ULK1 complex formation in mammalian cells. Importantly, they identified a direct interaction between ULK1 and FIP200, which is crucial for autophagy. However, some aspects of this manuscript require further clarification, validation, and correction by the authors.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors have tried to dissect the functions of Proteasome activator 28γ (PA28γ) which is known to activate proteasomal function in an ATP-independent manner. Although there are multiple works that have highlighted the role of this protein in tumours, this study specifically tried to develop a correlation with Complement C1q binding protein (C1QBp) that is associated with immune response and energy homeostasis.

      Strengths:

      The observations of the authors hint that beyond PA28y's association with the proteasome, it might also stabilize certain proteins such as C1QBP which influences energy metabolism.

      Weaknesses:

      The strength of the work also becomes its main drawback. That is, how PA28y stabilizes C1QBP or how C1QBP elicits its pro-tumourigenic role under PA28y OE.<br /> In most of the experiments, the authors have been dependent on the parallel changes in the expression of both the proteins to justify their stabilizing interaction. However, this approach is indirect at best and does not confirm the direct stabilizing effect of this interaction. IP experiments do not indicate direct interaction and have some quality issues. The upregulation of C1QBP might be indirect at best. It is quite possible that PA28y might be degrading some secondary protein/complex that is responsible for C1QBP expression. Since the core idea of the work is PA28y direct interaction with C1QBP stabilizing it, the same should be demonstrated in a more convincing manner.

      In all of the assays, C1QBP has been detected as doublet. However, the expression pattern of the two bands varies depending on the experiment. In some cases, the upper band is intensely stained and in some the lower bands. Do C1QBP isoforms exist and are they differentially regulated depending on experiment conditions/tissue types?

      Problems with the background of the work: Line 76. This statement is far-fetched. There are presently a number of works of literature that have dealt with the metabolic programming of OSCC including identification of specific metabolites. Moreover, beyond the estimation of OCR, the authors have not conducted any experiments related to metabolism. In the Introduction, the significance of this study and how it will extend our understanding of OSCC needs to be elaborated.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate the role of HSPA2 during mouse preimplantation development. Knocking down HSPA2 in zygotes, the authors describe lower chances of developing into blastocysts, which show a reduced number of inner cell mass cells. They find that HSPA2 mRNA and protein levels show some heterogeneity among blastomeres at the 4-cell stage and propose that HSPA2 could contribute to skewing their relative contribution to embryonic lineages. To test this, the authors try to reduce HSPA2 expression in one of the 2-cell stage blastomere and propose that it biases their contribution to towards extra-embryonic lineages. To explain this, the authors propose that HSPA2 would interact with CARM1, which controls chromatin accessibility around genes regulating differentiation into embryonic lineage.

      Strengths:

      (1) The study offers simple and straightforward experiments with large sample sizes.

      (2) Unlike most studies in the field, this research often relies on both mRNA and protein levels to analyse gene expression and differentiation.

      Weaknesses:

      (1) Image and statistical analyses are not well described.

      (2) The functionality of the overexpression construct is not validated.

      (3) Tracking of KD cells in embryos injected at the 2-cell stage with GFP is unclear.

      (4) A key rationale of the study relies on measuring small differences in the levels of mRNA and proteins using semi-quantitative methods to compare blastomeres. As such, it is not possible to know whether those subtle differences are biologically meaningful. For example, the lowest HSPA2 level of the embryo with the highest level is much higher than the top cell from the embryo with the lowest level. What does this level mean then? Does this mean that some blastomeres grafted from strong embryos would systematically outcompete all other blastomeres from weaker embryos? That would be very surprising. I think the authors should be more careful and consider the lack of quantitative power of their approach before reaching firm conclusions. Although to be fair, the authors only follow a long trend of studies with the same intrinsic flaw of this approach.

      (5) Some of the analyses on immunostaining do not take into account that this technique only allows for semi-quantitative measurements and comparisons.<br /> a) Some of the microscopy images are shown with an incorrect look-up table.<br /> b) Some of the schematics are incorrect and misleading.

    1. Reviewer #1 (Public review):

      Summary:

      This is a comprehensive study that clearly and deeply investigates the function of GATA6 in human early cardiac development.

      Strengths:

      This study combines hESC engineering, differentiation, detailed gene expression, genome occupancy, and pathway modulation to elucidate the role of GATA6 in early cardiac differentiation. The work is carefully executed and the results support the conclusions. The use of publicly available data is well integrated throughout the manuscript. The RIME experiments are excellent.

      Weaknesses:

      Much has been known about GATA6 in mesendoderm development, and this is acknowledged by the authors.

    1. Reviewer #1 (Public Review):

      In the current manuscript, the authors use theoretical and analytical tools to examine the possibility of neural projections to engage ensembles of synaptic clusters in active dendrites. The analysis is divided into multiple models that differ in the connectivity parameters, speed of interactions, and identity of the signal (electric vs. second messenger). They first show that random connectivity almost ensures the representation of presynaptic ensembles. As expected, this convergence is much more likely for small group sizes and slow processes, such as calcium dynamics. Conversely, fast signals (spikes and postsynaptic potentials) and large groups are much less likely to recruit spatially clustered inputs. Dendritic nonlinearity in the postsynaptic cells was found to play a highly important role in distinguishing these clustered activation patterns, both when activated simultaneously and in sequence. The authors tackled the difficult issue of noise, showing a beneficiary effect when noise 'happens' to fill in gaps in a sequential pattern but degraded performance at higher background activity levels. Last, the authors simulated selectivity to chemical and electrical signals. While they find that longer sequences are less perturbed by noise, in more realistic activation conditions, the signals are not well resolved in the soma.

      While I think the premise of the manuscript is worth exploring, I have a number of reservations regarding the results.

      (1) In the analysis, the authors made a simplifying assumption that the chemical and electrical processes are independent. However, this is not the case; excitatory inputs to spines often trigger depolarization combined with pronounced calcium influx; this mixed signaling could have dramatic implications on the analysis, particularly if the dendrites are nonlinear (see below)

      (2) Sequence detection in active dendrites is often simplified to investigating activation in a part of or the entirety of individual branches. However, the authors did not do that for most of their analysis. Instead, they treat the entire dendritic tree as one long branch and count how many inputs form clusters. I fail to see why simplification is required and suspect it can lead to wrong results. For example, two inputs that are mapped to different dendrites in the 'original' morphology but then happen to fall next to each other when the branches are staggered to form the long dendrites would be counted as neighbors.

      (3) The simulations were poorly executed. Figures 5 and 6 show examples but no summary statistics. The authors emphasize the importance of nonlinear dendritic interactions, but they do not include them in their analysis of the ectopic signals! I find it to be wholly expected that the effects of dendritic ensembles are not pronounced when the dendrites are linear.

      To provide a comprehensive analysis of dendritic integration, the authors could simulate more realistic synaptic conductances and voltage-gated channels. They would find much more complicated interactions between inputs on a single site, a sliding temporal and spatial window of nonlinear integration that depends on dendritic morphology, active and passive parameters, and synaptic properties. At different activation levels, the rules of synaptic integration shift to cooperativity between different dendrites and cellular compartments, further complicated by nonlinear interactions between somatic spikes and dendritic events.

      While it is tempting to extend back-of-the-napkin calculations of how many inputs can recruit nonlinear integration in active dendrites, the biological implementation is very different from this hypothetical. It is important to consider these questions, but I am not convinced that this manuscript adequately addressed the questions it set out to probe, nor does it provide information that was unknown beforehand.

  2. Sep 2024
    1. This, under the circumstances, has been justly characterized by one of the witnesses {cc}(Montani, the confectioner,){cc} as an expression of remonstrance or expostulation.

      Not only was I surprised, but the witnesses in the story were as well. This surprise could be related to the truth being revealed or the curiosity about who is responsible.

    2. The throat of the old lady was not merely cut, but the head absolutely severed from the body

      The passage shows the cruelness of an animal and also illustrates the behavior of animals being skilled at imitation. Though it did it unconsciously, it’s also harmful.

    3. “The man who ran up against you as we entered the street — it may have been fifteen minutes ago.”

      Showing Dupin's prowess in deduction and his unpredictable personality through a random dialogue. Even before the case officially begins, let the reader understand his character

    4. Coincidences, in general, are great stumbling-blocks in the way of that class of thinkers who have been educated to know nothing{q} of the theory of probabilities

      I am not quite sure about the meaning of this sentence, is it means that normal people over interpreting the coincidences as the motivation of murderer?

    5. They must, then, have the power of fastening themselves

      I think the detective is smart. When he find the sash is difficult to be opened and needed to be fasten inside, he doesn’t quit the possibility that murderer could escape from the window but try to find if the window can fasten by itself.

    6. in whose tones, even, denizens of the five great divisions of Europe could recognise nothing familiar! You will say that it might have been the voice of an Asiatic

      When it comes to the crime, we will assume that it is committed by human, so the unusual sound could be interpreted as the terrified scream of the women or the shout of the murder; however, it couldn’t be recognized as any kinds of language, implying that the murderer might not be a human.

    7. The analytical power should not be confounded with simple ingenuity; for while the analyst is necessarily ingenious, the ingenious man is often remarkably{z} incapable of analysis.

      This may surprise you because it suggests that being clever doesn’t mean someone can analyze things well, which goes against the common belief that cleverness and analytical skill go hand in hand.

    1. Reviewer #1 (Public review):

      Summary

      In this manuscript, Day et al. present a high-throughput version of expansion microscopy to increase the throughput of this well-established super-resolution imaging technique. Through technical innovations in liquid handling with custom-fabricated tools and modifications to how the expandable hydrogels are polymerized, the authors show robust ~4-fold expansion of cultured cells in 96-well plates. They go on to show that HiExM can be used for applications such as drug screens by testing the effect of doxorubicin on human cardiomyocytes. Interestingly, the effects of this drug on changing DNA organization were only detectable by ExM, demonstrating the utility of HiExM for such studies.

      Overall, this is a very well-written manuscript presenting an important technical advance that overcomes a major limitation of ExM - throughput. As a method, HiExM appears extremely useful and the data generally support the conclusions.

      Strengths

      Hi-ExM overcomes a major limitation of ExM by increasing the throughput and reducing the need for manual handling of gels. The authors do an excellent job of explaining each variation introduced to HiExM to make this work and thoroughly characterize the impressive expansion isotropy. The dox experiments are generally well-controlled and the comparison to an alternative stressor (H2O2) significantly strengthens the conclusions.

      Weaknesses

      (1) It is still unclear to me whether or not cells that do not expand remain in the well given the response to point 1. The authors say the cells are digested and washed away but then say that there is a remaining signal from the unexpanded DNA in some cases. I believe this is still a concern that potential users of the protocol should be aware of.

      (2) Regarding the response to point 9, I think this information should be included in the manuscript, possibly in the methods. It is important for others to have a sense of how long imaging may take if they were to adopt this method.

    1. Joint Public Review:

      TRPML1 functions as a lysosomal ion channel whose variants are associated with lysosomal storage disorder mucolipidosis type IV. Understanding the structure and function of sites involved in the allosteric control TRPML1 may provide new molecular moieties to target with prototypic drugs.

      Gan et al provide the first high resolution cryo-EM structure of a mutant (Y404W) TRPML1 channel in the open state without any activating ligands. This new structure demonstrates how a mutation at a site some distance away from the pore can influence channel gating. The authors provide compelling electrophysiology evidence which supports the proposed Y404W gain of function effect.

      The authors propose an allosteric mechanism whereby the engineered W404 sidechain provides extra van der Waals contacts within a pocket surrounded by helices of the voltage sensor-like domain (VSLD) and causes S4 bending which in turn opens the pore through the S4-S5 linker. Conversely, the authors functionally demonstrate that an alanine mutation at this site causes a loss of function. Although the authors do not provide a structure of the Y404A mutant, they propose that the alanine substitution disrupts the sidechain packing and likely destabilizes the open conformation.

      TRPML1 channels are regulated by PIP2 species in the cell. In the lysosomal membrane, PI(3,5)P2 activates the channel, whereas in the plasma membrane PI(4,5)P2 inhibits it. Towards understanding its lipid regulation, the authors solve a cryo-EM structure of TRPML1 bound to PI(4,5)P2 in the closed state and provide functional evidence that PI(4,5)P2 occupancy inhibits TRPML1 currents.

      Within this same structure, the authors observe a density which may be attributed to sphingomyelin (or possibly phosphocholine). Using electrophysiology on WT and Y404W channels, the authors report an antagonist effect of sphingomyelin on TRPML1 currents.

      Taken together, the study provides convincing evidence for a gating (opening/closing) mechanism of the TRPML1 pore which can be allosterically regulated by altered side-chain packing and by lipid interactions within the VSLD.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Meissner and colleagues described a novel take on a classic social cognition paradigm developed for marmosets. The classic pull task is a powerful paradigm that has been used for many years across numerous species, but its analog approach has several key limitations. As such, it has not been feasible to adopt the task for neuroscience experiments. Here the authors capture the spirit of the classic task but provide several fundamental innovations that modernize the paradigm - technically and conceptually. By developing the paradigm for marmosets, the authors leverage the many advantages of this primate model for studies of social brain functions and their particular amenability to freely-moving naturalistic approaches.

      Strengths:

      The current manuscript describes one of the most exciting paradigms in primate social cognition to be developed in many years. By allowing for freely-moving marmosets to engage in high numbers of trials, while precisely quantifying their visual behavior (e.g. gaze) and recording neural activity this paradigm has the potential to usher in a new wave of research on the cognitive and neural mechanisms underlying primate social cognition and decision-making. This paradigm is an elegant illustration of how naturalistic questions can be adapted to more rigorous experimental paradigms. Overall, I thought the manuscript was well written and provided sufficient details for others to adopt this paradigm.

    1. Reviewer #1 (Public review):

      Summary:

      Understanding large-scale neural activity remains a formidable challenge in neuroscience. While several methods have been proposed to discover the assemblies from such large-scale recordings, most of previous studies do not explicit modeling the temporal dynamics. This study is an attempt to uncover the temporal dynamics of assemblies using a tool that have been establish in other domains.

      The authors previously introduced the compositional Restricted Boltzmann Machine (cRBM) to identify neuron assemblies in zebrafish brain activity. Building upon this, they now employ the Recurrent Temporal Restricted Boltzmann Machine (RTRBM) to elucidate the temporal dynamics within these assemblies. By introducing recurrent connections between hidden units, RTRBM could retrieve neural assemblies and their temporal dynamics from simulated and zebrafish brain data.

      Strengths:

      The RTRBM has been previously used in other domains. Training the model has been already established. This study is an application of such model to neuroscience. Overall, the paper is well-structured and the methodology is robust, the analysis is solid to support the authors claim.

      Weaknesses:

      The overall degree of advance is very limited. The performance improvement by RTRBM compared to their cRBM is marginal, and insights into assembly dynamics are limited.

      (1) The biological insights from this method are constrained. Though the aim is to unravel neural ensemble dynamics, the paper lacks in-depth discussion on how this method enhances our understanding of zebrafish neural dynamics. For example, the dynamics of assemblies can be analyzed using various tools such as dimensionality reduction methods once we have identified them using cRBM. What information can we gain by knowing the effective recurrent connection between them? It would be more convincing to show this in real data.

      (2) Including predicted and measured neural activity traces could aid readers in evaluating model efficacy. The current version only contains comparison of the statistics, such as mean and covariance.

    1. Reviewer #1 (Public Review):

      Summary:

      This study provides valuable insights into the therapeutic effects of two parathyroid hormone (PTH) analogs on bone regeneration and osseointegration. The research is methodologically sound, employing a robust animal model and a comprehensive array of analytical techniques, including micro-CT, histological/histomorphometric analyses, and serum biochemical analysis.

      Strengths:

      The use of a large animal model, which closely mimics postmenopausal osteoporosis in humans, enhances the study's relevance to clinical applications. The study is well-structured, with clear objectives, detailed methods, and a logical flow from introduction to conclusion. The findings are significant, demonstrating the potential of rhPTH(1-34) and dimeric R25CPTH(1-34) in enhancing bone regeneration, particularly in the context of osteoporosis.

      Weaknesses:

      There are no major weaknesses.

    1. Reviewer #1 (Public review):

      Summary:

      This paper presents a mechanistic study of rDNA origin regulation in yeast by SIR2. Each of the ~180 tandemly repeated rDNA gene copies contains a potential replication origin. Early-efficient initiation of these origins is suppressed by Sir2, reducing competition with origins distributed throughout the genome for rate-limiting initiation factors. Previous studies by these authors showed that SIR2 deletion advances replication timing of rDNA origins by a complex mechanism of transcriptional de-repression of a local PolII promoter causing licensed origin proteins (MCMcomplexes) to re-localize (slide along the DNA) to a different (and altered) chromatin environment. In this study, they identify a chromatin remodeler, FUN30, that suppresses the sir2∆ effect, and remarkably, results in a contraction of the rDNA to about one-quarter it's normal length/number of repeats, implicating replication defects of the rDNA. Through examination of replication timing, MCM occupancy and nucleosome occupancy on the chromatin in sir2, fun30, and double mutants, they propose a model where nucleosome position relative to the licensed origin (MCM complexes) intrinsically determines origin timing/efficiency. While their interpretations of the data are largely reasonable and can be interpreted to support their model, a key weakness is the connection between Mcm ChEC signal disappearance and origin firing. While the cyclical chromatin association-dissociation of MCM proteins with potential origin sequences may be generally interpreted as licensing followed by firing, dissociation may also result from passive replication and as shown here, displacement by transcription and/or chromatin remodeling. Moreover, linking its disappearance from chromatin in the ChEC method with such precise resolution needs to be validated against an independent method to determine the initiation site(s). Differences in rDNA copy number and relative transcription levels also are not directly accounted for, obscuring a clearer interpretation of the results. Nevertheless, this paper makes a valuable advance with the finding of Fun30 involvement, which substantially reduces rDNA repeat number in sir2∆ background. The model they develop is compelling and I am inclined to agree, but I think the evidence on this specific point is purely correlative and a better method is needed to address the initiation site question. The authors deserve credit for their efforts to elucidate our obscure understanding of the intricacies of chromatin regulation. At a minimum, I suggest their conclusions on these points of concern should be softened and caveats discussed. Statistical analysis is lacking for some claims.

      Strengths are the identification of FUN30 as suppressor, examination of specific mutants of FUN30 to distinguish likely functional involvement. Use of multiple methods to analyze replication and protein occupancies on chromatin. Development of a coherent model.

      Weaknesses are failure to address copy number as a variable; insufficient validation of ChEC method relationship to exact initiation locus; lack of statistical analysis in some cases.

      Review of revised version and response letter:

      In the response, the authors make some improvements by better quantifying 2D gels, adding some missing statistical analyses, analyzing the effect of fun30 on rDNA replication in strains with reduced rDNA copy number, and using ChIP-seq of MCMs to support the ChEC-seq data. However, these additions do not address the main issue that is at the heart of their model: where initiation precisely occurs and whether the location is altered in the mutant(s). Thus, mechanistic insight is limited.

      Under the section "Addressing Alternative Explanations", the authors claim that processes like transcription and passive replication cannot affect the displaced complex specifically. Why? They are not on same DNA (as mentioned in the Fig 1 legend).

      The model in Fig 7 implies that initiation sites are different in WT versus the mutants and this determines their timing/efficiency. But they also suggest that the same site might be used with different efficiencies in this response. I agree that both are possibilities and are not resolved.

      Supporting their model requires better resolution to determine the actual replication initiation site. While this may be challenging, it should be feasible with methods to map nascent strands like DNAscent, or Okazaki fragment mapping.

      The 2D gel analysis of strains with reduced rDNA copy numbers adequately addresses the copy number variable with regard to the replication effect.

      Overall, the paper is improved by providing additional data and improved analysis. The paper nicely characterizes the effect of Fun30. The model is reasonable but remains lacking in precise details of mechanism.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, Qiu and colleagues examined the effects of preovulatory (i.e., proestrous or late follicular phase) levels of circulating estradiol on multiple calcium and potassium channel conductances in arcuate nucleus kisspeptin neurons. Although these cells are strongly linked to a role as the "GnRH pulse generator," the goal here was to examine the physiological properties of these cells in a hormonal milieu mimicking late proestrus, the time of the preovulatory GnRH-LH surge. Computational modeling is used to manipulate multiple conductances simultaneously and support a role for certain calcium channels in facilitating a switch in firing mode from tonic to bursting. CRISPR knockdown of the TRPC5 channel reduced overall excitability, but this was only examined in cells from ovariectomized mice without estradiol treatment.

      Comments to address most recent author response:

      The concern regarding the CRISPR experiments being confined to OVX mice is that the results can only suggest that CRISPR-mediated knockdown of TRPC5 can, at best, phenocopy the OVX+E condition. A reciprocal experiment in the opposite direction (for example, that returning TRPC5 to OVX levels in OVX+E mice prevents the changes in firing activity and pattern typical of the OVX+E2 condition) would strengthen the indication that E2-sensitive changes in TRPC5 expression and function are critically important to surge function. Acknowledging this as a limitation of the studies would help to better contextualize the value of the CRISPR experiments to an understanding of surge mechanisms when done only in OVX conditions.

      The nature of the confusion regarding the consideration of OVX+E2 conditions in the computational model primarily arises from the methods description in the supplemental file: "The effect of E2 on ionic currents is modelled as a change in the maximum conductance parameter. For currents IM,IT, ICa and ITRPC5 this change is inferred from the qPCR data assuming that the conductance is directly proportional to the mRNA expression." If these were instead based on the whole-cell recordings as the authors now indicate in their response, then this description needs to be edited and clarified accordingly. Furthermore, the section states, "For ISK, IBK, Ileak, the OVX and OVX+E2 conductances are obtained from current-voltage relationships recorded from Kiss1ARH neurons in the absence/presence of iberiotoxin (BK blocker) and apamin (SK blocker). All other currents were assumed to be unaffected by E2." This section thus does not directly indicate that the recordings in the stated figures were used in the model, and moreover suggests that currents besides ISK, IBK, and Ileak were not different in OVX+E2 conditions.

      The prior evidence stated for correlation of mRNA and channel conductance is not explicitly cited in the manuscript. It is well known that post-translational modifications, physiological modulation of individual channel biophysical properties, and many other factors can influence the end output of a membrane conductance. Therefore, the authors should, at minimum, provide a literature citation supporting the assumption used here.

    1. Topic: Defining Distance Education Date: 1980 Course/Subject: Distance Education Studies

      Notes Main Idea The paper analyzes existing definitions of distance education and identifies six essential components that should be included in a comprehensive definition. The analysis covers different educational philosophies and institutional contexts for distance education.

      Key Definitions and Theorists Holmberg's Definition

      Distance education involves the separation of teacher and learner. Requires planned, structured learning materials and institutional support. French Law (Loi 71.556 du 12 juillet 1971)

      Defines distance education as learning where the teacher is not physically present, except for occasional tasks. Moore's Definition

      Highlights separation of teaching and learning behaviors. Emphasizes the use of technical media and the importance of two-way communication. Peters’ Definition

      Describes distance education as an industrialized form of education. Incorporates principles like division of labor, mass production, and mechanization in the teaching process. Six Essential Components of Distance Education Separation of Teacher and Student

      Physical and temporal separation in the teaching and learning process. Role of Educational Organization

      Planning, preparing, and providing learning materials and support. Use of Technical Media

      Communication between teacher and learner facilitated by print, radio, television, or computers. Provision of Two-Way Communication

      Opportunities for dialogue between teacher and learner. Possibility of Occasional Seminars

      Allowing for some face-to-face interaction for didactic or social purposes. Participation in an Industrialized Form of Education

      Incorporates aspects of industrial processes in the delivery of education, such as standardized materials and automated communication. Analysis and Discussion Educational Contexts and Models

      Different definitions cater to various levels and types of education (e.g., correspondence, open learning, external studies). Theoretical frameworks like Peters' focus on the structural separation and mechanization of distance education. Challenges and Misconceptions

      Confusion over terminology, such as correspondence study vs. distance education. Misunderstanding of the relationship between traditional and distance education models. Proposed Solution

      The term 'distance education' is suggested as the most suitable to encompass various forms and philosophies of education that involve separation of teacher and learner. Implications The need for clarity in defining distance education for consistent policy development and theoretical analysis. Importance of recognizing the distinct nature of distance education as an industrialized form of learning. Questions/Cues What are the key differences between Holmberg’s and Peters’ definitions of distance education? How does Keegan's six-component framework help in distinguishing distance education from other forms of non-traditional education? Why is Peters’ view on industrialization important in understanding distance education? Summary The paper provides a detailed analysis of distance education by examining prominent definitions and proposing a comprehensive framework. Keegan emphasizes the industrialized nature of distance education and the necessity for clear terminology to distinguish it from other educational forms.

      Reference Keegan, D. J. (1980). On defining distance education. Distance Education, 1(1), 13-36.

    1. Reviewer #1 (Public review):

      This manuscript describes soluble Uric Acid (sUA) as an endogenous inhibitor of CD38, affecting CD38 activity and NAD+ levels both in vitro and in vivo. Importantly, the inhibition constants calculated supports the claim that sUA inhibits CD38 under physiological conditions. These findings are of extreme importance to understand the regulation of an enzyme that has been shown to be the main NAD+/NMN-degrading enzyme in mammals, which impacts several metabolic processes and has major implications to understanding aging diseases. The manuscript is well written, the figures are self explanatory, and in the experiments presented, the data is very solid. The authors discuss the main limitations of the study, especially in regard to the in vivo results. As a whole, I believe that this is a very interesting manuscript that will be appreciated by the scientific community and that opens a lot of new questions in the field of metabolism and aging.

      During the revision process, the authors have performed new experiments to respond to relevant questions raised by the reviewers. In other cases, they have made changes in the text to improve the manuscript.

      I believe that this manuscript in its current form is a mature and relevant set of findings that deserve attention and future developments.

    1. Reviewer #1 (Public review):

      Summary:

      In previous work, the authors described necrosis-induced apoptosis (NiA) as a consequence of induced necrosis. Specifically, experimentally induced necrosis in the distal pouch of larval wing imaginal discs triggers NiA in the lateral pouch. In this manuscript, the authors confirmed this observation and found that while necrosis can kill all areas of the disc, NiA is limited to the pouch and to some extent to the notum, but is excluded from the hinge region. Interestingly and unexpectedly, signaling by the Jak/Stat and Wg pathways inhibits NiA. Further characterization of NiA by the authors reveals that NiA also triggers regenerative proliferation which can last up to 64 hours following necrosis induction. This regenerative response to necrosis is significantly stronger compared to discs ablated by apoptosis. Furthermore, the regenerative proliferation induced by necrosis is dependent on the apoptotic pathway because RNAi targeting the RHG genes is sufficient to block proliferation. However, NiA does not promote proliferation through the previously described apoptosis-induced proliferation (AiP) pathway, although cells at the wound edge undergo AiP. Further examination of the caspase levels in NiA cells allowed the authors to group these cells into two clusters: some cells (NiA) undergo apoptosis and are removed, while others referred to as Necrosis-induced Caspase Positive (NiCP) cells survive despite caspase activity. It is the NiCP cells that repair cellular damage including DNA damage and that promote regenerative proliferation. Caspase sensors demonstrate that both groups of cells have initiator caspase activity, while only the NiA cells contain effector caspase activity. Under certain conditions, the authors were also able to visualize effector caspase activity in NiCP cells, but the level was low, likely below the threshold for apoptosis. Finally, the authors found that loss of the initiator caspase Dronc blocks regenerative proliferation, while inhibiting effector caspases by expression of p35 does not, suggesting that Dronc can induce regenerative proliferation following necrosis in a non-apoptotic manner. This last finding is very interesting as it implies that Dronc can induce proliferation in at least two ways in addition to its requirement in AiP.

      Strengths:

      This is a very interesting manuscript. The authors demonstrate that epithelial tissue that contains a significant number of necrotic cells is able to regenerate. This regenerative response is dependent on the apoptotic pathway which is induced at a distance from the necrotic cells. Although regenerative proliferation following necrosis requires the initiator caspase Dronc, Dronc does not induce a classical AiP response for this type of regenerative response. In future work, it will be very interesting to dissect this regenerative response pathway genetically.

      Weaknesses:<br /> No weaknesses were identified.

    1. Reviewer #1 (Public review):

      Summary:

      This work develops a simple, rapid, low-cost methodology for assembling combinatorially complete microbial consortia using basic laboratory equipment. The motivation behind this work is to make the study of microbial community interactions more accessible to laboratories that lack specialized equipment such as robotic liquid handlers or microfluidic devices. The method was tested on a library of Pseudomonas aeruginosa strains to demonstrate its practicality and effectiveness. It provided a means to explore the complex functional interactions within microbial communities and identify optimal consortia for specific functions, such as biomass production.

      Strengths:

      The primary strength of this manuscript lies in its accessibility and practicality. The method proposed by the authors allows any laboratory with standard equipment, such as multichannel pipettes and 96-well plates, to readily construct all possible combinations of microbial consortia from a given set of species. This greatly enhances access to full factorial designs, which were previously limited to labs with advanced technology.

      Another strength of the manuscript is the measurement and analysis of the biomass of all possible combinations of 8 strains of P. aeruginosa. This analysis provides a concrete example of how the authors' new methodology can be used to identify the best-performing communities and map pairwise and higher-order functional interactions.

      Notably, the authors do exceptionally well in providing a thorough description of the methodology, including detailed protocols and an R script for customizing the method to different experimental needs. This enhances the reproducibility and adaptability of the methodology, making it a valuable resource for researchers wishing to adopt this methodology.

      Weaknesses:

      While the methodology is robust and well-presented, there are some limitations that should be acknowledged more thoroughly. First, the method's scalability is an important factor. The authors indicate that it should be effective for up to 10-12 species, but there is no discussion of what sets this scale: time, amount of labor, consumables, the likelihood of error, sample volume, etc. Second, this methodology is tailored to construct communities where the abundance of each strain is identical in each combination. Therefore, combinations with a different number of strains also differ in the total initial amount of microbial cells. Second, variations in the initial proportions of the same set of strains cannot be readily explored. Third, the manuscript only discusses how to construct the combinations, and not how to assay them afterward (e.g. for community function, interspecific interactions, etc'). While details on how to achieve these goals are clearly outside the scope of this work, the use of biomass as an example function may obfuscate this caveat, which should be stated more explicitly.

    1. Reviewer #1 (Public review):

      Summary:

      Odor- and taste-sensing are mediated by two different systems, the olfactory and gustatory systems, and have different behavioral roles. In this study, Wei et al. challenge this dichotomy by showing that odors can activate gustatory receptor neurons (GRNs) in Drosophila to promote feeding responses, including the proboscis extension response (PER) that was previously thought to be driven only by taste. While previous studies suggested that odors can promote PER to appetitive tastants, Wei et al. go further to show that odors alone cause PER, this effect is mediated through sweet-sensing GRNs, and sugar receptors are required. The study also shows that odor detection by bitter-sensing GRNs suppresses PER. The authors' conclusions are supported by behavioral assays, calcium imaging, electrophysiological recordings, and genetic manipulations. The observation that both attractive and aversive odors promote PER leaves an open question as to why this effect is adaptive. Overall, the study sheds new light on chemosensation and multimodal integration by showing that odor and taste detection converge at the level of sensory neurons, a finding that is interesting and surprising while also being supported by another recent study (Dweck & Carlson, Sci Advances 2023).

      Strengths:

      (1) The main finding that odors alone can promote PER by activating sweet-sensing GRNs is interesting and novel.

      (2) The study uses video tracking of the proboscis to quantify PER rather than manual scoring, which is typically used in the field. The tracking method is less subjective and provides a higher-resolution readout of the behavior.

      (3) The study uses calcium imaging and electrophysiology to show that odors activate GRNs. These represent complementary techniques that measure activity at different parts of the GRN (axons versus dendrites, respectively) and strengthen the evidence for this conclusion.

      (4) Genetic manipulations show that odor-evoked PER is primarily driven by sugar GRNs and sugar receptors rather than olfactory neurons. This is a major finding that distinguishes this work from previous studies of odor effects on PER and feeding (e.g., Reisenman & Scott, 2019; Shiraiwa, 2008) that assumed or demonstrated that odors were acting through olfactory neurons.

      Weaknesses/Limitations:

      1) The authors may want to discuss why PER to odors alone has not been previously reported, especially as they argue that this is a broad effect evoked by many different odors. Previous studies testing the effect of odors on PER only observed odor enhancement of PER to sugar (Oh et al., 2021; Reisenman & Scott, 2019; Shiraiwa, 2008) and some of these studies explicitly show no effect of odor alone or odor with low sugar concentration; regardless, the authors likely would have noticed if PER to odor alone had occurred. Readers of this paper may also be aware of unpublished studies failing to observe an effect of PER on odor alone (including studies performed by this reviewer and unrelated work by other colleagues in the field), which of course the authors are not expected to directly address but may further motivate the authors to provide possible explanations.

      (2) Many of the odor effects on behavior or neuronal responses were only observed at very high concentrations. Most effects seemed to require concentrations of at least 10-2 (0.01 v/v), which is at the high end of the concentration range used in olfactory studies (e.g., Hallem et al., 2004), and most experiments in the paper used a far higher concentration of 0.5 v/v. It is unclear whether these are concentrations that would be naturally encountered by flies.

      (3) The calcium imaging data showing that sugar GRNs respond to a broad set of odors contrasts with results from Dweck & Carlson (Sci Adv, 2023) who recorded sugar neurons with electrophysiology and observed responses to organic acids, but not other odors. This discrepancy is not discussed.

      (4) Related to point #1, it would be useful to see a quantification of the percent of flies or trials showing PER for the key experiments in the paper, as this is the standard metric used in most studies and would help readers compare PER in this study to other studies. This is especially important for cases where the authors are claiming that odor-evoked PER is modulated in the same way as previously shown for sugar (e.g., the effect of starvation in Figure S4).

      (5) Given the novelty of the finding that odors activate sugar GRNs, it would be useful to show more examples of GCaMP traces (or overlaid traces for all flies/trials) in Figure 3. Only one example trace is shown, and the boxplots do not give us a sense of the reliability or time course of the response. A related issue is that the GRNs appear to be persistently activated long after the odor is removed, which does not occur with tastes. Why should that occur? Does the time course of GRN activation align with the time course of PER, and do different odors show differences in the latency of GRN activation that correspond with differences in the latency of PER (Figure S1A)?

      (6) Several controls are missing, and in some cases, experimental and control groups are not directly compared. In general, Gal4/UAS experiments should include comparisons to both the Gal4/+ and UAS/+ controls, at least in cases where control responses vary substantially, which appears to be the case for this study. These controls are often missing, e.g. the Gal4/+ controls are not shown in Figure 2C-G and the UAS/+ controls are not shown in Figure 2J-L (also, the legend for the latter panels should be revised to clarify what the "control" flies are). For the experiments in Figure S5, the data are not directly compared to any control group. For several other experiments, the control and experimental groups are plotted in separate graphs (e.g., Figure 2C-G), and they would be easier to visually compare if they were together. In addition, for each experiment, the authors should denote which comparisons are statistically significant rather than just reporting an overall p-value in the legend (e.g., Figure 2H-L).

      (7) Additional controls would be useful in supporting the conclusions. For the Kir experiments, how do we know that Kir is effective, especially in cases where odor-evoked PER was not impaired (e.g., Orco/Kir)? The authors could perform controls testing odor aversion, for example. For the Gr5a mutant, few details are provided on the nature of the control line used and whether it is in the same genetic background as the mutant. Regardless, it would be important to verify that the Gr5a mutant retains a normal sense of smell and shows normal levels of PER to stimuli other than sugar, ruling out more general deficits. Finally, as the method of using DeepLabCut tracking to quantify PER was newly developed, it is important to show the accuracy and specificity of detecting PER events compared to manual scoring.

      (8) The authors' explanation of why both attractive and aversive odors promote PER (lines 249-259) did not seem convincing. The explanation discusses the different roles of smell and taste but does not address the core question of why it would be adaptive for an aversive odor, which flies naturally avoid, to promote feeding behavior.

    1. Reviewer #1 (Public review):

      Summary:

      Here the authors address how reinforcement-based sensorimotor adaptation changes throughout development. To address this question, they collected many participants in ages that ranged from small children (3 years old) to adulthood (18+ years old). The authors used four experiments to manipulate whether binary and positive reinforcement was provided probabilistically (e.g., 30 or 50%) versus deterministically (e.g.,100%), and continuous (infinite possible locations) versus discrete (binned possible locations) when the probability of reinforcement varied along the span of a large redundant target. The authors found that both movement variability and the extent of adaptation changed with age.

      Strengths:

      The major strength of the paper is the number of participants collected (n = 385). The authors also answer their primary question, that reinforcement-based sensorimotor adaptation changes throughout development, which was shown by utilizing established experimental designs and computational modelling.

      Weaknesses:

      Potential concerns involve inconsistent findings with secondary analyses, current assumptions that impact both interpretation and computational modelling, and a lack of clearly stated hypotheses.

      (1) Multiple regression and Mediation Analyses.

      The challenge with these secondary analyses is that:<br /> (a) The results are inconsistent between Experiments 1 and 2, and the analysis was not performed for Experiments 3 and 4,<br /> (b) The authors used a two-stage procedure of using multiple regression to determine what variables to use for the mediation analysis, and<br /> (c) The authors already have a trial-by-trial model that is arguably more insightful.

      Given this, some suggested changes are to:<br /> (a) Perform the mediation analysis with all the possible variables (i.e., not informed by multiple regression) to see if the results are consistent.<br /> (b) Move the regression/mediation analysis to Supplementary, since it is slightly distracting given current inconsistencies and that the trial-by-trial model is arguably more insightful.

      (2) Variability for different phases and model assumptions:

      A nice feature of the experimental design is the use of success and failure clamps. These clamped phases, along with baseline, are useful because they can provide insights into the partitioning of motor and exploratory noise. Based on the assumptions of the model, the success clamp would only reflect variability due to motor noise (excludes variability due to exploratory noise and any variability due to updates in reach aim). Thus, it is reasonable to expect that the success clamps would have lower variability than the failure clamps (which it obviously does in Figure 6), and presumably baseline (which provides success and failure feedback, thus would contain motor noise and likely some exploratory noise).

      However, in Figure 6, one visually observes greater variability during the success clamp (where it is assumed variability only comes from motor noise) compared to baseline (where variability would come from:<br /> (a) Motor noise.<br /> (b) Likely some exploratory noise since there were some failures.<br /> (c) Updates in reach aim.

      Given the comment above, can the authors please:<br /> (a) Statistically compare movement variability between the baseline, success clamp, and failure clamp phases.<br /> (b) The authors have examined how their model predicts variability during success clamps and failure clamps, but can they also please show predictions for baseline (similar to that of Cashaback et al., 2019; Supplementary B, which alternatively used a no feedback baseline)?<br /> (c) Can the authors show whether participants updated their aim towards their last successful reach during the success clamp? This would be a particularly insightful analysis of model assumptions.<br /> (d) Different sources of movement variability have been proposed in the literature, as have different related models. One possibility is that the nervous system has knowledge of 'planned (noise)' movement variability that is always present, irrespective of success (van Beers, R. J. (2009). Motor learning is optimally tuned to the properties of motor noise. Neuron, 63(3), 406-417). The authors have used slightly different variations of their model in the past. Roth et al (2023) directly compared several different plausible models with various combinations of motor, planned, and exploratory noise (Roth A, 2023, "Reinforcement-based processes actively regulate motor exploration along redundant solution manifolds." Proceedings of the Royal Society B 290: 20231475: see Supplemental). Their best-fit model seems similar to the one the authors propose here, but the current paper has the added benefit of the success and failure clamps to tease the different potential models apart. In light of the results of a), b), and c), the authors are encouraged to provide a paragraph on how their model relates to the various sources of movement variability and other models proposed in the literature.<br /> (e) line 155. Why would the success clamp be composed of both motor and exploratory noise? Please clarify in the text

      (3) Hypotheses:

      The introduction did not have any hypotheses of development and reinforcement, despite the discussion above setting up potential hypotheses. Did the authors have any hypotheses related to why they might expect age to change motor noise, exploratory noise, and learning rates? If so, what would the experimental behaviour look like to confirm these hypotheses? Currently, the manuscript reads more as an exploratory study, which is certainly fine if true, it should just be explicitly stated in the introduction. Note: on line 144, this is a prediction, not a hypothesis. Line 225: this idea could be sharpened. I believe the authors are speaking to the idea of having more explicit knowledge of action-target pairings changing behaviour.

    1. Reviewer #1 (Public review):

      Summary:

      Sidarta-Oliveira et al. present TopOMetry, a novel dimensionality reduction method based on the eigendecomposition of approximated Laplace-Beltrami Operator. Shortly, TopOMetry is an iterative version of the existing spectral methods (e.g., Laplacian Eigenmap or Diffusion map). It approximates the Laplacian operators twice, once in a "phenotypic space" and then once again in the eigenbases space. By doing this the approximated operator will contain more information of the manifold, which allows for more robust and accurate downstream analyses.

      Strengths:

      (1) The approach was rigorously tested based on synthetic and real single-cell RNA-seq datasets.

      (2) The package is well-made and easily scalable to millions of cells.

      (3) The comprehensive documentation helps the end-users to run desired analyses.

      Weaknesses:

      (1) The method is an extension of the current state-of-art methods, not a fundamentally new one.

      (2) Considering the target readers, the paper contains a lot of jargon.

    1. Reviewer #1 (Public review):

      Summary:

      The signaling pathways regulating the immune response to bacteria and fungi have been well characterized in Drosophila. Using the recently identified anti-parasitoid effector Lectin24A as a read-out, this article describes the signaling pathways regulating the humoral response against parasites.

      Strengths:

      This study reveals a role of JAK-STAT, Toll, and GATA in the fat body in the regulation of Lectin24A. They also observe an enrichment of binding sites for NF-kB, STAT, and GATA factors upstream of ORFs of genes induced upon encapsulation. Based on this observation, they generalize their findings on the involvement of JAK-STAT, Toll, and Gata in the humoral response to encapsulation. Although roles for the Toll and JAK-STAT pathways in capsule formation have previously been identified, the merit of this article is in analyzing the roles of these pathways in the humoral response using a new gene readout that will be a precious tool in the community.

      Weaknesses:

      The data are mostly convincing, but not always analyzed with sufficient detail; their conclusions should be reinforced by monitoring Lectin24A gene expression by RT-qPCR, by adding additional time points and by using alternative genetic tools. Using read-outs of the Toll and Imd pathways as comparisons is also important. Thus, this paper is interesting and important in advancing our understanding of Drosophila immunity but not yet enough solid to reach definitive conclusions on the proposed claims.

    1. Reviewer #1 (Public review):

      Summary:

      Tian et al. investigated the effects of emotional signals in biological motion on pupil responses. In this study, subjects were presented with point-light biological motion stimuli with happy, neutral, and sad emotions. Their pupil responses were recorded with an eye tracker. Throughout the study, emotion type (i.e., happy/sad/neutral) and BM stimulus type (intact/inverted/non-BM/local) were systematically manipulated. For intact BM stimuli, happy BM induced a larger pupil diameter than neutral BM, and neutral BM also induced a larger pupil diameter than sad BM. Importantly, the diameter difference between happy and sad BM correlated with the autistic trait of individuals. These effects disappeared for the inverted BM and non-BM stimuli. Interestingly, both happy and sad emotions show superiority in pupil diameter.

      Strengths:

      (1) The experimental conditions and results are very easy to understand.<br /> (2) The writing and data presentation are clear.<br /> (3) The methods are sound. I have no problems with the experimental design and results.

    1. Reviewer #1 (Public Review):

      The authors use a previously established reporter comprising a slow- and a fast-folding fluorescent protein fused to a randomly-generated library of penta-peptides at its amino-terminus and a signal sequence for import into the endoplasmic reticulum (ER). They then determine the stability of these constructs in a high throughput FACS-sorting procedure and identify a set of peptides that route the construct to proteasomal degradation. Increasing the copy number of one of these peptides further decreases the stability of the construct. This polypeptide resembles a "degron" for ER proteins, because it also targets other ER proteins with different topological and folding properties for degradation. It only works when placed at the amino-terminus of a protein and utilizes components of the Hrd1 ubiquitin ligase complex, a well-established quality control ubiquitin ligase in the ER membrane. Importantly, the degron also targets ER-proteins in mammalian cells.

      The authors convincingly show that fusion of their newly identified degron to the amino terminus of ER-resident proteins with different topology suffices to target them for proteasomal degradation. The data for this are well-founded and contain appropriate controls. While technically sound, the study does only give superficial information on general properties of the degron and its recognition by cellular factors. Further simple experiments would have addressed a number of important points. The authors only provide data about the composition of the identified amino acid sections from the high-throughput approach and the statistical preference for certain amino acids at individual positions. They do not study degron composition experimentally by substituting individual amino acids with other residues and analyzing protein stability. Increasing the numbers of the initially identified degron pentamer increases substrate turnover, but the basis for this remains unclear. Each copy may be actively involved in better recognition, elongation of the degron may facilitate accessibility by recognition factors or multiplying the short amino acid stretch may generate new signatures at the amino-terminus that are more readily recognized by a quality control machinery. Consequently, this study does not allow conclusions to be drawn about general properties of degron composition and/or structure. The degron also functions with cytoplasmic proteins, suggesting that similar characteristics of a polypeptide attract the attention of quality control systems also in other cellular compartments. However, the authors did not pursue this finding further, e.g. by identifying factors for degron recognition in the cytoplasm. It would have been particularly interesting to test whether the degron would initiate degradation when placed at cytoplasmically-exposed amino termini of membrane-bound ER proteins. Information on degron properties is required to better understand principles of substrate recognition by protein quality control pathways and to design constructs for targeting endogenous proteins via proteolysis targeting chimeras (PROTACs).

    1. Reviewer 1 (Public Review):

      Multiple sclerosis (MS) is a debilitating autoimmune disease that causes loss of myelin in neurons of the central nervous system. MS is characterized by the presence of inflammatory immune cells in several brain regions as well as the brain barriers (meninges). This study aims to understand the local immune hallmarks in regions of the brain parenchyma that are adjacent to the leptomeninges in a mouse model of MS. The leptomeninges are known to be a foci of inflammation in MS and perhaps "bleed" inflammatory cells and molecules to adjacent brain parenchyma regions. To do so, they use novel technology called spatial transcriptomics so that the spatial relationships between the two regions remain intact. The study identifies canonical inflammatory genes and gene sets such as complement and B cells enriched in the parenchyma in close proximity to the leptomeninges in the mouse model of MS but not control. The manuscript is very well written and easy to follow. The results will become a useful resource to others working in the field and can be followed by time series experiments where the same technology can be applied to the different stages of the disease.

    1. Reviewer #1 (Public Review):

      This is a technically sound paper focused on a useful resource around the DRGP phenotypes which the authors have curated, pooled, and provided a user-friendly website. This is aimed to be a crowd-sourced resource for this in the future. The authors should make sure they coordinate as well as possible with the NC datasets and community and broader fly community.

    1. Reviewer #1 (Public Review):

      Kainate receptors play various important roles in synaptic transmission. The receptors can be divided into low affinity kainate receptors (GluK1-3) and high affinity kainate receptos (GluK4-5). The receptors can assemble as homomers (GluK1-3) or low-high affinity heteromers (GluK4-5). The functional diversity is further increased by RNA splicing. Previous studies have investigated C-terminal splice variants of GluK1, but GluK1 N-terminal (exon 9) insertions have not been previously characterized. In this study Dhingra et al investigate the functional implications of a GluK1 splice variant that inserts a 15 amino acid segment into the extracellular N-terminal region of the protein using whole-cell and excised outside-out electrophysiology.

      The authors convincingly show that the insertion profoundly impacts the function of GluK1-1a - the channels that have the insertion are slower to desensitize. The data also shows that the insertion changes the modulatory effects of Neto proteins, resulting in altered rates of desensitization and recovery from desensitization. To determine the mechanism by which the insertion exerts these functional effects, the authors perform pull-down assays of Neto proteins, and extensive mutagenesis on the insert.<br /> The electrophysiological part of the study is very rigorous and meticulous.

      The biggest weakness of the manuscript is the structural work. Due to issues with preferred orientation (a common problem in cryo-EM), the 3D reconstructions are at a low resolution (in the 5-8 Å range) and cannot offer much mechanistic insight into the effects of the insertion. The authors have opted to keep this data unchanged in the revised manuscript.

      Despite this, the study is a valuable contribution to the field because it characterizes a GluK1 variant that has not been studied before and highlights the functional diversity that exists within the kainate receptor family.

    1. Reviewer #1 (Public Review):

      This manuscript addresses the regulation of the osmosensing protein kinases, WNK1 and WNK3. Prior work by the authors has shown that these enzymes are activated by PEG400 or ethylene glycol and inhibited by chloride ion, and that activation is associated with a conformational transition from dimer to monomer. In X-ray structures of the WNK1/SA inactive dimer, a water-mediated hydrogen bond network was observed between the catalytic loop (CL) and the activation loop (AL), named CWN1. This led to the proposal that bound water may be part of the osmosensing mechanism.

      The current study carries this work further, by applying PEG400 to Xtals of dimeric WNK1/SA. This results in a change in kinase conformation and space group, along with 4-9 fewer waters in CWN1 and the complete disappearance of another water cluster (CWN2) located at the dimer interface. Six conserved residues lining the CWN1 pocket in WNK3 are mutated to determine effects on activity and inhibition by chloride ion (measured by AL autophosphorylation) and monomer-dimer interconversion (light scattering).

      The results show that two mutants (E314Q/A in WNK3) at a site central to the water cluster result in increased kinase activity (autophosphorylation), and increased SLS, interpreted as aggregation. Three sites (D279A, Y346F, M301A) inhibit kinase activity with varying effects on oligomerization - Y346A and M301A retain monomer-dimer ratios similar to WT while D279N promotes aggregation. K236A and K307A show activity and monomer:dimer ratios similar to WT. Selected mutants (E314Q, D279N, Y346F) and WT appear to retain osmosensitivity with comparable activation by PEG400.

      The study concludes that osmolytes may activate the kinase by removing waters from the CWN1 and CWN2 clusters, suggesting that waters might be considered allosteric ligands that promote the inactive structure of WNKs. The differing effects of mutations may be ascribed to disruption of the water networks as well as inhibitory perturbations at the active site.

      Comments on latest version:

      The revised manuscript incorporated new experiments that satisfactorily addressed my concerns.

    1. Reviewer #1 (Public review):

      The authors construct a pair of E. coli populations that differ by a single gene duplication in a selectable fluorescent protein. They then evolve the two populations under differing selective regimes to assess whether the end result of the selective process is a "better" phenotype when starting with duplicated copies. Importantly, their starting duplicated population is structured to avoid the duplication-amplification process often seen in bacterial artificial evolution experiments. They find that while duplication increases robustness and speed of adaptation, it does not result in more highly adapted final states, in contrast to Ohno's hypothesis.

      Comments on revised version:

      The authors have addressed my prior concerns, and I have no further comments on the manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript the authors explore the contribution of metabolism to the response of two subpopulations of macrophages to bacterial pathogens commonly encountered in the human lung, as well as the influence of priming signals typically produced at a site of inflammation. The two subpopulations are resident airway macrophages (AM) isolated via bronchoalveolar lavage and monocyte-derived macrophages (MDM) isolated from human blood and differentiated using human serum. The two cell types were primed using IFNγ and Il-4, which are produced at sites of inflammation as part of initiation and resolution of inflammation respectively, followed by stimulation with either heat-killed tuberculosis (Mtb) or LPS to simulate interaction with a bacterial pathogen that is either gram-negative in the case of Mtb or gram-positive in the case of LPS. The authors use human cells for this work, which makes use of widely reported and thoroughly described priming signals, as well as model antigens. This makes the observations on the functional response of these two subpopulations relevant to human health and disease to a greater extent that the mouse models typically used to interrogate these interactions. To examine the relationship between metabolism and functional response, the authors measure rates of oxidative phosphorylation and glycolysis under baseline conditions, primed using IFNγ or IL-4, and primed and stimulated with Mtb or LPS.

      Overall, this study reveals how inflammatory and anti-inflammatory cytokine priming contributes to the metabolic reprogramming of AM and MDM populations. Their conclusions regarding the relationship between cytokine secretion and inflammatory molecule expression in response to bacterial stimuli are supported by the data. The involvement of metabolism in innate immune cell function is relevant when devising treatment strategies that target the innate immune response during infection. The data presented in this paper further our understanding of that relationship and advance the field of innate immune cell biology.

    1. Reviewer #1 (Public review):

      Summary:

      The authors were seeking to define the roles of the Drosophila caspar gene in embryonic development and primordial germ cell (PGC) formation. They demonstrate that PGC number, and the distribution of the germ cell determinant Oskar, change as a result of changes in caspar expression; reduction of caspar reduces PGC number and the domain of Oskar protein expression, while overexpression of caspar does the reverse. They also observe defects in syncytial nuclear divisions in embryos produced from caspar mutant mothers. Previous work from the same group demonstrated that Caspar protein interacts with two partners, TER94 and Vap33. In this paper, they show that maternal knockdown of TER94 results in embryonic lethality and some overlap of phenotypes with reduction of caspar, supporting the idea may work together in their developmental roles. The authors propose models for how Caspar might carry out its developmental functions. The most specific of these is that Caspar and its partners might regulate oskar mRNA stability by recruiting ubiquitin to the translational regulator Smaug.

      Strengths:

      The work identifies a new factor that is involved in PGC specification and points toward an additional pathway that may be involved in establishing and maintaining an appropriate distribution of Oskar at the posterior pole of the embryo. It also ties together earlier observations about the presence of TER94 in the pole plasm that have not heretofore been linked to a function.

      Weaknesses:

      (1) A PiggyBac insertion allele casp[c04227] is used throughout the paper and referred to as a loss-of-function allele (casp[lof]). While the authors avoid the terms 'null' or 'amorph' and on one occasion refer to the allele as a 'strong hypomorph', nevertheless terming it a 'loss-of-function' allele is misleading. This is because the phenotype of the allele when homozygous is different from the phenotype produced when heterozygous over a deficiency.

      (2) The peptide counts in the mass spectrometry experiment aimed at finding protein partners for Casp are extremely low, except for Casp itself and TER94. Peptide counts of 1-2 seem to me to be of questionable significance.

      (3) The pole bud phenotypes from TER94 knockdown and casp mutant shown in Fig 5 appear to be quite different. These differences are unexplained and seem inconsistent with the model proposed that the two proteins work in a common pathway. Whole embryos should also be shown, as the TER94 KD phenotype could result from a more general dysmorphism.

      (4) Fig 6 is not quantitative, lacking even a second control staining to check for intensity variation artifacts. Therefore it shows that the distribution of Oskar protein changes in the various genotypes, but not convincingly that the level of Oskar changes as the paper claims.

      (5) The error bars are huge in the graphs in Fig 7H, I, and J, and in fact these changes are not statistically significant. Therefore the conclusion that 'Reduction in Casp activity specifically affects Smaug degradation during the MZT' is not supported by the data in this figure.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript studies nutrient intake rates for stationary and motile microorganisms to assess the effectiveness of swim vs. stay strategies. This work provides valuable insights on how the different strategies perform in the context of a simplified mathematical model that couples hydrodynamics to nutrient advection and diffusion. The swim and stay strategies are shown to yield similar nutrient flux under a range of conditions.

      Strengths:

      Strengths of the work include (i) the model prediction in Fig. 3 of nutrient flux applied to a range of microorganisms including an entire clade that are known to use different feeding strategies and (ii) a study of the interaction between cilia and absorption coverage showing the robustness of their predictions provided these regions have sufficient overlap.

      Weaknesses:

      In the revision, the authors have adequately addressed the weaknesses I raised in the first round of review.

    1. Reviewer #2 (Public review):

      Summary:

      This computational modeling study addresses the observation that variable observations are interpreted differently depending on how much uncertainty an agent expects from its environment. That is, the same mismatch between a stimulus and an expected stimulus would be less significant, and specifically would represent a smaller prediction error, in an environment with a high degree of variability than in one where observations have historically been similar to each other. The authors show that if two different classes of inhibitory interneurons, the PV and SST cells, (1) encode different aspects of a stimulus distribution and (2) act in different (divisive vs. subtractive) ways, and if (3) synaptic weights evolve in a way that causes the impact of certain inputs to balance the firing rates of the targets of those inputs, then pyramidal neurons in layer 2/3 of canonical cortical circuits can indeed encode uncertainty-modulated prediction errors. To achieve this result, SST neurons learn to represent the mean of a stimulus distribution and PV neurons its variance.

      The impact of uncertainty on prediction errors in an understudied topic, and this study provides an intriguing and elegant new framework for how this impact could be achieved and what effects it could produce. The ideas here differ from past proposals about how neuronal firing represents uncertainty. The developed theory is accompanied by several predictions for future experimental testing, including the existence of different forms of coding by different subclasses of PV interneurons, which target different sets of SST interneurons (as well as pyramidal cells). The authors are able to point to some experimental observations that are at least consistent with their computational results. The simulations shown demonstrate that if we accept its assumptions, then the authors' theory works very well: SSTs learn to represent the mean of a stimulus distribution, PVs learn to estimate its variance, firing rates of other model neurons scale as they should, and the level of uncertainty automatically tunes the learning rate, so that variable observations are less impactful in a high uncertainty setting.

      Strengths:

      The ideas in this work are novel and elegant, and they are instantiated in a progression of simulations that demonstrate the behavior of the circuit. The framework used by the authors is biologically plausible and matches some known biological data. The results attained, as well as the assumptions that go into the theory, provide several predictions for future experimental testing. The authors have taken into account earlier review comments to revise their paper in ways that enhance its clarity.

      Weaknesses:

      One weakness could be that the proposed theory does rely on a fairly large number of assumptions. However, there is at least some biological support for these. Importantly, the authors do lay out and discuss their key assumptions in the Discussion section, so readers can assess their validity and implications for themselves.

    1. Joint Public Review:

      Summary:

      This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as the gremubamab has failed in Phase 2 trials. Clarification of this point would greatly benefit this paper.

      Strengths:

      (1) High efficiency of isolating antigen-specific BCRs using an antigenic hook.

      (2) The authors' conclusion is supported by data.

      Weaknesses:

      Although the authors state that the goal of this study was to generate novel protective mAbs for therapeutic use (P12; Para. 2), it is unclear whether PcrV-specific mAbs isolated in this study have therapeutic potential better than the gremubamab, which has failed in Phase 2 trials. Four of five PcrV-specific mAbs isolated in this study reduced bacterial burdens in mice as potent as, but not superior to, gremubamab-equivalent mAb. Clarification of this concern by revising the text or providing experimental results that show better potential than gremubamab would greatly benefit this paper.

    1. Reviewer #1 (Public review):

      Summary:

      Animals in natural environments need to identify predator-associated cues and respond with the appropriate behavioral response to survive. In rodents, some chemical cues produced by predators (e.g., cat saliva) are detected by chemosensory neurons in the vomeronasal organ (VNO). The VNO transmits predator-associated information to the accessory olfactory bulb, which in turn projects to the medial amygdala and the bed nucleus of the stria terminalis, two regions implicated in the initiation of antipredator defensive behaviors. A downstream area to these two regions is the ventromedial hypothalamus (VMH), which has been shown to control both active (i.e., flight) and passive (i.e, freezing) antipredator defensive responses via distinct efferent projections to the anterior hypothalamic nucleus or the periaqueductal gray, respectively. However, whether differences in predator-associated sensory information initially processed in the VNO and further conveyed to the VMH can trigger different types of behavioral responses remained unexplored. To address this question, here the authors investigated the behavioral responses of mice exposed to either fresh or old cat saliva, and further compared the underlying neural circuits that are activated by cat saliva with different freshness.

      The scientific question of the study is valid, the experiments were well-performed, and the statistical analyses are appropriate. However, there are some concerns that may directly affect the main interpretation of the results.

      In this revised version of the manuscript, the authors have made important modifications in the text, inserted new experiments and performed additional data analyses, as recommended. These modifications have significantly improved the quality of the manuscript and addressed all the major concerns detected during the prior submission.

    1. Reviewer #1 (Public review):

      This manuscript from Schwintek and coworkers describes a system in which gas flow across a small channel (10^-4-10^-3 m scale) enables the accumulation of reactants and convective flow. The authors go on to show that this can be used to perform PCR as a model of prebiotic replication.

      Strengths:

      The manuscript nicely extends the authors' prior work in thermophoresis and convection to gas flows. The demonstration of nucleic acid replication is an exciting one, and an enzyme-catalyzed proof-of-concept is a great first step towards a novel geochemical scenario for prebiotic replication reactions and other prebiotic chemistry.

      The manuscript nicely combines theory and experiment, which generally agree well with one another, and it convincingly shows that accumulation can be achieved with gas flows and that it can also be utilized in the same system for what one hopes is a precursor to a model prebiotic reaction. This continues efforts from Braun and Mast over the last 10-15 years extending a phenomenon that was appreciated by physicists and perhaps underappreciated in prebiotic chemistry to increasingly chemically relevant systems and, here, a pilot experiment with a simple biochemical system as a prebiotic model.

      I think this is exciting work and will be of broad interest to the prebiotic chemistry community.

      Weaknesses:

      The manuscript states: "The micro scale gas-water evaporation interface consisted of a 1.5 mm wide and 250 µm thick channel that carried an upward pure water flow of 4 nl/s ≈ 10 µm/s perpendicular to an air flow of about 250 ml/min ≈ 10 m/s." This was a bit confusing on first read because Figure 2 appears to show a larger channel - based on the scale bar, it appears to be about 2 mm across on the short axis and 5 mm across on the long axis. From reading the methods, one understands the thickness is associated with the Teflon, but the 1.5 mm dimension is still a bit confusing (and what is the dimension in the long axis?) It is a little hard to tell which portion (perhaps all?) of the image is the channel. This is because discontinuities are present on the left and right sides of the experimental panels (consistent with the image showing material beyond the channel), but not the simulated panels. Based on the authors' description of the apparatus (sapphire/CNC machined Teflon/sapphire) it sounds like the geometry is well-known to them. Clarifying what is going on here (and perhaps supplying the source images for the machined Teflon) would be helpful.

      The data shown in Figure 2d nicely shows nonrandom residuals (for experimental values vs. simulated) that are most pronounced at t~12 m and t~40-60m. It seems like this is (1) because some symmetry-breaking occurs that isn't accounted for by the model, and perhaps (2) because of the fact that these data are n=1. I think discussing what's going on with (1) would greatly improve the paper, and performing additional replicates to address (2) would be very informative and enhance the paper. Perhaps the negative and positive residuals would change sign in some, but not all, additional replicates?

      The authors will most likely be familiar with the work of Victor Ugaz and colleagues, in which they demonstrated Rayleigh-Bénard-driven PCR in convection cells (10.1126/science.298.5594.793, 10.1002/anie.200700306). Not including some discussion of this work is an unfortunate oversight, and addressing it would significantly improve the manuscript and provide some valuable context to readers. Something of particular interest would be their observation that wide circular cells gave chaotic temperature profiles relative to narrow ones and that these improved PCR amplification (10.1002/anie.201004217). I think contextualizing the results shown here in light of this paper would be helpful. Again, it appears n=1 is shown for Figure 4a-c - the source of the title claim of the paper - and showing some replicates and perhaps discussing them in the context of prior work would enhance the manuscript.

      I think some caution is warranted in interpreting the PCR results because a primer-dimer would be of essentially the same length as the product. It appears as though the experiment has worked as described, but it's very difficult to be certain of this given this limitation. Doing the PCR with a significantly longer amplicon would be ideal, or alternately discussing this possible limitation would be helpful to the readers in managing expectations.

    1. Reviewer #1 (Public review):

      Summary:

      Lejeune et al. demonstrated sex-dependent differences in the susceptibility to MRSA infection. The authors demonstrated the role of the microbiota and sex hormones as potential determinants of susceptibility. Moreover, the authors showed that Th17 cells and neutrophils contribute to sex hormone-dependent protection in female mice.

      Strengths:

      The role of microbiota was examined in various models (gnotobiotic, co-housing, microbiota transplantation). The identification of responsible immune cells was achieved using several genetic knockouts and cell-specific depletion models. The involvement of sex hormones was clarified using ovariectomy and the FCG model.

      Weaknesses:

      The mechanisms by which specific microbiota confer female-specific protection remain unclear.

    1. Reviewer #1 (Public review):

      Summary:

      The authors measured glutamate transients in the DMS of rats as they performed an action selection task. They identified diverse patterns of behavior and glutamate dynamics depending on the pre-existing behavioral phenotype of the rat (sign tracker or goal tracker). Using pathway-specific DREADDs, they showed that these behavioral phenotypes and their corresponding glutamate transients were differentially dependent on input from the prelimbic cortex to the DMS.

      Strengths:

      Overall there are some very interesting results that make an important contribution to the field. Notably, the results seem to point to differential recruitment of the PL-DMS pathway in goal-tracking vs sign-tracking behaviors.

      Weaknesses:

      There is a lot of missing information and data that should be reported/presented to allow a complete understanding of the findings and what was done. The writing of the manuscript was mostly quite clear, however, there are some specific leaps in logic that require more elaboration, and the focus at the start and end on cholinergic neurons and Parkinson's disease are, at the moment, confusing and require more justification.

    1. Reviewer #1 (Public review):

      The authors found that the loss of cell-ECM adhesion leads to the formation of giant monocular vacuoles in mammary epithelial cells. This process takes place in a macropinocytosis-like process and involves PI3 kinase. They further identified dynamin and septin as essential machinery for this process. Interestingly, this process is reversible and appears to protect cells from cell death.

      Strengths: The data are clean and convincing to support the conclusions. The analysis is comprehensive, using multiple approaches such as SIM and TEM. The discussion on lactation is plausible and interesting.

      Weaknesses: As the first paper describing this phenomenon, it is adequate. However, the elucidation of the molecular mechanisms is not as exciting as it does not describe anything new. It is hoped that novel mechanisms will be elucidated in the future. Especially the molecules involved in the reversing process could be quite interesting.

    1. Reviewer #2 (Public review):

      Summary:

      This very interesting study originated from a serendipitous observation that the deletion of the disordered N-terminal tail of human SUMO1 enhances its binding to its interaction partners. This suggested that the N terminus of SUMO1 might be an intrinsic competitive inhibitor of SUMO-interacting motif (SIM) binding to SUMO1. Subsequent experiments support this mechanism, showing that in humans it is specific to SUMO1 and does not extend to SUMO2 or SUMO3 (except, perhaps, when the N terminus of SUMO2 becomes phosphorylated, as the authors intriguingly suggest - and partially demonstrate). The auto-inhibition of SUMO1 via its N-terminal tail apparently explains lower binding of SUMO1 compared to SUMO2 to some SIMs and lower SIM-dependent SUMOylation of some substrates with SUMO1 compared to SUMO2, thus adding an important element to the puzzle of SUMO paralogue preference. In line with this explanation, N-terminally truncated SUMO1 was equally efficient to SUMO2 in the studied cases. The inhibitory role of SUMO1's N terminus appears conserved in other species including S. cerevisiae and C. elegans, both of which contain only one SUMO. The study also elucidates the molecular mechanism by which the disordered N-terminal region of SUMO1 can exert this auto-inhibitory effect. This appears to depend on the transient, very highly dynamic physical interaction between the N terminus and the surroundings of the SIM-binding groove based mostly on electrostatic interactions between acidic residues in the N terminus and basic residues around the groove.

      Strengths:

      A key strength of this study is the interplay of different techniques, including biochemical experiments, NMR, molecular dynamics simulations, and, at the end, in vivo experiments. The experiments performed with these different techniques inform each other in a productive way and strengthen each others' conclusions. A further strength is the detailed and clear text, which patiently introduces, describes, and discusses the study. Finally, in terms of the message, the study has a clear, mechanistic message of fundamental importance for various aspects of the SUMO field, and also more generally for protein biochemists interested in the functional importance of intrinsically disordered regions. In revision, the authors have further improved the text.

      Weaknesses:

      In the future, further experimental validation will be required, particularly with regards to the biological importance of the uncovered mechanism. These limitations are satisfactorily pointed out by the authors themselves in the revised manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Abidi and colleagues used Notch pathway neutralizing antibodies to inhibit sebaceous glands in the skin. The authors find that blocking either the Notch1 receptor or the Jag2 ligand caused loss of the glands and increased retention of sebaceous progenitor cells. Moreover, these glands began to reappear 14 days after treatment.

      Strengths:

      Overall, this study definitively identifies the Notch receptor/ligand combination that maintains these glands in the adult. The manuscript is clearly written and the figures are beautifully made.

      In this resubmitted manuscript, the authors have adequately addressed all the previous critiques.

    1. Reviewer #2 (Public review):

      Summary:

      The preprint by Fawaz et al. presents the findings of a study that aimed to assess the relationship between somatic mutations associated with clonal hematopoiesis (CHIP) and the prevalence of myocardial infarction (MI). The authors conducted targeted DNA sequencing analyses on samples from 149 MI patients and 297 non-MI controls from a separate cohort. Additionally, they investigated the impact of the loss of the Y chromosome (LOY), another somatic mutation frequently observed in clonally expanded blood cells. The results of the study primarily demonstrate no significant associations, as neither CHIP nor LOY were found to be correlated with an increased prevalence of MI. The null findings regarding CHIP are partly in conflict with several larger studies in the literature. However, it must be noted that the authors did find trends to an association between CHIP and a higher incidence of MI during follow-up among those without a history of MI at baseline, which is more consistent with previous research work. The association with incident MI reached statistical significance in men, particularly in those not showing LOY, suggesting potential interactions between different clonally-expanded somatic mutations.

      Strengths:

      Overall, this is a useful research work on an emerging risk factor for cardiovascular disease (CVD). The use of a targeted sequencing approach is a strength, as it offers higher sensitivity than the whole exome sequencing approaches used in many previous studies. Reporting null findings is definitely relevant in an emerging field such as the role of somatic mutations in cardiovascular disease.

      Weaknesses:

      The study suffers from important limitations, which cast some doubts onto the authors' conclusions, as detailed below:

      (1) The small sample size of the study population is a critical limitation, particularly when reporting null findings that conflict (partly) with positive findings in much larger studies, totaling hundreds of thousands of individuals (e.g. Zekavat et al, Nature CVR 2023, Vlasschaert et al, Circulation 2023; Zhao et al, JAMA Cardio 2024). The authors claim that they have 90% power to detect an effect size of CHIP on MI comparable to that in previous reports (a hazard ratio of 1.7, mainly based on the findings by Jaiswal et al, NEJM 2014,2017). However, this analysis is simply based on the predicted prevalence of CHIP in MI(+) and MI(-) patients, and it does not consider the complex relationship between age CHIP and atherosclerotic disease. More advanced approaches to calculate statistical power may have provided a more accurate estimation. It must also be noted that recent work in much larger populations suggest that the overall effect of CHIP on atherosclerotic CVD is smaller than 1.7, most likely due to the heterogeneity of effects of different mutated genes (e.g. Zekavat et al, Nature CVR 2023, Vlasschaert et al, Circulation 2023; Zhao et al, JAMA Cardio 2024). In addition, several analyses in the current manuscript are conducted separately in MI(+) (n= 149) and MI(-) (N=297) individuals, further limiting statistical power. Power is even lower in the investigation of the effects of LOY and its interaction with CHIP, as only men are included in these analyses. Overall, I believe the study is underpowered from a statistical point of view, so the authors' findings need to be interpreted with caution.

      (2) Related to the above, it is widely accepted that the effects of CHIP on CVD are highly heterogeneous, as some mutated genes appear to have a strong impact on atherosclerosis, whereas the effect of others is negligible (e.g. Zekavat et al, Nature CVR 2023, Vlasschaert et al, Circulation 2023, among others). TET2 mutations are frequently considered a "positive control", given the multiple lines of evidence suggesting that these mutations confer a higher risk of atherosclerotic disease. However, no association with MI or related variables was found for TET2 mutations in the current work, which likely reflects the limited statistical power of the study to assess accurately the effects of CHIP mutations on atherosclerotic disease.

      (3) One of the most essential features of CHIP is the tight correlation with age. In this study, the effect of age on CHIP (e.g. Supp. Tables S5, S6) is statistically significant, but substantially milder than in previous studies. Given the relatively modest effect size of age on CHIP here, it is not surprising that no association with MI or atherosclerotic disease was found, considering that this association would have a much smaller effect size. It must be considered, however, that the advanced age of the population may have confounded the analysis of these relationships, as acknowledged by the authors.

      (4) CHIP represents just one type of clonal hematopoiesis (e.g. see https://doi.org/10.1182/blood.2023022222). In this context, it must be noted that the mutated genes included in the definition of "CHIP" here are markedly different than in most previous studies, particularly when considering specifically the studies that demonstrated an association between CHIP and atherosclerotic CVD. For instance, the definition of CHIP in this manuscript includes genes such as ANKRD26, CALR, CCND2, DDX41... that are not prototypical CHIP genes. This is unlikely to have major impact on the main results, as the vast majority of mutations detected are indeed in bona fide CHIP genes, but it needs to be considered when interpreting the authors' findings. Furthermore, the strategy used here for CHIP variant calling and curation is substantially different than that used in previous studies. This is important, because such differences in the definition of CHIP and the curation of variants are at the basis of most conflicting findings in the literature regarding the effects of this condition. The authors estimate that the effect of these discrepancies on the definition of CHIP is limited, but small differences can have substantial impact in a study with limited sample size.

      (5) A major limitation of the current study is the cross-sectional design of most of the analyses. For instance, it is not surprising that no association is found between CHIP and prevalent atherosclerosis burden by ultrasound imaging, considering that many individuals may have developed atherosclerosis years or decades before the expansion of the mutant clones, limiting the possible effect of CHIP on atherosclerosis burden. Similarly, the analysis of the relationship between CHIP and a history of MI may be confounded by the potential effects of MI on the expansion of mutant clones. In this context, it is noteworthy that the only positive results here are found in the analysis of the relationship between CHIP at baseline and incident MI development over follow-up. A larger sample size in these longitudinal analyses would provide deeper insights into the relationship between CHIP and MI.

    1. Reviewer #1 (Public review):

      Summary:

      Bacteria exhibit species-specific numbers and localization patterns of flagella. How specificity in number and pattern is achieved is poorly understood but often depends on a soluble GTPase called FlhF. Here the authors take an unbiased protein-pulldown approach to identify a protein FipA in V. parahaemolyticus that interacts with FlhF. They show that FipA co-occurs with FlhF in the genomes of bacteria with polarly-localized flagella and study the role of FipA in three different bacteria: V. parahaemolyticus, S. purtefaciens, and P. putida. In each case, they show that FipA contributes to FlhF polar localization, flagellar assembly, flagellar patterning, and motility to different species-specific extents.

      Strengths:

      The authors perform a comprehensive analysis of FipA, including phenotyping of mutants, protein localization, localization dependence, and domains of FipA necessary for each. Moreover, they perform a time-series analysis indicating that FipA localizes to the cell pole likely prior to, or at least coincident with, flagellar assembly. They also show that the role of FipA appears to differ between organisms in detail but the overarching idea that it is a flagellar assembly/localization factor remains convincing.

      Weaknesses:

      For me the comparative analysis in the different organism was on balance, a weakness. By mixing the data for each of the organisms together, I found it difficult to read, and take away key points from the results. In its current form, the individual details seem to crowd out the model.

    1. Reviewer #1 (Public Review):

      Summary:

      Zeng et al. have investigated the impact of inhibiting lactate dehydrogenase (LDH) on glycolysis and the tricarboxylic acid cycle. LDH is the terminal enzyme of aerobic glycolysis or fermentation that converts pyruvate and NADH to lactate and NAD+ and is essential for the fermentation pathway as it recycles NAD+ needed by upstream glyceraldehyde-3-phosphate dehydrogenase. As the authors point out in the introduction, multiple published reports have shown that inhibition of LDH in cancer cells typically leads to a switch from fermentative ATP production to respiratory ATP production (i.e., glucose uptake and lactate secretion are decreased, and oxygen consumption is increased). The presumed logic of this metabolic rearrangement is that when glycolytic ATP production is inhibited due to LDH inhibition, the cell switches to producing more ATP using respiration. This observation is similar to the well-established Crabtree and Pasteur effects, where cells switch between fermentation and respiration due to the availability of glucose and oxygen. Unexpectedly, the authors observed that inhibition of LDH led to inhibition of respiration and not activation as previously observed. The authors perform rigorous measurements of glycolysis and TCA cycle activity, demonstrating that under their experimental conditions, respiration is indeed inhibited. Given the large body of work reporting the opposite result, it is difficult to reconcile the reasons for the discrepancy. In this reviewer's opinion, a reason for the discrepancy may be that the authors performed their measurements 6 hours after inhibiting LDH. Six hours is a very long time for assessing the direct impact of a perturbation on metabolic pathway activity, which is regulated on a timescale of seconds to minutes. The observed effects are likely the result of a combination of many downstream responses that happen within 6 hours of inhibiting LDH that causes a large decrease in ATP production, inhibition of cell proliferation, and likely a range of stress responses, including gene expression changes.

      Strengths:

      The regulation of metabolic pathways is incompletely understood, and more research is needed, such as the one conducted here. The authors performed an impressive set of measurements of metabolite levels in response to inhibition of LDH using a combination of rigorous approaches.

      Weaknesses:

      Glycolysis, TCA cycle, and respiration are regulated on a timescale of seconds to minutes. The main weakness of this study is the long drug treatment time of 6 hours, which was chosen for all the experiments. In this reviewer's opinion, if the goal was to investigate the direct impact of LDH inhibition on glycolysis and the TCA cycle, most of the experiments should have been performed immediately after or within minutes of LDH inhibition. After 6 hours of inhibiting LDH and ATP production, cells undergo a whole range of responses, and most of the observed effects are likely indirect due to the many downstream effects of LDH and ATP production inhibition, such as decreased cell proliferation, decreased energy demand, activation of stress response pathways, etc.

    1. Reviewer #1 (Public review):

      Summary:

      Lodhiya et al. demonstrate that antibiotics with distinct mechanisms of action, norfloxacin, and streptomycin, cause similar metabolic dysfunction in the model organism Mycobacterium smegmatis. This includes enhanced flux through the TCA cycle and respiration as well as a build-up of reactive oxygen species (ROS) and ATP. Genetic and/or pharmacologic depression of ROS or ATP levels protect M. smegmatis from norfloxacin and streptomycin killing. Because ATP depression is protective, but in some cases does not depress ROS, the authors surmise that excessive ATP is the primary mechanism by which norfloxacin and streptomycin kill M. smegmatis. In general, the experiments are carefully executed; alternative hypotheses are discussed and considered; the data are contextualized within the existing literature. Clarification of the effect of 1) ROS depression on ATP levels and 2) ADP vs. ATP on divalent metal chelation would strengthen the paper, as would discussion of points of difference with the existing literature. The authors might also consider removing Figures 9 and 10A-B as they distract from the main point of the paper and appear to be the beginning of a new story rather than the end of the current one. Finally, statistics need some attention.

      Strengths:

      The authors tackle a problem that is both biologically interesting and medically impactful, namely, the mechanism of antibiotic-induced cell death.

      Experiments are carefully executed, for example, numerous dose- and time-dependency studies; multiple, orthogonal readouts for ROS; and several methods for pharmacological and genetic depletion of ATP.

      There has been a lot of excitement and controversy in the field, and the authors do a nice job of situating their work in this larger context.

      Inherent limitations to some of their approaches are acknowledged and discussed e.g., normalizing ATP levels to viable counts of bacteria.

      Weaknesses:

      The authors have shown that treatments that depress ATP do not necessarily repress ROS, and therefore conclude that ATP is the primary cause of norfloxacin and streptomycin lethality for M. smegmatis. Indeed, this is the most impactful claim of the paper. However, GSH and dipyridyl beautifully rescue viability. Do these and other ROS-repressing treatments impact ATP levels? If not, the authors should consider a more nuanced model and revise the title, abstract, and text accordingly.

      Does ADP chelate divalent metal ions to the same extent as ATP? If so, it is difficult to understand how conversion of ADP to ATP by ATP synthase would alter metal sequestration without concomitant burst in ADP levels.

      Some of the results in the paper diverge from what has been previously reported by some of the referenced literature. These discrepancies should be clarified.

    1. Joint Public Review:

      Summary:

      This work provides a new general tool for predicting post-ERCP pancreatitis before the procedure depending on pancreatic calcification, female sex, intraductal papillary mucinous neoplasm, a native papilla of Vater, or the use of pancreatic duct procedures. Even though it is difficult for the endoscopist to predict before the procedure which case might have post-ERCP pancreatitis, this new model score can help with the maneuver and when the patient is at high risk of pancreatitis, sometimes can be deadly), so experienced endoscopists can do the procedure from the start. This paper provides a model for stratifying patients before the ERCP procedure into low, moderate, and high risk for pancreatitis. To be validated, this score should be done in many countries and on large numbers of patients. Risk factors can also be identified and added to the score to increase rank.

      Strengths:

      (1) One of the severe complications of endoscopic retrograde cholangiopancreatography procedure is pancreatitis, so investigators try all the time to find a score that can predict which patients will probably have pancreatitis after the procedure. Most scores depend on the intraprocedural maneuver. Some studies discuss the preprocedural score that can predict pancreatitis before the procure. This study discusses a new preprocedural score for post-ERCP pancreatitis.

      (2) Depending on this score that identifies low, moderate, and high-risk patients for post-pancreatitis, so from the start, experienced and well-trained endoscopists can do the procedure or can refer patients to tertiary hospitals or use interventional radiology or endoscopic retrograde cholangiopancreatography.

      (3) The number of patients in this study is sufficient to analyze data correctly.

      Weaknesses:

      (1) It is a single-country, retrospective study.

      (2) Many cases were excluded, so the score cannot be applied to those patients.

      (3) Many other studies, e.g., https://link.springer.com/article/10.1007/s00464-021-08491-1, https://pubmed.ncbi.nlm.nih.gov/36344369/, that have been published before discussing the same issue, so what is the new with this score?

      (4) The discussion section needs reformulation to express the study's aim and results.

      (5) Why did the authors select these items in their scoring system and did not add more variables?

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Muramoto and colleagues have examined a mechanism by which the executioner caspase Drice is activated in a non-lethal context in Drosophila. The authors have comprehensively examined this in the Drosophila olfactory receptor neurons using sophisticated techniques. In particular, they had to engineer a new reporter by which non-lethal caspase activation could be detected. The authors conducted a proximity labeling experiment and identified Fasciclin 3 as a key protein in this context. While the removal of Fascilin 3 did not block non-lethal caspase activation (likely because of redundant mechanisms), its overexpression was sufficient to activate non-lethal caspase activation.

      Strengths:

      While non-lethal functions of caspases have been reported in several contexts, far less is known about the mechanisms by which caspases are activated in these non-lethal contexts. So, the topic is very timely. The overall detail of this work is impressive and the results for the most part are well-controlled and justified.

      Weaknesses:

      The behavioral results shown in Figure 6 need more explanation and clarification (more details below). As currently shown, the results of Figure 6 seem uninterpretable. Also, overall presentation of the Figures and description in legends can be improved.

    1. Reviewer #1 (Public review):

      Summary:

      The authors of this valuable study use linearly polarized UV light rotating at different angular velocities to stimulate photoreceptors in bumblebees and study the response of TL3 neurons to polarized light. Previous work has typically used a single constant rotation velocity of the polarized light, while the authors of this study explore a range of constant rotational velocities spanning from 30deg/s to 1920deg/s. The authors also use linearly polarized UV light rotating at continuously varying velocities following the angular velocity of the head of a flying bumblebee. 

      Strengths:

      The authors investigate the neuronal responses of TL3 neurons to a variety of rotational velocities. This approach has the potential to reveal the neuronal response to dynamically changing stimuli experienced by the animal as it moves around its environment.

      The authors make good use of physiology and modeling to validate their hypotheses and findings.  If done right, this line of investigation has the potential to provide a very useful methodology for utilizing more complex stimuli in studies of the visual pathway and central complex than traditionally. 

      Weaknesses: 

      The attempt of the authors to use more naturalistic stimuli than previous studies is very important, but the stimulus they use, i.e. linearly polarized UV light projected on the whole dorsal rim of the animal's eyes, is very different from the circular pattern of UV light polarization coming through the sky. In particular, as a bumblebee turns under the sky, the light projected on each ommatidium of the dorsal rim area will not smoothly change like the rotating linearly polarized light used in the experiments. The authors need to discuss this and other limitations of their study. 

      The authors should also commend the light intensity confound common in polarized light setups as discussed by Reinhard Wolf et al, J. Comp. Physiol. 1980 and in the thesis of Peter Weir, California Institute of Technology, 2013. It is unclear whether the authors performed measurements to quantify the intensity pattern and if they took measures to compensate and make the polarized light intensity uniform. 

      The authors show that the neuronal responses of TL3 neurons depend on the recent history of the polarized light stimulus. They use as evidence, the different neuronal firing rates measured when arriving at the same polarization stimulus by following two different preceding stimulus sequences. It would have been worthwhile to investigate to what extent the difference in neuronal response is due to the history alone and to what extent it is due to spike timing stochasticity inherent in the neurons. According to the raster plots in Figure 2F, there is substantial stochasticity in the timing of the action potential firing events.

      The authors appear to base their delay calculations and analysis on the response of one single neuron (Figures 2 and 3) even though they have recorded the responses of several TL3 neurons. There is no reason for the authors not to use all neuron recordings in their calculations and analysis.

      Another concern is that while the authors make good use of modeling, like any model, the presented models only partially explain the observed phenomena. However, a discussion about the limitations of their model needs to be provided.  Actually, observing the discrepancies between the model's output and the intracellular recordings reveals what the model is missing. That is, careful consideration of the discrepancies would have led the authors to try adding some noise in their model, which would partially resolve the differences observed at the lower rotational speeds (see stars deviating from the fitted line in Figure 2A) and to consider that introducing an asymmetry between the post-stimulus inhibition and excitation time constants could result in a model not deviating as much at the higher rotation velocities during counter-clockwise rotation of the polarized light (see stars deviating from the fitted line in Figure 2A). 

      In the end, the authors use the observation that during saccades, the average activity in their model-with-history increases to claim that when the animal does not turn, it uses less neuronal activity and energy. This is not a convincing line of reasoning. To make a claim about energy efficiency, the authors must instead compare their model with alternatives and show that the neuronal activity of their model during straight flight is indeed lower than those alternative models. Note that such a comparison would be meaningful only if the alternative models compared against capture physiology equally well in all other respects. However, the evident deviations of the presented model from the physiology measurements and the short duration of the test stimulus used would make any such claims difficult to substantiate. 

      Finally, for most experiments, the models are stimulated with a single short yaw sequence lasting a few seconds to measure responses. Given the dependence of the model on history, using such a small sample, we cannot see how generalizable the observations are. The authors need to show that the same effect is produced using multiple different trajectories.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use microscopy experiments to track the gliding motion of filaments of the cyanobacteria Fluctiforma draycotensis. They find that filament motion consists of back-and-forth trajectories along a "track", interspersed with reversals of movement direction, with no clear dependence between filament speed and length. It is also observed that longer filaments can buckle and form plectonemes. A computational model is used to rationalize these findings.

      Strengths:

      Much work in this field focuses on molecular mechanisms of motility; by tracking filament dynamics this work helps to connect molecular mechanisms to environmentally and industrially relevant ecological behavior such as aggregate formation.

      The observation that filaments move on tracks is interesting and potentially ecologically significant.

      The observation of rotating membrane-bound protein complexes and tubular arrangement of slime around the filament provides important clues to the mechanism of motion.

      The observation that long filaments buckle has the potential to shed light on the nature of mechanical forces in the filaments, e.g. through the study of the length dependence of buckling.

      Weaknesses:

      The manuscript makes the interesting statement that the distribution of speed vs filament length is uniform, which would constrain the possibilities for mechanical coupling between the filaments. However, Figure 1C does not show a uniform distribution but rather an apparent lack of correlation between speed and filament length, while Figure S3 shows a dependence that is clearly increasing with filament length. Also, although it is claimed that the computational model reproduces the key features of the experiments, no data is shown for the dependence of speed on filament length in the computational model. The statement that is made about the model "all or most cells contribute to propulsive force generation, as seen from a uniform distribution of mean speed across different filament lengths", seems to be contradictory, since if each cell contributes to the force one might expect that speed would increase with filament length.

      The computational model misses perhaps the most interesting aspect of the experimental results which is the coupling between rotation, slime generation, and motion. While the dependence of synchronization and reversal efficiency on internal model parameters are explored (Figure 2D), these model parameters cannot be connected with biological reality. The model predictions seem somewhat simplistic: that less coupling leads to more erratic reversal and that the number of reversals matches the expected number (which appears to be simply consistent with a filament moving backwards and forwards on a track at constant speed).

      Filament buckling is not analysed in quantitative detail, which seems to be a missed opportunity to connect with the computational model, eg by predicting the length dependence of buckling.

    1. Reviewer #1 (Public review):

      This is a clever and well-done paper. The authors sought to craft a method, applicable to biobank-scale data but without necessarily using genotyping or sequencing, to detect the presence of de novo mutations and rare variants that stand out from the polygenic background of a given trait. Their method depends essentially on sibling pairs where one sibling is in an extreme tail of the phenotypic distribution and whether the other sibling's regression to the mean shows a systematic deviation from what is expected under a simple polygenic architecture.

      Their method is successful in that it builds on a compelling intuition, rests on a rigorous derivation, and seems to show reasonable statistical power in the UK Biobank. (More biobanks of this size will probably become available in the near future.) It is somewhat unsuccessful in that rejection of the null hypothesis does not necessarily point to the favored hypothesis of de novo or rare variants. The authors discuss the alternative possibility of rare environmental events of large effect.

      Comments on current version:

      The authors have addressed the concerns of the reviewers. I have no further comments.

    1. Reviewer #1 (Public Review):

      The authors demonstrate that it is possible to carry out eQTL experiments for the model eukaryote S. cerevisiae, in "one pot" preparations, by using single-cell sequencing technologies to simultaneously genotype and measure expression. This is a very appealing approach for investigators studying genetic variation in single-celled and other microbial systems, and will likely inspire similar approaches in non-microbial systems where comparable cell mixtures of genetically heterogeneous individuals could be achieved.

      While eQTL experiments have been done for nearly two decades (the corresponding author's lab are pioneers in this field), this single-cell approach creates the possibility for new insights about cell biology that would be extremely challenging to infer using bulk sequencing approaches. The major motivating application shown here is to discover cell occupancy QTL, i.e. loci where genetic variation contributes to differences in the relative occupancy of different cell cycle stages. The authors dissect and validate one such cell cycle occupancy QTL, involving the gene GPA1, a G-protein subunit that plays a role in regulating the mating response MAPK pathway. They show that variation at GPA1 is associated with proportional differences in the fraction of cells in the G1 stage of the cell cycle. Furthermore, they show that this bias is associated with differences in mating efficiency.

    1. Reviewer #1 (Public review):

      Summary:

      This important study investigates the neurobiological mechanisms underlying the stable operation and maintenance of functionally appropriate rhythmic motor patterns during changing environmental conditions - temperature in this study in the crab Cancer borealis stomatogastric neural pattern generating network producing the pyloric motor rhythm, which is naturally subjected to temperature perturbations over a substantial range. This study is relevant to the general problem that some rhythmic motor systems adjust to changing environmental conditions and state changes by increasing the cycle frequency in a smooth monotonic fashion while maintaining the relative timing of different network activity pattern phases that determine proper motor coordination. How this is achieved mechanistically in complex dynamic motor networks is not understood, particularly how the frequency and phase adjustments are achieved as conditions change while avoiding operational instabilities on different time scales. The authors specifically studied the contributions of the hyperpolarization-activated inward current (Ih), which is involved in rhythm control, to the adjustments of frequency and phases in the pyloric rhythmic pattern as the temperature was altered from 11 degrees C to 21 degrees C. They present compelling evidence that this current is a critical biophysical feature in the ability of this system to adjust transiently and persistently to temperature perturbations appropriately. After blocking Ih in the pyloric network with cesium, the network was unable to reliably produce its characteristic rapid and smooth increase in the frequency of the triphasic rhythmic motor pattern in response to increasing temperature or its typical steady-state increase in frequency over this Q10 temperature range.

      Strengths:

      (1) The authors addressed this problem by technically rigorous experiments in the crab Cancer borealis stomatogastric ganglion (STG) in vitro, which readily allows for neuronal activity recording in a behaviorally and architecturally defined rhythmic neural circuit in conjunction with the application of blockers of Ih and synaptic receptors to disrupt circuit interactions. This approach is an effective way to experimentally investigate how complex rhythmic networks, at least in poikilotherms, mechanistically adjust to environmental perturbations such as temperature.

      (2) While previous work demonstrated that Ih increases in pyloric neurons as temperature increases, the authors here establish that this increase is necessary for normal responses of STG neural activity to temperature, which consist of a smooth monotonic increase in the frequency of rhythmic activity with increasing temperature.

      (3) The data shows that blocking Ih with cesium causes the frequency to transiently decrease ("jags") when the temperature increases and then increases after the temperature stabilizes at a steady state, revealing a non-monotonic frequency response to temperature perturbations.

      (4) The authors dissect some of the underlying neuronal and circuit dynamics, presenting evidence that after blocking Ih, the non-monotonic jags in the frequency response are mediated by intrinsic properties of pacemaker neurons, while in the steady state, Ih determined the overall frequency change (i.e., temperature sensitivity) through network interactions.

      (5) The authors' results highlight more complex dynamic responses to increasing temperature for the first time, suggesting a longer timescale process than previously recognized that may result from interactions between multiple channels and/or ion channel kinetics.

      Weaknesses:

      (1) The involvement of Ih in achieving the frequency and phase adjustments as conditions change and allowing smooth transitions to avoid operational instabilities in other complex rhythmic motor networks, for example, in homeotherms, is not established, so the present results may have limited general extrapolations.

    1. Reviewer #1 (Public review):

      Summary:

      Recruitment of neutrophils to the lungs is known to drive susceptibility to infection with M. tuberculosis. In this study, the authors present data in support of the hypothesis that neutrophil production of the cytokine IL-17 underlies the detrimental effect of neutrophils on disease. They claim that neutrophils harbor a large fraction of Mtb during infection, and are a major source of IL-17. To explore the effects of blocking IL-17 signaling during primary infection, they use IL-17 blocking antibodies, SR221 (an inverse agonist of TH17 differentiation), and celecoxib, which they claim blocks Th17 differentiation, and observe modest improvements in bacterial burdens in both WT and IFN-γ deficient mice using the combination of IL-17 blockade with celecoxib during primary infection. Celecoxib enhances control of infection after BCG vaccination.

      Strengths:

      The most novel finding in the paper is that treatment with celecoxib significantly enhances control of infection in BCG-vaccinated mice that have been challenged with Mtb. It was already known that NSAID treatments can improve primary infection with Mtb.

      Weaknesses:

      The major claim of the manuscript - that neutrophils produce IL-17 that is detrimental to the host - is not strongly supported by the data. Data demonstrating neutrophil production of IL-17 lacks rigor. The experiments examining the effects of inhibitors of IL-17 on the outcome of infection are very difficult to interpret. First, treatment with IL-17 inhibitors alone has no impact on bacterial burdens in the lung, either in WT or IFN-γ KO mice. This suggests that IL-17 does not play a detrimental role during infection. Modest effects are observed using the combination of IL-17 blocking drugs and celecoxib, however, the interpretation of these results mechanistically is complicated. Celecoxib is not a specific inhibitor of Th17. Indeed, it affects levels of PGE2, which is known to have numerous impacts on Mtb infection separate from any effect on IL-17 production, as well as other eicosanoids. Finally, the human data simply demonstrates that neutrophils and IL-17 both are higher in patients who experience relapse after treatment for TB, which is expected and does not support their specific hypothesis. The use of genetic ablation of IL-17 production specifically in neutrophils and/or IL-17R in mice would greatly enhance the rigor of this study. The authors do not address the fact that numerous studies have shown that IL-17 has a protective effect in the mouse model of TB in the context of vaccination. Finally, whether and how many times each animal experiment was repeated is unclear.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper Homan et al used mouse models of Metabolic Dysfunction-Associated Steatotic Liver Disease and different specific target deletions in cells to rule out the role of Complement 3a Receptor 1 in the pathogenesis of disease. They provided limited evidence and only descriptive results that despite C3aR being relevant in different contexts of inflammation, however, these tenets did not hold true.

      Weaknesses:

      (1) The results are based on readouts showing that C3aR is not involved in the pathogenesis of liver metabolic disease.

      (2) The description of the mouse models they used to validate their findings is not clear. Lysm-cre mice - which are claimed to delete C3aR in (?) macrophages are not specific for these cells, and the genetic strategy to delete C3aR in Kupffer cells is not clear.

      (3) Taking this into account, it is very challenging to determine the validity of these data, also considering that they are merely descriptive and correlative.

    1. Reviewer #1 (Public review):

      Summary:

      This study puts forth the model that under IFN-B stimulation, liquid-phase WTAP coordinates with the transcription factor STAT1 to recruit MTC to the promoter region of interferon-stimulated genes (ISGs), mediating the installation of m6A on newly synthesized ISG mRNAs. This model is supported by strong evidence that the phosphorylation state of WTAP, regulated by PPP4, is regulated by IFN-B stimulation, and that this results in interactions between WTAP, the m6A methyltransferase complex, and STAT1, a transcription factor that mediates activation of ISGs. This was demonstrated via a combination of microscopy, immunoprecipitations, m6A sequencing, and ChIP. These experiments converge on a set of experiments that nicely demonstrate that IFN-B stimulation increases the interaction between WTAP, METTL3, and STAT1, that this interaction is lost with the knockdown of WTAP (even in the presence of IFN-B), and that this IFN-B stimulation also induces METTL3-ISG interactions.

      Strengths:

      The evidence for the IFN-B stimulated interaction between METTL3 and STAT1, mediated by WTAP, is quite strong. Removal of WTAP in this system seems to be sufficient to reduce these interactions and the concomitant m6A methylation of ISGs. The conclusion that the phosphorylation state of WTAP is important in this process is also quite well supported.

      Weaknesses:

      The evidence that the above mechanism is fundamentally driven by different phase-separated pools of WTAP (regulated by its phosphorylation state) is weaker. These experiments rely relatively heavily on the treatment of cells with 1,6-hexanediol, which has been shown to have some off-target effects on phosphatases and kinases (PMID 33814344). Given that the model invoked in this study depends on the phosphorylation (or lack thereof) of WTAP, this is a particularly relevant concern. Related to this point, it is also interesting (and potentially concerning for the proposed model) that the initial region of WTAP that was predicted to be disordered is in fact not the region that the authors demonstrate is important for the different phase-separated states. Taking all the data together, it is also not clear to me that one has to invoke phase separation in the proposed mechanism.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to confirm the association between the human leukocyte antigen (HLA)-II region and tuberculosis (TB) susceptibility within admixed African populations. Building upon previous findings from the International Tuberculosis Host Genetics Consortium (ITHGC), this study sought to address the limitations of small sample size and the inclusion of admixed samples by employing the Local Ancestry Allelic Adjusted (LAAA) model, as well as identify TB susceptibility loci in an admixed South African cohort.

      Strengths:

      The major strengths of this study include the use of six TB case-control datasets collected over 30 years from diverse South African populations and ADMIXTURE for global ancestry inference. The former represents comprehensive dataset used in this study and the later ensures accurate determination of ancestral contributions. In addition, the identified association in the HLA-DPB1 gene shows near-genome-wide significance, enhancing the credibility of the findings.

      Weaknesses:

      The major weakness of this study includes insufficient significant discoveries and reliance on cross-validation. This study only identified one variant significantly associated with TB status, located in an intergenic region with an unclear link to TB susceptibility. Despite identifying multiple lead SNPs, no other variants reached the genome-wide significance threshold, limiting the overall impact of the findings. The absence of an independent validation cohort, with the study relying solely on cross-validation, is also a major limitation. This approach restricts the ability to independently confirm the findings and evaluate their robustness across different population samples.

      Appraisal:

      The authors successfully achieved their aims of confirming the association between the HLA-II region and TB susceptibility in admixed African populations. However, the limited number of significant discoveries, reliance on cross-validation, and insufficient discussion of model performance and SNP significance weaken the overall strength of the findings. Despite these limitations, the results support the conclusion that considering local ancestry is crucial in genetic studies of admixed populations.

      Impact:

      The innovative use of the LAAA model and the comprehensive dataset in this study make substantial contributions to the field of genetic epidemiology.

    1. Reviewer #1 (Public review):

      Summary:

      The article by Piersma et al. aims to reduce the complex process of NK cell licensing to the action of a single inhibitory receptor for MHC class I. This is achieved using a mouse strain lacking all of the Ly49 receptors expressed by NK cells and inserting the Ly49a gene into the Ncr1 locus, leading to expression on the majority of NK cells.

      Strengths:

      The mouse model used represents a precise deletion of all NK-expressed genes within the Ly49 cluster. The re-introduction of the Ly49a gene into the Ncr1 locus allows expression by most NK cells. Convincing effects of Ly49a expression on in vitro activation and in vivo killing assay are shown.

      Weaknesses:

      The choice of Ly49a provides a clear picture of H-2Dd recognition by this Ly49. It would be valuable to perform additional studies investigating Ly49c and Ly49i receptors for H-2b. This is of interest because there are reports indicating that Ly49c may not be a functional receptor in B6 mice due to strong cis interactions.

      This work generates an excellent mouse model for the study of NK cell licensing by inhibitory Ly49s that will be useful for the community. It provides a platform whereby the functional activity of a single Ly49 can be assessed.

    1. Reviewer #1 (Public review):

      Summary:

      This paper describes the covalent interactions of small molecule inhibitors of carbonic anhydrase IX, utilizing a pre-cursor molecule capable of undergoing beta-elimination to form the vinyl sulfone and covalent warhead.

      Strengths:

      The use of a novel covalent pre-cursor molecule that undergoes beta-elimination to form the vinyl sulfone in situ. Sufficient structure-activity relationships across a number of leaving groups, as well as binding moieties that impact binding and dissociation constants.

      Overall, the paper is clearly written and provides sufficient data to support the hypothesis and observations. The findings and outcomes are significant for covalent drug discovery applications and could have long-term impacts on related covalent targeting approaches.

      Weaknesses:

      No major weaknesses were noted by this reviewer.

    1. Reviewer #1 (Public review):

      Summary:

      This work presents a computational platform that integrates currently available experimental or precomputed datasets and/or state-of-the-art modeling methods to assemble a proteome structure from a given list of genes (representing a whole proteome of an organism, or some specific subset of interest). The main advancement is that the proteome structure contains not only the tertiary structure information (such as is provided by precomputed AlphaFold predicted proteomes) but also information about the quaternary structure. Adding quaternary structure information on the whole proteomes is a challenging problem (and the manuscript would benefit from a more comprehensive introduction section presenting these challenges). Importantly, this addition of quaternary structure information is likely to significantly improve any downstream modelling or prediction. This is because most proteins form either stable or transient complexes, and a significant proportion of proteins interacts with cellular structures such as the different biological membranes. These interactions provide important context for interpreting residue-level information, such as for example the fitness/functional effects of point mutations.

      Strengths:

      The main strength of this work is that it approaches the question of protein quaternary structure in a comprehensive way. Namely, in addition to oligomeric state, it also includes membrane and cellular localization. It also demonstrates how to use and combine the available experimental and precomputed modelling to achieve the same for any set of genes.

      Weaknesses:

      The feasibility of obtaining a similar dataset (of useful/informative size) for a more complex organism is not clear.

    1. Reviewer #1 (Public review):

      "Unraveling the Role of Ctla-4 in Intestinal Immune Homeostasis: Insights from a novel Zebrafish Model of Inflammatory Bowel Disease" suggests the identification of the zebrafish homolog of ctla-4 and generates a 14bp deletion/early stop codon mutation that is viable. This mutant exhibits an IBD-like phenotype, including decreased intestinal length, abnormal intestinal folds, decreased goblet cells, abnormal cell junctions between epithelial cells, increased inflammation, and alterations in microbial diversity. Bulk and single-cell RNA-seq show upregulation of immune and inflammatory response genes in this mutant (especially in neutrophils, B cells, and macrophages) and downregulation of genes involved in adhesion and tight junctions in mutant enterocytes. The work suggests that the makeup of immune cells within the intestine is altered in these mutants, potentially due to changes in lymphocyte proliferation. Introduction of recombinant soluble Ctla-4-Ig to mutant zebrafish rescued body weight, histological phenotypes, and gene expression of several pro-inflammatory genes, suggesting a potential future therapeutic route.

      Strengths:

      - Generation of a useful new mutant.

      - The demonstration of an IBD-like phenotype in this mutant is extremely comprehensive.

      - Demonstrated gene expression differences provide mechanistic insight into how this mutation leads to IBD-like symptoms.

      - Demonstration of rescue with a soluble protein suggests exciting future therapeutic potential.

      - The manuscript is mostly well organized and well written.

      Weaknesses:

      - Given the sequence similarity between CTLA-4 and its related receptor CD28, and the difference in subcellular localization of this protein vs. human CTLA-4, some confusion remains about which gene is mutated in this manuscript (CD28 or CTLA-4/CD152).

      - Some conclusions made from scRNAseq data (e.g. increased apoptosis, changes in immune cell numbers) could potentially result from dissociation artifacts and would be stronger with validation staining.

      - The Methods section is woefully incomplete and describes fewer than half of the experiments performed in this manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      Evading predation is of utmost importance for most animals and camouflage is one of the predominant mechanisms. Wu et al. set out to test the hypothesis of a unique camouflage system in leafhoppers. These animals coat themselves with brochosomes, which are spherical nanostructures that are produced in the Malpighian tubules and are distributed on the cuticle after eclosion. Based on previous findings on the reflectivity properties of brochosomes, the authors provide very good evidence that these nanostructures indeed reduce the reflectivity of the animals thereby reducing predation by jumping spiders. Further, they identify four proteins, which are essential for the proper development and function of brochosomes. In RNAi experiments, the regular brochosome structure is lost, the reflectivity reduced and the respective animals are prone to increased predation. Finally, the authors provide some phylogenetic sequence analyses and speculate about the evolution of these essential genes.

      Strengths:

      The study is very comprehensive including careful optical measurements, EM and TM analysis of the nanoparticles and their production line in the malphigian tubules, in vivo predation tests, and knock-down experiments to identify essential proteins. Indeed, the results are very convincingly in line with the starting hypothesis such that the study robustly assigns a new biological function to the brochosome coating system.

      A key strength of the study is that the biological relevance of the brochosome coating is convincingly shown by an in vivo predation test using a known predator from the same habitat.

      Another major step forward is an RNAi screen, which identified four proteins, which are essential for the brochosome structure (BSMs). After respective RNAi knock-downs, the brochosomes show curious malformations that are interesting in terms of the self-assembly of these nanostructures. The optical and in vivo predation tests provide excellent support for the model that the RNAi knock-down leads to a change of brochosomes structure, which reduces reflectivity, which in turn leads to a decrease of the antipredatory effect.

      Weaknesses:

      The reduction of reflectivity by aberrant brochosomes or after ageing is only around 10%. This may seem little to have an effect in real life. On the other hand, the in vivo predation tests confirm an influence. Hence, this is not a real weakness of the study - just a note to reconsider the wording for describing the degree of reflectivity.<br /> The single gene knockdowns seemed to lead to a very low penetrance of malformed brochosomes (Figure Supplement 3). Judging from the overview slides, less than 1% of brochosomes may have been affected. A quantification of regular versus abnormal particles in both, wildtype and RNAi treatments would have helped to exclude that the shown aberrant brochosomes did not just reflect a putative level of "normal" background defects. Of note, the quadruple knock-down of all BSMs seemed to lead to a high penetrance (Figure 4), which was already reflected in the microtubule production line. While the data shown are convincing, a quantification might strengthen the argument.

      While the RNAi effects seemed to be very specific to brochosomes and therefore very likely specific, an off-target control for RNAi was still missing. Finding the same/similar phenotype with a non-overlapping dsRNA fragment in one off-target experiment is usually considered required and sufficient. Further, the details of the targeted sequence will help future workers on the topic.

      The main weakness in the current manuscript may be the phylogenetic analysis and the model of how the genes evolved. Several aspects were not clearly or consistently stated such that I felt unsure about what the authors actually think. For instance: Are all the 4 BSMs related to each other or only BSM2 and 3? If so, not only BSM2 and 3 would be called "paralogs" but also the other BSMs. If they were all related, then a phylogenetic tree including all BSMs should be shown to visualize the relatedness (including the putative ancestral gene if that is the model of the authors). Actually, I was not sure about how the authors think about the emergence of the BSMs. Are they real orphan genes (i.e. not present outside the respective clade) or was there an ancestral gene that was duplicated and diverged to form the BSMs? Where in the phylogeny does the first of the BSMs or ancestral proteins emerge (is the gene found in Clastoptera arizonana the most ancestral one?)? Maybe, the evolution of the BSMs would have to be discussed individually for each gene as they show somewhat different patterns of emergence and loss (BSM4 present in all species, the others with different degrees of phylogenetic restriction). Related to these questions I remained unsure about some details in Figure 5. On what kind of analysis is the phylogeny based? Why are some species not colored, although they are located on the same branch as colored ones? What is the measure for homology values - % identity/similarity? The homology labels for Nephotetix cincticeps and N. virescens seem to be flipped: the latter is displayed with 100% identity for all genes with all proteins while the former should actually show this. As a consequence of these uncertainties, I could not fully follow the respective discussion and model for gene evolution.

      Conclusion:

      The authors successfully tested their hypothesis in a multidisciplinary approach and convincingly assigned a new biological function to the brochosomes system. The results fully support their claims - only the quantification of the penetrance in the RNAi experiments would be helpful to strengthen the point. The author's analysis of the evolution of BSM genes remained a bit vague and I remained unsure about their respective conclusions.

      The work is a very interesting study case of the evolutionary emergence of a new system to evade predators. Based on this study, the function of the BSM genes could now be studied in other species to provide insights into putative ancestral functions. Further, studying the self-assembly of such highly regular complex nano-structures will be strongly fostered by the identification of the four key structural genes.

    1. Reviewer #1 (Public review):

      In the present work, Chen et al. investigate the role of short heat shock factors (S-HSF), generated through alternative splicing, in the regulation of the heat shock response (HSR). The authors focus on S-HsfA2, an HSFA2 splice variant containing a truncated DNA-binding domain (tDBD) and a known transcriptional-repressor leucin-rich domain (LRD). The authors found a two-fold effect of S-HsfA2 on gene expression. On the one hand, the specific binding of S-HsfA2 to the heat-regulated element (HRE), a novel type of heat shock element (HSE), represses gene expression. This mechanism was also shown for other S-HSFs, including HsfA4c and HsfB1. On the other hand, S-HsfA2 is shown to interact with the canonical HsfA2, as well as with a handful of other HSFs, and this interaction prevents HsfA2 from activating gene expression. The authors also identified potential S-HsfA2 targets and selected one, HSP17.6B, to investigate the role of the truncated HSF in the HSR. They conclude that S-HsfA2-mediated transcriptional repression of HSP17.6B helps avoid hyperactivation of the HSR by counteracting the action of the canonical HsfA2.

      The manuscript is well written and the reported findings are, overall, solid. The described results are likely to open new avenues in the plant stress research field, as several new molecular players are identified. Chen et al. use a combination of appropriate approaches to address the scientific questions posed. However, in some cases, the data are inadequately presented or insufficient to fully support the claims made. As such, the manuscript would highly benefit from tackling the following issues:

      (1) While the authors report the survival phenotypes of several independent lines, thereby strengthening the conclusions drawn, they do not specify whether the presented percentages are averages of multiple replicates or if they correspond to a single repetition. The number of times the experiment was repeated should be reported. In addition, Figure 7c lacks the quantification of the hsp17.6b-1 mutant phenotype, which is the background of the knock-in lines. This is an essential control for this experiment.

      (2) In Figure 1c, the transcript levels of HsfA2 splice variants are not evident, as the authors only show the quantification of the truncated variant. Moreover, similar to the phenotypes discussed above, it is unclear whether the reported values are averages and, if so, what is the error associated with the measurements. This information could explain the differences observed in the rosette phenotypes of the S-HsfA2-KD lines. Similarly, the gene expression quantification presented in Figures 4 and 5, as well as the GUS protein quantification of Figure 3F, also lacks this crucial information.

      (3) The quality of the main figures is low, which in some cases prevents proper visualization of the data presented. This is particularly critical for the quantification of the phenotypes shown in Figure 1b and for the fluorescence images in Figures 4f and 5b. Also, Figure 9b lacks essential information describing the components of the performed experiments.

      (4) Mutants with low levels of S-HsfA2 yield smaller plants than the corresponding wild type. This appears contradictory, given that the proposed role of this truncated HSF is to counteract the growth repression induced by the canonical HSF. What would be a plausible explanation for this observation? Was this phenomenon observed with any of the other tested S-HSFs?

      (5) In some cases, the authors make statements that are not supported by the results:<br /> (i) the claim that only the truncated variant expression is changed in the knock-down lines is not supported by Figure 1c;<br /> (ii) the increase in GUS signal in Figure 3a could also result from local protein production;<br /> (iii) in Figure 6b, the deletion of the HRE abolishes heat responsiveness, rather than merely altering the level of response; and<br /> (iv) the phenotypes in Figure 8b are not clear enough to conclude that HSP17.6B overexpressors exhibit a dwarf but heat-tolerant phenotype.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript addresses an important problem of the uncoupling of oxidative phosphorylation due to hypoxia-ischemia injury of the neonatal brain and provides insight into the neuroprotective mechanisms of hypothermia treatment.

      Strengths:

      The authors used a combination of in vivo imaging of awake P10 mice and experiments on isolated mitochondria to assess various key parameters of the brain metabolism during hypoxia-ischemia with and without hypothermia treatment. This unique approach resulted in a comprehensive data set that provides solid evidence for the derived conclusions.

      Weaknesses:

      (1) The experiments were performed acutely on the same day when the surgery was performed. There is a possibility that the physiology of mice at the time of imaging was still affected by the previously applied anesthesia. This is particularly of concern since the duration of anesthesia was relatively long. Is it possible that the observed relatively low baseline OEF (~20%) and trends of increased OEF and CBF over several hours after the imaging start were partially due to slow recovery from prolonged anesthesia? The potential effects of long exposure to anesthesia before imaging experiments were not discussed.

      (2) The Methods Section does not provide information about drugs administered to reduce the pain. If pain was not managed, mice could be experiencing significant pain during experiments in the awake state after the surgery. Since the imaging sessions were long (my impression based on information from the manuscript is that imaging sessions were ~4 hours long or even longer), the level of pain was also likely to change during the experiments. It was not discussed how significant and potentially evolving pain during imaging sessions could have affected the measurements (e.g., blood flow and CMRO2). If mice received pain management during experiments, then it was not discussed if there are known effects of used drugs on CBF, CMRO2, and lesion size after 24 hr.

      (3) Animals were imaged in the awake state, but they were not previously trained for the imaging procedure with head restraint. Did animals receive any drugs to reduce stress? Our experience with well-trained young-adult as well as old mice is that they can typically endure 2 and sometimes up to 3 hours of head-restrained awake imaging with intermittent breaks for receiving the rewards before showing signs of anxiety. We do not have experience with imaging P10 mice in the awake state. Is it possible that P10 mice were significantly stressed during imaging and that their stress level changed during the imaging session? This concern about the potential effects of stress on the various measured parameters was not discussed.

      (4) The temperature of the skull was measured during the hypothermia experiment by lowering the water temperature in the water bath above the animal's head. Considering high metabolism and blood flow in the cortex, it could be challenging to predict cortical temperature based on the skull temperature, particularly in the deeper part of the cortex.

      (5) The map of estimated CMRO2 (Fig. 4B) looks very heterogeneous across the brain surface. Is it a coincidence that the highest CMRO2 is observed within the central part of the field of view? Is there previous evidence that CMRO2 in these parts of the mouse cortex could vary a few folds over a 1-2 mm distance?

      (6) The justification for using P10 mice in the experiments has not been well presented in the manuscript.

      (7) It was not discussed how the observations made in this manuscript could be affected by the potential discrepancy between the developmental stages of P10 mice and human babies regarding cellular metabolism and neurovascular coupling

    1. Reviewer #1 (Public review):

      In this study, Sarver and colleagues carried out an exhaustive analysis of the functioning of various components (Complex I/II/IV) of the mitochondrial electron transport chain (ETC) using a real-time cell metabolic analysis technique (commonly referred as Seahorse oxygen consumption rate (OCR) assay). The authors aimed to generate an atlas of ETC function in about 3 dozen tissue types isolated from all major mammalian organ systems. They used a recently published improvised method by which ETC function can be quantified in freshly frozen tissues. This method enabled them to collect data from almost all organ systems from the same mouse and use many biological replicates (10 mice/experiment) required for an unbiased and statistically robust analysis. Moreover, they studied the influence of sex (male and female) and aging (young adult and old age) on ETC function in these organ systems. The main findings of this study are (1) cells in the heart and kidneys have very active ETC complexes compared to other organ systems, (2) the sex of the mice has little influence on the ETC function, and (3) aging undermined the mitochondrial function in most tissue, but surprisingly in some tissue aging promoted the activity of ETC complexes (e.g., Quadriceps, plantaris muscle, and Diaphragm).

      Comments on revised version:

      The revised manuscript has improved significantly, addressing some of my previous concerns in the discussion. There is no doubt the method used to estimate the maximal uncoupled respiration rate in mitochondria across different organ systems and ages is excellent for getting an overview of the mitochondrial state. However, the correlation between the measured maximal respiration rate and the actual mitochondrial ATP production is still not adequately addressed. The authors could performed few straight forward experiments on freshly isolated mitochondria from 1-2 tissue samples of their choice to provide data linking maximal respiration rates with mitochondrial ATP production. Providing evidence that directly links maximal respiration rates with mitochondrial ATP production would help readers understand how mitochondrial function is affected in various tissues.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Bomba-Warczak describes a comprehensive evaluation of long-lived proteins in the ovary using a transgenerational diet-derived 15N-labelling in pulse-chased mice. The transgenerational labeling of proteins (and nucleic acids) with 15N allowed the authors to identify regions enriched in long-lived macromolecules at the 6 and 10-month chase time points. The authors also identified the retained proteins in the ovary and oocyte using MS. Key findings include the relative enrichment in long-lived macromolecules in oocytes, pregranulosa cells, CL, stroma, and surprisingly OSE. Gene ontology analysis of these proteins revealed an enrichment for nucleosome, myosin complex, mitochondria, and other matrix-type protein functions. Interestingly, compared to other post-mitotic tissues where such analyses have been previously performed such as the brain and heart, they find a higher fractional abundance of labeled proteins related to the mitochondria and myosin respectively.

      Strengths:

      A major strength of the study is the combined spatial analyses of LLPs using histological sections with MS analysis to identify retained proteins.

      Another major strength is the use of two chase time points allowing assessment of temporal changes in LLPs associated with aging.

      The major claims such as an enrichment of LLPs in pregranulosa cells, GCs of primary follicles, CL, stroma, and OSE are soundly supported by the analyses and the caveat that nucleic acids might differentially contribute to this signal is well presented.

      The claims that nucleosomes, myosin complex, and mitochondrial proteins are enriched for LLPs are well supported by GO enrichment analysis and well described within the known body of evidence that these proteins are generally long-lived in other tissues.

      Weaknesses:

      All weaknesses were addressed in the revised manuscript.

      Impact of the work:

      This work represents the first study addressing the turnover and retention of long-lived protein in the ovary and will be an invaluable resource for the research community, particularly for those studying ovarian aging. This work also raises important unanswered questions worthy of follow-up including interesting findings regarding the timing of turnover of cell types such as the OSE, organelles such as mitochondria, and ECM proteins such as ZP3 and Tubb family proteins. Most striking are the differences between the two timepoints used (6 and 10 months) which lead the authors to infer trajectories and kinetics of replacement of proteins potentially contributing to ovarian longevity or decline. As such I expect the work will contribute to hypothesis generation and stand to have an important impact on the field.

    1. Reviewer #1 (Public review):

      Summary:

      This is a fine paper that serves the purpose to show that the use of light sheet imaging may be used to provide whole brain imaging of axonal projections. The data provided suggest that at this point the technique provides lower resolution than with other techniques. Nonetheless, the technique does provide useful, if not novel, information about particular brain systems.

      Strengths:

      The manuscript is well written. In the introduction a clear description of the functional organization of the barrel cortex is provided provides the context for applying the use of specific Cre-driver lines to map the projections of the main cortical projection types using whole brain neuroanatomical tracing techniques. The results provided are also well written, with sufficient detail describing the specifics of how techniques were used to obtain relevant data. Appropriate controls were done, including the identification of whisker fields for viral injections and determination of the laminar pattern of Cre expression. The mapping of the data provides a good way to visualize low resolution patterns of projections.

      Weaknesses:

      (1) The results provided are, as stated in the discussion, "largely in agreement with previously reported studies of the major projection targets". However it must be stated that the study does not "extend current knowledge through the high sensitivity for detecting sparse axons, the high specificity of labeling of genetically defined classes of neurons and the brain wide analysis for assigning axons to detailed brain regions" which have all been published in numerous other studies. ( the allen connectivity project and related papers, along with others). If anything the labeling of axons obtained with light sheet imaging in this study does not provide as detailed mapping obtained with other techniques. Some detail is provided of how the raw images are processed to resolve labeled axons, but the images shown in the figures do not demonstrate how well individual axons may be resolved, of particular interest would be to see labeling in terminal areas such as other cortical areas, striatum and thalamus. As presented the light sheet imaging appears to be rather low resolution compared to the many studies that have used viral tracing to look at cortical projections from genetically identified cortical neurons.<br /> (2) Amongst the limitations of this study is the inability to resolve axons of passage and terminal fields. This has been done in other studies with viral constructs labeling synaptophysin. This should be mentioned.<br /> (3) Figure 5 is an example of the type of large sets of data that can be generated with whole brain mapping and registration to the Allen CCF that provides information of questionable value. Ordering the 50 plus structures by the density of labeling does not provide much in terms of relative input to different types of areas. There are multiple subregions for different functional types ( ie, different visual areas and different motor subregions are scattered not grouped together. Makes it difficult to understand any organizing principles.<br /> (4) The GENSAT Cre driver lines used must have the specific line name used, not just the gene name as the GENSAT BAC-Cre lines had multiple lines for each gene and often with very different expression patterns. Rbp4_KL100, Tlx3_PL56, Sim1_KJ18, Ntsr1_ GN220.

    1. Reviewer #2 (Public review):

      Summary:

      The authors developed a bioinformatic pipeline to aid the screening and identification of inhibitory receptors suitable as drug targets. The challenge lies in the large search space and lack of tools for assessing the likelihood of their inhibitory function. To make progress, the authors used a consensus protein membrane topology and sequence motif prediction tool (TOPCOS) combined with both a statistical measure assessing their likelihood function and a machine learning protein structural prediction model (AlphaFold) to greatly cut down the search space. After obtaining a manageable set of 398 high confidence known and putative inhibitory receptors through this pipeline, the authors then mapped these receptors to different functional categories across different cell types based on their expression both in the resting and activated state. Additionally, by using publicly available pan cancer scRNA-seq for tumor-infiltrating T cells data, they showed that these receptors are expressed across various cellular subsets.

      Strengths:

      The authors presented sound arguments motivating the need to efficiently screen inhibitory receptors and to identify those that are functional. Key components of the algorithm were presented along with solid justification for why they addressed challenges faced by existing approaches. To name a few:

      • TOPCON algorithm was elected to optimize the prediction of membrane topology<br /> • A statistical measure was used to remove potential false positives<br /> • AlphaFold is used to filter out putative receptors that are low confidence (and likely intrinsically disordered)

      To examine receptors screened through this pipeline through a functional lens, the authors proposed to look at their expression of various immune cell subsets to assign functional categories. This is a reasonable and appropriate first step for interpreting and understanding how potential drug targets are differentially expressed in some disease contexts. They also presented an example showing this pipeline can be used to "rediscover" known targets.

      Weaknesses:

      The paper has strength in the pipeline they presented, but the weakness, in my opinion, lies in the lack of direct experimental validation on putative receptors. That said, the authors presented in the revised manuscript, as a proof-of-concept, an analytic approach for using functional categorization of putative inhibitory receptors to select therapeutic targets based on in vitro RNAseq. Such analysis will benefit from further investigation across different cancer types using in vivo expression.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Jang et al. describes the application of new methods to measure the localization GTP-binding signaling proteins (G proteins) on different membrane structures in a model mammalian cell line (HEK293). G proteins mediate signaling by receptors found at the cell surface (GPCRs), with evidence from the last 15 years suggesting that GPCRs can induce G-protein mediated signaling from different membrane structures within the cell, with variation in signal localization leading to different cellular outcomes. While it has been clearly shown that different GPCRs efficiently traffic to various intracellular compartments, it is less clear whether G proteins traffic in the same manor, and whether GPCR trafficking facilitates "passenger" G protein trafficking. This question was a blind spot in the burgeoning field of GPCR localized signaling in need of careful study, and the results obtained will serve as an important guide post for further work in this field.<br /> The extent to which G proteins localize to different membranes within the cell is the main experimental question tested in this manuscript. This question is pursued by through two distinct methods, both relying on genetic modification of the G-beta subunit with a tag. In one method, G-beta is modified with a small fragment of the fluorescent protein mNG, which combines with the larger mNG fragment to form a fully functional fluorescent protein to facilitate protein trafficking by fluorescent microscopy. This approach was combined with expression of fluorescent proteins directed to various intracellular compartments (different types of endosomes, lysosome, endoplasmic reticulum, golgi, mitochondria) to look for colocalization of G-beta with these markers. These experiments showed compelling evidence that G-beta co-localizes with markers at the plasma membrane and the lysosome, with weak or absent co-localization for other markers. A second method for measuring localization relied on fusing G-beta with a small fragment from a miniature luciferase (HiBit) that combines with a larger luciferase fragment (LgBit) to form an active luciferase enzyme. Localization of G-beta (and luciferase signal) was measured using a method known as bystander BRET, which relies on expression of a fluorescent protein BRET acceptor in different cellular compartments. Results using bystander BRET supported findings from fluorescence microscopy experiments. These methods for tracking G protein localization were also used to probe other questions. The activation of GPCRs from different classes had virtually no impact on the localization of G-beta, suggesting that GPCR activation does not result in shuttling of G proteins through the endosomal pathway with activated receptors.

      In the revised version of this manuscript the authors have performed informative and important new experiments in addition to adding new text to address conceptual questions. These new data and discussions are commendable and address most or all of the weaknesses listed in the initial review.

      Strengths:

      The question probed in this study is quite important and, in my opinion, understudied by the pharmacology community. The results presented here are an important call to be cognizant of the localization of GPCR coupling partners in different cellular compartments. Abundant reports of endosomal GPCR signaling need to consider how the impact of lower G protein abundance on endosomal membranes will affect the signaling responses under study.

      *The work presented is carefully executed, with seemingly high levels of technical rigor. These studies benefit from probing the experimental questions at hand using two different methods of measurement (fluorescent microscopy and bystander BRET). The observation that both methods arrive at the same (or a very similar) answer inspires confidence about the validity of these findings.

      Weaknesses:

      *As noted by the authors, they do not demonstrate that the tagged G-beta is predominantly found within heterotrimeric G protein complexes. In the revised manuscript the authors have added new discussion text on why it is likely that G-beta is mostly found in complexes. This line of reasoning is convincing, although more robust experimental methods for assessing the assembly status of G-beta could be a valuable target for future experimental developments.

    1. Reviewer #3 (Public review):

      Summary:

      This paper provides presents an automated method to track individual mammalian cells as they progress through the cell cycle using the FUCCI system, and applies the method to look at different tumor cell lines that grow in suspension and determine their cell cycle profile and the effect of drugs that directly affect the cell cycles, on progression through the cell cycle for a 72 hour period.

      Strengths:

      This is a METHODS paper. The one potentially novel finding is that they can identify cells which are at the G1-S transition by the change in color as one protein starts to go up and the other one goes down, similar to change seen as cells enter G2/M. They have provided detailed data in the resubmission, demonstrating how this can be done in different cell lines and that the resolution of the brief time is about (about 1 hr) when the cells are determined to be in the transition from G1 to S. They further showed how one can explore this period (using EDU labeling in conjunction with FUCCI how one can determine whether cells have entered S-phase. This nicely addressed a weakness identified in the previous review.

    1. Reviewer #1 (Public review):

      Summary:

      In this revised manuscript, Rincon-Torroella et al. developed ME3BP-7, a microencapsulated formulation of 3BP, as a potential agent to target MCT1 overexpressing PDACs. The authors provided compelling experimental evidence demonstrating the specific and rapid killing of MCT1 overexpressing PDAC cells in vitro, along with the safety and significant anti-tumor efficacy of ME3BP-7 in multiple PDAC orthotopic mouse models. Overall, this study is very novel, with well-designed experiments and a clear, organized presentation of data that supports the conclusions. The authors have effectively addressed the questions raised in the primary review and provided a thorough discussion of the study's significance, limitations, and future directions, which enhances the readers' understanding of the potential clinical impact of this research.

      Strengths:

      * Developed a novel agent.<br /> * Well-designed experiments and an organized presentation of data that support the conclusions.

      Weaknesses:

      No significant weaknesses are noticed.

    1. se voirappliquer le tarif maximal pour les prestationsservies [avant la rectification], mesure quiconstituait une sanction pécuniaire au sensdes dispositions de l’article L. 123-1 du codedes relations entre le public etl’administration62 ».
    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Kim et al. describes a role for axonal transport of Wnd (a dual leucine zipper kinase) for its normal degradation by the Hiw ubiquitin ligase pathway. In Hiw mutants, the Wnd protein accumulates dramatically in nerve terminals compared to the cell body of neurons. In the absence of axonal transport, Wnd levels rise and lead to excessive JNK signaling that makes neurons unhappy.

      Strengths:

      Using GFP-tagged Wnd transgenes and structure-function approaches, the authors show that palmitoylation of the protein at C130 plays a role in this process by promoting golgi trafficking and axonal localization of the protein. In the absence of this transport, Wnd is not degraded by Hiw. The authors also identify a role for Rab11 in the transport of Wnd, and provide some evidence that Rab11 loss-of-function neuronal degenerative phenotypes are due to excessive Wnd signaling. Overall, the paper provides convincing evidence for a preferential site of action for Wnd degradation by the Hiw pathway within axonal and/or synaptic compartments of the neuron. In the absence of Wnd transport and degradation, the JNK pathway becomes hyperactivated. As such, the manuscript provides important new insights into compartmental roles for Hiw-mediated Wnd degradation and JNK signaling control.

      Weaknesses:

      It is unclear if the requirement for Wnd degradation at axonal terminals is due to restricted localization of HIW there, but it seems other data in the field argues against that model. The mechanistic link between Hiw degradation and compartmentalization is unknown.

    1. Reviewer #1 (Public review):

      Summary:

      This work used a comprehensive dataset to compare the effects of species diversity and genetic diversity within each trophic level and across three trophic levels. The results showed that species diversity had negative effects on ecosystem functions, while genetic diversity had positive effects. These effects were observed only within each trophic level and not across the three trophic levels studied. Although the effects of biodiversity, especially genetic diversity across multi-trophic levels, have been shown to be important, there are still very few empirical studies on this topic due to the complex relationships and difficulty in obtaining data. This study collected an excellent dataset to address this question, enhancing our understanding of genetic diversity effects in aquatic ecosystems.

      Strengths:

      The study collected an extensive dataset that includes species diversity of primary producers (riparian trees), primary consumers (macroinvertebrate shredders), and secondary consumers (fish). It also includes the genetic diversity of the dominant species at each trophic level, biomass production, decomposition rates, and environmental data.

      The conclusions of this paper are mostly well supported by the data and the writing is logical and easy to follow.

      Weaknesses:

      While the dataset is impressive, the authors conducted analyses more akin to a "meta-analysis," leaving out important basic information about the raw data in the manuscript. Given the complexity of the relationships between different trophic levels and ecosystem functions, it would be beneficial for the authors to show the results of each SEM (structural equation model).

      The main results presented in the manuscript are derived from a "metadata" analysis of effect sizes. However, the methods used to obtain these effect sizes are not sufficiently clarified. By analyzing the effect sizes of species diversity and genetic diversity on these ecosystem functions, the results showed that species diversity had negative effects, while genetic diversity had positive effects on ecosystem functions. The negative effects of species diversity contradict many studies conducted in biodiversity experiments. The authors argue that their study is more relevant because it is based on a natural system, which is closer to reality, but they also acknowledge that natural systems make it harder to detect underlying mechanisms. Providing more results based on the raw data and offering more explanations of the possible mechanisms in the introduction and discussion might help readers understand why and in what context species diversity could have negative effects.

      Environmental variation was included in the analyses to test if the environment would modulate the effects of biodiversity on ecosystem functions. However, the main results and conclusions did not sufficiently address this aspect.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper the authors provide a thorough demonstration of the role that one particular type of voltage-gated potassium channel, Kv1.8, plays in a low voltage activated conductance found in type I vestibular hair cells. Along the way, they find that this same channel protein appears to function in type II vestibular hair cells as well, contributing to other macroscopic conductances. Overall, Kv1.8 may provide especially low input resistance and short time constants to facilitate encoding of more rapid head movements in animals that have necks. Combination with other channel proteins, in different ratios, may contribute to the diversified excitability of vestibular hair cells.

      Strengths:

      The experiments are comprehensive and clearly described, both in text and in the figures. Statistical analyses are provided throughout.

      Weaknesses:

      None.

    1. Reviewer #1 (Public review):

      In the revised manuscript Vicario et al. provide new insights on a potential contribution of somatic mutations within the microglia population of the CNS that accelerates microglia activation and disease-associated gene signatures in Alzheimer's disease. Here they especially identified an "enrichment" of pathological SNVs in microglia, but not the peripheral blood, that are associated with clonal proliferative disorders and neurological diseases in a subset of patients with AD. They identified P-SNVs in microglia of AD patients located within the ring domain of CBL, a negative regulator of MAPK signaling. They further provide mechanistic insights how these variants result in MAPK over-activation and subsequently in a pro-inflammatory phenotype in human microglia-like cells in vitro.

      Overall, this study provides novel evidence from an AD patient cohort pointing to a potential contribution of microglia-specific somatic mutations to disease onset and/or progression in at least a subset of patients with Alzheimer's disease.

      The work within this study is highly relevant and will open new study lines to explore somatic mutations within the microglia compartment and neurodegenerative diseases.

      Strengths:

      As outlined above, the study identified P-SNVs in microglia of AD patients associated with clonal proliferative disorders, but also give an in depth analysis in re-occurring P-SNVs located within the ring domain of CBL, a negative regulator of MAPK signaling. They further provide mechanistic insights how these variants result in MAPK over-activation and subsequently in a pro-inflammatory phenotype in HEK cells, BV2 cells, MAC cells and human microglia-like cells in vitro. The over-activation of the cells in vitro is convincing.

      Great care was taken to identify the limitations of the possible conclusions and to make careful conclusions. For example, they highlight that the pathway proposed to be affected may be an explanation for a subset of AD patients, and emphasize that it is yet unclear whether this accumulation of pathological SNVs is a cause or consequence of disease progression

      The study supports an enrichment of P-SNVs in several genes associated clonal proliferative disorders in microglia and nicely separates this from SNVs associated with clonal hematopoiesis in the peripheral blood found in AD patients and controls.

      The authors further acknowledged that several age matched control patients were diagnosed with cancer or tumor-associated diseases and carefully dissected the occurring SNVs in these patients are not associated with the P-SNVs identified in the microglial compartment of the AD cohort.

      Weaknesses:

      The revised study is overall convincing and has improved in the revised version, but some points especially regarding the clear connection of the seen somatic variants in microglia with a potential role in disease progression remain unanswered.

      A potential connection between P-SNVs in microglia and disease pathology and symptoms was not further explored by the authors but might be in future work.

      Taken this into account, maybe the title is a bit overstated and could be tuned down.

    1. Reviewer #1 (Public review):

      Summary:

      The work of Muller and colleagues concerns the question where we place our feet when passing uneven terrain, in particular how we trade-off path length against the steepness of each single step. The authors find that paths are chosen that are consistently less steep and deviate from the straight line more than an average random path, suggesting that participants indeed trade off steepness for path length. They show that this might be related to biomechanical properties, specifically the leg length of the walkers. In addition, they show using a neural network model that participants could choose the footholds based on their sensory (visual) information about depth.

      Strengths:

      The work is a natural continuation of some of the researchers' earlier work that related the immediately following steps to gaze. Methodologically, the work is very impressive and presents a further step forward towards understanding real-world locomotion and its interaction with sampling visual information. While some of the results may seem somewhat trivial in hindsight (as always in this kind of studies), I still think this is a very important approach to understand locomotion in the wild better.

      Weaknesses:

      The concerns I had regarding the initial version of the manuscript have all been fixed in the current one.

    1. Reviewer #1 (Public review):

      This is an important study to characterize cultured neuronal network dynamics, down to the combinations of individual excitatory and inhibitory inputs that result in spiking. The authors effectively combine high-density multi-electrode arrays with patch recordings and a convincing analysis to work out the contributions of multiple simultaneously active input neurons to postsynaptic activity.

      In this study the authors develop methods to interrogate cultured neuronal networks to learn about the contributions of multiple simultaneously active input neurons to postsynaptic activity. They then use these methods to ask how excitatory and inhibitory inputs combine to result in postsynaptic neuronal firing in a network context.

      The study uses a compelling combination of high-density multi-electrode array recordings with patch recordings. They make effective use of physiology techniques such as shifting the reversal potential of inhibitory inputs, and identifying inhibitory vs. excitatory neurons through their influence on other neurons, to tease apart the key parameters of synaptic connections. The method appears to work on rather low-density cultures so the size of the networks in the current study is in the low tens, and the number of synaptic inputs coming to each neuron is smaller than what would be encountered in vivo.

      The authors obtain a number of findings on the conditions in which the dynamics of excitatory and inhibitory inputs permit spiking, and the statistics of connectivity that result in this. This is of considerable interest, and clearly one would like to see how these findings map to larger networks, to non-cortical networks, and ideally to networks in-vivo. The suite of approaches discussed here could potentially serve as a basis for such further development.

      One of the challenges in doing such studies in a dish is that the network is simply ticking away without any neural or sensory context to work on, nor any clear idea of what its outputs might mean. Nevertheless, at a single-neuron level one expects that this system might provide a reasonable subset of the kinds of activity an individual cell might have to work on. In their response to earlier comments the authors have made useful comments on features of in-vivo network activity that are seen in culture. This could ideally be incorporated into the discussion.

    1. Reviewer #1 (Public review):

      In this manuscript, the authors use a large dataset of neuroscience publications to elucidate the nature of self-citation within the neuroscience literature. The authors initially present descriptive measures of self-citation across time and author characteristics; they then produce an inclusive model to tease apart the potential role of various article and author features in shaping self-citation behavior. This is a valuable area of study, and the authors approach it with a rich dataset and solid methodology.

      The revisions made by the authors in this version have greatly improved the validity and clarity of the statistical techniques, and as a result the paper's findings are more convincing.

      This paper's primary strengths are: 1) its comprehensive dataset that allows for a snapshot of the dynamics of several related fields; 2) its thorough exploration of how self-citation behavior relates to characteristics of research and researchers.

      Its primary weakness is that the study stops short of digging into potential mechanisms in areas where it is potentially feasible to do so - for example, studying international dynamics by identifying and studying researchers who move between countries, or quantifying more or less 'appropriate' self-citations via measures of abstract text similarity.

      Yet while these types of questions were not determined to be in scope for this paper, the study is quite effective at laying the important groundwork for further study of mechanisms and motivations, and will be a highly valuable resource for both scientists within the field and those studying it.

    1. Reviewer #1 (Public Review):

      In this manuscript, the authors investigate whether enhancers use a common regulatory paradigm to modulate transcriptional bursting in both endogenous and ectopic domains using cis-regulatory mutant reporters of the eve transcriptional locus in early Drosophila embryogenesis.

      The authors create a series of cis-regulatory BAC mutants of the eve stripe 1 and 2 enhancers by mutating the binding sites for the transcriptional repressor Giant in the stripe 2 minimal response element (MRE) independently or in combination with deletion of the stripe 1 enhancer sequence. With these enhancer mutations, they are able to generate conditions in which eve is ectopically expressed. Next, the authors investigate if nuclei in these "ectopic" regions have similar transcriptional kinetics to the "endogenous"-expressing eve+ nuclei. They show that bursting parameters are unchanged when comparing endogenous and ectopic gene expression regions. Under a scheme of a 2-state model, the eveS1Δ-EveS2Gt- reporter modulates transcription by increasing the active state switching rate (kon) and the initiation rate (r) while maintaining a constant inactive state switching rate.

      Based on these results, the authors support a model whereby kinetic regimes are encoded in the cis-regulatory sequences of a gene instead of imposed by an evolving trans-regulatory environment.

      The question asked in this manuscript is important and the eve locus represents an ideal paradigm to address it in a quantitative manner. Most of the results are correctly interpreted and well-presented.

    1. Reviewer #1 (Public Review):

      Revised Public Review

      This reviewed preprint is essentially three papers combined into one-one paper focused on the role of CIB2/CIB3 in vestibular hair cells, one on the role of CIB2/CIB3 in zebrafish, and one on structural modeling of a CIB2/3 and TMC1/2 complex. The authors try to combine the three parts with the overarching theme of demonstrating that CIB2/3 play a functionally conserved role across species and hair cell types. It is important to note that many of the basic results from the mouse have already been reported by other groups in Liang et al. (2021) and Wang et al. (2023).

      That said, their demonstration of the importance of CIB2 and CIB3 in zebrafish hair cell function is novel. The results largely coincide with what is seen in the mouse-they are both important, with stimulus-dependent Ca2+ entry reduced more in cib2 KOs than in cib3 KOs, and the cib2;cib3 showing the greatest impact. Interestingly, cib2 is uniquely localized in and important for specific hair cell types in the neuromast and crista.

      The last part of the manuscript also offers significant new findings. Here structural studies (AlphaFold 2 modeling, NMR structure determination, and molecular dynamics simulations) brings us closer to the structure of the mammalian TMCs, alone and in complex with the CIB proteins. Moreover, the structural work supports the assignment of the TMC pore to alpha helices 4-7.

      In summary, while this reviewed preprint has some data that replicate data from publications from other labs, it provides a comprehensive look at the CIB family in hair cells, especially in vestibular hair cells.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript presents a comprehensive exploration of the role of liver-specific Survival Motor Neuron (SMN) depletion in peripheral and central nervous system tissue pathology through a well-constructed mouse model. This study is pioneering in its approach, focusing on the broader physiological implications of SMN, which has traditionally been associated predominantly with spinal muscular atrophy (SMA).

      Strengths:

      (1) Novelty and Relevance: The study addresses a significant gap in understanding the role of liver-specific SMN depletion in the context of SMA. This is a novel approach that adds valuable insights into the multi-organ impact of SMN deficiency.

      (2) Comprehensive Methodology: The use of a well-characterized mouse model with liver-specific SMN depletion is a strength. The study employs a robust set of techniques, including genetic engineering, histological analysis, and various biochemical assays.

      (3) Detailed Analysis: The manuscript provides a thorough analysis of liver pathology and its potential systemic effects, particularly on the pancreas and glucose metabolism.

      (4) Clear Presentation: The manuscript is well written. The results are presented clearly with well-designed figures and detailed legends.

      Weaknesses:

      (1) Limited Time Points: The study primarily focuses on a single time point (P19). This limits the understanding of the temporal progression of liver and pancreatic pathology in the context of SMN depletion. Longitudinal studies would provide a better understanding of disease progression.

      (2) Incomplete Recombination: The mosaic pattern of Cre-mediated excision leads to variability in SMN depletion, which complicates the interpretation of some results. Ensuring more consistent recombination across samples would strengthen the conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      This work starts with the observation that embryo polarization is asynchronous starting at the early 8-cell stage, with early polarizing cells being biased towards producing the trophectoderm (TE) lineage. They further found that reduced CARM1 activity and upregulation of its substrate BAF155 promote early polarization and TE specification, this piece of evidence connects the previous finding that at Carm1 heterogeneity 4-cell stage guide later cell lineages - the higher Carm1-expressing blastomeres are biased towards ICM lineage. Thus, This work provides a link between asymmetries at the 4-cell stage and polarization at the 8-cell stage, providing a cohesive explanation regarding the first lineage allocation in mouse embryos.

      Strengths:

      In addition to what has been put in the summary, the advanced 3D image-based analysis has found that early polarization is associated with a change in cell geometry in blastomeres, regarding the ratio of the long axis to the short axis. This is considered a new observation that has not been identified.

      Weaknesses:

      For the microinjection-based method to overexpression/deletion of proteins, although it has been shown to be effective in the early embryo settings and has been widely used, it may not fully represent the in vivo situation in some cases, compared to other strategies such as the use of knock-in mice. This is a minor weakness; it would be good to include some sentences in the discussion on the potential caveats.

    1. Reviewer #1 (Public review):

      Summary:

      This is a valuable study probing the impact of pH and cancer mutations on nucleosome interactions and higher-order chromatin structures.

      Strengths:

      The study is comprehensive, covering all the titratable residues of nucleosomes and all known cancer mutations. The analysis was rigorously carried out within the feasibility of current computational capabilities. The methods used in this study are also solid. The results of this study can enhance our understanding of higher-order chromatin organizations and their modulation by various genetic and epigenetic changes.

      Weaknesses:

      The interpretation and illustration of the data need improvement, such as the change of protonation states of titratable residues on the nucleosome-protein interactions and higher-order chromatin structures.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript (Baron, Oviedo et al., 2024) builds on a previous study from the Wiseman lab (Perea, Baron et al., 2023) and describes the identification of novel nucleoside mimetics that activate the HRI branch of the ISR and drive mitochondrial elongation. The authors develop an image processing and analysis pipeline to quantify the effects of these compounds on mitochondrial networks and show that these HRI activators mitigate ionomycin-driven mitochondrial fragmentation. They then show that these compounds rescue mitochondrial morphology defects in patient-derived MFN2 mutant cell lines.

      Strengths:

      The identification of new ISR modulators opens new avenues for biological discovery surrounding the interplay between mitochondrial form/function and the ISR, a topic that is of broad interest. It also reinforces the possibility that such compounds might represent new potential therapeutics for certain mitochondrial disorders. The development of a quantitative image analysis pipeline is valuable and has the potential to extract the subtle effects of various treatments on mitochondrial morphology.

      Weaknesses:

      I have three main concerns.

      First, support for the selectivity of compounds 0357 and 3610 acting downstream of HRI comes from using knockdown ISR kinase cell lines and measuring the fluorescence of ATF4-mApple (Figure 1G and 1H). However, the selectivity of these compounds acting through HRI is not shown for mitochondrial morphology. Is mitochondrial elongation blocked in HRI knockdown cells treated with the compounds? While the ISRIB treatment does block mitochondrial elongation, ISRIB acts downstream of all ISR kinases and doesn't necessarily define selectivity for the HRI branch of the ISR. Additionally, are the effects of these compounds on ATF4 production and mitochondrial elongation blocked in a non-phosphorylatable eIF2alpha mutant? This point of selectivity/specificity of the compounds gets at a semantic stumbling block I encountered in the text where it was often stated "stress-independent activation" of ISR kinases. Nucleoside mimetics are likely a very biologically active class of molecules and are likely driving some level of cell stress independent of a classical ISR, UPR, heat-shock response, or oxidative stress response.

      Second, it is difficult for me to interpret the data for the quantification of mitochondrial morphology. In the legend for Figure 2, it is stated that "The number of individual measurements for each condition are shown above." Are the individual measurements the number of total cells quantified? If not, how many total cells were analyzed? If the individual measurements are distinct mitochondrial structures that could be quantified why are the n's for each parameter (bounding box, ellipsoid principal axis, and sphericity) so different? Does this mean that for some mitochondria certain parameters were not included in the analysis? For me, it seems more intuitive that each mitochondrial unit should have all three parameters associated with it, but if this isn't the case it needs to be more carefully described why.

      Third, the impact of these compounds on the physiological function of mitochondria in the MFN2.D414V mutants needs to be measured. Sharma et al., 2021 showed a clear deficit in mitochondrial OCR in MFN2.D414V cells which, if rescued by these compounds, would strengthen the argument that pharmacological ISR kinase activation is a strategy for targeting the functional consequences of the dysregulation of mitochondrial form.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Dong et al. study the directed cell migration of tracheal stem cells in Drosophila pupae. The migration of these cells which are found in two nearby groups of cells normally happens unidirectionally along the dorsal trunk towards the posterior. Here, the authors study how this directionality is regulated. They show that inter-organ communication between the tracheal stem cells and the nearby fat body plays a role. They provide compelling evidence that Upd2 production in the fat body and JAK/STAT activation in the tracheal stem cells play a role. Moreover, they show that JAK/STAT signalling might induce the expression of apicobasal and planar cell polarity genes in the tracheal stem cells which appear to be needed to ensure unidirectional migration. Finally, the authors suggest that trafficking and vesicular transport of Upd2 from the fat body towards the tracheal cells might be important.

      Strengths:

      The manuscript is well written. This novel work demonstrates a likely link between Upd2-JAK/STAT signalling in the fat body and tracheal stem cells and the control of unidirectional cell migration of tracheal stem cells. The authors show that hid+rpr or Upd2RNAi expression in a fat body or Dome RNAi, Hop RNAi, or STAT92E RNAi expression in tracheal stem cells results in aberrant migration of some of the tracheal stem cells towards the anterior. Using ChIP-seq as well as analysis of GFP-protein trap lines of planar cell polarity genes in combination with RNAi experiments, the authors show that STAT92E likely regulates the transcription of planar cell polarity genes and some apicobasal cell polarity genes in tracheal stem cells which appear to be needed for unidirectional migration. Moreover, the authors hypothesise that extracellular vesicle transport of Upd2 might be involved in this Upd2-JAK/STAT signalling in the fat body and tracheal stem cells, which, if true, would be quite interesting and novel.

      Overall, the work presented here provides some novel insights into the mechanism that ensures unidirectional migration of tracheal stem cells that prevents bidirectional migration. This might have important implications for other types of directed cell migration in invertebrates or vertebrates including cancer cell migration.

      Weaknesses:

      It remains unclear to what extent Upd2-JAK/STAT signalling regulates unidirectional migration. While there seems to be a consistent phenotype upon genetic manipulation of Upd2-JAK/STAT signalling and planar cell polarity genes, as in the aberrant anterior migration of a fraction of the cells, the phenotype seems to be rather mild, with the majority of cells migrating towards the posterior.

      While I am not an expert on extracellular vesicle transport, the data presented here regarding Upd2 being transported in extracellular vesicles do not appear to be very convincing.

      Major comments:

      (1) The graphs showing the quantification of anterior (and in some cases also posterior migration) are quite confusing. E.g. Figure 1F (and 5E and all others): These graphs are difficult to read because the quantification for the different conditions is not shown separately. E.g. what is the migration distance for Fj RNAi anterior at 3h in Fig5E? Around -205micron (green plus all the other colors) or around -70micron (just green, even though the green bar goes to -205micron). If it's -205micron, then the images in C' or D' do not seem to show this strong phenotype. If it's around -70, then the way the graph shows it is misleading, because some readers will interpret the result as -205.

      Moreover, it's also not clear what exactly was quantified and how it was quantified. The details are also not described in the methods. It would be useful, to mark with two arrowheads in the image (e.g. 5 A' -D') where the migration distance is measured (anterior margin and point zero).

      Overall, it would be better, if the graph showed the different conditions separately. Also, n numbers should be shown in the figure legend for all graphs.

      (2) Figure 2-figure supplement 1: C-L and M: From these images and graph it appears that Upd2 RNAi results in no aberrant anterior migration. Why is this result different from Figures 2D-F where it does?

      (3) Figure 5F: The data on the localisation of planar cell polarity proteins in the tracheal stem cell group is rather weak. Figure 5G and J should at least be quantified for several animals of the same age for each genotype. Is there overall more Ft-GFP in the cells on the posterior end of the cell group than on the opposite side? Or is there a more classic planar cell polarity in each cell with Ft-GFP facing to the posterior side of the cell in each cell? Maybe it would be more convincing if the authors assessed what the subcellular localisation of Ft is through the expression of Ft-GFP in clones to figure out whether it localises posteriorly or anteriorly in individual cells.

      (4) Regarding the trafficking of Upd2 in the fat body, is it known, whether Grasp65, Lbm, Rab5, and 7 are specifically needed for extracellular vesicle trafficking rather than general intracellular trafficking? What is the evidence for this?

      (5) Figure 8A-B: The data on the proximity of Rab5 and 7 to the Upd2 blobs are not very convincing.

      (6) The authors should clarify whether or not their work has shown that "vesicle-mediated transport of ligands is essential for JAK/STAT signaling". In its current form, this manuscript does not appear to provide enough evidence for extracellular vesicle transport of Upd2.

      (7) What is the long-term effect of the various genetic manipulations on migration? The authors don't show what the phenotype at later time points would be, regarding the longer-term migration behaviour (e.g. at 10h APF when the cells should normally reach the posterior end of the pupa). And what is the overall effect of the aberrant bidirectional migration phenotype on tracheal remodelling?

      (8) The RNAi experiments in this manuscript are generally done using a single RNAi line. To rule out off-target effects, it would be important to use two non-overlapping RNAi lines for each gene.

    1. Reviewer #1 (Public review):

      Summary:

      Audio et al. measured cerebral blood volume (CBV) across cortical areas and layers using high-resolution MRI with contrast agents in non-human primates. While the non-invasive CBV MRI methodology is often used to enhance fMRI sensitivity in NHPs, its application for baseline CBV measurement is rare due to the complexities of susceptibility contrast mechanisms. The authors determined the number of large vessels and the areal and laminar variations of CBV in NHP and compared those with various other metrics.

      Strengths:

      Non-invasive mapping of relative cerebral blood volume is novel for non-human primates. A key finding was the observation of variations in CBV across regions; primary sensory cortices had high CBV, whereas other higher areas had low CBV. The measured CBV values correlated with previously reported neuronal and receptor densities.

      Weaknesses:

      A weakness of this manuscript is that the quantification of CBV with postprocessing approaches to remove susceptibility effects from pial and penetrating vessels, as well as orientation dependency, is not fully validated, especially on a laminar scale. Further specific comments follow.

      (1) Baseline CBV indices were determined using contrast agent-enhanced MRI (deltaR2*). Although this approach is suitable for areal comparisons, its application on a laminar scale has not been validated in the literature or in this study. By comparing with histological vascular information of V1, the authors attempted to validate their approach. However, the generalization of their method is questionable. The main issue is whether the large vessel contribution is minimized by processing approaches properly in various cortical areas (such as clusters 1-3 in Figure 5). It would be beneficial to compare deltaR2* with deltaR2 induced by contrast agents in a few selected slices, as deltaR2 is supposed to be sensitive to microvessels, not macrovessels. Please discuss this issue.

      (2) High-resolution MRI with a critical sampling frequency estimated from previous studies (Weber 2008, Zheng 1991) was performed to separate penetrating vessels, which is considered one of the major advancements in this study. However, this approach is still insufficient to accurately identify the number of vessels due to the blooming effects of susceptibility and insufficient spatial resolution. There was no detailed description of the detection criteria. More importantly, the number of observable penetrating vessels is dependent on imaging parameters and the dose of the contrast agent. If imaging slices were obtained in parallel to the cortex with higher in-plane resolution, it would likely improve the detection of penetrating vessels. Using higher-field MRI would further enhance the detection of penetrating vessels. Therefore, the reported value is only applicable to the experimental and processing conditions used in this study. Detailed selection criteria should be mentioned, and all potential pitfalls should be discussed.

      (3) Attempts to obtain pial vascular structures were made (Figure 2). As mentioned in this manuscript, the blooming effect of susceptibility contrasts is problematic. In the MRI community, T1-based Gd contrast agents have been used for mapping large vasculature, which is a better approach for obtaining pial vascular structures. Alternatively, computer tomography with a blood contrast agent can be used for mapping blood vasculature noninvasively. This issue should be discussed.

      (4) Since baseline R2* is related to baseline R2, vascular volume, iron content, and susceptibility gradients, it is difficult to correlate it with physiological parameters. Baseline R2* is also sensitive to imaging parameters; higher spatial resolution tends to result in lower R2* values (closer to the R2 value). Therefore, baseline R2* findings need to be emphasized.

      (5) CBV-weighted deltaR2* is correlated with various other metrics (cytoarchitectural parcellation, myelin/receptor density, cortical thickness, CO, cell-type specificity, etc.). While testing the correlation between deltaR2* and these other metrics may be acceptable as an exploratory analysis, it is challenging for readers to discern a causal relationship between them. A critical question is whether CBV-weighted deltaR2* can provide insights into other metrics in diseased or abnormal brain states. If this is the case, then high-resolution deltaR2* will be useful. Please comment on this possibility.

      (6) There is no discussion about the deltaR2* difference across subcortical areas (Figure 1). This finding is intriguing and warrants a thorough discussion in the context of the cortical findings.

      (7) Figure 3 is missing. Several statements in the manuscript require statistics (e.g., bimodality in Figure 2D, Figure 3F).

    1. Reviewer #1 (Public review):

      Summary:

      In this elegant and thorough study, Sánchez-León et al. investigate the effects of tDCS on the firing of single cerebellar neurons in awake and anesthetized mice. They find heterogeneous responses depending on the orientation of the recorded Purkinje cell.

      Strengths:

      The paper is important in that it may well explain part of the controversial and ambiguous outcomes of various clinical trials. It is a well-written paper on a deeply analyzed dataset.

      Weaknesses:

      The sample size could be increased for some of the experiments.

    1. Reviewer #1 (Public review):

      Summary:

      How reconsolidation works - particularly in humans - remains largely unknown. With an elegant, 3-day design, combining fMRI and psychopharmacology, the authors provide evidence for a certain role for noradrenaline in the reconsolidation of memory for neutral stimuli. All memory tasks were performed in the context of fMRI scanning, with additional resting-state acquisitions performed before and after recall testing on Day 2. On Day 1, 3 groups of healthy participants encoded word-picture associates (with pictures being either scenes or objects) and then performed an immediate cued recall task to presentation of the word (answering is the word old or new, and whether it was paired with a scene or an object). On Day 2, the cued recall task was repeated using half of the stimulus set words encoded on Day 1 (only old words were presented, with subjects required to indicate prior scene vs object pairing). This test was immediately preceded by the oral administration of placebo, cortisol, or yohimbine (to raise noradrenaline levels) depending on group assignment. On Day 3, all words presented on Day 1 were presented. As expected, on Day 3, memory was significantly enhanced for associations that were cued and successfully retrieved on Day 2 compared to uncued associations. However, for associative d', there was no Cued × Group interaction nor a main effect of Group, i.e., on the standard measure of memory performance, post-retrieval drug presence on Day 2 did not affect memory reconsolidation. As further evidence for a null result, fMRI univariate analyses showed no Cued × Group interactions in whole-brain or ROI activity.

      Strengths:

      There are some aspects of this study that I find impressive. The study is well-designed and the fMRI analysis methodology is innovative and sound. The authors have made meticulous and thorough physiological measurements, and assays of mood, throughout the experiment. By doing so, they have overcome, to a considerable extent, the difficulties inherent in the timing of human oral drug delivery in reconsolidation tasks, where it is difficult to have the drug present in the immediate recall period without affecting recall itself. This is beautifully shown in Figure 3. I also think that having some neurobiological assay of memory reactivation when studying reconsolidation in humans is critical, and the authors provide this. While multi-voxel patterns of hemodynamic responses are, in my view, very difficult to equate with an "engram", these patterns do have something to do with memory.

      Weaknesses:

      I have major issues regarding the behavioral results and the framing of the manuscript.

      (1) To arrive at group differences in memory performance, the authors performed median splitting of Day 3 trials by short and long reaction times during memory cueing on Day 2, as they took this as a putative measure of high/low levels of memory reactivation. Associative category hits on Day 3 showed a Group by Day 2 Reaction time (short, long) interaction, with post-hocs showing (according to the text) worse memory for short Day 2 RTs in the Yohimbine group. These post-hocs should be corrected for multiple comparisons, as the result is not what would be predicted (see point 2). My primary issue here is that we are not given RT data for each group, nor is the median splitting procedure described in the methods. Was this across all groups, or within groups? Are short RTs in the yohimbine group any different from short RTs in the other two groups? Unfortunately, we are not given Day 2 picture category memory levels or reaction times for each group. This is relevant because (as given in Supplemental Table S1) memory performance (d´) for the Yohimbine group on Day 1 immediate testing is (roughly speaking) 20% lower than the other 2 groups (independently of whether the pairs will be presented again the following day). I appreciate that this is not significant in a group x performance ANOVA but how does this relate to later memory performance? What were the group-specific RTs on Day 1? So, before the reader goes into the fMRI results, there are questions regarding the supposed drug-induced changes in behavior. Indeed, in the discussion, there is repeated mention of subsequent memory impairment produced by yohimbine but the nature of the impairment is not clear.

      (2) The authors should be clearer as to what their original hypotheses were, and why they did the experiment. Despite being a complex literature, I would have thought the hypotheses would be reconsolidation impairment by cortisol and enhancement by yohimbine. Here it is relevant to point out that - only when the reader gets to the Methods section - there is mention of a paper published by this group in 2024. In this publication, the authors used the same study design but administered a stress manipulation after Day 2 cued recall, instead of a pharmacological one. They did not find a difference in associative hit rate between stress and control groups, but - similar to the current manuscript - reported that post-retrieval stress disrupts subsequent remembering (Day 3 performance) depending on neural memory reinstatement during reactivation (specifically driven by the hippocampus and its correlation with neocortical areas).

      Instead of using these results, and other human studies, to motivate the current work, reference is made to a recent animal study: Line 169 "Building on recent findings in rodents (Khalaf et al. 2018), we hypothesized that the effects of post-retrieval noradrenergic and glucocorticoid activation would critically depend on the reinstatement of the neural event representation during retrieval". It is difficult to follow that a rodent study using contextual fear conditioning and examining single neuron activity to remote fear recall and extinction would be relevant enough to motivate a hypothesis for a human psychopharmacological study on emotionally neutral paired associates.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, the authors investigate the molecular dynamics of MinD, a component of the Bacillus subtilis Min system, in vitro and in vivo. In Escherichia coli the Min system is highly dynamic and displays rapid pole-to-pole oscillation whereby a time average minimum of the Min proteins at mid-cell is established. However, in B. subtilis, this is not the case, and there is no MinE present. MinD in B. subtilis dynamically relocalizes from the poles to division sites and binds to MinC and MinJ, which mediates its interaction with DivIVA. This paper reports the biochemical characterization of B. subtilis MinD in vitro and dynamics of MinD variants in vivo, providing mechanistic insight into the mechanism of dynamic localization.

      Strengths:

      In the current study, the authors perform a detailed biochemical characterizion of the in vitro ATPase activity of MinD and demonstrate that rapid hydrolysis is elicited by adding phospholipids. They further show using a collection of substitution mutants of MinD that both monomers and dimers bind to the membrane, and ATP occupancy changes the on and off rates. Identification, quantification, and tracking of discrete Halo-MinD populations were nicely done and showed that mutations in MinD alter dynamic localization, correlating with PL binding on and off rates in vitro.

      Weaknesses:

      While the study shows that MinD in B. subtilis utilizes a different (MinE-independent) activation mechanism, it remains to be determined the extent to which MinJ and/or MinC play a role.

    1. Reviewer #1 (Public Review):

      Summary:

      Zheng and colleagues assessed the real world efficacy of SARS-CoV-2 vaccination against re-infection following the large omicron wave in Shanghai in April, 2022. The study was performed among previously vaccinated individuals. The study successfully documents a small but real added protective benefit of re-vaccination, though this diminishes in previously boosted individuals. Unsurprisingly, vaccine preventative efficacy was higher if the vaccine was given in the month before the 2nd large wave in Shanghai. The re-infection rate of 24% suggests that long-term anti-COVID immunity is very difficult to achieve. The conclusions are largely supported by the analyses. These results may be useful for planning the timing of subsequent vaccine rollouts.

      Strengths:

      The strengths of the study are a very large and unique cohort based on synchronously timed single infection among individuals with well documented vaccine histories. Statistical analyses seem appropriate. As with any cohort study, there are potential confounders and the possibility of misclassification and the authors outline limitations nicely in the discussion.

      Weaknesses:

      The authors have addressed each of my points thoroughly.

    1. Reviewer #1 (Public review):

      Ellis et al. investigated the functional and topographical organization of visual cortex in infants and toddlers, as evidenced by movie-viewing data. They build directly on prior research that revealed topographic maps in infants who completed a retinotopy task, claiming that even a limited amount of rich, naturalistic movie-viewing data (3-18 minutes) is sufficient to reveal this organization, within and across participants. Generating this evidence required methodological innovations to acquire high-quality fMRI data from awake infants (which have been described by this group, elsewhere) and analytical creativity. The authors provide evidence for structured functional responses in infant visual cortex at multiple levels of analyses; homotopic brain regions (defined based on a retinotopy task) responded more similarly to one another than to other brain regions in visual cortex during movie-viewing; ICA applied to movie-viewing data revealed components that were identifiable as spatial frequency, and to a lesser degree, meridian maps, and shared response modeling analyses suggested that visual cortex responses were similar across infants/toddlers, as well as across infants/toddlers and adults. These results are suggestive of fairly mature functional response profiles in visual cortex in infants/toddlers and highlight the potential of movie-viewing data for studying finer-grained aspects of functional brain responses.

      Strengths:

      - This study links the authors' prior evidence for retinotopic organization of visual cortex in human infants (Ellis et al., 2021) and research by others using movie-viewing fMRI experiments with adults to reveal retinotopic organization (e.g., Knapen, 2021) to strengthen our understanding of infant vision during naturalistic contexts and further evidence for the usefulness of movie-based experiments.<br /> - This study provides novel evidence that functional alignment approaches (specifically, shared response modeling) can be usefully applied to infant fMRI data. Further, code for reproducing such analyses (and others) will be made publicly available.<br /> - Awake infant fMRI data are rare and time-consuming and expensive to collect; they are therefore of high value to the community. The raw and preprocessed fMRI and anatomical data analyzed will be made publicly available.

      Weakness:

      - As the authors clearly state, movie-viewing experiments may not work as well as traditional retinotopy tasks; that is, this approach cannot currently be considered a replacement for retinotopy when accurate maps are needed.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Bu et al examined the dynamics of TRPV4 channel in cell overcrowding in carcinoma conditions. They investigated how cell crowding (or high cell confluence) triggers a mechano-transduction pathway involving TRPV4 channels in high-grade ductal carcinoma in situ (DCIS) cells that leads to large cell volume reduction (or cell volume plasticity) and pro-invasive phenotype.

      In vitro, this pathway is highly selective for highly malignant invasive cell lines derived from a normal breast epithelial cell line (MCF10A) compared to the parent cell line, but not present in another triple-negative invasive breast epithelial cell line (MDA-MB-231). The authors convincingly showed that enhanced TRPV4 plasma membrane localization correlates with high-grade DCIS cells in patient tissue samples.<br /> Specifically in non-invasive MCF10DCIS.com cells, they showed that overcrowding or over-confluence leads to a decrease in cell volume and intracellular calcium levels. This condition also triggers the trafficking of TRPV4 channels from intracellular stores (nucleus and potentially endosomes), to the plasma membrane (PM). When these over-confluent cells are incubated with a TRPV4 activator, there is an acute and substantial influx of calcium, attesting to the fact that there are a high number of TRPV4 channels present on the PM. Long-term incubation of these over-confluent cells with the TRPV4 activator results in the internalization of the PM-localized TRPV4 channels.

      In contrast, cells plated at lower confluence primarily have TRPV4 channels localized in the nucleus and cytosol. Long-term incubation of these cells at lower confluence with a TRPV4 inhibitor leads to the relocation of TRPV4 channels to the plasma membrane from intracellular stores and a subsequent reduction in cell volume. Similarly, incubation of these cells at low confluence with PEG 3000 (a hyperosmotic agent) promotes the trafficking of TRPV4 channels from intracellular stores to the plasma membrane.

      Strengths:

      The study is elegantly designed and the findings are novel. Their findings on this mechano-transduction pathway involving TRPV4 channels, calcium homeostasis, cell volume plasticity, motility, and invasiveness will have a great impact in the cancer field and are potentially applicable to other fields as well. Experiments are well-planned and executed, and the data is convincing. The authors investigated TRVP4 dynamics using multiple different strategies- overcrowding, hyperosmotic stress, and pharmacological means, and showed a good correlation between different phenomena.

      Weaknesses:

      A major emphasis in the study is on pharmacological means to relate TRPV4 channel function to the phenotype. I believe the use of genetic means would greatly enhance the impact and provide compelling proof for the involvement of TRPV4 channels in the associated phenotype. In this regard, I wonder if siRNA-mediated knockdown of TRPV4 in over-confluent cells (or knockout) would lead to an increase in cell volume and normalize the intracellular calcium levels back to normal, thus ultimately leading to a decrease in cell invasiveness.

    1. Reviewer #1 (Public review):

      Summary:

      The use of antalarmin, a selective CRF1 receptor antagonist, prevents the deficits in sociability in (acutely) morphine-treated males, but not in females. In addition, cell-attached experiments show a rescue to control levels of the morphine-induced increased firing in PVN neurons from morphine-treated males. Similar results are obtained in CRF receptor 1-/- male mice, confirming the involvement of CRF receptor 1-mediated signaling in both sociability deficits and neuronal firing changes in morphine-treated male mice.

      Strengths:

      The experiments and analyses appear to be performed to a high standard, and the manuscript is well written and the data clearly presented. The main finding, that CRF-receptor plays a role in sociability deficits occurring after acute morphine administration, is an important contribution to the field.

      Weaknesses:

      The link between the effect of pharmacological and genetic modulation of CRF 1 receptor on sociability and on PVN neuronal firing, is less well supported by the data presented. No evidence of causality is provided.

      Major points:

      (1) The results of behavioral tests and the neural substrate are purely correlative. To find causality would be important to selectively delete or re-express CRF1 receptor sequence in the VPN. Re-expressing the CRF1 receptor in the VPN of male mice and testing them for social behavior and for neuronal firing would be the easier step in this direction.

      (2) It would be interesting to discuss the relationship between morphine dose and CRF1 receptor expression.

      (3) It would be important to show the expression levels of CRF1 receptors in PVN neurons in controls and morphine-treated mice, both males and females.

      (4) It would be important to discuss the mechanisms by which CRF1 receptor controls the firing frequency of APV+/OXY+ neurons in the VPN of male mice.

      Minor points:

      (1) The phase of the estrous cycles in which females are analyzed for both behavior and electrophysiology should be stated.

      (2) It would be important to show the statistical analysis between sexes.

    1. Reviewer #1 (Public Review):

      Summary of the Study:

      The manuscript delves into the COVID-19 virus membrane protein M1-subtype and its IgM responses in COVID-19 cohorts. The authors conducted an extensive epitope screening and prediction through delta of the normalized accessible surface area (DASA) and validated their findings across multiple cohorts in Europe. The study aims to provide novel insights into the immune responses to COVID-19 and explore potential clinical implications for long COVID prognostics.

      Strengths:

      (1) Innovative Approach:<br /> The use of DASA for epitope screening is innovative and allows for detailed mapping of immune responses.

      (2) Validation Across Cohorts:<br /> The study's validation of findings across multiple European cohorts adds robustness and generalizability to the results.

      (3) Comprehensive Analysis:<br /> The manuscript presents a thorough analysis of IgM responses, contributing valuable data to the understanding of immune responses in COVID-19.

      Weaknesses:

      (1) Lack of Clarity on T-Independent B Cell Reactions:<br /> The rationale and results regarding T-independent B cell reactions are not well-explained, requiring additional bridging sentences or data for better comprehension.

      (2) Limited Sample Size for B Cell Stimulation:<br /> The in vitro B cell stimulation experiments involve a very small number of individuals (2 reacted vs 1 unreacted), which weakens the strength of the conclusions drawn from these experiments.

      (3) Insufficient Exploration of Comorbidities:<br /> The manuscript could benefit from exploring correlations with other clinical data on comorbidities or sub-grouping the long COVID cohort by specific outcomes.

      Appraisal of the Study's Aims and Conclusions :

      The authors have partially achieved their aims by providing novel insights into COVID-19 immune responses and highlighting the potential for using IgM responses in long COVID prognostics. However, the conclusions would be more convincing with additional data and clarity on certain aspects, such as the T-independent B cell reactions and the impact of comorbidities.

      Impact on the Field and Utility to the Community:

      This study has the potential to significantly impact the field of COVID-19 research by advancing the understanding of immune responses to the virus. The novel insights into IgM responses and epitope screening could inform future diagnostic and prognostic tools for COVID-19, particularly in the context of long COVID. Additionally, the methods and data presented could be valuable to researchers exploring similar viral immune responses.

      Additional Context:

      For readers and researchers, it is essential to note that while the study offers intriguing results, the manuscript would benefit from more comprehensive data and clearer explanations in certain areas. The inclusion of the DASA equation in the manuscript or a figure would improve readability and contextual comprehension. Further exploration of clinical comorbidities and additional external validation data would enhance the study's robustness and applicability.

    1. Reviewer #1 (Public review):

      Summary:

      This work combines molecular dynamics (MD) simulations along with experimental elucidation of the efficacy of ATP as biological hydrotrope. While ATP is broadly known as the energy currency, it has also been suggested to modulate the stability of biomolecules and their aggregation propensity. In the computational part of the work, the authors demonstrate that ATP increases the population of the more expanded conformations (higher radius of gyration) in both a soluble folded mini-protein Trp-cage and an intrinsically disordered protein (IDP) Aβ40. Furthermore, ATP is shown to destabilise the pre-formed fibrillar structures using both simulation and experimental data (ThT assay and TEM images). They have also suggested that the biological hydrotrope ATP has significantly higher efficacy as compared to the commonly used chemical hydrotrope sodium xylene sulfonate (NaXS).

      Strengths:

      This work presents a comprehensive and compelling investigation of the effect of ATP on the conformational population of two types of proteins: globular/folded and IDP. The role of ATP as an "aggregate solubilizer" of pre-formed fibrils has been demonstrated using both simulation and experiments. They also elucidate the mechanism of action of ATP as a multi-purpose solubilizer in a protein-specific manner. Depending on the protein, it can interact through electrostatic interactions (for predominantly charged IDPs like Aβ40), or primarily van der Waals' interactions through (for Trp-Cage).

      Weaknesses:

      The weaknesses and suggestions mentioned in my first review have been adequately addressed by the authors in the revised version of the manuscript.

    1. Reviewer #1 (Public review):

      In this manuscript, Ferhat and colleagues describe their study aimed at developing a blood brain barrier (BBB) penetrant agent that could induce hypothermia and provide neuroprotection from the sequelae of status epilepticus (SE) in mice. Hypothermia is used clinically in an attempt to reduce neurological sequelae of injury and disease. Hypothermia can be effective, but physical means used to reduce core body temperature is associated with untoward effects. Pharmacological means to induce hypothermia could be as effective with fewer untoward complications. Intracerebroventricularly applied neurotensin can cause hypothermia; however, neurotensin applied peripherally is degraded and does not cross the BBB. Here the authors develop and characterize a neurotensin conjugate that can reach the brain, induce hypothermia, and reduce seizures, cognitive changes, and inflammatory changes associated with status epilepticus.

      Strengths:

      (1) In general, the study is well reasoned, well designed, and seemingly well executed.<br /> (2) Strong dose-response assessment of multiple neurotensin conjugates in mice.<br /> (3) Solid assessment of binding affinity, in vitro stability ion blood, and brain uptake of the conjugate.<br /> (4) Appropriate inclusion of controls for SE and for drug injections.<br /> (5) Multifaceted assessment of neurodegeneration, inflammation, and mossy fiber sprouting in the different groups.<br /> (6) Inclusion of behavioral assessments.<br /> (7) Evaluate NSTR1 receptor distribution in multiple ways.<br /> (8) Demonstrate that this conjugate can induce hypothermia and have positive effects on the sequelae of SE. Could have great impact on the application of pharmacologically-induced hypothermia as a neuroprotective measure in patients.

      Weaknesses:

      (1) The authors make the claim, repeatedly, that the hypothermia caused by the neurotensin conjugate is responsible for the effects they see; however, what they really show is that the conjugate causes hypothermia AND has favorable effects on the sequelae of SE. They have now discussed this limitation in the manuscript.

    1. Reviewer #1 (Public review):

      Summary

      Das and Menon describe an analysis of a large open-source iEEG dataset (UPENN-RAM). From encoding and recall phases of memory tasks, they analyzed power and phase-transfer entropy as a measure of directed information flow in regions across a hypothesized tripartite network system. The anterior insula (AI) was found to have heightened high gamma power during encoding and retrieval, which corresponded to suppression of high gamma power in medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) during encoding but not recall. In contrast, directed information flow from (but not to) AI to mPFC and PCC is high during both time periods when PTE is analyzed with broadband but not narrowband activity. They claim that these findings significantly advance an understanding of how network communication facilitates cognitive operations during memory tasks, and that the AI of the salience network (SN) is responsible for influencing both the frontoparietal network (FPN) and default-mode network (DMN) during memory encoding and retrieval.

      I find this question interesting and important, and agree with the authors that iEEG presents a unique opportunity to investigate the temporal dynamics within network nodes. Their findings convey intriguing information about the structure and order of communication between network regions during on-task cognition in general (though, perhaps not specific to memory - see Weaknesses), with the AI of the SN ostensibly playing an important role in possibly influencing the DMN and FPN.

      Strengths

      - The authors present results from an impressively sized iEEG sample. For reader context, this type of invasive human data is difficult and time-consuming to collect and many similar studies in high-level journals include 5-20 participants, typically not all of whom have electrodes in all regions of interest. It is excellent that they have been able to leverage open-source data in this way.<br /> - Preprocessing of iEEG data also seems sensible and appropriate based on field standards.<br /> - The authors tackle the replication issues inherent in much of the literature by replicating findings across task contexts, demonstrating that the principles of network communication evidenced by their results generalize in multiple task memory contexts. Again, the number of iEEG patients who have multiple tasks' worth of data is impressive.<br /> - Though the revised manuscript presents a broader and more novel investigation of the tripartite network's role in memory encoding and retrieval (as opposed to cognitive control of memory) the authors now thoroughly review the literature motivating this investigation of open-source data.

      Weaknesses

      - As the authors discuss, it is currently unclear if the directed information flow from AI to DMN and FPN nodes truly arises from memory-associated processes as opposed to more general attentional and cognitive demands, especially given that information flow does not relate meaningfully to task performance (whether memory retrieval is successful or not). I also note this is a concern because - though the authors have now demonstrated that information flow is increased compared to an off-task baseline - influences of AI on DMN or FPN were not increased relative to baseline epochs during the task in the original preprint version, again suggesting these effects may not be specific to the memory component of the analyzed tasks. The authors have thoughtfully noted in the Discussion several ways that experimental design can be improved in future studies to address this limitation.

      Because phase-transfer entropy is referenced as a "causal" analysis in this investigation (PTE), I believe it is important to highlight for readers recent discussions surrounding the description of "causal mechanisms" in neuroscience (see "Confusion about causation" section from Ross and Bassett, 2024, Nature Neuroscience). A large proportion of neuroscientists (myself included) use "causal" only to refer to a mechanism whose modulation or removal (with direct manipulation, such as by lesion or stimulation) is known to change or control a given outcome (such as a successful behavior). As Ross and Bassett highlight, it is debatable whether such mechanistic causality is captured by Granger "causality" (a.k.a. Granger prediction) or the parametric PTE, and imprecise use of "causation" may be confusing. The authors have defined in the revised Introduction what their definition of "causality" is within the context of this investigation.

    1. Reviewer #1 (Public Review):

      Summary:

      This work focuses on the structure and regulation of the Anaphase-Promoting Complex/Cyclosome (APC/C), a large multi-subunit ubiquitin ligase that controls the onset of chromosome segregation in mitosis. Previous high-resolution structural studies have uncovered numerous structural features and regulatory mechanisms of the human APC/C, but it has remained unclear if these mechanisms are conserved in other model eukaryotes. To address this gap in our understanding, the authors employed cryo-electron microscopy to generate structural models of APC/C from the budding yeast S. cerevisiae, a key model organism in cell cycle analysis. In their comparison of the human and yeast complexes, the authors uncover many conserved structural features that are documented here in detail, revealing widespread similarities in the fundamental structural features of the enzyme. Interestingly, the authors also find evidence that two of the key mechanisms of human APC/C regulation are not conserved in the yeast enzyme. Specifically:

      (1) The ubiquitin ligase activity of the APC/C depends on its association with a co-activator subunit such as CDH1 or CDC20, which serves both as a substrate-binding adaptor and as an activator of interactions with the E2 co-enzyme. Previous studies of the human APC/C revealed that co-activator binding induces a conformational change that enables E2 binding. In contrast, the current work shows that this E2-binding conformation already exists in the absence of a co-activator in the yeast enzyme, suggesting that the enhancement of E2 binding in yeast depends on other, as yet undiscovered, mechanisms.

      (2) APC/C phosphorylation on multiple subunits is known to enhance APC/C activation by the CDC20 co-activator in mitosis. Previous studies showed that phosphorylation acts by promoting the displacement of an autoinhibitory loop that occupies part of the CDC20-binding site. In the yeast enzyme, however, there is no autoinhibitory loop in the CDC20-binding site, and there is no apparent effect of APC/C phosphorylation on co-activator binding sites. Thus, phosphorylation activates the yeast CDC20-APC/C by unknown mechanisms.

      Strengths:

      The strength of this paper is that it provides a comprehensive analysis of yeast APC/C structure and how it compares to previously determined human structures. The article systematically unwraps the key features of the structure in a subunit-by-subunit fashion, carefully revealing the key features that are the same or different in the two species. These descriptions are based on a thorough overview of past work in the field; indeed, this article serves as a concise review of the key features, conserved or otherwise, of APC/C structure and regulation.

      Weaknesses:

      No significant weaknesses were identified.

    1. Reviewer #1 (Public Review):

      The study identifies the epigenetic reader SntB as a crucial transcriptional regulator of growth, development, and secondary metabolite synthesis in Aspergillus flavus, although the precise molecular mechanisms remain elusive. Using homologous recombination, researchers constructed sntB gene deletion (ΔsntB), complementary (Com-sntB), and HA tag-fused sntB (sntB-HA) strains. Results indicated that deletion of the sntB gene impaired mycelial growth, conidial production, sclerotia formation, aflatoxin synthesis, and host colonization compared to the wild type (WT). The defects in the ΔsntB strain were reversible in the Com-sntB strain.

      Further experiments involving ChIP-seq and RNA-seq analyses of sntB-HA and WT, as well as ΔsntB and WT strains, highlighted SntB's significant role in the oxidative stress response. Analysis of the catalase-encoding catC gene, which was upregulated in the ΔsntB strain, and a secretory lipase gene, which was downregulated, underpinned the functional disruptions observed. Under oxidative stress induced by menadione sodium bisulfite (MSB), the deletion of sntB reduced catC expression significantly. Additionally, deleting the catC gene curtailed mycelial growth, conidial production, and sclerotia formation, but elevated reactive oxygen species (ROS) levels and aflatoxin production. The ΔcatC strain also showed reduced susceptibility to MSB and decreased aflatoxin production compared to the WT.

      This study outlines a pathway by which SntB regulates fungal morphogenesis, mycotoxin synthesis, and virulence through a sequence of H3K36me3 modification to peroxisomes and lipid hydrolysis, impacting fungal virulence and mycotoxin biosynthesis.

      The authors have achieved the majority of their aims at the beginning of the study, finding target genes, which led to catC mediated regulation of development, growth and aflatoxin metabolism. Overall most parts of the study are solid and clear.

      Comments on revision:

      The authors have thoroughly addressed all the concerns I raised. The current manuscript is robust and effectively presents evidence supporting its claims. The overall quality of the manuscript has significantly improved.

    1. Reviewer #1 (Public review):

      Summary:

      The study used root tips from semi-hydroponic tea seedlings. The strategy followed sequential steps to draw partial conclusions.

      Initially, protoplasts obtained from root tips were processed for scRNA-seq using the 10x Genomics platform. The sequencing data underwent pre-filtering at cell and gene levels, leading to 10,435 cells. These cells were then classified into eight clusters using t-SNE algorithms. The present study scrutinised cell typification through protein sequence similarity analysis of homologs of cell type marker genes. The analysis was conducted to ensure accuracy using validated genes from previous scRNA-seq studies and the model plant Arabidopsis thaliana. The cluster cell annotation was confirmed using in situ RT-PCR analyses. This methodology provided a comprehensive insight into the cellular differentiation of the sample under study. The identified clusters, spanning 1 to 8, have been accurately classified as xylem, epidermal, stem cell niche, cortex/endodermal, root cap, cambium, phloem, and pericycle cells.

      Then, the authors performed a pseudo-time analysis to validate the cell cluster annotation by examining the differentiation pathways of the root cells. Lastly, they created a differentiation heatmap from the xylem and epidermal cells and identified the biological functions associated with the highly expressed genes.

      Upon thoroughly analysing the scRNA-seq data, the researchers delved into the cell heterogeneity of nitrate and ammonium uptake, transport, and nitrogen assimilation into amino acids. The scRNA-seq data was validated by in situ RT-PCR. It allows the localisation of glutamate and alanine biosynthetic enzymes along the cell clusters and confirms that both constituent the primary amino acid metabolism in the root. Such investigation was deemed necessary due to the paramount importance of these processes in theanine biosynthesis since this molecule is synthesised from glutamate and alanine-derived ethylamine.

      Afterwards, the authors analysed the cell-specific expression patterns of the theanine biosynthesis genes, combining the same molecular tools. They concluded that theanine biosynthesis is more enriched in cluster 8 "pericycle cells" than glutamate biosynthesis (Lines 271-272). However, the statement made in Line 250 states that the highest expression levels of genes responsible for glutamate biosynthesis were observed in Clusters 1, 3, 4, 6 and 8, leading to an unclear conclusion.<br /> The regulation of theanine biosynthesis by the MYB transcription factor family is well-established. In particular, CsMYB6, a transcription factor expressed specifically in roots, has been found to promote theanine biosynthesis by binding to the promoter of the TSI gene responsible for theanine synthesis. However, their findings indicate that CsMYB6 expression is present in Cluster 3 (SCN), Cluster 6 (cambium cells), and Cluster 1 (xylem cells) but not in Cluster 8 (pericycle cells), which is known for its high expression of CsTSI. Similarly, their scRNA-seq data indicated that CsMYB40 and CsHHO3, which activate and repress CsAlaDC expression, respectively, did not show high expression in Cluster 1 (the cell cluster with high CsAlaDC expression). Based on these findings, the authors speculated that transcription factors and target genes are not necessarily always highly expressed in the same cells.

      Lastly, the authors have discovered a novel transcription factor belonging to the Lateral Organ Boundaries Domain (LBD) family known as CsLBD37 that can co-regulate the synthesis of theanine and the development of lateral roots. The authors observed that CsLBD37 is located within the nucleus and can repress the CsAlaDC promoter's activity. To investigate this mechanism further, the authors conducted experiments to determine whether CsLBD37 can inhibit CsAlaDC expression in vivo. They achieved this by creating transiently CsLBD37-silenced or over-expression tea seedlings through antisense oligonucleotide interference and generation of transgenic hairy roots. Based on their findings, the authors theorise that CsLBD37 regulates CsAlaDC expression to modulate the synthesis of ethylamine and theanine in tea roots. Apologies for the inadvertent mistake concerning glutamate and glutamine.

      Strength:

      The manuscript showcases significant dedication and hard work, resulting in valuable insights that are fundamental for generating knowledge. The authors skillfully integrated various tools available for this type of study and meticulously presented and illustrated every step involved in the survey. The overall quality of the work is exceptional, and it would be a valuable addition to any academic or professional setting.

      Weaknesses:

      The authors have effectively addressed the feedback and revised the manuscript, presenting their debatable conclusions as speculative. Consequently, I find the manuscript's current form free of any apparent weaknesses.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript addresses two main issues: (i) do MAPKs play an important role in SAC regulation in single cell organism such as S pombe? (ii) what is the nature of their involvement and what are their molecular targets?<br /> The authors have extensively used the cold-sensitive β-tubulin mutant to activate or inactivate SAC employing an arrest-release protocol. Localization of Cdc13 (cyclin B) to the SPBs is used as a readout for the SAC activation or inactivation. The roles of two major MAPK pathways i.e. stress activated pathway (SAP) and cell integrity pathway (CIP), have been explored in this context (with CIP more extensively than SAP). Sty1Δ or pmk1Δ mutants were used to inactivate the SAP or CIP pathways and wis1DD or pek1DD expression was utilized to constitutively activate these pathways, respectively. Lowering of Slp1Cdc20 abundance (by phosphorylation of Slp1-Thr 480) is revealed as the main function of MAPK to augment the robustness of spindle assembly checkpoint.

      Strengths:

      The experiments are generally well-conducted, and the results support the interpretations in various sections. The experimental data clearly support some of the key conclusions:<br /> (i) while inactivation of SAP and CIP compromises SAC-imposed arrest, their constitutive activation delays the release from the SAC-imposed arrest (ii) CIP signaling, but not SAP signaling, attenuates Slp1Cdc20 levels (iii) Pmk1 and Cdc20 physical interact and Pmk1-docking sequences in Slp1 (PDSS) is identifies and confirmed by mutational/substitution experiments (iv) Thr480 (and also S76) is identified as the residue phosphorylated by Pmk1. S28 and T31 are identified as Cdk1 phosphorylation sites. These are confirmed by mutational and other related analyses (v) Functional aspects of the phosphorylation sites have been elucidated to some extent: (a) Phosphorylation of Slp1-T480 by Pmk1 reduces its abundance thereby augmenting the SAC-induced arrest (b) S28, T31 (also S59) are phosphorylated by Cdk1 (v) K472 and K479 residues are involved in ubiquitylation of Slp1

      Weaknesses:

      (i) Cdc13 localization to SPBs has been used as a readout for SAC activation/inactivation throughout the manuscript. However, the only image showing such localization (Figure 1C) is of poor quality where the Cdc13 localization to SPBs barely visible. This should be replaced by a better image.

      (ii) The overlapping error-bars in Cdc13-localization data in some figures (for instance Figure 3E and 4H) makes the effect of various mutations on SAC activation/inactivation rather marginal. In some of these cases, Western-blotting data support the author's conclusions better.

      (iii) This specific point is not really a weakness but rather a loose end:<br /> One of the conclusions of this study is that MAPK (PMK1) contributes to the robustness of SAC-induced arrest by lowering the abundance of Slp1Cdc20. The authors have used pmk1Δ or constitutively activating the MAPK pathways (Pek1DD) and documenting their effect on SAC activation/inactivation dynamics. It is not clear if SAC activation also leads to activation of MAPK pathways for them to contribute to the SAC robustness. To tie this loose end, the author could have checked if MAPK pathway is also activated under the conditions when SAC is activated. Unless this is shown, one must assume that the authors are attributing the effect they observe to the basal activity of MAPKs.

      (iv) This is also a loose end:<br /> The authors show that activation of stress pathways (by addition of KCL instance) causes phosphorylation-dependent Slp1Cdc20 downregulation (Figure 6) under SAC-activating conditions. Does activation of the stress pathway cause phosphorylation-dependent Slp1Cdc20 downregulation under non-SAC-activation conditions or does it occur only under SAC-activating conditions?

      (v) Although the authors have gone to some length to identify S28, T31 (also S59) as phosphorylation sites for Cdk1, their functional significance in the context of MAPK involvement is not yet clear. Perhaps it is outside the scope of this study to dig deeper into this aspect more than the authors have.

      (vi) In its current state, the Discussion section is quite disjointed. The first section "Involvement of MAPKs in cell cycle regulation" should be in the Introduction section (very briefly, if at all). It certainly does not belong to the Discussion section. In any case, the Discussion section should be more organized with better flow of arguments/interpretations.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript characterizes a functional peptidergic system in the echinoderm Apostichopus japonicus that is related to the widely conserved family of calcitonin/diuretic hormone 31 (CT/DH31) peptides in bilaterian animals. In vitro analysis of receptor-ligand interactions, using multiple receptor activation assays, identifies three cognate receptors for two CT-like peptides in the sea cucumber, which stimulate cAMP, calcium, and ERK signaling. Only one of these receptors is closely related to the family of calcitonin and calcitonin-like receptors (CTR/CLR) in bilaterian animals, whereas two other receptors cluster with invertebrate pigment dispersing factor receptors (PDFRs). In addition, this study sheds light on the transcript expression and in vivo functions of CT-like peptides in A. japonicus, by quantitative real-time PCR, in situ hybridization, pharmacological experiments on body wall muscle and intestine preparations, and peptide injection and RNAi knockdown experiments. This reveals a conserved function of CT-like peptides as muscle relaxants and hints at a potential role as growth regulators in A. japonicus.

      Strengths:

      This work combines both in vitro and in vivo functional assays to identify a CT-like peptidergic system in an economically relevant echinoderm species, the sea cucumber A. japonicus. A major strength of the study is that it identifies three G protein-coupled receptors for AjCT-like peptides, one related to the CTR/CLR family and two related to the PDFR family. A similar finding was previously reported for the CT-related peptide DH31 in Drosophila melanogaster that activates both CT-type and PDF-type receptors. Here, the authors expand this observation to a deuterostomian animal, which suggests that receptor promiscuity is a more general feature of the CT/DH31 peptide family and that CT/DH31-like peptides may activate both CT-type and PDF-type receptors in other animals as well.

      Besides the identification of receptor-ligand pairs, the downstream signaling pathways of AjCT receptors have been characterized, highlighting broad effects on cAMP, calcium, and ERK signaling. Functional characterization of the CT-related peptide system in heterologous cells is complemented with ex vivo and in vivo experiments. First, peptide injection and RNAi knockdown experiments establish transcriptional regulation of all three identified receptors in response to changing AjCT peptide levels. Second, ex vivo experiments reveal a conserved role for the two CT-like peptides as muscle relaxants, which have differential effects on body wall muscle and intestine preparations. Finally, peptide injection studies suggest a putative role for one of the two CT-like peptides (AjCT2) in growth regulation.

      Weaknesses:

      Analysis of transcript expression is limited to the CT-peptide encoding gene, while no gene expression analysis was attempted for the three identified receptors. Differences in the activation of downstream signaling pathways between the three receptors are also questionable due to unclarities in the statistical analysis and variation in the control and experimental data in heterologous assays. Together, this makes it difficult to propose a mechanism underlying differences in the functions of the two CT-like peptides in muscle control and growth regulation.

      The authors also suggest a putative orexigenic role for the CT-like peptidergic system in feeding behavior. This effect is not well supported by the experimental data provided, as no detailed analysis of feeding behavior was carried out (only indirect measurements were performed that could be influenced by other peptidergic effects, such as on muscle relaxation) and no statistically significant differences were reported in these assays.

      Overall, details regarding statistical analyses are not (clearly) specified in the manuscript, and there are several instances where statements are not supported by literature evidence.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors use ChEC-seq, an MNase-based method to map yeast RNA pol II. Part of the reasoning for this study is that earlier biochemical work suggested pol II initiation and termination should involve slow steps at the UAS/promoter and termination regions that are not well visualized by formaldehyde-based ChIP methods. Here the authors find that pol II ChIP and ChEC give complementary patterns. Pol II ChIP signals are strongest in the coding region (where ChIP signal correlates well with transcription (rho = 0.62)). In contrast, pol II ChEC signals are strongest at promoters (rho = 0.52) and terminator regions. Weaker upstream ChEC signals are also observed at the STM class genes where biochemical studies have suggested a form of Pol (and maybe other general factors) is recruited to UAS sites. ChEC of TFIIA and TFIIE give promoter-specific ChEC signals as expected. Extending this work to elongation factors Ctk1 and Spt5 unexpectedly give strong signals near the PIC location and little signals over the coding region. This, and mapping CTD S2 and S5 phosphorylation by ChEC suggests to me that, for some reason, ChEC isn't optimal for detecting components of the elongation complex over coding regions.

      Examples are also presented where perturbations of transcription can be measured by ChEC. Modeling studies are shown where adjustment of kinetic parameters agree well with ChEC data and that these models can be used to estimate which steps in transcription are affected by various perturbations. No tests were performed to see if the predictions could be validated by other means. Finally, the role of nuclear pore binding by Gcn4 is explored, although the results do not seem convincing. Overall, the authors show that pol II ChEC is a valuable and complementary method for investigating transcription mechanisms and slow steps at the initiation and termination regions.

    1. Reviewer #1 (Public Review):

      Summary:

      In a previous study, the authors developed a human iPS cell line which expresses Cre under the control of the Lmx1a promoter in order to track, select for, and differentiate human dopamine neurons. In the manuscript under review, the authors are using methods which they have modified to generate astrocytes from the same cell line. The authors are interested in examining astrocytes which are derived from regionalized, floor plate progenitors.

      The fundamental weakness of this paper is that the authors are making arguments about regional identity but their work is limited to experiments in vitro. Some of the claims that the authors make should be tested in vivo - ie, in sections, at least. Are floor plate markers or other ventral markers ever expressed in astrocytes or glial progenitors in the mammalian fetus? When do astrocytes emerge in the floor plate? All of the data here are based on an overly simplified in vitro platform.

      Lmx1a expression is not limited to the ventral midbrain; it is also expressed in other parts of the developing, ventral CNS and in the roof plate and dorsal CNS (Millonig et al, Nature 2000). Indeed, many of the phenotypes of the Lmx1a mutant mouse (dreher) have little to do with the ventral midbrain. The authors are making an assumption that regional identity is fixed when they begin their astrocyte differentiation protocol - not necessarily true. After astrocytic differentiation is initiated, the authors have done little to demonstrate that floor plate identity is maintained even in selected cells; in fact, the transcriptomic data suggests that the cells are released from a floor plate fate. The authors seem to realize this but do not make any attempt to prove their thesis. If regional identity is not maintained, the authors need a better experiment.

      If regional identity is not maintained, so what? Don't we already know that this can happen? The authors acknowledge that this is known in the discussion.

      The authors have done transcriptomics studies to follow the changes in these cells but they have not told us very much that is meaningful. It would be useful to validate some of the new astrocytic markers that they have identified - Pax and Irx genes (Welle et al., Glia 2021) come quickly to mind. What about genes related to Shh and Wnt signaling that are prevalent in the floor plate? In particular, a lot of work has been done examining the role of Shh on the properties and lineage of astrocytes (Farmer et al., Science 2016; Hill et al., eLife 2019; Gingrich et al., Neural Dev 2022; Xie et al., Cell Rep 2022). There are a lot of stones which remain unturned, here, and the authors could actually tell us much more without doing an immense amount of work. These suggestions and criticisms are described in far greater detail in the confidential comments to the authors.

      Work Cited:

      Chizhikov et al., Mamm Genome 2006. https://pubmed.ncbi.nlm.nih.gov/17019651/

      Chizhikov et al., Development 2004. https://journals.biologists.com/dev/article/131/11/2693/42269/Control-of-roof-plate-formation-by-Lmx1a-in-the

      Chizhikov et al., PNAS 2010. https://pubmed.ncbi.nlm.nih.gov/20498066/

      Emsley and Macklis. Neuron Glia Biol 2007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820889/

      Farmer et al., Science 2016. https://pubmed.ncbi.nlm.nih.gov/26912893/

      Gross et al., Development 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958331/

      Hill et al., eLife 2019. https://pubmed.ncbi.nlm.nih.gov/31194676/

      Gingrich et al., Neural Dev 2022. https://pubmed.ncbi.nlm.nih.gov/35027088/

      Iskusnykh et al., eLife 2023. https://elifesciences.org/articles/84095

      Millonig et al, Nature 2000. https://pubmed.ncbi.nlm.nih.gov/10693804/

      Welle et al. Glia 2021. https://pubmed.ncbi.nlm.nih.gov/36342840/

      Xie et al., Cell Rep 2022. https://pubmed.ncbi.nlm.nih.gov/35196485/

    1. Reviewer #1 (Public review):

      Summary:

      García-Vázquez et al. identify GTSE1 as a novel target of the cyclin D1-CDK4/6 kinases. The authors show that GTSE1 is phosphorylated at four distinct serine residues and that this phosphorylation stabilizes GTSE1 protein levels to promote proliferation.

      Strengths:

      The authors support their findings with several previously published results, including databases. In addition, the authors perform a wide range of experiments to support their findings.

      Weaknesses:

      I feel that important controls and considerations in the context of the cell cycle are missing. Cyclin D1 overexpression, Palbociclib treatment and apparently also AMBRA1 depletion can lead to major changes in cell cycle distribution, which could strongly influence many of the observed effects on the cell cycle protein GTSE1. It is therefore important that the authors assess such changes and normalize their results accordingly.

    1. Reviewer #1 (Public review):

      Summary:

      In their paper, Hosack and Arce-McShane investigate how the 3D movement direction of the tongue is represented in the orofacial part of the sensory-motor cortex and how this representation changes with the loss of oral sensation. They examine the firing patterns of neurons in the orofacial parts of the primary motor cortex (MIo) and somatosensory cortex (SIo) in non-human primates (NHPs) during drinking and feeding tasks. While recording neural activity, they also tracked the kinematics of tongue movement using biplanar video-radiography of markers implanted in the tongue. Their findings indicate that most units in both MIo and SIo are directionally tuned during the drinking task. However, during the feeding task, directional turning was more frequent in MIo units and less prominent in SIo units. Additionally, in some recording sessions, they blocked sensory feedback using bilateral nerve block injections, which resulted in fewer directionally tuned units and changes in the overall distribution of the preferred direction of the units.

      Strengths:

      The most significant strength of this paper lies in its unique combination of experimental tools. The author utilized a video-radiography method to capture 3D kinematics of the tongue movement during two behavioral tasks while simultaneously recording activity from two brain areas. Moreover, they employed a nerve-blocking procedure to halt sensory feedback. This specific dataset and experimental setup hold great potential for future research on the understudied orofacial segment of the sensory-motor area.

      Weaknesses:

      Aside from the last part of the result section, the majority of the analyses in this paper are focused on single units. I understand the need to characterize the number of single units that directly code for external variables like movement direction, especially for less-studied areas like the orofacial part of the sensory-motor cortex. However, as a field, our decade-long experience in the arm region of sensory-motor cortices suggests that many of the idiosyncratic behaviors of single units can be better understood when the neural activity is studied at the level of the state space of the population. By doing so, for the arm region, we were able to explain why units have "mixed selectivity" for external variables, why the tuning of units changes in the planning and execution phase of the movement, why activity in the planning phase does not lead to undesired muscle activity, etc. See (Gallego et al. 2017; Vyas et al. 2020; Churchland and Shenoy 2024) for a review. Therefore, I believe investigating the dynamics of the population activity in orofacial regions can similarly help the reader go beyond the peculiarities of single units and in a broader view, inform us if the same principles found in the arm region can be generalized to other segments of sensory-motor cortex.

      Further, for the nerve-blocking experiments, the authors demonstrate that the lack of sensory feedback severely alters how the movement is executed at the level of behavior and neural activity. However, I had a hard time interpreting these results since any change in neural activity after blocking the orofacial nerves could be due to either the lack of the sensory signal or, as the authors suggest, due to the NHPs executing a different movement to compensate for the lack of sensory information or the combination of both of these factors. Hence, it would be helpful to know if the authors have any hint in the data that can tease apart these factors. For example, analyzing a subset of nerve-blocked trials that have similar kinematics to the control.

    1. Reviewer #1 (Public review):

      Summary:

      This study by Wang et al. identifies a new type of deacetylase, CobQ, in Aeromonas hydrophila. Notably, the identification of this deacetylase reveals a lack of homology with eukaryotic counterparts, thus underscoring its unique evolutionary trajectory within the bacterial domain.

      Strengths:

      The manuscript convincingly illustrates CobQ's deacetylase activity through robust in vitro experiments, establishing its distinctiveness from known prokaryotic deacetylases. Additionally, the authors elucidate CobQ's potential cooperation with other deacetylases in vivo to regulate bacterial cellular processes. Furthermore, the study highlights CobQ's significance in the regulation of acetylation within prokaryotic cells.

      Weaknesses:

      The problem I raised has been well resolved. I have no further questions.

    1. Reviewer #1 (Public review):<br /> <br /> Summary:

      Balasubramanian et al. characterized the cell types comprising mouse Schlemm's canal (SC) using bulk and single cell RNA sequencing (scRNA-seq). The results identify expression patterns the delineate the SC inner and outer wall cells and two inner wall 'states'. Further analysis demonstrates expression patterns of glaucoma associated genes and receptor ligand pairs between SEC's and neighboring trabecular meshwork.

      Strengths:

      While mouse SC has been profiled in previous scRNA-seq studies (van Zyl et al 2020, Thomson et al 2021), these data provide higher resolution of SC cell types, particularly endothelial cell (SEC) populations. SC is an important regulator of anterior chamber outflow and has important consequences for glaucoma.

      Comments on the latest version:

      The authors have addressed my primary concerns with the first version of the manuscript. This study represents a valuable resource in the molecular characterization of mouse Schlemm's canal cell types.

    1. Reviewer #1 (Public review):

      Summary:

      This paper reports the first results on the effects of a novel waveform for weak transcranial magnetic stimulation, which is refered to as "perturbation" (kTMP). The waveform is sinusoidal at kHz frequency with subthreshold intensities of 2V/m, instead of the suprathreshold pulses used in conventional TMS (~100V/m). The effect reported here concerns motor-evoked potentials (MEPs) elicited on the hand with single-pulse TMS. These MEPs are considered a marker of "corotico-spinal excitability". The manuscripts report that kTMP at 3.5kHz enhances MEPs with a medium effect size, with independent replication of this finding on 3 separate cohorts of subjects (N=16, 15, 16). This result is important for the field of non-invasive brain stimulation. The evidence in support of this claim is compelling. Despite the replications, this remains an exploratory study that will require replication with adequately powered planned comparisons.

      Strengths:

      • This is a novel modality for non-invasive brain stimulation.<br /> • Knowing the history in this field, this is likely to lead to a large number of follow-up studies in basic and clinical research.<br /> • The modality causes practically no sensation, which makes it perfectly suitable for control conditions. Indeed, the study itself used a persuasive double-blinding procedure.<br /> • The replication of the main result in two subsequent experiments is very compelling.<br /> • The effect size of Cohen's d=0.5 is very promising.<br /> • It is nice the E-fields were measured on a phantom, in addition to modeling.

      Weakness:

      • Statistical analysis combining Experiments 1, 2, 3 after inspecting the data is inappropriate.<br /> • Post-hoc definition of outliers that were removed is unfortunate.<br /> • While sensation has been documented, blinding was not directly assessed.<br /> • Despite the replications, this remains an exploratory study as it lacks power analysis and planned comparisons.

      Other comments from an earlier review were adequately addressed.

    1. Reviewer #1 (Public review):

      Summary:

      This work by Leclercq and colleagues performed metabolomics on biospecimens collected from 96 patients diagnosed with severe alcohol use disorder (AUD). The authors discovery strong alterations in circulating glycerophospholipids, bile acids, and some gut microbe-derived metabolites in AUD patients compared to controls. An exciting part of this work is that metabolomics was also done in post-mortem samples of the frontal cortex and cerebrospinal fluid of heavy alcohol users, and some of the same metabolites were seen to be altered in the central nervous system. This important study will form the basis for hypothesis generation around diet-microbe-host interactions in alcohol use disorder. The work is done in a highly rigorous manner, and the rigorously collected human samples is an evident strength of this work. Overall, this work will provide many new insights, and it is poised to have a high impact on the field.

      Strengths:

      (1) The rigorously collected patient-derived samples<br /> (2) There is high rigorous in the metabolomics investigation<br /> (3) Statistical analyses are well-described and strong.<br /> (4) The careful control of taking blood samples at the same time to avoid alterations in meal- and circadian-related fluctuations in metabolites is a clear strength.

      Weaknesses:

      None remaining

    1. Reviewer #1 (Public review):

      Summary:

      The authors study age-related changes in the excitability and firing properties of sympathetic neurons, which they ascribe to age-related changes in the expression of KCNQ (Kv7, "M-type") K+ currents in rodent sympathetic neurons, whose regulation by GPCRs has been most thoroughly studied for over 40 years.

      Strengths:

      The strengths include the rigor of the current-clamp and voltage-clamp experiments and the lovely, crisp presentation of the data, The separation of neurons into tonic, phasic and adapting classes is also interesting, and informative. The ability to successfully isolate and dissociate peripheral ganglia from such older animals is also quite rare and commendable! There is much useful detail here.

      Weaknesses:

      Whereas the description of the data are very nice, and useful, the manuscript does not provide much in the way of mechanistic insights. As such, the effect is more of an epi-phenomenon of unclear insight, and the authors cannot ascribe changes in signaling mechanisms, such as that of M1 mAChRs to the phenomena that is supported by data.

      Comments on latest version:

      I do not have any additional issues to be addressed by the authors.

    1. Joint Public Review:

      This study describes a group of CRH-releasing neurons, located in the paraventricular nucleus of the hypothalamus, which, in mice, affects both the state of sevoflurane anesthesia and a grooming behavior observed after it. PVHCRH neurons showed elevated calcium activity during the post-anesthesia period. Optogenetic activation of these PVHCRH neurons during sevoflurane anesthesia shifts the EEG from burst-suppression to a seemingly activated state (an apparent arousal effect), although without a behavioral correlate. Chemogenetic activation of the PVHCRH neurons delays sevoflurane-induced loss of righting reflex (another apparent arousal effect). On the other hand, chemogenetic inhibition of PVHCRH neurons delays recovery of righting reflex and decreases sevoflurane-induced stress (an apparent decrease in the arousal effect). The authors conclude that PVHCRH neurons "integrate" sevoflurane-induced anesthesia and stress. The authors also claim that their findings show that sevoflurane itself produces a post-anesthesia stress response that is independent of any surgical trauma, such as an incision. In its revised form, the article does not achieve its intended goal and will not have impact on the clinical practice of anesthesiology nor on anesthesiology research.

      Strengths:

      The manuscript uses targeted manipulation of the PVHCRH neurons with state-of-the-art methods and is technically sound. Also, the number of experiments is substantial.

      Weaknesses:

      The most significant weaknesses remain: a) overinterpretation of the significance of their findings b) the failure to use another anesthetic as a control, c) a failure to compellingly link their post-sevoflurane measures in mice to anything measured in humans, and d) limitations in the novelty of the findings. These weaknesses are related to the primary concerns described below:

      Concerns about the primary conclusion that PVHCRH neurons integrate the anesthetic effects and post-anesthesia stress response of sevoflurane GA:

      It is important to compare the effects of sevoflurane with at least one other inhaled ether anesthetic as one step towards elevating the impact of this paper to the level required for a journal such as eLife. Isoflurane, desflurane, and enflurane are ether anesthetics that are very similar to each other, as well as being similar to sevoflurane. For example, one study cited by the authors (Marana et al. 2013) concludes that there is weak evidence for differences in stress-related hormones between sevoflurane and desflurane, with lower levels of cortisol and ACTH observed during the desflurane intraoperative period. It is important to determine whether desflurane activates PVHCRH neurons in the post-anesthesia period, and whether this is accompanied by excess grooming in the mice because this will distinguish whether the effects of sevoflurane generalize to other inhaled anesthestics, or, alternatively, relate to unique idiosyncratic properties of this gas that may not be a part of its anesthetic properties.

      Concerns about the clinical relevance of the experiments:

      In anesthesiology practice, perioperative stress observed in patients is more commonly related to the trauma of the surgical intervention, with inadequate levels of antinociception or unconsciousness intraoperatively and/or poor post-operative pain control. The authors seem to be suggesting that the sevoflurane itself is causing stress because their mice receive sevoflurane but no invasive procedures, but there is no evidence of sevoflurane inducing stress in human patients. It is important to know whether sevoflurane effectively produces behavioral stress in the recovery room in patients that could be related to the putative stress response (excess grooming) observed in mice. For example, in surgeries or procedures which required only a brief period of unconsciousness that could be achieved by administering sevoflurane alone (comparable to the 30 min administered to the mice), is there clinical evidence of post-operative stress? It is also important to describe a rationale for using a 30 min sevoflurane exposure. What proportion of human surgeries using sevoflurane use exposure times that are comparable to this?

      It is the experience of one of the reviewers that human patients who receive sevoflurane as the primary anesthetic do not wake up more stressed than if they had had one of the other GABAergic anesthetics. If there were signs of stress upon emergence (increased heart rate, blood pressure, thrashing movements) from general anesthesia, this would be treated immediately. The most likely cause of post-operative stress behaviors in humans is probably inadequate anti-nociception during the procedure, which translates into inadequate post-op analgesia and likely delirium. It is the case that children receiving sevoflurane do have a higher likelihood of post-operative delirium. Perhaps the authors' studies address a mechanism for delirium associated with sevoflurane, but this is barely mentioned. Delirium seems likely to be the closest clinical phenomenon to what was studied. As noted by the Besnier et al (2017) article cited by the authors, surgery can elevate postoperative glucocorticoid stress hormones, but it generally correlates with the intensity of the surgical procedure. Besnier et al also note the elevation of glucocorticoids is generally considered to be adaptive. Thus, reducing glucocorticoids during surgery with sevoflurane may hamper recovery, especially as it relates to tissue damage, which was not measured or considered here. This paper only considers glucocorticoid release as a negative factor, which causes "immunosuppression", "proteolysis", and "delays postoperative recovery and...leads to increased morbidity".

      It is also the case that there are explicit published findings showing that mild and moderate surgical procedures in children receiving sevoflurane (which might be the closest human proxy to the brief 30 minute sevoflurane exposure used here) do not have elevated cortisol (Taylor et al, J Clin Endocrinol Metab, 2013). This again raises the question of whether the enhanced grooming or elevated corticosterone observed in the mice here has any relevance to humans.

      Concerns about the novelty of the findings:

      The key finding here is that CRH neurons mediate measures of arousal, and arousal modulates sevoflurane anesthesia induction and recovery. However, CRH is associated with arousal in numerous studies. In fact, the authors' own work, published in eLife in 2021, showed that stimulating the hypothalamic CRH cells lead to arousal and their inhibition promoted hypersomnia. In both papers the authors use fos expression in CRH cells during a specific event to implicate the cells, then manipulate them and measure EEG responses. In the previous work, the cells were active during wakefulness; here- they were active in the awake state the follows anesthesia (Figure 1). Thus, the findings in the current work are incremental and not particularly impactful. Claims like "Here, a core hypothalamic ensemble, corticotropin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus, is discovered" are overstated. PVHCRH cell populations were discovered in the 1980s. Suggesting that it is novel to identify that hypothalamic CRH cells regulate post-anesthesia stress is unfounded as well: this PVH population has been shown over four decades to regulate a plethora of different responses to stress. Anesthesia stress is no different. Their role in arousal is not being discovered in this paper. Even their role in grooming is not discovered in this paper.

      The activation of CRH cells in PVH has already been shown to result in grooming by Jaideep Bains (a paper cited by the authors). Thus, the involvement of these cells in this behavior is not surprising. The authors perform elaborate manipulations of CRH cells and numerous analyses of grooming and related behaviors. For example, they compare grooming and paw licking after anesthesia with those after other stressors such as forced swim, spraying mice with water, physical attack and restraint. The authors have identified a behavioral phenomenon in a rodent model that does not have a clear correlation with a behavior state observed in humans during the use of sevoflurane as part of an anesthetic regimen. The grooming behaviors are not a model of the emergence delirium or the cognitive dysfunction observed commonly in patients receiving sevoflurane for general anesthesia. Emergence delirium is commonly seen in children after sevoflurane is used as part of general anesthesia and cognitive dysfunction is commonly observed in adults-particularly the elderly -- following general anesthesia.

    1. Reviewer #1 (Public review):

      Summary:

      Li Zhang et al. characterized two new Gram-negative endolysins identified through an AMP-targeted search in bacterial proteomes. These endolysins exhibit broad lytic activity against both Gram-negative and Gram-positive bacteria and retain significant antimicrobial activity even after prolonged exposure to high temperatures (100{degree sign}C for 1 hour). This stability is attributed to a temperature-reversible transition from a dimer to a monomer. The authors suggest several potential applications, such as complementing heat sterilization processes or being used in animal feed premixes that undergo high-temperature pelleting, which I agree with.

      Strengths:

      The claims are well-supported by relevant and complementary assays, as well as extensive bioinformatic analyses.

      Weaknesses:

      My last comments are minor and nearly all aim to improve the use of English language in the manuscript. However, a section describing the statistical analysis is still lacking. I believe that the presented manuscript can benefit from language editing, but I leave this decision with the editor.

    1. Reviewer #1 (Public review):

      Summary:

      The work seeks to investigate the efficacy of linalool as a natural alternative for combating Saprolegnia parasitica infections, which would provide great benefit to aquaculture. This paper shows the effect of linalool in vitro using a variety of techniques including changes in S. parasitica membrane integrity following linalool exposure and alterations in cell metabolism and ribosome function. Additionally, this work goes on to show that prophylactic and concurrent treatment of linalool at the time of S. parasitica infection can improve survival and tissue damage in vivo in their grass carp infection model. The conclusions of the paper are partially supported by the data, cleaning up, clarifying, and elaborating on some aspects of this work is necessary.

      (1) Adding microscopy of the untreated group to compare Figure 2A with would further strengthen the findings here.

      (2) Quantification of immune infiltration and histological scoring of kidney, liver, and spleen in the various treatment groups would increase the impact of Figure 4.

      (3) The data in Figure 6 I is not sufficiently convincing as being significant.

      (4) Comparisons of the global transcriptomic analysis of the untreated group to the PC, LP, and LT groups would strengthen the author's claims about the immunological and transcriptomic changes caused by linalool and provide a true baseline.

    1. Reviewer #1 (Public review):

      Summary:

      Here, the authors attempt to show that CCL5 is increased after stroke, possibly due to decreased miR-324, and that this is a modifiable system to decrease stroke damage. By bidirectionally manipulating CCL5 levels through direct injection of CCL5; a CCL5 blocking antibody; miR324; miR324 antagomir; or CCR5-blocking Maraviroc, they broadly show improvement with lower CCL5 levels. This includes infarct size, behavioral analysis, and immunohistochemical analysis of astrocytes, microglia, and neurons. They further try to mechanistically tie miR324 and CCL5 in astrocytes specifically to stroke-induced changes using a neuronal/astrocytic coculture system. They argue that decreasing CCL5 leads to increased ERK and CREB phosphorylation as a potential neuroprotective mechanism. CCL5 is one potential ligand for CCR5, and recent work identified CCR5 as a targetable mechanism by clinically-approved drug Maraviroc to enhance stroke recovery. Particularly given the high level of interest in CCR5 in stroke recovery, the focus on CCL5 - one of CCR5's potential ligands - and its miR regulation is an exciting expansion of this area of stroke biology.

      Strengths:

      The authors' findings that decreasing CCL5 acutely after stroke shows behavioral improvement appear robust. This broadly replicates work from other groups, although the finding that miR324 manipulation can phenocopy direct CCL5 manipulation is novel and intriguing. However, many of their other claims are difficult to evaluate based on a combination of missing methodological information, inappropriate statistical testing, and a flawed culture system.

      Weaknesses:

      Broadly speaking, the manuscript takes a zoomed-out view of what is fundamentally highly localized biology.

      (1) miRNA-based regulation, by definition, has to include miR and mRNA in the same cell type; as the authors note, CCL5 is expressed in many cells. It is therefore impossible to propose any interaction on the basis of the tissue-level changes described; any evidence of in vivo cell-type specificity would dramatically improve the claims.

      (2) The authors treat an extensive area of ipsilesional cortex uniformly as "IP". Astrocytic and microglial responses to localized injuries such as stroke are highly location-dependent and undoubtedly change dramatically within this area. The presented data cannot be interpreted without confirmation that these were taken at identical distances from the injury, and what that distance was. These do not appear to be adjacent to the injury, where the responses would presumably be the most informative. Similarly, it is difficult to interpret the neuronal Sholl and spine data without more information on where within the large IP region these neurons were found.

      The authors attempt to narrow in on cell-type specificity via culture. However, astrocytes are notoriously prone to a dramatic change in culture and require careful methods (immunopanning; see eg doi: 10.1016/j.neuron.2011.07.022) to maintain much resemblance to their in vivo counterpart. It is difficult to conclude much about the role of astrocytes in the CCL5 pathway based on the use of this shaking-based culture system, particularly in the absence of cell-type specific validation in vivo.

      There is missing methodological information, including infarct size measurements, TUNEL staining, and statistical testing. The TTC figures look very odd, like a collection of overlapping stars have been placed on the images rather than the natural relatively smooth infarct edges one would expect. It is unclear if the infarct volume measurements accounted for edema, as is standard; there is no description of the protocol used for quantification. It is also unclear if the infarct volume measurement comparisons were also done with t-tests vs ANOVA, as the statistical test used is not listed in the figure legends. In numerous cases where statistical testing is listed, repeated t-tests between subgroups are used vs the more appropriate ANOVA (assuming normality; nonparametric testing as appropriate), making it difficult to have confidence in the results.

    1. Reviewer #1 (Public review):

      Summary:

      The authors of this study use an optimization algorithm approach, based on the established Nelder-Mead method, to infer polymer models that best match input bulk Hi-C contact data. The procedure infers the best parameters of a generic polymer model that combines loop-extrusion (LE) dynamics and compartmentalisation of chromatin types driven by weak biochemical affinities. Using this and DNA FISH, the authors investigate the chromatin structure of the MYC locus in leukaemia cells, showing that loop extrusion alone cannot explain local pathogenic chromatin rearrangements. Finally, they study the locus single-cell heterogeneity and time dynamics.

      In the revised manuscript the authors have adequately addressed my questions and comments. The exception concerns point #5 of my original review:

      (5) Besides cumulative probability distributions, I asked the authors to show the TAD2-TAD4 (model vs. exp) distances in Fig. 3c as relative frequency histograms. This allows readers to more accurately evaluate whether model and experimental distributions have same shape and variance.

    1. Reviewer #1 (Public Review):

      The individual roles of both cosolvents and intrinsically disordered proteins (IDPs) in desiccation have been well established, but few studies have tried to elucidate how these two factors may contribute synergistically. The authors quantify the synergy for the model and true IDPs involved with desiccation and find that only the true IDPs have strong desiccation tolerance and synergy with cosolvents. Using these as model systems, they quantify the local (secondary structure vis-a-vi CD spectroscopy) and global dimensions (vis-a-vi the Rg of SAXS experiments) and find no obvious changes with the co-solvents. Instead, they focus on the gelation of one of the IDPs and, using theory and experiments, suggest that the co-solvents may enable desiccation tolerance, an interesting hypothesis to guide future in vivo desiccation studies. A few minor points that remained unclear to this reviewer and that were noted previously have been reasonably addressed in this revision.

      Strengths:

      This paper is quite extensive and has significant strengths worth highlighting. Notably, the number and type of methods employed to study IDPs are quite unusual, employing CD spectroscopy, SAXS measurements, and DSC. The use of the TFE is an exciting integration of the physical chemistry of cosolvents into the desiccation field is a nice approach and a clever way of addressing the gap of the lack of conformational changes depending on the cosolvents. Furthermore, I think this is a major point and strength of the paper; the underlying synergy of cosolvents and IDPs may lie in the thermodynamics of the dehydration process.

      Figure S6A is very useful. I encourage readers who are confused about the DSC analysis, interpretation, and calculation to refer to it.

      Weaknesses:

      All minor weaknesses were addressed in this revision.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Sztangierska et al explores how the Hsp70 chaperone together with its JDP-NEF cofactors and Hsp104 disentangle aggregated proteins. Specifically, the study provides mechanistic findings that explain what role the NEF class Hsp110 has in protein disaggregation. The results explain several previous observations related to Hsp110 in protein disaggregation. Importantly, the study provides compelling evidence that Hsp110 acts early in the disaggregation process.

      Strengths:

      (1) This is a very well performed study with multiple in vitro experiments that provide convincing support for the claims.

      (2) An important finding is that the study places Hsp110 function early in the disaggregation process.

      (3) The study has an important value in that it picks up on a number of observations in the field that have not been explored or directly tested by experiment. The presented results settle questions and controversy regarding Hsp110 function in disaggregation.

      Weaknesses:

      (1) While the key finding of this manuscript is that it places Hsp110 early in the disaggregation process, the other findings are advancing the field less.

    1. Reviewer #1 (Public review):

      Summary:

      Matsui et al. present an experimental pipeline for visualizing molecular machinery of synapses in the brain, which includes numerous techniques, starting with generating labeled antibodies and recombinant mice, continuing with HPF and FIB milling and finishing with tilt series collection and 3D image processing. This pipeline represents a breakthrough in preparation of brain tissue for high resolution imaging and can be used in future tomographic research to reconstruct molecular details of synaptic complexes as well as pre- and post-synaptic assemblies. This methodology can also be adapted for a broader range of tissue preparations and signifies the next step towards better structural understanding of how molecular machineries operate in natural conditions.

      Strengths:

      The manuscript is very well written, contains a detailed description of methodology, provides nice illustrations and will be an outstanding guide for future research.

      Weaknesses:

      None noted.

    1. Reviewer #1 (Public review):

      Summary:

      This paper by Yang et al. established an in vitro triple co-culture BBB model and demonstrated its advantages compared with the mono or double co-culture BBB model. Further, the authors used their established in vitro BBB model and combined it with other methodologies to investigate the specific signaling mechanisms that co-culture with astrocytes but also neurons enhancing the integrity of endothelial cells.

      Strengths:

      The results persuasively demonstrated that the established triple co-culture BBB model well mimicked several important characteristics of BBB compared with the mono-culture BBB model, including better barrier function and in vivo/in vitro correlation. The use of human-derived immortalized cells made the model construction process faster and more efficient and had a better in vivo correlation without the complications of species differences. This model is expected to be a useful high-throughput evaluation tool for CNS drug development.

      Moreover, the authors used a variety of experiments to prove that the triple co-culture model also reflected the interactions between NVU cells, including promoting endothelial cell proliferation and the formation of intercellular junctions. Interestingly, the authors found that neurons also released GDNF to promote barrier properties of brain endothelial cells, as most current research has focused on the promoting effect of astrocytes-derived GDNF on BBB. Meanwhile, the author also validated the functions of GDNF for BBB integrity in vivo by silencing GDNF in mouse brains. Overall, the experiments and data presented support the claim that neurons, alongside astrocytes, contribute to the promoting effects of the barrier function of endothelial cells through GDNF secretion.

      Weaknesses:

      While the authors explained that the use of human-derived immortalized cells has been justified as more reproducible and efficient in constructing the model, the TEER value of the triple co-culture model remains lower than that of the physiological statement. Future research may need to explore additional methods to further enhance the barrier function of the model.

    1. Reviewer #1 (Public review):

      Herzog and colleagues investigated the interactions between working memory (WM) task condition (updating, maintenance) and BMI (body-mass-index), while considering selected dopaminergic genes (COMT, Taq1A, C957T, DARPP-32). Emerging evidence suggest that there might be a specific negative association with BMI in the updating but not maintenance condition, with potential bearings to reversal reward learning in obesity. The inclusion of multiple dopaminergic genes is a strength in the present study, considering the complexity of the interactions between tonic and phasic dopamine across the brain that may distinctly associate with the component processes of WM. Here, the finding was that BMI was negatively associated with WM performance regardless of the condition (updating, maintenance), but in models including moderation by either Taq1A or DARPP-32 (but not by COMT and C957T) an interaction by task condition was observed. Furthermore, a two-way interaction effect between BMI and genotype was observed exclusively in the updating condition. These findings are in line with the accounts by which striatal dopamine as reflected by Taq1A and DARPP-32 play an important role in working memory updating, while cortical dopamine as reflected by COMT is mainly associated with maintenance. The authors conclude that the genetic moderation reflects a compound effect of having high BMI and an advantageous allele in Taq1A or DARPP-32 to working memory updating specifically.

      These data increment the accumulating evidence that the dopamine system plays an important role in obesity. The result that Taq1A and DARPP-32 moderated the interaction between WM condition and BMI required intricate post hoc analysis to understand the bearings to updating. The authors found that Taq1A or DARPP-32 genotype moderated the negative association between BMI and WM exclusively in update condition (significant two-way interaction effect), suggesting that the BMI-WM associations in other conditions were similar across genotypes. Importantly, visual inspection of the relationship between WM and BMI (Fig 4 & 5) suggests more prevalent positive effects of the putatively advantageous Taq1A-A1 and DARPP-32-AA genotypes to the overall negative relationship between WM and BMI in updating, but not in the other conditions. Given that an overall negative relationship was statistically supported across all conditions (model 1), a plausible interpretation would be that updating condition stands out in terms of a positive moderation by putative advantageous genotypes, rather than compound negative consequences of BMI and genotype in updating. Statistical testing stratified by Taq1A genotype confirmed that the interaction with task condition was driven by the carriers of the advantageous genotype, whereas stratification by DARPP-32 genotype revealed a significant task-condition interaction in both A/A- and G-carriers. Taken together, the present results highlight inter-subject variability in the associations between obesity, dopamine, and working memory, which can sometimes be captured using blood-based dopamine markers. This finding indicates that not all individuals with obesity show the same patterns of dopamine-related alterations and underscores the necessity to address inter-individual variability in future research and treatment efforts.

    1. Reviewer #1 (Public Review):

      In the current study, Papandreou et al. developed an iPSC-based midbrain dopaminergic neuronal cell model of Beta-Propeller Protein-Associated Neurodegeneration (BPAN), which is caused by mutations in the WDR45 gene and is known to impair autophagy. They also noted defective autophagy and abnormal BPAN-related gene expression signatures. Further, they performed a drug screening and identified five cardiac glycosides. Treatment with these drugs effectively in improved autophagy defects and restored gene expression. Seeing the autophagy defects and impaired expression of BPAN-related genes adds strength to this study. Importantly, this work shows the value of iPSC-based modeling in studying disease and finding therapeutic strategies for genetic disorders, including BPAN.

    1. Reviewer #2 (Public review):

      Prior work by the Sehgal group has shown that a small group of neurons in the fly brain (anterior posterior (ap) α'β' mushroom body neurons (MBNs)) promote sleep and sleep-dependent appetitive memory specifically under fed conditions (Chouhan et al., (2021) Nature). Here, Li, Chouhan et al. combine cell-specific transcriptomics with measurements of sleep and memory to identify molecular processes underlying this phenomenon. They define transcriptional changes in ap α'β' MBNs and suggest a role for two genes downregulated following memory induction (Polr1F and Regnase-1) in regulating sleep and memory.

      The transcriptional analyses in this manuscript are impressive. The authors have now included additional experiments that define acute and developmental roles for Polr1F and Regnase-1 respectively in regulating sleep. They have also provided additional data to strengthen their conclusion that Polr1F knockdown in α'β' mushroom body neurons enhances sleep.

      The resubmitted work represents a convincing investigation of two novel sleep-regulatory proteins that may also play important roles in memory formation.

      The authors have comprehensively addressed my comments, which I very much appreciate. I congratulate them on this excellent work.

    1. Reviewer #1 (Public review):

      This is a very nice study of Belidae weevils using anchored phylogenomics that presents a new backbone for the family and explores, despite a limited taxon sampling, several evolutionary aspects of the group. I find that the methodology is appropriate, and all analytical steps are well presented. The paper is well written and presents interesting aspects of Belidae systematics and evolution. The major weakness of the study being the very limited taxon sampling that has deep implications for the discussion of ancestral estimations.

    1. Reviewer #1 (Public Review):

      Summary:

      The study investigated how root cap cell corpse removal affects the ability of microbes to colonize Arabidopsis thaliana plants. The findings demonstrate how programmed cell death and its control in root cap cells affect the establishment of symbiotic relationships between plants and fungi. Key details on molecular mechanisms and transcription factors involved are also given. The study suggests reevaluating microbiome assembly from the root tip, thus challenging traditional ideas about this process. While the work presents a key foundation, more research along the root axis is recommended to gain a better understanding of the spatial and temporal aspects of microbiome recruitment.

      Comments on revised version:

      The authors have positively addressed all the critical points I raised in the previous review.

    1. Reviewer #1 (Public review):

      In this manuscript, the role of orexin receptors in dopamine transmission is studied. It extends previous findings suggesting an interplay of these two systems in regulating behaviour by first characterising the expression of orexin receptors in the midbrain and then disrupting orexin transmission in dopaminergic neurons by deleting its predominant receptor, OX1R (Ox1R fl/fl, Dat-Cre tg/wt mice). Electrophysiological and calcium imaging data suggest that orexin A acutely and directly stimulates SN and VTA dopaminergic neurons, but does not seem to induce c-Fos expression. Behavioural effects of depleting OX1R from dopaminergic neurons includes enhanced novelty-induced locomotion and exploration, relative to littermate controls (Ox1R fl/fl, Dat-Cre wt/wt). However, no difference between groups is observed in tests that measure reward processing, anxiety, and energy homeostasis. To test whether depletion of OX1R alters overall orexin-triggered activation across the brain, PET imaging is used in OX1R∆DAT knockout and control mice. This analysis reveals that several regions show a higher neuronal activation after orexin injection in OX1R∆DAT mice, but the authors focus their follow up study on the dorsal bed nucleus of the stria terminalis (BNST) and lateral paragigantocellular nucleus (LPGi). Dopaminergic inputs and expression of dopamine receptors type-1 and -2 (DRD1 & DRD2) is assessed and compared to control demonstrating moderate decrease of DRD1 and DRD2 expression in BNST of OX1R∆DAT mice and unaltered expression of DRD2, with absence of DRD1 expression in LPGi of both groups. Overall, this study is valuable for the information it provides on orexin receptor expression and function on behaviour and for the new tools it generated for the specific study of this receptor in dopaminergic circuits.

      Strengths:

      The use of a transgenic line that lacks OX1R in dopamine-transporter expressing neurons is a strong approach to dissect the direct role of orexin in modulating dopamine signalling in the brain. The battery of behavioural assays to study this line provides a valuable source of information for researchers interested in the role of orexin in animal physiology.

      Weaknesses:

      This study falls short in providing evidence for an anatomical substrate of the altered behaviour observed in mice lacking orexin receptor subtype 1 in dopaminergic neurons. How orexin transmission in dopaminergic neurons regulates the expression of postsynaptic dopamine receptors (as observed in BNST of OX1R∆DAT mice) is an intriguing question poorly discussed. Whether disruption of orexin activity alters dopamine release in target areas is an important point not addressed.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigated the anatomical features of the synaptic boutons in layer 1 of the human temporal neocortex. They examined the size of each synapse, the macular or perforated appearance, the size of the synaptic active zone, the number and volume of the mitochondria, and the number of synaptic and dense core vesicles, also differentiating between the readily releasable, the recycling, and the resting pool of synaptic vesicles. The coverage of the synapse by astrocytic processes was also assessed, and all the above parameters were compared to other layers of the human temporal neocortex. The authors conclude that the subcellular morphology of the layer 1 synapses are suitable for the functions of the neocortical layer, i.e. the synaptic integration within the cortical column. The low glial coverage of the synapses might allow increased glutamate spillover from the synapses, enhancing synpatic crosstalk within this cortical layer.

      Strengths:

      The strengths of this paper are the abundant and very precious data about the fine structure of the human neocortical layer 1. Quantitative electron microscopy data (especially that derived from the human brain) are very valuable since this is a highly time- and energy-consuming work. The techniques used to obtain the data, as well as the analyses and the statistics performed by the authors are all solid, strengthen this manuscript, and mainly support the conclusions drawn in the discussion.

      Weaknesses:

      There are several weaknesses in this work. First, the authors should check and review extensively for improvements to the use of English. Second, several additional analyses performed on the existing data could substantially elevate the value of the data presented. Much more information could be gained from the existing data about the functions of the investigated layer, of the cortical column, and about the information processing of the human neocortex. Third, several methodological concerns weaken the conclusions drawn from the results.

    1. Reviewer #1 (Public review):

      Assessment:

      This important work advances our understanding of navigation and path integration in mammals by using a clever behavioral paradigm. The paper provides compelling evidence that mice are able to create and use a cognitive map to find "short cuts" in an environment, using only the location of rewards relative to the point of entry to the environment and path integration, and need not rely on visual landmarks.

      Summary:

      The authors have designed a novel experimental apparatus called the 'Hidden Food Maze (HFM)' and a beautiful suite of behavioral experiments using this apparatus to investigate the interplay between allothetic and idiothetic cues in navigation. The results presented provide a clear demonstration of the central claim of the paper, namely that mice only need a fixed start location and path integration to develop a cognitive map. The experiments and analyses conducted to test the main claim of the paper -- that the animals have formed a cognitive map -- are conclusive. While I think the results are quite interesting and sound, one issue that needs to be addressed is the framing how landmarks are used (or not), as discussed below, although I believe this will be a straight forward issue for the authors to address.

      Strengths:

      The 90 degree rotationally symmetric design and use of 4 distal landmarks and 4 quadrants with their corresponding rotationally equivalent locations (REL) lends itself to teasing apart the influence of path integration and landmark-based navigation in a clever way. The authors use a really complete set of experiments and associated controls to show that mice can use a start location and path integration to develop a cognitive map and generate shortcut routes to new locations.

      Weaknesses:

      There were no major weaknesses identified that were not addressed during revisions.

    1. Reviewer #1 (Public review):

      Summary:

      This study focuses on characterizing a previously identified gene, encoding the secreted protein Ppe1, that may play a role in rice infection by the blast fungus Magnaporthe oryzae. Magnaporthe oryzae is a hemibiotrophic fungus that infects living host cells before causing disease. Infection begins with the development of a specialized infection cell, the appressorium, on the host leaf surface. The appressorium generates enormous internal turgor that acts on a thin penetration peg at the appressorial base, forcing it through the leaf cuticle. Once through this barrier, the peg elaborates into bulbous invasive hyphae that colonizes the first infected cell before moving to neighboring cells via plasmodesmata. During this initial biotrophic growth stage, invasive hyphae invaginate the host plasma membrane, which surrounds growing hyphae as the extra-invasive hyphae membrane (EIHM). To avoid detection, the fungus secretes apoplastic effectors into the EIHM matrix via the conventional ER-Golgi secretion pathway. The fungus also forms a plant-derived structure called the biotrophic interfacial complex (BIC) that receives cytoplasmic effectors through an unconventional secretion route before they are delivered into the host cell. Together, these secreted effector proteins act to evade or suppress host innate immune responses. Here the authors contribute to our understanding of M. oryzae infection biology by showing how Ppe1, which localizes to both the appressorial penetration peg and to the appressorial-like transpressoria associated with invasive hyphal movements into adjacent cells, maximizes host cell penetration and disease development and is thus a novel contributor to rice blast disease.

      Strengths:

      A major goal of M. oryzae research is to understand how the fungus causes disease, either by determining the physiological underpinnings of the fungal infection cycle or by identifying effectors and their host targets. Such new knowledge may point the way to novel mitigation strategies. Here, the authors make an interesting discovery that bridges both fungal physiology and effector biology research by showing how a secreted protein Ppe1, initially considered an effector with potential host targets, associates with its own penetration peg (and transpressoria) to facilitate host invasion. In a previous study, the authors had identified a small family of small secreted proteins that may function as effectors. Here they suggest Ppe1 (and, later in the manuscript, Ppe2/3/5) localizes outside the penetration peg when appressoria develops on surfaces that permit penetration, but not on artificial hard surfaces that prevent peg penetration. Deleting the PPE1 gene reduced (although did not abolish) penetration, and a fraction of those that penetrated developed invasive hyphae that were reduced in growth compared to WT. Using fluorescent markers, the authors show that Ppe1 forms a ring underneath appressoria, likely where the peg emerges, which remained after invasive hyphae had developed. The ring structure is smaller than the width of the appressorium and also lies within the septin ring known to form during peg development. This so-called penetration ring also formed at the transpressorial penetration point as invasive hyphae moved to adjacent cells. This structure is novel, and required for optimum penetration during infection. Furthermore, Ppe1, which carries a functional signal peptide, may form on the periphery of the peg, together suggesting it is secreted and associated with the peg to facilitate penetration. Staining with aniline blue also suggests Ppe1 is outside the peg. Together, the strength of the work lies in identifying a novel appressorial penetration ring structure required for full virulence.

      Weaknesses:

      The main weakness of the paper is that, although Ppe1 is associated with the peg and optimizes penetration, the function of Ppe1 is not known. The work starts off considering Ppe1 a secreted effector, then a facilitator of penetration by associating with the peg, but what role it plays here is only often speculated about. For example, the authors consider at various times that it may have a structural role, a signaling role orchestrating invasive hyphae development, or a tethering role between the peg and the invaginated host plasma membrane (called throughout the host cytoplasmic membrane, a novel term that is not explained). However, more effort should be expended to determine which of these alternative roles is the most likely. Otherwise, as it stands, the paper describes an interesting phenomenon (the appressorial ring) but provides no understanding of its function.

      The inability to nail down the function of Ppe1 likely stems from two underlying assumptions with weak support. Firstly, the authors assume that Ppe1 is secreted and associated with the peg to form a penetration ring between the plant cell wall and cytoplasm membrane. However, the authors do not demonstrate it is secreted (for instance by blocking Ppe1 secretion and its association with the peg using brefeldin A). Also, they do not sufficiently show that Ppe1 localizes on the periphery of the peg. This is because confocal microscopy is not powerful enough to see the peg. The association they are seeing (for example in Figure 4) shows localization to the bottom of the appressorium and around the primary hyphae, but the peg cannot be seen. Here, the authors will need to use SEM, perhaps in conjunction with gold labeling of Ppe1, to show it is associating with the peg and, indeed, is external to the peg (rather than internal, as a structural role in peg rigidity might predict). It would also be interesting to repeat the microscopy in Figure 4C but at much earlier time points, just as the peg is penetrating but before invasive hyphae have developed - Where is Ppe1 then? Finally, the authors speculate, but do not show, that Ppe1 anchors penetration pegs on the plant cytoplasm membrane. Doing so may require FM4-64 staining, as used in Figure 2 of Kankanala et al, 2007 (DOI: 10.1105/tpc.106.046300), to show connections between Ppe1 and host membranes. Note that the authors also do not show that the penetration ring is a platform for effector delivery, as speculated in the Discussion.

      Secondly, the authors assume Ppe1 is required for host infection due to its association with the peg. However, its role in infection is minor. The majority of appressoria produced by the mutant strain penetrate host cells and elaborate invasive hyphae, and lesion sizes are only marginally reduced compared to WT (in fact, the lesion density of the 70-15 WT strain itself seems reduced compared to what would be expected from this strain). The authors did not analyze the lesions for spores to confirm that the mutant strains were non-pathogenic (non-pathogenic mutants sometimes form small pinprick-like lesions that do not sporulate). Thus, the pathogenicity phenotype of the knockout mutant is weak, which could contribute to the inability to accurately define the molecular and cellular function of Ppe1.

      In summary, it is important that the role of Ppe1 in infection be determined.

    1. Reviewer #1 (Public Review):

      The paper itself has a reasonable aim, to compare the inputs to the hippocampus from cortical regions across mammals. But for some reason, the conclusions that are reached are very limited. We know for example that the main laboratory rodents investigated, rats and mice, are nocturnal, live in underground tunnels, and have a very wide field of view with no fovea. In contrast, primates have a highly developed cortical system for vision and a fovea, and so have very different capabilities to rodents, as they have an ability to identify people or objects at a distance, and to remember where they have been seen. Despite this major difference in the visual cortical processing in these different mammals, somehow important points are missed in this paper about how the cortical processing is organised in these different mammals, and how this is reflected in the anatomy.

    1. Reviewer #1 (Public review):

      Summary:

      The "number sense" refers to an imprecise and noisy representation of number. Many researchers propose that the number sense confers a fixed (exogenous) subjective representation of number that adheres to scalar variability, whereby the variance of the representation of number is linear in the number.

      This manuscript investigates whether the representation of number is fixed, as usually assumed in the literature, or whether it is endogenous. The two dimensions on which the authors investigate this endogeneity are the subject's prior beliefs about stimuli values and the task objective. Using two experimental tasks, the authors collect data that are shown to violate scalar variability and are instead consistent with a model of optimal encoding and decoding, where the encoding phase depends endogenously on prior and task objectives. I believe the paper asks a critically important question. The literature in cognitive science, psychology, and increasingly in economics, has provided growing empirical evidence of decision-making consistent with efficient coding. However, the precise model mechanics can differ substantially across studies. This point was made forcefully in a paper by Ma and Woodford (2020, Behavioral & Brain Sciences), who argue that different researchers make different assumptions about the objective function and resource constraints across efficient coding models, leading to a proliferation of different models with ad-hoc assumptions. Thus, the possibility that optimal coding depends endogenously on the prior and the objective of the task, opens the door to a more parsimonious framework in which assumptions of the model can be constrained by environmental features. Along these lines, one of the authors' conclusions is that the degree of variability in subjective responses increases sublinearly in the width of the prior. And importantly, the degree of this sublinearity differs across the two tasks, in a manner that is consistent with a unified efficient coding model.

      Comments:

      (1) Modeling and implementation of estimation task

      The biggest concern I have with the paper is about the experimental implementation and theoretical account of the estimation task. The salient features of the experimental data (Figure 1C) are that the standard deviations of subjects' estimated quantities are hump-shaped in the true stimulus x and that the standard deviation, conditional on the true stimulus x, is increasing in prior width. The authors attribute these features to a Bayesian encoding and decoding model in which the internal representation of the quantity is noisy, and the degree of noise depends on the prior - as in models of efficient coding (Wei and Stocker 2015 Nature Neuro; Bhui and Gershman 2018 Psych Review; Hahn and Wei 2024 Nature Neuro).

      The concern I have is about the final "step" in the model, where the authors assume there is an additional layer of motor noise in selecting the response. The authors posit that the subject's selection of the response is drawn from a Gaussian with a mean set to the optimally decoded estimate x*(r), and variance set to a free parameter sigma_0^2. However, the authors also assume that the Gaussian distribution is "truncated to the prior range." This truncation is a nontrivial assumption, and I believe that on its own, it can explain many features of the data.

      To see this, assume that there is no noise in the internal representation of x, there is only motor noise. This corresponds to a special case of the authors' model in which υ is set to 0. The model then reduces to a simple account in which responses are drawn from a Gaussian distribution centered at the true value of x, but with asymmetric noise due to the truncation. I simulated such a model with sigma_0=7. The resulting standard deviations of responses for each value of x (based on 1000 draws for each value of x), across the three different priors, reproduce the salient patterns of the standard deviation in Figure 1C: i) within each condition, the standard deviation is hump-shaped and peaks at x=60 and ii) conditional on x, standard deviation increases in prior width. The takeaway is that this simple model with only truncated motor noise - and without any noisy or efficient coding of internal representations - provides an alternative channel through which the prior affects behavior.

      Of course, this does not imply that subjects' coding is not described by the efficient encoding and decoding model posited by the authors. However, it does suggest an important alternative mechanism for the authors' theoretical results in the estimation task. Moreover, some of the quantitative conclusions about the differences in behavior with the discrimination task would be greatly affected by the assumption of truncated motor noise.

      Turning to the experiment, a basic question is whether such a truncation was actually implemented in the design. That is, was the range of the slider bar set to the range of the prior? (The methods section states that the size on the screen of the slider was proportional to the prior width, but it was unclear whether the bounds of the slider bar changed with the prior). If the slider bar range did depend on the prior, then it becomes difficult to interpret the data. If not, then perhaps one can perform analyses to understand how much the motor noise is responsible for the dependence of the standard deviation on both x and the prior width. Indeed, the authors emphasize that their model is best fit at α=0.48, which would seem to imply that the best fitting value of υ is strictly positive. However, it would be important to clarify whether the estimation procedure allowed for υ=0, or whether this noise parameter was constrained to be positive (i.e., clarify whether the estimation assumed noisy and efficient coding of internal representations).

      (2) Differences across tasks

      A main takeaway from the paper is that optimal coding depends on the expected reward function in each task. This is the explanation for why the degree of sublinearity between standard deviation and prior width changes across the estimation and discrimination task. But besides the two different reward functions, there are also other differences across the two tasks. For example, the estimation task involves a single array of dots, whereas the discrimination task involves a pair of sequences of Arabic numerals. Related to the discussion above, in the estimation task the response scale is continuous whereas in the discrimination task, responses are binary. Is it possible that these other differences in the task could contribute to the observed different degrees of sublinearity? It is likely beyond the scope of the paper to incorporate these differences into the model, but such differences across the two tasks should be discussed as potential drivers of differences in observed behavior.

      If it becomes too difficult to interpret the data from the estimation task due to the slider bar varying with the prior range, then which of the paper's conclusions would still follow when restricting the analysis to the discrimination task?

      (3) Placement literature

      One closely related experiment to the discrimination task in the current paper can be found in Frydman and Jin (2022 Quarterly Journal of Economics). Those authors also experimentally vary the width of a uniform prior in a discrimination task using Arabic numerals, in order to test principles of efficient coding. Consistent with the current findings, Frydman and Jin find that subjects exhibit greater precision when making judgments about numbers drawn from a narrower distribution. However, what the current manuscript does is it goes beyond Frydman and Jin by modeling and experimentally varying task objectives to understand and test the effects on optimal coding. This contribution should be highlighted and contrasted against the earlier experimental work of Frydman and Jin to better articulate the novelty of the current manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      In this work, the authors recorded the dynamics of the 5-HT with fiber photometry from CA1 in one hemisphere and LFP from CA1 in the other hemisphere. They observed an ultra-slow oscillation in the 5-HT signal during both wakefulness and NREM sleep. The authors have studied different phases of the ultra-slow oscillation to examine the potential difference in the occurrence of some behavioral state-related physiological phenomena (hippocampal ripples, EMG, and inter-area coherence).

      Strengths:

      The relation between the falling/rising phase of the ultra-slow oscillation and the ripples is sufficiently shown. There are some minor concerns about the observed relations that should be addressed with some further analysis.

      Systematic observations have started to establish a strong relation between the dynamics of neural activity across the brain and measures of behavioral arousal. Such relations span a wide range of temporal scales that are heavily inter-related. Ultra-slow time scales are specifically understudied due to technical limitations and neuromodulatory systems are the strongest mechanistic candidates for controlling/modulating the neural dynamics at these time scales. The hypothesis of the relation between a specific time scale and one certain neuromodulator (5-HT in this manuscript) could have a significant impact on the understanding of the hierarchy in the temporal scales of neural activity.

      Weaknesses:

      One major caveat of the study is that different neuromodulators are strongly correlated across all time scales and related to this, the authors need to discuss this point further and provide more evidence from the literature (if any) that suggests similar ultra-slow oscillations are weaker or lack from similar signals recorded for other neuromodulators such as Ach and NA.

      A major question that has been left out from the study and discussion is how the same level of serotonin before and after the peak could be differentially related to the opposite observed phenomenon. What are the possible parallel mechanisms for distinguishing between the rising and falling phases? Any neurophysiological evidence for sensing the direction of change in serotonin concentration (or any other neuromodulator), and is there any physiological functionality for such mechanisms?

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript by Hoisington et al., the authors utilized a novel conditional neuronal prosap2-interacting protein 1 (Prosapip1) knockout mouse to delineate the effects of both neuronal and dorsal hippocampal (dHP)-specific knockout of Prosapip1 impacts biochemical and electrophysiological neuroadaptations within the dHP that may mediate behaviors associated with this brain region.

      Strengths:

      (1) Methodological Strengths

      a. The generation and use of a conditional neuronal knockout of Prosapip1 is a strength. These mice will be useful for anyone interested in studying or comparing and contrasting the effects of loss of Prosapip1 in different brain regions or in non-neuronal tissues.

      b. The use of biochemical, electrophysiological, and behavioral approaches are a strength. By providing data across multiple domains, a picture begins to emerge about the mechanistic role for Prosapip1. While questions still remain, the use of the 3 domains is a strength.

      c. The use of both global, constitutive neuronal loss of Prosapip1 and postnatal dHP-specific knockout of Prosapip1 help support and validate the behavioral conclusions.

      (2) Strengths of the results

      a. It is interesting that loss of Prosapip1 leads to specific alterations in the expression of GluN2B and PSD95 but not GluA1 or GluN2A in a post-homogenization fraction that the author's term a "synaptic" fraction. Therefore, these results suggest protein-specific modulation of glutamatergic receptors within a "synaptic" fraction.

      b. The electrophysiological data demonstrate an NMDAR-dependent alteration in measures of hippocampal synaptic plasticity, including long-term potentiation (LTP) and NMDAR input/output. These data correspond with the biochemical data demonstrating a biochemical effect on GluN2B localization. Therefore, the conclusion that loss of Prosapip1 influences NMDAR function is well supported.

      c. The behavioral data suggest deficits in memory in particular novel object recognition and spatial memory, in the Prosapip1 knockout mice. These data are strongly bolstered by both the pan-neuronal knockout and the dHP Cre transduction.

      Weaknesses:

      (1) Methodological Weaknesses

      a. The synapsin-Cre mice may more broadly express Cre-recombinase than just in neuronal tissues. Specifically, according to Jackson Laboratories, there is a concern with these mice expressing Cre-recombinase germline. As the human protein atlas suggests that Prosapip1 protein is expressed extraneuronally, validation of neuron or at least brain-specific knockout would be helpful in interpreting the data. Having said that, the data demonstrating that the brain region-specific knockout has similar behavioral impacts helps alleviate this concern somewhat; however, there are no biochemical or electrophysiological readouts from these animals, and therefore an alternative mechanism in this adult knockout cannot be excluded.

      b. The use of the word synaptic and the crude fractionation make some of the data difficult to interpret/contextualize. It is unclear how a single centrifugation that eliminates the staining of a nuclear protein can be considered a "synaptic" fraction. This is highlighted by the presence of GAPDH in this fraction which is a cytosolically-enriched protein. While GAPDH may be associated with some membranes it is not a synaptic protein. There is no quantification of GAPDH against total protein to validate that it is not enriched in this fraction over control. Moreover, it should not be used as a loading control in the synaptic fraction. There are multiple different ways to enrich membranes, extrasynaptic fractions, and PSDs and a better discussion on the caveats of the biochemical fractionation is a minimum to help contextualize the changes in PSD95 and GluN2B.

      c. Also, the word synaptosomal on page 7 is not correct. One issue is this is more than synaptosomes and another issue is synaptosomes are exclusively presynaptic terminals. The correct term to use is synaptoneurosome, which includes both pre and postsynaptic components. Moreover, as stated above, this may contain these components but is most likely not a pure or even enriched fraction.

      d. The age at which the mice underwent injection of the Cre virus was not mentioned.

      (2) Weaknesses of results

      a. There were no measures of GluN1 or GluA2 in the biochemical assays. As GluN1 is the obligate subunit, how it is impacted by the loss of Prosapip1 may help contextualize the fact that GluN2B, but not GluN2A, is altered. Moreover, as GluA2 has different calcium permeance, alterations in it may be informative.

      b. While there was no difference in GluA1 expression in the "synaptic" fraction, it does not mean that AMPAR function is not impacted by the loss of Prosapip1. This is particularly important as Prosapip1 may interact with kinases or phosphatases or their targeting proteins. Therefore, measuring AMPAR function electrophysiologically or synaptic protein phosphorylation would be informative.

      c. There is a lack of mechanistic data on what specifically and how GluN2B and PSD95 expression is altered. This is due to some of the challenges with interpreting the biochemical fractionation and a lack of results regarding changes in protein posttranslational modifications.

      d. The loss of social novelty measures in both the global and dHP-specific Prosapip1 knockout mice were not very robust. As they were consistently lost in both approaches and as there were other consistent memory deficits, this does not impact the conclusions, but may be important to temper discussion to match these smaller deficits within this domain.

      e. Alterations in presynaptic paired-pulse ratio measures are intriguing and may point to a role for Prosapip1 in synapse development, as discussed in the manuscript. It would be interesting to delineate if these PPR changes also occur in the adult knockout to help detail the specific Prosapip1-induced neuroadaptations that link to the alterations in novelty-induced behaviors.

    1. Reviewer #1 (Public review):

      The authors investigate the function and neural circuitry of reentrant signals in the visual cortex. Recurrent signaling is thought to be necessary to common types of perceptual experience that are defined by long-range relationships or prior expectations. Contour illusions - where perceptual objects are implied by stimuli characteristics - are a good example of this. The perception of these illusions is thought to emerge as recurrent signals from higher cortical areas feedback onto the early visual cortex, to tell the early visual cortex that it should be seeing object contours where none are actually present.

      The authors test the involvement of reentrant cortical activity in this kind of perception using a drug challenge. Reentrance in the visual cortex is thought to rely on NMDAR-mediated glutamate signalling. The authors accordingly employ an NMDA antagonist to stop this mechanism, looking for the effect of this manipulation on visually evoked activity recorded in EEG.

      The motivating hypothesis for the paper is that NMDA antagonism should stop recurrent activity and that this should degrade perceptual activity supporting the perception of a contour illusion, but not other types of visual experience. Results in fact show the opposite. Rather than degrading cortical activity evoked by the illusion, memantine makes it more likely that machine learning classification of EEG will correctly infer the presence of the illusion.

      On the face of it, this is confusing, and the paper currently does not entirely resolve this confusion. But there are relatively easy ways to improve this. The authors would be well served by entertaining more possible outcomes in the introduction - there's good reason to expect a positive effect of memantine on perceptual brain activity, and I provide details on this below. The authors also need to further emphasize that the directional expectations that motivated E1 were, of course, adapted after the results from this experiment emerged. The authors presumably at least entertained the notion that E2 would reproduce E1 - meaning that E2 was motivated by a priori expectations that were ultimately met by the data.

      I broadly find the paper interesting, graceful, and creative. The hypotheses are clear and compelling, the techniques for both manipulation of brain state and observation of that impact are cutting edge and well suited, and the paper draws clear and convincing conclusions that are made necessary by the results. The work sits at the very interesting crux of systems neuroscience, neuroimaging, and pharmacology. I believe the paper can be improved in revision, but my suggestions are largely concerning presentation and nuance of interpretation.

      (1) I miss some treatment of the lack of behavioural correlate. What does it mean that metamine benefits EEG classification accuracy without improving performance? One possibility here is that there is an improvement in response latency, rather than perceptual sensitivity. Is there any hint of that in the RT results? In some sort of combined measure of RT and accuracy?

      (2) An explanation is missing, about why memantine impacts the decoding of illusion but not collinearity. At a systems level, how would this work? How would NMDAR antagonism selectively impact long-range connectivity, but not lateral connectivity? Is this supported by our understanding of laminar connectivity and neurochemistry in the visual cortex?

      (3) The motivating idea for the paper is that the NMDAR antagonist might disrupt the modulation of the AMPA-mediated glu signal. This is in line with the motivating logic for Self et al., 2012, where NMDAR and AMPAR efficacy in macacque V1 was manipulated via microinfusion. But this logic seems to conflict with a broader understanding of NMDA antagonism. NMDA antagonism appears to generally have the net effect of increasing glu (and ACh) in the cortex through a selective effect on inhibitory GABA-ergic cells (eg. Olney, Newcomer, & Farber, 1999). Memantine, in particular, has a specific impact on extrasynaptic NMDARs (that is in contrast to ketamine; Milnerwood et al, 2010, Neuron), and this type of receptor is prominent in GABA cells (eg. Yao et al., 2022, JoN). The effect of NMDA antagonists on GABAergic cells generally appears to be much stronger than the effect on glutamergic cells (at least in the hippocampus; eg. Grunze et al., 1996).

      This all means that it's reasonable to expect that memantine might have a benefit to visually evoked activity. This idea is raised in the GD of the paper, based on a separate literature from that I mentioned above. But all of this could be better spelled out earlier in the paper, so that the result observed in the paper can be interpreted by the reader in this broader context.

      To my mind, the challenging task is for the authors to explain why memantine causes an increase in EEG decoding, where microinfusion of an NMDA antagonist into V1 reduced the neural signal Self et al., 2012. This might be as simple as the change in drug... memantine's specific efficacy on extrasynaptic NMDA receptors might not be shared with whatever NMDA antagonist was used in Self et al. 2012. Ketamine and memantine are already known to differ in this way.

      (4) The paper's proposal is that the effect of memantine is mediated by an impact on the efficacy of reentrant signaling in visual cortex. But perhaps the best-known impact of NMDAR manipulation is on LTP, in the hippocampus particularly but also broadly. Perception and identification of the kanisza illusion may be sensitive to learning (eg. Maertens & Pollmann, 2005; Gellatly, 1982; Rubin, Nakayama, Shapley, 1997); what argues against an account of the results from an effect on perceptual learning? Generally, the paper proposes a very specific mechanism through which the drug influences perception. This is motivated by results from Self et al 2012 where an NMDA antagonist was infused into V1. But oral memantine will, of course, have a whole-brain effect, and some of these effects are well characterized and - on the surface - appear as potential sources of change in illusion perception. The paper needs some treatment of the known ancillary effects of diffuse NMDAR antagonism to convince the reader that the account provided is better than the other possibilities.

      (5) The cross-decoding approach to data analysis concerns me a little. The approach adopted here is to train models on a localizer task, in this case, a task where participants matched a kanisza figure to a target template (E1) or discriminated one of the three relevant stimuli features (E2). The resulting model was subsequently employed to classify the stimuli seen during separate tasks - an AB task in E1, and a feature discrimination task in E2. This scheme makes the localizer task very important. If models built from this task have any bias, this will taint classifier accuracy in the analysis of experimental data. My concern is that the emergence of the kanisza illusion in the localizer task was probably quite salient, respective to changes in stimuli rotation or collinearity. If the model was better at detecting the illusion to begin with, the data pattern - where drug manipulation impacts classification in this condition but not other conditions - may simply reflect model insensitivity to non-illusion features.

      I am also vaguely worried by manipulations implemented in the main task that do not emerge in the localizer - the use of RSVP in E1 and manipulation of the base rate and staircasing in E2. This all starts to introduce the possibility that localizer and experimental data just don't correspond, that this generates low classification accuracy in the experimental results and ineffective classification in some conditions (ie. when stimuli are masked; would collinearity decoding in the unmasked condition potentially differ if classification accuracy were not at a floor? See Figure 3c upper, Figure 5c lower).

      What is the motivation for the use of localizer validation at all? The same hypotheses can be tested using within-experiment cross-validation, rather than validation from a model built on localizer data. The argument may be that this kind of modelling will necessarily employ a smaller dataset, but, while true, this effect can be minimized at the expense of computational cost - many-fold cross-validation will mean that the vast majority of data contributes to model building in each instance.

      It would be compelling if results were to reproduce when classification was validated in this kind of way. This kind of analysis would fit very well into the supplementary material.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigated the role of transcriptional and translational controls of gene expression in dorsal root ganglia and lumbar spinal cord in neuropathic pain in mice. Using ribosome profiling (Ribo-seq) and translating ribosome affinity purification (TRAP), they show changes in transcriptomic and translational gene expression at the peripheral and central levels rapidly after nerve injury. While translational changes in gene expression remained elevated for more than two months in both DRGs and the spinal cord, transcriptomic regulation was absent in the spinal cord long after the onset of neuropathy. Disrupting mRNA translation in dorsal horn neurons using antisense oligonucleotides reduced mechanical withdrawal threshold and facial expression of pain. Using fluorescent noncanonical amino acid tagging (FUNCAT), the authors further show that de novo protein expression primarily occurs in inhibitory neurons in the superficial dorsal horn after nerve injury. Accordingly, a selective increase in translational control of gene expression in spinal inhibitory neurons, or a subset of mainly inhibitory neurons expressing parvalbumin (PV), using transgenic mice, led to a decrease in the excitability of PV neurons and mechanical allodynia. In contrast, decreasing the translational control of spinal PV neurons prevented the alteration of the electrophysiological properties of the PV cells induced by nerve injury.

      Strengths:

      This is a well-written article that uncovers a previously unappreciated role of gene expression control in PV neurons, which seems to play an important part in the loss of inhibitory control of spinal circuits typically seen after peripheral nerve injury. The conclusions are generally well supported by the data.

      Weaknesses:

      The study would benefit from further clarifications in the methods section and a deeper analysis of gene expression changes in mRNA expression and ribosomal footprint observed after nerve injury.

      Antisense oligonucleotides used to reduce translation by disrupting eIF4E expression were administered i.c.v. It is unknown if the authors controlled for locomotor deficits, which might add confounds in the interpretation of behavioral results. A more local route should have been preferable to avoid targeting brain regions, which could potentially affect behavior.

      Only female mice were used for Ribo-Seq, TRAP, FUNCAT, and electrophysiology, but both sexes were used for behavior experiments.

      The conditional KO of 4E-BP1 using transgenic animals should be total in the targeted cells. However, only a partial reduction is reported in Figure S2 in GAD2, PV, Vglut2, or Tac1 cells. Again, proper methods for quantification of fluorescence in these experiments are lacking.

      The elegant knockdown of eIF4E using AAV-mediated shRNAmir shows a recovery of the electrophysiological intrinsic properties of PV neurons after injury. It is unclear if such manipulation would be sufficient to reverse mechanical allodynia in vivo.

    1. Mucho más completo mapa mental y mejor descripción verbal del mismo, que está asociado no solo a lo reciente del mapa, sino al nivel de detalle del mapa.

      Valdría la pena incorporar el contraste con otros paradigmas de computación/programación mostrados en el video mismo.

    1. Puede que la IA adquiera un poder inmenso en un futuro y se cumplan esos riesgos que a decir verdad, dan miedo, pero lo mismo sucedió con los computadores en su época, surgieron temores donde se decía que en unos años iban a superar nuestras capacidades humanas, cosa que no sucedió. Ahora bien, si hay un tema importante y es saber utilizar estas herramientas para complementar nuestras habilidades como seres humanos, no para que nos hagan las cosas y nos volvamos dependientes de estas. Por lo tanto, no me preocuparía tanto porque la IA nos reemplace o destruya en un futuro.

      Creo que es importante mantener una postura esperanzada pero crítica, no sólo frente a las tecnologías venideras, sino a las que tenemos "naturalizadas" ya. De este modo podemos saber cuándo es mejor la bici o el metro (subterraneo!) que el carro particular o no revisar notificaciones de redes sociales al despertar o saber cuándo es mejor escribir uno mismo a que lo haga una IA.

    2. Es importante que el mapa refleje los elementos estructurales del video (su tabla de contenido) de manera más detallada.

    1. Considero que nunca vamos a estar completamente preparados para la inteligencia artificial, es algo que cada día está tomando más control de decisión en las empresas no solo en el sector tecnología sino en todos los sectores.

      Quizás lo que tenemos que cuestionar es la noción misma de IA, al menos como las grandes empresas del Valle de Silicio (Sillicon Valley) de modo que podamos desenmascarár muchos de los mitos al respecto.

    2. No estamos preparados para la inteligencia artificial

      El mapa refleja varias de las tensiones del video y los impactos negativos de la IA para la sociedad.

      Es importante que el mapa mental refleje de manera más detallada la "tabla de contenido" del video, de forma que conceptos como "bosque oscuro" queden claramente articulados.

    3. No logré publicar el mapa en Internet Archive

      ¿Qué errores puntuales se presentaron durante esta publicación? Por favor documéntalo agregando capturas de pantalla.

    1. Debido a la magnitud de información y las redes neuronales que forma esta herramienta, puede que en algún momento esta logre satisfacer las necesidades que los seres humanos no han conseguido completar.

      ¿Cómo cuales necesidades?

      Respecto a lo que dijiste de la cura de una enfermedad, interesante lo que se de despligue de proteinas. Pienso mirar la complementariedad entre humanos y máquinas, así como las instituciones como las articulan.

    2. Creo que hay varios elementos del lenguaje en los cuales el mapa no profundiza, en particular cómo las redes neuronales funciona y cómo se construyen los modelos vectoriales del lenguaje.

    1. Reviewer #1 (Public Review):

      In the article by Dearlove et al., the authors present evidence in strong support of nucleotide ubiquitylation by DTX3L, suggesting it is a promiscuous E3 ligase with capacity to ubiquitylate ADP ribose and nucleotides. The authors include data to identify the likely site of attachment and the requirements for nucleotide modification.

      While this discovery potentially reveals a whole new mechanism by which nucleotide function can be regulated in cells, there are some weaknesses that should be considered. Is there any evidence of nucleotide ubiquitylation occurring cells? It seems possible, but evidence in support of this would strengthen the manuscript. The NMR data could also be strengthened as the binding interface is not reported or mapped onto the structure/model, this seems of considerable interest given that highly related proteins do have the same activity.

      The paper is for the most part well well-written and is potentially highly significant

      Comments on revised version:

      The revised manuscript has addressed many of the concerns raised and clarified a number of points. As a result the manuscript is improved.

      The primary concern that remains is the absence of biological function for Ub-ssDNA/RNA and the inability to detect it in cells. Despite this the manuscript will be of interest to those in the ubiquitin field and will likely provoke further studies and the development of tools to better assess the cellular relevance. As a result this manuscript is important.

      Minor issue:<br /> Figure 1A - the authors have now included the constructs used but it would be more informative if the authors lined up the various constructs under the relevant domains in the full-length protein.

    1. Reviewer #1 (Public review):

      Summary:

      Tian et al. describes how TIPE regulates melanoma progression, stemness, and glycolysis. The authors link high TIPE expression to increased melanoma cell proliferation and tumor growth. TIPE causes dimerization of PKM2, as well as translocation of PKM2 to the nucleus, thereby activating HIF-1alpha. TIPE promotes the phosphorylation of S37 on PKM2 in an ERK-dependent manner. TIPE is shown to increase stem-like phenotype markers. The expression of TIPE is positively correlated with the levels of PKM2 Ser37 phosphorylation in murine and clinical tissue samples. Taken together, the authors demonstrate how TIPE impacts melanoma progression, stemness, and glycolysis through dimeric PKM2 and HIF-1alpha crosstalk.

      The authors manipulated TIPE expression using both shRNA and overexpression approaches throughout the manuscript. Using these models, they provide strong evidence of the involvement of TIPE in mediating PKM2 Ser37 phosphorylation and dimerization. The authors also used mutants of PKM2 at S37A to block its interaction with TIPE and HIF-1alpha. In addition, an ERK inhibitor (U0126) was used to block the phosphorylation of Ser37 on PKM2. The authors show how dimerization of PKM2 by TIPE causes nuclear import of PKM2 and activation of HIF-1alpha and target genes. Pyridoxine was used to induce PKM2 dimer formation, while TEPP-46 was used to suppress PKM2 dimer formation. TIPE maintains stem cell phenotypes by increasing expression of stem-like markers. Furthermore, the relationship between TIPE and Ser37 PKM2 was demonstrated in murine and clinical tissue samples.

      The evaluation of how TIPE causes metabolic reprogramming can be better assessed using isotope tracing experiments and improved bioenergetic analysis.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses PS-coated and IgG-opsonized targets to model the engulfment of apoptotic cells and pathogens. It demonstrates that differential activation of the respiratory burst accounts for variations in cell morphology, adhesion, and migration following phagocytosis of different particles. Specifically, reactive oxygen species produced by phagosomes containing IgG-opsonized targets activate Rho GTPases. This activation triggers Formin- and ERM-dependent compaction of the cortical actin network, leading to rounded cell morphology, reduced membrane ruffling, disassembly of podosomes, and decreased migration. Some of these findings are validated in cells exposed to pathogens or soluble MAMPs.

      Strengths:

      The manuscript presents well-executed and controlled experiments. It proposes an intriguing model to explain the distinct behaviors of myeloid cells when confronted with different phagocytic cargoes and offers fresh insights into immune surveillance.

      Weaknesses:

      Certain aspects of the proposed model require further experimental evidence. The significance of the cellular behavioral differences in response to various phagocytic cargoes warrants further exploration within physiological contexts.

      Specific comments:

      How do reactive oxygen species lead to an increase in Rho activation while simultaneously reducing Rac activity? The underlying molecular mechanisms remain unresolved, although potential regulatory pathways are discussed.

      Given that the number of phagocytosed particles affects cell behavior (SF1), it is important to ensure that an equivalent number of particles are phagocytosed when comparing cells treated with PS-beads and IgG-beads (Figure 1a). How was this experimentally controlled, and how many particles are phagocytosed under each condition?

      Why were experiments conducted in BMDM, Raw264.7, and PMN cells under different conditions? For Raw264.7 and PMN cells, cell behavior was only compared between those treated with IgG-RBC and untreated cells. What occurs to these cells when they are exposed to PS-beads as opposed to IgG-beads?

      How long does it take for cells treated with IgG-beads to recover and regain their mobility and surveillance activity? Does this recovery occur following a reduction in reactive oxygen species production?

      A contractile actin cortex usually requires the activity of both Formin and myosin II. It is a bit surprising that inhibitors of ROCK and myosin II, when added to Raw cells engulfing IgG-RBC, did not affect podosome disassembly. Is the cytoskeletal rearrangement observed in Figure 2 also independent of myosin II activity?

    1. Reviewer #1 (Public review):

      Summary:

      The paper examined livestock abortion, as it is an important disease syndrome that affects productivity and livestock economies. If livestock abortion remains unexamined it poses risks to public health.

      Several pathogens are associated with livestock abortions but across Africa however the livestock disease surveillance data rarely include information from abortion events, little is known about the aetiology and impacts of livestock abortions, and data are not available to inform prioritisation of disease interventions. Therefore the current study seeks to examine the issue in detail and proposes some solutions.

      The study took place in 15 wards in northern Tanzania spanning pastoral, agropastoral and smallholder agro-ecological systems. The key objective is to investigate the causes and impacts of livestock abortion.

      The data collection system was set up such that farmers reported abortion cases to the field officers of the Ministry of Livestock and Fisheries livestock<br /> The reports were made to the investigation teams. The team only included abortion of those that the livestock field officers could attend to within 72 hours of the event occurring.

      Also a field investigation was carried out to collect diagnostic samples from aborted materials. In addition aborting dams and questionnaires were administer to collect data on herd/flock management. Laboratory diagnostic tests were carried out for a range of abortigenic pathogens

      Over the period of the study 215 abortion events in cattle (n=71), sheep (n=44) and goats (n=100) were investigated. In all 49 investigated cases varied widely across wards, with three .The Aetiological attribution, achieved for 19.5% of cases through PCR-based diagnostics, was significantly affected by delays in field investigation.

      The result also revealed that vaginal swabs from aborting dams provided a practical and sensitive source of diagnostic material for pathogen detection.

      Livestock abortion surveillance can generate valuable information on causes of zoonotic disease outbreaks, and livestock reproductive losses and can identify important pathogens that are not easily captured through other forms of livestock disease surveillance. The study demonstrated the feasibility of establishing an effective reporting and investigation system that could be implemented across a range of settings, including remote rural areas,

      Strengths:

      The paper combines both science and socio economic methodology to achieve the aim of the study.

      The methodology was well presented and the sequence was great. The authors explain where and how the data was collected. Figure 2 was used to describe the study area which was excellently done. The section on Investigation of cases was well written. The sample analysis was also well written. The authors devoted a section to summarizing the investigated cases and description of the livestock 221-study population. The logic model has been well presented

      Weaknesses:

      All the weaknesses identified have been resolved by the the authors

    1. Reviewer #1 (Public review):

      Summary:

      Deletion of the hrp2 and hrp3 loci in P. falciparum poses an immediate public health threat. This manuscript provides a more complete understanding of the dynamic nature with which these deletions are generated. By delving into the likely mechanisms behind their generation, the authors also provide interesting insight into general Plasmodium biology that can inform our broader understanding of the parasite's genomic evolution.

      Strengths:

      The sub-telomeric regions of P. falciparum (where hrp2 and hrp3 are located) are notoriously difficult to study with short-read sequence data. The authors take an appropriate, targeted approach toward studying the loci of interest, which includes read-depth analysis and local haplotype reconstruction. They additionally use both long-read and short-read data to validate their major findings. There is an extensive set of supplementary plots, which helps clarify several aspects of the data.

      Weaknesses:

      The revised version of this manuscript has helpfully expanded the details regarding methodology, however, publication of the tool PathWeaver (which is used for local haplotype reconstruction) remains in preparation.

    1. Reviewer #3 (Public review):

      In this manuscript, Magnuson and colleagues investigate the meiotic functions of ARID1A, a putative DNA binding subunit of the SWI/SNF chromatin remodeler BAF. The authors develop a germ cell specific conditional knockout (cKO) mouse model using Stra8-cre and observe that ARID1A-deficient cells fail to progress beyond pachytene, although due to inefficiency of the Stra8-cre system the mice retain ARID1A-expressing cells that yield sperm and allow fertility. Because ARID1A was found to accumulate at the XY body late in Prophase I, the authors suspected a potential role in meiotic silencing and by RNAseq observe significant misexpression of sex-linked genes that typically are silenced at pachytene. They go on to show that ARID1A is required for exclusion of RNA PolII from the sex body and for limiting promoter accessibility at sex-linked genes, consistent with a meiotic sex chromosome inactivation (MSCI) defect in cKO mice. The authors proceed to investigate the impacts of ARID1A on H3.3 deposition genome-wide. H3.3 is known be regulated by ARID1A and is linked to silencing, and here the authors find that upon loss of ARID1A, overall H3.3 enrichment at the sex body as measured by IF failed to occur, but H3.3 was enriched specifically at transcriptional start sites of sex-linked genes that are normally regulated by ARID1A. The results suggest that ARID1A normally prevents H3.3 accumulation at target promoters on sex chromosomes and based on additional data, restricts H3.3 to intergenic sites. Finally, the authors present data implicating ARID1A and H3.3 occupancy in DSB repair, finding that ARID1A cKO leads to a reduction in focus formation by DMC1, a key repair protein. Overall the paper provides new insights into the process of MSCI from the perspective of chromatin composition and structure and raises interesting new questions about the interplay between chromatin structure, meiotic silencing and DNA repair.

      In general the data are convincing. The conditional KO mouse model has some inherent limitations due to incomplete recombination and the existence of 'escaper' cells that express ARID1A and progress through meiosis normally. This reviewer feels that the authors have addressed this point thoroughly and have demonstrated clear and specific phenotypes using the best available animal model. The data demonstrate that the mutant cells fail to progress past pachytene, although it is unclear whether this specifically reflects pachytene arrest, as accumulation in other stages of Prophase is also suggested by the data in Table 1.

      The revised manuscript more appropriately describes the relationship between ARID1A and DNA damage response (DDR) signaling. The authors don't see defects in a few DDR markers in ARID1A CKO cells (including a low resolution assessment of ATR), suggesting that ARID1A may not be required for meiotic DDR signaling. However, as previously noted the data do not rule out the possibility that ARID1A is downstream of DDR signaling, and the authors note the possibility of a role for DDR signaling upstream of ARID1A.

      A final comment relates to the impacts of ARID1A loss on DMC1 focus formation and the interesting observation of reduced sex chromosome association by DMC1. The authors additionally assess the related recombinase RAD51 and suggest that it is unaffected by ARID1A loss. However, only a single image of RAD51 staining in the cKO is provided (Fig. S11) and there are no associated quantitative data provided. The data are suggestive and conclusions about the impacts of ARID1A loss on RAD51 must be considered as preliminary until more rigorously assessed.

      Comments on latest version:

      The authors have effectively addressed the minor issues raised in the most recent round of non-public reviews. This reviewer has no additional recommendations.

    1. Reviewer #1 (Public review):

      In the revision of their paper, N'Guessan et al have improved the report of their study of expression QTL (eQTL) mapping in yeast using single cells. The authors make use of advances in single cell RNAseq (scRNAseq) in yeast to increase the efficiency with which this type of analysis can be undertaken. Building on prior research led by the senior author that entailed genotyping and fitness profiling of almost 100,000 cells derived from a cross between two yeast strains (BY and RM) they performed scRNAseq on a subset of ~5% (n = 4,489) individual cells. To address the sparsity of genotype data in the expression profiling they used a Hidden Markov Model (HMM) to infer genotypes and then identify the most likely known lineage genotype from the original dataset. To address the relationship between variance in fitness and gene expression the authors partition the variance to investigate the sources of variation. They then perform eQTL mapping and study the relationship between eQTL and fitness QTL identified in the earlier study.

      This paper seeks to address the question of how quantitative trait variation and expression variation are related. scRNAseq represents an appealing approach to eQTL mapping as it is possible to simultaneously genotype individual cells and measure expression in the same cell. As eQTL mapping requires large sample sizes to identify statistical relationships, the use of scRNAseq is likely to dramatically increase the statistical power of such studies. However, there are several technical challenges associated with scRNAseq and the authors' study is focused on addressing those challenges. Most of the points raised by my review of the initial version have been addressed. However, one point remains and one additional point should be considered.

      (1) Given that the authors overcame many technical and analytical challenges in the course of this research, the study would be greatly strengthened through analysis of at least one, and ideally several, more conditions which would expand the conclusions that could be drawn from the study and demonstrate the power of using scRNAseq to efficiently quantify expression in different environments.

      (2) In this version the authors have introduced the use of data imputation using a published algorithm, DISCERN. This has greatly increased the variation explained by their model as presented in figure 3. However, it is possible that the explained variance is now an overestimation as a result of using the imputed expression data. I think that it would be appropriate to present figure 3 using the sparse data presented in the initial version of the paper and the newly presented imputed data so that the reader can draw their own conclusions about the interpretation.

    1. Reviewer #1 (Public review):

      The goal of this work is to understand the clinical observation of a subgroup of diabetics who experience extremely high levels of blood glucose levels after a period of high carbohydrate intake. These symptoms are similar to the onset of Type 1 diabetes but, crucially, have been observed to be fully reversible in some cases.

      The authors interpret these observations by analyzing a simple yet insightful mathematical model in which β-cells temporarily stop producing insulin when exposed to high levels of glucose. For a specific model realization of such dynamics (and for specific parameter values) they show that such dynamics lead to two distinct stable states. One is the relatively normal/healthy state in which β-cells respond appropriately to glucose by releasing insulin. In contrast, when enough β-cells "refuse" to produce insulin in a high-glucose environment, there is not enough insulin to reduce glucose levels, and the high-glucose state remains locked in because the high-glucose levels keep β-cells in their inactive state. The presented mathematical analysis shows that in their model the high-glucose state can be entered through an episode of high glucose levels and that subsequently the low-glucose state can be re-entered through prolonged insulin intake.

      The strength of this work is twofold. First, the intellectual sharpness of translating clinical observations of ketosis-prone type 2 diabetes (KPD) into the need for β-cell responses on intermediate timescales. Second, the analysis of a specific model clearly establishes that the clinical observations can be reproduced with a model in which β-cells dynamics reversibly enter a non-insulin-producing state in a glucose-dependent fashion.

      The likely impact of this work is a shift in attention in the field from a focus on the short and long-term dynamics in glucose regulation and diabetes progression to the intermediate timescales of β-cell dynamics. I expect this to lead to much interest in probing the assumptions behind the model to establish what exactly the process is by which patients enter a 'KPD state'. Furthermore, I expect this work to trigger much research on how KPD relates to "regular" type 2 diabetes and to lead to experimental efforts to find/characterize previously overlooked β-cell phenotypes.

      In summary, the authors claim that observed clinical dynamics and possible remission of KPD can be explained through introducing a temporarily inactive β-cell state into a "standard model" of diabetes. The evidence for this claim comes from analyzing a mathematical model and clearly presented. Importantly, the authors point out that this does not mean their model is correct. Other hypotheses are that:

      - Instead of switching to an inactive state, individual β-cells could adjust how they respond to high glucose levels. If this response function changes reversibly on intermediate timescales the clinical observations could be explained without a reversible inactive state.

      - Kidney function is indirectly impaired through chronic high glucose levels. The apparent rapid glucose increase might then not highlight a new type of β-cell phenotype but would reflect rapid changes in kidney function.

      - In principle, the remission could be due to a direct response of β-cells to insulin and not mediated through the lowering of glucose levels.

      Crucially, the hypothesized reversibly inactive state of β-cells remains to be directly observed. One of the key contributions of this theoretical work is directing experimental focus towards looking for reversible β-cell phenotypes.

    1. Reviewer #1 (Public review):

      Summary:

      Barlow and coauthors utilized the high-parameter imaging platform of CODEX to characterize the cellular composition of immune cells in situ from tissues obtained from organ donors with type 1 diabetes, subjects presented with autoantibodies who are at elevated risk, or non-diabetic organ donor controls. The panels used in this important study were based on prior publications using this technology, as well as a priori and domain-specific knowledge of the field by the investigators. Thus, there was some bias in the markers selected for analysis. The authors acknowledge that these types of experiments may be complemented moving forward with the inclusion of unbiased tissue analysis platforms that are emerging that can conduct a more comprehensive analysis of pathological signatures employing emerging technologies for both high-parameter protein imaging and spatial transcriptomics.

      Strengths:

      In terms of major findings, the authors provide important confirmatory observations regarding a number of autoimmune-associated signatures reported previously. The high parameter staining now increases the resolution for linking these features with specific cellular subsets using machine learning algorithms. These signatures include a robust signature indicative of IFN-driven responses that would be expected to induce a cytotoxic T-cell-mediated immune response within the pancreas. Notable findings include the upregulation of indolamine 2,3-dioxygenase-1 in the islet microvasculature. Furthermore, the authors provide key insights as to the cell:cell interactions within organ donors, again supporting a previously reported interaction between presumably autoreactive T and B cells.

      Weaknesses:

      These studies also highlight a number of molecular pathways that will require additional validation studies to more completely understand whether they are potentially causal for pathology, or rather, epiphenomenon associated with increased innate inflammation within the pancreas of T1D subjects. Given the limitations noted above, the study does present a rich and integrated dataset for analysis of enriched immune markers that can be segmented and annotated within distinct cellular networks. This enabled the authors to analyze distinct cellular subsets and phenotypes in situ, including within islets that peri-islet infiltration and/or intra-islet insulitis.

      Despite the many technical challenges and unique organ donor cohort utilized, the data are still limited in terms of subject numbers - a challenge in a disease characterized by extensive heterogeneity in terms of age of onset and clinical and histopathological presentation. Therefore, these studies cannot adequately account for all of the potential covariates that may drive variability and alterations in the histopathologies observed (such as age of onset, background genetics, and organ donor conditions). In this study, the manuscript and figures could be improved in terms of clarifying how variable the observed signatures were across each individual donor, with the clear notion that non-diabetic donors will present with some similar challenges and variability.

    1. Reviewer #1 (Public review):

      Many labs world-wide now use the blind source deconvolution technique to identify the firing patterns of multiple motor units simultaneously in human subjects. This technique has had a truly transformative effective on our understanding of the structure of motor output in both normal subjects and, increasingly, in persons with neurological disorders. The key advance presented here is that the software provides real time identification of these firing patterns.

      The main strengths are the clarity of the presentation and the great potential that real-time decoding will provide. Figures are especially effective and statistical analyses are excellent.

    1. Reviewer #1 (Public review):

      This study describes a useful antibody-free method to map G-quadruplexes in vertebrate cells. The analysis of the data is solid but it remains primarily descriptive and does not substantially add to existing publications (such as PMID:34792172 for example). Nevertheless, the datasets generated here might constitute a good starting point for more functional studies.

      Comments on revised version:

      It is disappointing to see that the authors decided to brush aside most of the comments made by the three referees, even though these comments were largely consistent with each other. As a result, the revised manuscript is not substantially changed or improved. Legitimate concerns regarding the specificity of the Cut&Tag signals were not addressed and therefore remain. The sensitivity of the HBD-seq signals to a combination of RNase A and RNase H does not demonstrate that HBD-seq specifically reports the presence of RNA:DNA hybrids. The new Figure 9 comparing HepG4-seq to existing datasets does not unequivocally demonstrate the superiority of the Hemin-based strategy to map G4s.

    1. Reviewer #2 (Public review):

      Qin, Sanbo and Zhou, Huan-Xiang created a model, SeqDYN, to predict nuclear magnetic resonance (NMR) spin relaxation spectra of intrinsically disordered proteins (IDPs), based primarily on amino acid sequence. To fit NMR data, SeqDYN uses 21 parameters, 20 that correspond to each amino acid, and a sequence correlation length for interactions. The model demonstrates that local sequence features impact the dynamics of the IDP, as SeqDYN performs better than a one residue predictor, despite having similar numbers of parameters. SeqDYN is trained using 45 IDP sequences and is retrained using both leave-one-out cross validation and five-fold cross validation, ensuring the model's robustness. While SeqDYN can provide reasonably accurate predictions in many cases, the authors note that improvements can be made by incorporating secondary structure predictions, especially for alpha-helices that exceed the correlation length of the model. The authors apply SeqDYN to study nine IDPs and a denatured ordered protein, demonstrating its predictive power. The model can be easily accessed via the website mentioned in the text.

      The authors have adequately addressed the majority of my previous concerns. However, I still wonder if an attempt to fit the individual protein fitting parameter based on temperature and magnetic field strength would be possible. The authors would have 45 data points on which to fit such a parameter, which would only depend on two variables.

    1. Joint Public Review:

      The paper sought to determine the number of myosin 10 molecules per cell and localized to filopodia, where they are known to be involved in formation, transport within, and dynamics of these important actin-based protrusions. The authors used a novel method to determine the number of molecules per cell. First, they expressed HALO tagged Myo10 in U20S cells and generated cell lysates of a certain number of cells and detected Myo10 after SDS-PAGE, with fluorescence and a stained free method. They used a purified HALO tagged standard protein to generate a standard curve which allowed for determining Myo10 concentration in cell lysates and thus an estimate of the number of Myo10 molecules per cell. They also examined the fluorescence intensity in fixed cell images to determine the average fluorescence intensity per Myo10 molecule, which allowed the number of Myo10 molecules per region of the cell to be determined. They found a relatively small fraction of Myo10 (6%) localizes to filopodia. There are hundreds of Myo10 in each filopodia, which suggests some filopodia have more Myo10 than actin binding sites. Thus, there may be crowding of Myo10 at the tips, which could impact transport, the morphology at the tips, and dynamics of the protrusions themselves. Overall, the study forms the basis for a novel technique to estimate the number of molecules per cell and their localization to actin-based structures. The implications are broad also for being able to understand the role of myosins in actin protrusions, which is important for cancer metastasis and wound healing.

      Comments on latest version (from the Reviewing Editor):

      One of the main critiques that still remains is that the results were derived from experiments with overexpressed Myo10 and therefore are hard to extrapolate to physiological conditions. Measurement were also only performed in a single cell line. The authors counter this critique with the argument that their results provide insight into a system in which Myo10 is a limiting factor for controlling filopodia formation. They demonstrate that U20S cells do not express detectable levels of Myo10 and thus introducing Myo10 expression demonstrates how triggering Myo10 expression impacts filopodia. An example is given of how melanoma cells often heavily upregulate Myo10.

    1. Reviewer #1 (Public review):

      Summary:

      The authors provide an genome annotation resource of 33 insects using a motif-blind prediction methods for tissue-specific cis-regulatory modules. This is a welcome addition that may facilitate further research in new laboratory systems, and the approach seem to be relatively accurate, although it should be combined with other sources of evidence to be practical.

      Strengths:

      The paper clearly presents the resource, including the testing of candidate enhancers identified from various insects in Drosophila. This cross-species analysis, and the inherent suggestion that training datasets generated in flies can predict a cis-regulatory activity in distant insects, is interesting. While I can not be sure this approach will prevail in the future, for example with approaches that leverage the prediction of TF binding motifs, the SCRMShaw tool is certainly useful and worth of consideration for the large community of genome scientists working on insects.

      Weaknesses from the previous version were appropriately corrected in this revision, as the authors improved data availability including with genome annotation resources.

    1. Reviewer #1 (Public review):

      This study comes to an interesting conclusion: a polyunsaturated fatty acid, Lin-Glycine, increases the conductance of KCNQ1/KCNE1 channels by stabilizing a state of the selectivity filter that allows K+ conduction. The stabilization of a conducting state is well supported by single channel analysis, which shows that normally infrequent opening bursts occur more often in the presence of the PUFA. The linkage to PUFA action through the selectivity filter is supported by disruption of PUFA effects by mutation of residues which change conformation in two KCNQ1 structures from the literature. A definitive functional experiment is conducted by single channel recordings with selectivity filter domain mutation Y315F which ablates the Lin-Glycine effect on Gmax. The computational exploration of two selectivity filter structures proposed to interact distinctly with Lin-Glycine is informative. Both mutation results and simulations converge on the proposed selectivity filter mechanism, although other possibilities for Lin-Glycine binding and action might be possible. Overall, the major claim of the abstract is well-supported: "... that the selectivity filter in KCNQ1 is normally unstable ... and that the PUFA-induced increase in Gmax is caused by a stabilization of the selectivity filter in an open-conductive state."

    1. Reviewer #1 (Public review):

      Summary:

      The authors demonstrate impairments induced by a high cholesterol diet on GLP-1R dependent glucoregulation in vivo as well as an improvement after reduction in cholesterol synthesis with simvastatin in pancreatic islets. They also map sites of cholesterol high occupancy and residence time on active versus inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations and screened for key residues selected from these sites and performed detailed analyses of the effects of mutating one of these residues, Val229, to alanine on GLP-1R interactions with cholesterol, plasma membrane behaviour, clustering, trafficking and signalling in pancreatic beta cells and primary islets, and describe an improved insulin secretion profile for the V229A mutant receptor.

      These are extensive and very impressive studies indeed. I am impressed with the tireless effort exerted to understand the details of molecular mechanisms involved in the effects of cholesterol for GLP-1 activation of its receptor. In general the study is convincing, the manuscript well written and the data well presented. Some of the changes are small and insignificant which makes one wonder how important the observations are. For instance in figure 2 E (which is difficult to interpret anyway because the data are presented in percent, conveniently hiding the absolute results) does not show a significant result of the cyclodextrin except for insignificant increases in basal secretion. That is not identical to impairment of GLP-1 receptor signaling!

      To me the most important experiment of them all is the simvastatin experiment, but the results rest on very few numbers and there is a large variation. Apparently, in a previous study using more extensive reduction in cholesterol the opposite response was detected casting doubt on the significance of the current observation. I agree with the authors that the use of cyclodextrin may have been associated with other changes in plasma membrane structure than cholesterol depletion at the GLP-1 receptor. The entire discussion regarding he importance of cholesterol would benefit tremendously from studies of GLP-1 induced insulin secretion in people with different cholesterol levels before and after treatment with cholesterol-lowering agents. I suspect that such a study would not reveal major differences.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors investigate a very interesting but often overlooked aspect of abstract vs. concrete processing in language. Specifically, they study if the differences in processing of abstract vs. concrete concepts in the brain is static or dependent on the (visual) context in which the words occur. This study takes a two-step approach to investigate how context might affect the perception of concepts. First, the authors analyze if concrete concepts, expectedly, activate more sensory systems while abstract concepts activate higher-order processing regions. Second, they measure the contextual situatedness vs. displacement of each word with respect to the visual scenes in which it is spoken and then evaluate if this contextual measure correlates with more activation in the sensory vs. higher-order regions respectively.

      Strengths:

      This study raises a pertinent and understudied question in language neuroscience. It also combines both computational and meta-analytic approaches.

    1. Reviewer #1 (Public review):

      Summary:

      The study made fundamental findings in investigations of the dynamic functional states during sleep. Twenty-one HMM states were revealed from the fMRI data, surpassing the number of EEG-defined sleep stages, which can define sub-states of N2 and REM. Importantly, these findings were reproducible over two nights, shedding new light on the dynamics of brain function during sleep.

      Strengths:

      The study provides the most compelling evidence on the sub-states of both REM and N2 sleep. Moreover, they showed these findings on dynamics states and their transitions were reproducible over two nights of sleep. These novel findings offered unique information in the field of sleep neuroimaging.

      Comments on revised version:

      Nice work! All my concerns have been addressed, and I have no further suggestions.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors aimed to develop and validate an automated, deep learning-based system for scoring the Rey-Osterrieth Complex Figure Test (ROCF), a widely used tool in neuropsychology for assessing memory deficits. Their goal was to overcome the limitations of manual scoring, such as subjectivity and time consumption, by creating a model that provides automatic, accurate, objective, and efficient assessments of memory deterioration in individuals with various neurological and psychiatric conditions.

      Strengths:

      Comprehensive Data Collection: The authors collected over 20,000 hand-drawn ROCF images from a wide demographic and geographic range, ensuring a robust and diverse dataset. This extensive data collection is critical for training a generalizable and effective deep learning model.

      Advanced Deep Learning Approach: Utilizing a multi-head convolutional neural network to automate ROCF scoring represents a sophisticated application of current AI technologies. This approach allows for detailed analysis of individual figure elements, potentially increasing the accuracy and reliability of assessments.

      Validation and Performance Assessment: The model's performance was rigorously evaluated against crowdsourced human intelligence and professional clinician scores, demonstrating its ability to outperform both groups. The inclusion of an independent prospective validation study further strengthens the credibility of the results.

      Robustness Analysis Efficacy: The model underwent a thorough robustness analysis, testing its adaptability to variations in rotation, perspective, brightness, and contrast. Such meticulous examination ensures the model's consistent performance across different clinical imaging scenarios, significantly bolstering its utility for real-world applications.

      Appraisal and discussion:

      By leveraging a comprehensive dataset and employing advanced deep learning techniques, they demonstrated the model's ability to outperform both crowdsourced raters and professional clinicians in scoring the ROCF. This achievement represents a significant step forward in automating neuropsychological assessments, potentially revolutionizing how memory deficits are evaluated in clinical settings. Furthermore, the application of deep learning to clinical neuropsychology opens avenues for future research, including the potential automation of other neuropsychological tests and the integration of AI tools into clinical practice. The success of this project may encourage further exploration into how AI can be leveraged to improve diagnostic accuracy and efficiency in healthcare.

      However, the critique regarding the lack of detailed analysis across different patient demographics, the inadequacy of network explainability, and concerns about the selection of median crowdsourced scores as ground truth raises questions about the completeness of their objectives. These aspects suggest that while the aims were achieved to a considerable extent, there are areas of improvement that could make the results more robust and the conclusions stronger.

      Comments on revised version:

      I appreciate the opportunity to review this revised submission. Having considered the other reviews, I believe this study presents an important advance in using AI methods for clinical applications, which is both innovative and has implications beyond a single subfield.

      The authors have developed a system using fundamental AI that appears sufficient for clinical use in scoring the Rey-Osterrieth Complex Figure (ROCF) test. In human neuropsychology, tests that generate scores like this are a key part of assessing patients. The evidence supporting the validity of the AI scoring system is compelling. This represents a valuable step towards evaluating more complex neurobehavioral functions.

      However, one area where the study could be strengthened is in the explainability of the AI methods used. To ensure the scores are fully transparent and consistent for clinical use, it will be important for future work to test the robustness of the approach, potentially by comparing multiple methods. Examining other latent variables that can explain patients' cognitive functioning would also be informative.

      In summary, I believe this study provides an important proof-of-concept with compelling evidence, while also highlighting key areas for further development as this technology moves towards real-world clinical applications.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigated how traumatic brain injury affects oscillatory and single-unit hippocampal activity in awake-behaving rats.

      Strengths:

      The use of high-density laminar electrodes enabled precise localization of recording sites. To ensure an unbiased, rigorous approach, single-unit analysis was performed by a reviewer who was blind to experimental conditions. A proof of concept study was undertaken to characterize the pathology that resulted from the specific TBI model used in the main study. There was an effort to link abnormalities in hippocampal activity to memory disruption by running a cohort of rats on the Morris Water Maze task.

      Weaknesses:

      The paper is written as if the experiment was exploratory and not hypothesis-driven despite the fact that there is a wealth of experimental evidence about this TBI model that could have informed very specific predictions to test a hypothesis that is only hinted at in the discussion. The number of rats used for the spatial working memory experiment is not reported. Some of the statistics are not completely reported. It is also unclear what the rationale was for recording single units in a novel and familiar environment. Furthermore, this analysis comparing single-unit activity between familiar and novel environments is quite rudimentary. There are much more rigorous analyses to answer the question of how hippocampal single-unit firing patterns differ across changes in environments. There are details lacking about the number of units recorded per session and per rat, all of which are usually reported in studies that record single units. Spatial working memory assessment is delegated to a single panel of a supplementary figure. More importantly, there is no effort to dissociate between spatial working memory deficits and other motor, motivational, or sensory deficits that could have been driving the lower "memory score" in the experimental group.

    1. Joint Public Review

      Summary:

      The authors sought to elucidate the mechanism by which infections increase sleep in Drosophila. Their work is important because it further supports the idea that the blood-brain barrier is involved in brain-body communication, and because it advances the field of sleep research. Using knock-down and knock-out of cytokines and cytokine receptors specifically in the endocrine cells of the gut (cytokines) as well as in the glia forming the blood-brain barrier (BBB) (cytokines receptors), the authors show that cytokines, upd2 and upd3, secreted by entero-endocrine cells in response to infections increase sleep through the Dome receptor in the BBB. They also show that gut-derived Allatostatin (Alst) A promotes wakefulness by inhibiting Alst A signaling that is mediated by Alst receptors expressed in BBB glia. Their results suggest there may be additional mechanisms that promote elevated sleep during gut inflammation.<br /> The authors suggest that upd3 is more critical than upd2, which is not sufficiently addressed or explained. In addition, the study uses the gut's response to reactive oxygen molecules as a proxy for infection, which is not sufficiently justified. Finally, further verification of some fundamental tools used in this paper would further solidify these findings making them more convincing.

      Strengths:

      (1) The work addresses an important topic and proposes an intriguing mechanism that involves several interconnected tissues. The authors place their research in the appropriate context and reference related work, such as literature about sickness-induced sleep, ROS, the effect of nutritional deprivation on sleep, sleep deprivation and sleep rebound, upregulated receptor expression as a compensatory mechanism in response to low levels of a ligand, and information about Alst A.

      (2) The work is, in general, supported by well-performed experiments that use a variety of different tools, including multiple RNAi lines, CRISPR, and mutants, to dissect both signal-sending and receiving sides of the signaling pathway.

      (3) The authors provide compelling evidence that shows that endocrine cells from the gut are the source of the upd cytokines that increase daytime sleep, that the glial cells of the BBB are the targets of these upds, and that upd action causes the downregulation of Alst receptors in the BBB via the Jak/Stat pathways.

      Weaknesses:

      (1) There is a limited characterization of cell types in the midgut which are classically associated with upd cytokine production.

      (2) Some of the main tools used in this manuscript to manipulate the gut while not influencing the brain (e.g., Voilà and Voilà + R57C10-GAL80), are not directly shown to not affect gene expression in the brain. This is critical for a manuscript delving into intra-organ communication, as even limited expression in the brain may lead to wrong conclusions.

      (3) The model of gut inflammation used by the authors is based on the increase in reactive oxygen species (ROS) obtained by feeding flies food containing 1% H2O2. The use of this model is supported by the authors rather weakly in two papers (refs. 26 and 27 ): The paper by Jiang et al. (ref. 26) shows that the infection by Pseudomonas entomophila induces cytokine responses upd2 and 3, which are also induced by the Jnk pathway. In addition, no mention of ROS could be found in Buchon et al. (ref 27); this is a review that refers to results showing that ROS are produced by the NADPH oxidase DUOX as part of the immune response to pathogens in the gut. Thus, there is no strong support for the use of this model.

      (4) Likewise, there is no support for the use of ROS in the food instead a direct infection by pathogenic bacteria. Furthermore, it is known that ROS damages the gut epithelium, which in turn induces the expression of the cytokines studied. Thus the effects observed may not reflect the response to infection. In addition, Majcin Dorcikova et al. (2023). Circadian clock disruption promotes the degeneration of dopaminergic neurons in male Drosophila. Nat Commun. 2023 14(1):5908. doi: 10.1038/s41467-023-41540-y report that the feeding of adult flies with H2O2 results in neurodegeneration if associated with circadian clock defects. Thus, it would be important to discuss or present controls that show that the feeding of H2O2 does not cause neuronal damage.

      (5) The novelty of the work is difficult to evaluate because of the numerous publications on sleep in Drosophila. Thus, it would be very helpful to read from the authors how this work is different and novel from other closely related works such as: Li et al. (2023) Gut AstA mediates sleep deprivation-induced energy wasting in Drosophila. Cell Discov. 23;9(1):49. doi: 10.1038/s41421-023-00541-3.

    1. Reviewer #1 (Public review):

      Summary:

      This study represents valuable insight into the potential contribution of ciliation deficits and cholinergic neuron survival in an etiologically appropriate Parkinson's disease mouse model. The evidence presented is convincing, employing a validated methodology to assess measures across multiple brain regions and time points, with adequate observation numbers. Similarities between some of the data here and human patients further validate the model, and the study provides numerous avenues to aid future advances.

      Strengths:

      Overall, this study presents a thorough analysis of ciliary defects and cell loss in cholinergic neurons throughout the brain in the LRRK2 G2019S knockin mouse model of Parkinson's disease. The authors aimed to characterize ciliary defects in areas not only implicated in PD but also in cholinergic neuron function. Additionally, they repeated measures across age and sex, presenting a body of work that is more readily translatable to human disease states. The strengths of the paper included the breadth of brain regions tested and additional mechanistic contributions of LRRK2 that may correlate to their observed phenotypes. The study conveys to the reader the ciliary phenotype observed in all the cholinergic neurons assessed throughout the brains of knock-in LRRK2 mutant mice. Importantly, the pattern of changes is, in some instances, strikingly similar to PD, which strengthens the case for construct and face validation of the G2019S knock-in mouse model. Future investigations of the physiological and behavioural correlates/consequences of these changes will inform ongoing and, as yet untried, therapeutic intervention attempts.

      Weaknesses:

      At times, the claims are only partially substantiated by how the data are presented (e.g., inappropriate statistics within an age (t-tests, not ANOVA) and a lack of comparison between ages (despite referring to the progress of a phenotype). More appropriate statistical analyses and revisions to the data presentation are required to substantiate basic and more 'progressive' conclusions. Further, distributing the central claim over 10 figures dilutes the impact, many of which could be compressed into a couple of single figures (e.g., cell counts in all regions and ciliation). Also, a summary graphic showing the brain regions affected by ciliation alterations and cell loss at young, middle, and old age in the GS mice would be hugely beneficial. This peer would like to see more discussion of how the observed changes would impact circuit-level function and more speculation of the underlying mechanisms leading to the deficits. Minor changes to the abstract and introduction (to include more detail in the rationale and supporting evidence) are recommended, as summaries of existing literature are vague and could flow better between one statement and the next.

    1. Reviewer #1 (Public review):

      The manuscript by Griesius et al. addresses the dendritic integration of synaptic input in cortical GABAergic interneurons (INs). Dendritic properties, passive and active, of principal cells have been extensively characterized, but much less is known about the dendrites of INs. The limited information is particularly relevant in view of the high morphological and physiological diversity of IN types. The few studies that investigated IN dendrites focused on parvalbumin-expressing INs. In fact, in a previous study, the authors examined dendritic properties of PV INs, and found supralinear dendritic integration in basal, but not in apical dendrites (Cornford et al., 2019 eLife).

      In the present study, complementary to the prior work, the authors investigate whether dendrite-targeting IN types, NDNF-expressing neurogliaform cells, and somatostatin(SOM)-expressing O-LM neurons, display similar active integrative properties by combining clustered glutamate-uncaging and pharmacological manipulations with electrophysiological recording and calcium imaging from genetically identified IN types in mouse acute hippocampal slices.

      The main findings are that NDNF IN dendrites show strong supralinear summation of spatially- and temporally-clustered EPSPs, which is changed into sublinear behavior by bath application of NMDA receptor antagonists, but not by Na+-channel blockers. L-type calcium channel blockers abolished the supralinear behavior associated calcium transients but had no or only weak effect on EPSP summation. SOM IN dendrites showed similar, albeit weaker NMDA-dependent supralinear summation, but no supralinear calcium transients were detected in these INs. In summary, the study demonstrates that different IN types are endowed with active dendritic integrative mechanisms, but show qualitative and quantitative divergence in these mechanisms.

      While the research is conceptionally not novel, it constitutes an important incremental gain in our understanding of the functional diversity of GABAergic INs. In view of the central roles of IN types in network dynamics and information processing in the cortex, results and conclusions are of interest to the broader neuroscience community.

      The experiments are well designed, and closely follow the approach from the previous publication in parts, enabling direct comparison of the results obtained from the different IN types. The data is convincing and the conclusions are well-supported, and the manuscript is very well-written.

      I see only a few open questions and some inconsistencies in the presentation of the data in the figures (see details below).

    1. Reviewer #1 (Public review):

      Summary:

      This study provides convincing evidence on the infraslow oscillation of DG cells during NREM sleep, and how serotonergic innervation modulates hippocampal activity pattern during sleep and memory.

      Strengths and Weaknesses:

      The authors used state-of-the-art techniques to carry out these experiments. Given that the functional role of infraslow rhythm still remains to be studied, this study provides convincing evidence of the role of DG cells in regulating infraslow rhythm, sleep microarchitecture, and memory.

      I have a few minor comments.

      (1) Decreased infraslow rhythm during NREMs in the 5ht1a KO mice is striking. It would be helpful to know whether sleep-wake states, MAs, and transitions to REMs are changed.

      (2) It would be interesting to discuss whether the magnitude in changes of infraslow rhythm strength is correlated with memory performance (Figure 6).

      (3) The authors should cite the Oikonomou Neuron paper that describes slow oscillatory activity of DRN SERT neurons during NREM sleep.

      (4) The authors should clarify how they define the phasic pattern of the photometry signal.

    1. Reviewer #1 (Public review):

      Summary:

      This study is an important follow-up to their prior work - Wong et al. (2019), starting with clear questions and hypotheses, followed by a series of thoughtful and organized experiments. The method and results are convincing. Experiment 1 demonstrated the sensory preconditioned fear with few (8) or many (32) sound-light pairings. Experiments 2A and 2B showed the role of PRh NMDA receptors during conditioning for online integration, revealing that this contribution is present only after a few sound-light pairings, not after many sound-light pairings. Experiments 3A and 3B showed the contribution of PRh-BLA communication to online integration, again only after a few but not after many. Contrary to Experiments 3A and 3B, Experiments 4A and 4B showed the contribution of PRh-BLA communication to integration at test only after many but not few sound-light pairings.

      Strengths:

      Throughout the manuscript, the methods and results are clearly organized and described, and the use of statistics is solid, all contributing to the overall clarity of the research. The discussion section was also well-written, effectively comparing the current research with the prior work and offering insightful interpretations and potential future directions for this line of research. I have only a limited amount of concerns about some results and some details of experiments/statistics.

      Weaknesses:

      Could you provide further interpretation regarding line 171: the observation that sensory preconditioned fear increased with the number of sound-light pairings? Was this increase due to better sound-light association learning during Stage 1? Additionally, were there any experimental differences between Experiment 1 and the other experiments that might explain why freezing was higher in the P32 group compared to the P8 group? This pattern seemed to be absent in the other experiments. If we consider the hypothesis that the online integration mechanism is more active with fewer pairings and the chaining mechanism at the test is more prominent with many pairings, we wouldn't expect a difference between the P8 and P32 groups. Given the relatively small sample size in Experiment 1, the authors might consider conducting a cross-experiment analysis or something similar to investigate this further.

    1. Reviewer #1 (Public review):

      Summary:

      The behavioral strategies underlying decisions based on perceptual evidence are often studied in the lab with stimuli whose elements provide independent pieces of decision-related evidence that can thus be equally weighted to form a decision. In more natural scenarios, in contrast, the information provided by these pieces is often correlated, which impacts how they should be weighted. Tardiff, Kang & Gold set out to study decisions based on correlated evidence and compare the observed behavior of human decision-makers to normative decision strategies. To do so, they presented participants with visual sequences of pairs of localized cues whose location was either uncorrelated, or positively or negatively correlated, and whose mean location across a sequence determined the correct choice. Importantly, they adjusted this mean location such that, when correctly weighted, each pair of cues was equally informative, irrespective of how correlated it was. Thus, if participants follow the normative decision strategy, their choices and reaction times should not be impacted by these correlations. While Tardiff and colleagues found no impact of correlations on choices, they did find them to impact reaction times, suggesting that participants deviated from the normative decision strategy. To assess the degree of this deviation, Tardiff et al. adjusted drift-diffusion models (DDMs) for decision-making to process correlated decision evidence. Fitting these models to the behavior of individual participants revealed that participants considered correlations when weighing evidence, but did so with a slight underestimation of the magnitude of this correlation. This finding made Tardiff et al. conclude that participants followed a close-to-normative decision strategy that adequately took into account correlated evidence.

      Strengths:

      The authors adjust a previously used experimental design to include correlated evidence in a simple, yet powerful way. The way it does so is easy to understand and intuitive, such that participants don't need extensive training to perform the task. Limited training makes it more likely that the observed behavior is natural and reflective of everyday decision-making. Furthermore, the design allowed the authors to make the amount of decision-related evidence equal across different correlation magnitudes, which makes it easy to assess whether participants correctly take account of these correlations when weighing evidence: if they do, their behavior should not be impacted by the correlation magnitude.

      The relative simplicity with which correlated evidence is introduced also allowed the authors to fall back to the well-established DDM for perceptual decisions, which has few parameters, is known to implement the normative decision strategy in certain circumstances, and enjoys a great deal of empirical support. The authors show how correlations ought to impact these parameters, and which changes in parameters one would expect to see if participants mis-estimate these correlations or ignore them altogether (i.e., estimate correlations to be zero). This allowed them to assess the degree to which participants took into account correlations on the full continuum from perfect evidence weighting to complete ignorance. With this, they could show that participants in fact performed rational evidence weighting if one assumed that they slightly underestimated the correlation magnitude.

      Weaknesses:

      The experiment varies the correlation magnitude across trials such that participants need to estimate this magnitude within individual trials. This has several consequences:

      (1) Given that correlation magnitudes are estimated from limited data, the (subjective) estimates might be biased towards their average. This implies that, while the amount of evidence provided by each 'sample' is objectively independent of the correlation magnitude, it might subjectively depend on the correlation magnitude. As a result, the normative strategy might differ across correlation magnitudes, unlike what is suggested in the paper. In fact, it might be the case that the observed correlation magnitude underestimates corresponds to the normative strategy.

      (2) The authors link the normative decision strategy to putting a bound on the log-likelihood ratio (logLR), as implemented by the two decision boundaries in DDMs. However, as the authors also highlight in their discussion, the 'particle location' in DDMs ceases to correspond to the logLR as soon as the strength of evidence varies across trials and isn't known by the decision maker before the start of each trial. In fact, in the used experiment, the strength of evidence is modulated in two ways:<br /> (i) by the (uncorrected) distance of the cue location mean from the decision boundary (what the authors call the evidence strength) and<br /> (ii) by the correlation magnitude. Both vary pseudo-randomly across trials, and are unknown to the decision-maker at the start of each trial. As previous work has shown (e.g. Kiani & Shadlen (2009), Drugowitsch et al. (2012)), the normative strategy then requires averaging over different evidence strength magnitudes while forming one's belief. This averaging causes the 'particle location' to deviate from the logLR. This deviation makes it unclear if the DDM used in the paper indeed implements the normative strategy, or is even a good approximation to it.

      Given that participants observe 5 evidence samples per second and on average require multiple seconds to form their decisions, it might be that they are able to form a fairly precise estimate of the correlation magnitude within individual trials. However, whether this is indeed the case is not clear from the paper.

      Furthermore, the authors capture any underestimation of the correlation magnitude by an adjustment to the DDM bound parameter. They justify this adjustment by asking how this bound parameter needs to be set to achieve correlation-independent psychometric curves (as observed in their experiments) even if participants use a 'wrong' correlation magnitude to process the provided evidence. Curiously, however, the drift rate, which is the second critical DDM parameter, is not adjusted in the same way. If participants use the 'wrong' correlation magnitude, then wouldn't this lead to a mis-weighting of the evidence that would also impact the drift rate? The current model does not account for this, such that the provided estimates of the mis-estimated correlation magnitudes might be biased.

      Lastly, the paper makes it hard to assess how much better the participants' choices would be if they used the correct correlation magnitudes rather than underestimates thereof. This is important to know, as it only makes sense to strictly follow the normative strategy if it comes with a significant performance gain.

    1. rogorc raodenobrivi, aseve Tvisebrivikvlevis Sedegebi miuTiTebs, rom poli-tikaSi CarTul qalTa mimarT ZaladobasaqarTveloSi farTod gavrcelebulifenomenia, romelic misi gavrcelebu-lobis da simwvavis miuxedavad, iSviaTadxdeba sajaro ganxilvis sagani. kvlevaaCvenebs, rom problemis aRiareba da sa-Tanado ganxilva mniSvnelovnad aZlie-rebs im qalebs, romlebic am problemazesaubars ver bedaven. amitom rekomende-bulia, rom politikaSi CarTul qalTamimarT Zaladobis sakiTxs saTanado yu-radReba miaqcion, rogorc xelisufle-bis da politikuri partiebis warmomad-genlebma, aseve centralurma saarCevnokomisiam da mediam.2 da regularuladganixilon igi , rogorc centraluri daadgilobrivi xelisuflebis da poli-tikuri partiebis doneze, aseve sajarodebatebSi, gansakuTrebiT, winasaarCevnoperiodSi, rodesac Zaladobis riskebikidev ufro maRalia

      ვფიქრობ,რომ პოლიტიკში ჩართულ ქალთა მიმართ ძალადობის პრევენციისათვის მართლც აუცილებელია მსგავსი გამოკითხვები,კვლევები თუ სხვა სახის ღონისძიებები,რადგნ ეს მამოტივირებელია პლიტიკაში ჩართული ქალებისთვის,რომლებიც საკუთარ პრობლემებზე ღიად ვერ საუბრობენ

    1. Reviewer #1 (Public review):

      The manuscript by Chen et al. investigated the interaction between CHI3L1, a chitinase-like protein in the 18 glycosyl hydrolase family, and gut bacteria in the mucosal layers. The authors provided evidence to document the direct interaction between CHI3L1 and peptidoglycan, a major component of bacterial cell wall. Doing so, Chi3l1 produced by gut epithelial cells regulates the balance of gut microbiome and diminishes DSS-induced colitis, potentially through the colonization of protective gram-positive bacteria such as lactobacillus.

      The study is the first to systemically document the interactions between Chi3L1 and microbiome. Convincing data were shown to characterize the imbalance of gram-positive bacteria in the newly generated gut epithelial-specific Chi3L1 deficient mice. Comprehensive FMT experiments were performed to demonstrate the contributions of gut microbiome using the mouse colitis model. The manuscript is strengthened by additional mechanistic studies concerning the binding between Chi3l1 and peptidoglycan, and discussions on existing body of literature demonstrating that detrimental roles of Chi3l1 in mouse IBD model, which conflict with the current study.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript the authors investigate the contributions of the long noncoding RNA snhg3 in liver metabolism and MAFLD. The authors conclude that liver-specific loss or overexpression of Snhg3 impacts hepatic lipid content and obesity through epigenetic mechanisms. More specifically, the authors invoke that nuclear activity of Snhg3 aggravates hepatic steatosis by altering the balance of activating and repressive chromatin marks at the Pparg gene locus. This regulatory circuit is dependent on a transcriptional regulator SNG1.

      Strengths:

      The authors developed a tissue specific lncRNA knockout and KI models. This effort is certainly appreciated as few lncRNA knockouts have been generated in the context of metabolism. Furthermore, lncRNA effects can be compensated in a whole organism or show subtle effects in acute versus chronic perturbation, rendering the focus on in vivo function important and highly relevant. In addition, Snhg3 was identified through a screening strategy and as a general rule the authors the authors attempt to follow unbiased approaches to decipher the mechanisms of Snhg3.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript nicely outlines a conceptual problem with the bFAC model in A-motility, namely, how the energy derived from the inner membrane AglRQS motor transduced through the cell wall into mechanical force on the cell surface to drive motility? To address this, the authors make a significant contribution by identifying and characterizing a lytic transglycosylase (LTG) called AgmT. This work thus provides clues and a future framework work to address mechanical force transmission from the cytoplasm through the cell envelope to the cell surface.

      Strengths:

      (i) Convincing evidence shows AgmT functions as a LTG and, surprisingly, that mltG from E. coli complements the swarming defect of an agmT mutant.

      (ii) Show 13 other LTGs found in M. xanthus are not required for A-motility.

      (iii) Authors show agmT mutants develop morphological changes in response to treatment with a beta-lactam antibiotic, mecillinam.

      (iv) The use of single molecule tracking to monitor the assembly and dynamics of bFACs in WT and mutant backgrounds.

      (v) The authors understand the limitations of their work and do not overinterpret their data.

      Weaknesses:

      The authors provided more experiments and clearly addressed my prior concerns in their revised manuscript.

    1. Reviewer #1 (Public review):

      The authors present data on outer membrane vesicle (OMV) production in different mutants, but they state that this is beyond the scope of the current manuscript, which I disagree with. This data could provide valuable physiological context that is otherwise lacking. The preliminary blots suggest that YafK does not alter OMV biogenesis. I recommend repeating these blots with appropriate controls, such as blotting for proteins in the culture media, an IM protein, periplasmic protein and an OM protein to strengthen the reliability of these findings. Including this data in the manuscript, even if it does not directly support the initial hypothesis, would enhance the physiological relevance of the study. Currently, the manuscript relies completely on the experimental setup (labeling-mass spec) previously developed by the authors, which limits the broader scope and interpretability of this study.

      Additionally susceptibility of strains to detergents like SDS can be tested to provide a much needed physisological context to the study.

      In summary, the authors should consider revising the manuscript to improve clarity, substantiate their claims with more detailed evidence, and include additional experimental results that provide necessary physiological context to their study.

      Comments on the revised version:

      Regarding my comments from last review on a new figure on OMV analysis, The authors have redirected me to their previous response and have not performed the suggested control blots. I do not get their argument that this is for specialized audience. I do not have any more comments.

    1. Reviewer #1 (Public review):

      Summary:

      An investigation of the dynamics of a neural network model characterized by sparsely connected clusters of neuronal ensembles. The authors found that such a network could intrinsically generate sequence preplay and place maps, with properties like those observed in the real-world data.

      Strengths:

      Computational model and data analysis supporting the hippocampal network mechanisms underlying sequence preplay of future experiences and place maps.<br /> The revised version of the manuscript addressed all my comments and as a result is significantly improved.

      Weaknesses:

      None noted

    1. Reviewer #1 (Public review):

      Summary:

      Here, the authors propose that changes in m6A levels may be predictable via a simple model that is based exclusively on mRNA metabolic events. Under this model, m6A mRNAs are "passive" victims of RNA metabolic events with no "active" regulatory events needed to modulate their levels by m6A writers, readers, or erasers; looking at changes in RNA transcription, RNA export, and RNA degradation dynamics is enough to explain how m6A levels change over time.

      The relevance of this study is extremely high at this stage of the epi transcriptome field. This compelling paper is in line with more and more recent studies showing how m6A is a constitutive mark reflecting overall RNA redistribution events. At the same time, it reminds every reader to carefully evaluate changes in m6A levels if observed in their experimental setup. It highlights the importance of performing extensive evaluations on how much RNA metabolic events could explain an observed m6A change.

      Weaknesses:

      It is essential to notice that m6ADyn does not exactly recapitulate the observed m6A changes. First, this can be due to m6ADyn's limitations. The authors do a great job in the Discussion highlighting these limitations. Indeed, they mention how m6ADyn cannot interpret m6A's implications on nuclear degradation or splicing and cannot model more complex scenario predictions (i.e., a scenario in which m6A both impacts export and degradation) or the contribution of single sites within a gene.

      Secondly, since predictions do not exactly recapitulate the observed m6A changes, "active" regulatory events may still play a partial role in regulating m6A changes. The authors themselves highlight situations in which data do not support m6ADyn predictions. Active mechanisms to control m6A degradation levels or mRNA export levels could exist and may still play an essential role.

      (1) "We next sought to assess whether alternative models could readily predict the positive correlation between m6A and nuclear localization and the negative correlations between<br /> m6A and mRNA stability. We assessed how nuclear decay might impact these associations by introducing nuclear decay as an additional rate, δ. We found that both associations were robust to this additional rate (Supplementary Figure 2a-c)."<br /> Based on the data, I would say that model 2 (m6A-dep + nuclear degradation) is better than model 1. The discussion of these findings in the Discussion could help clarify how to interpret this prediction. Is nuclear degradation playing a significant role, more than expected by previous studies?

      (2) The authors classify m6A levels as "low" or "high," and it is unclear how "low" differs from unmethylated mRNAs.

      (3) The authors explore whether m6A changes could be linked with differences in mRNA subcellular localization. They tested this hypothesis by looking at mRNA changes during heat stress, a complex scenario to predict with m6ADyn. According to the collected data, heat shock is not associated with dramatic changes in m6A levels. However, the authors observe a redistribution of m6A mRNAs during the treatment and recovery time, with highly methylated mRNAs getting retained in the nucleus being associated with a shorter half-life, and being transcriptional induced by HSF1. Based on this observation, the authors use m6Adyn to predict the contribution of RNA export, RNA degradation, and RNA transcription to the observed m6A changes. However:

      (a) Do the authors have a comparison of m6ADyn predictions based on the assumption that RNA export and RNA transcription may change at the same time?

      (b) They arbitrarily set the global reduction of export to 10%, but I'm not sure we can completely rule out whether m6A mRNAs have an export rate during heat shock similar to the non-methylated mRNAs. What happens if the authors simulate that the block in export could be preferential for m6A mRNAs only?

      (c) The dramatic increase in the nucleus: cytoplasmic ratio of mRNA upon heat stress may not reflect the overall m6A mRNA distribution upon heat stress. It would be interesting to repeat the same experiment in METTL3 KO cells. Of note, m6A mRNA granules have been observed within 30 minutes of heat shock. Thus, some m6A mRNAs may still be preferentially enriched in these granules for storage rather than being directly degraded. Overall, it would be interesting to understand the authors' position relative to previous studies of m6A during heat stress.

      (d) Gene Ontology analysis based on the top 1000 PC1 genes shows an enrichment of GOs involved in post-translational protein modification more than GOs involved in cellular response to stress, which is highlighted by the authors and used as justification to study RNA transcriptional events upon heat shock. How do the authors think that GOs involved in post-translational protein modification may contribute to the observed data?

      (e) Additionally, the authors first mention that there is no dramatic change in m6A levels upon heat shock, "subtle quantitative differences were apparent," but then mention a "systematic increase in m6A levels observed in heat stress". It is unclear to which systematic increase they are referring to. Are the authors referring to previous studies? It is confusing in the field what exactly is going on after heat stress. For instance, in some papers, a preferential increase of 5'UTR m6A has been proposed rather than a systematic and general increase.

    1. Reviewer #1 (Public review):

      Summary:

      The study shows that Zizyphi spinosi semen (ZSS), particularly its non-extracted simple crush powder, has significant therapeutic effects on neurodegenerative diseases. It removes Aβ, tau, and α-synuclein oligomers, restores synaptophysin levels, enhances BDNF expression and neurogenesis, and improves cognitive and motor functions in mouse AD, FTD, DLB, and PD models. Additionally, ZSS powder reduces DNA oxidation and cellular senescence in normal-aged mice, increases synaptophysin, BDNF, and neurogenesis, and enhances cognition to levels comparable to young mice.

      Weaknesses:

      (1) While the study demonstrates that ZSS has protective effects across a wide range of animal models, including AD, FTD, DLB, PD, and both young and aged mice, it is broad and lacks a detailed investigation into the underlying mechanisms. This is the most significant concern.

      (2) The authors highlight that the non-extracted simple crush powder of ZSS shows more substantial effects than its hot water extract and extraction residue. However, the manuscript provides very limited data comparing the effects of these three extracts.

      (3) The authors have not provided a rationale for the dosing concentrations used, nor have they tested the effects of the treatment in normal mice to verify its impact under physiological conditions.

      (4) Regarding the assessment of cognitive function in mice, the authors only utilized the Morris Water Maze (MWM) test, which includes a five-day spatial learning training phase followed by a probe trial. The authors focused solely on the learning phase. However, it is relevant to note that data from the learning phase primarily reflects the learning ability of the mice, while the probe trial is more indicative of memory. Therefore, it is essential that probe trial data be included for a more comprehensive analysis. A justification should be included to explain why the latency of 1st is about 50s not 60s.

      (5) The BDNF immunohistochemical staining in the manuscript appears to be non-specific.

      (6) The central pathological regions in PD are the substantia nigra and striatum. Please replace the staining results from the cortex and hippocampus with those from these regions in the PD model.

    1. Reviewer #1 (Public Review):

      In this study, Yang et al. investigated the locations and hierarchies of NFATc1+ and PDGFRα+ cells in dental and periodontal mesenchyme. By combining intersectional and exclusive reporters, they attempted to distinguish among NFATc1+PDGFRα+, NFATc1+PDGFRα-, and NFATc1- PDGFRα+ cells. Using tissue clearing and serial section-based 3D reconstruction, they mapped the distribution atlas of these cell populations. Through DTA-induced ablation of PDGFRα+ cells, they demonstrated the crucial role of PDGFRα+ cells in the formation of the odontoblast cell layer and periodontal components.

      Main issues:

      (1) The authors did not quantify the contribution of PDGFRα+ cells or NFATc1+ cells to dental and periodontal lineages in PDGFRαCreER; Nfatc1DreER;LGRT mice. Zsgreen+ cells represented PDGFRα+ cells and their lineages. Tomato+ cells represented NFATc1+ cells and their lineages. Tomato+Zsgreen+ cells represented NFATc1+PDGFRα+ cells and their lineages. Conducting immunostaining experiments with lineage markers is essential to determine the physiological contributions of these cells to dental and periodontal homeostasis.

      (2) The authors attempted to use PDGFRαCreER; Nfatc1DreER;IR1 mice to illustrate the hierarchies of NFATc1+ and PDGFRα+ cells. According to the principle of the IR1 reporter, it requires sequential induction of PDGFRα-CreER and Nfatc1-DreER to investigate their genetic relationship. Upon induction by tamoxifen, NFATc1+PDGFRα- cells and NFATc1-PDGFRα+ cells were labeled by Tomato and Zsgreen, respectively. However, the reporter expression of NFATc1+PDGFRα+ cells was uncertain, most likely random. Therefore, the hierarchical relationship of NFATc1+ and PDGFRα+ cells cannot be reliably determined from PDGFRαCreER; Nfatc1DreER; IR1 mice.

    1. Reviewer #1 (Public review):

      Summary:

      This paper presents a data processing pipeline to discover causal interactions from time-lapse imaging data, and convicingly illustrates it on a challenging application for the analysis of tumor-on-chip ecosystem data.

      The core of the discovery module is the original tMIIC method of the authors, which is shown in supplementary material to compare favourably to two state-of-the-art methods on synthetic temporal data on a 15 nodes network.

      Strengths:

      This paper tackles the problem of learning causal interactions from temporal data which is an open problem in presence of latent variables.

      The core of the method tMIIC of the authors is nicely presented in connection to Granger-Schreiber causality and to the novel graphical conditions used to infer latent variables and based on a theorem about transfer entropy.

      tMIIC compares favourably to PC and PCMCI+ methods using different kernels on synthetic datasets generated from a network of 15 nodes.

      A full application to tumor-on-chip cellular ecosystems data including cancer cells, immune cells, cancer-associated fibroblasts, endothelial cells and anti cancer drugs, with convincing inference results with respect to both known and novel effects between those components and their contact.

      The code and dataset are available online for the reproducibility of the results.

      Weaknesses:

      The references to "state-of-the-art methods" concerning the inference of causal networks should be more precise by giving citations in the main text, and better discussed in general terms, both in the first section and in the section of presentation of CausalXtract. It is only in the legend of the figures of the supplementary material that we get information.

      Of course, comparison on our own synthetic datasets can always be criticized but this is rather due to the absence of common benchmark and I would recommend the authors to explicitly propose their datasets as benchmark to the community.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Both flies and mammals have D1-like and D2-like dopamine receptors, yet the role of D2-like receptors in Drosophila learning and memory remains underexplored. The paper by Qi et al. investigates the role of the D2-like dopamine receptor D2R in single pairs of dopaminergic neurons (DANs) during single-odor aversive learning in the Drosophila larva. First, they use confocal imaging to screen driver strains with expression in only single pairs of dopaminergic neurons. Next, they use thermogenetic manipulations of one pair of DANs (DAN-c1) to implicate DAN-c1 activity during larval aversive learning. They then use confocal imaging to demonstrate expression of D2R in the DANs and mushroom body of the larval brain. Finally, they show that optogenetic activation during training phenocopies D2R knockdown in these neurons: aversive learning is impaired when DAN-c1 is targeted, while appetitive and aversive learning are impaired when the mushroom body is manipulated. Qi et al. thus propose a model in which D2R limits excessive dopamine release to facilitate successful olfactory learning.

      Strengths:<br /> The paper reproduces prior findings by Qi and Lee (2014), which demonstrated that D2R knockdown in DL1 DANs or the mushroom body impairs aversive olfactory learning in Drosophila larvae. The authors extended this previous work by screening 57 GAL4 drivers to identify tools that drive expression in individual DANs and used one of the tools, the R76F02-AD; R55C10-DBD driver, to manipulate DAN-c1 neurons with greater specificity. They also show that GFP-tagged D2R is expressed in most DANs and the mushroom body. Although the authors only train larvae with a single odor, they demonstrate that driving D2R knockdown in DAN-c1 neurons impairs aversive learning, as do other loss-of-function manipulations of DAN-c1 neurons.

      Weaknesses:<br /> The authors claim to have identified drivers that label single DANs in Figure 1, but their confocal images in Figure S1 suggest that many of those drivers label additional neurons in the larval brain. It is also not clear why only some of the 57 drivers are displayed in Figure S1.<br /> Critically, R76F02-AD; R55C10-DBD labels more than one neuron per hemisphere in Figure S1c, and the authors cite Xie et al. (2018) to note that this driver labels two DANs in adult brains. Therefore, the authors cannot argue that the experiments throughout their paper using this driver exclusively target DAN-c1.<br /> Missing from the screen of 57 drivers is the driver MB320C, which typically labels only PPL1-γ1pedc in the adult and should label DAN-c1 in the larva. If MB320C labels DAN-c1 exclusively in the larva, then the authors should repeat their key experiments with MB320C to provide more evidence for DAN-c1 involvement specifically.<br /> The authors claim that the SS02160 driver used by Eschbach et al. (2020) labels other neurons in addition to DAN-c1. Could the authors use confocal imaging to show how many other neurons SS02160 labels? Given that both Eschbach et al. and Weber et al. (2023) found no evidence that DAN-c1 plays a role in larval aversive learning, it would be informative to see how SS02160 expression compares with the driver the authors use to label DAN-c1.<br /> The claim that DAN-c1 is both necessary and sufficient in larval aversive learning should be reworded. Such a claim would logically exclude any other neuron or even the training stimuli from being involved in aversive learning (see Yoshihara and Yoshihara (2018) for a detailed discussion of the logic), which is presumably not what the authors intended because they describe the possible roles of other DANs during aversive learning in the discussion.<br /> Moreover, if DAN-c1 artificial activation conveyed an aversive teaching signal irrespective of the gustatory stimulus, then it should not impair aversive learning after quinine training (Figure 2k). While the authors interpret Figure 2k (and Figure 5) to indicate that artificial activation causes excessive DAN-c1 dopamine release, an alternative explanation is that artificial activation compromises aversive learning by overriding DAN-c1 activity that could be evoked by quinine.<br /> The authors should not necessarily expect that D2R enhancer driver strains would reflect D2R endogenous expression, since it is known that TH-GAL4 does not label p(PAM) dopaminergic neurons. Their observations of GFP-tagged D2R expression could be strengthened with an anti-D2R antibody such as that used by Lam et al., (1999) or Love et al., (2023).<br /> Finally, the authors could consider the possibility other DANs may also mediate aversive learning via D2R. Knockdown of D2R in DAN-g1 appears to cause a defect in aversive quinine learning compared with its genetic control (Figure S4e). It is unclear why the same genetic control has unexpectedly poor aversive quinine learning after training with propionic acid (Figure S5a). The authors could comment on why RNAi knockdown of D2R in DAN-g1 does not similarly impair aversive quinine learning (Figure S5b).

    1. Reviewer #1 (Public review):

      ⍺-synuclein (syn) is a critical protein involved in many aspects of human health and disease. Previous studies have demonstrated that post-translational modifications (PTMs) play an important role in regulating the structural dynamics of syn. However, how post-translational modifications regulate syn function remains unclear. In this manuscript, Wang et al. reported an exciting discovery that N-acetylation of syn enhances the clustering of synaptic vesicles (SVs) through its interaction with lysophosphatidylcholine (LPC). Using an array of biochemical reconstitution, single vesicle imaging, and structural approaches, the authors uncovered that N-acetylation caused distinct oligomerization of syn in the presence of LPC, which is directly related to the level of SV clustering. This work provides novel insights into the regulation of synaptic transmission by syn and might also shed light on new ways to control neurological disorders caused by syn mutations.

    1. Reviewer #1 (Public review):

      The manuscript introduces a valuable and innovative non-AI computational method for segmenting noisy grayscale images, with a particular focus on identifying immunostained potassium ion channel clusters.

      Strengths:

      (1) Applicability and Usability: The method is exceptionally accessible to biologists and researchers without advanced computational expertise. It offers a highly practical alternative to AI-based methods, which often require significant training data and computational resources, making it an excellent choice for a broader range of laboratories.

      (2) Proof-of-Concept: The manuscript provides compelling evidence through multiple experiments, showcasing the method's superior performance over traditional threshold-based techniques, particularly in noisy environments. The dual immuno-electron microscopy experiments further reinforce the robustness and effectiveness of this approach.

      (3) Clarity and Methodology: The manuscript is exceptionally well-written, with clear and concise descriptions that effectively highlight the method's advantages. The detailed figures and comprehensive references greatly enhance the manuscript's credibility and strongly support the claims made.

      Weaknesses:

      The manuscript does not include comparisons with more advanced segmentation techniques, particularly those based on artificial intelligence. While the authors have provided a rationale for this decision, including such comparisons could have enriched the discussion and offered additional insights. Additionally, there are some concerns about the computational demands of the method, especially when applied to large-scale or 3D image analysis. Although the authors have shared some computational data, further optimization or practical recommendations would enhance the method's utility. Initially, the manuscript lacked a data and code availability statement, which could have limited the method's accessibility. However, this issue has since been resolved, with the code now being made available to the community. Lastly, while the findings related to Kv4.2 in the thalamus are noteworthy, they might achieve even greater impact if presented in a separate paper. Nevertheless, the authors have chosen to retain these results within the current manuscript to strengthen the overall narrative and relevance.

      We appreciate that the authors have provided thorough explanations for their original choices. These justifications offer a clearer understanding of their approach and the reasons behind the presentation of the data.

      Conclusion:

      The revised manuscript successfully addresses the majority of the reviewers' concerns, presenting a strong case for the proposed segmentation method. The method's ease of use for non-experts in AI, combined with its proven effectiveness in proof-of-concept experiments, positions it as a valuable addition to the field. While the manuscript could benefit from incorporating comparisons with more advanced segmentation methods and offering a more detailed discussion of computational requirements, it remains a robust contribution. The decision to include the Kv4.2 findings within the paper is well-justified by the authors, though these results could potentially have an even greater impact if published separately.